2023-01-11T20:35:39.9400694Z Requested labels: linux.2xlarge 2023-01-11T20:35:39.9400798Z Job defined at: pytorch/pytorch/.github/workflows/_linux-test.yml@refs/pull/91627/merge 2023-01-11T20:35:39.9400995Z Reusable workflow chain: 2023-01-11T20:35:39.9401034Z pytorch/pytorch/.github/workflows/pull.yml@refs/pull/91627/merge (57fc38f02f250896a12b32cfa200a6105a03d09c) 2023-01-11T20:35:39.9401085Z -> pytorch/pytorch/.github/workflows/_linux-test.yml@refs/pull/91627/merge (57fc38f02f250896a12b32cfa200a6105a03d09c) 2023-01-11T20:35:39.9401137Z Waiting for a runner to pick up this job... 2023-01-11T20:35:40.4008905Z Job is about to start running on the runner: i-05ef50dfe628429d7 (organization) 2023-01-11T20:35:47.3085258Z Current runner version: '2.300.2' 2023-01-11T20:35:47.3090546Z Runner name: 'i-05ef50dfe628429d7' 2023-01-11T20:35:47.3090994Z Runner group name: 'Default' 2023-01-11T20:35:47.3091557Z Machine name: 'ip-10-0-2-51' 2023-01-11T20:35:47.3093273Z ##[group]GITHUB_TOKEN Permissions 2023-01-11T20:35:47.3093741Z Actions: read 2023-01-11T20:35:47.3094011Z Checks: read 2023-01-11T20:35:47.3094307Z Contents: read 2023-01-11T20:35:47.3094541Z Deployments: read 2023-01-11T20:35:47.3094810Z Discussions: read 2023-01-11T20:35:47.3095074Z Issues: read 2023-01-11T20:35:47.3095291Z Metadata: read 2023-01-11T20:35:47.3095641Z Packages: read 2023-01-11T20:35:47.3095905Z Pages: read 2023-01-11T20:35:47.3096129Z PullRequests: read 2023-01-11T20:35:47.3096428Z RepositoryProjects: read 2023-01-11T20:35:47.3096750Z SecurityEvents: read 2023-01-11T20:35:47.3096980Z Statuses: read 2023-01-11T20:35:47.3097244Z ##[endgroup] 2023-01-11T20:35:47.3100362Z Secret source: None 2023-01-11T20:35:47.3101120Z Prepare workflow directory 2023-01-11T20:35:47.9366238Z Prepare all required actions 2023-01-11T20:35:47.9527145Z Getting action download info 2023-01-11T20:35:48.2017180Z Download action repository 'pytorch/test-infra@main' (SHA:2c225610d00fb13c04fcd60389d3e4d8326167c3) 2023-01-11T20:35:48.4746089Z Download action repository 'pytorch/pytorch@master' (SHA:c5836153f5332ca83d5cacde38f2829a4d54793e) 2023-01-11T20:35:51.5136225Z Download action repository 'seemethere/upload-artifact-s3@v5' (SHA:baba72d0712b404f646cebe0730933554ebce96a) 2023-01-11T20:35:51.8025747Z Getting action download info 2023-01-11T20:35:52.7243931Z Download action repository 'malfet/checkout@silent-checkout' (SHA:c7b8fef48edfe1bca0044a44b1f7f7c4318a3076) 2023-01-11T20:35:52.9090710Z Getting action download info 2023-01-11T20:35:53.7875341Z Download action repository 'nick-fields/retry@3e91a01664abd3c5cd539100d10d33b9c5b68482' (SHA:3e91a01664abd3c5cd539100d10d33b9c5b68482) 2023-01-11T20:35:53.9224820Z Uses: pytorch/pytorch/.github/workflows/_linux-test.yml 2023-01-11T20:35:53.9226492Z ##[group] Inputs 2023-01-11T20:35:53.9226785Z build-environment: linux-focal-py3.7-clang7-asan 2023-01-11T20:35:53.9227434Z test-matrix: { include: [ { config: "default", shard: 1, num_shards: 5, runner: "linux.2xlarge" }, { config: "default", shard: 2, num_shards: 5, runner: "linux.2xlarge" }, { config: "default", shard: 3, num_shards: 5, runner: "linux.2xlarge" }, { config: "default", shard: 4, num_shards: 5, runner: "linux.4xlarge" }, { config: "default", shard: 5, num_shards: 5, runner: "linux.4xlarge" }, { config: "functorch", shard: 1, num_shards: 1, runner: "linux.2xlarge" }, ]} 2023-01-11T20:35:53.9228156Z docker-image: 308535385114.dkr.ecr.us-east-1.amazonaws.com/pytorch/pytorch-linux-focal-py3-clang7-asan:fd224c2e6c79d7fdec6408da598bf52bc5b201dd 2023-01-11T20:35:53.9228506Z sync-tag: 2023-01-11T20:35:53.9229180Z timeout-minutes: 240 2023-01-11T20:35:53.9229355Z use-gha: 2023-01-11T20:35:53.9229542Z ##[endgroup] 2023-01-11T20:35:53.9230012Z Complete job name: linux-focal-py3.7-clang7-asan / test (default, 3, 5, linux.2xlarge) 2023-01-11T20:35:53.9897475Z ##[group]Run pytorch/test-infra/.github/actions/setup-ssh@main 2023-01-11T20:35:53.9897773Z with: 2023-01-11T20:35:53.9898257Z github-secret: *** 2023-01-11T20:35:53.9898604Z instructions: All testing is done inside the container, to start an interactive session run: docker exec -it $(docker container ps --format '{{.ID}}') bash 2023-01-11T20:35:53.9898931Z activate-with-label: false 2023-01-11T20:35:53.9899124Z label: with-ssh 2023-01-11T20:35:53.9899317Z remove-existing-keys: true 2023-01-11T20:35:53.9899490Z env: 2023-01-11T20:35:53.9899665Z GIT_DEFAULT_BRANCH: master 2023-01-11T20:35:53.9899853Z ##[endgroup] 2023-01-11T20:35:54.4111838Z Grabbing public ssh keys from https://github.com/LucaLumetti.keys 2023-01-11T20:35:54.4893174Z ~/.ssh/authorized_keys file found on node, removing ~/.ssh and starting fresh 2023-01-11T20:35:54.4905870Z Public keys pulled and installed to /home/ec2-user/.ssh/authorized_keys 2023-01-11T20:35:54.4930123Z Login using: ssh ec2-user@ec2-3-82-96-97.compute-1.amazonaws.com 2023-01-11T20:35:54.4930691Z All testing is done inside the container, to start an interactive session run: 2023-01-11T20:35:54.4931081Z docker exec -it $(docker container ps --format '{{.ID}}') bash 2023-01-11T20:35:54.5142401Z ##[group]Run pytorch/pytorch/.github/actions/checkout-pytorch@master 2023-01-11T20:35:54.5142665Z with: 2023-01-11T20:35:54.5142840Z submodules: recursive 2023-01-11T20:35:54.5143014Z fetch-depth: 0 2023-01-11T20:35:54.5143181Z env: 2023-01-11T20:35:54.5143353Z GIT_DEFAULT_BRANCH: master 2023-01-11T20:35:54.5143525Z ##[endgroup] 2023-01-11T20:35:54.5351520Z ##[group]Run retry () { 2023-01-11T20:35:54.5351779Z retry () { 2023-01-11T20:35:54.5352007Z  $* || (sleep 1 && $*) || (sleep 2 && $*) || (sleep 4 && $*) || (sleep 8 && $*) 2023-01-11T20:35:54.5352206Z } 2023-01-11T20:35:54.5352397Z echo "${GITHUB_WORKSPACE}" 2023-01-11T20:35:54.5352620Z if [ -z "${NO_SUDO}" ]; then 2023-01-11T20:35:54.5352844Z  retry sudo rm -rf "${GITHUB_WORKSPACE}" 2023-01-11T20:35:54.5353031Z else 2023-01-11T20:35:54.5353225Z  retry rm -rf "${GITHUB_WORKSPACE}" 2023-01-11T20:35:54.5353415Z fi 2023-01-11T20:35:54.5353615Z mkdir "${GITHUB_WORKSPACE}" 2023-01-11T20:35:54.5369698Z shell: /usr/bin/bash --noprofile --norc -e -o pipefail {0} 2023-01-11T20:35:54.5369934Z env: 2023-01-11T20:35:54.5370112Z GIT_DEFAULT_BRANCH: master 2023-01-11T20:35:54.5370294Z NO_SUDO: 2023-01-11T20:35:54.5370448Z ##[endgroup] 2023-01-11T20:35:54.5464723Z /home/ec2-user/actions-runner/_work/pytorch/pytorch 2023-01-11T20:35:56.8965515Z ##[group]Run malfet/checkout@silent-checkout 2023-01-11T20:35:56.8965794Z with: 2023-01-11T20:35:56.8966028Z ref: 8419ddda87c8a47eacc63b54bc7ec98c1f27c26e 2023-01-11T20:35:56.8966273Z fetch-depth: 0 2023-01-11T20:35:56.8966472Z submodules: recursive 2023-01-11T20:35:56.8966688Z quiet-checkout: true 2023-01-11T20:35:56.8966926Z repository: pytorch/pytorch 2023-01-11T20:35:56.8967233Z token: *** 2023-01-11T20:35:56.8967435Z ssh-strict: true 2023-01-11T20:35:56.8967657Z persist-credentials: true 2023-01-11T20:35:56.8967877Z clean: true 2023-01-11T20:35:56.8968064Z lfs: false 2023-01-11T20:35:56.8968275Z set-safe-directory: true 2023-01-11T20:35:56.8968484Z env: 2023-01-11T20:35:56.8968669Z GIT_DEFAULT_BRANCH: master 2023-01-11T20:35:56.8968884Z ##[endgroup] 2023-01-11T20:35:57.0054593Z Syncing repository: pytorch/pytorch 2023-01-11T20:35:57.0056123Z ##[group]Getting Git version info 2023-01-11T20:35:57.0056692Z Working directory is '/home/ec2-user/actions-runner/_work/pytorch/pytorch' 2023-01-11T20:35:57.0057202Z [command]/usr/bin/git version 2023-01-11T20:35:57.0057418Z git version 2.38.1 2023-01-11T20:35:57.0058119Z ##[endgroup] 2023-01-11T20:35:57.0070553Z Temporarily overriding HOME='/home/ec2-user/actions-runner/_work/_temp/0a03262f-1133-4a94-b9ee-d0253620e387' before making global git config changes 2023-01-11T20:35:57.0071014Z Adding repository directory to the temporary git global config as a safe directory 2023-01-11T20:35:57.0071506Z [command]/usr/bin/git config --global --add safe.directory /home/ec2-user/actions-runner/_work/pytorch/pytorch 2023-01-11T20:35:57.0101458Z Deleting the contents of '/home/ec2-user/actions-runner/_work/pytorch/pytorch' 2023-01-11T20:35:57.0105592Z ##[group]Initializing the repository 2023-01-11T20:35:57.0108175Z [command]/usr/bin/git init /home/ec2-user/actions-runner/_work/pytorch/pytorch 2023-01-11T20:35:57.0357508Z hint: Using 'master' as the name for the initial branch. This default branch name 2023-01-11T20:35:57.0358222Z hint: is subject to change. To configure the initial branch name to use in all 2023-01-11T20:35:57.0358853Z hint: of your new repositories, which will suppress this warning, call: 2023-01-11T20:35:57.0359343Z hint: 2023-01-11T20:35:57.0359891Z hint: git config --global init.defaultBranch 2023-01-11T20:35:57.0360400Z hint: 2023-01-11T20:35:57.0360874Z hint: Names commonly chosen instead of 'master' are 'main', 'trunk' and 2023-01-11T20:35:57.0361284Z hint: 'development'. The just-created branch can be renamed via this command: 2023-01-11T20:35:57.0361535Z hint: 2023-01-11T20:35:57.0361853Z hint: git branch -m 2023-01-11T20:35:57.0362260Z Initialized empty Git repository in /home/ec2-user/actions-runner/_work/pytorch/pytorch/.git/ 2023-01-11T20:35:57.0369362Z [command]/usr/bin/git remote add origin https://github.com/pytorch/pytorch 2023-01-11T20:35:57.0401520Z ##[endgroup] 2023-01-11T20:35:57.0402175Z ##[group]Disabling automatic garbage collection 2023-01-11T20:35:57.0405517Z [command]/usr/bin/git config --local gc.auto 0 2023-01-11T20:35:57.0433197Z ##[endgroup] 2023-01-11T20:35:57.0433728Z ##[group]Setting up auth 2023-01-11T20:35:57.0440466Z [command]/usr/bin/git config --local --name-only --get-regexp core\.sshCommand 2023-01-11T20:35:57.0469818Z [command]/usr/bin/git submodule foreach --recursive git config --local --name-only --get-regexp 'core\.sshCommand' && git config --local --unset-all 'core.sshCommand' || : 2023-01-11T20:35:57.0707869Z [command]/usr/bin/git config --local --name-only --get-regexp http\.https\:\/\/github\.com\/\.extraheader 2023-01-11T20:35:57.0740903Z [command]/usr/bin/git submodule foreach --recursive git config --local --name-only --get-regexp 'http\.https\:\/\/github\.com\/\.extraheader' && git config --local --unset-all 'http.https://github.com/.extraheader' || : 2023-01-11T20:35:57.0984759Z [command]/usr/bin/git config --local http.https://github.com/.extraheader AUTHORIZATION: basic *** 2023-01-11T20:35:57.1025728Z ##[endgroup] 2023-01-11T20:35:57.1026196Z ##[group]Fetching the repository 2023-01-11T20:35:57.1031828Z [command]/usr/bin/git -c protocol.version=2 fetch --prune --quiet --no-recurse-submodules origin +refs/heads/*:refs/remotes/origin/* +refs/tags/*:refs/tags/* 2023-01-11T20:36:50.2980676Z [command]/usr/bin/git rev-parse --verify --quiet 8419ddda87c8a47eacc63b54bc7ec98c1f27c26e^{object} 2023-01-11T20:36:50.3006556Z 8419ddda87c8a47eacc63b54bc7ec98c1f27c26e 2023-01-11T20:36:50.3010493Z ##[endgroup] 2023-01-11T20:36:50.3010841Z ##[group]Determining the checkout info 2023-01-11T20:36:50.3011747Z ##[endgroup] 2023-01-11T20:36:50.3012072Z ##[group]Checking out the ref 2023-01-11T20:36:50.3015367Z [command]/usr/bin/git checkout --quiet --force 8419ddda87c8a47eacc63b54bc7ec98c1f27c26e 2023-01-11T20:36:51.5775431Z ##[endgroup] 2023-01-11T20:36:51.5775926Z ##[group]Setting up auth for fetching submodules 2023-01-11T20:36:51.5780986Z [command]/usr/bin/git config --global http.https://github.com/.extraheader AUTHORIZATION: basic *** 2023-01-11T20:36:51.5832743Z [command]/usr/bin/git config --global --unset-all url.https://github.com/.insteadOf 2023-01-11T20:36:51.5861139Z [command]/usr/bin/git config --global --add url.https://github.com/.insteadOf git@github.com: 2023-01-11T20:36:51.5889780Z [command]/usr/bin/git config --global --add url.https://github.com/.insteadOf org-21003710@github.com: 2023-01-11T20:36:51.5915467Z ##[endgroup] 2023-01-11T20:36:51.5916145Z ##[group]Fetching submodules 2023-01-11T20:36:51.5920243Z [command]/usr/bin/git submodule sync --recursive 2023-01-11T20:36:51.6170426Z [command]/usr/bin/git -c protocol.version=2 submodule update --init --force --recursive 2023-01-11T20:36:51.6415927Z Submodule 'android/libs/fbjni' (https://github.com/facebookincubator/fbjni.git) registered for path 'android/libs/fbjni' 2023-01-11T20:36:51.6418036Z Submodule 'third_party/NNPACK_deps/FP16' (https://github.com/Maratyszcza/FP16.git) registered for path 'third_party/FP16' 2023-01-11T20:36:51.6418788Z Submodule 'third_party/NNPACK_deps/FXdiv' (https://github.com/Maratyszcza/FXdiv.git) registered for path 'third_party/FXdiv' 2023-01-11T20:36:51.6420971Z Submodule 'third_party/NNPACK' (https://github.com/Maratyszcza/NNPACK.git) registered for path 'third_party/NNPACK' 2023-01-11T20:36:51.6423213Z Submodule 'third_party/QNNPACK' (https://github.com/pytorch/QNNPACK) registered for path 'third_party/QNNPACK' 2023-01-11T20:36:51.6425709Z Submodule 'third_party/VulkanMemoryAllocator' (https://github.com/GPUOpen-LibrariesAndSDKs/VulkanMemoryAllocator.git) registered for path 'third_party/VulkanMemoryAllocator' 2023-01-11T20:36:51.6427994Z Submodule 'third_party/XNNPACK' (https://github.com/google/XNNPACK.git) registered for path 'third_party/XNNPACK' 2023-01-11T20:36:51.6430475Z Submodule 'third_party/benchmark' (https://github.com/google/benchmark.git) registered for path 'third_party/benchmark' 2023-01-11T20:36:51.6432970Z Submodule 'third_party/cpuinfo' (https://github.com/pytorch/cpuinfo.git) registered for path 'third_party/cpuinfo' 2023-01-11T20:36:51.6435643Z Submodule 'third_party/cub' (https://github.com/NVlabs/cub.git) registered for path 'third_party/cub' 2023-01-11T20:36:51.6438531Z Submodule 'third_party/cudnn_frontend' (https://github.com/NVIDIA/cudnn-frontend.git) registered for path 'third_party/cudnn_frontend' 2023-01-11T20:36:51.6442309Z Submodule 'third_party/cutlass' (https://github.com/NVIDIA/cutlass.git) registered for path 'third_party/cutlass' 2023-01-11T20:36:51.6445592Z Submodule 'third_party/eigen' (https://gitlab.com/libeigen/eigen.git) registered for path 'third_party/eigen' 2023-01-11T20:36:51.6448745Z Submodule 'third_party/fbgemm' (https://github.com/pytorch/fbgemm) registered for path 'third_party/fbgemm' 2023-01-11T20:36:51.6451775Z Submodule 'third_party/flatbuffers' (https://github.com/google/flatbuffers.git) registered for path 'third_party/flatbuffers' 2023-01-11T20:36:51.6455032Z Submodule 'third_party/fmt' (https://github.com/fmtlib/fmt.git) registered for path 'third_party/fmt' 2023-01-11T20:36:51.6458426Z Submodule 'third_party/foxi' (https://github.com/houseroad/foxi.git) registered for path 'third_party/foxi' 2023-01-11T20:36:51.6462166Z Submodule 'third_party/gemmlowp/gemmlowp' (https://github.com/google/gemmlowp.git) registered for path 'third_party/gemmlowp/gemmlowp' 2023-01-11T20:36:51.6465595Z Submodule 'third_party/gloo' (https://github.com/facebookincubator/gloo) registered for path 'third_party/gloo' 2023-01-11T20:36:51.6469465Z Submodule 'third_party/googletest' (https://github.com/google/googletest.git) registered for path 'third_party/googletest' 2023-01-11T20:36:51.6473187Z Submodule 'third_party/ideep' (https://github.com/intel/ideep) registered for path 'third_party/ideep' 2023-01-11T20:36:51.6477155Z Submodule 'third_party/ios-cmake' (https://github.com/Yangqing/ios-cmake.git) registered for path 'third_party/ios-cmake' 2023-01-11T20:36:51.6481260Z Submodule 'third_party/ittapi' (https://github.com/intel/ittapi.git) registered for path 'third_party/ittapi' 2023-01-11T20:36:51.6485395Z Submodule 'third_party/kineto' (https://github.com/pytorch/kineto) registered for path 'third_party/kineto' 2023-01-11T20:36:51.6489571Z Submodule 'third_party/nccl/nccl' (https://github.com/NVIDIA/nccl) registered for path 'third_party/nccl/nccl' 2023-01-11T20:36:51.6493927Z Submodule 'third_party/neon2sse' (https://github.com/intel/ARM_NEON_2_x86_SSE.git) registered for path 'third_party/neon2sse' 2023-01-11T20:36:51.6498381Z Submodule 'third_party/nlohmann' (https://github.com/nlohmann/json.git) registered for path 'third_party/nlohmann' 2023-01-11T20:36:51.6503014Z Submodule 'third_party/onnx' (https://github.com/onnx/onnx.git) registered for path 'third_party/onnx' 2023-01-11T20:36:51.6507622Z Submodule 'third_party/onnx-tensorrt' (https://github.com/onnx/onnx-tensorrt) registered for path 'third_party/onnx-tensorrt' 2023-01-11T20:36:51.6512328Z Submodule 'third_party/pocketfft' (https://github.com/mreineck/pocketfft) registered for path 'third_party/pocketfft' 2023-01-11T20:36:51.6517087Z Submodule 'third_party/protobuf' (https://github.com/protocolbuffers/protobuf.git) registered for path 'third_party/protobuf' 2023-01-11T20:36:51.6522206Z Submodule 'third_party/NNPACK_deps/psimd' (https://github.com/Maratyszcza/psimd.git) registered for path 'third_party/psimd' 2023-01-11T20:36:51.6527202Z Submodule 'third_party/NNPACK_deps/pthreadpool' (https://github.com/Maratyszcza/pthreadpool.git) registered for path 'third_party/pthreadpool' 2023-01-11T20:36:51.6532365Z Submodule 'third_party/pybind11' (https://github.com/pybind/pybind11.git) registered for path 'third_party/pybind11' 2023-01-11T20:36:51.6537639Z Submodule 'third_party/python-enum' (https://github.com/PeachPy/enum34.git) registered for path 'third_party/python-enum' 2023-01-11T20:36:51.6542914Z Submodule 'third_party/python-peachpy' (https://github.com/malfet/PeachPy.git) registered for path 'third_party/python-peachpy' 2023-01-11T20:36:51.6548306Z Submodule 'third_party/python-six' (https://github.com/benjaminp/six.git) registered for path 'third_party/python-six' 2023-01-11T20:36:51.6553661Z Submodule 'third_party/sleef' (https://github.com/shibatch/sleef) registered for path 'third_party/sleef' 2023-01-11T20:36:51.6559229Z Submodule 'third_party/tbb' (https://github.com/01org/tbb) registered for path 'third_party/tbb' 2023-01-11T20:36:51.6565648Z Submodule 'third_party/tensorpipe' (https://github.com/pytorch/tensorpipe.git) registered for path 'third_party/tensorpipe' 2023-01-11T20:36:51.6571362Z Submodule 'third_party/zstd' (https://github.com/facebook/zstd.git) registered for path 'third_party/zstd' 2023-01-11T20:36:51.6594491Z Cloning into '/home/ec2-user/actions-runner/_work/pytorch/pytorch/android/libs/fbjni'... 2023-01-11T20:36:51.9505941Z Cloning into '/home/ec2-user/actions-runner/_work/pytorch/pytorch/third_party/FP16'... 2023-01-11T20:36:52.1533108Z Cloning into '/home/ec2-user/actions-runner/_work/pytorch/pytorch/third_party/FXdiv'... 2023-01-11T20:36:52.4006152Z Cloning into '/home/ec2-user/actions-runner/_work/pytorch/pytorch/third_party/NNPACK'... 2023-01-11T20:36:52.6844824Z Cloning into '/home/ec2-user/actions-runner/_work/pytorch/pytorch/third_party/QNNPACK'... 2023-01-11T20:36:52.9612133Z Cloning into '/home/ec2-user/actions-runner/_work/pytorch/pytorch/third_party/VulkanMemoryAllocator'... 2023-01-11T20:36:55.1518470Z Cloning into '/home/ec2-user/actions-runner/_work/pytorch/pytorch/third_party/XNNPACK'... 2023-01-11T20:37:01.7406304Z Cloning into '/home/ec2-user/actions-runner/_work/pytorch/pytorch/third_party/benchmark'... 2023-01-11T20:37:02.2377145Z Cloning into '/home/ec2-user/actions-runner/_work/pytorch/pytorch/third_party/cpuinfo'... 2023-01-11T20:37:02.8279688Z Cloning into '/home/ec2-user/actions-runner/_work/pytorch/pytorch/third_party/cub'... 2023-01-11T20:37:04.6620645Z Cloning into '/home/ec2-user/actions-runner/_work/pytorch/pytorch/third_party/cudnn_frontend'... 2023-01-11T20:37:05.7842302Z Cloning into '/home/ec2-user/actions-runner/_work/pytorch/pytorch/third_party/cutlass'... 2023-01-11T20:37:06.9212244Z Cloning into '/home/ec2-user/actions-runner/_work/pytorch/pytorch/third_party/eigen'... 2023-01-11T20:37:12.0104954Z Cloning into '/home/ec2-user/actions-runner/_work/pytorch/pytorch/third_party/fbgemm'... 2023-01-11T20:37:12.8999228Z Cloning into '/home/ec2-user/actions-runner/_work/pytorch/pytorch/third_party/flatbuffers'... 2023-01-11T20:37:14.3762644Z Cloning into '/home/ec2-user/actions-runner/_work/pytorch/pytorch/third_party/fmt'... 2023-01-11T20:37:15.5737397Z Cloning into '/home/ec2-user/actions-runner/_work/pytorch/pytorch/third_party/foxi'... 2023-01-11T20:37:15.8164369Z Cloning into '/home/ec2-user/actions-runner/_work/pytorch/pytorch/third_party/gemmlowp/gemmlowp'... 2023-01-11T20:37:16.2774119Z Cloning into '/home/ec2-user/actions-runner/_work/pytorch/pytorch/third_party/gloo'... 2023-01-11T20:37:16.6058467Z Cloning into '/home/ec2-user/actions-runner/_work/pytorch/pytorch/third_party/googletest'... 2023-01-11T20:37:17.6462367Z Cloning into '/home/ec2-user/actions-runner/_work/pytorch/pytorch/third_party/ideep'... 2023-01-11T20:37:18.0803615Z Cloning into '/home/ec2-user/actions-runner/_work/pytorch/pytorch/third_party/ios-cmake'... 2023-01-11T20:37:18.2993557Z Cloning into '/home/ec2-user/actions-runner/_work/pytorch/pytorch/third_party/ittapi'... 2023-01-11T20:37:18.7937086Z Cloning into '/home/ec2-user/actions-runner/_work/pytorch/pytorch/third_party/kineto'... 2023-01-11T20:37:20.1225713Z Cloning into '/home/ec2-user/actions-runner/_work/pytorch/pytorch/third_party/nccl/nccl'... 2023-01-11T20:37:20.4587533Z Cloning into '/home/ec2-user/actions-runner/_work/pytorch/pytorch/third_party/neon2sse'... 2023-01-11T20:37:21.0509924Z Cloning into '/home/ec2-user/actions-runner/_work/pytorch/pytorch/third_party/nlohmann'... 2023-01-11T20:37:26.8624129Z Cloning into '/home/ec2-user/actions-runner/_work/pytorch/pytorch/third_party/onnx'... 2023-01-11T20:37:28.8027448Z Cloning into '/home/ec2-user/actions-runner/_work/pytorch/pytorch/third_party/onnx-tensorrt'... 2023-01-11T20:37:29.2594968Z Cloning into '/home/ec2-user/actions-runner/_work/pytorch/pytorch/third_party/pocketfft'... 2023-01-11T20:37:29.4923834Z Cloning into '/home/ec2-user/actions-runner/_work/pytorch/pytorch/third_party/protobuf'... 2023-01-11T20:37:35.0920404Z Cloning into '/home/ec2-user/actions-runner/_work/pytorch/pytorch/third_party/psimd'... 2023-01-11T20:37:35.3209018Z Cloning into '/home/ec2-user/actions-runner/_work/pytorch/pytorch/third_party/pthreadpool'... 2023-01-11T20:37:35.5738226Z Cloning into '/home/ec2-user/actions-runner/_work/pytorch/pytorch/third_party/pybind11'... 2023-01-11T20:37:36.4167389Z Cloning into '/home/ec2-user/actions-runner/_work/pytorch/pytorch/third_party/python-enum'... 2023-01-11T20:37:36.6586468Z Cloning into '/home/ec2-user/actions-runner/_work/pytorch/pytorch/third_party/python-peachpy'... 2023-01-11T20:37:36.9995434Z Cloning into '/home/ec2-user/actions-runner/_work/pytorch/pytorch/third_party/python-six'... 2023-01-11T20:37:37.2969192Z Cloning into '/home/ec2-user/actions-runner/_work/pytorch/pytorch/third_party/sleef'... 2023-01-11T20:37:37.8686756Z Cloning into '/home/ec2-user/actions-runner/_work/pytorch/pytorch/third_party/tbb'... 2023-01-11T20:37:39.8553877Z Cloning into '/home/ec2-user/actions-runner/_work/pytorch/pytorch/third_party/tensorpipe'... 2023-01-11T20:37:40.3698654Z Cloning into '/home/ec2-user/actions-runner/_work/pytorch/pytorch/third_party/zstd'... 2023-01-11T20:37:42.7138733Z Submodule path 'android/libs/fbjni': checked out '7e1e1fe3858c63c251c637ae41a20de425dde96f' 2023-01-11T20:37:42.7234185Z Submodule path 'third_party/FP16': checked out '4dfe081cf6bcd15db339cf2680b9281b8451eeb3' 2023-01-11T20:37:42.7308473Z Submodule path 'third_party/FXdiv': checked out 'b408327ac2a15ec3e43352421954f5b1967701d1' 2023-01-11T20:37:42.7510394Z Submodule path 'third_party/NNPACK': checked out 'c07e3a0400713d546e0dea2d5466dd22ea389c73' 2023-01-11T20:37:42.7709065Z Submodule path 'third_party/QNNPACK': checked out '7d2a4e9931a82adc3814275b6219a03e24e36b4c' 2023-01-11T20:37:42.8029544Z Submodule path 'third_party/VulkanMemoryAllocator': checked out 'a6bfc237255a6bac1513f7c1ebde6d8aed6b5191' 2023-01-11T20:37:43.3511874Z Submodule path 'third_party/XNNPACK': checked out 'ae108ef49aa5623b896fc93d4298c49d1750d9ba' 2023-01-11T20:37:43.3702386Z Submodule path 'third_party/benchmark': checked out '0d98dba29d66e93259db7daa53a9327df767a415' 2023-01-11T20:37:43.4607727Z Submodule path 'third_party/cpuinfo': checked out '8ec7bd91ad0470e61cf38f618cc1f270dede599c' 2023-01-11T20:37:43.4920968Z Submodule path 'third_party/cub': checked out 'd106ddb991a56c3df1b6d51b2409e36ba8181ce4' 2023-01-11T20:37:43.7545993Z Submodule path 'third_party/cudnn_frontend': checked out '171a7a986f7fbd9ed71bd0cf3c7ad4f55843d6b3' 2023-01-11T20:37:44.1240131Z Submodule path 'third_party/cutlass': checked out 'b72cbf957df8cf84a6d0ff91c190ad51a9c1d24a' 2023-01-11T20:37:44.3448819Z Submodule path 'third_party/eigen': checked out '3147391d946bb4b6c68edd901f2add6ac1f31f8c' 2023-01-11T20:37:44.3865552Z Submodule path 'third_party/fbgemm': checked out '80d64206c07879fd4683be66873de7cefa1a0a71' 2023-01-11T20:37:44.3879776Z Submodule 'third_party/asmjit' (https://github.com/asmjit/asmjit.git) registered for path 'third_party/fbgemm/third_party/asmjit' 2023-01-11T20:37:44.3882192Z Submodule 'third_party/cpuinfo' (https://github.com/pytorch/cpuinfo) registered for path 'third_party/fbgemm/third_party/cpuinfo' 2023-01-11T20:37:44.3884779Z Submodule 'third_party/googletest' (https://github.com/google/googletest) registered for path 'third_party/fbgemm/third_party/googletest' 2023-01-11T20:37:44.3887430Z Submodule 'third_party/hipify_torch' (https://github.com/ROCmSoftwarePlatform/hipify_torch.git) registered for path 'third_party/fbgemm/third_party/hipify_torch' 2023-01-11T20:37:44.3909395Z Cloning into '/home/ec2-user/actions-runner/_work/pytorch/pytorch/third_party/fbgemm/third_party/asmjit'... 2023-01-11T20:37:45.4257716Z Cloning into '/home/ec2-user/actions-runner/_work/pytorch/pytorch/third_party/fbgemm/third_party/cpuinfo'... 2023-01-11T20:37:46.0014571Z Cloning into '/home/ec2-user/actions-runner/_work/pytorch/pytorch/third_party/fbgemm/third_party/googletest'... 2023-01-11T20:37:47.0240780Z Cloning into '/home/ec2-user/actions-runner/_work/pytorch/pytorch/third_party/fbgemm/third_party/hipify_torch'... 2023-01-11T20:37:47.3370073Z Submodule path 'third_party/fbgemm/third_party/asmjit': checked out 'd3fbf7c9bc7c1d1365a94a45614b91c5a3706b81' 2023-01-11T20:37:47.4283128Z Submodule path 'third_party/fbgemm/third_party/cpuinfo': checked out 'ed8b86a253800bafdb7b25c5c399f91bff9cb1f3' 2023-01-11T20:37:47.4812087Z Submodule path 'third_party/fbgemm/third_party/googletest': checked out 'cbf019de22c8dd37b2108da35b2748fd702d1796' 2023-01-11T20:37:47.4904270Z Submodule path 'third_party/fbgemm/third_party/hipify_torch': checked out '1840658c184f3eeba787dae0f06c45756c1daaf5' 2023-01-11T20:37:47.5674723Z Submodule path 'third_party/flatbuffers': checked out 'd0cede9c90c5257537c293517a21376408b549fa' 2023-01-11T20:37:47.6004540Z Submodule path 'third_party/fmt': checked out '7bdf0628b1276379886c7f6dda2cef2b3b374f0b' 2023-01-11T20:37:47.6083199Z Submodule path 'third_party/foxi': checked out 'c278588e34e535f0bb8f00df3880d26928038cad' 2023-01-11T20:37:47.6438147Z Submodule path 'third_party/gemmlowp/gemmlowp': checked out '3fb5c176c17c765a3492cd2f0321b0dab712f350' 2023-01-11T20:37:47.6647612Z Submodule path 'third_party/gloo': checked out '4a5e339b764261d20fc409071dc7a8b8989aa195' 2023-01-11T20:37:47.7057940Z Submodule path 'third_party/googletest': checked out 'e2239ee6043f73722e7aa812a459f54a28552929' 2023-01-11T20:37:47.7162686Z Submodule path 'third_party/ideep': checked out 'e533c771a1e75a1c225c14b2261eefa62681d9e6' 2023-01-11T20:37:47.7174866Z Submodule 'mkl-dnn' (https://github.com/intel/mkl-dnn.git) registered for path 'third_party/ideep/mkl-dnn' 2023-01-11T20:37:47.7195359Z Cloning into '/home/ec2-user/actions-runner/_work/pytorch/pytorch/third_party/ideep/mkl-dnn'... 2023-01-11T20:37:56.0886644Z Submodule path 'third_party/ideep/mkl-dnn': checked out '404ad76ee633c939d705eb583ffe50a806969d5e' 2023-01-11T20:37:56.0902527Z Submodule 'third_party/oneDNN' (https://github.com/oneapi-src/oneDNN.git) registered for path 'third_party/ideep/mkl-dnn/third_party/oneDNN' 2023-01-11T20:37:56.0925579Z Cloning into '/home/ec2-user/actions-runner/_work/pytorch/pytorch/third_party/ideep/mkl-dnn/third_party/oneDNN'... 2023-01-11T20:38:04.3568213Z Submodule path 'third_party/ideep/mkl-dnn/third_party/oneDNN': checked out 'fbec3e25a559ee252022ae066817b204e106a6ba' 2023-01-11T20:38:04.3659252Z Submodule path 'third_party/ios-cmake': checked out '8abaed637d56f1337d6e1d2c4026e25c1eade724' 2023-01-11T20:38:04.3787598Z Submodule path 'third_party/ittapi': checked out '5b8a7d7422611c3a0d799fb5fc5dd4abfae35b42' 2023-01-11T20:38:04.4631644Z Submodule path 'third_party/kineto': checked out '6c1629809068efd78a8d56b4aa479c7ec49ae562' 2023-01-11T20:38:04.4646632Z Submodule 'libkineto/third_party/fmt' (https://github.com/fmtlib/fmt.git) registered for path 'third_party/kineto/libkineto/third_party/fmt' 2023-01-11T20:38:04.4648857Z Submodule 'libkineto/third_party/googletest' (https://github.com/google/googletest.git) registered for path 'third_party/kineto/libkineto/third_party/googletest' 2023-01-11T20:38:04.4671986Z Cloning into '/home/ec2-user/actions-runner/_work/pytorch/pytorch/third_party/kineto/libkineto/third_party/fmt'... 2023-01-11T20:38:05.7008887Z Cloning into '/home/ec2-user/actions-runner/_work/pytorch/pytorch/third_party/kineto/libkineto/third_party/googletest'... 2023-01-11T20:38:06.7593075Z Submodule path 'third_party/kineto/libkineto/third_party/fmt': checked out '2591ab91c3898c9f6544fff04660276537d32ffd' 2023-01-11T20:38:06.8085182Z Submodule path 'third_party/kineto/libkineto/third_party/googletest': checked out '7aca84427f224eeed3144123d5230d5871e93347' 2023-01-11T20:38:06.8278089Z Submodule path 'third_party/nccl/nccl': checked out 'f89fd4777d2ef9229c039ff750ae21da01626f52' 2023-01-11T20:38:06.8404320Z Submodule path 'third_party/neon2sse': checked out '97a126f08ce318023be604d03f88bf0820a9464a' 2023-01-11T20:38:06.9381850Z Submodule path 'third_party/nlohmann': checked out '87cda1d6646592ac5866dc703c8e1839046a6806' 2023-01-11T20:38:07.1616859Z Submodule path 'third_party/onnx': checked out 'f7ee1ac60d06abe8e26c9b6bbe1e3db5286b614b' 2023-01-11T20:38:07.1641978Z Submodule 'third_party/benchmark' (https://github.com/google/benchmark.git) registered for path 'third_party/onnx/third_party/benchmark' 2023-01-11T20:38:07.1643911Z Submodule 'third_party/pybind11' (https://github.com/pybind/pybind11.git) registered for path 'third_party/onnx/third_party/pybind11' 2023-01-11T20:38:07.1667827Z Cloning into '/home/ec2-user/actions-runner/_work/pytorch/pytorch/third_party/onnx/third_party/benchmark'... 2023-01-11T20:38:07.7568001Z Cloning into '/home/ec2-user/actions-runner/_work/pytorch/pytorch/third_party/onnx/third_party/pybind11'... 2023-01-11T20:38:08.5996721Z Submodule path 'third_party/onnx/third_party/benchmark': checked out '0d98dba29d66e93259db7daa53a9327df767a415' 2023-01-11T20:38:08.6275156Z Submodule path 'third_party/onnx/third_party/pybind11': checked out 'ffa346860b306c9bbfb341aed9c14c067751feb8' 2023-01-11T20:38:08.6409657Z Submodule path 'third_party/onnx-tensorrt': checked out 'c153211418a7c57ce071d9ce2a41f8d1c85a878f' 2023-01-11T20:38:08.6422114Z Submodule 'third_party/onnx' (https://github.com/onnx/onnx.git) registered for path 'third_party/onnx-tensorrt/third_party/onnx' 2023-01-11T20:38:08.6443700Z Cloning into '/home/ec2-user/actions-runner/_work/pytorch/pytorch/third_party/onnx-tensorrt/third_party/onnx'... 2023-01-11T20:38:10.5839237Z Submodule path 'third_party/onnx-tensorrt/third_party/onnx': checked out '765f5ee823a67a866f4bd28a9860e81f3c811ce8' 2023-01-11T20:38:10.5858099Z Submodule 'third_party/benchmark' (https://github.com/google/benchmark.git) registered for path 'third_party/onnx-tensorrt/third_party/onnx/third_party/benchmark' 2023-01-11T20:38:10.5859884Z Submodule 'third_party/pybind11' (https://github.com/pybind/pybind11.git) registered for path 'third_party/onnx-tensorrt/third_party/onnx/third_party/pybind11' 2023-01-11T20:38:10.5883664Z Cloning into '/home/ec2-user/actions-runner/_work/pytorch/pytorch/third_party/onnx-tensorrt/third_party/onnx/third_party/benchmark'... 2023-01-11T20:38:10.9923000Z Cloning into '/home/ec2-user/actions-runner/_work/pytorch/pytorch/third_party/onnx-tensorrt/third_party/onnx/third_party/pybind11'... 2023-01-11T20:38:11.8767522Z Submodule path 'third_party/onnx-tensorrt/third_party/onnx/third_party/benchmark': checked out 'e776aa0275e293707b6a0901e0e8d8a8a3679508' 2023-01-11T20:38:11.9369741Z Submodule path 'third_party/onnx-tensorrt/third_party/onnx/third_party/pybind11': checked out 'a1041190c8b8ff0cd9e2f0752248ad5e3789ea0c' 2023-01-11T20:38:11.9382225Z Submodule 'tools/clang' (https://github.com/wjakob/clang-cindex-python3) registered for path 'third_party/onnx-tensorrt/third_party/onnx/third_party/pybind11/tools/clang' 2023-01-11T20:38:11.9404448Z Cloning into '/home/ec2-user/actions-runner/_work/pytorch/pytorch/third_party/onnx-tensorrt/third_party/onnx/third_party/pybind11/tools/clang'... 2023-01-11T20:38:12.1858286Z Submodule path 'third_party/onnx-tensorrt/third_party/onnx/third_party/pybind11/tools/clang': checked out '6a00cbc4a9b8e68b71caf7f774b3f9c753ae84d5' 2023-01-11T20:38:12.1936454Z Submodule path 'third_party/pocketfft': checked out 'ea778e37710c07723435b1be58235996d1d43a5a' 2023-01-11T20:38:12.4258591Z Submodule path 'third_party/protobuf': checked out 'd1eca4e4b421cd2997495c4b4e65cea6be4e9b8a' 2023-01-11T20:38:12.4277523Z Submodule 'third_party/benchmark' (https://github.com/google/benchmark.git) registered for path 'third_party/protobuf/third_party/benchmark' 2023-01-11T20:38:12.4279825Z Submodule 'third_party/googletest' (https://github.com/google/googletest.git) registered for path 'third_party/protobuf/third_party/googletest' 2023-01-11T20:38:12.4302563Z Cloning into '/home/ec2-user/actions-runner/_work/pytorch/pytorch/third_party/protobuf/third_party/benchmark'... 2023-01-11T20:38:13.0765320Z Cloning into '/home/ec2-user/actions-runner/_work/pytorch/pytorch/third_party/protobuf/third_party/googletest'... 2023-01-11T20:38:14.0661023Z Submodule path 'third_party/protobuf/third_party/benchmark': checked out '5b7683f49e1e9223cf9927b24f6fd3d6bd82e3f8' 2023-01-11T20:38:14.1267187Z Submodule path 'third_party/protobuf/third_party/googletest': checked out '5ec7f0c4a113e2f18ac2c6cc7df51ad6afc24081' 2023-01-11T20:38:14.1341996Z Submodule path 'third_party/psimd': checked out '072586a71b55b7f8c584153d223e95687148a900' 2023-01-11T20:38:14.1435801Z Submodule path 'third_party/pthreadpool': checked out 'a134dd5d4cee80cce15db81a72e7f929d71dd413' 2023-01-11T20:38:14.1729950Z Submodule path 'third_party/pybind11': checked out '80dc998efced8ceb2be59756668a7e90e8bef917' 2023-01-11T20:38:14.1806472Z Submodule path 'third_party/python-enum': checked out '4cfedc426c4e2fc52e3f5c2b4297e15ed8d6b8c7' 2023-01-11T20:38:14.2056114Z Submodule path 'third_party/python-peachpy': checked out 'f45429b087dd7d5bc78bb40dc7cf06425c252d67' 2023-01-11T20:38:14.2136543Z Submodule path 'third_party/python-six': checked out '15e31431af97e5e64b80af0a3f598d382bcdd49a' 2023-01-11T20:38:14.2523822Z Submodule path 'third_party/sleef': checked out 'e0a003ee838b75d11763aa9c3ef17bf71a725bff' 2023-01-11T20:38:14.3498830Z Submodule path 'third_party/tbb': checked out 'a51a90bc609bb73db8ea13841b5cf7aa4344d4a9' 2023-01-11T20:38:14.3725935Z Submodule path 'third_party/tensorpipe': checked out '52791a2fd214b2a9dc5759d36725909c1daa7f2e' 2023-01-11T20:38:14.3739047Z Submodule 'third_party/googletest' (https://github.com/google/googletest.git) registered for path 'third_party/tensorpipe/third_party/googletest' 2023-01-11T20:38:14.3741377Z Submodule 'third_party/libnop' (https://github.com/google/libnop.git) registered for path 'third_party/tensorpipe/third_party/libnop' 2023-01-11T20:38:14.3743795Z Submodule 'third_party/libuv' (https://github.com/libuv/libuv.git) registered for path 'third_party/tensorpipe/third_party/libuv' 2023-01-11T20:38:14.3746353Z Submodule 'third_party/pybind11' (https://github.com/pybind/pybind11.git) registered for path 'third_party/tensorpipe/third_party/pybind11' 2023-01-11T20:38:14.3767570Z Cloning into '/home/ec2-user/actions-runner/_work/pytorch/pytorch/third_party/tensorpipe/third_party/googletest'... 2023-01-11T20:38:15.4952811Z Cloning into '/home/ec2-user/actions-runner/_work/pytorch/pytorch/third_party/tensorpipe/third_party/libnop'... 2023-01-11T20:38:15.8939790Z Cloning into '/home/ec2-user/actions-runner/_work/pytorch/pytorch/third_party/tensorpipe/third_party/libuv'... 2023-01-11T20:38:17.2897853Z Cloning into '/home/ec2-user/actions-runner/_work/pytorch/pytorch/third_party/tensorpipe/third_party/pybind11'... 2023-01-11T20:38:18.1678142Z Submodule path 'third_party/tensorpipe/third_party/googletest': checked out 'aee0f9d9b5b87796ee8a0ab26b7587ec30e8858e' 2023-01-11T20:38:18.1811074Z Submodule path 'third_party/tensorpipe/third_party/libnop': checked out '910b55815be16109f04f4180e9adee14fb4ce281' 2023-01-11T20:38:18.2382168Z Submodule path 'third_party/tensorpipe/third_party/libuv': checked out '1dff88e5161cba5c59276d2070d2e304e4dcb242' 2023-01-11T20:38:18.2630893Z Submodule path 'third_party/tensorpipe/third_party/pybind11': checked out 'a23996fce38ff6ccfbcdc09f1e63f2c4be5ea2ef' 2023-01-11T20:38:18.2643702Z Submodule 'tools/clang' (https://github.com/wjakob/clang-cindex-python3) registered for path 'third_party/tensorpipe/third_party/pybind11/tools/clang' 2023-01-11T20:38:18.2666332Z Cloning into '/home/ec2-user/actions-runner/_work/pytorch/pytorch/third_party/tensorpipe/third_party/pybind11/tools/clang'... 2023-01-11T20:38:18.5777008Z Submodule path 'third_party/tensorpipe/third_party/pybind11/tools/clang': checked out '6a00cbc4a9b8e68b71caf7f774b3f9c753ae84d5' 2023-01-11T20:38:18.6997124Z Submodule path 'third_party/zstd': checked out 'aec56a52fbab207fc639a1937d1e708a282edca8' 2023-01-11T20:38:18.7022045Z [command]/usr/bin/git submodule foreach --recursive git config --local gc.auto 0 2023-01-11T20:38:18.7276607Z Entering 'android/libs/fbjni' 2023-01-11T20:38:18.7310235Z Entering 'third_party/FP16' 2023-01-11T20:38:18.7343508Z Entering 'third_party/FXdiv' 2023-01-11T20:38:18.7377889Z Entering 'third_party/NNPACK' 2023-01-11T20:38:18.7412071Z Entering 'third_party/QNNPACK' 2023-01-11T20:38:18.7445743Z Entering 'third_party/VulkanMemoryAllocator' 2023-01-11T20:38:18.7479513Z Entering 'third_party/XNNPACK' 2023-01-11T20:38:18.7523293Z Entering 'third_party/benchmark' 2023-01-11T20:38:18.7556547Z Entering 'third_party/cpuinfo' 2023-01-11T20:38:18.7590253Z Entering 'third_party/cub' 2023-01-11T20:38:18.7624597Z Entering 'third_party/cudnn_frontend' 2023-01-11T20:38:18.7663008Z Entering 'third_party/cutlass' 2023-01-11T20:38:18.7703907Z Entering 'third_party/eigen' 2023-01-11T20:38:18.7739801Z Entering 'third_party/fbgemm' 2023-01-11T20:38:18.7775010Z Entering 'third_party/fbgemm/third_party/asmjit' 2023-01-11T20:38:18.7808269Z Entering 'third_party/fbgemm/third_party/cpuinfo' 2023-01-11T20:38:18.7841229Z Entering 'third_party/fbgemm/third_party/googletest' 2023-01-11T20:38:18.7873883Z Entering 'third_party/fbgemm/third_party/hipify_torch' 2023-01-11T20:38:18.7907383Z Entering 'third_party/flatbuffers' 2023-01-11T20:38:18.7943617Z Entering 'third_party/fmt' 2023-01-11T20:38:18.7977323Z Entering 'third_party/foxi' 2023-01-11T20:38:18.8010955Z Entering 'third_party/gemmlowp/gemmlowp' 2023-01-11T20:38:18.8045219Z Entering 'third_party/gloo' 2023-01-11T20:38:18.8078667Z Entering 'third_party/googletest' 2023-01-11T20:38:18.8112347Z Entering 'third_party/ideep' 2023-01-11T20:38:18.8146329Z Entering 'third_party/ideep/mkl-dnn' 2023-01-11T20:38:18.8181793Z Entering 'third_party/ideep/mkl-dnn/third_party/oneDNN' 2023-01-11T20:38:18.8221410Z Entering 'third_party/ios-cmake' 2023-01-11T20:38:18.8254505Z Entering 'third_party/ittapi' 2023-01-11T20:38:18.8289464Z Entering 'third_party/kineto' 2023-01-11T20:38:18.8324677Z Entering 'third_party/kineto/libkineto/third_party/fmt' 2023-01-11T20:38:18.8357618Z Entering 'third_party/kineto/libkineto/third_party/googletest' 2023-01-11T20:38:18.8392057Z Entering 'third_party/nccl/nccl' 2023-01-11T20:38:18.8426279Z Entering 'third_party/neon2sse' 2023-01-11T20:38:18.8460114Z Entering 'third_party/nlohmann' 2023-01-11T20:38:18.8493974Z Entering 'third_party/onnx' 2023-01-11T20:38:18.8538586Z Entering 'third_party/onnx/third_party/benchmark' 2023-01-11T20:38:18.8571933Z Entering 'third_party/onnx/third_party/pybind11' 2023-01-11T20:38:18.8607188Z Entering 'third_party/onnx-tensorrt' 2023-01-11T20:38:18.8640845Z Entering 'third_party/onnx-tensorrt/third_party/onnx' 2023-01-11T20:38:18.8677614Z Entering 'third_party/onnx-tensorrt/third_party/onnx/third_party/benchmark' 2023-01-11T20:38:18.8711088Z Entering 'third_party/onnx-tensorrt/third_party/onnx/third_party/pybind11' 2023-01-11T20:38:18.8744047Z Entering 'third_party/onnx-tensorrt/third_party/onnx/third_party/pybind11/tools/clang' 2023-01-11T20:38:18.8782049Z Entering 'third_party/pocketfft' 2023-01-11T20:38:18.8814923Z Entering 'third_party/protobuf' 2023-01-11T20:38:18.8851734Z Entering 'third_party/protobuf/third_party/benchmark' 2023-01-11T20:38:18.8884244Z Entering 'third_party/protobuf/third_party/googletest' 2023-01-11T20:38:18.8918594Z Entering 'third_party/psimd' 2023-01-11T20:38:18.8952044Z Entering 'third_party/pthreadpool' 2023-01-11T20:38:18.8985005Z Entering 'third_party/pybind11' 2023-01-11T20:38:18.9018664Z Entering 'third_party/python-enum' 2023-01-11T20:38:18.9051383Z Entering 'third_party/python-peachpy' 2023-01-11T20:38:18.9085643Z Entering 'third_party/python-six' 2023-01-11T20:38:18.9118752Z Entering 'third_party/sleef' 2023-01-11T20:38:18.9152248Z Entering 'third_party/tbb' 2023-01-11T20:38:18.9187835Z Entering 'third_party/tensorpipe' 2023-01-11T20:38:18.9222917Z Entering 'third_party/tensorpipe/third_party/googletest' 2023-01-11T20:38:18.9255132Z Entering 'third_party/tensorpipe/third_party/libnop' 2023-01-11T20:38:18.9287417Z Entering 'third_party/tensorpipe/third_party/libuv' 2023-01-11T20:38:18.9320587Z Entering 'third_party/tensorpipe/third_party/pybind11' 2023-01-11T20:38:18.9354878Z Entering 'third_party/tensorpipe/third_party/pybind11/tools/clang' 2023-01-11T20:38:18.9389866Z Entering 'third_party/zstd' 2023-01-11T20:38:18.9432132Z ##[endgroup] 2023-01-11T20:38:18.9432522Z ##[group]Persisting credentials for submodules 2023-01-11T20:38:18.9438042Z [command]/usr/bin/git submodule foreach --recursive git config --local --name-only --get-regexp 'url\.https\:\/\/github\.com\/\.insteadOf' && git config --local --unset-all 'url.https://github.com/.insteadOf' || : 2023-01-11T20:38:18.9682833Z Entering 'android/libs/fbjni' 2023-01-11T20:38:18.9715406Z Entering 'third_party/FP16' 2023-01-11T20:38:18.9748455Z Entering 'third_party/FXdiv' 2023-01-11T20:38:18.9783518Z Entering 'third_party/NNPACK' 2023-01-11T20:38:18.9817551Z Entering 'third_party/QNNPACK' 2023-01-11T20:38:18.9851045Z Entering 'third_party/VulkanMemoryAllocator' 2023-01-11T20:38:18.9884259Z Entering 'third_party/XNNPACK' 2023-01-11T20:38:18.9926963Z Entering 'third_party/benchmark' 2023-01-11T20:38:18.9960169Z Entering 'third_party/cpuinfo' 2023-01-11T20:38:18.9993667Z Entering 'third_party/cub' 2023-01-11T20:38:19.0026943Z Entering 'third_party/cudnn_frontend' 2023-01-11T20:38:19.0067185Z Entering 'third_party/cutlass' 2023-01-11T20:38:19.0105768Z Entering 'third_party/eigen' 2023-01-11T20:38:19.0140227Z Entering 'third_party/fbgemm' 2023-01-11T20:38:19.0174121Z Entering 'third_party/fbgemm/third_party/asmjit' 2023-01-11T20:38:19.0205940Z Entering 'third_party/fbgemm/third_party/cpuinfo' 2023-01-11T20:38:19.0238403Z Entering 'third_party/fbgemm/third_party/googletest' 2023-01-11T20:38:19.0270482Z Entering 'third_party/fbgemm/third_party/hipify_torch' 2023-01-11T20:38:19.0305195Z Entering 'third_party/flatbuffers' 2023-01-11T20:38:19.0339535Z Entering 'third_party/fmt' 2023-01-11T20:38:19.0371954Z Entering 'third_party/foxi' 2023-01-11T20:38:19.0406005Z Entering 'third_party/gemmlowp/gemmlowp' 2023-01-11T20:38:19.0438415Z Entering 'third_party/gloo' 2023-01-11T20:38:19.0471008Z Entering 'third_party/googletest' 2023-01-11T20:38:19.0503698Z Entering 'third_party/ideep' 2023-01-11T20:38:19.0535842Z Entering 'third_party/ideep/mkl-dnn' 2023-01-11T20:38:19.0569887Z Entering 'third_party/ideep/mkl-dnn/third_party/oneDNN' 2023-01-11T20:38:19.0607926Z Entering 'third_party/ios-cmake' 2023-01-11T20:38:19.0641583Z Entering 'third_party/ittapi' 2023-01-11T20:38:19.0673721Z Entering 'third_party/kineto' 2023-01-11T20:38:19.0708109Z Entering 'third_party/kineto/libkineto/third_party/fmt' 2023-01-11T20:38:19.0741366Z Entering 'third_party/kineto/libkineto/third_party/googletest' 2023-01-11T20:38:19.0775122Z Entering 'third_party/nccl/nccl' 2023-01-11T20:38:19.0809870Z Entering 'third_party/neon2sse' 2023-01-11T20:38:19.0841895Z Entering 'third_party/nlohmann' 2023-01-11T20:38:19.0875643Z Entering 'third_party/onnx' 2023-01-11T20:38:19.0920223Z Entering 'third_party/onnx/third_party/benchmark' 2023-01-11T20:38:19.0954212Z Entering 'third_party/onnx/third_party/pybind11' 2023-01-11T20:38:19.0989398Z Entering 'third_party/onnx-tensorrt' 2023-01-11T20:38:19.1022928Z Entering 'third_party/onnx-tensorrt/third_party/onnx' 2023-01-11T20:38:19.1059284Z Entering 'third_party/onnx-tensorrt/third_party/onnx/third_party/benchmark' 2023-01-11T20:38:19.1093370Z Entering 'third_party/onnx-tensorrt/third_party/onnx/third_party/pybind11' 2023-01-11T20:38:19.1126518Z Entering 'third_party/onnx-tensorrt/third_party/onnx/third_party/pybind11/tools/clang' 2023-01-11T20:38:19.1163578Z Entering 'third_party/pocketfft' 2023-01-11T20:38:19.1196891Z Entering 'third_party/protobuf' 2023-01-11T20:38:19.1233363Z Entering 'third_party/protobuf/third_party/benchmark' 2023-01-11T20:38:19.1266211Z Entering 'third_party/protobuf/third_party/googletest' 2023-01-11T20:38:19.1300141Z Entering 'third_party/psimd' 2023-01-11T20:38:19.1333063Z Entering 'third_party/pthreadpool' 2023-01-11T20:38:19.1366800Z Entering 'third_party/pybind11' 2023-01-11T20:38:19.1399516Z Entering 'third_party/python-enum' 2023-01-11T20:38:19.1431814Z Entering 'third_party/python-peachpy' 2023-01-11T20:38:19.1465254Z Entering 'third_party/python-six' 2023-01-11T20:38:19.1498560Z Entering 'third_party/sleef' 2023-01-11T20:38:19.1532893Z Entering 'third_party/tbb' 2023-01-11T20:38:19.1567482Z Entering 'third_party/tensorpipe' 2023-01-11T20:38:19.1599834Z Entering 'third_party/tensorpipe/third_party/googletest' 2023-01-11T20:38:19.1632463Z Entering 'third_party/tensorpipe/third_party/libnop' 2023-01-11T20:38:19.1665220Z Entering 'third_party/tensorpipe/third_party/libuv' 2023-01-11T20:38:19.1697805Z Entering 'third_party/tensorpipe/third_party/pybind11' 2023-01-11T20:38:19.1730243Z Entering 'third_party/tensorpipe/third_party/pybind11/tools/clang' 2023-01-11T20:38:19.1765727Z Entering 'third_party/zstd' 2023-01-11T20:38:19.1810953Z [command]/usr/bin/git submodule foreach --recursive git config --local 'http.https://github.com/.extraheader' 'AUTHORIZATION: basic ***' && git config --local --show-origin --name-only --get-regexp remote.origin.url 2023-01-11T20:38:19.2058768Z Entering 'android/libs/fbjni' 2023-01-11T20:38:19.2090479Z file:/home/ec2-user/actions-runner/_work/pytorch/pytorch/.git/modules/android/libs/fbjni/config remote.origin.url 2023-01-11T20:38:19.2104036Z Entering 'third_party/FP16' 2023-01-11T20:38:19.2135239Z file:/home/ec2-user/actions-runner/_work/pytorch/pytorch/.git/modules/third_party/NNPACK_deps/FP16/config remote.origin.url 2023-01-11T20:38:19.2148967Z Entering 'third_party/FXdiv' 2023-01-11T20:38:19.2180085Z file:/home/ec2-user/actions-runner/_work/pytorch/pytorch/.git/modules/third_party/NNPACK_deps/FXdiv/config remote.origin.url 2023-01-11T20:38:19.2194029Z Entering 'third_party/NNPACK' 2023-01-11T20:38:19.2225594Z file:/home/ec2-user/actions-runner/_work/pytorch/pytorch/.git/modules/third_party/NNPACK/config remote.origin.url 2023-01-11T20:38:19.2240140Z Entering 'third_party/QNNPACK' 2023-01-11T20:38:19.2270259Z file:/home/ec2-user/actions-runner/_work/pytorch/pytorch/.git/modules/third_party/QNNPACK/config remote.origin.url 2023-01-11T20:38:19.2284821Z Entering 'third_party/VulkanMemoryAllocator' 2023-01-11T20:38:19.2315485Z file:/home/ec2-user/actions-runner/_work/pytorch/pytorch/.git/modules/third_party/VulkanMemoryAllocator/config remote.origin.url 2023-01-11T20:38:19.2330197Z Entering 'third_party/XNNPACK' 2023-01-11T20:38:19.2362728Z file:/home/ec2-user/actions-runner/_work/pytorch/pytorch/.git/modules/third_party/XNNPACK/config remote.origin.url 2023-01-11T20:38:19.2384703Z Entering 'third_party/benchmark' 2023-01-11T20:38:19.2416196Z file:/home/ec2-user/actions-runner/_work/pytorch/pytorch/.git/modules/third_party/benchmark/config remote.origin.url 2023-01-11T20:38:19.2430128Z Entering 'third_party/cpuinfo' 2023-01-11T20:38:19.2461006Z file:/home/ec2-user/actions-runner/_work/pytorch/pytorch/.git/modules/third_party/cpuinfo/config remote.origin.url 2023-01-11T20:38:19.2475334Z Entering 'third_party/cub' 2023-01-11T20:38:19.2508199Z file:/home/ec2-user/actions-runner/_work/pytorch/pytorch/.git/modules/third_party/cub/config remote.origin.url 2023-01-11T20:38:19.2522013Z Entering 'third_party/cudnn_frontend' 2023-01-11T20:38:19.2552960Z file:/home/ec2-user/actions-runner/_work/pytorch/pytorch/.git/modules/third_party/cudnn_frontend/config remote.origin.url 2023-01-11T20:38:19.2571249Z Entering 'third_party/cutlass' 2023-01-11T20:38:19.2602964Z file:/home/ec2-user/actions-runner/_work/pytorch/pytorch/.git/modules/third_party/cutlass/config remote.origin.url 2023-01-11T20:38:19.2622369Z Entering 'third_party/eigen' 2023-01-11T20:38:19.2654909Z file:/home/ec2-user/actions-runner/_work/pytorch/pytorch/.git/modules/third_party/eigen/config remote.origin.url 2023-01-11T20:38:19.2671161Z Entering 'third_party/fbgemm' 2023-01-11T20:38:19.2702554Z file:/home/ec2-user/actions-runner/_work/pytorch/pytorch/.git/modules/third_party/fbgemm/config remote.origin.url 2023-01-11T20:38:19.2716095Z Entering 'third_party/fbgemm/third_party/asmjit' 2023-01-11T20:38:19.2747073Z file:/home/ec2-user/actions-runner/_work/pytorch/pytorch/.git/modules/third_party/fbgemm/modules/third_party/asmjit/config remote.origin.url 2023-01-11T20:38:19.2760423Z Entering 'third_party/fbgemm/third_party/cpuinfo' 2023-01-11T20:38:19.2791172Z file:/home/ec2-user/actions-runner/_work/pytorch/pytorch/.git/modules/third_party/fbgemm/modules/third_party/cpuinfo/config remote.origin.url 2023-01-11T20:38:19.2806963Z Entering 'third_party/fbgemm/third_party/googletest' 2023-01-11T20:38:19.2837862Z file:/home/ec2-user/actions-runner/_work/pytorch/pytorch/.git/modules/third_party/fbgemm/modules/third_party/googletest/config remote.origin.url 2023-01-11T20:38:19.2851135Z Entering 'third_party/fbgemm/third_party/hipify_torch' 2023-01-11T20:38:19.2881655Z file:/home/ec2-user/actions-runner/_work/pytorch/pytorch/.git/modules/third_party/fbgemm/modules/third_party/hipify_torch/config remote.origin.url 2023-01-11T20:38:19.2896179Z Entering 'third_party/flatbuffers' 2023-01-11T20:38:19.2927807Z file:/home/ec2-user/actions-runner/_work/pytorch/pytorch/.git/modules/third_party/flatbuffers/config remote.origin.url 2023-01-11T20:38:19.2943421Z Entering 'third_party/fmt' 2023-01-11T20:38:19.2975374Z file:/home/ec2-user/actions-runner/_work/pytorch/pytorch/.git/modules/third_party/fmt/config remote.origin.url 2023-01-11T20:38:19.2989591Z Entering 'third_party/foxi' 2023-01-11T20:38:19.3020064Z file:/home/ec2-user/actions-runner/_work/pytorch/pytorch/.git/modules/third_party/foxi/config remote.origin.url 2023-01-11T20:38:19.3033892Z Entering 'third_party/gemmlowp/gemmlowp' 2023-01-11T20:38:19.3065018Z file:/home/ec2-user/actions-runner/_work/pytorch/pytorch/.git/modules/third_party/gemmlowp/gemmlowp/config remote.origin.url 2023-01-11T20:38:19.3078798Z Entering 'third_party/gloo' 2023-01-11T20:38:19.3111897Z file:/home/ec2-user/actions-runner/_work/pytorch/pytorch/.git/modules/third_party/gloo/config remote.origin.url 2023-01-11T20:38:19.3125917Z Entering 'third_party/googletest' 2023-01-11T20:38:19.3157395Z file:/home/ec2-user/actions-runner/_work/pytorch/pytorch/.git/modules/third_party/googletest/config remote.origin.url 2023-01-11T20:38:19.3172304Z Entering 'third_party/ideep' 2023-01-11T20:38:19.3203892Z file:/home/ec2-user/actions-runner/_work/pytorch/pytorch/.git/modules/third_party/ideep/config remote.origin.url 2023-01-11T20:38:19.3217267Z Entering 'third_party/ideep/mkl-dnn' 2023-01-11T20:38:19.3248206Z file:/home/ec2-user/actions-runner/_work/pytorch/pytorch/.git/modules/third_party/ideep/modules/mkl-dnn/config remote.origin.url 2023-01-11T20:38:19.3264419Z Entering 'third_party/ideep/mkl-dnn/third_party/oneDNN' 2023-01-11T20:38:19.3296009Z file:/home/ec2-user/actions-runner/_work/pytorch/pytorch/.git/modules/third_party/ideep/modules/mkl-dnn/modules/third_party/oneDNN/config remote.origin.url 2023-01-11T20:38:19.3315722Z Entering 'third_party/ios-cmake' 2023-01-11T20:38:19.3347126Z file:/home/ec2-user/actions-runner/_work/pytorch/pytorch/.git/modules/third_party/ios-cmake/config remote.origin.url 2023-01-11T20:38:19.3361206Z Entering 'third_party/ittapi' 2023-01-11T20:38:19.3392833Z file:/home/ec2-user/actions-runner/_work/pytorch/pytorch/.git/modules/third_party/ittapi/config remote.origin.url 2023-01-11T20:38:19.3407241Z Entering 'third_party/kineto' 2023-01-11T20:38:19.3438820Z file:/home/ec2-user/actions-runner/_work/pytorch/pytorch/.git/modules/third_party/kineto/config remote.origin.url 2023-01-11T20:38:19.3452483Z Entering 'third_party/kineto/libkineto/third_party/fmt' 2023-01-11T20:38:19.3485028Z file:/home/ec2-user/actions-runner/_work/pytorch/pytorch/.git/modules/third_party/kineto/modules/libkineto/third_party/fmt/config remote.origin.url 2023-01-11T20:38:19.3498848Z Entering 'third_party/kineto/libkineto/third_party/googletest' 2023-01-11T20:38:19.3531754Z file:/home/ec2-user/actions-runner/_work/pytorch/pytorch/.git/modules/third_party/kineto/modules/libkineto/third_party/googletest/config remote.origin.url 2023-01-11T20:38:19.3546764Z Entering 'third_party/nccl/nccl' 2023-01-11T20:38:19.3577635Z file:/home/ec2-user/actions-runner/_work/pytorch/pytorch/.git/modules/third_party/nccl/nccl/config remote.origin.url 2023-01-11T20:38:19.3591513Z Entering 'third_party/neon2sse' 2023-01-11T20:38:19.3623001Z file:/home/ec2-user/actions-runner/_work/pytorch/pytorch/.git/modules/third_party/neon2sse/config remote.origin.url 2023-01-11T20:38:19.3636366Z Entering 'third_party/nlohmann' 2023-01-11T20:38:19.3668086Z file:/home/ec2-user/actions-runner/_work/pytorch/pytorch/.git/modules/third_party/nlohmann/config remote.origin.url 2023-01-11T20:38:19.3683869Z Entering 'third_party/onnx' 2023-01-11T20:38:19.3714877Z file:/home/ec2-user/actions-runner/_work/pytorch/pytorch/.git/modules/third_party/onnx/config remote.origin.url 2023-01-11T20:38:19.3740190Z Entering 'third_party/onnx/third_party/benchmark' 2023-01-11T20:38:19.3772616Z file:/home/ec2-user/actions-runner/_work/pytorch/pytorch/.git/modules/third_party/onnx/modules/third_party/benchmark/config remote.origin.url 2023-01-11T20:38:19.3786889Z Entering 'third_party/onnx/third_party/pybind11' 2023-01-11T20:38:19.3818640Z file:/home/ec2-user/actions-runner/_work/pytorch/pytorch/.git/modules/third_party/onnx/modules/third_party/pybind11/config remote.origin.url 2023-01-11T20:38:19.3834235Z Entering 'third_party/onnx-tensorrt' 2023-01-11T20:38:19.3866441Z file:/home/ec2-user/actions-runner/_work/pytorch/pytorch/.git/modules/third_party/onnx-tensorrt/config remote.origin.url 2023-01-11T20:38:19.3880289Z Entering 'third_party/onnx-tensorrt/third_party/onnx' 2023-01-11T20:38:19.3912007Z file:/home/ec2-user/actions-runner/_work/pytorch/pytorch/.git/modules/third_party/onnx-tensorrt/modules/third_party/onnx/config remote.origin.url 2023-01-11T20:38:19.3930359Z Entering 'third_party/onnx-tensorrt/third_party/onnx/third_party/benchmark' 2023-01-11T20:38:19.3962743Z file:/home/ec2-user/actions-runner/_work/pytorch/pytorch/.git/modules/third_party/onnx-tensorrt/modules/third_party/onnx/modules/third_party/benchmark/config remote.origin.url 2023-01-11T20:38:19.3976270Z Entering 'third_party/onnx-tensorrt/third_party/onnx/third_party/pybind11' 2023-01-11T20:38:19.4008884Z file:/home/ec2-user/actions-runner/_work/pytorch/pytorch/.git/modules/third_party/onnx-tensorrt/modules/third_party/onnx/modules/third_party/pybind11/config remote.origin.url 2023-01-11T20:38:19.4022304Z Entering 'third_party/onnx-tensorrt/third_party/onnx/third_party/pybind11/tools/clang' 2023-01-11T20:38:19.4054379Z file:/home/ec2-user/actions-runner/_work/pytorch/pytorch/.git/modules/third_party/onnx-tensorrt/modules/third_party/onnx/modules/third_party/pybind11/modules/tools/clang/config remote.origin.url 2023-01-11T20:38:19.4073208Z Entering 'third_party/pocketfft' 2023-01-11T20:38:19.4104430Z file:/home/ec2-user/actions-runner/_work/pytorch/pytorch/.git/modules/third_party/pocketfft/config remote.origin.url 2023-01-11T20:38:19.4119320Z Entering 'third_party/protobuf' 2023-01-11T20:38:19.4151103Z file:/home/ec2-user/actions-runner/_work/pytorch/pytorch/.git/modules/third_party/protobuf/config remote.origin.url 2023-01-11T20:38:19.4169171Z Entering 'third_party/protobuf/third_party/benchmark' 2023-01-11T20:38:19.4200747Z file:/home/ec2-user/actions-runner/_work/pytorch/pytorch/.git/modules/third_party/protobuf/modules/third_party/benchmark/config remote.origin.url 2023-01-11T20:38:19.4214841Z Entering 'third_party/protobuf/third_party/googletest' 2023-01-11T20:38:19.4245963Z file:/home/ec2-user/actions-runner/_work/pytorch/pytorch/.git/modules/third_party/protobuf/modules/third_party/googletest/config remote.origin.url 2023-01-11T20:38:19.4261516Z Entering 'third_party/psimd' 2023-01-11T20:38:19.4293307Z file:/home/ec2-user/actions-runner/_work/pytorch/pytorch/.git/modules/third_party/NNPACK_deps/psimd/config remote.origin.url 2023-01-11T20:38:19.4307415Z Entering 'third_party/pthreadpool' 2023-01-11T20:38:19.4340118Z file:/home/ec2-user/actions-runner/_work/pytorch/pytorch/.git/modules/third_party/NNPACK_deps/pthreadpool/config remote.origin.url 2023-01-11T20:38:19.4353806Z Entering 'third_party/pybind11' 2023-01-11T20:38:19.4385256Z file:/home/ec2-user/actions-runner/_work/pytorch/pytorch/.git/modules/third_party/pybind11/config remote.origin.url 2023-01-11T20:38:19.4398826Z Entering 'third_party/python-enum' 2023-01-11T20:38:19.4430448Z file:/home/ec2-user/actions-runner/_work/pytorch/pytorch/.git/modules/third_party/python-enum/config remote.origin.url 2023-01-11T20:38:19.4443906Z Entering 'third_party/python-peachpy' 2023-01-11T20:38:19.4475503Z file:/home/ec2-user/actions-runner/_work/pytorch/pytorch/.git/modules/third_party/python-peachpy/config remote.origin.url 2023-01-11T20:38:19.4489561Z Entering 'third_party/python-six' 2023-01-11T20:38:19.4520803Z file:/home/ec2-user/actions-runner/_work/pytorch/pytorch/.git/modules/third_party/python-six/config remote.origin.url 2023-01-11T20:38:19.4535293Z Entering 'third_party/sleef' 2023-01-11T20:38:19.4565979Z file:/home/ec2-user/actions-runner/_work/pytorch/pytorch/.git/modules/third_party/sleef/config remote.origin.url 2023-01-11T20:38:19.4580317Z Entering 'third_party/tbb' 2023-01-11T20:38:19.4611102Z file:/home/ec2-user/actions-runner/_work/pytorch/pytorch/.git/modules/third_party/tbb/config remote.origin.url 2023-01-11T20:38:19.4627272Z Entering 'third_party/tensorpipe' 2023-01-11T20:38:19.4661112Z file:/home/ec2-user/actions-runner/_work/pytorch/pytorch/.git/modules/third_party/tensorpipe/config remote.origin.url 2023-01-11T20:38:19.4675351Z Entering 'third_party/tensorpipe/third_party/googletest' 2023-01-11T20:38:19.4706298Z file:/home/ec2-user/actions-runner/_work/pytorch/pytorch/.git/modules/third_party/tensorpipe/modules/third_party/googletest/config remote.origin.url 2023-01-11T20:38:19.4719692Z Entering 'third_party/tensorpipe/third_party/libnop' 2023-01-11T20:38:19.4750942Z file:/home/ec2-user/actions-runner/_work/pytorch/pytorch/.git/modules/third_party/tensorpipe/modules/third_party/libnop/config remote.origin.url 2023-01-11T20:38:19.4764753Z Entering 'third_party/tensorpipe/third_party/libuv' 2023-01-11T20:38:19.4795215Z file:/home/ec2-user/actions-runner/_work/pytorch/pytorch/.git/modules/third_party/tensorpipe/modules/third_party/libuv/config remote.origin.url 2023-01-11T20:38:19.4810184Z Entering 'third_party/tensorpipe/third_party/pybind11' 2023-01-11T20:38:19.4840503Z file:/home/ec2-user/actions-runner/_work/pytorch/pytorch/.git/modules/third_party/tensorpipe/modules/third_party/pybind11/config remote.origin.url 2023-01-11T20:38:19.4853775Z Entering 'third_party/tensorpipe/third_party/pybind11/tools/clang' 2023-01-11T20:38:19.4884559Z file:/home/ec2-user/actions-runner/_work/pytorch/pytorch/.git/modules/third_party/tensorpipe/modules/third_party/pybind11/modules/tools/clang/config remote.origin.url 2023-01-11T20:38:19.4900749Z Entering 'third_party/zstd' 2023-01-11T20:38:19.4933211Z file:/home/ec2-user/actions-runner/_work/pytorch/pytorch/.git/modules/third_party/zstd/config remote.origin.url 2023-01-11T20:38:19.5628925Z [command]/usr/bin/git submodule foreach --recursive git config --local --add 'url.https://github.com/.insteadOf' 'git@github.com:' 2023-01-11T20:38:19.5892994Z Entering 'android/libs/fbjni' 2023-01-11T20:38:19.5928347Z Entering 'third_party/FP16' 2023-01-11T20:38:19.5964862Z Entering 'third_party/FXdiv' 2023-01-11T20:38:19.5999941Z Entering 'third_party/NNPACK' 2023-01-11T20:38:19.6035615Z Entering 'third_party/QNNPACK' 2023-01-11T20:38:19.6072875Z Entering 'third_party/VulkanMemoryAllocator' 2023-01-11T20:38:19.6108649Z Entering 'third_party/XNNPACK' 2023-01-11T20:38:19.6155595Z Entering 'third_party/benchmark' 2023-01-11T20:38:19.6191609Z Entering 'third_party/cpuinfo' 2023-01-11T20:38:19.6229784Z Entering 'third_party/cub' 2023-01-11T20:38:19.6265657Z Entering 'third_party/cudnn_frontend' 2023-01-11T20:38:19.6305707Z Entering 'third_party/cutlass' 2023-01-11T20:38:19.6346802Z Entering 'third_party/eigen' 2023-01-11T20:38:19.6385160Z Entering 'third_party/fbgemm' 2023-01-11T20:38:19.6420414Z Entering 'third_party/fbgemm/third_party/asmjit' 2023-01-11T20:38:19.6454543Z Entering 'third_party/fbgemm/third_party/cpuinfo' 2023-01-11T20:38:19.6489382Z Entering 'third_party/fbgemm/third_party/googletest' 2023-01-11T20:38:19.6522639Z Entering 'third_party/fbgemm/third_party/hipify_torch' 2023-01-11T20:38:19.6556573Z Entering 'third_party/flatbuffers' 2023-01-11T20:38:19.6592800Z Entering 'third_party/fmt' 2023-01-11T20:38:19.6627177Z Entering 'third_party/foxi' 2023-01-11T20:38:19.6661044Z Entering 'third_party/gemmlowp/gemmlowp' 2023-01-11T20:38:19.6695264Z Entering 'third_party/gloo' 2023-01-11T20:38:19.6729320Z Entering 'third_party/googletest' 2023-01-11T20:38:19.6763712Z Entering 'third_party/ideep' 2023-01-11T20:38:19.6796547Z Entering 'third_party/ideep/mkl-dnn' 2023-01-11T20:38:19.6832643Z Entering 'third_party/ideep/mkl-dnn/third_party/oneDNN' 2023-01-11T20:38:19.6873962Z Entering 'third_party/ios-cmake' 2023-01-11T20:38:19.6907376Z Entering 'third_party/ittapi' 2023-01-11T20:38:19.6941758Z Entering 'third_party/kineto' 2023-01-11T20:38:19.6975743Z Entering 'third_party/kineto/libkineto/third_party/fmt' 2023-01-11T20:38:19.7010972Z Entering 'third_party/kineto/libkineto/third_party/googletest' 2023-01-11T20:38:19.7046264Z Entering 'third_party/nccl/nccl' 2023-01-11T20:38:19.7080389Z Entering 'third_party/neon2sse' 2023-01-11T20:38:19.7114514Z Entering 'third_party/nlohmann' 2023-01-11T20:38:19.7149522Z Entering 'third_party/onnx' 2023-01-11T20:38:19.7195874Z Entering 'third_party/onnx/third_party/benchmark' 2023-01-11T20:38:19.7230170Z Entering 'third_party/onnx/third_party/pybind11' 2023-01-11T20:38:19.7266364Z Entering 'third_party/onnx-tensorrt' 2023-01-11T20:38:19.7299729Z Entering 'third_party/onnx-tensorrt/third_party/onnx' 2023-01-11T20:38:19.7338127Z Entering 'third_party/onnx-tensorrt/third_party/onnx/third_party/benchmark' 2023-01-11T20:38:19.7372267Z Entering 'third_party/onnx-tensorrt/third_party/onnx/third_party/pybind11' 2023-01-11T20:38:19.7406920Z Entering 'third_party/onnx-tensorrt/third_party/onnx/third_party/pybind11/tools/clang' 2023-01-11T20:38:19.7445441Z Entering 'third_party/pocketfft' 2023-01-11T20:38:19.7480250Z Entering 'third_party/protobuf' 2023-01-11T20:38:19.7517736Z Entering 'third_party/protobuf/third_party/benchmark' 2023-01-11T20:38:19.7552070Z Entering 'third_party/protobuf/third_party/googletest' 2023-01-11T20:38:19.7587222Z Entering 'third_party/psimd' 2023-01-11T20:38:19.7621321Z Entering 'third_party/pthreadpool' 2023-01-11T20:38:19.7656375Z Entering 'third_party/pybind11' 2023-01-11T20:38:19.7690746Z Entering 'third_party/python-enum' 2023-01-11T20:38:19.7724631Z Entering 'third_party/python-peachpy' 2023-01-11T20:38:19.7758271Z Entering 'third_party/python-six' 2023-01-11T20:38:19.7792264Z Entering 'third_party/sleef' 2023-01-11T20:38:19.7825432Z Entering 'third_party/tbb' 2023-01-11T20:38:19.7861465Z Entering 'third_party/tensorpipe' 2023-01-11T20:38:19.7895887Z Entering 'third_party/tensorpipe/third_party/googletest' 2023-01-11T20:38:19.7928881Z Entering 'third_party/tensorpipe/third_party/libnop' 2023-01-11T20:38:19.7961713Z Entering 'third_party/tensorpipe/third_party/libuv' 2023-01-11T20:38:19.7994576Z Entering 'third_party/tensorpipe/third_party/pybind11' 2023-01-11T20:38:19.8027791Z Entering 'third_party/tensorpipe/third_party/pybind11/tools/clang' 2023-01-11T20:38:19.8063266Z Entering 'third_party/zstd' 2023-01-11T20:38:19.8106834Z [command]/usr/bin/git submodule foreach --recursive git config --local --add 'url.https://github.com/.insteadOf' 'org-21003710@github.com:' 2023-01-11T20:38:19.8354354Z Entering 'android/libs/fbjni' 2023-01-11T20:38:19.8387431Z Entering 'third_party/FP16' 2023-01-11T20:38:19.8420947Z Entering 'third_party/FXdiv' 2023-01-11T20:38:19.8454986Z Entering 'third_party/NNPACK' 2023-01-11T20:38:19.8489047Z Entering 'third_party/QNNPACK' 2023-01-11T20:38:19.8522327Z Entering 'third_party/VulkanMemoryAllocator' 2023-01-11T20:38:19.8556558Z Entering 'third_party/XNNPACK' 2023-01-11T20:38:19.8599682Z Entering 'third_party/benchmark' 2023-01-11T20:38:19.8633194Z Entering 'third_party/cpuinfo' 2023-01-11T20:38:19.8667125Z Entering 'third_party/cub' 2023-01-11T20:38:19.8701986Z Entering 'third_party/cudnn_frontend' 2023-01-11T20:38:19.8740158Z Entering 'third_party/cutlass' 2023-01-11T20:38:19.8779261Z Entering 'third_party/eigen' 2023-01-11T20:38:19.8815159Z Entering 'third_party/fbgemm' 2023-01-11T20:38:19.8849698Z Entering 'third_party/fbgemm/third_party/asmjit' 2023-01-11T20:38:19.8882494Z Entering 'third_party/fbgemm/third_party/cpuinfo' 2023-01-11T20:38:19.8915807Z Entering 'third_party/fbgemm/third_party/googletest' 2023-01-11T20:38:19.8948666Z Entering 'third_party/fbgemm/third_party/hipify_torch' 2023-01-11T20:38:19.8982421Z Entering 'third_party/flatbuffers' 2023-01-11T20:38:19.9017669Z Entering 'third_party/fmt' 2023-01-11T20:38:19.9052293Z Entering 'third_party/foxi' 2023-01-11T20:38:19.9087315Z Entering 'third_party/gemmlowp/gemmlowp' 2023-01-11T20:38:19.9120363Z Entering 'third_party/gloo' 2023-01-11T20:38:19.9154234Z Entering 'third_party/googletest' 2023-01-11T20:38:19.9188337Z Entering 'third_party/ideep' 2023-01-11T20:38:19.9222987Z Entering 'third_party/ideep/mkl-dnn' 2023-01-11T20:38:19.9257979Z Entering 'third_party/ideep/mkl-dnn/third_party/oneDNN' 2023-01-11T20:38:19.9297659Z Entering 'third_party/ios-cmake' 2023-01-11T20:38:19.9332695Z Entering 'third_party/ittapi' 2023-01-11T20:38:19.9366167Z Entering 'third_party/kineto' 2023-01-11T20:38:19.9400034Z Entering 'third_party/kineto/libkineto/third_party/fmt' 2023-01-11T20:38:19.9432994Z Entering 'third_party/kineto/libkineto/third_party/googletest' 2023-01-11T20:38:19.9467569Z Entering 'third_party/nccl/nccl' 2023-01-11T20:38:19.9501301Z Entering 'third_party/neon2sse' 2023-01-11T20:38:19.9535177Z Entering 'third_party/nlohmann' 2023-01-11T20:38:19.9570705Z Entering 'third_party/onnx' 2023-01-11T20:38:19.9615315Z Entering 'third_party/onnx/third_party/benchmark' 2023-01-11T20:38:19.9648710Z Entering 'third_party/onnx/third_party/pybind11' 2023-01-11T20:38:19.9683944Z Entering 'third_party/onnx-tensorrt' 2023-01-11T20:38:19.9717818Z Entering 'third_party/onnx-tensorrt/third_party/onnx' 2023-01-11T20:38:19.9755484Z Entering 'third_party/onnx-tensorrt/third_party/onnx/third_party/benchmark' 2023-01-11T20:38:19.9788672Z Entering 'third_party/onnx-tensorrt/third_party/onnx/third_party/pybind11' 2023-01-11T20:38:19.9821773Z Entering 'third_party/onnx-tensorrt/third_party/onnx/third_party/pybind11/tools/clang' 2023-01-11T20:38:19.9859999Z Entering 'third_party/pocketfft' 2023-01-11T20:38:19.9892825Z Entering 'third_party/protobuf' 2023-01-11T20:38:19.9930022Z Entering 'third_party/protobuf/third_party/benchmark' 2023-01-11T20:38:19.9963986Z Entering 'third_party/protobuf/third_party/googletest' 2023-01-11T20:38:19.9998308Z Entering 'third_party/psimd' 2023-01-11T20:38:20.0032401Z Entering 'third_party/pthreadpool' 2023-01-11T20:38:20.0066947Z Entering 'third_party/pybind11' 2023-01-11T20:38:20.0101543Z Entering 'third_party/python-enum' 2023-01-11T20:38:20.0135285Z Entering 'third_party/python-peachpy' 2023-01-11T20:38:20.0170453Z Entering 'third_party/python-six' 2023-01-11T20:38:20.0203956Z Entering 'third_party/sleef' 2023-01-11T20:38:20.0237759Z Entering 'third_party/tbb' 2023-01-11T20:38:20.0273639Z Entering 'third_party/tensorpipe' 2023-01-11T20:38:20.0308262Z Entering 'third_party/tensorpipe/third_party/googletest' 2023-01-11T20:38:20.0342021Z Entering 'third_party/tensorpipe/third_party/libnop' 2023-01-11T20:38:20.0374106Z Entering 'third_party/tensorpipe/third_party/libuv' 2023-01-11T20:38:20.0406483Z Entering 'third_party/tensorpipe/third_party/pybind11' 2023-01-11T20:38:20.0439126Z Entering 'third_party/tensorpipe/third_party/pybind11/tools/clang' 2023-01-11T20:38:20.0474919Z Entering 'third_party/zstd' 2023-01-11T20:38:20.0517321Z ##[endgroup] 2023-01-11T20:38:20.0557199Z [command]/usr/bin/git log -1 --format='%H' 2023-01-11T20:38:20.0583262Z '8419ddda87c8a47eacc63b54bc7ec98c1f27c26e' 2023-01-11T20:38:20.0699700Z Prepare all required actions 2023-01-11T20:38:20.0725565Z ##[group]Run ./.github/actions/setup-linux 2023-01-11T20:38:20.0725768Z env: 2023-01-11T20:38:20.0725928Z GIT_DEFAULT_BRANCH: master 2023-01-11T20:38:20.0726115Z ##[endgroup] 2023-01-11T20:38:20.0740989Z ##[group]Run set -euo pipefail 2023-01-11T20:38:20.0741221Z set -euo pipefail 2023-01-11T20:38:20.0741428Z function get_ec2_metadata() { 2023-01-11T20:38:20.0741662Z  # Pulled from instance metadata endpoint for EC2 2023-01-11T20:38:20.0742017Z  # see https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/instancedata-data-retrieval.html 2023-01-11T20:38:20.0742321Z  category=$1 2023-01-11T20:38:20.0742563Z  curl -fsSL "http://169.254.169.254/latest/meta-data/${category}" 2023-01-11T20:38:20.0742783Z } 2023-01-11T20:38:20.0742983Z echo "ami-id: $(get_ec2_metadata ami-id)" 2023-01-11T20:38:20.0743262Z echo "instance-id: $(get_ec2_metadata instance-id)" 2023-01-11T20:38:20.0743526Z echo "instance-type: $(get_ec2_metadata instance-type)" 2023-01-11T20:38:20.0743771Z echo "system info $(uname -a)" 2023-01-11T20:38:20.0754702Z shell: /usr/bin/bash --noprofile --norc -e -o pipefail {0} 2023-01-11T20:38:20.0754902Z env: 2023-01-11T20:38:20.0755075Z GIT_DEFAULT_BRANCH: master 2023-01-11T20:38:20.0755259Z ##[endgroup] 2023-01-11T20:38:20.0829923Z ami-id: ami-096198a0bccc6bad4 2023-01-11T20:38:20.0880191Z instance-id: i-05ef50dfe628429d7 2023-01-11T20:38:20.0925210Z instance-type: c5.2xlarge 2023-01-11T20:38:20.0931510Z system info Linux ip-10-0-2-51.ec2.internal 4.14.252-195.483.amzn2.x86_64 #1 SMP Mon Nov 1 20:58:46 UTC 2021 x86_64 x86_64 x86_64 GNU/Linux 2023-01-11T20:38:20.0947163Z ##[group]Run if systemctl is-active --quiet docker; then 2023-01-11T20:38:20.0947448Z if systemctl is-active --quiet docker; then 2023-01-11T20:38:20.0947693Z  echo "Docker daemon is running..."; 2023-01-11T20:38:20.0947903Z else 2023-01-11T20:38:20.0948124Z  echo "Starting docker deamon..." && sudo systemctl start docker; 2023-01-11T20:38:20.0948352Z fi 2023-01-11T20:38:20.0958819Z shell: /usr/bin/bash --noprofile --norc -e -o pipefail {0} 2023-01-11T20:38:20.0959019Z env: 2023-01-11T20:38:20.0959192Z GIT_DEFAULT_BRANCH: master 2023-01-11T20:38:20.0959375Z ##[endgroup] 2023-01-11T20:38:20.1074957Z Docker daemon is running... 2023-01-11T20:38:20.1090536Z ##[group]Run AWS_ACCOUNT_ID=$(aws sts get-caller-identity|grep Account|cut -f4 -d\") 2023-01-11T20:38:20.1090893Z AWS_ACCOUNT_ID=$(aws sts get-caller-identity|grep Account|cut -f4 -d\") 2023-01-11T20:38:20.1091174Z retry () { "$@" || (sleep 1 && "$@") || (sleep 2 && "$@") } 2023-01-11T20:38:20.1091550Z retry aws ecr get-login*** "$AWS_DEFAULT_REGION" | docker login --username AWS \ 2023-01-11T20:38:20.1091899Z  --password-stdin "$AWS_ACCOUNT_ID.dkr.ecr.$AWS_DEFAULT_REGION.amazonaws.com" 2023-01-11T20:38:20.1102255Z shell: /usr/bin/bash --noprofile --norc -e -o pipefail {0} 2023-01-11T20:38:20.1102470Z env: 2023-01-11T20:38:20.1102644Z GIT_DEFAULT_BRANCH: master 2023-01-11T20:38:20.1102826Z AWS_RETRY_MODE: standard 2023-01-11T20:38:20.1103011Z AWS_MAX_ATTEMPTS: 5 2023-01-11T20:38:20.1103204Z AWS_DEFAULT_REGION: us-east-1 2023-01-11T20:38:20.1103394Z ##[endgroup] 2023-01-11T20:38:21.3040017Z WARNING! Your password will be stored unencrypted in /home/ec2-user/.docker/config.json. 2023-01-11T20:38:21.3040544Z Configure a credential helper to remove this warning. See 2023-01-11T20:38:21.3041289Z https://docs.docker.com/engine/reference/commandline/login/#credentials-store 2023-01-11T20:38:21.3041554Z 2023-01-11T20:38:21.3041637Z Login Succeeded 2023-01-11T20:38:21.3069954Z ##[group]Run env | grep '^GITHUB' >> "/tmp/github_env_${GITHUB_RUN_ID}" 2023-01-11T20:38:21.3070258Z env | grep '^GITHUB' >> "/tmp/github_env_${GITHUB_RUN_ID}" 2023-01-11T20:38:21.3070605Z env | grep '^CI' >> "/tmp/github_env_${GITHUB_RUN_ID}" 2023-01-11T20:38:21.3081923Z shell: /usr/bin/bash --noprofile --norc -e -o pipefail {0} 2023-01-11T20:38:21.3082125Z env: 2023-01-11T20:38:21.3082300Z GIT_DEFAULT_BRANCH: master 2023-01-11T20:38:21.3082483Z ##[endgroup] 2023-01-11T20:38:21.3154380Z ##[group]Run pytorch/test-infra/.github/actions/pull-docker-image@main 2023-01-11T20:38:21.3154632Z with: 2023-01-11T20:38:21.3154971Z docker-image: 308535385114.dkr.ecr.us-east-1.amazonaws.com/pytorch/pytorch-linux-focal-py3-clang7-asan:fd224c2e6c79d7fdec6408da598bf52bc5b201dd 2023-01-11T20:38:21.3155308Z env: 2023-01-11T20:38:21.3155484Z GIT_DEFAULT_BRANCH: master 2023-01-11T20:38:21.3155658Z ##[endgroup] 2023-01-11T20:38:21.3169051Z ##[group]Run retry () { "$@" || (sleep 1 && "$@") || (sleep 2 && "$@") } 2023-01-11T20:38:21.3169328Z retry () { "$@" || (sleep 1 && "$@") || (sleep 2 && "$@") } 2023-01-11T20:38:21.3169590Z # ignore output since only exit code is used for conditional 2023-01-11T20:38:21.3169869Z # only pull docker image if it's not available locally 2023-01-11T20:38:21.3170164Z if ! docker inspect --type=image "${DOCKER_IMAGE}" >/dev/null 2>/dev/null; then 2023-01-11T20:38:21.3170454Z  retry docker pull "${DOCKER_IMAGE}" 2023-01-11T20:38:21.3170648Z fi 2023-01-11T20:38:21.3180979Z shell: /usr/bin/bash --noprofile --norc -e -o pipefail {0} 2023-01-11T20:38:21.3181192Z env: 2023-01-11T20:38:21.3181363Z GIT_DEFAULT_BRANCH: master 2023-01-11T20:38:21.3181719Z DOCKER_IMAGE: 308535385114.dkr.ecr.us-east-1.amazonaws.com/pytorch/pytorch-linux-focal-py3-clang7-asan:fd224c2e6c79d7fdec6408da598bf52bc5b201dd 2023-01-11T20:38:21.3182057Z ##[endgroup] 2023-01-11T20:38:21.5266828Z fd224c2e6c79d7fdec6408da598bf52bc5b201dd: Pulling from pytorch/pytorch-linux-focal-py3-clang7-asan 2023-01-11T20:38:21.5274339Z 846c0b181fff: Pulling fs layer 2023-01-11T20:38:21.5277308Z 21fdbe34507b: Pulling fs layer 2023-01-11T20:38:21.5277589Z 15f2f231937c: Pulling fs layer 2023-01-11T20:38:21.5277886Z a1e39d4ff4de: Pulling fs layer 2023-01-11T20:38:21.5278186Z dac676e29afb: Pulling fs layer 2023-01-11T20:38:21.5278529Z b6a2ffe2f948: Pulling fs layer 2023-01-11T20:38:21.5278872Z 49efecb612e9: Pulling fs layer 2023-01-11T20:38:21.5279159Z 613971da6ac7: Pulling fs layer 2023-01-11T20:38:21.5279411Z 8fb6475afaf3: Pulling fs layer 2023-01-11T20:38:21.5279688Z 435d0e36d6a5: Pulling fs layer 2023-01-11T20:38:21.5279885Z 3b4e6eac36dd: Pulling fs layer 2023-01-11T20:38:21.5282221Z aea18031c0c7: Pulling fs layer 2023-01-11T20:38:21.5282675Z 49efecb612e9: Waiting 2023-01-11T20:38:21.5283009Z a1e39d4ff4de: Waiting 2023-01-11T20:38:21.5283362Z 4604cf003b36: Pulling fs layer 2023-01-11T20:38:21.5283628Z 613971da6ac7: Waiting 2023-01-11T20:38:21.5283824Z 4e981f6dbb89: Pulling fs layer 2023-01-11T20:38:21.5284007Z 435d0e36d6a5: Waiting 2023-01-11T20:38:21.5284177Z 7743227009bb: Pulling fs layer 2023-01-11T20:38:21.5284359Z 8fb6475afaf3: Waiting 2023-01-11T20:38:21.5284542Z 620feb79e578: Pulling fs layer 2023-01-11T20:38:21.5284716Z 3b4e6eac36dd: Waiting 2023-01-11T20:38:21.5284922Z a3dbac233a42: Pulling fs layer 2023-01-11T20:38:21.5285176Z dac676e29afb: Waiting 2023-01-11T20:38:21.5285376Z aea18031c0c7: Waiting 2023-01-11T20:38:21.5285684Z 4a56f6ee78f6: Pulling fs layer 2023-01-11T20:38:21.5285997Z 50d1e6404d82: Pulling fs layer 2023-01-11T20:38:21.5286303Z 4604cf003b36: Waiting 2023-01-11T20:38:21.5286624Z 2f0941e33bd6: Pulling fs layer 2023-01-11T20:38:21.5286978Z 7743227009bb: Waiting 2023-01-11T20:38:21.5287259Z eb18bead7c47: Pulling fs layer 2023-01-11T20:38:21.5287632Z 4e981f6dbb89: Waiting 2023-01-11T20:38:21.5287927Z 7b8ecfd940e0: Pulling fs layer 2023-01-11T20:38:21.5288182Z 57ce702c520c: Pulling fs layer 2023-01-11T20:38:21.5288538Z f998920cae3e: Pulling fs layer 2023-01-11T20:38:21.5288918Z 2d4cddbabc89: Pulling fs layer 2023-01-11T20:38:21.5289434Z c536fd508674: Pulling fs layer 2023-01-11T20:38:21.5289764Z c9a786894499: Pulling fs layer 2023-01-11T20:38:21.5290115Z e8764e64bb1c: Pulling fs layer 2023-01-11T20:38:21.5290479Z a3dbac233a42: Waiting 2023-01-11T20:38:21.5290796Z 4d1e09a08f81: Pulling fs layer 2023-01-11T20:38:21.5291139Z 4a56f6ee78f6: Waiting 2023-01-11T20:38:21.5291384Z bdc8f587ef89: Pulling fs layer 2023-01-11T20:38:21.5291682Z 50d1e6404d82: Waiting 2023-01-11T20:38:21.5291932Z 70704e78fced: Pulling fs layer 2023-01-11T20:38:21.5292194Z 2f0941e33bd6: Waiting 2023-01-11T20:38:21.5292430Z 1aa09a70183a: Pulling fs layer 2023-01-11T20:38:21.5292630Z f998920cae3e: Waiting 2023-01-11T20:38:21.5292866Z c536fd508674: Waiting 2023-01-11T20:38:21.5293105Z f369cb0dac39: Pulling fs layer 2023-01-11T20:38:21.5293353Z eb18bead7c47: Waiting 2023-01-11T20:38:21.5293586Z 2d4cddbabc89: Waiting 2023-01-11T20:38:21.5293835Z 9a83edd28cbc: Pulling fs layer 2023-01-11T20:38:21.5294054Z ebecc6d269f2: Pulling fs layer 2023-01-11T20:38:21.5294293Z 7b8ecfd940e0: Waiting 2023-01-11T20:38:21.5294544Z 57ce702c520c: Waiting 2023-01-11T20:38:21.5294740Z 296146b0eae7: Pulling fs layer 2023-01-11T20:38:21.5295060Z 7d5d82a88c1b: Pulling fs layer 2023-01-11T20:38:21.5295446Z 667f5a34e1ef: Pulling fs layer 2023-01-11T20:38:21.5295806Z e8764e64bb1c: Waiting 2023-01-11T20:38:21.5296220Z 75eb61e130a0: Pulling fs layer 2023-01-11T20:38:21.5296532Z 620feb79e578: Waiting 2023-01-11T20:38:21.5296823Z 8a92db3dc3eb: Pulling fs layer 2023-01-11T20:38:21.5297198Z 296146b0eae7: Waiting 2023-01-11T20:38:21.5297574Z b97379cf7644: Pulling fs layer 2023-01-11T20:38:21.5297782Z 1aa09a70183a: Waiting 2023-01-11T20:38:21.5298009Z 667f5a34e1ef: Waiting 2023-01-11T20:38:21.5298259Z 4d1e09a08f81: Waiting 2023-01-11T20:38:21.5298441Z 7d5d82a88c1b: Waiting 2023-01-11T20:38:21.5298733Z 9a83edd28cbc: Waiting 2023-01-11T20:38:21.5298974Z 68e7cd28096c: Pulling fs layer 2023-01-11T20:38:21.5299179Z ebecc6d269f2: Waiting 2023-01-11T20:38:21.5299419Z 99a0e1297615: Pulling fs layer 2023-01-11T20:38:21.5299801Z b97379cf7644: Waiting 2023-01-11T20:38:21.5300016Z 2d59c2783db2: Pulling fs layer 2023-01-11T20:38:21.5300253Z 68e7cd28096c: Waiting 2023-01-11T20:38:21.5300495Z e02c9601b85c: Pulling fs layer 2023-01-11T20:38:21.5300824Z 2d59c2783db2: Waiting 2023-01-11T20:38:21.5301046Z 99a0e1297615: Waiting 2023-01-11T20:38:21.5301303Z 36ecb985ca81: Pulling fs layer 2023-01-11T20:38:21.5301517Z 40a91c7bbcdd: Pulling fs layer 2023-01-11T20:38:21.5301775Z 5b3f4c615eba: Pulling fs layer 2023-01-11T20:38:21.5302421Z a8e823303f62: Pulling fs layer 2023-01-11T20:38:21.5302642Z 03b9596d9ece: Pulling fs layer 2023-01-11T20:38:21.5302928Z 342326185042: Pulling fs layer 2023-01-11T20:38:21.5303186Z 9229b7372ee6: Pulling fs layer 2023-01-11T20:38:21.5303392Z 794d48fd071f: Pulling fs layer 2023-01-11T20:38:21.5303674Z 7b6b0b10b9c6: Pulling fs layer 2023-01-11T20:38:21.5303951Z c1ec5d2760ef: Pulling fs layer 2023-01-11T20:38:21.5304201Z e02c9601b85c: Waiting 2023-01-11T20:38:21.5304399Z 099631a27757: Pulling fs layer 2023-01-11T20:38:21.5304646Z ca880176f07f: Pulling fs layer 2023-01-11T20:38:21.5304913Z 8507d046f7f4: Pulling fs layer 2023-01-11T20:38:21.5305105Z 342326185042: Waiting 2023-01-11T20:38:21.5305338Z c1ec5d2760ef: Waiting 2023-01-11T20:38:21.5305596Z a8e823303f62: Waiting 2023-01-11T20:38:21.5305778Z 7b6b0b10b9c6: Waiting 2023-01-11T20:38:21.5306020Z ca880176f07f: Waiting 2023-01-11T20:38:21.5306255Z 8507d046f7f4: Waiting 2023-01-11T20:38:21.5306433Z 099631a27757: Waiting 2023-01-11T20:38:21.5306657Z 36ecb985ca81: Waiting 2023-01-11T20:38:21.5306887Z 40a91c7bbcdd: Waiting 2023-01-11T20:38:21.6103688Z 21fdbe34507b: Download complete 2023-01-11T20:38:21.6868747Z a1e39d4ff4de: Download complete 2023-01-11T20:38:21.8696891Z 846c0b181fff: Verifying Checksum 2023-01-11T20:38:21.8697321Z 846c0b181fff: Download complete 2023-01-11T20:38:21.9552902Z b6a2ffe2f948: Verifying Checksum 2023-01-11T20:38:21.9553400Z b6a2ffe2f948: Download complete 2023-01-11T20:38:22.0464180Z 49efecb612e9: Verifying Checksum 2023-01-11T20:38:22.0466744Z 49efecb612e9: Download complete 2023-01-11T20:38:22.1281584Z 613971da6ac7: Verifying Checksum 2023-01-11T20:38:22.1281916Z 613971da6ac7: Download complete 2023-01-11T20:38:22.1931542Z 8fb6475afaf3: Verifying Checksum 2023-01-11T20:38:22.1931986Z 8fb6475afaf3: Download complete 2023-01-11T20:38:22.2690114Z 435d0e36d6a5: Download complete 2023-01-11T20:38:22.3521213Z 3b4e6eac36dd: Verifying Checksum 2023-01-11T20:38:22.3521657Z 3b4e6eac36dd: Download complete 2023-01-11T20:38:22.3799747Z dac676e29afb: Verifying Checksum 2023-01-11T20:38:22.3800049Z dac676e29afb: Download complete 2023-01-11T20:38:22.4233216Z aea18031c0c7: Verifying Checksum 2023-01-11T20:38:22.4233635Z aea18031c0c7: Download complete 2023-01-11T20:38:22.4577334Z 4604cf003b36: Verifying Checksum 2023-01-11T20:38:22.4577600Z 4604cf003b36: Download complete 2023-01-11T20:38:22.5597801Z 7743227009bb: Verifying Checksum 2023-01-11T20:38:22.5598269Z 7743227009bb: Download complete 2023-01-11T20:38:22.5823279Z 846c0b181fff: Pull complete 2023-01-11T20:38:22.6296600Z 620feb79e578: Download complete 2023-01-11T20:38:22.6814277Z 21fdbe34507b: Pull complete 2023-01-11T20:38:22.7176591Z a3dbac233a42: Verifying Checksum 2023-01-11T20:38:22.7176998Z a3dbac233a42: Download complete 2023-01-11T20:38:22.7947726Z 4a56f6ee78f6: Download complete 2023-01-11T20:38:22.8757139Z 50d1e6404d82: Verifying Checksum 2023-01-11T20:38:22.8757440Z 50d1e6404d82: Download complete 2023-01-11T20:38:22.9493771Z 2f0941e33bd6: Download complete 2023-01-11T20:38:23.0304013Z eb18bead7c47: Verifying Checksum 2023-01-11T20:38:23.0304653Z eb18bead7c47: Download complete 2023-01-11T20:38:23.1101571Z 7b8ecfd940e0: Verifying Checksum 2023-01-11T20:38:23.1101854Z 7b8ecfd940e0: Download complete 2023-01-11T20:38:23.1764632Z 57ce702c520c: Download complete 2023-01-11T20:38:23.2534499Z f998920cae3e: Download complete 2023-01-11T20:38:24.5590474Z 2d4cddbabc89: Verifying Checksum 2023-01-11T20:38:24.5590760Z 2d4cddbabc89: Download complete 2023-01-11T20:38:24.6345539Z c536fd508674: Download complete 2023-01-11T20:38:24.6836255Z 15f2f231937c: Verifying Checksum 2023-01-11T20:38:24.6836571Z 15f2f231937c: Download complete 2023-01-11T20:38:24.7287019Z c9a786894499: Verifying Checksum 2023-01-11T20:38:24.7287407Z c9a786894499: Download complete 2023-01-11T20:38:24.7658984Z e8764e64bb1c: Verifying Checksum 2023-01-11T20:38:24.7659418Z e8764e64bb1c: Download complete 2023-01-11T20:38:24.7981196Z 4d1e09a08f81: Download complete 2023-01-11T20:38:24.8316020Z bdc8f587ef89: Verifying Checksum 2023-01-11T20:38:24.8316388Z bdc8f587ef89: Download complete 2023-01-11T20:38:24.8977915Z 1aa09a70183a: Verifying Checksum 2023-01-11T20:38:24.8978285Z 1aa09a70183a: Download complete 2023-01-11T20:38:24.9634778Z f369cb0dac39: Verifying Checksum 2023-01-11T20:38:24.9635174Z f369cb0dac39: Download complete 2023-01-11T20:38:25.0455314Z 9a83edd28cbc: Verifying Checksum 2023-01-11T20:38:25.0455704Z 9a83edd28cbc: Download complete 2023-01-11T20:38:25.1382649Z ebecc6d269f2: Verifying Checksum 2023-01-11T20:38:25.1382909Z ebecc6d269f2: Download complete 2023-01-11T20:38:25.1989409Z 296146b0eae7: Verifying Checksum 2023-01-11T20:38:25.1989973Z 296146b0eae7: Download complete 2023-01-11T20:38:25.2721844Z 7d5d82a88c1b: Verifying Checksum 2023-01-11T20:38:25.2722249Z 7d5d82a88c1b: Download complete 2023-01-11T20:38:25.3577825Z 667f5a34e1ef: Download complete 2023-01-11T20:38:25.4372951Z 75eb61e130a0: Verifying Checksum 2023-01-11T20:38:25.4373360Z 75eb61e130a0: Download complete 2023-01-11T20:38:25.5209244Z 8a92db3dc3eb: Verifying Checksum 2023-01-11T20:38:25.5209664Z 8a92db3dc3eb: Download complete 2023-01-11T20:38:25.5913112Z b97379cf7644: Download complete 2023-01-11T20:38:25.6536735Z 68e7cd28096c: Download complete 2023-01-11T20:38:25.7398845Z 99a0e1297615: Download complete 2023-01-11T20:38:26.2171554Z 2d59c2783db2: Verifying Checksum 2023-01-11T20:38:26.2171985Z 2d59c2783db2: Download complete 2023-01-11T20:38:26.2972877Z e02c9601b85c: Verifying Checksum 2023-01-11T20:38:26.2973420Z e02c9601b85c: Download complete 2023-01-11T20:38:26.3724479Z 36ecb985ca81: Verifying Checksum 2023-01-11T20:38:26.3724749Z 36ecb985ca81: Download complete 2023-01-11T20:38:26.4778763Z 40a91c7bbcdd: Download complete 2023-01-11T20:38:26.5559240Z 5b3f4c615eba: Verifying Checksum 2023-01-11T20:38:26.5559510Z 5b3f4c615eba: Download complete 2023-01-11T20:38:26.7982201Z a8e823303f62: Verifying Checksum 2023-01-11T20:38:26.7982624Z a8e823303f62: Download complete 2023-01-11T20:38:26.9153130Z 03b9596d9ece: Download complete 2023-01-11T20:38:27.0199835Z 342326185042: Verifying Checksum 2023-01-11T20:38:27.0200319Z 342326185042: Download complete 2023-01-11T20:38:27.0404226Z 70704e78fced: Verifying Checksum 2023-01-11T20:38:27.0404651Z 70704e78fced: Download complete 2023-01-11T20:38:27.1135593Z 794d48fd071f: Verifying Checksum 2023-01-11T20:38:27.1136071Z 794d48fd071f: Download complete 2023-01-11T20:38:27.2107293Z 7b6b0b10b9c6: Download complete 2023-01-11T20:38:27.3009032Z c1ec5d2760ef: Download complete 2023-01-11T20:38:27.3864575Z 099631a27757: Verifying Checksum 2023-01-11T20:38:27.3864940Z 099631a27757: Download complete 2023-01-11T20:38:27.4532056Z ca880176f07f: Verifying Checksum 2023-01-11T20:38:27.4532534Z ca880176f07f: Download complete 2023-01-11T20:38:28.0379703Z 8507d046f7f4: Verifying Checksum 2023-01-11T20:38:28.0380121Z 8507d046f7f4: Download complete 2023-01-11T20:38:31.2167485Z 15f2f231937c: Pull complete 2023-01-11T20:38:31.3502754Z a1e39d4ff4de: Pull complete 2023-01-11T20:38:32.6198917Z dac676e29afb: Pull complete 2023-01-11T20:38:32.8437186Z b6a2ffe2f948: Pull complete 2023-01-11T20:38:32.8449562Z 9229b7372ee6: Verifying Checksum 2023-01-11T20:38:32.8449788Z 9229b7372ee6: Download complete 2023-01-11T20:38:33.0943624Z 49efecb612e9: Pull complete 2023-01-11T20:38:33.3138428Z 613971da6ac7: Pull complete 2023-01-11T20:38:33.5738037Z 8fb6475afaf3: Pull complete 2023-01-11T20:38:33.8194763Z 435d0e36d6a5: Pull complete 2023-01-11T20:38:34.0466643Z 3b4e6eac36dd: Pull complete 2023-01-11T20:38:34.2700885Z aea18031c0c7: Pull complete 2023-01-11T20:38:34.5060616Z 4604cf003b36: Pull complete 2023-01-11T20:38:49.4984668Z 4e981f6dbb89: Verifying Checksum 2023-01-11T20:38:49.4985098Z 4e981f6dbb89: Download complete 2023-01-11T20:39:05.4654317Z 4e981f6dbb89: Pull complete 2023-01-11T20:39:05.6133325Z 7743227009bb: Pull complete 2023-01-11T20:39:05.7737013Z 620feb79e578: Pull complete 2023-01-11T20:39:05.9211451Z a3dbac233a42: Pull complete 2023-01-11T20:39:06.0584980Z 4a56f6ee78f6: Pull complete 2023-01-11T20:39:06.2248004Z 50d1e6404d82: Pull complete 2023-01-11T20:39:06.4459369Z 2f0941e33bd6: Pull complete 2023-01-11T20:39:06.6473471Z eb18bead7c47: Pull complete 2023-01-11T20:39:06.8383636Z 7b8ecfd940e0: Pull complete 2023-01-11T20:39:07.0535554Z 57ce702c520c: Pull complete 2023-01-11T20:39:07.2771323Z f998920cae3e: Pull complete 2023-01-11T20:39:10.0568319Z 2d4cddbabc89: Pull complete 2023-01-11T20:39:10.2382921Z c536fd508674: Pull complete 2023-01-11T20:39:10.3851374Z c9a786894499: Pull complete 2023-01-11T20:39:10.5776240Z e8764e64bb1c: Pull complete 2023-01-11T20:39:10.7593608Z 4d1e09a08f81: Pull complete 2023-01-11T20:39:10.8712534Z bdc8f587ef89: Pull complete 2023-01-11T20:39:15.2602856Z 70704e78fced: Pull complete 2023-01-11T20:39:15.5155543Z 1aa09a70183a: Pull complete 2023-01-11T20:39:15.7479245Z f369cb0dac39: Pull complete 2023-01-11T20:39:15.9604412Z 9a83edd28cbc: Pull complete 2023-01-11T20:39:16.1540638Z ebecc6d269f2: Pull complete 2023-01-11T20:39:16.3893263Z 296146b0eae7: Pull complete 2023-01-11T20:39:16.5242326Z 7d5d82a88c1b: Pull complete 2023-01-11T20:39:16.6158627Z 667f5a34e1ef: Pull complete 2023-01-11T20:39:16.7198271Z 75eb61e130a0: Pull complete 2023-01-11T20:39:16.8238237Z 8a92db3dc3eb: Pull complete 2023-01-11T20:39:16.9159379Z b97379cf7644: Pull complete 2023-01-11T20:39:16.9937162Z 68e7cd28096c: Pull complete 2023-01-11T20:39:17.0883495Z 99a0e1297615: Pull complete 2023-01-11T20:39:18.3806757Z 2d59c2783db2: Pull complete 2023-01-11T20:39:18.6183144Z e02c9601b85c: Pull complete 2023-01-11T20:39:18.8031779Z 36ecb985ca81: Pull complete 2023-01-11T20:39:19.0295585Z 40a91c7bbcdd: Pull complete 2023-01-11T20:39:19.2538887Z 5b3f4c615eba: Pull complete 2023-01-11T20:39:19.7101522Z a8e823303f62: Pull complete 2023-01-11T20:39:19.9529570Z 03b9596d9ece: Pull complete 2023-01-11T20:39:20.1853720Z 342326185042: Pull complete 2023-01-11T20:39:23.8747902Z 9229b7372ee6: Pull complete 2023-01-11T20:39:23.9692761Z 794d48fd071f: Pull complete 2023-01-11T20:39:24.0665671Z 7b6b0b10b9c6: Pull complete 2023-01-11T20:39:24.1684216Z c1ec5d2760ef: Pull complete 2023-01-11T20:39:24.2598864Z 099631a27757: Pull complete 2023-01-11T20:39:24.3361393Z ca880176f07f: Pull complete 2023-01-11T20:39:25.7962175Z 8507d046f7f4: Pull complete 2023-01-11T20:39:25.8077910Z Digest: sha256:6dd98a84a12a3a3be24bbc7c3112415c10051ad261832daa2e17a60a48fce645 2023-01-11T20:39:25.8117542Z Status: Downloaded newer image for 308535385114.dkr.ecr.us-east-1.amazonaws.com/pytorch/pytorch-linux-focal-py3-clang7-asan:fd224c2e6c79d7fdec6408da598bf52bc5b201dd 2023-01-11T20:39:25.8156123Z 308535385114.dkr.ecr.us-east-1.amazonaws.com/pytorch/pytorch-linux-focal-py3-clang7-asan:fd224c2e6c79d7fdec6408da598bf52bc5b201dd 2023-01-11T20:39:25.8207087Z ##[group]Run python3 -m pip install psutil==5.9.1 2023-01-11T20:39:25.8207371Z python3 -m pip install psutil==5.9.1 2023-01-11T20:39:25.8207595Z python3 -m pip install pynvml==11.4.1 2023-01-11T20:39:25.8207854Z python3 -m tools.stats.monitor > usage_log.txt 2>&1 & 2023-01-11T20:39:25.8208138Z echo "monitor-script-pid=${!}" >> "${GITHUB_OUTPUT}" 2023-01-11T20:39:25.8219136Z shell: /usr/bin/bash --noprofile --norc -e -o pipefail {0} 2023-01-11T20:39:25.8219354Z env: 2023-01-11T20:39:25.8219531Z GIT_DEFAULT_BRANCH: master 2023-01-11T20:39:25.8219702Z ##[endgroup] 2023-01-11T20:39:26.6626061Z Defaulting to user installation because normal site-packages is not writeable 2023-01-11T20:39:26.6899214Z Requirement already satisfied: psutil==5.9.1 in /home/ec2-user/.local/lib/python3.7/site-packages (5.9.1) 2023-01-11T20:39:27.1315093Z Defaulting to user installation because normal site-packages is not writeable 2023-01-11T20:39:27.1493112Z Requirement already satisfied: pynvml==11.4.1 in /home/ec2-user/.local/lib/python3.7/site-packages (11.4.1) 2023-01-11T20:39:27.3588981Z Prepare all required actions 2023-01-11T20:39:27.3589242Z Getting action download info 2023-01-11T20:39:27.5478510Z Download action repository 'seemethere/download-artifact-s3@v4' (SHA:4a8bfae15cc25cc0785c1603ee87a9da8fd442ea) 2023-01-11T20:39:27.7117576Z Download action repository 'actions/download-artifact@v3' (SHA:9bc31d5ccc31df68ecc42ccf4149144866c47d8a) 2023-01-11T20:39:27.8440523Z ##[group]Run ./.github/actions/download-build-artifacts 2023-01-11T20:39:27.8440893Z with: 2023-01-11T20:39:27.8441090Z name: linux-focal-py3.7-clang7-asan 2023-01-11T20:39:27.8441271Z env: 2023-01-11T20:39:27.8441445Z GIT_DEFAULT_BRANCH: master 2023-01-11T20:39:27.8441642Z ##[endgroup] 2023-01-11T20:39:27.8466864Z ##[group]Run seemethere/download-artifact-s3@v4 2023-01-11T20:39:27.8467077Z with: 2023-01-11T20:39:27.8467258Z name: linux-focal-py3.7-clang7-asan 2023-01-11T20:39:27.8467473Z s3-bucket: gha-artifacts 2023-01-11T20:39:27.8467660Z region: us-east-1 2023-01-11T20:39:27.8467844Z env: 2023-01-11T20:39:27.8468002Z GIT_DEFAULT_BRANCH: master 2023-01-11T20:39:27.8468182Z ##[endgroup] 2023-01-11T20:39:28.2590840Z Found 1 objects with prefix pytorch/pytorch/3896099317/linux-focal-py3.7-clang7-asan/ 2023-01-11T20:39:28.2591299Z Starting download (1/1): /home/ec2-user/actions-runner/_work/pytorch/pytorch/artifacts.zip 2023-01-11T20:39:44.9789038Z Finished download (1/1): /home/ec2-user/actions-runner/_work/pytorch/pytorch/artifacts.zip 2023-01-11T20:39:44.9789288Z 2023-01-11T20:39:44.9804523Z ##[warning]The `set-output` command is deprecated and will be disabled soon. Please upgrade to using Environment Files. For more information see: https://github.blog/changelog/2022-10-11-github-actions-deprecating-save-state-and-set-output-commands/ 2023-01-11T20:39:44.9812459Z Artifact download has finished successfully 2023-01-11T20:39:44.9899580Z ##[group]Run unzip -o artifacts.zip 2023-01-11T20:39:44.9899815Z unzip -o artifacts.zip 2023-01-11T20:39:44.9911481Z shell: /usr/bin/bash --noprofile --norc -e -o pipefail {0} 2023-01-11T20:39:44.9911705Z env: 2023-01-11T20:39:44.9911881Z GIT_DEFAULT_BRANCH: master 2023-01-11T20:39:44.9912057Z ##[endgroup] 2023-01-11T20:39:44.9975747Z Archive: artifacts.zip 2023-01-11T20:39:44.9976405Z creating: dist/ 2023-01-11T20:39:47.2242188Z inflating: dist/torch-2.0.0a0+git8419ddd-cp37-cp37m-linux_x86_64.whl 2023-01-11T20:39:49.2001819Z inflating: dist/torch-2.0.0a0+git8419ddd.tar.gz 2023-01-11T20:39:49.2002276Z creating: build/lib/ 2023-01-11T20:39:49.2004058Z inflating: build/lib/libclog.a 2023-01-11T20:39:49.2187444Z inflating: build/lib/libgtest.a 2023-01-11T20:39:49.2208785Z inflating: build/lib/libpthreadpool.a 2023-01-11T20:39:49.2470758Z inflating: build/lib/libbenchmark.a 2023-01-11T20:39:49.2647067Z inflating: build/lib/libprotobuf-lite.a 2023-01-11T20:39:49.2664344Z inflating: build/lib/libittnotify.a 2023-01-11T20:39:49.2785219Z inflating: build/lib/libfmt.a 2023-01-11T20:39:49.2894979Z inflating: build/lib/libtensorpipe_uv.a 2023-01-11T20:39:49.3219145Z inflating: build/lib/libgloo.a 2023-01-11T20:39:49.3565866Z inflating: build/lib/libasmjit.a 2023-01-11T20:39:49.3566973Z inflating: build/lib/libfoxi_loader.a 2023-01-11T20:39:49.4468898Z inflating: build/lib/libprotobuf.a 2023-01-11T20:39:49.4469892Z inflating: build/lib/libtorch_global_deps.so 2023-01-11T20:39:49.4723779Z inflating: build/lib/libc10.so 2023-01-11T20:39:49.4749785Z inflating: build/lib/libcpuinfo.a 2023-01-11T20:39:49.4757984Z inflating: build/lib/libnnpack_reference_layers.a 2023-01-11T20:39:49.4782350Z inflating: build/lib/libcpuinfo_internals.a 2023-01-11T20:39:49.5886631Z inflating: build/lib/libprotoc.a 2023-01-11T20:39:49.5934472Z inflating: build/lib/libgmock.a 2023-01-11T20:39:49.5935516Z inflating: build/lib/libbenchmark_main.a 2023-01-11T20:39:49.5936817Z inflating: build/lib/libgtest_main.a 2023-01-11T20:39:49.7764869Z inflating: build/lib/libtensorpipe.a 2023-01-11T20:39:49.7765606Z inflating: build/lib/libgmock_main.a 2023-01-11T20:39:49.7825911Z inflating: build/lib/libqnnpack.a 2023-01-11T20:39:50.5481004Z inflating: build/lib/libfbgemm.a 2023-01-11T20:39:50.6128069Z inflating: build/lib/libXNNPACK.a 2023-01-11T20:39:50.6226184Z inflating: build/lib/libpytorch_qnnpack.a 2023-01-11T20:39:50.7363346Z inflating: build/lib/libkineto.a 2023-01-11T20:39:50.7566038Z inflating: build/lib/libcaffe2_protos.a 2023-01-11T20:39:50.7777332Z inflating: build/lib/libonnx_proto.a 2023-01-11T20:39:51.0008297Z inflating: build/lib/libonnx.a 2023-01-11T20:39:51.0042959Z inflating: build/lib/libnnpack.a 2023-01-11T20:39:56.7539955Z inflating: build/lib/libtorch_cpu.so 2023-01-11T20:39:56.7541178Z inflating: build/lib/libtorch.so 2023-01-11T20:39:56.7551319Z inflating: build/lib/libshm.so 2023-01-11T20:39:56.7591643Z inflating: build/lib/libunbox_lib.a 2023-01-11T20:39:56.7780947Z inflating: build/lib/libtorchbind_test.so 2023-01-11T20:39:56.7860908Z inflating: build/lib/libjitbackend_test.so 2023-01-11T20:39:56.7964812Z inflating: build/lib/libbackend_with_compiler.so 2023-01-11T20:39:57.5473591Z inflating: build/lib/libtorch_python.so 2023-01-11T20:39:57.5622281Z inflating: build/lib/libnnapi_backend.so 2023-01-11T20:39:57.5622527Z creating: build/bin/ 2023-01-11T20:39:57.5767464Z inflating: build/bin/c10_CompileTimeFunctionPointer_test 2023-01-11T20:39:57.5918875Z inflating: build/bin/c10_DeviceGuard_test 2023-01-11T20:39:57.6065838Z inflating: build/bin/c10_Device_test 2023-01-11T20:39:57.6234693Z inflating: build/bin/c10_DispatchKeySet_test 2023-01-11T20:39:57.6377718Z inflating: build/bin/c10_StreamGuard_test 2023-01-11T20:39:57.6522884Z inflating: build/bin/c10_SymInt_test 2023-01-11T20:39:57.6678135Z inflating: build/bin/c10_InlineDeviceGuard_test 2023-01-11T20:39:57.6840806Z inflating: build/bin/c10_InlineStreamGuard_test 2023-01-11T20:39:57.6999664Z inflating: build/bin/c10_SizesAndStrides_test 2023-01-11T20:39:57.7142744Z inflating: build/bin/c10_Array_test 2023-01-11T20:39:57.7293774Z inflating: build/bin/c10_Bitset_test 2023-01-11T20:39:57.7441625Z inflating: build/bin/c10_C++17_test 2023-01-11T20:39:57.7585176Z inflating: build/bin/c10_ConstexprCrc_test 2023-01-11T20:39:57.7730243Z inflating: build/bin/c10_DeadlockDetection_test 2023-01-11T20:39:57.7890900Z inflating: build/bin/c10_LeftRight_test 2023-01-11T20:39:57.8036898Z inflating: build/bin/c10_Half_test 2023-01-11T20:39:57.8224375Z inflating: build/bin/c10_Metaprogramming_test 2023-01-11T20:39:57.8604872Z inflating: build/bin/c10_SmallVectorTest 2023-01-11T20:39:57.8751116Z inflating: build/bin/c10_Synchronized_test 2023-01-11T20:39:57.8901499Z inflating: build/bin/c10_TypeIndex_test 2023-01-11T20:39:57.9058632Z inflating: build/bin/c10_ThreadLocal_test 2023-01-11T20:39:57.9208891Z inflating: build/bin/c10_TypeList_test 2023-01-11T20:39:57.9357455Z inflating: build/bin/c10_TypeTraits_test 2023-01-11T20:39:57.9510639Z inflating: build/bin/c10_accumulate_test 2023-01-11T20:39:57.9670210Z inflating: build/bin/c10_bfloat16_test 2023-01-11T20:39:57.9831529Z inflating: build/bin/c10_complex_math_test 2023-01-11T20:39:57.9990692Z inflating: build/bin/c10_complex_test 2023-01-11T20:39:58.0281657Z inflating: build/bin/c10_either_test 2023-01-11T20:39:58.0434898Z inflating: build/bin/c10_exception_test 2023-01-11T20:39:58.0588510Z inflating: build/bin/c10_flags_test 2023-01-11T20:39:58.0736066Z inflating: build/bin/c10_irange_test 2023-01-11T20:39:58.1078384Z inflating: build/bin/c10_intrusive_ptr_test 2023-01-11T20:39:58.1241188Z inflating: build/bin/c10_logging_test 2023-01-11T20:39:58.1430782Z inflating: build/bin/c10_ordered_preserving_dict_test 2023-01-11T20:39:58.1652861Z inflating: build/bin/c10_optional_test 2023-01-11T20:39:58.1811996Z inflating: build/bin/c10_registry_test 2023-01-11T20:39:58.1977981Z inflating: build/bin/c10_string_view_test 2023-01-11T20:39:58.2127408Z inflating: build/bin/c10_tempfile_test 2023-01-11T20:39:58.2284095Z inflating: build/bin/c10_typeid_test 2023-01-11T20:39:58.2453039Z inflating: build/bin/c10_intrusive_ptr_benchmark 2023-01-11T20:39:58.3543374Z inflating: build/bin/protoc-3.13.0.0 2023-01-11T20:39:58.4632552Z inflating: build/bin/protoc 2023-01-11T20:39:58.5768558Z inflating: build/bin/vec_test_all_types_DEFAULT 2023-01-11T20:39:58.6948856Z inflating: build/bin/vec_test_all_types_AVX512 2023-01-11T20:39:58.8135451Z inflating: build/bin/vec_test_all_types_AVX2 2023-01-11T20:39:58.8290405Z inflating: build/bin/HashStoreTest 2023-01-11T20:39:58.8444455Z inflating: build/bin/FileStoreTest 2023-01-11T20:39:58.8617477Z inflating: build/bin/TCPStoreTest 2023-01-11T20:39:58.8816921Z inflating: build/bin/ProcessGroupGlooTest 2023-01-11T20:39:58.8826815Z inflating: build/bin/example_allreduce 2023-01-11T20:39:58.8989600Z inflating: build/bin/test_dist_autograd 2023-01-11T20:39:58.8995197Z inflating: build/bin/parallel_benchmark 2023-01-11T20:39:58.9216504Z inflating: build/bin/test_cpp_rpc 2023-01-11T20:39:58.9368192Z inflating: build/bin/Dimname_test 2023-01-11T20:39:58.9563121Z inflating: build/bin/Dict_test 2023-01-11T20:39:59.0391810Z inflating: build/bin/test_lazy 2023-01-11T20:39:59.0582203Z inflating: build/bin/MaybeOwned_test 2023-01-11T20:39:59.0746291Z inflating: build/bin/NamedTensor_test 2023-01-11T20:39:59.0929423Z inflating: build/bin/apply_utils_test 2023-01-11T20:39:59.1099161Z inflating: build/bin/atest 2023-01-11T20:39:59.1279611Z inflating: build/bin/basic 2023-01-11T20:39:59.1441619Z inflating: build/bin/cpu_generator_test 2023-01-11T20:39:59.1597108Z inflating: build/bin/cpu_profiling_allocator_test 2023-01-11T20:39:59.1752251Z inflating: build/bin/broadcast_test 2023-01-11T20:39:59.2091186Z inflating: build/bin/cpu_rng_test 2023-01-11T20:39:59.2237758Z inflating: build/bin/dispatch_key_set_test 2023-01-11T20:39:59.2385809Z inflating: build/bin/dlconvertor_test 2023-01-11T20:39:59.2541474Z inflating: build/bin/half_test 2023-01-11T20:39:59.2719342Z inflating: build/bin/extension_backend_test 2023-01-11T20:39:59.3011260Z inflating: build/bin/ivalue_test 2023-01-11T20:39:59.3157464Z inflating: build/bin/lazy_tensor_test 2023-01-11T20:39:59.3311861Z inflating: build/bin/math_kernel_test 2023-01-11T20:39:59.3465213Z inflating: build/bin/memory_overlapping_test 2023-01-11T20:39:59.3621240Z inflating: build/bin/memory_format_test 2023-01-11T20:39:59.3779522Z inflating: build/bin/mobile_memory_cleanup 2023-01-11T20:39:59.3943896Z inflating: build/bin/native_test 2023-01-11T20:39:59.4091216Z inflating: build/bin/operator_name_test 2023-01-11T20:39:59.4240021Z inflating: build/bin/operators_test 2023-01-11T20:39:59.4394123Z inflating: build/bin/packedtensoraccessor_test 2023-01-11T20:39:59.4595115Z inflating: build/bin/pow_test 2023-01-11T20:39:59.4758548Z inflating: build/bin/quantized_test 2023-01-11T20:39:59.7960567Z inflating: build/bin/test_api 2023-01-11T20:39:59.8110676Z inflating: build/bin/reportMemoryUsage_test 2023-01-11T20:39:59.8257711Z inflating: build/bin/reduce_ops_test 2023-01-11T20:39:59.8431236Z inflating: build/bin/scalar_tensor_test 2023-01-11T20:39:59.8599316Z inflating: build/bin/scalar_test 2023-01-11T20:39:59.8753800Z inflating: build/bin/stride_properties_test 2023-01-11T20:39:59.8993147Z inflating: build/bin/tensor_iterator_test 2023-01-11T20:39:59.9152770Z inflating: build/bin/test_parallel 2023-01-11T20:39:59.9158832Z inflating: build/bin/thread_init_test 2023-01-11T20:39:59.9312554Z inflating: build/bin/type_ptr_test 2023-01-11T20:39:59.9496213Z inflating: build/bin/type_test 2023-01-11T20:39:59.9642816Z inflating: build/bin/variant_test 2023-01-11T20:39:59.9797446Z inflating: build/bin/undefined_tensor_test 2023-01-11T20:39:59.9949275Z inflating: build/bin/weakref_test 2023-01-11T20:39:59.9951489Z inflating: build/bin/verify_api_visibility 2023-01-11T20:40:00.0153235Z inflating: build/bin/legacy_vmap_test 2023-01-11T20:40:00.0304283Z inflating: build/bin/wrapdim_test 2023-01-11T20:40:00.0450340Z inflating: build/bin/xla_tensor_test 2023-01-11T20:40:00.0622331Z inflating: build/bin/IListRef_test 2023-01-11T20:40:00.0871866Z inflating: build/bin/List_test 2023-01-11T20:40:00.1232080Z inflating: build/bin/kernel_function_legacy_test 2023-01-11T20:40:00.1421195Z inflating: build/bin/KernelFunction_test 2023-01-11T20:40:00.1695341Z inflating: build/bin/kernel_function_test 2023-01-11T20:40:00.2070698Z inflating: build/bin/kernel_lambda_legacy_test 2023-01-11T20:40:00.2250673Z inflating: build/bin/kernel_stackbased_test 2023-01-11T20:40:00.2552242Z inflating: build/bin/kernel_lambda_test 2023-01-11T20:40:00.2831769Z inflating: build/bin/make_boxed_from_unboxed_functor_test 2023-01-11T20:40:00.2979964Z inflating: build/bin/CppSignature_test 2023-01-11T20:40:00.3123819Z inflating: build/bin/op_allowlist_test 2023-01-11T20:40:00.3277910Z inflating: build/bin/inline_container_test 2023-01-11T20:40:00.3443971Z inflating: build/bin/backend_fallback_test 2023-01-11T20:40:00.4342187Z inflating: build/bin/op_registration_test 2023-01-11T20:40:00.4516470Z inflating: build/bin/test_edge_op_registration 2023-01-11T20:40:00.4560222Z inflating: build/bin/tutorial_tensorexpr 2023-01-11T20:40:00.4576137Z inflating: build/bin/torch_shm_manager 2023-01-11T20:40:00.6431341Z inflating: build/bin/test_tensorexpr 2023-01-11T20:40:00.8204792Z inflating: build/bin/test_jit 2023-01-11T20:40:00.8205682Z inflating: .pytorch-test-times.json 2023-01-11T20:40:00.8228129Z ##[group]Run df -H 2023-01-11T20:40:00.8228322Z df -H 2023-01-11T20:40:00.8239385Z shell: /usr/bin/bash --noprofile --norc -e -o pipefail {0} 2023-01-11T20:40:00.8239606Z env: 2023-01-11T20:40:00.8239783Z GIT_DEFAULT_BRANCH: master 2023-01-11T20:40:00.8239961Z ##[endgroup] 2023-01-11T20:40:00.8272491Z Filesystem Size Used Avail Use% Mounted on 2023-01-11T20:40:00.8272929Z devtmpfs 8.2G 0 8.2G 0% /dev 2023-01-11T20:40:00.8273286Z tmpfs 8.2G 2.1M 8.2G 1% /dev/shm 2023-01-11T20:40:00.8273477Z tmpfs 8.2G 431k 8.2G 1% /run 2023-01-11T20:40:00.8273684Z tmpfs 8.2G 0 8.2G 0% /sys/fs/cgroup 2023-01-11T20:40:00.8274101Z /dev/nvme0n1p1 162G 18G 144G 11% / 2023-01-11T20:40:00.8391649Z ##[group]Run .github/scripts/parse_ref.py 2023-01-11T20:40:00.8391913Z .github/scripts/parse_ref.py 2023-01-11T20:40:00.8402566Z shell: /usr/bin/bash -e {0} 2023-01-11T20:40:00.8402750Z env: 2023-01-11T20:40:00.8402913Z GIT_DEFAULT_BRANCH: master 2023-01-11T20:40:00.8403100Z ##[endgroup] 2023-01-11T20:40:00.8652138Z ##[group]Run set -x 2023-01-11T20:40:00.8652420Z set -x 2023-01-11T20:40:00.8652586Z  2023-01-11T20:40:00.8652769Z if [[ $TEST_CONFIG == 'multigpu' ]]; then 2023-01-11T20:40:00.8653026Z  TEST_COMMAND=.jenkins/pytorch/multigpu-test.sh 2023-01-11T20:40:00.8653283Z elif [[ $BUILD_ENVIRONMENT == *onnx* ]]; then 2023-01-11T20:40:00.8653504Z  TEST_COMMAND=.jenkins/onnx/test.sh 2023-01-11T20:40:00.8653699Z else 2023-01-11T20:40:00.8653901Z  TEST_COMMAND=.jenkins/pytorch/test.sh 2023-01-11T20:40:00.8654088Z fi 2023-01-11T20:40:00.8654243Z  2023-01-11T20:40:00.8654477Z COMMIT_MESSAGES=$(git cherry -v "origin/${GIT_DEFAULT_BRANCH:-master}") 2023-01-11T20:40:00.8654706Z  2023-01-11T20:40:00.8654922Z # sanitize the input commit message and PR body here: 2023-01-11T20:40:00.8655135Z # 2023-01-11T20:40:00.8655403Z # trim all new lines from commit messages + PR_BODY to avoid issues with batch environment 2023-01-11T20:40:00.8655782Z # variable copying. see https://github.com/pytorch/pytorch/pull/80043#issuecomment-1167796028 2023-01-11T20:40:00.8656093Z COMMIT_MESSAGES="${COMMIT_MESSAGES//[$'\n\r']}" 2023-01-11T20:40:00.8656322Z PR_BODY="${PR_BODY//[$'\n\r']}" 2023-01-11T20:40:00.8656493Z  2023-01-11T20:40:00.8656752Z # then trim all special characters like single and double quotes to avoid unescaped inputs to 2023-01-11T20:40:00.8657028Z # wreak havoc internally 2023-01-11T20:40:00.8657248Z export COMMIT_MESSAGES="${COMMIT_MESSAGES//[\'\"]}" 2023-01-11T20:40:00.8657484Z export PR_BODY="${PR_BODY//[\'\"]}" 2023-01-11T20:40:00.8657674Z  2023-01-11T20:40:00.8657898Z # detached container should get cleaned up by teardown_ec2_linux 2023-01-11T20:40:00.8658179Z # TODO: Stop building test binaries as part of the build phase 2023-01-11T20:40:00.8658451Z # Used for GPU_FLAG since that doesn't play nice 2023-01-11T20:40:00.8658689Z # shellcheck disable=SC2086,SC2090 2023-01-11T20:40:00.8658897Z container_name=$(docker run \ 2023-01-11T20:40:00.8659097Z  ${GPU_FLAG:-} \ 2023-01-11T20:40:00.8659294Z  -e BUILD_ENVIRONMENT \ 2023-01-11T20:40:00.8659481Z  -e PR_NUMBER \ 2023-01-11T20:40:00.8659674Z  -e GITHUB_ACTIONS \ 2023-01-11T20:40:00.8659862Z  -e BASE_SHA \ 2023-01-11T20:40:00.8660041Z  -e BRANCH \ 2023-01-11T20:40:00.8660291Z  -e SHA1 \ 2023-01-11T20:40:00.8660482Z  -e AWS_DEFAULT_REGION \ 2023-01-11T20:40:00.8660678Z  -e IN_WHEEL_TEST \ 2023-01-11T20:40:00.8660951Z  -e SHARD_NUMBER \ 2023-01-11T20:40:00.8661140Z  -e TEST_CONFIG \ 2023-01-11T20:40:00.8661329Z  -e NUM_TEST_SHARDS \ 2023-01-11T20:40:00.8661503Z  -e PR_BODY \ 2023-01-11T20:40:00.8661693Z  -e COMMIT_MESSAGES \ 2023-01-11T20:40:00.8661899Z  -e CONTINUE_THROUGH_ERROR \ 2023-01-11T20:40:00.8662106Z  -e PYTORCH_RETRY_TEST_CASES \ 2023-01-11T20:40:00.8662332Z  -e PYTORCH_OVERRIDE_FLAKY_SIGNAL \ 2023-01-11T20:40:00.8662539Z  -e PR_LABELS \ 2023-01-11T20:40:00.8662732Z  -e MAX_JOBS="$(nproc --ignore=2)" \ 2023-01-11T20:40:00.8662940Z  -e SCCACHE_BUCKET \ 2023-01-11T20:40:00.8663138Z  -e SCCACHE_S3_KEY_PREFIX \ 2023-01-11T20:40:00.8663329Z  -e XLA_CUDA \ 2023-01-11T20:40:00.8663521Z  -e XLA_CLANG_CACHE_S3_BUCKET_NAME \ 2023-01-11T20:40:00.8663750Z  -e PYTORCH_TEST_CUDA_MEM_LEAK_CHECK \ 2023-01-11T20:40:00.8663986Z  -e PYTORCH_TEST_RERUN_DISABLED_TESTS \ 2023-01-11T20:40:00.8664229Z  --env-file="/tmp/github_env_${GITHUB_RUN_ID}" \ 2023-01-11T20:40:00.8664461Z  --ulimit stack=10485760:83886080 \ 2023-01-11T20:40:00.8664727Z  --security-opt seccomp=unconfined \ 2023-01-11T20:40:00.8664937Z  --cap-add=SYS_PTRACE \ 2023-01-11T20:40:00.8665129Z  --ipc=host \ 2023-01-11T20:40:00.8665320Z  --shm-size="${SHM_SIZE}" \ 2023-01-11T20:40:00.8665503Z  --tty \ 2023-01-11T20:40:00.8665661Z  --detach \ 2023-01-11T20:40:00.8665856Z  --name="${container_name}" \ 2023-01-11T20:40:00.8666051Z  --user jenkins \ 2023-01-11T20:40:00.8666271Z  -v "${GITHUB_WORKSPACE}:/var/lib/jenkins/workspace" \ 2023-01-11T20:40:00.8666519Z  -w /var/lib/jenkins/workspace \ 2023-01-11T20:40:00.8666721Z  "${DOCKER_IMAGE}" 2023-01-11T20:40:00.8666881Z ) 2023-01-11T20:40:00.8667098Z echo "DOCKER_CONTAINER_ID=${container_name}" >> "${GITHUB_ENV}" 2023-01-11T20:40:00.8667428Z docker exec -t "${container_name}" sh -c "pip install $(echo dist/*.whl)[opt-einsum] && ${TEST_COMMAND}" 2023-01-11T20:40:00.8678208Z shell: /usr/bin/bash -e {0} 2023-01-11T20:40:00.8678390Z env: 2023-01-11T20:40:00.8678561Z GIT_DEFAULT_BRANCH: master 2023-01-11T20:40:00.8678792Z BUILD_ENVIRONMENT: linux-focal-py3.7-clang7-asan 2023-01-11T20:40:00.8679021Z PR_NUMBER: 91627 2023-01-11T20:40:00.8679197Z BRANCH: pull/91627 2023-01-11T20:40:00.8679411Z SHA1: 8419ddda87c8a47eacc63b54bc7ec98c1f27c26e 2023-01-11T20:40:00.8679644Z BASE_SHA: db2a237763eb8693a20788be94f8c192e762baa8 2023-01-11T20:40:00.8679865Z PYTORCH_RETRY_TEST_CASES: 1 2023-01-11T20:40:00.8680070Z PYTORCH_OVERRIDE_FLAKY_SIGNAL: 1 2023-01-11T20:40:00.8680253Z TEST_CONFIG: default 2023-01-11T20:40:00.8680428Z SHARD_NUMBER: 3 2023-01-11T20:40:00.8680783Z NUM_TEST_SHARDS: 5 2023-01-11T20:40:00.8680986Z PR_BODY: Fixes #91003 cc @ezyang @gchanan 2023-01-11T20:40:00.8681203Z CONTINUE_THROUGH_ERROR: False 2023-01-11T20:40:00.8681447Z SCCACHE_BUCKET: ossci-compiler-cache-circleci-v2 2023-01-11T20:40:00.8681674Z SCCACHE_S3_KEY_PREFIX: pull 2023-01-11T20:40:00.8681858Z SHM_SIZE: 1g 2023-01-11T20:40:00.8682210Z DOCKER_IMAGE: 308535385114.dkr.ecr.us-east-1.amazonaws.com/pytorch/pytorch-linux-focal-py3-clang7-asan:fd224c2e6c79d7fdec6408da598bf52bc5b201dd 2023-01-11T20:40:00.8682541Z XLA_CUDA: 2023-01-11T20:40:00.8682786Z XLA_CLANG_CACHE_S3_BUCKET_NAME: ossci-compiler-clang-cache-circleci-xla 2023-01-11T20:40:00.8683066Z PYTORCH_TEST_CUDA_MEM_LEAK_CHECK: 0 2023-01-11T20:40:00.8683284Z PYTORCH_TEST_RERUN_DISABLED_TESTS: 0 2023-01-11T20:40:00.8683465Z ##[endgroup] 2023-01-11T20:40:00.8707289Z + [[ default == \m\u\l\t\i\g\p\u ]] 2023-01-11T20:40:00.8707977Z + [[ linux-focal-py3.7-clang7-asan == *onnx* ]] 2023-01-11T20:40:00.8708226Z + TEST_COMMAND=.jenkins/pytorch/test.sh 2023-01-11T20:40:00.8710064Z ++ git cherry -v origin/master 2023-01-11T20:40:00.9152692Z + COMMIT_MESSAGES='+ 52a16ce42647731c772e14e7175afa40fda07b3d make torchgen rename also Number arguments into '\''input'\'' 2023-01-11T20:40:00.9153082Z + 87db01a53ecb702267ec36787654e418a52f8e93 fix torch.where signature mismatch 2023-01-11T20:40:00.9153523Z + 8419ddda87c8a47eacc63b54bc7ec98c1f27c26e '\''other'\'' instead of '\''output'\'' in documentation' 2023-01-11T20:40:00.9154300Z + COMMIT_MESSAGES='+ 52a16ce42647731c772e14e7175afa40fda07b3d make torchgen rename also Number arguments into '\''input'\''+ 87db01a53ecb702267ec36787654e418a52f8e93 fix torch.where signature mismatch+ 8419ddda87c8a47eacc63b54bc7ec98c1f27c26e '\''other'\'' instead of '\''output'\'' in documentation' 2023-01-11T20:40:00.9154821Z + PR_BODY='Fixes #91003 cc @ezyang @gchanan' 2023-01-11T20:40:00.9155948Z + export 'COMMIT_MESSAGES=+ 52a16ce42647731c772e14e7175afa40fda07b3d make torchgen rename also Number arguments into input+ 87db01a53ecb702267ec36787654e418a52f8e93 fix torch.where signature mismatch+ 8419ddda87c8a47eacc63b54bc7ec98c1f27c26e other instead of output in documentation' 2023-01-11T20:40:00.9157001Z + COMMIT_MESSAGES='+ 52a16ce42647731c772e14e7175afa40fda07b3d make torchgen rename also Number arguments into input+ 87db01a53ecb702267ec36787654e418a52f8e93 fix torch.where signature mismatch+ 8419ddda87c8a47eacc63b54bc7ec98c1f27c26e other instead of output in documentation' 2023-01-11T20:40:00.9157506Z + export 'PR_BODY=Fixes #91003 cc @ezyang @gchanan' 2023-01-11T20:40:00.9157784Z + PR_BODY='Fixes #91003 cc @ezyang @gchanan' 2023-01-11T20:40:00.9163507Z +++ nproc --ignore=2 2023-01-11T20:40:00.9174508Z ++ docker run -e BUILD_ENVIRONMENT -e PR_NUMBER -e GITHUB_ACTIONS -e BASE_SHA -e BRANCH -e SHA1 -e AWS_DEFAULT_REGION -e IN_WHEEL_TEST -e SHARD_NUMBER -e TEST_CONFIG -e NUM_TEST_SHARDS -e PR_BODY -e COMMIT_MESSAGES -e CONTINUE_THROUGH_ERROR -e PYTORCH_RETRY_TEST_CASES -e PYTORCH_OVERRIDE_FLAKY_SIGNAL -e PR_LABELS -e MAX_JOBS=6 -e SCCACHE_BUCKET -e SCCACHE_S3_KEY_PREFIX -e XLA_CUDA -e XLA_CLANG_CACHE_S3_BUCKET_NAME -e PYTORCH_TEST_CUDA_MEM_LEAK_CHECK -e PYTORCH_TEST_RERUN_DISABLED_TESTS --env-file=/tmp/github_env_3896099317 --ulimit stack=10485760:83886080 --security-opt seccomp=unconfined --cap-add=SYS_PTRACE --ipc=host --shm-size=1g --tty --detach --name= --user jenkins -v /home/ec2-user/actions-runner/_work/pytorch/pytorch:/var/lib/jenkins/workspace -w /var/lib/jenkins/workspace 308535385114.dkr.ecr.us-east-1.amazonaws.com/pytorch/pytorch-linux-focal-py3-clang7-asan:fd224c2e6c79d7fdec6408da598bf52bc5b201dd 2023-01-11T20:40:15.5999130Z + container_name=bc317e370d4c080860302bfc6f8a12f6dd90390fef53e4d8c245f7faa1170187 2023-01-11T20:40:15.5999535Z + echo DOCKER_CONTAINER_ID=bc317e370d4c080860302bfc6f8a12f6dd90390fef53e4d8c245f7faa1170187 2023-01-11T20:40:15.6003436Z ++ echo dist/torch-2.0.0a0+git8419ddd-cp37-cp37m-linux_x86_64.whl 2023-01-11T20:40:15.6005195Z + docker exec -t bc317e370d4c080860302bfc6f8a12f6dd90390fef53e4d8c245f7faa1170187 sh -c 'pip install dist/torch-2.0.0a0+git8419ddd-cp37-cp37m-linux_x86_64.whl[opt-einsum] && .jenkins/pytorch/test.sh' 2023-01-11T20:40:16.0106742Z Processing ./dist/torch-2.0.0a0+git8419ddd-cp37-cp37m-linux_x86_64.whl 2023-01-11T20:40:16.8551478Z Requirement already satisfied: typing-extensions in /opt/conda/lib/python3.7/site-packages (from torch==2.0.0a0+git8419ddd) (4.4.0) 2023-01-11T20:40:16.8554251Z Requirement already satisfied: sympy in /opt/conda/lib/python3.7/site-packages (from torch==2.0.0a0+git8419ddd) (1.10.1) 2023-01-11T20:40:16.8557793Z Requirement already satisfied: networkx in /opt/conda/lib/python3.7/site-packages (from torch==2.0.0a0+git8419ddd) (2.6.3) 2023-01-11T20:40:16.8570913Z Requirement already satisfied: opt-einsum>=3.3 in /opt/conda/lib/python3.7/site-packages (from torch==2.0.0a0+git8419ddd) (3.3.0) 2023-01-11T20:40:16.8632529Z Requirement already satisfied: numpy>=1.7 in /opt/conda/lib/python3.7/site-packages (from opt-einsum>=3.3->torch==2.0.0a0+git8419ddd) (1.18.5) 2023-01-11T20:40:16.8800952Z Requirement already satisfied: mpmath>=0.19 in /opt/conda/lib/python3.7/site-packages (from sympy->torch==2.0.0a0+git8419ddd) (1.2.1) 2023-01-11T20:40:17.6042615Z Installing collected packages: torch 2023-01-11T20:40:26.9502120Z Successfully installed torch-2.0.0a0+git8419ddd 2023-01-11T20:40:27.0923948Z + echo 'Environment variables:' 2023-01-11T20:40:27.0924232Z Environment variables: 2023-01-11T20:40:27.0925724Z + env 2023-01-11T20:40:27.0960343Z INSTALLED_DB=yes 2023-01-11T20:40:27.0961081Z GITHUB_WORKSPACE=/home/ec2-user/actions-runner/_work/pytorch/pytorch 2023-01-11T20:40:27.0962286Z CONTINUE_THROUGH_ERROR=False 2023-01-11T20:40:27.0962806Z BUILD_ENVIRONMENT=linux-focal-py3.7-clang7-asan 2023-01-11T20:40:27.0963072Z PYTORCH_OVERRIDE_FLAKY_SIGNAL=1 2023-01-11T20:40:27.0963275Z HOSTNAME=bc317e370d4c 2023-01-11T20:40:27.0963687Z GITHUB_PATH=/home/ec2-user/actions-runner/_work/_temp/_runner_file_commands/add_path_aebc1c07-f0ee-465f-aa66-d5d1c8691acb 2023-01-11T20:40:27.0963990Z GITHUB_ACTION=__self 2023-01-11T20:40:27.0964204Z PYTORCH_TEST_CUDA_MEM_LEAK_CHECK=0 2023-01-11T20:40:27.0964532Z GITHUB_RUN_NUMBER=77928 2023-01-11T20:40:27.0964777Z TEST_CONFIG=default 2023-01-11T20:40:27.0965014Z GITHUB_REPOSITORY_OWNER_ID=21003710 2023-01-11T20:40:27.0965713Z TORCH_NVCC_FLAGS=-Xfatbin -compress-all 2023-01-11T20:40:27.0966126Z GITHUB_TRIGGERING_ACTOR=albanD 2023-01-11T20:40:27.0966485Z GITHUB_REF_TYPE=branch 2023-01-11T20:40:27.0966826Z TORCH_CUDA_ARCH_LIST=Maxwell 2023-01-11T20:40:27.0967242Z BASE_SHA=db2a237763eb8693a20788be94f8c192e762baa8 2023-01-11T20:40:27.1001269Z XLA_CUDA= 2023-01-11T20:40:27.1003523Z *** 2023-01-11T20:40:27.1003739Z CARGO_NET_GIT_FETCH_WITH_CLI=true 2023-01-11T20:40:27.1003955Z GITHUB_REPOSITORY_ID=65600975 2023-01-11T20:40:27.1004136Z GITHUB_ACTIONS=true 2023-01-11T20:40:27.1004362Z SHA1=8419ddda87c8a47eacc63b54bc7ec98c1f27c26e 2023-01-11T20:40:27.1004609Z GITHUB_SHA=57fc38f02f250896a12b32cfa200a6105a03d09c 2023-01-11T20:40:27.1004894Z GITHUB_WORKFLOW_REF=pytorch/pytorch/.github/workflows/pull.yml@refs/pull/91627/merge 2023-01-11T20:40:27.1005153Z UCC_HOME=/usr 2023-01-11T20:40:27.1005337Z GITHUB_REF=refs/pull/91627/merge 2023-01-11T20:40:27.1005510Z SHARD_NUMBER=3 2023-01-11T20:40:27.1005692Z GITHUB_REF_PROTECTED=false 2023-01-11T20:40:27.1005885Z HOME=/var/lib/jenkins 2023-01-11T20:40:27.1006100Z GITHUB_API_URL=https://api.github.com 2023-01-11T20:40:27.1006317Z PYTORCH_TEST_RERUN_DISABLED_TESTS=0 2023-01-11T20:40:27.1006513Z INSTALLED_THRIFT= 2023-01-11T20:40:27.1006682Z UCX_COMMIT= 2023-01-11T20:40:27.1006847Z SCCACHE_S3_KEY_PREFIX=pull 2023-01-11T20:40:27.1007032Z NUM_TEST_SHARDS=5 2023-01-11T20:40:27.1007198Z UCX_HOME=/usr 2023-01-11T20:40:27.1014834Z GITHUB_STATE=/home/ec2-user/actions-runner/_work/_temp/_runner_file_commands/save_state_aebc1c07-f0ee-465f-aa66-d5d1c8691acb 2023-01-11T20:40:27.1015288Z PYTORCH_RETRY_TEST_CASES=1 2023-01-11T20:40:27.1016074Z GITHUB_ENV=/home/ec2-user/actions-runner/_work/_temp/_runner_file_commands/set_env_aebc1c07-f0ee-465f-aa66-d5d1c8691acb 2023-01-11T20:40:27.1016517Z GITHUB_EVENT_PATH=/home/ec2-user/actions-runner/_work/_temp/_github_workflow/event.json 2023-01-11T20:40:27.1016801Z GITHUB_EVENT_NAME=pull_request 2023-01-11T20:40:27.1016987Z GITHUB_RUN_ID=3896099317 2023-01-11T20:40:27.1017415Z GITHUB_STEP_SUMMARY=/home/ec2-user/actions-runner/_work/_temp/_runner_file_commands/step_summary_aebc1c07-f0ee-465f-aa66-d5d1c8691acb 2023-01-11T20:40:27.1017727Z GITHUB_ACTOR=LucaLumetti 2023-01-11T20:40:27.1017897Z PR_NUMBER=91627 2023-01-11T20:40:27.1018065Z DESIRED_CUDA= 2023-01-11T20:40:27.1018239Z GITHUB_RUN_ATTEMPT=2 2023-01-11T20:40:27.1018466Z GITHUB_GRAPHQL_URL=https://api.github.com/graphql 2023-01-11T20:40:27.1018679Z TERM=xterm 2023-01-11T20:40:27.1018846Z INSTALLED_VISION=yes 2023-01-11T20:40:27.1019012Z BRANCH=pull/91627 2023-01-11T20:40:27.1019198Z OPENSSL_ROOT_DIR=/opt/openssl 2023-01-11T20:40:27.1019393Z CUDA_PATH=/usr/local/cuda 2023-01-11T20:40:27.1019744Z GITHUB_ACTION_PATH=/home/ec2-user/actions-runner/_work/pytorch/pytorch/./.github/actions/setup-linux 2023-01-11T20:40:27.1020264Z GITHUB_SERVER_URL=https://github.com 2023-01-11T20:40:27.1020466Z UCC_COMMIT= 2023-01-11T20:40:27.1020624Z INSTALLED_ANDROID= 2023-01-11T20:40:27.1020792Z SHLVL=1 2023-01-11T20:40:27.1020949Z MAX_JOBS=6 2023-01-11T20:40:27.1021109Z GITHUB_ACTOR_ID=7543386 2023-01-11T20:40:27.1021560Z COMMIT_MESSAGES=+ 52a16ce42647731c772e14e7175afa40fda07b3d make torchgen rename also Number arguments into input+ 87db01a53ecb702267ec36787654e418a52f8e93 fix torch.where signature mismatch+ 8419ddda87c8a47eacc63b54bc7ec98c1f27c26e other instead of output in documentation 2023-01-11T20:40:27.1022125Z GITHUB_WORKFLOW_SHA=57fc38f02f250896a12b32cfa200a6105a03d09c 2023-01-11T20:40:27.1022352Z GITHUB_REF_NAME=91627/merge 2023-01-11T20:40:27.1022696Z XLA_CLANG_CACHE_S3_BUCKET_NAME=ossci-compiler-clang-cache-circleci-xla 2023-01-11T20:40:27.1022941Z GITHUB_JOB=test 2023-01-11T20:40:27.1023139Z GITHUB_REPOSITORY=pytorch/pytorch 2023-01-11T20:40:27.1023347Z GITHUB_RETENTION_DAYS=90 2023-01-11T20:40:27.1023525Z OPENSSL_DIR=/opt/openssl 2023-01-11T20:40:27.1023721Z GITHUB_ACTION_REPOSITORY= 2023-01-11T20:40:27.1024031Z PATH=/opt/cache/bin:/usr/local/nvidia/bin:/usr/local/cuda/bin:/opt/conda/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin 2023-01-11T20:40:27.1024378Z GITHUB_BASE_REF=master 2023-01-11T20:40:27.1024555Z CI=true 2023-01-11T20:40:27.1024737Z GITHUB_REPOSITORY_OWNER=pytorch 2023-01-11T20:40:27.1024927Z INSTALLED_PROTOBUF=yes 2023-01-11T20:40:27.1025117Z GITHUB_HEAD_REF=master 2023-01-11T20:40:27.1025299Z GITHUB_ACTION_REF= 2023-01-11T20:40:27.1025567Z SCCACHE_BUCKET=ossci-compiler-cache-circleci-v2 2023-01-11T20:40:27.1025800Z GITHUB_WORKFLOW=pull 2023-01-11T20:40:27.1025999Z DEBIAN_FRONTEND=noninteractive 2023-01-11T20:40:27.1026410Z GITHUB_OUTPUT=/home/ec2-user/actions-runner/_work/_temp/_runner_file_commands/set_output_aebc1c07-f0ee-465f-aa66-d5d1c8691acb 2023-01-11T20:40:27.1026730Z PR_BODY=Fixes #91003 cc @ezyang @gchanan 2023-01-11T20:40:27.1026925Z _=/usr/bin/env 2023-01-11T20:40:27.1027209Z ++ python -c 'import site; print(site.getsitepackages()[0])' 2023-01-11T20:40:27.1123539Z + TORCH_INSTALL_DIR=/opt/conda/lib/python3.7/site-packages/torch 2023-01-11T20:40:27.1124000Z + TORCH_BIN_DIR=/opt/conda/lib/python3.7/site-packages/torch/bin 2023-01-11T20:40:27.1124498Z + TORCH_LIB_DIR=/opt/conda/lib/python3.7/site-packages/torch/lib 2023-01-11T20:40:27.1124949Z + TORCH_TEST_DIR=/opt/conda/lib/python3.7/site-packages/torch/test 2023-01-11T20:40:27.1125185Z + BUILD_DIR=build 2023-01-11T20:40:27.1125385Z + BUILD_RENAMED_DIR=build_renamed 2023-01-11T20:40:27.1125601Z + BUILD_BIN_DIR=build/bin 2023-01-11T20:40:27.1125792Z + export VALGRIND=ON 2023-01-11T20:40:27.1125975Z + VALGRIND=ON 2023-01-11T20:40:27.1126171Z + export TORCH_INDUCTOR_INSTALL_GXX=ON 2023-01-11T20:40:27.1126374Z + TORCH_INDUCTOR_INSTALL_GXX=ON 2023-01-11T20:40:27.1126666Z + [[ linux-focal-py3.7-clang7-asan == *clang9* ]] 2023-01-11T20:40:27.1126978Z + [[ linux-focal-py3.7-clang7-asan != *bazel* ]] 2023-01-11T20:40:27.1128747Z ++ realpath build/custom_test_artifacts 2023-01-11T20:40:27.1163106Z + CUSTOM_TEST_ARTIFACT_BUILD_DIR=/var/lib/jenkins/workspace/build/custom_test_artifacts 2023-01-11T20:40:27.1165289Z ++ dirname .jenkins/pytorch/test.sh 2023-01-11T20:40:27.1206914Z + source .jenkins/pytorch/common.sh 2023-01-11T20:40:27.1209357Z +++ dirname .jenkins/pytorch/common.sh 2023-01-11T20:40:27.1214482Z ++ source .jenkins/pytorch/common_utils.sh 2023-01-11T20:40:27.1216123Z +++ declare -f -t trap_add 2023-01-11T20:40:27.1221330Z ++ set -ex 2023-01-11T20:40:27.1222126Z ++ [[ linux-focal-py3.7-clang7-asan == *rocm* ]] 2023-01-11T20:40:27.1222374Z ++ BUILD_TEST_LIBTORCH=0 2023-01-11T20:40:27.1222614Z + echo 'Environment variables' 2023-01-11T20:40:27.1222836Z Environment variables 2023-01-11T20:40:27.1223106Z + env 2023-01-11T20:40:27.1229072Z INSTALLED_DB=yes 2023-01-11T20:40:27.1230447Z GITHUB_WORKSPACE=/home/ec2-user/actions-runner/_work/pytorch/pytorch 2023-01-11T20:40:27.1231372Z CONTINUE_THROUGH_ERROR=False 2023-01-11T20:40:27.1231933Z BUILD_ENVIRONMENT=linux-focal-py3.7-clang7-asan 2023-01-11T20:40:27.1233051Z PYTORCH_OVERRIDE_FLAKY_SIGNAL=1 2023-01-11T20:40:27.1233430Z HOSTNAME=bc317e370d4c 2023-01-11T20:40:27.1234020Z GITHUB_PATH=/home/ec2-user/actions-runner/_work/_temp/_runner_file_commands/add_path_aebc1c07-f0ee-465f-aa66-d5d1c8691acb 2023-01-11T20:40:27.1234324Z GITHUB_ACTION=__self 2023-01-11T20:40:27.1234518Z PYTORCH_TEST_CUDA_MEM_LEAK_CHECK=0 2023-01-11T20:40:27.1234719Z GITHUB_RUN_NUMBER=77928 2023-01-11T20:40:27.1234902Z TEST_CONFIG=default 2023-01-11T20:40:27.1235089Z GITHUB_REPOSITORY_OWNER_ID=21003710 2023-01-11T20:40:27.1235351Z TORCH_NVCC_FLAGS=-Xfatbin -compress-all 2023-01-11T20:40:27.1235571Z GITHUB_TRIGGERING_ACTOR=albanD 2023-01-11T20:40:27.1235768Z GITHUB_REF_TYPE=branch 2023-01-11T20:40:27.1235950Z TORCH_CUDA_ARCH_LIST=Maxwell 2023-01-11T20:40:27.1236171Z BASE_SHA=db2a237763eb8693a20788be94f8c192e762baa8 2023-01-11T20:40:27.1236371Z XLA_CUDA= 2023-01-11T20:40:27.1236612Z *** 2023-01-11T20:40:27.1236787Z CARGO_NET_GIT_FETCH_WITH_CLI=true 2023-01-11T20:40:27.1236996Z GITHUB_REPOSITORY_ID=65600975 2023-01-11T20:40:27.1237174Z GITHUB_ACTIONS=true 2023-01-11T20:40:27.1237391Z SHA1=8419ddda87c8a47eacc63b54bc7ec98c1f27c26e 2023-01-11T20:40:27.1237740Z GITHUB_SHA=57fc38f02f250896a12b32cfa200a6105a03d09c 2023-01-11T20:40:27.1238023Z GITHUB_WORKFLOW_REF=pytorch/pytorch/.github/workflows/pull.yml@refs/pull/91627/merge 2023-01-11T20:40:27.1238272Z UCC_HOME=/usr 2023-01-11T20:40:27.1238461Z GITHUB_REF=refs/pull/91627/merge 2023-01-11T20:40:27.1238637Z SHARD_NUMBER=3 2023-01-11T20:40:27.1238821Z GITHUB_REF_PROTECTED=false 2023-01-11T20:40:27.1239014Z HOME=/var/lib/jenkins 2023-01-11T20:40:27.1239216Z GITHUB_API_URL=https://api.github.com 2023-01-11T20:40:27.1239445Z PYTORCH_TEST_RERUN_DISABLED_TESTS=0 2023-01-11T20:40:27.1239645Z INSTALLED_THRIFT= 2023-01-11T20:40:27.1239801Z UCX_COMMIT= 2023-01-11T20:40:27.1239980Z SCCACHE_S3_KEY_PREFIX=pull 2023-01-11T20:40:27.1240171Z NUM_TEST_SHARDS=5 2023-01-11T20:40:27.1240325Z UCX_HOME=/usr 2023-01-11T20:40:27.1241003Z GITHUB_STATE=/home/ec2-user/actions-runner/_work/_temp/_runner_file_commands/save_state_aebc1c07-f0ee-465f-aa66-d5d1c8691acb 2023-01-11T20:40:27.1241592Z TORCH_INDUCTOR_INSTALL_GXX=ON 2023-01-11T20:40:27.1242661Z PYTORCH_RETRY_TEST_CASES=1 2023-01-11T20:40:27.1243343Z GITHUB_ENV=/home/ec2-user/actions-runner/_work/_temp/_runner_file_commands/set_env_aebc1c07-f0ee-465f-aa66-d5d1c8691acb 2023-01-11T20:40:27.1244061Z GITHUB_EVENT_PATH=/home/ec2-user/actions-runner/_work/_temp/_github_workflow/event.json 2023-01-11T20:40:27.1244600Z GITHUB_EVENT_NAME=pull_request 2023-01-11T20:40:27.1244859Z GITHUB_RUN_ID=3896099317 2023-01-11T20:40:27.1245307Z GITHUB_STEP_SUMMARY=/home/ec2-user/actions-runner/_work/_temp/_runner_file_commands/step_summary_aebc1c07-f0ee-465f-aa66-d5d1c8691acb 2023-01-11T20:40:27.1245622Z GITHUB_ACTOR=LucaLumetti 2023-01-11T20:40:27.1245805Z PR_NUMBER=91627 2023-01-11T20:40:27.1245963Z DESIRED_CUDA= 2023-01-11T20:40:27.1246139Z GITHUB_RUN_ATTEMPT=2 2023-01-11T20:40:27.1246312Z VALGRIND=ON 2023-01-11T20:40:27.1246529Z GITHUB_GRAPHQL_URL=https://api.github.com/graphql 2023-01-11T20:40:27.1246743Z TERM=xterm 2023-01-11T20:40:27.1246911Z INSTALLED_VISION=yes 2023-01-11T20:40:27.1247076Z BRANCH=pull/91627 2023-01-11T20:40:27.1247265Z OPENSSL_ROOT_DIR=/opt/openssl 2023-01-11T20:40:27.1247460Z CUDA_PATH=/usr/local/cuda 2023-01-11T20:40:27.1247812Z GITHUB_ACTION_PATH=/home/ec2-user/actions-runner/_work/pytorch/pytorch/./.github/actions/setup-linux 2023-01-11T20:40:27.1248112Z GITHUB_SERVER_URL=https://github.com 2023-01-11T20:40:27.1248309Z UCC_COMMIT= 2023-01-11T20:40:27.1248465Z INSTALLED_ANDROID= 2023-01-11T20:40:27.1248631Z SHLVL=1 2023-01-11T20:40:27.1248782Z MAX_JOBS=6 2023-01-11T20:40:27.1248938Z GITHUB_ACTOR_ID=7543386 2023-01-11T20:40:27.1249383Z COMMIT_MESSAGES=+ 52a16ce42647731c772e14e7175afa40fda07b3d make torchgen rename also Number arguments into input+ 87db01a53ecb702267ec36787654e418a52f8e93 fix torch.where signature mismatch+ 8419ddda87c8a47eacc63b54bc7ec98c1f27c26e other instead of output in documentation 2023-01-11T20:40:27.1249972Z GITHUB_WORKFLOW_SHA=57fc38f02f250896a12b32cfa200a6105a03d09c 2023-01-11T20:40:27.1250198Z GITHUB_REF_NAME=91627/merge 2023-01-11T20:40:27.1250525Z XLA_CLANG_CACHE_S3_BUCKET_NAME=ossci-compiler-clang-cache-circleci-xla 2023-01-11T20:40:27.1250788Z GITHUB_JOB=test 2023-01-11T20:40:27.1250984Z GITHUB_REPOSITORY=pytorch/pytorch 2023-01-11T20:40:27.1251179Z GITHUB_RETENTION_DAYS=90 2023-01-11T20:40:27.1251371Z OPENSSL_DIR=/opt/openssl 2023-01-11T20:40:27.1251566Z GITHUB_ACTION_REPOSITORY= 2023-01-11T20:40:27.1251865Z PATH=/opt/cache/bin:/usr/local/nvidia/bin:/usr/local/cuda/bin:/opt/conda/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin 2023-01-11T20:40:27.1252150Z GITHUB_BASE_REF=master 2023-01-11T20:40:27.1252319Z CI=true 2023-01-11T20:40:27.1252497Z GITHUB_REPOSITORY_OWNER=pytorch 2023-01-11T20:40:27.1252680Z INSTALLED_PROTOBUF=yes 2023-01-11T20:40:27.1252865Z GITHUB_HEAD_REF=master 2023-01-11T20:40:27.1253042Z GITHUB_ACTION_REF= 2023-01-11T20:40:27.1253306Z SCCACHE_BUCKET=ossci-compiler-cache-circleci-v2 2023-01-11T20:40:27.1253534Z GITHUB_WORKFLOW=pull 2023-01-11T20:40:27.1253732Z DEBIAN_FRONTEND=noninteractive 2023-01-11T20:40:27.1254193Z GITHUB_OUTPUT=/home/ec2-user/actions-runner/_work/_temp/_runner_file_commands/set_output_aebc1c07-f0ee-465f-aa66-d5d1c8691acb 2023-01-11T20:40:27.1254512Z PR_BODY=Fixes #91003 cc @ezyang @gchanan 2023-01-11T20:40:27.1254705Z _=/usr/bin/env 2023-01-11T20:40:27.1254902Z + echo 'Testing pytorch' 2023-01-11T20:40:27.1255086Z Testing pytorch 2023-01-11T20:40:27.1255282Z + export LANG=C.UTF-8 2023-01-11T20:40:27.1255458Z + LANG=C.UTF-8 2023-01-11T20:40:27.1339233Z + PR_NUMBER=91627 2023-01-11T20:40:27.1339546Z + [[ default == \d\e\f\a\u\l\t ]] 2023-01-11T20:40:27.1339867Z + export CUDA_VISIBLE_DEVICES=0 2023-01-11T20:40:27.1340238Z + CUDA_VISIBLE_DEVICES=0 2023-01-11T20:40:27.1340537Z + export HIP_VISIBLE_DEVICES=0 2023-01-11T20:40:27.1340787Z + HIP_VISIBLE_DEVICES=0 2023-01-11T20:40:27.1341068Z + [[ default == \d\i\s\t\r\i\b\u\t\e\d ]] 2023-01-11T20:40:27.1341392Z + [[ default == \s\l\o\w ]] 2023-01-11T20:40:27.1341939Z + [[ linux-focal-py3.7-clang7-asan == *slow-gradcheck* ]] 2023-01-11T20:40:27.1342533Z + [[ linux-focal-py3.7-clang7-asan == *cuda* ]] 2023-01-11T20:40:27.1342872Z + [[ linux-focal-py3.7-clang7-asan == *rocm* ]] 2023-01-11T20:40:27.1343097Z + [[ default == *crossref* ]] 2023-01-11T20:40:27.1343275Z + [[ default == *dynamo* ]] 2023-01-11T20:40:27.1343465Z + [[ default == *inductor* ]] 2023-01-11T20:40:27.1343734Z + [[ linux-focal-py3.7-clang7-asan == *rocm* ]] 2023-01-11T20:40:27.1344022Z + [[ linux-focal-py3.7-clang7-asan != *-bazel-* ]] 2023-01-11T20:40:27.1344296Z + pip_install --user ninja==1.10.2 2023-01-11T20:40:27.1344585Z + pip install --progress-bar off --user ninja==1.10.2 2023-01-11T20:40:27.5773157Z Collecting ninja==1.10.2 2023-01-11T20:40:27.5950256Z Downloading ninja-1.10.2-py2.py3-none-manylinux_2_5_x86_64.manylinux1_x86_64.whl (108 kB) 2023-01-11T20:40:28.2914838Z Installing collected packages: ninja 2023-01-11T20:40:28.3000512Z  WARNING: The script ninja is installed in '/var/lib/jenkins/.local/bin' which is not on PATH. 2023-01-11T20:40:28.3001162Z Consider adding this directory to PATH or, if you prefer to suppress this warning, use --no-warn-script-location. 2023-01-11T20:40:28.3046220Z Successfully installed ninja-1.10.2 2023-01-11T20:40:28.3693063Z + export PATH=/var/lib/jenkins/.local/bin:/opt/cache/bin:/usr/local/nvidia/bin:/usr/local/cuda/bin:/opt/conda/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin 2023-01-11T20:40:28.3693813Z + PATH=/var/lib/jenkins/.local/bin:/opt/cache/bin:/usr/local/nvidia/bin:/usr/local/cuda/bin:/opt/conda/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin 2023-01-11T20:40:28.3694539Z + [[ linux-focal-py3.7-clang7-asan == *asan* ]] 2023-01-11T20:40:28.3695063Z + export ASAN_OPTIONS=detect_leaks=0:symbolize=1:detect_stack_use_after_return=1:strict_init_order=true:detect_odr_violation=0 2023-01-11T20:40:28.3696039Z + ASAN_OPTIONS=detect_leaks=0:symbolize=1:detect_stack_use_after_return=1:strict_init_order=true:detect_odr_violation=0 2023-01-11T20:40:28.3696533Z + export UBSAN_OPTIONS=print_stacktrace=1 2023-01-11T20:40:28.3696917Z + UBSAN_OPTIONS=print_stacktrace=1 2023-01-11T20:40:28.3697237Z + export PYTORCH_TEST_WITH_ASAN=1 2023-01-11T20:40:28.3697536Z + PYTORCH_TEST_WITH_ASAN=1 2023-01-11T20:40:28.3697850Z + export PYTORCH_TEST_WITH_UBSAN=1 2023-01-11T20:40:28.3698187Z + PYTORCH_TEST_WITH_UBSAN=1 2023-01-11T20:40:28.3698738Z + export ASAN_SYMBOLIZER_PATH=/usr/lib/llvm-7/bin/llvm-symbolizer 2023-01-11T20:40:28.3699260Z + ASAN_SYMBOLIZER_PATH=/usr/lib/llvm-7/bin/llvm-symbolizer 2023-01-11T20:40:28.3699633Z + export TORCH_USE_RTLD_GLOBAL=1 2023-01-11T20:40:28.3699931Z + TORCH_USE_RTLD_GLOBAL=1 2023-01-11T20:40:28.3700563Z + export LD_PRELOAD=/usr/lib/llvm-7/lib/clang/7.0.1/lib/linux/libclang_rt.asan-x86_64.so 2023-01-11T20:40:28.3701090Z + LD_PRELOAD=/usr/lib/llvm-7/lib/clang/7.0.1/lib/linux/libclang_rt.asan-x86_64.so 2023-01-11T20:40:28.3701364Z + ulimit -s 81920 2023-01-11T20:40:28.3701540Z + cd test 2023-01-11T20:40:28.3701833Z + python -c 'import torch; print(torch.__version__, torch.version.git_version)' 2023-01-11T20:40:32.3598028Z 2.0.0a0+git8419ddd 8419ddda87c8a47eacc63b54bc7ec98c1f27c26e 2023-01-11T20:40:32.8390206Z + echo 'The next four invocations are expected to crash; if they don'\''t that means ASAN/UBSAN is misconfigured' 2023-01-11T20:40:32.8390986Z The next four invocations are expected to crash; if they don't that means ASAN/UBSAN is misconfigured 2023-01-11T20:40:32.8391363Z + cd test 2023-01-11T20:40:32.8391774Z + get_exit_code python -c 'import torch; torch._C._crash_if_csrc_asan(3)' 2023-01-11T20:40:32.8392008Z + set +e 2023-01-11T20:40:32.8392276Z + python -c 'import torch; torch._C._crash_if_csrc_asan(3)' 2023-01-11T20:40:36.5009099Z /var/lib/jenkins/workspace/torch/csrc/Module.cpp:176:3: runtime error: index 3 out of bounds for type 'volatile char [3]' 2023-01-11T20:40:37.6654487Z #0 0x7fc0df3fe127 in THPModule_crashIfCsrcASAN(_object*, _object*) (/opt/conda/lib/python3.7/site-packages/torch/lib/libtorch_python.so+0x2d72127) 2023-01-11T20:40:37.7621791Z warning: parsing line table prologue at 0x00000000 should have ended at 0x0000046f but it ended at 0x0000046e 2023-01-11T20:40:37.7622320Z #1 0x4ba813 in _PyMethodDef_RawFastCallKeywords (/opt/conda/bin/python3.7+0x4ba813) 2023-01-11T20:40:37.7624593Z #2 0x4ba34f in _PyCFunction_FastCallKeywords (/opt/conda/bin/python3.7+0x4ba34f) 2023-01-11T20:40:37.7625263Z #3 0x4ba34f in call_function /tmp/build/80754af9/python_1669321496543/work/build-static/:4568:9 2023-01-11T20:40:37.7625739Z #4 0x4b6cc1 in _PyEval_EvalFrameDefault (/opt/conda/bin/python3.7+0x4b6cc1) 2023-01-11T20:40:37.7626562Z #5 0x4b1410 in PyEval_EvalFrameEx (/opt/conda/bin/python3.7+0x4b1410) 2023-01-11T20:40:37.7627242Z #6 0x4b1410 in _PyEval_EvalCodeWithName /tmp/build/80754af9/python_1669321496543/work/build-static/:3930:14 2023-01-11T20:40:37.7627716Z #7 0x4b1208 in PyEval_EvalCodeEx (/opt/conda/bin/python3.7+0x4b1208) 2023-01-11T20:40:37.7628417Z #8 0x54f39a in PyEval_EvalCode (/opt/conda/bin/python3.7+0x54f39a) 2023-01-11T20:40:37.7630273Z #9 0x56a262 in run_mod (/opt/conda/bin/python3.7+0x56a262) 2023-01-11T20:40:37.7630559Z #10 0x56692a in PyRun_StringFlags (/opt/conda/bin/python3.7+0x56692a) 2023-01-11T20:40:37.7631289Z #11 0x56679a in PyRun_SimpleStringFlags (/opt/conda/bin/python3.7+0x56679a) 2023-01-11T20:40:37.7633592Z #12 0x544966 in pymain_run_command (/opt/conda/bin/python3.7+0x544966) 2023-01-11T20:40:37.7634165Z #13 0x544966 in pymain_run_python /tmp/build/80754af9/python_1669321496543/work/build-static/:2964:26 2023-01-11T20:40:37.7634667Z #14 0x544966 in pymain_main /tmp/build/80754af9/python_1669321496543/work/build-static/:3517:5 2023-01-11T20:40:37.7634998Z #15 0x54487b in _Py_UnixMain (/opt/conda/bin/python3.7+0x54487b) 2023-01-11T20:40:37.7728183Z #16 0x7fc0e7c72082 in __libc_start_main (/lib/x86_64-linux-gnu/libc.so.6+0x24082) 2023-01-11T20:40:37.7728671Z #17 0x54472d in _start (/opt/conda/bin/python3.7+0x54472d) 2023-01-11T20:40:37.7728846Z 2023-01-11T20:40:37.7729173Z SUMMARY: UndefinedBehaviorSanitizer: undefined-behavior /var/lib/jenkins/workspace/torch/csrc/Module.cpp:176:3 in 2023-01-11T20:40:37.8254094Z + retcode=1 2023-01-11T20:40:37.8254422Z + set -e 2023-01-11T20:40:37.8254588Z + return 1 2023-01-11T20:40:37.8257932Z + cd test 2023-01-11T20:40:37.8258364Z + get_exit_code python -c 'import torch; torch._C._crash_if_csrc_ubsan(0)' 2023-01-11T20:40:37.8258599Z + set +e 2023-01-11T20:40:37.8258871Z + python -c 'import torch; torch._C._crash_if_csrc_ubsan(0)' 2023-01-11T20:40:41.3420058Z /var/lib/jenkins/workspace/torch/csrc/Module.cpp:188:18: runtime error: division by zero 2023-01-11T20:40:41.4765435Z #0 0x7f484d3fe375 in THPModule_crashIfCsrcUBSAN(_object*, _object*) (/opt/conda/lib/python3.7/site-packages/torch/lib/libtorch_python.so+0x2d72375) 2023-01-11T20:40:41.5529806Z warning: parsing line table prologue at 0x00000000 should have ended at 0x0000046f but it ended at 0x0000046e 2023-01-11T20:40:41.5530690Z #1 0x4ba813 in _PyMethodDef_RawFastCallKeywords (/opt/conda/bin/python3.7+0x4ba813) 2023-01-11T20:40:41.5532242Z #2 0x4ba34f in _PyCFunction_FastCallKeywords (/opt/conda/bin/python3.7+0x4ba34f) 2023-01-11T20:40:41.5533066Z #3 0x4ba34f in call_function /tmp/build/80754af9/python_1669321496543/work/build-static/:4568:9 2023-01-11T20:40:41.5533653Z #4 0x4b6cc1 in _PyEval_EvalFrameDefault (/opt/conda/bin/python3.7+0x4b6cc1) 2023-01-11T20:40:41.5536084Z #5 0x4b1410 in PyEval_EvalFrameEx (/opt/conda/bin/python3.7+0x4b1410) 2023-01-11T20:40:41.5536644Z #6 0x4b1410 in _PyEval_EvalCodeWithName /tmp/build/80754af9/python_1669321496543/work/build-static/:3930:14 2023-01-11T20:40:41.5536988Z #7 0x4b1208 in PyEval_EvalCodeEx (/opt/conda/bin/python3.7+0x4b1208) 2023-01-11T20:40:41.5538399Z #8 0x54f39a in PyEval_EvalCode (/opt/conda/bin/python3.7+0x54f39a) 2023-01-11T20:40:41.5539979Z #9 0x56a262 in run_mod (/opt/conda/bin/python3.7+0x56a262) 2023-01-11T20:40:41.5540449Z #10 0x56692a in PyRun_StringFlags (/opt/conda/bin/python3.7+0x56692a) 2023-01-11T20:40:41.5541107Z #11 0x56679a in PyRun_SimpleStringFlags (/opt/conda/bin/python3.7+0x56679a) 2023-01-11T20:40:41.5543125Z #12 0x544966 in pymain_run_command (/opt/conda/bin/python3.7+0x544966) 2023-01-11T20:40:41.5543691Z #13 0x544966 in pymain_run_python /tmp/build/80754af9/python_1669321496543/work/build-static/:2964:26 2023-01-11T20:40:41.5544123Z #14 0x544966 in pymain_main /tmp/build/80754af9/python_1669321496543/work/build-static/:3517:5 2023-01-11T20:40:41.5544657Z #15 0x54487b in _Py_UnixMain (/opt/conda/bin/python3.7+0x54487b) 2023-01-11T20:40:41.5558349Z #16 0x7f4855c72082 in __libc_start_main (/lib/x86_64-linux-gnu/libc.so.6+0x24082) 2023-01-11T20:40:41.5558850Z #17 0x54472d in _start (/opt/conda/bin/python3.7+0x54472d) 2023-01-11T20:40:41.5559038Z 2023-01-11T20:40:41.5559588Z SUMMARY: UndefinedBehaviorSanitizer: undefined-behavior /var/lib/jenkins/workspace/torch/csrc/Module.cpp:188:18 in 2023-01-11T20:40:41.5999905Z + retcode=1 2023-01-11T20:40:41.6000734Z + set -e 2023-01-11T20:40:41.6001032Z + return 1 2023-01-11T20:40:41.6004703Z + cd test 2023-01-11T20:40:41.6005291Z + get_exit_code python -c 'import torch; torch._C._crash_if_vptr_ubsan()' 2023-01-11T20:40:41.6005538Z + set +e 2023-01-11T20:40:41.6005802Z + python -c 'import torch; torch._C._crash_if_vptr_ubsan()' 2023-01-11T20:40:44.9600782Z /var/lib/jenkins/workspace/torch/csrc/Module.cpp:207:16: runtime error: member call on address 0x7ffb35ce34a0 which does not point to an object of type 'Foo' 2023-01-11T20:40:44.9614069Z 0x7ffb35ce34a0: note: object is of type 'THPModule_crashIfvptrUBSAN(_object*, _object*)::Baz' 2023-01-11T20:40:44.9614686Z ff 7f 00 00 f0 48 9b 33 fb 7f 00 00 04 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 92 c8 bf 35 2023-01-11T20:40:44.9615029Z  ^~~~~~~~~~~~~~~~~~~~~~~ 2023-01-11T20:40:44.9615427Z vptr for 'THPModule_crashIfvptrUBSAN(_object*, _object*)::Baz' 2023-01-11T20:40:45.0929988Z #0 0x7ffb30c2659c in THPModule_crashIfvptrUBSAN(_object*, _object*) (/opt/conda/lib/python3.7/site-packages/torch/lib/libtorch_python.so+0x2d7259c) 2023-01-11T20:40:45.1704167Z warning: parsing line table prologue at 0x00000000 should have ended at 0x0000046f but it ended at 0x0000046e 2023-01-11T20:40:45.1704563Z #1 0x4ba799 in _PyMethodDef_RawFastCallKeywords (/opt/conda/bin/python3.7+0x4ba799) 2023-01-11T20:40:45.1706010Z #2 0x4ba34f in _PyCFunction_FastCallKeywords (/opt/conda/bin/python3.7+0x4ba34f) 2023-01-11T20:40:45.1706569Z #3 0x4ba34f in call_function /tmp/build/80754af9/python_1669321496543/work/build-static/:4568:9 2023-01-11T20:40:45.1707012Z #4 0x4b6cc1 in _PyEval_EvalFrameDefault (/opt/conda/bin/python3.7+0x4b6cc1) 2023-01-11T20:40:45.1708246Z #5 0x4b1410 in PyEval_EvalFrameEx (/opt/conda/bin/python3.7+0x4b1410) 2023-01-11T20:40:45.1709096Z #6 0x4b1410 in _PyEval_EvalCodeWithName /tmp/build/80754af9/python_1669321496543/work/build-static/:3930:14 2023-01-11T20:40:45.1709445Z #7 0x4b1208 in PyEval_EvalCodeEx (/opt/conda/bin/python3.7+0x4b1208) 2023-01-11T20:40:45.1709736Z #8 0x54f39a in PyEval_EvalCode (/opt/conda/bin/python3.7+0x54f39a) 2023-01-11T20:40:45.1711076Z #9 0x56a262 in run_mod (/opt/conda/bin/python3.7+0x56a262) 2023-01-11T20:40:45.1711875Z #10 0x56692a in PyRun_StringFlags (/opt/conda/bin/python3.7+0x56692a) 2023-01-11T20:40:45.1713155Z #11 0x56679a in PyRun_SimpleStringFlags (/opt/conda/bin/python3.7+0x56679a) 2023-01-11T20:40:45.1715115Z #12 0x544966 in pymain_run_command (/opt/conda/bin/python3.7+0x544966) 2023-01-11T20:40:45.1716217Z #13 0x544966 in pymain_run_python /tmp/build/80754af9/python_1669321496543/work/build-static/:2964:26 2023-01-11T20:40:45.1716979Z #14 0x544966 in pymain_main /tmp/build/80754af9/python_1669321496543/work/build-static/:3517:5 2023-01-11T20:40:45.1717476Z #15 0x54487b in _Py_UnixMain (/opt/conda/bin/python3.7+0x54487b) 2023-01-11T20:40:45.1730904Z #16 0x7ffb3949a082 in __libc_start_main (/lib/x86_64-linux-gnu/libc.so.6+0x24082) 2023-01-11T20:40:45.1731416Z #17 0x54472d in _start (/opt/conda/bin/python3.7+0x54472d) 2023-01-11T20:40:45.1731660Z 2023-01-11T20:40:45.1732412Z SUMMARY: UndefinedBehaviorSanitizer: undefined-behavior /var/lib/jenkins/workspace/torch/csrc/Module.cpp:207:16 in 2023-01-11T20:40:45.2168012Z + retcode=1 2023-01-11T20:40:45.2168503Z + set -e 2023-01-11T20:40:45.2168671Z + return 1 2023-01-11T20:40:45.2171797Z + cd test 2023-01-11T20:40:45.2172262Z + get_exit_code python -c 'import torch; torch._C._crash_if_aten_asan(3)' 2023-01-11T20:40:45.2172485Z + set +e 2023-01-11T20:40:45.2172898Z + python -c 'import torch; torch._C._crash_if_aten_asan(3)' 2023-01-11T20:40:48.5954296Z /var/lib/jenkins/workspace/aten/src/ATen/Utils.cpp:20:3: runtime error: index 3 out of bounds for type 'volatile char [3]' 2023-01-11T20:40:49.2447336Z #0 0x7f846bac1ec4 in at::_crash_if_asan(int) (/opt/conda/lib/python3.7/site-packages/torch/lib/libtorch_cpu.so+0xd7c3ec4) 2023-01-11T20:40:49.3074559Z #1 0x7f8495aca6db in THPModule_crashIfATenASAN(_object*, _object*) (/opt/conda/lib/python3.7/site-packages/torch/lib/libtorch_python.so+0x2d726db) 2023-01-11T20:40:49.3842149Z warning: parsing line table prologue at 0x00000000 should have ended at 0x0000046f but it ended at 0x0000046e 2023-01-11T20:40:49.3842559Z #2 0x4ba813 in _PyMethodDef_RawFastCallKeywords (/opt/conda/bin/python3.7+0x4ba813) 2023-01-11T20:40:49.3844517Z #3 0x4ba34f in _PyCFunction_FastCallKeywords (/opt/conda/bin/python3.7+0x4ba34f) 2023-01-11T20:40:49.3845478Z #4 0x4ba34f in call_function /tmp/build/80754af9/python_1669321496543/work/build-static/:4568:9 2023-01-11T20:40:49.3845942Z #5 0x4b6cc1 in _PyEval_EvalFrameDefault (/opt/conda/bin/python3.7+0x4b6cc1) 2023-01-11T20:40:49.3846595Z #6 0x4b1410 in PyEval_EvalFrameEx (/opt/conda/bin/python3.7+0x4b1410) 2023-01-11T20:40:49.3847292Z #7 0x4b1410 in _PyEval_EvalCodeWithName /tmp/build/80754af9/python_1669321496543/work/build-static/:3930:14 2023-01-11T20:40:49.3847778Z #8 0x4b1208 in PyEval_EvalCodeEx (/opt/conda/bin/python3.7+0x4b1208) 2023-01-11T20:40:49.3848079Z #9 0x54f39a in PyEval_EvalCode (/opt/conda/bin/python3.7+0x54f39a) 2023-01-11T20:40:49.3849692Z #10 0x56a262 in run_mod (/opt/conda/bin/python3.7+0x56a262) 2023-01-11T20:40:49.3850235Z #11 0x56692a in PyRun_StringFlags (/opt/conda/bin/python3.7+0x56692a) 2023-01-11T20:40:49.3851065Z #12 0x56679a in PyRun_SimpleStringFlags (/opt/conda/bin/python3.7+0x56679a) 2023-01-11T20:40:49.3853226Z #13 0x544966 in pymain_run_command (/opt/conda/bin/python3.7+0x544966) 2023-01-11T20:40:49.3854049Z #14 0x544966 in pymain_run_python /tmp/build/80754af9/python_1669321496543/work/build-static/:2964:26 2023-01-11T20:40:49.3854685Z #15 0x544966 in pymain_main /tmp/build/80754af9/python_1669321496543/work/build-static/:3517:5 2023-01-11T20:40:49.3854996Z #16 0x54487b in _Py_UnixMain (/opt/conda/bin/python3.7+0x54487b) 2023-01-11T20:40:49.3867502Z #17 0x7f849e33e082 in __libc_start_main (/lib/x86_64-linux-gnu/libc.so.6+0x24082) 2023-01-11T20:40:49.3867876Z #18 0x54472d in _start (/opt/conda/bin/python3.7+0x54472d) 2023-01-11T20:40:49.3868077Z 2023-01-11T20:40:49.3868545Z SUMMARY: UndefinedBehaviorSanitizer: undefined-behavior /var/lib/jenkins/workspace/aten/src/ATen/Utils.cpp:20:3 in 2023-01-11T20:40:49.4299629Z + retcode=1 2023-01-11T20:40:49.4300167Z + set -e 2023-01-11T20:40:49.4300414Z + return 1 2023-01-11T20:40:49.4302490Z + [[ linux-focal-py3.7-clang7-asan == *-tsan* ]] 2023-01-11T20:40:49.4302982Z + [[ default == \n\o\g\p\u\_\N\O\_\A\V\X\2 ]] 2023-01-11T20:40:49.4303284Z + [[ default == \n\o\g\p\u\_\A\V\X\5\1\2 ]] 2023-01-11T20:40:49.4309581Z + [[ linux-focal-py3.7-clang7-asan == *tbb* ]] 2023-01-11T20:40:49.4321116Z + [[ linux-focal-py3.7-clang7-asan == *libtorch* ]] 2023-01-11T20:40:49.4321706Z + [[ linux-focal-py3.7-clang7-asan == *-bazel-* ]] 2023-01-11T20:40:49.4322257Z + [[ linux-focal-py3.7-clang7-asan == *-tsan* ]] 2023-01-11T20:40:49.4323958Z + cd test 2023-01-11T20:40:49.4325063Z + python -c 'import torch; print(torch.__config__.show())' 2023-01-11T20:40:52.8567618Z PyTorch built with: 2023-01-11T20:40:52.8568022Z - GCC 4.2 2023-01-11T20:40:52.8568282Z - C++ Version: 201703 2023-01-11T20:40:52.8568473Z - clang 7.0.1 2023-01-11T20:40:52.8568934Z - Intel(R) oneAPI Math Kernel Library Version 2022.0-Product Build 20211112 for Intel(R) 64 architecture applications 2023-01-11T20:40:52.8569297Z - LAPACK is enabled (usually provided by MKL) 2023-01-11T20:40:52.8569558Z - NNPACK is enabled 2023-01-11T20:40:52.8569832Z - CPU capability usage: AVX2 2023-01-11T20:40:52.8573294Z - Build settings: BLAS_INFO=mkl, BUILD_TYPE=Release, CXX_COMPILER=/opt/cache/bin/clang++, CXX_FLAGS=-fsanitize=undefined -fsanitize=address -fno-sanitize-recover=all -fsanitize-address-use-after-scope -shared-libasan -Wno-deprecated -fvisibility-inlines-hidden -fsanitize=address -fPIE -DUSE_PTHREADPOOL -DNDEBUG -DUSE_KINETO -DLIBKINETO_NOCUPTI -DLIBKINETO_NOROCTRACER -DUSE_FBGEMM -DUSE_QNNPACK -DUSE_PYTORCH_QNNPACK -DUSE_XNNPACK -DSYMBOLICATE_MOBILE_DEBUG_HANDLE -DEDGE_PROFILER_USE_KINETO -O2 -fPIC -Wall -Wextra -Werror=return-type -Werror=non-virtual-dtor -Werror=braced-scalar-init -Winconsistent-missing-override -Wnarrowing -Wno-missing-field-initializers -Wno-type-limits -Wno-array-bounds -Wno-unknown-pragmas -Wunused-local-typedefs -Wno-unused-parameter -Wno-unused-function -Wno-unused-result -Wno-strict-overflow -Wno-strict-aliasing -Wno-error=deprecated-declarations -Wvla-extension -Wno-range-loop-analysis -Wno-pass-failed -Wno-error=pedantic -Wno-error=redundant-decls -Wno-error=old-style-cast -Wconstant-conversion -Wno-invalid-partial-specialization -Wno-typedef-redefinition -Wno-unused-private-field -Wno-inconsistent-missing-override -Wno-constexpr-not-const -Wno-missing-braces -Wunused-lambda-capture -Wunused-local-typedef -Qunused-arguments -fcolor-diagnostics -fdiagnostics-color=always -fno-math-errno -fno-trapping-math -Werror=format, LAPACK_INFO=mkl, PERF_WITH_AVX=1, PERF_WITH_AVX2=1, PERF_WITH_AVX512=1, TORCH_DISABLE_GPU_ASSERTS=ON, TORCH_VERSION=2.0.0, USE_CUDA=0, USE_CUDNN=OFF, USE_EXCEPTION_PTR=1, USE_GFLAGS=OFF, USE_GLOG=OFF, USE_MKL=ON, USE_MKLDNN=0, USE_MPI=OFF, USE_NCCL=OFF, USE_NNPACK=ON, USE_OPENMP=OFF, USE_ROCM=OFF, 2023-01-11T20:40:52.8576042Z 2023-01-11T20:40:53.3245264Z + cd test 2023-01-11T20:40:53.3245713Z + python -c 'import torch; print(torch.__config__.parallel_info())' 2023-01-11T20:40:56.7605934Z ATen/Parallel: 2023-01-11T20:40:56.7606366Z at::get_num_threads() : 4 2023-01-11T20:40:56.7606645Z at::get_num_interop_threads() : 4 2023-01-11T20:40:56.7606856Z OpenMP not found 2023-01-11T20:40:56.7607564Z Intel(R) oneAPI Math Kernel Library Version 2022.0-Product Build 20211112 for Intel(R) 64 architecture applications 2023-01-11T20:40:56.7607843Z mkl_get_max_threads() : 1 2023-01-11T20:40:56.7608025Z MKLDNN not found 2023-01-11T20:40:56.7608224Z std::thread::hardware_concurrency() : 8 2023-01-11T20:40:56.7608421Z Environment variables: 2023-01-11T20:40:56.7608614Z OMP_NUM_THREADS : [not set] 2023-01-11T20:40:56.7608806Z MKL_NUM_THREADS : [not set] 2023-01-11T20:40:56.7609006Z ATen parallel backend: native thread pool 2023-01-11T20:40:56.7609143Z 2023-01-11T20:40:57.2310895Z + [[ default == *backward* ]] 2023-01-11T20:40:57.2311176Z + [[ default == *xla* ]] 2023-01-11T20:40:57.2311366Z + [[ default == \j\i\t\_\l\e\g\a\c\y ]] 2023-01-11T20:40:57.2311795Z + [[ linux-focal-py3.7-clang7-asan == *libtorch* ]] 2023-01-11T20:40:57.2312034Z + [[ default == distributed ]] 2023-01-11T20:40:57.2312226Z + [[ default == deploy ]] 2023-01-11T20:40:57.2312433Z + [[ default == *inductor_distributed* ]] 2023-01-11T20:40:57.2312635Z + [[ default == *dynamo* ]] 2023-01-11T20:40:57.2312806Z + [[ default == *dynamo* ]] 2023-01-11T20:40:57.2313011Z + [[ default == *inductor_huggingface* ]] 2023-01-11T20:40:57.2313221Z + [[ default == *inductor_timm* ]] 2023-01-11T20:40:57.2313430Z + [[ default == *inductor_torchbench* ]] 2023-01-11T20:40:57.2313621Z + [[ default == *inductor* ]] 2023-01-11T20:40:57.2313829Z + [[ 3 == 1 ]] 2023-01-11T20:40:57.2313991Z + [[ 3 == 2 ]] 2023-01-11T20:40:57.2314204Z + [[ 3 -gt 2 ]] 2023-01-11T20:40:57.2314368Z + install_triton 2023-01-11T20:40:57.2314565Z + local commit 2023-01-11T20:40:57.2314823Z + [[ default == *rocm* ]] 2023-01-11T20:40:57.2315027Z ++ get_pinned_commit triton 2023-01-11T20:40:57.2315234Z ++ cat .github/ci_commit_pins/triton.txt 2023-01-11T20:40:57.2387802Z + commit=0d7e7532279e45672555e344646f5c19c3972331 2023-01-11T20:40:57.2388649Z + pip_install --user git+https://github.com/openai/triton@0d7e7532279e45672555e344646f5c19c3972331#subdirectory=python 2023-01-11T20:40:57.2389219Z + pip install --progress-bar off --user git+https://github.com/openai/triton@0d7e7532279e45672555e344646f5c19c3972331#subdirectory=python 2023-01-11T20:40:57.6952962Z Collecting git+https://github.com/openai/triton@0d7e7532279e45672555e344646f5c19c3972331#subdirectory=python 2023-01-11T20:40:57.6959016Z Cloning https://github.com/openai/triton (to revision 0d7e7532279e45672555e344646f5c19c3972331) to /tmp/pip-req-build-6zzd5eir 2023-01-11T20:40:57.7315593Z Running command git clone --filter=blob:none --quiet https://github.com/openai/triton /tmp/pip-req-build-6zzd5eir 2023-01-11T20:40:59.0012240Z Running command git rev-parse -q --verify 'sha^0d7e7532279e45672555e344646f5c19c3972331' 2023-01-11T20:40:59.0105006Z Running command git fetch -q https://github.com/openai/triton 0d7e7532279e45672555e344646f5c19c3972331 2023-01-11T20:40:59.8793133Z Running command git checkout -q 0d7e7532279e45672555e344646f5c19c3972331 2023-01-11T20:41:00.2715751Z Resolved https://github.com/openai/triton to commit 0d7e7532279e45672555e344646f5c19c3972331 2023-01-11T20:41:00.2717821Z Running command git submodule update --init --recursive -q 2023-01-11T20:41:01.1161163Z Preparing metadata (setup.py) ... [?25l- done 2023-01-11T20:41:01.3138084Z [?25hCollecting cmake 2023-01-11T20:41:01.3434835Z Downloading cmake-3.25.0-py2.py3-none-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (23.7 MB) 2023-01-11T20:41:01.7871667Z Collecting filelock 2023-01-11T20:41:01.7911676Z Downloading filelock-3.9.0-py3-none-any.whl (9.7 kB) 2023-01-11T20:41:01.7961110Z Requirement already satisfied: torch in /opt/conda/lib/python3.7/site-packages (from triton==2.0.0) (2.0.0a0+git8419ddd) 2023-01-11T20:41:01.8209053Z Requirement already satisfied: sympy in /opt/conda/lib/python3.7/site-packages (from torch->triton==2.0.0) (1.10.1) 2023-01-11T20:41:01.8212898Z Requirement already satisfied: networkx in /opt/conda/lib/python3.7/site-packages (from torch->triton==2.0.0) (2.6.3) 2023-01-11T20:41:01.8216940Z Requirement already satisfied: typing-extensions in /opt/conda/lib/python3.7/site-packages (from torch->triton==2.0.0) (4.4.0) 2023-01-11T20:41:01.8419914Z Requirement already satisfied: mpmath>=0.19 in /opt/conda/lib/python3.7/site-packages (from sympy->torch->triton==2.0.0) (1.2.1) 2023-01-11T20:41:01.8492984Z Building wheels for collected packages: triton 2023-01-11T20:42:16.0839740Z Building wheel for triton (setup.py) ... [?25l- \ | / - \ | / - \ | / - \ | / - \ | / - \ | / done 2023-01-11T20:42:16.1382801Z [?25h Created wheel for triton: filename=triton-2.0.0-cp37-cp37m-linux_x86_64.whl size=15415081 sha256=e266aebd4110ff868f3451cf209106d1aa27093d5471282ff9314fda38c3f629 2023-01-11T20:42:16.1383851Z Stored in directory: /var/lib/jenkins/.cache/pip/wheels/aa/c5/3a/263a5ba27ed44796dab5f19b43135afb68beabac5d137652f7 2023-01-11T20:42:16.1427468Z Successfully built triton 2023-01-11T20:42:17.0336622Z Installing collected packages: cmake, filelock, triton 2023-01-11T20:42:18.7982885Z Successfully installed cmake-3.25.0 filelock-3.9.0 triton-2.0.0 2023-01-11T20:42:19.1229102Z + pip_install --user jinja2 2023-01-11T20:42:19.1229494Z + pip install --progress-bar off --user jinja2 2023-01-11T20:42:19.6858978Z Collecting jinja2 2023-01-11T20:42:19.7136373Z Downloading Jinja2-3.1.2-py3-none-any.whl (133 kB) 2023-01-11T20:42:19.7325439Z Requirement already satisfied: MarkupSafe>=2.0 in /opt/conda/lib/python3.7/site-packages (from jinja2) (2.1.1) 2023-01-11T20:42:20.6237875Z Installing collected packages: jinja2 2023-01-11T20:42:20.7271990Z Successfully installed jinja2-3.1.2 2023-01-11T20:42:20.8198985Z + test_python_shard 3 2023-01-11T20:42:20.8199306Z + [[ -z 5 ]] 2023-01-11T20:42:20.8199691Z + python test/run_test.py --exclude-jit-executor --exclude-distributed-tests --shard 3 5 --verbose 2023-01-11T20:42:24.7787169Z No CUDA runtime is found, using CUDA_HOME='/usr/local/cuda' 2023-01-11T20:42:25.0421179Z Ignoring disabled issues: ['91003'] 2023-01-11T20:42:25.1912161Z Found test time stats from artifacts 2023-01-11T20:42:25.1969158Z Selected tests: 2023-01-11T20:42:25.1969485Z test_ops_gradients 2023-01-11T20:42:25.1969762Z test_sparse_csr 2023-01-11T20:42:25.1970031Z distributions/test_distributions 2023-01-11T20:42:25.1970509Z test_torch 2023-01-11T20:42:25.1970745Z nn/test_convolution 2023-01-11T20:42:25.1971086Z test_jit_cuda_fuser 2023-01-11T20:42:25.1971345Z test_show_pickle 2023-01-11T20:42:25.1971635Z test_cpp_extensions_aot_ninja 2023-01-11T20:42:25.1971935Z distributions/test_constraints 2023-01-11T20:42:25.1972222Z inductor/test_perf 2023-01-11T20:42:25.1972450Z nn/test_init 2023-01-11T20:42:25.1972675Z test_cuda_sanitizer 2023-01-11T20:42:25.1972896Z test_matmul_cuda 2023-01-11T20:42:25.1973144Z inductor/test_torchinductor 2023-01-11T20:42:25.1973445Z dynamo/test_minifier 2023-01-11T20:42:25.1973716Z test_view_ops 2023-01-11T20:42:25.1974341Z test_tensorboard 2023-01-11T20:42:25.1974624Z nn/test_parametrization 2023-01-11T20:42:25.1974900Z test_function_schema 2023-01-11T20:42:25.1975160Z dynamo/test_verify_correctness 2023-01-11T20:42:25.1975444Z test_native_mha 2023-01-11T20:42:25.1975727Z dynamo/test_python_autograd 2023-01-11T20:42:25.1976018Z test_futures 2023-01-11T20:42:25.1976247Z test_fx_reinplace_pass 2023-01-11T20:42:25.1976506Z test_model_dump 2023-01-11T20:42:25.1976768Z test_datapipe 2023-01-11T20:42:25.1976997Z test_autocast 2023-01-11T20:42:25.1977213Z test_native_functions 2023-01-11T20:42:25.1977487Z benchmark_utils/test_benchmark_utils 2023-01-11T20:42:25.1977765Z test_fx_passes 2023-01-11T20:42:25.1978018Z dynamo/test_optimizations 2023-01-11T20:42:25.1978289Z test_monitor 2023-01-11T20:42:25.1978508Z dynamo/test_global 2023-01-11T20:42:25.1978779Z dynamo/test_comptime 2023-01-11T20:42:25.1979038Z profiler/test_profiler_tree 2023-01-11T20:42:25.1979308Z dynamo/test_skip_non_tensor 2023-01-11T20:42:25.1979552Z test_tensorexpr_pybind 2023-01-11T20:42:25.1979862Z dynamo/test_export_mutations 2023-01-11T20:42:25.1980145Z dynamo/test_nops 2023-01-11T20:42:25.1980380Z test_pytree 2023-01-11T20:42:25.1980731Z nn/test_module_hooks 2023-01-11T20:42:25.1981166Z test_per_overload_api 2023-01-11T20:42:25.1981436Z test_license 2023-01-11T20:42:25.1981722Z test_set_default_mobile_cpu_allocator 2023-01-11T20:42:25.1982016Z test_type_info 2023-01-11T20:42:25.1982257Z test_itt 2023-01-11T20:42:25.1982495Z test_numpy_interop 2023-01-11T20:42:25.1982724Z nn/test_pruning 2023-01-11T20:42:25.1982930Z test_decomp 2023-01-11T20:42:25.1983171Z test_dlpack 2023-01-11T20:42:25.1983439Z test_jit_llga_fuser 2023-01-11T20:42:25.1983695Z test_mkldnn 2023-01-11T20:42:25.1983940Z test_nvfuser_frontend 2023-01-11T20:42:25.1984201Z test_mkldnn_fusion 2023-01-11T20:42:25.1984446Z test_numba_integration 2023-01-11T20:42:25.1984695Z dynamo/test_aot_cudagraphs 2023-01-11T20:42:25.1984977Z dynamo/test_replay_record 2023-01-11T20:42:25.1985298Z dynamo/test_torchxla_integration 2023-01-11T20:42:25.1985587Z test_complex 2023-01-11T20:42:25.1985868Z test_nvfuser_dynamo 2023-01-11T20:42:25.1986117Z dynamo/test_model_output 2023-01-11T20:42:25.1986375Z test_vulkan 2023-01-11T20:42:25.1986635Z test_type_hints 2023-01-11T20:42:25.1986872Z test_openmp 2023-01-11T20:42:25.9022422Z Prioritized test from test file changes. 2023-01-11T20:42:25.9022841Z reordering tests for PR: 2023-01-11T20:42:25.9023859Z prioritized: ['test_sparse_csr', 'test_torch', 'inductor/test_torchinductor', 'test_function_schema', 'dynamo/test_optimizations', 'profiler/test_profiler_tree', 'dynamo/test_torchxla_integration'] 2023-01-11T20:42:25.9028203Z the rest: ['test_ops_gradients', 'distributions/test_distributions', 'nn/test_convolution', 'test_jit_cuda_fuser', 'test_show_pickle', 'test_cpp_extensions_aot_ninja', 'distributions/test_constraints', 'inductor/test_perf', 'nn/test_init', 'test_cuda_sanitizer', 'test_matmul_cuda', 'dynamo/test_minifier', 'test_view_ops', 'test_tensorboard', 'nn/test_parametrization', 'dynamo/test_verify_correctness', 'test_native_mha', 'dynamo/test_python_autograd', 'test_futures', 'test_fx_reinplace_pass', 'test_model_dump', 'test_datapipe', 'test_autocast', 'test_native_functions', 'benchmark_utils/test_benchmark_utils', 'test_fx_passes', 'test_monitor', 'dynamo/test_global', 'dynamo/test_comptime', 'dynamo/test_skip_non_tensor', 'test_tensorexpr_pybind', 'dynamo/test_export_mutations', 'dynamo/test_nops', 'test_pytree', 'nn/test_module_hooks', 'test_per_overload_api', 'test_license', 'test_set_default_mobile_cpu_allocator', 'test_type_info', 'test_itt', 'test_numpy_interop', 'nn/test_pruning', 'test_decomp', 'test_dlpack', 'test_jit_llga_fuser', 'test_mkldnn', 'test_nvfuser_frontend', 'test_mkldnn_fusion', 'test_numba_integration', 'dynamo/test_aot_cudagraphs', 'dynamo/test_replay_record', 'test_complex', 'test_nvfuser_dynamo', 'dynamo/test_model_output', 'test_vulkan', 'test_type_hints', 'test_openmp'] 2023-01-11T20:42:25.9030834Z 2023-01-11T20:42:25.9031602Z Downloading https://raw.githubusercontent.com/pytorch/test-infra/generated-stats/stats/slow-tests.json to /var/lib/jenkins/workspace/test/.pytorch-slow-tests.json 2023-01-11T20:42:25.9304618Z Downloading https://raw.githubusercontent.com/pytorch/test-infra/generated-stats/stats/disabled-tests-condensed.json to /var/lib/jenkins/workspace/test/.pytorch-disabled-tests.json 2023-01-11T20:42:25.9531496Z parallel (file granularity) tests: 2023-01-11T20:42:25.9531830Z inductor/test_torchinductor 2023-01-11T20:42:25.9532057Z test_function_schema 2023-01-11T20:42:25.9532254Z dynamo/test_optimizations 2023-01-11T20:42:25.9532446Z profiler/test_profiler_tree 2023-01-11T20:42:25.9532656Z dynamo/test_torchxla_integration 2023-01-11T20:42:25.9532868Z distributions/test_constraints 2023-01-11T20:42:25.9533050Z inductor/test_perf 2023-01-11T20:42:25.9533222Z nn/test_init 2023-01-11T20:42:25.9533389Z test_cuda_sanitizer 2023-01-11T20:42:25.9533550Z test_matmul_cuda 2023-01-11T20:42:25.9533733Z dynamo/test_minifier 2023-01-11T20:42:25.9533905Z test_view_ops 2023-01-11T20:42:25.9534064Z test_tensorboard 2023-01-11T20:42:25.9534244Z nn/test_parametrization 2023-01-11T20:42:25.9534441Z dynamo/test_verify_correctness 2023-01-11T20:42:25.9534786Z test_native_mha 2023-01-11T20:42:25.9534974Z dynamo/test_python_autograd 2023-01-11T20:42:25.9535158Z test_futures 2023-01-11T20:42:25.9535321Z test_fx_reinplace_pass 2023-01-11T20:42:25.9535501Z test_model_dump 2023-01-11T20:42:25.9535670Z test_datapipe 2023-01-11T20:42:25.9535823Z test_autocast 2023-01-11T20:42:25.9535996Z test_native_functions 2023-01-11T20:42:25.9536199Z benchmark_utils/test_benchmark_utils 2023-01-11T20:42:25.9536381Z test_fx_passes 2023-01-11T20:42:25.9536549Z test_monitor 2023-01-11T20:42:25.9536720Z dynamo/test_global 2023-01-11T20:42:25.9536885Z dynamo/test_comptime 2023-01-11T20:42:25.9537077Z dynamo/test_skip_non_tensor 2023-01-11T20:42:25.9537273Z test_tensorexpr_pybind 2023-01-11T20:42:25.9537459Z dynamo/test_export_mutations 2023-01-11T20:42:25.9537651Z dynamo/test_nops 2023-01-11T20:42:25.9537826Z test_pytree 2023-01-11T20:42:25.9537985Z nn/test_module_hooks 2023-01-11T20:42:25.9538167Z test_per_overload_api 2023-01-11T20:42:25.9538347Z test_license 2023-01-11T20:42:25.9538525Z test_set_default_mobile_cpu_allocator 2023-01-11T20:42:25.9538721Z test_type_info 2023-01-11T20:42:25.9538886Z test_itt 2023-01-11T20:42:25.9539038Z test_numpy_interop 2023-01-11T20:42:25.9539212Z nn/test_pruning 2023-01-11T20:42:25.9539382Z test_decomp 2023-01-11T20:42:25.9539534Z test_dlpack 2023-01-11T20:42:25.9539702Z test_jit_llga_fuser 2023-01-11T20:42:25.9539873Z test_mkldnn 2023-01-11T20:42:25.9540031Z test_nvfuser_frontend 2023-01-11T20:42:25.9540212Z test_mkldnn_fusion 2023-01-11T20:42:25.9540393Z test_numba_integration 2023-01-11T20:42:25.9540656Z dynamo/test_aot_cudagraphs 2023-01-11T20:42:25.9540854Z dynamo/test_replay_record 2023-01-11T20:42:25.9541036Z test_complex 2023-01-11T20:42:25.9541212Z test_nvfuser_dynamo 2023-01-11T20:42:25.9541384Z dynamo/test_model_output 2023-01-11T20:42:25.9541562Z test_vulkan 2023-01-11T20:42:25.9541730Z test_type_hints 2023-01-11T20:42:25.9541885Z test_openmp 2023-01-11T20:42:25.9542071Z serial (file granularity) tests: 2023-01-11T20:42:25.9542260Z test_sparse_csr 2023-01-11T20:42:25.9542412Z test_torch 2023-01-11T20:42:25.9542579Z test_ops_gradients 2023-01-11T20:42:25.9542773Z distributions/test_distributions 2023-01-11T20:42:25.9542959Z nn/test_convolution 2023-01-11T20:42:25.9543137Z test_jit_cuda_fuser 2023-01-11T20:42:25.9543306Z test_show_pickle 2023-01-11T20:42:25.9543478Z test_cpp_extensions_aot_ninja 2023-01-11T20:42:30.0068008Z No CUDA runtime is found, using CUDA_HOME='/usr/local/cuda' 2023-01-11T20:42:30.0842023Z No CUDA runtime is found, using CUDA_HOME='/usr/local/cuda' 2023-01-11T20:42:30.1726766Z Ignoring disabled issues: ['91003'] 2023-01-11T20:42:30.1919043Z Running inductor/test_torchinductor ... [2023-01-11 20:42:30.191541] 2023-01-11T20:42:30.1920557Z Executing ['/opt/conda/bin/python', '-bb', 'inductor/test_torchinductor.py', '-v', '--import-slow-tests', '--import-disabled-tests'] ... [2023-01-11 20:42:30.191820] 2023-01-11T20:42:30.2323390Z Ignoring disabled issues: ['91003'] 2023-01-11T20:42:30.2516476Z Running test_function_schema ... [2023-01-11 20:42:30.251275] 2023-01-11T20:42:30.2518213Z Executing ['/opt/conda/bin/python', '-bb', 'test_function_schema.py', '-v', '--import-slow-tests', '--import-disabled-tests'] ... [2023-01-11 20:42:30.251538] 2023-01-11T20:42:36.7956885Z 2023-01-11T20:42:36.7957466Z Expand the folded group to see the log file of test_function_schema 2023-01-11T20:42:36.7964308Z ##[group]PRINTING LOG FILE of test_function_schema (/var/lib/jenkins/workspace/test/test-reports/test_function_schema_4owpcnjl) 2023-01-11T20:42:36.7965349Z Test results will be stored in test-reports/python-unittest/test_function_schema 2023-01-11T20:42:36.7965713Z 2023-01-11T20:42:36.7965851Z Running tests... 2023-01-11T20:42:36.7966433Z ---------------------------------------------------------------------- 2023-01-11T20:42:36.7967037Z test_backward_compatible_arguments (__main__.TestFunctionSchema) ... ok (1.165s) 2023-01-11T20:42:36.7970153Z test_backward_compatible_outputs (__main__.TestFunctionSchema) ... ok (0.001s) 2023-01-11T20:42:36.7970884Z test_backward_compatible_structure (__main__.TestFunctionSchema) ... ok (0.002s) 2023-01-11T20:42:36.7971611Z test_backward_compatible_with_smart_serialization (__main__.TestFunctionSchema) ... ok (0.003s) 2023-01-11T20:42:36.7972387Z test_forward_compatible_arguments_real_use_case (__main__.TestFunctionSchema) ... ok (0.001s) 2023-01-11T20:42:36.7973127Z test_forward_compatible_arguments_with_out (__main__.TestFunctionSchema) ... ok (0.002s) 2023-01-11T20:42:36.7976325Z test_forward_compatible_arguments_without_out (__main__.TestFunctionSchema) ... ok (0.003s) 2023-01-11T20:42:36.7976909Z test_out_schema (__main__.TestFunctionSchema) ... ok (0.001s) 2023-01-11T20:42:36.7977411Z test_schema_error (__main__.TestFunctionSchema) ... ok (0.002s) 2023-01-11T20:42:36.7977735Z test_serialize_and_deserialize (__main__.TestFunctionSchema) ... ok (0.918s) 2023-01-11T20:42:36.7978052Z test_string_optional_parameter_default_value (__main__.TestFunctionSchema) ... ok (0.001s) 2023-01-11T20:42:36.7978455Z test_tensor_list_alias_annotation_properly_parsed (__main__.TestFunctionSchema) ... ok (0.001s) 2023-01-11T20:42:36.7978996Z test_tensor_option_arguments_properly_parsed (__main__.TestFunctionSchema) ... ok (0.002s) 2023-01-11T20:42:36.7979337Z 2023-01-11T20:42:36.7979785Z ---------------------------------------------------------------------- 2023-01-11T20:42:36.7980018Z Ran 13 tests in 2.102s 2023-01-11T20:42:36.8002876Z 2023-01-11T20:42:36.8003087Z OK 2023-01-11T20:42:36.8003283Z 2023-01-11T20:42:36.8003432Z Generating XML reports... 2023-01-11T20:42:36.8004209Z Generated XML report: test-reports/python-unittest/test_function_schema/TEST-TestFunctionSchema-20230111204234.xml 2023-01-11T20:42:36.8004604Z 2023-01-11T20:42:36.8005047Z ##[endgroup] 2023-01-11T20:42:36.8005692Z FINISHED PRINTING LOG FILE of test_function_schema (/var/lib/jenkins/workspace/test/test-reports/test_function_schema_4owpcnjl) 2023-01-11T20:42:36.8006015Z 2023-01-11T20:42:41.6487380Z No CUDA runtime is found, using CUDA_HOME='/usr/local/cuda' 2023-01-11T20:42:41.8162001Z Ignoring disabled issues: ['91003'] 2023-01-11T20:42:41.8358125Z Running dynamo/test_optimizations ... [2023-01-11 20:42:41.835382] 2023-01-11T20:42:41.8359757Z Executing ['/opt/conda/bin/python', '-bb', 'dynamo/test_optimizations.py', '-v', '--import-slow-tests', '--import-disabled-tests'] ... [2023-01-11 20:42:41.835739] 2023-01-11T20:42:47.5212200Z 2023-01-11T20:42:47.5212754Z Expand the folded group to see the log file of dynamo/test_optimizations 2023-01-11T20:42:47.5213917Z ##[group]PRINTING LOG FILE of dynamo/test_optimizations (/var/lib/jenkins/workspace/test/test-reports/dynamo-test_optimizations_mkjtp290) 2023-01-11T20:42:47.5215178Z Test results will be stored in test-reports/python-unittest/dynamo.test_optimizations 2023-01-11T20:42:47.5215506Z 2023-01-11T20:42:47.5215634Z Running tests... 2023-01-11T20:42:47.5216185Z ---------------------------------------------------------------------- 2023-01-11T20:42:47.5216713Z test_inplace_normalize (__main__.NormalizeIRTests) ... ok (0.402s) 2023-01-11T20:42:47.5217213Z frames [('total', 1), ('ok', 1)] 2023-01-11T20:42:47.5217761Z stats [('calls_captured', 3), ('fusions_possible', 2), ('unique_graphs', 1)] 2023-01-11T20:42:47.5218275Z aot_autograd [('total', 1), ('ok', 1)] 2023-01-11T20:42:47.5219016Z test_example_inputs (__main__.TestOptimizations) ... stats [('calls_captured', 3), ('fusions_possible', 2), ('unique_graphs', 1)] 2023-01-11T20:42:47.5219497Z ok (0.119s) 2023-01-11T20:42:47.5220236Z test_example_inputs_runtime_use (__main__.TestOptimizations) ... stats [('calls_captured', 3), ('fusions_possible', 2), ('unique_graphs', 1)] 2023-01-11T20:42:47.5220827Z ok (0.014s) 2023-01-11T20:42:47.5221228Z test_has_mutation (__main__.TestOptimizations) ... ok (0.030s) 2023-01-11T20:42:47.5221885Z test_has_mutation_factory (__main__.TestOptimizations) ... frames [('total', 1), ('ok', 1)] 2023-01-11T20:42:47.5222712Z stats [('calls_captured', 2), ('fusions_possible', 1), ('unique_graphs', 1)] 2023-01-11T20:42:47.5223115Z ok (0.026s) 2023-01-11T20:42:47.5223705Z test_inplacifier (__main__.TestOptimizations) ... optimizations [('out', 1), ('inplace', 1)] 2023-01-11T20:42:47.5224140Z ok (0.029s) 2023-01-11T20:42:47.5224554Z test_ipex_bf16 (__main__.TestOptimizations) ... skip: requires ipex (0.001s) 2023-01-11T20:42:47.5243271Z test_ipex_fp32 (__main__.TestOptimizations) ... skip: requires ipex (0.001s) 2023-01-11T20:42:47.5244115Z test_log_conv_args (__main__.TestOptimizations) ... frames [('total', 1), ('ok', 1)] 2023-01-11T20:42:47.5244760Z stats [('calls_captured', 3), ('fusions_possible', 2), ('unique_graphs', 1)] 2023-01-11T20:42:47.5245195Z ok (0.500s) 2023-01-11T20:42:47.5245403Z 2023-01-11T20:42:47.5245638Z ---------------------------------------------------------------------- 2023-01-11T20:42:47.5245878Z Ran 9 tests in 1.122s 2023-01-11T20:42:47.5245991Z 2023-01-11T20:42:47.5246063Z OK (skipped=2) 2023-01-11T20:42:47.5246177Z 2023-01-11T20:42:47.5246261Z Generating XML reports... 2023-01-11T20:42:47.5246689Z Generated XML report: test-reports/python-unittest/dynamo.test_optimizations/TEST-NormalizeIRTests-20230111204245.xml 2023-01-11T20:42:47.5247243Z Generated XML report: test-reports/python-unittest/dynamo.test_optimizations/TEST-TestOptimizations-20230111204245.xml 2023-01-11T20:42:47.5247486Z 2023-01-11T20:42:47.5247944Z ##[endgroup] 2023-01-11T20:42:47.5248362Z FINISHED PRINTING LOG FILE of dynamo/test_optimizations (/var/lib/jenkins/workspace/test/test-reports/dynamo-test_optimizations_mkjtp290) 2023-01-11T20:42:47.5248607Z 2023-01-11T20:42:52.3655182Z No CUDA runtime is found, using CUDA_HOME='/usr/local/cuda' 2023-01-11T20:42:52.5264219Z Ignoring disabled issues: ['91003'] 2023-01-11T20:42:52.5590575Z Running profiler/test_profiler_tree ... [2023-01-11 20:42:52.558672] 2023-01-11T20:42:52.5591751Z Executing ['/opt/conda/bin/python', '-bb', 'profiler/test_profiler_tree.py', '-v', '--import-slow-tests', '--import-disabled-tests'] ... [2023-01-11 20:42:52.558961] 2023-01-11T20:42:57.5503889Z 2023-01-11T20:42:57.5504496Z Expand the folded group to see the log file of profiler/test_profiler_tree 2023-01-11T20:42:57.5505745Z ##[group]PRINTING LOG FILE of profiler/test_profiler_tree (/var/lib/jenkins/workspace/test/test-reports/profiler-test_profiler_tree_bncdifeq) 2023-01-11T20:42:57.5506709Z Test results will be stored in test-reports/python-unittest/profiler.test_profiler_tree 2023-01-11T20:42:57.5507093Z 2023-01-11T20:42:57.5507215Z Running tests... 2023-01-11T20:42:57.5507738Z ---------------------------------------------------------------------- 2023-01-11T20:42:57.5509353Z test_profiler_experimental_tree (__main__.TestProfilerTree) ... skip: Test is disabled because an issue exists disabling it: https://github.com/pytorch/pytorch/issues/82499 for platform(s) linux, rocm. If you're seeing this on your local machine and would like to enable this test, please make sure CI is not set and you are not using the flag --import-disabled-tests. (0.320s) 2023-01-11T20:42:57.5510710Z test_profiler_experimental_tree_cuda (__main__.TestProfilerTree) ... skip: https://github.com/pytorch/pytorch/issues/83606 (0.002s) 2023-01-11T20:42:57.5511507Z test_profiler_experimental_tree_cuda_detailed (__main__.TestProfilerTree) ... skip: https://github.com/pytorch/pytorch/issues/83606 (0.003s) 2023-01-11T20:42:57.5512312Z test_profiler_experimental_tree_cuda_with_stream (__main__.TestProfilerTree) ... skip: https://github.com/pytorch/pytorch/issues/83606 (0.001s) 2023-01-11T20:42:57.5514022Z test_profiler_experimental_tree_with_memory (__main__.TestProfilerTree) ... skip: Test is disabled because an issue exists disabling it: https://github.com/pytorch/pytorch/issues/82501 for platform(s) linux, rocm. If you're seeing this on your local machine and would like to enable this test, please make sure CI is not set and you are not using the flag --import-disabled-tests. (0.001s) 2023-01-11T20:42:57.5515662Z test_profiler_experimental_tree_with_memory_and_stack (__main__.TestProfilerTree) ... STAGE:2023-01-11 20:42:56 1415:1415 ActivityProfilerController.cpp:300] Completed Stage: Warm Up 2023-01-11T20:42:57.5516577Z STAGE:2023-01-11 20:42:56 1415:1415 ActivityProfilerController.cpp:306] Completed Stage: Collection 2023-01-11T20:42:57.5517363Z STAGE:2023-01-11 20:42:56 1415:1415 ActivityProfilerController.cpp:310] Completed Stage: Post Processing 2023-01-11T20:42:57.5518137Z STAGE:2023-01-11 20:42:56 1415:1415 ActivityProfilerController.cpp:300] Completed Stage: Warm Up 2023-01-11T20:42:57.5518861Z STAGE:2023-01-11 20:42:56 1415:1415 ActivityProfilerController.cpp:306] Completed Stage: Collection 2023-01-11T20:42:57.5519648Z STAGE:2023-01-11 20:42:56 1415:1415 ActivityProfilerController.cpp:310] Completed Stage: Post Processing 2023-01-11T20:42:57.5520429Z STAGE:2023-01-11 20:42:56 1415:1415 ActivityProfilerController.cpp:300] Completed Stage: Warm Up 2023-01-11T20:42:57.5521400Z STAGE:2023-01-11 20:42:56 1415:1415 ActivityProfilerController.cpp:306] Completed Stage: Collection 2023-01-11T20:42:57.5522143Z STAGE:2023-01-11 20:42:56 1415:1415 ActivityProfilerController.cpp:310] Completed Stage: Post Processing 2023-01-11T20:42:57.5522610Z ok (0.066s) 2023-01-11T20:42:57.5524132Z test_profiler_experimental_tree_with_record_function (__main__.TestProfilerTree) ... skip: Test is disabled because an issue exists disabling it: https://github.com/pytorch/pytorch/issues/83246 for platform(s) linux, rocm. If you're seeing this on your local machine and would like to enable this test, please make sure CI is not set and you are not using the flag --import-disabled-tests. (0.002s) 2023-01-11T20:42:57.5525847Z test_profiler_experimental_tree_with_stack_and_modules (__main__.TestProfilerTree) ... STAGE:2023-01-11 20:42:56 1415:1415 ActivityProfilerController.cpp:300] Completed Stage: Warm Up 2023-01-11T20:42:57.5526754Z STAGE:2023-01-11 20:42:56 1415:1415 ActivityProfilerController.cpp:306] Completed Stage: Collection 2023-01-11T20:42:57.5527518Z STAGE:2023-01-11 20:42:56 1415:1415 ActivityProfilerController.cpp:310] Completed Stage: Post Processing 2023-01-11T20:42:57.5528292Z STAGE:2023-01-11 20:42:56 1415:1415 ActivityProfilerController.cpp:300] Completed Stage: Warm Up 2023-01-11T20:42:57.5529073Z STAGE:2023-01-11 20:42:56 1415:1415 ActivityProfilerController.cpp:306] Completed Stage: Collection 2023-01-11T20:42:57.5529872Z STAGE:2023-01-11 20:42:56 1415:1415 ActivityProfilerController.cpp:310] Completed Stage: Post Processing 2023-01-11T20:42:57.5530670Z STAGE:2023-01-11 20:42:56 1415:1415 ActivityProfilerController.cpp:300] Completed Stage: Warm Up 2023-01-11T20:42:57.5531436Z STAGE:2023-01-11 20:42:56 1415:1415 ActivityProfilerController.cpp:306] Completed Stage: Collection 2023-01-11T20:42:57.5532339Z STAGE:2023-01-11 20:42:56 1415:1415 ActivityProfilerController.cpp:310] Completed Stage: Post Processing 2023-01-11T20:42:57.5532798Z ok (0.063s) 2023-01-11T20:42:57.5533717Z test_profiler_experimental_tree_with_stack_and_torch_dispatch (__main__.TestProfilerTree) ... STAGE:2023-01-11 20:42:56 1415:1415 ActivityProfilerController.cpp:300] Completed Stage: Warm Up 2023-01-11T20:42:57.5534659Z STAGE:2023-01-11 20:42:56 1415:1415 ActivityProfilerController.cpp:306] Completed Stage: Collection 2023-01-11T20:42:57.5535449Z STAGE:2023-01-11 20:42:56 1415:1415 ActivityProfilerController.cpp:310] Completed Stage: Post Processing 2023-01-11T20:42:57.5536212Z STAGE:2023-01-11 20:42:56 1415:1415 ActivityProfilerController.cpp:300] Completed Stage: Warm Up 2023-01-11T20:42:57.5536970Z STAGE:2023-01-11 20:42:56 1415:1415 ActivityProfilerController.cpp:306] Completed Stage: Collection 2023-01-11T20:42:57.5537744Z STAGE:2023-01-11 20:42:56 1415:1415 ActivityProfilerController.cpp:310] Completed Stage: Post Processing 2023-01-11T20:42:57.5538480Z STAGE:2023-01-11 20:42:56 1415:1415 ActivityProfilerController.cpp:300] Completed Stage: Warm Up 2023-01-11T20:42:57.5539318Z STAGE:2023-01-11 20:42:56 1415:1415 ActivityProfilerController.cpp:306] Completed Stage: Collection 2023-01-11T20:42:57.5540082Z STAGE:2023-01-11 20:42:56 1415:1415 ActivityProfilerController.cpp:310] Completed Stage: Post Processing 2023-01-11T20:42:57.5540604Z ok (0.020s) 2023-01-11T20:42:57.5541479Z test_profiler_experimental_tree_with_stack_and_torch_function (__main__.TestProfilerTree) ... STAGE:2023-01-11 20:42:56 1415:1415 ActivityProfilerController.cpp:300] Completed Stage: Warm Up 2023-01-11T20:42:57.5542370Z STAGE:2023-01-11 20:42:56 1415:1415 ActivityProfilerController.cpp:306] Completed Stage: Collection 2023-01-11T20:42:57.5543139Z STAGE:2023-01-11 20:42:56 1415:1415 ActivityProfilerController.cpp:310] Completed Stage: Post Processing 2023-01-11T20:42:57.5543863Z STAGE:2023-01-11 20:42:56 1415:1415 ActivityProfilerController.cpp:300] Completed Stage: Warm Up 2023-01-11T20:42:57.5544595Z STAGE:2023-01-11 20:42:56 1415:1415 ActivityProfilerController.cpp:306] Completed Stage: Collection 2023-01-11T20:42:57.5545362Z STAGE:2023-01-11 20:42:56 1415:1415 ActivityProfilerController.cpp:310] Completed Stage: Post Processing 2023-01-11T20:42:57.5546112Z STAGE:2023-01-11 20:42:56 1415:1415 ActivityProfilerController.cpp:300] Completed Stage: Warm Up 2023-01-11T20:42:57.5546854Z STAGE:2023-01-11 20:42:56 1415:1415 ActivityProfilerController.cpp:306] Completed Stage: Collection 2023-01-11T20:42:57.5547622Z STAGE:2023-01-11 20:42:56 1415:1415 ActivityProfilerController.cpp:310] Completed Stage: Post Processing 2023-01-11T20:42:57.5548070Z ok (0.021s) 2023-01-11T20:42:57.5548248Z 2023-01-11T20:42:57.5548621Z ---------------------------------------------------------------------- 2023-01-11T20:42:57.5549039Z Ran 10 tests in 0.499s 2023-01-11T20:42:57.5549243Z 2023-01-11T20:42:57.5549364Z OK (skipped=6) 2023-01-11T20:42:57.5549581Z 2023-01-11T20:42:57.5549723Z Generating XML reports... 2023-01-11T20:42:57.5550446Z Generated XML report: test-reports/python-unittest/profiler.test_profiler_tree/TEST-TestProfilerTree-20230111204256.xml 2023-01-11T20:42:57.5550869Z 2023-01-11T20:42:57.5551310Z ##[endgroup] 2023-01-11T20:42:57.5552042Z FINISHED PRINTING LOG FILE of profiler/test_profiler_tree (/var/lib/jenkins/workspace/test/test-reports/profiler-test_profiler_tree_bncdifeq) 2023-01-11T20:42:57.5552473Z 2023-01-11T20:43:02.2802462Z No CUDA runtime is found, using CUDA_HOME='/usr/local/cuda' 2023-01-11T20:43:02.4482850Z Ignoring disabled issues: ['91003'] 2023-01-11T20:43:02.5350766Z Running dynamo/test_torchxla_integration ... [2023-01-11 20:43:02.534662] 2023-01-11T20:43:02.5352168Z Executing ['/opt/conda/bin/python', '-bb', 'dynamo/test_torchxla_integration.py', '-v', '--import-slow-tests', '--import-disabled-tests'] ... [2023-01-11 20:43:02.534958] 2023-01-11T20:43:06.8720973Z 2023-01-11T20:43:06.8721709Z Expand the folded group to see the log file of dynamo/test_torchxla_integration 2023-01-11T20:43:06.8722669Z ##[group]PRINTING LOG FILE of dynamo/test_torchxla_integration (/var/lib/jenkins/workspace/test/test-reports/dynamo-test_torchxla_integration_rytlrycv) 2023-01-11T20:43:06.8723334Z Test results will be stored in test-reports/python-unittest/dynamo.test_torchxla_integration 2023-01-11T20:43:06.8723565Z 2023-01-11T20:43:06.8723679Z Running tests... 2023-01-11T20:43:06.8724074Z ---------------------------------------------------------------------- 2023-01-11T20:43:06.8724480Z test_basic (__main__.TorchXLAReuseGraphTest) ... skip: Skip the tests since torch_xla is not available or XLA devices are not specified (0.001s) 2023-01-11T20:43:06.8725004Z test_inplace_update (__main__.TorchXLAReuseGraphTest) ... skip: Skip the tests since torch_xla is not available or XLA devices are not specified (0.001s) 2023-01-11T20:43:06.8725533Z test_linear (__main__.TorchXLAReuseGraphTest) ... skip: Skip the tests since torch_xla is not available or XLA devices are not specified (0.001s) 2023-01-11T20:43:06.8726046Z test_matmul (__main__.TorchXLAReuseGraphTest) ... skip: Skip the tests since torch_xla is not available or XLA devices are not specified (0.001s) 2023-01-11T20:43:06.8726329Z 2023-01-11T20:43:06.8726577Z ---------------------------------------------------------------------- 2023-01-11T20:43:06.8726877Z Ran 4 tests in 0.005s 2023-01-11T20:43:06.8727029Z 2023-01-11T20:43:06.8727129Z OK (skipped=4) 2023-01-11T20:43:06.8727264Z 2023-01-11T20:43:06.8727379Z Generating XML reports... 2023-01-11T20:43:06.8727871Z Generated XML report: test-reports/python-unittest/dynamo.test_torchxla_integration/TEST-TorchXLAReuseGraphTest-20230111204306.xml 2023-01-11T20:43:06.8728188Z 2023-01-11T20:43:06.8728472Z ##[endgroup] 2023-01-11T20:43:06.8728976Z FINISHED PRINTING LOG FILE of dynamo/test_torchxla_integration (/var/lib/jenkins/workspace/test/test-reports/dynamo-test_torchxla_integration_rytlrycv) 2023-01-11T20:43:06.8729216Z 2023-01-11T20:43:11.5643842Z No CUDA runtime is found, using CUDA_HOME='/usr/local/cuda' 2023-01-11T20:43:11.7296267Z Ignoring disabled issues: ['91003'] 2023-01-11T20:43:11.7603515Z Running distributions/test_constraints ... [2023-01-11 20:43:11.759913] 2023-01-11T20:43:11.7604528Z Executing ['/opt/conda/bin/python', '-bb', '-m', 'pytest', 'distributions/test_constraints.py', '-v'] ... [2023-01-11 20:43:11.760181] 2023-01-11T20:43:17.8040314Z 2023-01-11T20:43:17.8042194Z Expand the folded group to see the log file of distributions/test_constraints 2023-01-11T20:43:17.8043101Z ##[group]PRINTING LOG FILE of distributions/test_constraints (/var/lib/jenkins/workspace/test/test-reports/distributions-test_constraints_6a33t33x) 2023-01-11T20:43:17.8043702Z ============================= test session starts ============================== 2023-01-11T20:43:17.8044477Z platform linux -- Python 3.7.15, pytest-7.2.0, pluggy-1.0.0 -- /opt/conda/bin/python 2023-01-11T20:43:17.8044860Z cachedir: .pytest_cache 2023-01-11T20:43:17.8045302Z hypothesis profile 'default' -> database=DirectoryBasedExampleDatabase('/var/lib/jenkins/workspace/test/.hypothesis/examples') 2023-01-11T20:43:17.8045695Z rootdir: /var/lib/jenkins/workspace, configfile: pytest.ini 2023-01-11T20:43:17.8046132Z plugins: hypothesis-5.35.1, flakefinder-1.1.0, rerunfailures-10.3, shard-0.1.2, xdist-3.1.0, xdoctest-1.1.0 2023-01-11T20:43:17.8046418Z collecting ... collected 136 items 2023-01-11T20:43:17.8067144Z Running 136 items in this shard: test/distributions/test_constraints.py::test_constraint[False-constraint_fn0-False-value0], test/distributions/test_constraints.py::test_constraint[False-constraint_fn1-False-value1], test/distributions/test_constraints.py::test_constraint[False-constraint_fn2-False-value2], test/distributions/test_constraints.py::test_constraint[False-constraint_fn3-True-value3], test/distributions/test_constraints.py::test_constraint[False-constraint_fn4-False-value4], test/distributions/test_constraints.py::test_constraint[False-constraint_fn5-False-value5], test/distributions/test_constraints.py::test_constraint[False-constraint_fn6-True-value6], test/distributions/test_constraints.py::test_constraint[False-constraint_fn7-True-value7], test/distributions/test_constraints.py::test_constraint[False-constraint_fn8-False-value8], test/distributions/test_constraints.py::test_constraint[False-constraint_fn9-True-value9], test/distributions/test_constraints.py::test_constraint[False-constraint_fn10-False-value10], test/distributions/test_constraints.py::test_constraint[False-constraint_fn11-False-value11], test/distributions/test_constraints.py::test_constraint[False-constraint_fn12-True-value12], test/distributions/test_constraints.py::test_constraint[False-constraint_fn13-True-value13], test/distributions/test_constraints.py::test_constraint[False-constraint_fn14-False-value14], test/distributions/test_constraints.py::test_constraint[False-constraint_fn15-True-value15], test/distributions/test_constraints.py::test_constraint[False-constraint_fn16-True-value16], test/distributions/test_constraints.py::test_constraint[False-constraint_fn17-True-value17], test/distributions/test_constraints.py::test_constraint[True-constraint_fn0-False-value0], test/distributions/test_constraints.py::test_constraint[True-constraint_fn1-False-value1], test/distributions/test_constraints.py::test_constraint[True-constraint_fn2-False-value2], test/distributions/test_constraints.py::test_constraint[True-constraint_fn3-True-value3], test/distributions/test_constraints.py::test_constraint[True-constraint_fn4-False-value4], test/distributions/test_constraints.py::test_constraint[True-constraint_fn5-False-value5], test/distributions/test_constraints.py::test_constraint[True-constraint_fn6-True-value6], test/distributions/test_constraints.py::test_constraint[True-constraint_fn7-True-value7], test/distributions/test_constraints.py::test_constraint[True-constraint_fn8-False-value8], test/distributions/test_constraints.py::test_constraint[True-constraint_fn9-True-value9], test/distributions/test_constraints.py::test_constraint[True-constraint_fn10-False-value10], test/distributions/test_constraints.py::test_constraint[True-constraint_fn11-False-value11], test/distributions/test_constraints.py::test_constraint[True-constraint_fn12-True-value12], test/distributions/test_constraints.py::test_constraint[True-constraint_fn13-True-value13], test/distributions/test_constraints.py::test_constraint[True-constraint_fn14-False-value14], test/distributions/test_constraints.py::test_constraint[True-constraint_fn15-True-value15], test/distributions/test_constraints.py::test_constraint[True-constraint_fn16-True-value16], test/distributions/test_constraints.py::test_constraint[True-constraint_fn17-True-value17], test/distributions/test_constraints.py::test_biject_to[False-constraint_fn0-args0], test/distributions/test_constraints.py::test_biject_to[False-constraint_fn1-args1], test/distributions/test_constraints.py::test_biject_to[False-constraint_fn2-args2], test/distributions/test_constraints.py::test_biject_to[False-_GreaterThan-args3], test/distributions/test_constraints.py::test_biject_to[False-_GreaterThan-args4], test/distributions/test_constraints.py::test_biject_to[False-_GreaterThan-args5], test/distributions/test_constraints.py::test_biject_to[False-_GreaterThan-args6], test/distributions/test_constraints.py::test_biject_to[False-_GreaterThanEq-args7], test/distributions/test_constraints.py::test_biject_to[False-_GreaterThanEq-args8], test/distributions/test_constraints.py::test_biject_to[False-_GreaterThanEq-args9], test/distributions/test_constraints.py::test_biject_to[False-_LessThan-args10], test/distributions/test_constraints.py::test_biject_to[False-_LessThan-args11], test/distributions/test_constraints.py::test_biject_to[False-_LessThan-args12], test/distributions/test_constraints.py::test_biject_to[False-_LessThan-args13], test/distributions/test_constraints.py::test_biject_to[False-constraint_fn14-args14], test/distributions/test_constraints.py::test_biject_to[False-_Interval-args15], test/distributions/test_constraints.py::test_biject_to[False-_Interval-args16], test/distributions/test_constraints.py::test_biject_to[False-_Interval-args17], test/distributions/test_constraints.py::test_biject_to[False-_HalfOpenInterval-args18], test/distributions/test_constraints.py::test_biject_to[False-_HalfOpenInterval-args19], test/distributions/test_constraints.py::test_biject_to[False-_HalfOpenInterval-args20], test/distributions/test_constraints.py::test_biject_to[False-constraint_fn21-args21], test/distributions/test_constraints.py::test_biject_to[False-constraint_fn22-args22], test/distributions/test_constraints.py::test_biject_to[False-constraint_fn23-args23], test/distributions/test_constraints.py::test_biject_to[False-constraint_fn24-args24], test/distributions/test_constraints.py::test_biject_to[True-constraint_fn0-args0], test/distributions/test_constraints.py::test_biject_to[True-constraint_fn1-args1], test/distributions/test_constraints.py::test_biject_to[True-constraint_fn2-args2], test/distributions/test_constraints.py::test_biject_to[True-_GreaterThan-args3], test/distributions/test_constraints.py::test_biject_to[True-_GreaterThan-args4], test/distributions/test_constraints.py::test_biject_to[True-_GreaterThan-args5], test/distributions/test_constraints.py::test_biject_to[True-_GreaterThan-args6], test/distributions/test_constraints.py::test_biject_to[True-_GreaterThanEq-args7], test/distributions/test_constraints.py::test_biject_to[True-_GreaterThanEq-args8], test/distributions/test_constraints.py::test_biject_to[True-_GreaterThanEq-args9], test/distributions/test_constraints.py::test_biject_to[True-_LessThan-args10], test/distributions/test_constraints.py::test_biject_to[True-_LessThan-args11], test/distributions/test_constraints.py::test_biject_to[True-_LessThan-args12], test/distributions/test_constraints.py::test_biject_to[True-_LessThan-args13], test/distributions/test_constraints.py::test_biject_to[True-constraint_fn14-args14], test/distributions/test_constraints.py::test_biject_to[True-_Interval-args15], test/distributions/test_constraints.py::test_biject_to[True-_Interval-args16], test/distributions/test_constraints.py::test_biject_to[True-_Interval-args17], test/distributions/test_constraints.py::test_biject_to[True-_HalfOpenInterval-args18], test/distributions/test_constraints.py::test_biject_to[True-_HalfOpenInterval-args19], test/distributions/test_constraints.py::test_biject_to[True-_HalfOpenInterval-args20], test/distributions/test_constraints.py::test_biject_to[True-constraint_fn21-args21], test/distributions/test_constraints.py::test_biject_to[True-constraint_fn22-args22], test/distributions/test_constraints.py::test_biject_to[True-constraint_fn23-args23], test/distributions/test_constraints.py::test_biject_to[True-constraint_fn24-args24], test/distributions/test_constraints.py::test_transform_to[False-constraint_fn0-args0], test/distributions/test_constraints.py::test_transform_to[False-constraint_fn1-args1], test/distributions/test_constraints.py::test_transform_to[False-constraint_fn2-args2], test/distributions/test_constraints.py::test_transform_to[False-_GreaterThan-args3], test/distributions/test_constraints.py::test_transform_to[False-_GreaterThan-args4], test/distributions/test_constraints.py::test_transform_to[False-_GreaterThan-args5], test/distributions/test_constraints.py::test_transform_to[False-_GreaterThan-args6], test/distributions/test_constraints.py::test_transform_to[False-_GreaterThanEq-args7], test/distributions/test_constraints.py::test_transform_to[False-_GreaterThanEq-args8], test/distributions/test_constraints.py::test_transform_to[False-_GreaterThanEq-args9], test/distributions/test_constraints.py::test_transform_to[False-_LessThan-args10], test/distributions/test_constraints.py::test_transform_to[False-_LessThan-args11], test/distributions/test_constraints.py::test_transform_to[False-_LessThan-args12], test/distributions/test_constraints.py::test_transform_to[False-_LessThan-args13], test/distributions/test_constraints.py::test_transform_to[False-constraint_fn14-args14], test/distributions/test_constraints.py::test_transform_to[False-_Interval-args15], test/distributions/test_constraints.py::test_transform_to[False-_Interval-args16], test/distributions/test_constraints.py::test_transform_to[False-_Interval-args17], test/distributions/test_constraints.py::test_transform_to[False-_HalfOpenInterval-args18], test/distributions/test_constraints.py::test_transform_to[False-_HalfOpenInterval-args19], test/distributions/test_constraints.py::test_transform_to[False-_HalfOpenInterval-args20], test/distributions/test_constraints.py::test_transform_to[False-constraint_fn21-args21], test/distributions/test_constraints.py::test_transform_to[False-constraint_fn22-args22], test/distributions/test_constraints.py::test_transform_to[False-constraint_fn23-args23], test/distributions/test_constraints.py::test_transform_to[False-constraint_fn24-args24], test/distributions/test_constraints.py::test_transform_to[True-constraint_fn0-args0], test/distributions/test_constraints.py::test_transform_to[True-constraint_fn1-args1], test/distributions/test_constraints.py::test_transform_to[True-constraint_fn2-args2], test/distributions/test_constraints.py::test_transform_to[True-_GreaterThan-args3], test/distributions/test_constraints.py::test_transform_to[True-_GreaterThan-args4], test/distributions/test_constraints.py::test_transform_to[True-_GreaterThan-args5], test/distributions/test_constraints.py::test_transform_to[True-_GreaterThan-args6], test/distributions/test_constraints.py::test_transform_to[True-_GreaterThanEq-args7], test/distributions/test_constraints.py::test_transform_to[True-_GreaterThanEq-args8], test/distributions/test_constraints.py::test_transform_to[True-_GreaterThanEq-args9], test/distributions/test_constraints.py::test_transform_to[True-_LessThan-args10], test/distributions/test_constraints.py::test_transform_to[True-_LessThan-args11], test/distributions/test_constraints.py::test_transform_to[True-_LessThan-args12], test/distributions/test_constraints.py::test_transform_to[True-_LessThan-args13], test/distributions/test_constraints.py::test_transform_to[True-constraint_fn14-args14], test/distributions/test_constraints.py::test_transform_to[True-_Interval-args15], test/distributions/test_constraints.py::test_transform_to[True-_Interval-args16], test/distributions/test_constraints.py::test_transform_to[True-_Interval-args17], test/distributions/test_constraints.py::test_transform_to[True-_HalfOpenInterval-args18], test/distributions/test_constraints.py::test_transform_to[True-_HalfOpenInterval-args19], test/distributions/test_constraints.py::test_transform_to[True-_HalfOpenInterval-args20], test/distributions/test_constraints.py::test_transform_to[True-constraint_fn21-args21], test/distributions/test_constraints.py::test_transform_to[True-constraint_fn22-args22], test/distributions/test_constraints.py::test_transform_to[True-constraint_fn23-args23], test/distributions/test_constraints.py::test_transform_to[True-constraint_fn24-args24] 2023-01-11T20:43:17.8080193Z 2023-01-11T20:43:17.8080478Z distributions/test_constraints.py::test_constraint[False-constraint_fn0-False-value0] PASSED [ 0%] 2023-01-11T20:43:17.8081085Z distributions/test_constraints.py::test_constraint[False-constraint_fn1-False-value1] PASSED [ 1%] 2023-01-11T20:43:17.8081551Z distributions/test_constraints.py::test_constraint[False-constraint_fn2-False-value2] PASSED [ 2%] 2023-01-11T20:43:17.8082009Z distributions/test_constraints.py::test_constraint[False-constraint_fn3-True-value3] PASSED [ 2%] 2023-01-11T20:43:17.8082451Z distributions/test_constraints.py::test_constraint[False-constraint_fn4-False-value4] PASSED [ 3%] 2023-01-11T20:43:17.8082903Z distributions/test_constraints.py::test_constraint[False-constraint_fn5-False-value5] PASSED [ 4%] 2023-01-11T20:43:17.8083353Z distributions/test_constraints.py::test_constraint[False-constraint_fn6-True-value6] PASSED [ 5%] 2023-01-11T20:43:17.8083804Z distributions/test_constraints.py::test_constraint[False-constraint_fn7-True-value7] PASSED [ 5%] 2023-01-11T20:43:17.8084238Z distributions/test_constraints.py::test_constraint[False-constraint_fn8-False-value8] PASSED [ 6%] 2023-01-11T20:43:17.8084779Z distributions/test_constraints.py::test_constraint[False-constraint_fn9-True-value9] PASSED [ 7%] 2023-01-11T20:43:17.8085241Z distributions/test_constraints.py::test_constraint[False-constraint_fn10-False-value10] PASSED [ 8%] 2023-01-11T20:43:17.8085702Z distributions/test_constraints.py::test_constraint[False-constraint_fn11-False-value11] PASSED [ 8%] 2023-01-11T20:43:17.8086141Z distributions/test_constraints.py::test_constraint[False-constraint_fn12-True-value12] PASSED [ 9%] 2023-01-11T20:43:17.8086593Z distributions/test_constraints.py::test_constraint[False-constraint_fn13-True-value13] PASSED [ 10%] 2023-01-11T20:43:17.8087045Z distributions/test_constraints.py::test_constraint[False-constraint_fn14-False-value14] PASSED [ 11%] 2023-01-11T20:43:17.8087486Z distributions/test_constraints.py::test_constraint[False-constraint_fn15-True-value15] PASSED [ 11%] 2023-01-11T20:43:17.8087935Z distributions/test_constraints.py::test_constraint[False-constraint_fn16-True-value16] PASSED [ 12%] 2023-01-11T20:43:17.8088389Z distributions/test_constraints.py::test_constraint[False-constraint_fn17-True-value17] PASSED [ 13%] 2023-01-11T20:43:17.8088887Z distributions/test_constraints.py::test_constraint[True-constraint_fn0-False-value0] SKIPPED [ 13%] 2023-01-11T20:43:17.8089333Z distributions/test_constraints.py::test_constraint[True-constraint_fn1-False-value1] SKIPPED [ 14%] 2023-01-11T20:43:17.8089783Z distributions/test_constraints.py::test_constraint[True-constraint_fn2-False-value2] SKIPPED [ 15%] 2023-01-11T20:43:17.8090231Z distributions/test_constraints.py::test_constraint[True-constraint_fn3-True-value3] SKIPPED [ 16%] 2023-01-11T20:43:17.8090681Z distributions/test_constraints.py::test_constraint[True-constraint_fn4-False-value4] SKIPPED [ 16%] 2023-01-11T20:43:17.8091112Z distributions/test_constraints.py::test_constraint[True-constraint_fn5-False-value5] SKIPPED [ 17%] 2023-01-11T20:43:17.8091557Z distributions/test_constraints.py::test_constraint[True-constraint_fn6-True-value6] SKIPPED [ 18%] 2023-01-11T20:43:17.8092008Z distributions/test_constraints.py::test_constraint[True-constraint_fn7-True-value7] SKIPPED [ 19%] 2023-01-11T20:43:17.8092446Z distributions/test_constraints.py::test_constraint[True-constraint_fn8-False-value8] SKIPPED [ 19%] 2023-01-11T20:43:17.8093047Z distributions/test_constraints.py::test_constraint[True-constraint_fn9-True-value9] SKIPPED [ 20%] 2023-01-11T20:43:17.8093610Z distributions/test_constraints.py::test_constraint[True-constraint_fn10-False-value10] SKIPPED [ 21%] 2023-01-11T20:43:17.8094068Z distributions/test_constraints.py::test_constraint[True-constraint_fn11-False-value11] SKIPPED [ 22%] 2023-01-11T20:43:17.8094508Z distributions/test_constraints.py::test_constraint[True-constraint_fn12-True-value12] SKIPPED [ 22%] 2023-01-11T20:43:17.8094960Z distributions/test_constraints.py::test_constraint[True-constraint_fn13-True-value13] SKIPPED [ 23%] 2023-01-11T20:43:17.8095417Z distributions/test_constraints.py::test_constraint[True-constraint_fn14-False-value14] SKIPPED [ 24%] 2023-01-11T20:43:17.8095871Z distributions/test_constraints.py::test_constraint[True-constraint_fn15-True-value15] SKIPPED [ 25%] 2023-01-11T20:43:17.8096312Z distributions/test_constraints.py::test_constraint[True-constraint_fn16-True-value16] SKIPPED [ 25%] 2023-01-11T20:43:17.8096760Z distributions/test_constraints.py::test_constraint[True-constraint_fn17-True-value17] SKIPPED [ 26%] 2023-01-11T20:43:17.8097197Z distributions/test_constraints.py::test_biject_to[False-constraint_fn0-args0] PASSED [ 27%] 2023-01-11T20:43:17.8097611Z distributions/test_constraints.py::test_biject_to[False-constraint_fn1-args1] PASSED [ 27%] 2023-01-11T20:43:17.8098028Z distributions/test_constraints.py::test_biject_to[False-constraint_fn2-args2] PASSED [ 28%] 2023-01-11T20:43:17.8098449Z distributions/test_constraints.py::test_biject_to[False-_GreaterThan-args3] PASSED [ 29%] 2023-01-11T20:43:17.8098865Z distributions/test_constraints.py::test_biject_to[False-_GreaterThan-args4] PASSED [ 30%] 2023-01-11T20:43:17.8099312Z distributions/test_constraints.py::test_biject_to[False-_GreaterThan-args5] PASSED [ 30%] 2023-01-11T20:43:17.8099724Z distributions/test_constraints.py::test_biject_to[False-_GreaterThan-args6] PASSED [ 31%] 2023-01-11T20:43:17.8100148Z distributions/test_constraints.py::test_biject_to[False-_GreaterThanEq-args7] PASSED [ 32%] 2023-01-11T20:43:17.8100644Z distributions/test_constraints.py::test_biject_to[False-_GreaterThanEq-args8] PASSED [ 33%] 2023-01-11T20:43:17.8101067Z distributions/test_constraints.py::test_biject_to[False-_GreaterThanEq-args9] PASSED [ 33%] 2023-01-11T20:43:17.8101487Z distributions/test_constraints.py::test_biject_to[False-_LessThan-args10] PASSED [ 34%] 2023-01-11T20:43:17.8101898Z distributions/test_constraints.py::test_biject_to[False-_LessThan-args11] PASSED [ 35%] 2023-01-11T20:43:17.8102291Z distributions/test_constraints.py::test_biject_to[False-_LessThan-args12] PASSED [ 36%] 2023-01-11T20:43:17.8102698Z distributions/test_constraints.py::test_biject_to[False-_LessThan-args13] PASSED [ 36%] 2023-01-11T20:43:17.8103119Z distributions/test_constraints.py::test_biject_to[False-constraint_fn14-args14] PASSED [ 37%] 2023-01-11T20:43:17.8103570Z distributions/test_constraints.py::test_biject_to[False-_Interval-args15] PASSED [ 38%] 2023-01-11T20:43:17.8103964Z distributions/test_constraints.py::test_biject_to[False-_Interval-args16] PASSED [ 38%] 2023-01-11T20:43:17.8104368Z distributions/test_constraints.py::test_biject_to[False-_Interval-args17] PASSED [ 39%] 2023-01-11T20:43:17.8104798Z distributions/test_constraints.py::test_biject_to[False-_HalfOpenInterval-args18] PASSED [ 40%] 2023-01-11T20:43:17.8105229Z distributions/test_constraints.py::test_biject_to[False-_HalfOpenInterval-args19] PASSED [ 41%] 2023-01-11T20:43:17.8105663Z distributions/test_constraints.py::test_biject_to[False-_HalfOpenInterval-args20] PASSED [ 41%] 2023-01-11T20:43:17.8106094Z distributions/test_constraints.py::test_biject_to[False-constraint_fn21-args21] PASSED [ 42%] 2023-01-11T20:43:17.8106522Z distributions/test_constraints.py::test_biject_to[False-constraint_fn22-args22] PASSED [ 43%] 2023-01-11T20:43:17.8106934Z distributions/test_constraints.py::test_biject_to[False-constraint_fn23-args23] SKIPPED [ 44%] 2023-01-11T20:43:17.8107359Z distributions/test_constraints.py::test_biject_to[False-constraint_fn24-args24] SKIPPED [ 44%] 2023-01-11T20:43:17.8107781Z distributions/test_constraints.py::test_biject_to[True-constraint_fn0-args0] SKIPPED [ 45%] 2023-01-11T20:43:17.8108191Z distributions/test_constraints.py::test_biject_to[True-constraint_fn1-args1] SKIPPED [ 46%] 2023-01-11T20:43:17.8108610Z distributions/test_constraints.py::test_biject_to[True-constraint_fn2-args2] SKIPPED [ 47%] 2023-01-11T20:43:17.8109029Z distributions/test_constraints.py::test_biject_to[True-_GreaterThan-args3] SKIPPED [ 47%] 2023-01-11T20:43:17.8109448Z distributions/test_constraints.py::test_biject_to[True-_GreaterThan-args4] SKIPPED [ 48%] 2023-01-11T20:43:17.8109854Z distributions/test_constraints.py::test_biject_to[True-_GreaterThan-args5] SKIPPED [ 49%] 2023-01-11T20:43:17.8110268Z distributions/test_constraints.py::test_biject_to[True-_GreaterThan-args6] SKIPPED [ 50%] 2023-01-11T20:43:17.8110692Z distributions/test_constraints.py::test_biject_to[True-_GreaterThanEq-args7] SKIPPED [ 50%] 2023-01-11T20:43:17.8111123Z distributions/test_constraints.py::test_biject_to[True-_GreaterThanEq-args8] SKIPPED [ 51%] 2023-01-11T20:43:17.8111532Z distributions/test_constraints.py::test_biject_to[True-_GreaterThanEq-args9] SKIPPED [ 52%] 2023-01-11T20:43:17.8111946Z distributions/test_constraints.py::test_biject_to[True-_LessThan-args10] SKIPPED [ 52%] 2023-01-11T20:43:17.8112357Z distributions/test_constraints.py::test_biject_to[True-_LessThan-args11] SKIPPED [ 53%] 2023-01-11T20:43:17.8112750Z distributions/test_constraints.py::test_biject_to[True-_LessThan-args12] SKIPPED [ 54%] 2023-01-11T20:43:17.8113154Z distributions/test_constraints.py::test_biject_to[True-_LessThan-args13] SKIPPED [ 55%] 2023-01-11T20:43:17.8113607Z distributions/test_constraints.py::test_biject_to[True-constraint_fn14-args14] SKIPPED [ 55%] 2023-01-11T20:43:17.8114020Z distributions/test_constraints.py::test_biject_to[True-_Interval-args15] SKIPPED [ 56%] 2023-01-11T20:43:17.8114412Z distributions/test_constraints.py::test_biject_to[True-_Interval-args16] SKIPPED [ 57%] 2023-01-11T20:43:17.8114815Z distributions/test_constraints.py::test_biject_to[True-_Interval-args17] SKIPPED [ 58%] 2023-01-11T20:43:17.8115244Z distributions/test_constraints.py::test_biject_to[True-_HalfOpenInterval-args18] SKIPPED [ 58%] 2023-01-11T20:43:17.8115670Z distributions/test_constraints.py::test_biject_to[True-_HalfOpenInterval-args19] SKIPPED [ 59%] 2023-01-11T20:43:17.8116108Z distributions/test_constraints.py::test_biject_to[True-_HalfOpenInterval-args20] SKIPPED [ 60%] 2023-01-11T20:43:17.8116536Z distributions/test_constraints.py::test_biject_to[True-constraint_fn21-args21] SKIPPED [ 61%] 2023-01-11T20:43:17.8116960Z distributions/test_constraints.py::test_biject_to[True-constraint_fn22-args22] SKIPPED [ 61%] 2023-01-11T20:43:17.8117399Z distributions/test_constraints.py::test_biject_to[True-constraint_fn23-args23] SKIPPED [ 62%] 2023-01-11T20:43:17.8117818Z distributions/test_constraints.py::test_biject_to[True-constraint_fn24-args24] SKIPPED [ 63%] 2023-01-11T20:43:17.8118248Z distributions/test_constraints.py::test_transform_to[False-constraint_fn0-args0] PASSED [ 63%] 2023-01-11T20:43:17.8118672Z distributions/test_constraints.py::test_transform_to[False-constraint_fn1-args1] PASSED [ 64%] 2023-01-11T20:43:17.8119083Z distributions/test_constraints.py::test_transform_to[False-constraint_fn2-args2] PASSED [ 65%] 2023-01-11T20:43:17.8119506Z distributions/test_constraints.py::test_transform_to[False-_GreaterThan-args3] PASSED [ 66%] 2023-01-11T20:43:17.8119933Z distributions/test_constraints.py::test_transform_to[False-_GreaterThan-args4] PASSED [ 66%] 2023-01-11T20:43:17.8120348Z distributions/test_constraints.py::test_transform_to[False-_GreaterThan-args5] PASSED [ 67%] 2023-01-11T20:43:17.8120896Z distributions/test_constraints.py::test_transform_to[False-_GreaterThan-args6] PASSED [ 68%] 2023-01-11T20:43:17.8121330Z distributions/test_constraints.py::test_transform_to[False-_GreaterThanEq-args7] PASSED [ 69%] 2023-01-11T20:43:17.8121758Z distributions/test_constraints.py::test_transform_to[False-_GreaterThanEq-args8] PASSED [ 69%] 2023-01-11T20:43:17.8122174Z distributions/test_constraints.py::test_transform_to[False-_GreaterThanEq-args9] PASSED [ 70%] 2023-01-11T20:43:17.8122596Z distributions/test_constraints.py::test_transform_to[False-_LessThan-args10] PASSED [ 71%] 2023-01-11T20:43:17.8123016Z distributions/test_constraints.py::test_transform_to[False-_LessThan-args11] PASSED [ 72%] 2023-01-11T20:43:17.8123417Z distributions/test_constraints.py::test_transform_to[False-_LessThan-args12] PASSED [ 72%] 2023-01-11T20:43:17.8123831Z distributions/test_constraints.py::test_transform_to[False-_LessThan-args13] PASSED [ 73%] 2023-01-11T20:43:17.8124259Z distributions/test_constraints.py::test_transform_to[False-constraint_fn14-args14] PASSED [ 74%] 2023-01-11T20:43:17.8124690Z distributions/test_constraints.py::test_transform_to[False-_Interval-args15] PASSED [ 75%] 2023-01-11T20:43:17.8125091Z distributions/test_constraints.py::test_transform_to[False-_Interval-args16] PASSED [ 75%] 2023-01-11T20:43:17.8125505Z distributions/test_constraints.py::test_transform_to[False-_Interval-args17] PASSED [ 76%] 2023-01-11T20:43:17.8125939Z distributions/test_constraints.py::test_transform_to[False-_HalfOpenInterval-args18] PASSED [ 77%] 2023-01-11T20:43:17.8126394Z distributions/test_constraints.py::test_transform_to[False-_HalfOpenInterval-args19] PASSED [ 77%] 2023-01-11T20:43:17.8126835Z distributions/test_constraints.py::test_transform_to[False-_HalfOpenInterval-args20] PASSED [ 78%] 2023-01-11T20:43:17.8127280Z distributions/test_constraints.py::test_transform_to[False-constraint_fn21-args21] PASSED [ 79%] 2023-01-11T20:43:17.8127778Z distributions/test_constraints.py::test_transform_to[False-constraint_fn22-args22] PASSED [ 80%] 2023-01-11T20:43:17.8128195Z distributions/test_constraints.py::test_transform_to[False-constraint_fn23-args23] PASSED [ 80%] 2023-01-11T20:43:17.8128621Z distributions/test_constraints.py::test_transform_to[False-constraint_fn24-args24] PASSED [ 81%] 2023-01-11T20:43:17.8129050Z distributions/test_constraints.py::test_transform_to[True-constraint_fn0-args0] SKIPPED [ 82%] 2023-01-11T20:43:17.8129475Z distributions/test_constraints.py::test_transform_to[True-constraint_fn1-args1] SKIPPED [ 83%] 2023-01-11T20:43:17.8129889Z distributions/test_constraints.py::test_transform_to[True-constraint_fn2-args2] SKIPPED [ 83%] 2023-01-11T20:43:17.8130311Z distributions/test_constraints.py::test_transform_to[True-_GreaterThan-args3] SKIPPED [ 84%] 2023-01-11T20:43:17.8130736Z distributions/test_constraints.py::test_transform_to[True-_GreaterThan-args4] SKIPPED [ 85%] 2023-01-11T20:43:17.8131160Z distributions/test_constraints.py::test_transform_to[True-_GreaterThan-args5] SKIPPED [ 86%] 2023-01-11T20:43:17.8131568Z distributions/test_constraints.py::test_transform_to[True-_GreaterThan-args6] SKIPPED [ 86%] 2023-01-11T20:43:17.8132054Z distributions/test_constraints.py::test_transform_to[True-_GreaterThanEq-args7] SKIPPED [ 87%] 2023-01-11T20:43:17.8132488Z distributions/test_constraints.py::test_transform_to[True-_GreaterThanEq-args8] SKIPPED [ 88%] 2023-01-11T20:43:17.8132906Z distributions/test_constraints.py::test_transform_to[True-_GreaterThanEq-args9] SKIPPED [ 88%] 2023-01-11T20:43:17.8133327Z distributions/test_constraints.py::test_transform_to[True-_LessThan-args10] SKIPPED [ 89%] 2023-01-11T20:43:17.8133747Z distributions/test_constraints.py::test_transform_to[True-_LessThan-args11] SKIPPED [ 90%] 2023-01-11T20:43:17.8134159Z distributions/test_constraints.py::test_transform_to[True-_LessThan-args12] SKIPPED [ 91%] 2023-01-11T20:43:17.8134558Z distributions/test_constraints.py::test_transform_to[True-_LessThan-args13] SKIPPED [ 91%] 2023-01-11T20:43:17.8134990Z distributions/test_constraints.py::test_transform_to[True-constraint_fn14-args14] SKIPPED [ 92%] 2023-01-11T20:43:17.8135417Z distributions/test_constraints.py::test_transform_to[True-_Interval-args15] SKIPPED [ 93%] 2023-01-11T20:43:17.8135819Z distributions/test_constraints.py::test_transform_to[True-_Interval-args16] SKIPPED [ 94%] 2023-01-11T20:43:17.8136231Z distributions/test_constraints.py::test_transform_to[True-_Interval-args17] SKIPPED [ 94%] 2023-01-11T20:43:17.8136667Z distributions/test_constraints.py::test_transform_to[True-_HalfOpenInterval-args18] SKIPPED [ 95%] 2023-01-11T20:43:17.8137121Z distributions/test_constraints.py::test_transform_to[True-_HalfOpenInterval-args19] SKIPPED [ 96%] 2023-01-11T20:43:17.8137559Z distributions/test_constraints.py::test_transform_to[True-_HalfOpenInterval-args20] SKIPPED [ 97%] 2023-01-11T20:43:17.8138007Z distributions/test_constraints.py::test_transform_to[True-constraint_fn21-args21] SKIPPED [ 97%] 2023-01-11T20:43:17.8138443Z distributions/test_constraints.py::test_transform_to[True-constraint_fn22-args22] SKIPPED [ 98%] 2023-01-11T20:43:17.8138871Z distributions/test_constraints.py::test_transform_to[True-constraint_fn23-args23] SKIPPED [ 99%] 2023-01-11T20:43:17.8139298Z distributions/test_constraints.py::test_transform_to[True-constraint_fn24-args24] SKIPPED [100%] 2023-01-11T20:43:17.8139496Z 2023-01-11T20:43:17.8139614Z ======================== 66 passed, 70 skipped in 4.29s ======================== 2023-01-11T20:43:17.8139759Z 2023-01-11T20:43:17.8140047Z ##[endgroup] 2023-01-11T20:43:17.8140563Z FINISHED PRINTING LOG FILE of distributions/test_constraints (/var/lib/jenkins/workspace/test/test-reports/distributions-test_constraints_6a33t33x) 2023-01-11T20:43:17.8140819Z 2023-01-11T20:43:23.4965400Z No CUDA runtime is found, using CUDA_HOME='/usr/local/cuda' 2023-01-11T20:43:23.6863882Z Ignoring disabled issues: ['91003'] 2023-01-11T20:43:24.4058871Z Running inductor/test_perf ... [2023-01-11 20:43:24.405515] 2023-01-11T20:43:24.4060820Z Executing ['/opt/conda/bin/python', '-bb', 'inductor/test_perf.py', '-v', '--import-slow-tests', '--import-disabled-tests'] ... [2023-01-11 20:43:24.405837] 2023-01-11T20:43:46.7378717Z 2023-01-11T20:43:46.7379228Z Expand the folded group to see the log file of inductor/test_perf 2023-01-11T20:43:46.7381929Z ##[group]PRINTING LOG FILE of inductor/test_perf (/var/lib/jenkins/workspace/test/test-reports/inductor-test_perf_aove2ntw) 2023-01-11T20:43:46.7382577Z No CUDA runtime is found, using CUDA_HOME='/usr/local/cuda' 2023-01-11T20:43:46.7382719Z 2023-01-11T20:43:46.7382939Z ##[endgroup] 2023-01-11T20:43:46.7383339Z FINISHED PRINTING LOG FILE of inductor/test_perf (/var/lib/jenkins/workspace/test/test-reports/inductor-test_perf_aove2ntw) 2023-01-11T20:43:46.7383562Z 2023-01-11T20:43:51.5845527Z No CUDA runtime is found, using CUDA_HOME='/usr/local/cuda' 2023-01-11T20:43:51.7530126Z Ignoring disabled issues: ['91003'] 2023-01-11T20:43:51.7870209Z Running nn/test_init ... [2023-01-11 20:43:51.786588] 2023-01-11T20:43:51.7871963Z Executing ['/opt/conda/bin/python', '-bb', 'nn/test_init.py', '-v', '--import-slow-tests', '--import-disabled-tests'] ... [2023-01-11 20:43:51.786963] 2023-01-11T20:43:57.0916440Z 2023-01-11T20:43:57.0916907Z Expand the folded group to see the log file of nn/test_init 2023-01-11T20:43:57.0917738Z ##[group]PRINTING LOG FILE of nn/test_init (/var/lib/jenkins/workspace/test/test-reports/nn-test_init_jzeh7c2c) 2023-01-11T20:43:57.0918022Z 2023-01-11T20:43:57.0918322Z ##[endgroup] 2023-01-11T20:43:57.0918953Z FINISHED PRINTING LOG FILE of nn/test_init (/var/lib/jenkins/workspace/test/test-reports/nn-test_init_jzeh7c2c) 2023-01-11T20:43:57.0919224Z 2023-01-11T20:44:01.9569011Z No CUDA runtime is found, using CUDA_HOME='/usr/local/cuda' 2023-01-11T20:44:02.1170110Z Ignoring disabled issues: ['91003'] 2023-01-11T20:44:02.1365396Z Running test_cuda_sanitizer ... [2023-01-11 20:44:02.136232] 2023-01-11T20:44:02.1367792Z Executing ['/opt/conda/bin/python', '-bb', 'test_cuda_sanitizer.py', '-v', '--import-slow-tests', '--import-disabled-tests'] ... [2023-01-11 20:44:02.136527] 2023-01-11T20:44:06.4185294Z 2023-01-11T20:44:06.4185850Z Expand the folded group to see the log file of test_cuda_sanitizer 2023-01-11T20:44:06.4186999Z ##[group]PRINTING LOG FILE of test_cuda_sanitizer (/var/lib/jenkins/workspace/test/test-reports/test_cuda_sanitizer_in_skg_v) 2023-01-11T20:44:06.4187323Z CUDA not available, skipping tests 2023-01-11T20:44:06.4187458Z 2023-01-11T20:44:06.4187530Z Running tests... 2023-01-11T20:44:06.4187923Z ---------------------------------------------------------------------- 2023-01-11T20:44:06.4188094Z 2023-01-11T20:44:06.4190091Z ---------------------------------------------------------------------- 2023-01-11T20:44:06.4190373Z Ran 0 tests in 0.000s 2023-01-11T20:44:06.4190520Z 2023-01-11T20:44:06.4193075Z OK 2023-01-11T20:44:06.4193613Z 2023-01-11T20:44:06.4193834Z Generating XML reports... 2023-01-11T20:44:06.4194395Z Test results will be stored in test-reports/python-unittest/test_cuda_sanitizer 2023-01-11T20:44:06.4194744Z 2023-01-11T20:44:06.4196496Z ##[endgroup] 2023-01-11T20:44:06.4197661Z FINISHED PRINTING LOG FILE of test_cuda_sanitizer (/var/lib/jenkins/workspace/test/test-reports/test_cuda_sanitizer_in_skg_v) 2023-01-11T20:44:06.4198390Z 2023-01-11T20:44:11.2226184Z No CUDA runtime is found, using CUDA_HOME='/usr/local/cuda' 2023-01-11T20:44:11.3937796Z Ignoring disabled issues: ['91003'] 2023-01-11T20:44:11.4134267Z Running test_matmul_cuda ... [2023-01-11 20:44:11.413076] 2023-01-11T20:44:11.4135912Z Executing ['/opt/conda/bin/python', '-bb', 'test_matmul_cuda.py', '-v', '--import-slow-tests', '--import-disabled-tests'] ... [2023-01-11 20:44:11.413374] 2023-01-11T20:44:16.0726265Z 2023-01-11T20:44:16.0726839Z Expand the folded group to see the log file of test_matmul_cuda 2023-01-11T20:44:16.0727846Z ##[group]PRINTING LOG FILE of test_matmul_cuda (/var/lib/jenkins/workspace/test/test-reports/test_matmul_cuda_lcbvfibb) 2023-01-11T20:44:16.0728451Z 2023-01-11T20:44:16.0736068Z Running tests... 2023-01-11T20:44:16.0736783Z ---------------------------------------------------------------------- 2023-01-11T20:44:16.0737097Z 2023-01-11T20:44:16.0737501Z ---------------------------------------------------------------------- 2023-01-11T20:44:16.0737925Z Ran 0 tests in 0.000s 2023-01-11T20:44:16.0738135Z 2023-01-11T20:44:16.0738237Z OK 2023-01-11T20:44:16.0738373Z 2023-01-11T20:44:16.0738462Z Generating XML reports... 2023-01-11T20:44:16.0738785Z Test results will be stored in test-reports/python-unittest/test_matmul_cuda 2023-01-11T20:44:16.0738967Z 2023-01-11T20:44:16.0742068Z ##[endgroup] 2023-01-11T20:44:16.0742900Z FINISHED PRINTING LOG FILE of test_matmul_cuda (/var/lib/jenkins/workspace/test/test-reports/test_matmul_cuda_lcbvfibb) 2023-01-11T20:44:16.0743283Z 2023-01-11T20:44:20.9566411Z No CUDA runtime is found, using CUDA_HOME='/usr/local/cuda' 2023-01-11T20:44:21.1169496Z Ignoring disabled issues: ['91003'] 2023-01-11T20:44:21.1365893Z Running dynamo/test_minifier ... [2023-01-11 20:44:21.136328] 2023-01-11T20:44:21.1368670Z Executing ['/opt/conda/bin/python', '-bb', 'dynamo/test_minifier.py', '-v', '--import-slow-tests', '--import-disabled-tests'] ... [2023-01-11 20:44:21.136596] 2023-01-11T20:46:10.5546575Z 2023-01-11T20:46:10.5547060Z Expand the folded group to see the log file of dynamo/test_minifier 2023-01-11T20:46:10.5548107Z ##[group]PRINTING LOG FILE of dynamo/test_minifier (/var/lib/jenkins/workspace/test/test-reports/dynamo-test_minifier_kqxkcife) 2023-01-11T20:46:10.5550512Z Test results will be stored in test-reports/python-unittest/dynamo.test_minifier 2023-01-11T20:46:10.5550863Z 2023-01-11T20:46:10.5550945Z Running tests... 2023-01-11T20:46:10.5551282Z ---------------------------------------------------------------------- 2023-01-11T20:46:10.5551686Z test_after_dynamo_cpu_accuracy_backend_passes (__main__.MinifierTests) ... ok (4.545s) 2023-01-11T20:46:10.5552199Z test_after_dynamo_cpu_accuracy_error (__main__.MinifierTests) ... ok (13.287s) 2023-01-11T20:46:10.5552697Z test_after_dynamo_cpu_compile_backend_passes (__main__.MinifierTests) ... ok (4.355s) 2023-01-11T20:46:10.5553240Z test_after_dynamo_cpu_compile_error (__main__.MinifierTests) ... ok (12.964s) 2023-01-11T20:46:10.5553703Z test_after_dynamo_cpu_runtime_backend_passes (__main__.MinifierTests) ... ok (4.358s) 2023-01-11T20:46:10.5554014Z test_after_dynamo_cpu_runtime_error (__main__.MinifierTests) ... ok (12.817s) 2023-01-11T20:46:10.5554449Z test_after_dynamo_cuda_accuracy_backend_passes (__main__.MinifierTests) ... skip: requires cuda (0.001s) 2023-01-11T20:46:10.5554959Z test_after_dynamo_cuda_accuracy_error (__main__.MinifierTests) ... skip: requires cuda (0.000s) 2023-01-11T20:46:10.5555447Z test_after_dynamo_cuda_compile_backend_passes (__main__.MinifierTests) ... skip: requires cuda (0.000s) 2023-01-11T20:46:10.5555800Z test_after_dynamo_cuda_compile_error (__main__.MinifierTests) ... skip: requires cuda (0.000s) 2023-01-11T20:46:10.5556186Z test_after_dynamo_cuda_runtime_backend_passes (__main__.MinifierTests) ... skip: requires cuda (0.000s) 2023-01-11T20:46:10.5556694Z test_after_dynamo_cuda_runtime_error (__main__.MinifierTests) ... skip: requires cuda (0.000s) 2023-01-11T20:46:10.5557143Z test_after_dynamo_custom_backend (__main__.MinifierTests) ... ok (8.717s) 2023-01-11T20:46:10.5557671Z test_after_dynamo_with_modified_config_cpu_accuracy_error (__main__.MinifierTests) ... ok (12.972s) 2023-01-11T20:46:10.5558229Z test_after_dynamo_with_modified_config_cpu_compile_error (__main__.MinifierTests) ... ok (12.981s) 2023-01-11T20:46:10.5558941Z test_cpu_cuda_module_after_dynamo (__main__.MinifierTests) ... skip: requires cuda (0.002s) 2023-01-11T20:46:10.5559608Z test_dynamo_config_serialization (__main__.MinifierTests) ... ok (4.286s) 2023-01-11T20:46:10.5560214Z test_if_graph_minified (__main__.MinifierTests) ... ok (13.505s) 2023-01-11T20:46:10.5560533Z 2023-01-11T20:46:10.5561418Z ---------------------------------------------------------------------- 2023-01-11T20:46:10.5561932Z Ran 18 tests in 104.839s 2023-01-11T20:46:10.5562173Z 2023-01-11T20:46:10.5562319Z OK (skipped=7) 2023-01-11T20:46:10.5562541Z 2023-01-11T20:46:10.5562706Z Generating XML reports... 2023-01-11T20:46:10.5563607Z Generated XML report: test-reports/python-unittest/dynamo.test_minifier/TEST-MinifierTests-20230111204424.xml 2023-01-11T20:46:10.5564105Z 2023-01-11T20:46:10.5564662Z ##[endgroup] 2023-01-11T20:46:10.5640239Z FINISHED PRINTING LOG FILE of dynamo/test_minifier (/var/lib/jenkins/workspace/test/test-reports/dynamo-test_minifier_kqxkcife) 2023-01-11T20:46:10.5640480Z 2023-01-11T20:46:15.4903405Z No CUDA runtime is found, using CUDA_HOME='/usr/local/cuda' 2023-01-11T20:46:15.6613603Z Ignoring disabled issues: ['91003'] 2023-01-11T20:46:15.7974482Z Running test_view_ops ... [2023-01-11 20:46:15.797058] 2023-01-11T20:46:15.7975997Z Executing ['/opt/conda/bin/python', '-bb', 'test_view_ops.py', '-v', '--import-slow-tests', '--import-disabled-tests'] ... [2023-01-11 20:46:15.797369] 2023-01-11T20:47:10.2679227Z 2023-01-11T20:47:10.2679748Z Expand the folded group to see the log file of test_view_ops 2023-01-11T20:47:10.2681382Z ##[group]PRINTING LOG FILE of test_view_ops (/var/lib/jenkins/workspace/test/test-reports/test_view_ops_gjmfh89f) 2023-01-11T20:47:10.2686125Z Test results will be stored in test-reports/python-unittest/test_view_ops 2023-01-11T20:47:10.2722610Z 2023-01-11T20:47:10.2722847Z Running tests... 2023-01-11T20:47:10.2723471Z ---------------------------------------------------------------------- 2023-01-11T20:47:10.2725096Z test_T_cpu (__main__.TestOldViewOpsCPU) ... test_view_ops.py:1305: UserWarning: The use of `x.T` on tensors of dimension other than 2 to reverse their shape is deprecated and it will throw an error in a future release. Consider `x.mT` to transpose batches of matrices or `x.permute(*torch.arange(x.ndim - 1, -1, -1))` to reverse the dimensions of a tensor. (Triggered internally at /var/lib/jenkins/workspace/aten/src/ATen/native/TensorShape.cpp:3542.) 2023-01-11T20:47:10.2726049Z t1 = a.T 2023-01-11T20:47:10.2726320Z ok (0.012s) 2023-01-11T20:47:10.2726718Z test_atleast_cpu_complex128 (__main__.TestOldViewOpsCPU) ... ok (2.304s) 2023-01-11T20:47:10.2727236Z test_atleast_cpu_complex64 (__main__.TestOldViewOpsCPU) ... ok (2.171s) 2023-01-11T20:47:10.2727781Z test_atleast_cpu_float16 (__main__.TestOldViewOpsCPU) ... ok (1.693s) 2023-01-11T20:47:10.2728314Z test_atleast_cpu_float32 (__main__.TestOldViewOpsCPU) ... ok (1.704s) 2023-01-11T20:47:10.2728847Z test_atleast_cpu_float64 (__main__.TestOldViewOpsCPU) ... ok (1.558s) 2023-01-11T20:47:10.2729168Z test_atleast_cpu_int16 (__main__.TestOldViewOpsCPU) ... ok (0.389s) 2023-01-11T20:47:10.2729451Z test_atleast_cpu_int32 (__main__.TestOldViewOpsCPU) ... ok (0.407s) 2023-01-11T20:47:10.2729730Z test_atleast_cpu_int64 (__main__.TestOldViewOpsCPU) ... ok (0.337s) 2023-01-11T20:47:10.2729997Z test_atleast_cpu_int8 (__main__.TestOldViewOpsCPU) ... ok (0.397s) 2023-01-11T20:47:10.2730287Z test_atleast_cpu_uint8 (__main__.TestOldViewOpsCPU) ... ok (0.392s) 2023-01-11T20:47:10.2730582Z test_atleast_gradient_cpu (__main__.TestOldViewOpsCPU) ... ok (0.477s) 2023-01-11T20:47:10.2730874Z test_big_transpose_cpu (__main__.TestOldViewOpsCPU) ... ok (0.112s) 2023-01-11T20:47:10.2731148Z test_broadcast_shapes_cpu (__main__.TestOldViewOpsCPU) ... ok (0.016s) 2023-01-11T20:47:10.2731452Z test_broadcast_tensors_cpu_float32 (__main__.TestOldViewOpsCPU) ... ok (0.002s) 2023-01-11T20:47:10.2732612Z test_broadcast_to_cpu_bool (__main__.TestOldViewOpsCPU) ... /opt/conda/lib/python3.7/site-packages/torch/testing/_comparison.py:679: UserWarning: The given NumPy array is not writable, and PyTorch does not support non-writable tensors. This means writing to this tensor will result in undefined behavior. You may want to copy the array to protect its data or make it writable before converting it to a tensor. This type of warning will be suppressed for the rest of this program. (Triggered internally at /var/lib/jenkins/workspace/torch/csrc/utils/tensor_numpy.cpp:210.) 2023-01-11T20:47:10.2733562Z return torch.as_tensor(tensor_like) 2023-01-11T20:47:10.2733756Z ok (0.095s) 2023-01-11T20:47:10.2733985Z test_broadcast_to_cpu_complex128 (__main__.TestOldViewOpsCPU) ... ok (0.088s) 2023-01-11T20:47:10.2734296Z test_broadcast_to_cpu_complex64 (__main__.TestOldViewOpsCPU) ... ok (0.088s) 2023-01-11T20:47:10.2734598Z test_broadcast_to_cpu_float16 (__main__.TestOldViewOpsCPU) ... ok (0.084s) 2023-01-11T20:47:10.2734885Z test_broadcast_to_cpu_float32 (__main__.TestOldViewOpsCPU) ... ok (0.085s) 2023-01-11T20:47:10.2735178Z test_broadcast_to_cpu_float64 (__main__.TestOldViewOpsCPU) ... ok (0.083s) 2023-01-11T20:47:10.2735474Z test_broadcast_to_cpu_int16 (__main__.TestOldViewOpsCPU) ... ok (0.077s) 2023-01-11T20:47:10.2735764Z test_broadcast_to_cpu_int32 (__main__.TestOldViewOpsCPU) ... ok (0.077s) 2023-01-11T20:47:10.2736040Z test_broadcast_to_cpu_int64 (__main__.TestOldViewOpsCPU) ... ok (0.075s) 2023-01-11T20:47:10.2736330Z test_broadcast_to_cpu_int8 (__main__.TestOldViewOpsCPU) ... ok (0.077s) 2023-01-11T20:47:10.2736688Z test_broadcast_to_cpu_uint8 (__main__.TestOldViewOpsCPU) ... ok (0.077s) 2023-01-11T20:47:10.2736956Z test_chunk_cpu (__main__.TestOldViewOpsCPU) ... ok (0.013s) 2023-01-11T20:47:10.2737248Z test_conj_neg_view_numpy_error_cpu (__main__.TestOldViewOpsCPU) ... ok (0.067s) 2023-01-11T20:47:10.2737851Z test_contiguous_cpu (__main__.TestOldViewOpsCPU) ... test_view_ops.py:1683: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T20:47:10.2738380Z x.set_(x.storage(), 0, x.size(), stride) 2023-01-11T20:47:10.2738556Z ok (0.002s) 2023-01-11T20:47:10.2739123Z test_crow_col_indices_cpu (__main__.TestOldViewOpsCPU) ... test_view_ops.py:1837: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /var/lib/jenkins/workspace/aten/src/ATen/SparseCsrTensorImpl.cpp:56.) 2023-01-11T20:47:10.2739717Z t = torch.sparse_csr_tensor(crow_indices, col_indices, values, size=(2, 2)) 2023-01-11T20:47:10.2740219Z ok (0.007s) 2023-01-11T20:47:10.2740436Z test_empty_reshape_cpu (__main__.TestOldViewOpsCPU) ... ok (0.008s) 2023-01-11T20:47:10.2740717Z test_expand_cpu (__main__.TestOldViewOpsCPU) ... ok (0.018s) 2023-01-11T20:47:10.2740990Z test_flatten_cpu (__main__.TestOldViewOpsCPU) ... ok (0.049s) 2023-01-11T20:47:10.2741279Z test_memory_format_resize__cpu (__main__.TestOldViewOpsCPU) ... ok (0.007s) 2023-01-11T20:47:10.2741573Z test_memory_format_resize_as_cpu (__main__.TestOldViewOpsCPU) ... ok (0.017s) 2023-01-11T20:47:10.2741863Z test_narrow_cpu (__main__.TestOldViewOpsCPU) ... ok (0.006s) 2023-01-11T20:47:10.2742138Z test_narrow_tensor_cpu (__main__.TestOldViewOpsCPU) ... ok (0.026s) 2023-01-11T20:47:10.2742415Z test_python_types_cpu (__main__.TestOldViewOpsCPU) ... ok (0.003s) 2023-01-11T20:47:10.2742691Z test_ravel_cpu (__main__.TestOldViewOpsCPU) ... ok (0.018s) 2023-01-11T20:47:10.2742961Z test_reshape_cpu (__main__.TestOldViewOpsCPU) ... ok (0.011s) 2023-01-11T20:47:10.2743567Z test_reshape_view_semantics_cpu_bfloat16 (__main__.TestOldViewOpsCPU) ... test_view_ops.py:1669: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T20:47:10.2744162Z self.assertEqual(tensor.storage().data_ptr(), view_tensor.storage().data_ptr()) 2023-01-11T20:47:10.2744712Z test_view_ops.py:1675: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T20:47:10.2745292Z self.assertNotEqual(tensor.storage().data_ptr(), copy_tensor.storage().data_ptr()) 2023-01-11T20:47:10.2745539Z ok (0.004s) 2023-01-11T20:47:10.2745769Z test_reshape_view_semantics_cpu_bool (__main__.TestOldViewOpsCPU) ... ok (0.003s) 2023-01-11T20:47:10.2746150Z test_reshape_view_semantics_cpu_complex128 (__main__.TestOldViewOpsCPU) ... ok (0.003s) 2023-01-11T20:47:10.2746481Z test_reshape_view_semantics_cpu_complex64 (__main__.TestOldViewOpsCPU) ... ok (0.002s) 2023-01-11T20:47:10.2746808Z test_reshape_view_semantics_cpu_float16 (__main__.TestOldViewOpsCPU) ... ok (0.002s) 2023-01-11T20:47:10.2747113Z test_reshape_view_semantics_cpu_float32 (__main__.TestOldViewOpsCPU) ... ok (0.002s) 2023-01-11T20:47:10.2747433Z test_reshape_view_semantics_cpu_float64 (__main__.TestOldViewOpsCPU) ... ok (0.002s) 2023-01-11T20:47:10.2747751Z test_reshape_view_semantics_cpu_int16 (__main__.TestOldViewOpsCPU) ... ok (0.002s) 2023-01-11T20:47:10.2748084Z test_reshape_view_semantics_cpu_int32 (__main__.TestOldViewOpsCPU) ... ok (0.002s) 2023-01-11T20:47:10.2748395Z test_reshape_view_semantics_cpu_int64 (__main__.TestOldViewOpsCPU) ... ok (0.002s) 2023-01-11T20:47:10.2748707Z test_reshape_view_semantics_cpu_int8 (__main__.TestOldViewOpsCPU) ... ok (0.002s) 2023-01-11T20:47:10.2749021Z test_reshape_view_semantics_cpu_uint8 (__main__.TestOldViewOpsCPU) ... ok (0.002s) 2023-01-11T20:47:10.2749324Z test_resize_all_dtypes_and_devices_cpu (__main__.TestOldViewOpsCPU) ... ok (0.002s) 2023-01-11T20:47:10.2749642Z test_resize_as_all_dtypes_and_devices_cpu (__main__.TestOldViewOpsCPU) ... ok (0.003s) 2023-01-11T20:47:10.2749957Z test_resize_as_preserves_strides_cpu (__main__.TestOldViewOpsCPU) ... ok (0.001s) 2023-01-11T20:47:10.2750251Z test_resize_overflow_cpu (__main__.TestOldViewOpsCPU) ... ok (0.029s) 2023-01-11T20:47:10.2750529Z test_split_cpu (__main__.TestOldViewOpsCPU) ... ok (0.009s) 2023-01-11T20:47:10.2750793Z test_t_cpu (__main__.TestOldViewOpsCPU) ... ok (0.040s) 2023-01-11T20:47:10.2751073Z test_tensor_split_errors_cpu (__main__.TestOldViewOpsCPU) ... ok (0.082s) 2023-01-11T20:47:10.2751367Z test_tensor_split_indices_cpu_bool (__main__.TestOldViewOpsCPU) ... ok (0.406s) 2023-01-11T20:47:10.2751679Z test_tensor_split_indices_cpu_complex128 (__main__.TestOldViewOpsCPU) ... ok (0.772s) 2023-01-11T20:47:10.2751999Z test_tensor_split_indices_cpu_complex64 (__main__.TestOldViewOpsCPU) ... ok (0.823s) 2023-01-11T20:47:10.2752301Z test_tensor_split_indices_cpu_float16 (__main__.TestOldViewOpsCPU) ... ok (0.753s) 2023-01-11T20:47:10.2752610Z test_tensor_split_indices_cpu_float32 (__main__.TestOldViewOpsCPU) ... ok (0.691s) 2023-01-11T20:47:10.2752924Z test_tensor_split_indices_cpu_float64 (__main__.TestOldViewOpsCPU) ... ok (0.641s) 2023-01-11T20:47:10.2753235Z test_tensor_split_indices_cpu_int16 (__main__.TestOldViewOpsCPU) ... ok (0.422s) 2023-01-11T20:47:10.2753534Z test_tensor_split_indices_cpu_int32 (__main__.TestOldViewOpsCPU) ... ok (0.398s) 2023-01-11T20:47:10.2753840Z test_tensor_split_indices_cpu_int64 (__main__.TestOldViewOpsCPU) ... ok (0.332s) 2023-01-11T20:47:10.2754147Z test_tensor_split_indices_cpu_int8 (__main__.TestOldViewOpsCPU) ... ok (0.446s) 2023-01-11T20:47:10.2754441Z test_tensor_split_indices_cpu_uint8 (__main__.TestOldViewOpsCPU) ... ok (0.387s) 2023-01-11T20:47:10.2754749Z test_tensor_split_sections_cpu_bool (__main__.TestOldViewOpsCPU) ... ok (1.297s) 2023-01-11T20:47:10.2755065Z test_tensor_split_sections_cpu_complex128 (__main__.TestOldViewOpsCPU) ... ok (2.726s) 2023-01-11T20:47:10.2755385Z test_tensor_split_sections_cpu_complex64 (__main__.TestOldViewOpsCPU) ... ok (2.933s) 2023-01-11T20:47:10.2755689Z test_tensor_split_sections_cpu_float16 (__main__.TestOldViewOpsCPU) ... ok (2.229s) 2023-01-11T20:47:10.2756037Z test_tensor_split_sections_cpu_float32 (__main__.TestOldViewOpsCPU) ... ok (2.193s) 2023-01-11T20:47:10.2756348Z test_tensor_split_sections_cpu_float64 (__main__.TestOldViewOpsCPU) ... ok (2.020s) 2023-01-11T20:47:10.2756642Z test_tensor_split_sections_cpu_int16 (__main__.TestOldViewOpsCPU) ... ok (1.191s) 2023-01-11T20:47:10.2756952Z test_tensor_split_sections_cpu_int32 (__main__.TestOldViewOpsCPU) ... ok (1.252s) 2023-01-11T20:47:10.2757259Z test_tensor_split_sections_cpu_int64 (__main__.TestOldViewOpsCPU) ... ok (1.069s) 2023-01-11T20:47:10.2757567Z test_tensor_split_sections_cpu_int8 (__main__.TestOldViewOpsCPU) ... ok (1.202s) 2023-01-11T20:47:10.2757864Z test_tensor_split_sections_cpu_uint8 (__main__.TestOldViewOpsCPU) ... ok (1.181s) 2023-01-11T20:47:10.2758177Z test_transpose_invalid_cpu_complex128 (__main__.TestOldViewOpsCPU) ... ok (0.072s) 2023-01-11T20:47:10.2758495Z test_transpose_invalid_cpu_float32 (__main__.TestOldViewOpsCPU) ... ok (0.070s) 2023-01-11T20:47:10.2758792Z test_transpose_invalid_cpu_int64 (__main__.TestOldViewOpsCPU) ... ok (0.075s) 2023-01-11T20:47:10.2759141Z test_transpose_vs_numpy_cpu_complex128 (__main__.TestOldViewOpsCPU) ... ok (0.227s) 2023-01-11T20:47:10.2759455Z test_transpose_vs_numpy_cpu_float32 (__main__.TestOldViewOpsCPU) ... ok (0.182s) 2023-01-11T20:47:10.2759763Z test_transpose_vs_numpy_cpu_int64 (__main__.TestOldViewOpsCPU) ... ok (0.049s) 2023-01-11T20:47:10.2760052Z test_transposes_cpu_bfloat16 (__main__.TestOldViewOpsCPU) ... ok (0.009s) 2023-01-11T20:47:10.2760342Z test_transposes_cpu_bool (__main__.TestOldViewOpsCPU) ... ok (0.005s) 2023-01-11T20:47:10.2760856Z test_transposes_cpu_complex128 (__main__.TestOldViewOpsCPU) ... ok (0.014s) 2023-01-11T20:47:10.2761151Z test_transposes_cpu_complex64 (__main__.TestOldViewOpsCPU) ... ok (0.016s) 2023-01-11T20:47:10.2761449Z test_transposes_cpu_float16 (__main__.TestOldViewOpsCPU) ... ok (0.013s) 2023-01-11T20:47:10.2761745Z test_transposes_cpu_float32 (__main__.TestOldViewOpsCPU) ... ok (0.013s) 2023-01-11T20:47:10.2762034Z test_transposes_cpu_float64 (__main__.TestOldViewOpsCPU) ... ok (0.013s) 2023-01-11T20:47:10.2762314Z test_transposes_cpu_int16 (__main__.TestOldViewOpsCPU) ... ok (0.008s) 2023-01-11T20:47:10.2762604Z test_transposes_cpu_int32 (__main__.TestOldViewOpsCPU) ... ok (0.008s) 2023-01-11T20:47:10.2762892Z test_transposes_cpu_int64 (__main__.TestOldViewOpsCPU) ... ok (0.007s) 2023-01-11T20:47:10.2763172Z test_transposes_cpu_int8 (__main__.TestOldViewOpsCPU) ... ok (0.007s) 2023-01-11T20:47:10.2763460Z test_transposes_cpu_uint8 (__main__.TestOldViewOpsCPU) ... ok (0.006s) 2023-01-11T20:47:10.2763760Z test_transposes_errors_cpu_bfloat16 (__main__.TestOldViewOpsCPU) ... ok (0.026s) 2023-01-11T20:47:10.2764072Z test_transposes_errors_cpu_bool (__main__.TestOldViewOpsCPU) ... ok (0.023s) 2023-01-11T20:47:10.2764369Z test_transposes_errors_cpu_complex128 (__main__.TestOldViewOpsCPU) ... ok (0.023s) 2023-01-11T20:47:10.2764689Z test_transposes_errors_cpu_complex64 (__main__.TestOldViewOpsCPU) ... ok (0.023s) 2023-01-11T20:47:10.2765002Z test_transposes_errors_cpu_float16 (__main__.TestOldViewOpsCPU) ... ok (0.023s) 2023-01-11T20:47:10.2765299Z test_transposes_errors_cpu_float32 (__main__.TestOldViewOpsCPU) ... ok (0.023s) 2023-01-11T20:47:10.2765600Z test_transposes_errors_cpu_float64 (__main__.TestOldViewOpsCPU) ... ok (0.023s) 2023-01-11T20:47:10.2765905Z test_transposes_errors_cpu_int16 (__main__.TestOldViewOpsCPU) ... ok (0.023s) 2023-01-11T20:47:10.2766206Z test_transposes_errors_cpu_int32 (__main__.TestOldViewOpsCPU) ... ok (0.023s) 2023-01-11T20:47:10.2766492Z test_transposes_errors_cpu_int64 (__main__.TestOldViewOpsCPU) ... ok (0.023s) 2023-01-11T20:47:10.2766793Z test_transposes_errors_cpu_int8 (__main__.TestOldViewOpsCPU) ... ok (0.023s) 2023-01-11T20:47:10.2767091Z test_transposes_errors_cpu_uint8 (__main__.TestOldViewOpsCPU) ... ok (0.029s) 2023-01-11T20:47:10.2767441Z test_unsqueeze_cpu (__main__.TestOldViewOpsCPU) ... ok (0.007s) 2023-01-11T20:47:10.2767736Z test_view_all_dtypes_and_devices_cpu (__main__.TestOldViewOpsCPU) ... ok (0.003s) 2023-01-11T20:47:10.2768028Z test_view_cpu (__main__.TestOldViewOpsCPU) ... ok (0.112s) 2023-01-11T20:47:10.2768301Z test_view_empty_cpu (__main__.TestOldViewOpsCPU) ... ok (0.001s) 2023-01-11T20:47:10.2768557Z test_T_view_cpu (__main__.TestViewOpsCPU) ... ok (0.004s) 2023-01-11T20:47:10.2768845Z test_advanced_indexing_assignment_cpu (__main__.TestViewOpsCPU) ... ok (0.001s) 2023-01-11T20:47:10.2769152Z test_advanced_indexing_nonview_cpu (__main__.TestViewOpsCPU) ... ok (0.002s) 2023-01-11T20:47:10.2769750Z test_as_strided_gradients_cpu (__main__.TestViewOpsCPU) ... test_view_ops.py:667: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T20:47:10.2770329Z assert max_offset < len(y.storage()), "test case resizes storage" 2023-01-11T20:47:10.2770907Z test_view_ops.py:667: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T20:47:10.2771416Z assert max_offset < len(y.storage()), "test case resizes storage" 2023-01-11T20:47:10.2771939Z test_view_ops.py:667: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T20:47:10.2772489Z assert max_offset < len(y.storage()), "test case resizes storage" 2023-01-11T20:47:10.2773019Z test_view_ops.py:667: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T20:47:10.2773522Z assert max_offset < len(y.storage()), "test case resizes storage" 2023-01-11T20:47:10.2774040Z test_view_ops.py:667: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T20:47:10.2774540Z assert max_offset < len(y.storage()), "test case resizes storage" 2023-01-11T20:47:10.2775044Z test_view_ops.py:667: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T20:47:10.2775539Z assert max_offset < len(y.storage()), "test case resizes storage" 2023-01-11T20:47:10.2776057Z test_view_ops.py:667: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T20:47:10.2776557Z assert max_offset < len(y.storage()), "test case resizes storage" 2023-01-11T20:47:10.2777075Z test_view_ops.py:667: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T20:47:10.2777594Z assert max_offset < len(y.storage()), "test case resizes storage" 2023-01-11T20:47:10.2778114Z test_view_ops.py:667: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T20:47:10.2778615Z assert max_offset < len(y.storage()), "test case resizes storage" 2023-01-11T20:47:10.2779134Z test_view_ops.py:667: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T20:47:10.2779628Z assert max_offset < len(y.storage()), "test case resizes storage" 2023-01-11T20:47:10.2779826Z ok (0.516s) 2023-01-11T20:47:10.2780118Z test_as_strided_inplace_view_cpu (__main__.TestViewOpsCPU) ... ok (0.002s) 2023-01-11T20:47:10.2780411Z test_as_strided_view_cpu (__main__.TestViewOpsCPU) ... ok (0.002s) 2023-01-11T20:47:10.2780724Z test_basic_indexing_ellipses_view_cpu (__main__.TestViewOpsCPU) ... ok (0.002s) 2023-01-11T20:47:10.2781032Z test_basic_indexing_newaxis_view_cpu (__main__.TestViewOpsCPU) ... ok (0.002s) 2023-01-11T20:47:10.2781333Z test_basic_indexing_slice_view_cpu (__main__.TestViewOpsCPU) ... ok (0.002s) 2023-01-11T20:47:10.2781681Z test_chunk_view_cpu (__main__.TestViewOpsCPU) ... skip: See https://github.com/pytorch/pytorch/pull/32720 (0.001s) 2023-01-11T20:47:10.2782022Z test_conj_imag_view_cpu_complex128 (__main__.TestViewOpsCPU) ... ok (0.003s) 2023-01-11T20:47:10.2782321Z test_conj_imag_view_cpu_complex64 (__main__.TestViewOpsCPU) ... ok (0.003s) 2023-01-11T20:47:10.2782611Z test_conj_self_cpu_bfloat16 (__main__.TestViewOpsCPU) ... ok (0.001s) 2023-01-11T20:47:10.2782884Z test_conj_self_cpu_float16 (__main__.TestViewOpsCPU) ... ok (0.001s) 2023-01-11T20:47:10.2783165Z test_conj_self_cpu_float32 (__main__.TestViewOpsCPU) ... ok (0.001s) 2023-01-11T20:47:10.2783444Z test_conj_self_cpu_float64 (__main__.TestViewOpsCPU) ... ok (0.001s) 2023-01-11T20:47:10.2783707Z test_conj_self_cpu_int16 (__main__.TestViewOpsCPU) ... ok (0.001s) 2023-01-11T20:47:10.2783981Z test_conj_self_cpu_int32 (__main__.TestViewOpsCPU) ... ok (0.001s) 2023-01-11T20:47:10.2784249Z test_conj_self_cpu_int64 (__main__.TestViewOpsCPU) ... ok (0.001s) 2023-01-11T20:47:10.2784518Z test_conj_self_cpu_int8 (__main__.TestViewOpsCPU) ... ok (0.001s) 2023-01-11T20:47:10.2784775Z test_conj_self_cpu_uint8 (__main__.TestViewOpsCPU) ... ok (0.001s) 2023-01-11T20:47:10.2785062Z test_conj_view_with_shared_memory_cpu (__main__.TestViewOpsCPU) ... ok (0.005s) 2023-01-11T20:47:10.2785358Z test_contiguous_nonview_cpu (__main__.TestViewOpsCPU) ... ok (0.002s) 2023-01-11T20:47:10.2785626Z test_contiguous_self_cpu (__main__.TestViewOpsCPU) ... ok (0.001s) 2023-01-11T20:47:10.2785903Z test_diagonal_view_cpu (__main__.TestViewOpsCPU) ... ok (0.003s) 2023-01-11T20:47:10.2786178Z test_expand_as_view_cpu (__main__.TestViewOpsCPU) ... ok (0.002s) 2023-01-11T20:47:10.2786450Z test_expand_view_cpu (__main__.TestViewOpsCPU) ... ok (0.002s) 2023-01-11T20:47:10.2786711Z test_flatten_nonview_cpu (__main__.TestViewOpsCPU) ... ok (0.003s) 2023-01-11T20:47:10.2786982Z test_flatten_view_cpu (__main__.TestViewOpsCPU) ... ok (0.009s) 2023-01-11T20:47:10.2787265Z test_imag_noncomplex_cpu_bfloat16 (__main__.TestViewOpsCPU) ... ok (0.008s) 2023-01-11T20:47:10.2787551Z test_imag_noncomplex_cpu_float16 (__main__.TestViewOpsCPU) ... ok (0.006s) 2023-01-11T20:47:10.2787844Z test_imag_noncomplex_cpu_float32 (__main__.TestViewOpsCPU) ... ok (0.005s) 2023-01-11T20:47:10.2788135Z test_imag_noncomplex_cpu_float64 (__main__.TestViewOpsCPU) ... ok (0.006s) 2023-01-11T20:47:10.2788407Z test_imag_noncomplex_cpu_int16 (__main__.TestViewOpsCPU) ... ok (0.006s) 2023-01-11T20:47:10.2788728Z test_imag_noncomplex_cpu_int32 (__main__.TestViewOpsCPU) ... ok (0.007s) 2023-01-11T20:47:10.2789015Z test_imag_noncomplex_cpu_int64 (__main__.TestViewOpsCPU) ... ok (0.006s) 2023-01-11T20:47:10.2789303Z test_imag_noncomplex_cpu_int8 (__main__.TestViewOpsCPU) ... ok (0.005s) 2023-01-11T20:47:10.2789579Z test_imag_noncomplex_cpu_uint8 (__main__.TestViewOpsCPU) ... ok (0.007s) 2023-01-11T20:47:10.2789857Z test_movedim_view_cpu (__main__.TestViewOpsCPU) ... ok (0.020s) 2023-01-11T20:47:10.2790126Z test_narrow_view_cpu (__main__.TestViewOpsCPU) ... ok (0.002s) 2023-01-11T20:47:10.2790382Z test_permute_view_cpu (__main__.TestViewOpsCPU) ... ok (0.002s) 2023-01-11T20:47:10.2790664Z test_real_imag_view_cpu_complex128 (__main__.TestViewOpsCPU) ... ok (0.008s) 2023-01-11T20:47:10.2790963Z test_real_imag_view_cpu_complex64 (__main__.TestViewOpsCPU) ... ok (0.007s) 2023-01-11T20:47:10.2791249Z test_reshape_as_view_cpu (__main__.TestViewOpsCPU) ... ok (0.003s) 2023-01-11T20:47:10.2791517Z test_reshape_nonview_cpu (__main__.TestViewOpsCPU) ... ok (0.003s) 2023-01-11T20:47:10.2791789Z test_reshape_view_cpu (__main__.TestViewOpsCPU) ... ok (0.003s) 2023-01-11T20:47:10.2792104Z test_select_view_cpu (__main__.TestViewOpsCPU) ... ok (0.003s) 2023-01-11T20:47:10.2792388Z test_set_real_imag_cpu_complex128_bfloat16 (__main__.TestViewOpsCPU) ... ok (0.003s) 2023-01-11T20:47:10.2792699Z test_set_real_imag_cpu_complex128_bool (__main__.TestViewOpsCPU) ... ok (0.003s) 2023-01-11T20:47:10.2793010Z test_set_real_imag_cpu_complex128_complex128 (__main__.TestViewOpsCPU) ... ok (0.003s) 2023-01-11T20:47:10.2793327Z test_set_real_imag_cpu_complex128_complex64 (__main__.TestViewOpsCPU) ... ok (0.003s) 2023-01-11T20:47:10.2793625Z test_set_real_imag_cpu_complex128_float16 (__main__.TestViewOpsCPU) ... ok (0.003s) 2023-01-11T20:47:10.2793938Z test_set_real_imag_cpu_complex128_float32 (__main__.TestViewOpsCPU) ... ok (0.003s) 2023-01-11T20:47:10.2794244Z test_set_real_imag_cpu_complex128_float64 (__main__.TestViewOpsCPU) ... ok (0.003s) 2023-01-11T20:47:10.2794530Z test_set_real_imag_cpu_complex128_int16 (__main__.TestViewOpsCPU) ... ok (0.003s) 2023-01-11T20:47:10.2794838Z test_set_real_imag_cpu_complex128_int32 (__main__.TestViewOpsCPU) ... ok (0.003s) 2023-01-11T20:47:10.2795141Z test_set_real_imag_cpu_complex128_int64 (__main__.TestViewOpsCPU) ... ok (0.003s) 2023-01-11T20:47:10.2795442Z test_set_real_imag_cpu_complex128_int8 (__main__.TestViewOpsCPU) ... ok (0.005s) 2023-01-11T20:47:10.2795732Z test_set_real_imag_cpu_complex128_uint8 (__main__.TestViewOpsCPU) ... ok (0.004s) 2023-01-11T20:47:10.2796039Z test_set_real_imag_cpu_complex64_bfloat16 (__main__.TestViewOpsCPU) ... ok (0.003s) 2023-01-11T20:47:10.2796339Z test_set_real_imag_cpu_complex64_bool (__main__.TestViewOpsCPU) ... ok (0.003s) 2023-01-11T20:47:10.2796634Z test_set_real_imag_cpu_complex64_complex128 (__main__.TestViewOpsCPU) ... ok (0.003s) 2023-01-11T20:47:10.2796949Z test_set_real_imag_cpu_complex64_complex64 (__main__.TestViewOpsCPU) ... ok (0.003s) 2023-01-11T20:47:10.2797258Z test_set_real_imag_cpu_complex64_float16 (__main__.TestViewOpsCPU) ... ok (0.003s) 2023-01-11T20:47:10.2797567Z test_set_real_imag_cpu_complex64_float32 (__main__.TestViewOpsCPU) ... ok (0.003s) 2023-01-11T20:47:10.2797860Z test_set_real_imag_cpu_complex64_float64 (__main__.TestViewOpsCPU) ... ok (0.003s) 2023-01-11T20:47:10.2798162Z test_set_real_imag_cpu_complex64_int16 (__main__.TestViewOpsCPU) ... ok (0.003s) 2023-01-11T20:47:10.2798462Z test_set_real_imag_cpu_complex64_int32 (__main__.TestViewOpsCPU) ... ok (0.003s) 2023-01-11T20:47:10.2798750Z test_set_real_imag_cpu_complex64_int64 (__main__.TestViewOpsCPU) ... ok (0.003s) 2023-01-11T20:47:10.2799048Z test_set_real_imag_cpu_complex64_int8 (__main__.TestViewOpsCPU) ... ok (0.003s) 2023-01-11T20:47:10.2799347Z test_set_real_imag_cpu_complex64_uint8 (__main__.TestViewOpsCPU) ... ok (0.003s) 2023-01-11T20:47:10.2799737Z test_split_view_cpu (__main__.TestViewOpsCPU) ... skip: See https://github.com/pytorch/pytorch/pull/32720 (0.001s) 2023-01-11T20:47:10.2800063Z test_squeeze_inplace_view_cpu (__main__.TestViewOpsCPU) ... ok (0.002s) 2023-01-11T20:47:10.2800343Z test_squeeze_view_cpu (__main__.TestViewOpsCPU) ... ok (0.002s) 2023-01-11T20:47:10.2800808Z test_t_inplace_view_cpu (__main__.TestViewOpsCPU) ... ok (0.002s) 2023-01-11T20:47:10.2801070Z test_t_view_cpu (__main__.TestViewOpsCPU) ... ok (0.002s) 2023-01-11T20:47:10.2801348Z test_transpose_inplace_view_cpu (__main__.TestViewOpsCPU) ... ok (0.004s) 2023-01-11T20:47:10.2801635Z test_transpose_view_cpu (__main__.TestViewOpsCPU) ... ok (0.003s) 2023-01-11T20:47:10.2801904Z test_unbind_cpu (__main__.TestViewOpsCPU) ... ok (0.027s) 2023-01-11T20:47:10.2802152Z test_unbind_view_cpu (__main__.TestViewOpsCPU) ... ok (0.004s) 2023-01-11T20:47:10.2802417Z test_unfold_view_cpu (__main__.TestViewOpsCPU) ... ok (0.002s) 2023-01-11T20:47:10.2802700Z test_unsqueeze_inplace_view_cpu (__main__.TestViewOpsCPU) ... ok (0.002s) 2023-01-11T20:47:10.2802975Z test_unsqueeze_view_cpu (__main__.TestViewOpsCPU) ... ok (0.002s) 2023-01-11T20:47:10.2803309Z test_view_as_complex_cpu (__main__.TestViewOpsCPU) ... ok (0.061s) 2023-01-11T20:47:10.2803601Z test_view_as_real_cpu_complex128 (__main__.TestViewOpsCPU) ... ok (0.006s) 2023-01-11T20:47:10.2804333Z test_view_as_real_cpu_complex32 (__main__.TestViewOpsCPU) ... test_view_ops.py:308: UserWarning: ComplexHalf support is experimental and many operators don't support it yet. (Triggered internally at /var/lib/jenkins/workspace/aten/src/ATen/EmptyTensor.cpp:32.) 2023-01-11T20:47:10.2804779Z t = torch.randn(3, 4, dtype=dtype, device=device) 2023-01-11T20:47:10.2804980Z ok (0.005s) 2023-01-11T20:47:10.2805211Z test_view_as_real_cpu_complex64 (__main__.TestViewOpsCPU) ... ok (0.005s) 2023-01-11T20:47:10.2805476Z test_view_as_view_cpu (__main__.TestViewOpsCPU) ... ok (0.002s) 2023-01-11T20:47:10.2805741Z test_view_copy_cpu (__main__.TestViewOpsCPU) ... ok (0.004s) 2023-01-11T20:47:10.2806010Z test_view_copy_out_cpu (__main__.TestViewOpsCPU) ... ok (0.013s) 2023-01-11T20:47:10.2806292Z test_view_copy_output_contiguous_cpu (__main__.TestViewOpsCPU) ... ok (0.001s) 2023-01-11T20:47:10.2806588Z test_view_dtype_new_cpu_bool (__main__.TestViewOpsCPU) ... ok (0.457s) 2023-01-11T20:47:10.2806876Z test_view_dtype_new_cpu_complex128 (__main__.TestViewOpsCPU) ... ok (0.454s) 2023-01-11T20:47:10.2807176Z test_view_dtype_new_cpu_complex64 (__main__.TestViewOpsCPU) ... ok (0.369s) 2023-01-11T20:47:10.2807459Z test_view_dtype_new_cpu_float16 (__main__.TestViewOpsCPU) ... ok (0.392s) 2023-01-11T20:47:10.2807747Z test_view_dtype_new_cpu_float32 (__main__.TestViewOpsCPU) ... ok (0.419s) 2023-01-11T20:47:10.2808030Z test_view_dtype_new_cpu_float64 (__main__.TestViewOpsCPU) ... ok (0.362s) 2023-01-11T20:47:10.2808296Z test_view_dtype_new_cpu_int16 (__main__.TestViewOpsCPU) ... ok (0.384s) 2023-01-11T20:47:10.2808576Z test_view_dtype_new_cpu_int32 (__main__.TestViewOpsCPU) ... ok (0.388s) 2023-01-11T20:47:10.2808857Z test_view_dtype_new_cpu_int64 (__main__.TestViewOpsCPU) ... ok (0.364s) 2023-01-11T20:47:10.2809141Z test_view_dtype_new_cpu_int8 (__main__.TestViewOpsCPU) ... ok (0.379s) 2023-01-11T20:47:10.2809411Z test_view_dtype_new_cpu_uint8 (__main__.TestViewOpsCPU) ... ok (0.401s) 2023-01-11T20:47:10.2809708Z test_view_dtype_upsize_errors_cpu_bfloat16 (__main__.TestViewOpsCPU) ... ok (0.187s) 2023-01-11T20:47:10.2810054Z test_view_dtype_upsize_errors_cpu_bool (__main__.TestViewOpsCPU) ... ok (0.277s) 2023-01-11T20:47:10.2810354Z test_view_dtype_upsize_errors_cpu_complex128 (__main__.TestViewOpsCPU) ... ok (0.002s) 2023-01-11T20:47:10.2810671Z test_view_dtype_upsize_errors_cpu_complex64 (__main__.TestViewOpsCPU) ... ok (0.032s) 2023-01-11T20:47:10.2810986Z test_view_dtype_upsize_errors_cpu_float16 (__main__.TestViewOpsCPU) ... ok (0.184s) 2023-01-11T20:47:10.2811297Z test_view_dtype_upsize_errors_cpu_float32 (__main__.TestViewOpsCPU) ... ok (0.124s) 2023-01-11T20:47:10.2811639Z test_view_dtype_upsize_errors_cpu_float64 (__main__.TestViewOpsCPU) ... ok (0.033s) 2023-01-11T20:47:10.2811947Z test_view_dtype_upsize_errors_cpu_int16 (__main__.TestViewOpsCPU) ... ok (0.194s) 2023-01-11T20:47:10.2812250Z test_view_dtype_upsize_errors_cpu_int32 (__main__.TestViewOpsCPU) ... ok (0.137s) 2023-01-11T20:47:10.2812540Z test_view_dtype_upsize_errors_cpu_int64 (__main__.TestViewOpsCPU) ... ok (0.033s) 2023-01-11T20:47:10.2812841Z test_view_dtype_upsize_errors_cpu_int8 (__main__.TestViewOpsCPU) ... ok (0.278s) 2023-01-11T20:47:10.2813143Z test_view_dtype_upsize_errors_cpu_uint8 (__main__.TestViewOpsCPU) ... ok (0.339s) 2023-01-11T20:47:10.2813447Z test_view_tensor_dsplit_cpu_bfloat16 (__main__.TestViewOpsCPU) ... ok (0.004s) 2023-01-11T20:47:10.2813734Z test_view_tensor_dsplit_cpu_bool (__main__.TestViewOpsCPU) ... ok (0.002s) 2023-01-11T20:47:10.2814035Z test_view_tensor_dsplit_cpu_complex128 (__main__.TestViewOpsCPU) ... ok (0.002s) 2023-01-11T20:47:10.2814346Z test_view_tensor_dsplit_cpu_complex64 (__main__.TestViewOpsCPU) ... ok (0.002s) 2023-01-11T20:47:10.2814633Z test_view_tensor_dsplit_cpu_float16 (__main__.TestViewOpsCPU) ... ok (0.002s) 2023-01-11T20:47:10.2814957Z test_view_tensor_dsplit_cpu_float32 (__main__.TestViewOpsCPU) ... ok (0.002s) 2023-01-11T20:47:10.2815253Z test_view_tensor_dsplit_cpu_float64 (__main__.TestViewOpsCPU) ... ok (0.002s) 2023-01-11T20:47:10.2815547Z test_view_tensor_dsplit_cpu_int16 (__main__.TestViewOpsCPU) ... ok (0.002s) 2023-01-11T20:47:10.2815828Z test_view_tensor_dsplit_cpu_int32 (__main__.TestViewOpsCPU) ... ok (0.002s) 2023-01-11T20:47:10.2816118Z test_view_tensor_dsplit_cpu_int64 (__main__.TestViewOpsCPU) ... ok (0.002s) 2023-01-11T20:47:10.2816408Z test_view_tensor_dsplit_cpu_int8 (__main__.TestViewOpsCPU) ... ok (0.002s) 2023-01-11T20:47:10.2816690Z test_view_tensor_dsplit_cpu_uint8 (__main__.TestViewOpsCPU) ... ok (0.002s) 2023-01-11T20:47:10.2816988Z test_view_tensor_hsplit_cpu_bfloat16 (__main__.TestViewOpsCPU) ... ok (0.002s) 2023-01-11T20:47:10.2817284Z test_view_tensor_hsplit_cpu_bool (__main__.TestViewOpsCPU) ... ok (0.002s) 2023-01-11T20:47:10.2817589Z test_view_tensor_hsplit_cpu_complex128 (__main__.TestViewOpsCPU) ... ok (0.002s) 2023-01-11T20:47:10.2817883Z test_view_tensor_hsplit_cpu_complex64 (__main__.TestViewOpsCPU) ... ok (0.002s) 2023-01-11T20:47:10.2818180Z test_view_tensor_hsplit_cpu_float16 (__main__.TestViewOpsCPU) ... ok (0.002s) 2023-01-11T20:47:10.2818475Z test_view_tensor_hsplit_cpu_float32 (__main__.TestViewOpsCPU) ... ok (0.002s) 2023-01-11T20:47:10.2818753Z test_view_tensor_hsplit_cpu_float64 (__main__.TestViewOpsCPU) ... ok (0.002s) 2023-01-11T20:47:10.2819046Z test_view_tensor_hsplit_cpu_int16 (__main__.TestViewOpsCPU) ... ok (0.002s) 2023-01-11T20:47:10.2819333Z test_view_tensor_hsplit_cpu_int32 (__main__.TestViewOpsCPU) ... ok (0.002s) 2023-01-11T20:47:10.2819622Z test_view_tensor_hsplit_cpu_int64 (__main__.TestViewOpsCPU) ... ok (0.002s) 2023-01-11T20:47:10.2819898Z test_view_tensor_hsplit_cpu_int8 (__main__.TestViewOpsCPU) ... ok (0.002s) 2023-01-11T20:47:10.2820285Z test_view_tensor_hsplit_cpu_uint8 (__main__.TestViewOpsCPU) ... ok (0.002s) 2023-01-11T20:47:10.2820578Z test_view_tensor_split_cpu_bfloat16 (__main__.TestViewOpsCPU) ... ok (0.002s) 2023-01-11T20:47:10.2820854Z test_view_tensor_split_cpu_bool (__main__.TestViewOpsCPU) ... ok (0.002s) 2023-01-11T20:47:10.2821156Z test_view_tensor_split_cpu_complex128 (__main__.TestViewOpsCPU) ... ok (0.002s) 2023-01-11T20:47:10.2821460Z test_view_tensor_split_cpu_complex64 (__main__.TestViewOpsCPU) ... ok (0.002s) 2023-01-11T20:47:10.2821760Z test_view_tensor_split_cpu_float16 (__main__.TestViewOpsCPU) ... ok (0.002s) 2023-01-11T20:47:10.2822038Z test_view_tensor_split_cpu_float32 (__main__.TestViewOpsCPU) ... ok (0.002s) 2023-01-11T20:47:10.2822323Z test_view_tensor_split_cpu_float64 (__main__.TestViewOpsCPU) ... ok (0.002s) 2023-01-11T20:47:10.2822654Z test_view_tensor_split_cpu_int16 (__main__.TestViewOpsCPU) ... ok (0.002s) 2023-01-11T20:47:10.2822931Z test_view_tensor_split_cpu_int32 (__main__.TestViewOpsCPU) ... ok (0.002s) 2023-01-11T20:47:10.2823221Z test_view_tensor_split_cpu_int64 (__main__.TestViewOpsCPU) ... ok (0.002s) 2023-01-11T20:47:10.2823510Z test_view_tensor_split_cpu_int8 (__main__.TestViewOpsCPU) ... ok (0.002s) 2023-01-11T20:47:10.2823800Z test_view_tensor_split_cpu_uint8 (__main__.TestViewOpsCPU) ... ok (0.002s) 2023-01-11T20:47:10.2824142Z test_view_tensor_vsplit_cpu_bfloat16 (__main__.TestViewOpsCPU) ... ok (0.002s) 2023-01-11T20:47:10.2824448Z test_view_tensor_vsplit_cpu_bool (__main__.TestViewOpsCPU) ... ok (0.002s) 2023-01-11T20:47:10.2824744Z test_view_tensor_vsplit_cpu_complex128 (__main__.TestViewOpsCPU) ... ok (0.002s) 2023-01-11T20:47:10.2825093Z test_view_tensor_vsplit_cpu_complex64 (__main__.TestViewOpsCPU) ... ok (0.002s) 2023-01-11T20:47:10.2825393Z test_view_tensor_vsplit_cpu_float16 (__main__.TestViewOpsCPU) ... ok (0.002s) 2023-01-11T20:47:10.2825692Z test_view_tensor_vsplit_cpu_float32 (__main__.TestViewOpsCPU) ... ok (0.002s) 2023-01-11T20:47:10.2826019Z test_view_tensor_vsplit_cpu_float64 (__main__.TestViewOpsCPU) ... ok (0.002s) 2023-01-11T20:47:10.2826301Z test_view_tensor_vsplit_cpu_int16 (__main__.TestViewOpsCPU) ... ok (0.002s) 2023-01-11T20:47:10.2826589Z test_view_tensor_vsplit_cpu_int32 (__main__.TestViewOpsCPU) ... ok (0.002s) 2023-01-11T20:47:10.2826880Z test_view_tensor_vsplit_cpu_int64 (__main__.TestViewOpsCPU) ... ok (0.002s) 2023-01-11T20:47:10.2827156Z test_view_tensor_vsplit_cpu_int8 (__main__.TestViewOpsCPU) ... ok (0.002s) 2023-01-11T20:47:10.2827446Z test_view_tensor_vsplit_cpu_uint8 (__main__.TestViewOpsCPU) ... ok (0.002s) 2023-01-11T20:47:10.2827725Z test_view_view_cpu (__main__.TestViewOpsCPU) ... ok (0.002s) 2023-01-11T20:47:10.2827989Z test_T_view_lazy (__main__.TestViewOpsLAZY) ... ok (0.545s) 2023-01-11T20:47:10.2828270Z test_advanced_indexing_assignment_lazy (__main__.TestViewOpsLAZY) ... ok (0.009s) 2023-01-11T20:47:10.2828584Z test_advanced_indexing_nonview_lazy (__main__.TestViewOpsLAZY) ... ok (0.029s) 2023-01-11T20:47:10.2829199Z test_as_strided_gradients_lazy (__main__.TestViewOpsLAZY) ... test_view_ops.py:667: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T20:47:10.2829783Z assert max_offset < len(y.storage()), "test case resizes storage" 2023-01-11T20:47:10.2830296Z test_view_ops.py:667: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T20:47:10.2830804Z assert max_offset < len(y.storage()), "test case resizes storage" 2023-01-11T20:47:10.2831331Z test_view_ops.py:667: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T20:47:10.2831833Z assert max_offset < len(y.storage()), "test case resizes storage" 2023-01-11T20:47:10.2832349Z test_view_ops.py:667: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T20:47:10.2832829Z assert max_offset < len(y.storage()), "test case resizes storage" 2023-01-11T20:47:10.2833349Z test_view_ops.py:667: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T20:47:10.2833912Z assert max_offset < len(y.storage()), "test case resizes storage" 2023-01-11T20:47:10.2834433Z test_view_ops.py:667: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T20:47:10.2834931Z assert max_offset < len(y.storage()), "test case resizes storage" 2023-01-11T20:47:10.2835437Z test_view_ops.py:667: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T20:47:10.2835938Z assert max_offset < len(y.storage()), "test case resizes storage" 2023-01-11T20:47:10.2836488Z test_view_ops.py:667: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T20:47:10.2836986Z assert max_offset < len(y.storage()), "test case resizes storage" 2023-01-11T20:47:10.2837490Z test_view_ops.py:667: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T20:47:10.2837981Z assert max_offset < len(y.storage()), "test case resizes storage" 2023-01-11T20:47:10.2838503Z test_view_ops.py:667: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T20:47:10.2839006Z assert max_offset < len(y.storage()), "test case resizes storage" 2023-01-11T20:47:10.2839218Z ok (0.175s) 2023-01-11T20:47:10.2839442Z test_as_strided_inplace_view_lazy (__main__.TestViewOpsLAZY) ... ok (0.037s) 2023-01-11T20:47:10.2839731Z test_as_strided_view_lazy (__main__.TestViewOpsLAZY) ... ok (0.029s) 2023-01-11T20:47:10.2840029Z test_basic_indexing_ellipses_view_lazy (__main__.TestViewOpsLAZY) ... ok (0.056s) 2023-01-11T20:47:10.2840327Z test_basic_indexing_newaxis_view_lazy (__main__.TestViewOpsLAZY) ... ok (0.050s) 2023-01-11T20:47:10.2840766Z test_basic_indexing_slice_view_lazy (__main__.TestViewOpsLAZY) ... ok (0.047s) 2023-01-11T20:47:10.2841139Z test_chunk_view_lazy (__main__.TestViewOpsLAZY) ... skip: See https://github.com/pytorch/pytorch/pull/32720 (0.001s) 2023-01-11T20:47:10.2841684Z test_conj_imag_view_lazy_complex128 (__main__.TestViewOpsLAZY) ... skip: onlyNativeDeviceTypes: doesn't run on lazy (0.001s) 2023-01-11T20:47:10.2842175Z test_conj_imag_view_lazy_complex64 (__main__.TestViewOpsLAZY) ... skip: onlyNativeDeviceTypes: doesn't run on lazy (0.001s) 2023-01-11T20:47:10.2842515Z test_conj_self_lazy_bfloat16 (__main__.TestViewOpsLAZY) ... ok (0.001s) 2023-01-11T20:47:10.2842800Z test_conj_self_lazy_float16 (__main__.TestViewOpsLAZY) ... ok (0.001s) 2023-01-11T20:47:10.2843067Z test_conj_self_lazy_float32 (__main__.TestViewOpsLAZY) ... ok (0.001s) 2023-01-11T20:47:10.2843346Z test_conj_self_lazy_float64 (__main__.TestViewOpsLAZY) ... ok (0.001s) 2023-01-11T20:47:10.2843625Z test_conj_self_lazy_int16 (__main__.TestViewOpsLAZY) ... ok (0.001s) 2023-01-11T20:47:10.2843968Z test_conj_self_lazy_int32 (__main__.TestViewOpsLAZY) ... ok (0.001s) 2023-01-11T20:47:10.2844227Z test_conj_self_lazy_int64 (__main__.TestViewOpsLAZY) ... ok (0.001s) 2023-01-11T20:47:10.2844504Z test_conj_self_lazy_int8 (__main__.TestViewOpsLAZY) ... ok (0.001s) 2023-01-11T20:47:10.2844780Z test_conj_self_lazy_uint8 (__main__.TestViewOpsLAZY) ... ok (0.001s) 2023-01-11T20:47:10.2845215Z test_conj_view_with_shared_memory_lazy (__main__.TestViewOpsLAZY) ... skip: onlyNativeDeviceTypes: doesn't run on lazy (0.001s) 2023-01-11T20:47:10.2845712Z test_contiguous_nonview_lazy (__main__.TestViewOpsLAZY) ... skip: onlyNativeDeviceTypes: doesn't run on lazy (0.001s) 2023-01-11T20:47:10.2846050Z test_contiguous_self_lazy (__main__.TestViewOpsLAZY) ... ok (0.001s) 2023-01-11T20:47:10.2846328Z test_diagonal_view_lazy (__main__.TestViewOpsLAZY) ... ok (0.061s) 2023-01-11T20:47:10.2846597Z test_expand_as_view_lazy (__main__.TestViewOpsLAZY) ... ok (0.037s) 2023-01-11T20:47:10.2847017Z test_expand_view_lazy (__main__.TestViewOpsLAZY) ... skip: onlyNativeDeviceTypes: doesn't run on lazy (0.001s) 2023-01-11T20:47:10.2847499Z test_flatten_nonview_lazy (__main__.TestViewOpsLAZY) ... skip: onlyNativeDeviceTypes: doesn't run on lazy (0.002s) 2023-01-11T20:47:10.2848006Z test_flatten_view_lazy (__main__.TestViewOpsLAZY) ... skip: onlyNativeDeviceTypes: doesn't run on lazy (0.002s) 2023-01-11T20:47:10.2848499Z test_imag_noncomplex_lazy_bfloat16 (__main__.TestViewOpsLAZY) ... skip: onlyNativeDeviceTypes: doesn't run on lazy (0.001s) 2023-01-11T20:47:10.2848996Z test_imag_noncomplex_lazy_float16 (__main__.TestViewOpsLAZY) ... skip: onlyNativeDeviceTypes: doesn't run on lazy (0.001s) 2023-01-11T20:47:10.2849493Z test_imag_noncomplex_lazy_float32 (__main__.TestViewOpsLAZY) ... skip: onlyNativeDeviceTypes: doesn't run on lazy (0.001s) 2023-01-11T20:47:10.2849968Z test_imag_noncomplex_lazy_float64 (__main__.TestViewOpsLAZY) ... skip: onlyNativeDeviceTypes: doesn't run on lazy (0.001s) 2023-01-11T20:47:10.2850455Z test_imag_noncomplex_lazy_int16 (__main__.TestViewOpsLAZY) ... skip: onlyNativeDeviceTypes: doesn't run on lazy (0.001s) 2023-01-11T20:47:10.2850949Z test_imag_noncomplex_lazy_int32 (__main__.TestViewOpsLAZY) ... skip: onlyNativeDeviceTypes: doesn't run on lazy (0.001s) 2023-01-11T20:47:10.2851436Z test_imag_noncomplex_lazy_int64 (__main__.TestViewOpsLAZY) ... skip: onlyNativeDeviceTypes: doesn't run on lazy (0.001s) 2023-01-11T20:47:10.2851907Z test_imag_noncomplex_lazy_int8 (__main__.TestViewOpsLAZY) ... skip: onlyNativeDeviceTypes: doesn't run on lazy (0.001s) 2023-01-11T20:47:10.2852394Z test_imag_noncomplex_lazy_uint8 (__main__.TestViewOpsLAZY) ... skip: onlyNativeDeviceTypes: doesn't run on lazy (0.001s) 2023-01-11T20:47:10.2852723Z test_movedim_view_lazy (__main__.TestViewOpsLAZY) ... ok (0.428s) 2023-01-11T20:47:10.2853000Z test_narrow_view_lazy (__main__.TestViewOpsLAZY) ... ok (0.035s) 2023-01-11T20:47:10.2853264Z test_permute_view_lazy (__main__.TestViewOpsLAZY) ... ok (0.036s) 2023-01-11T20:47:10.2853704Z test_real_imag_view_lazy_complex128 (__main__.TestViewOpsLAZY) ... skip: onlyNativeDeviceTypes: doesn't run on lazy (0.002s) 2023-01-11T20:47:10.2854207Z test_real_imag_view_lazy_complex64 (__main__.TestViewOpsLAZY) ... skip: onlyNativeDeviceTypes: doesn't run on lazy (0.002s) 2023-01-11T20:47:10.2854549Z test_reshape_as_view_lazy (__main__.TestViewOpsLAZY) ... ok (0.025s) 2023-01-11T20:47:10.2854965Z test_reshape_nonview_lazy (__main__.TestViewOpsLAZY) ... skip: onlyNativeDeviceTypes: doesn't run on lazy (0.001s) 2023-01-11T20:47:10.2855298Z test_reshape_view_lazy (__main__.TestViewOpsLAZY) ... ok (0.034s) 2023-01-11T20:47:10.2855572Z test_select_view_lazy (__main__.TestViewOpsLAZY) ... ok (0.025s) 2023-01-11T20:47:10.2856140Z test_set_real_imag_lazy_complex128_bfloat16 (__main__.TestViewOpsLAZY) ... skip: onlyNativeDeviceTypes: doesn't run on lazy (0.002s) 2023-01-11T20:47:10.2857058Z test_set_real_imag_lazy_complex128_bool (__main__.TestViewOpsLAZY) ... skip: onlyNativeDeviceTypes: doesn't run on lazy (0.002s) 2023-01-11T20:47:10.2857626Z test_set_real_imag_lazy_complex128_complex128 (__main__.TestViewOpsLAZY) ... skip: onlyNativeDeviceTypes: doesn't run on lazy (0.001s) 2023-01-11T20:47:10.2858149Z test_set_real_imag_lazy_complex128_complex64 (__main__.TestViewOpsLAZY) ... skip: onlyNativeDeviceTypes: doesn't run on lazy (0.001s) 2023-01-11T20:47:10.2858651Z test_set_real_imag_lazy_complex128_float16 (__main__.TestViewOpsLAZY) ... skip: onlyNativeDeviceTypes: doesn't run on lazy (0.001s) 2023-01-11T20:47:10.2859164Z test_set_real_imag_lazy_complex128_float32 (__main__.TestViewOpsLAZY) ... skip: onlyNativeDeviceTypes: doesn't run on lazy (0.001s) 2023-01-11T20:47:10.2859680Z test_set_real_imag_lazy_complex128_float64 (__main__.TestViewOpsLAZY) ... skip: onlyNativeDeviceTypes: doesn't run on lazy (0.001s) 2023-01-11T20:47:10.2860251Z test_set_real_imag_lazy_complex128_int16 (__main__.TestViewOpsLAZY) ... skip: onlyNativeDeviceTypes: doesn't run on lazy (0.001s) 2023-01-11T20:47:10.2860754Z test_set_real_imag_lazy_complex128_int32 (__main__.TestViewOpsLAZY) ... skip: onlyNativeDeviceTypes: doesn't run on lazy (0.001s) 2023-01-11T20:47:10.2861297Z test_set_real_imag_lazy_complex128_int64 (__main__.TestViewOpsLAZY) ... skip: onlyNativeDeviceTypes: doesn't run on lazy (0.001s) 2023-01-11T20:47:10.2861808Z test_set_real_imag_lazy_complex128_int8 (__main__.TestViewOpsLAZY) ... skip: onlyNativeDeviceTypes: doesn't run on lazy (0.001s) 2023-01-11T20:47:10.2862313Z test_set_real_imag_lazy_complex128_uint8 (__main__.TestViewOpsLAZY) ... skip: onlyNativeDeviceTypes: doesn't run on lazy (0.001s) 2023-01-11T20:47:10.2862810Z test_set_real_imag_lazy_complex64_bfloat16 (__main__.TestViewOpsLAZY) ... skip: onlyNativeDeviceTypes: doesn't run on lazy (0.001s) 2023-01-11T20:47:10.2863312Z test_set_real_imag_lazy_complex64_bool (__main__.TestViewOpsLAZY) ... skip: onlyNativeDeviceTypes: doesn't run on lazy (0.001s) 2023-01-11T20:47:10.2863826Z test_set_real_imag_lazy_complex64_complex128 (__main__.TestViewOpsLAZY) ... skip: onlyNativeDeviceTypes: doesn't run on lazy (0.001s) 2023-01-11T20:47:10.2864350Z test_set_real_imag_lazy_complex64_complex64 (__main__.TestViewOpsLAZY) ... skip: onlyNativeDeviceTypes: doesn't run on lazy (0.001s) 2023-01-11T20:47:10.2864854Z test_set_real_imag_lazy_complex64_float16 (__main__.TestViewOpsLAZY) ... skip: onlyNativeDeviceTypes: doesn't run on lazy (0.001s) 2023-01-11T20:47:10.2865365Z test_set_real_imag_lazy_complex64_float32 (__main__.TestViewOpsLAZY) ... skip: onlyNativeDeviceTypes: doesn't run on lazy (0.001s) 2023-01-11T20:47:10.2865878Z test_set_real_imag_lazy_complex64_float64 (__main__.TestViewOpsLAZY) ... skip: onlyNativeDeviceTypes: doesn't run on lazy (0.001s) 2023-01-11T20:47:10.2866388Z test_set_real_imag_lazy_complex64_int16 (__main__.TestViewOpsLAZY) ... skip: onlyNativeDeviceTypes: doesn't run on lazy (0.001s) 2023-01-11T20:47:10.2866879Z test_set_real_imag_lazy_complex64_int32 (__main__.TestViewOpsLAZY) ... skip: onlyNativeDeviceTypes: doesn't run on lazy (0.001s) 2023-01-11T20:47:10.2867388Z test_set_real_imag_lazy_complex64_int64 (__main__.TestViewOpsLAZY) ... skip: onlyNativeDeviceTypes: doesn't run on lazy (0.001s) 2023-01-11T20:47:10.2867890Z test_set_real_imag_lazy_complex64_int8 (__main__.TestViewOpsLAZY) ... skip: onlyNativeDeviceTypes: doesn't run on lazy (0.001s) 2023-01-11T20:47:10.2868394Z test_set_real_imag_lazy_complex64_uint8 (__main__.TestViewOpsLAZY) ... skip: onlyNativeDeviceTypes: doesn't run on lazy (0.001s) 2023-01-11T20:47:10.2868793Z test_split_view_lazy (__main__.TestViewOpsLAZY) ... skip: See https://github.com/pytorch/pytorch/pull/32720 (0.001s) 2023-01-11T20:47:10.2869137Z test_squeeze_inplace_view_lazy (__main__.TestViewOpsLAZY) ... ok (0.029s) 2023-01-11T20:47:10.2869422Z test_squeeze_view_lazy (__main__.TestViewOpsLAZY) ... ok (0.025s) 2023-01-11T20:47:10.2869704Z test_t_inplace_view_lazy (__main__.TestViewOpsLAZY) ... ok (0.040s) 2023-01-11T20:47:10.2869961Z test_t_view_lazy (__main__.TestViewOpsLAZY) ... ok (0.027s) 2023-01-11T20:47:10.2870278Z test_transpose_inplace_view_lazy (__main__.TestViewOpsLAZY) ... ok (0.076s) 2023-01-11T20:47:10.2870570Z test_transpose_view_lazy (__main__.TestViewOpsLAZY) ... ok (0.068s) 2023-01-11T20:47:10.2870827Z test_unbind_lazy (__main__.TestViewOpsLAZY) ... ok (0.024s) 2023-01-11T20:47:10.2871242Z test_unbind_view_lazy (__main__.TestViewOpsLAZY) ... skip: onlyNativeDeviceTypes: doesn't run on lazy (0.001s) 2023-01-11T20:47:10.2871578Z test_unfold_view_lazy (__main__.TestViewOpsLAZY) ... ok (0.028s) 2023-01-11T20:47:10.2871869Z test_unsqueeze_inplace_view_lazy (__main__.TestViewOpsLAZY) ... ok (0.035s) 2023-01-11T20:47:10.2872147Z test_unsqueeze_view_lazy (__main__.TestViewOpsLAZY) ... ok (0.031s) 2023-01-11T20:47:10.2872580Z test_view_as_complex_lazy (__main__.TestViewOpsLAZY) ... skip: onlyNativeDeviceTypes: doesn't run on lazy (0.003s) 2023-01-11T20:47:10.2873084Z test_view_as_real_lazy_complex128 (__main__.TestViewOpsLAZY) ... skip: onlyNativeDeviceTypes: doesn't run on lazy (0.002s) 2023-01-11T20:47:10.2873578Z test_view_as_real_lazy_complex32 (__main__.TestViewOpsLAZY) ... skip: onlyNativeDeviceTypes: doesn't run on lazy (0.002s) 2023-01-11T20:47:10.2874123Z test_view_as_real_lazy_complex64 (__main__.TestViewOpsLAZY) ... skip: onlyNativeDeviceTypes: doesn't run on lazy (0.002s) 2023-01-11T20:47:10.2874473Z test_view_as_view_lazy (__main__.TestViewOpsLAZY) ... ok (0.007s) 2023-01-11T20:47:10.2874749Z test_view_copy_lazy (__main__.TestViewOpsLAZY) ... ok (0.036s) 2023-01-11T20:47:10.2875015Z test_view_copy_out_lazy (__main__.TestViewOpsLAZY) ... ok (0.019s) 2023-01-11T20:47:10.2875313Z test_view_copy_output_contiguous_lazy (__main__.TestViewOpsLAZY) ... ok (0.002s) 2023-01-11T20:47:10.2875768Z test_view_dtype_new_lazy_bool (__main__.TestViewOpsLAZY) ... skip: onlyNativeDeviceTypes: doesn't run on lazy (0.004s) 2023-01-11T20:47:10.2876271Z test_view_dtype_new_lazy_complex128 (__main__.TestViewOpsLAZY) ... skip: onlyNativeDeviceTypes: doesn't run on lazy (0.004s) 2023-01-11T20:47:10.2876768Z test_view_dtype_new_lazy_complex64 (__main__.TestViewOpsLAZY) ... skip: onlyNativeDeviceTypes: doesn't run on lazy (0.004s) 2023-01-11T20:47:10.2877271Z test_view_dtype_new_lazy_float16 (__main__.TestViewOpsLAZY) ... skip: onlyNativeDeviceTypes: doesn't run on lazy (0.004s) 2023-01-11T20:47:10.2877770Z test_view_dtype_new_lazy_float32 (__main__.TestViewOpsLAZY) ... skip: onlyNativeDeviceTypes: doesn't run on lazy (0.014s) 2023-01-11T20:47:10.2878265Z test_view_dtype_new_lazy_float64 (__main__.TestViewOpsLAZY) ... skip: onlyNativeDeviceTypes: doesn't run on lazy (0.004s) 2023-01-11T20:47:10.2878740Z test_view_dtype_new_lazy_int16 (__main__.TestViewOpsLAZY) ... skip: onlyNativeDeviceTypes: doesn't run on lazy (0.004s) 2023-01-11T20:47:10.2879229Z test_view_dtype_new_lazy_int32 (__main__.TestViewOpsLAZY) ... skip: onlyNativeDeviceTypes: doesn't run on lazy (0.004s) 2023-01-11T20:47:10.2879713Z test_view_dtype_new_lazy_int64 (__main__.TestViewOpsLAZY) ... skip: onlyNativeDeviceTypes: doesn't run on lazy (0.004s) 2023-01-11T20:47:10.2880211Z test_view_dtype_new_lazy_int8 (__main__.TestViewOpsLAZY) ... skip: onlyNativeDeviceTypes: doesn't run on lazy (0.004s) 2023-01-11T20:47:10.2880876Z test_view_dtype_new_lazy_uint8 (__main__.TestViewOpsLAZY) ... skip: onlyNativeDeviceTypes: doesn't run on lazy (0.004s) 2023-01-11T20:47:10.2881614Z test_view_dtype_upsize_errors_lazy_bfloat16 (__main__.TestViewOpsLAZY) ... skip: onlyNativeDeviceTypes: doesn't run on lazy (0.002s) 2023-01-11T20:47:10.2882397Z test_view_dtype_upsize_errors_lazy_bool (__main__.TestViewOpsLAZY) ... skip: onlyNativeDeviceTypes: doesn't run on lazy (0.002s) 2023-01-11T20:47:10.2883162Z test_view_dtype_upsize_errors_lazy_complex128 (__main__.TestViewOpsLAZY) ... skip: onlyNativeDeviceTypes: doesn't run on lazy (0.002s) 2023-01-11T20:47:10.2883937Z test_view_dtype_upsize_errors_lazy_complex64 (__main__.TestViewOpsLAZY) ... skip: onlyNativeDeviceTypes: doesn't run on lazy (0.002s) 2023-01-11T20:47:10.2884797Z test_view_dtype_upsize_errors_lazy_float16 (__main__.TestViewOpsLAZY) ... skip: onlyNativeDeviceTypes: doesn't run on lazy (0.002s) 2023-01-11T20:47:10.2885565Z test_view_dtype_upsize_errors_lazy_float32 (__main__.TestViewOpsLAZY) ... skip: onlyNativeDeviceTypes: doesn't run on lazy (0.002s) 2023-01-11T20:47:10.2886322Z test_view_dtype_upsize_errors_lazy_float64 (__main__.TestViewOpsLAZY) ... skip: onlyNativeDeviceTypes: doesn't run on lazy (0.002s) 2023-01-11T20:47:10.2887056Z test_view_dtype_upsize_errors_lazy_int16 (__main__.TestViewOpsLAZY) ... skip: onlyNativeDeviceTypes: doesn't run on lazy (0.002s) 2023-01-11T20:47:10.2887803Z test_view_dtype_upsize_errors_lazy_int32 (__main__.TestViewOpsLAZY) ... skip: onlyNativeDeviceTypes: doesn't run on lazy (0.002s) 2023-01-11T20:47:10.2888556Z test_view_dtype_upsize_errors_lazy_int64 (__main__.TestViewOpsLAZY) ... skip: onlyNativeDeviceTypes: doesn't run on lazy (0.002s) 2023-01-11T20:47:10.2889113Z test_view_dtype_upsize_errors_lazy_int8 (__main__.TestViewOpsLAZY) ... skip: onlyNativeDeviceTypes: doesn't run on lazy (0.002s) 2023-01-11T20:47:10.2889669Z test_view_dtype_upsize_errors_lazy_uint8 (__main__.TestViewOpsLAZY) ... skip: onlyNativeDeviceTypes: doesn't run on lazy (0.002s) 2023-01-11T20:47:10.2890181Z test_view_tensor_dsplit_lazy_bfloat16 (__main__.TestViewOpsLAZY) ... skip: onlyNativeDeviceTypes: doesn't run on lazy (0.001s) 2023-01-11T20:47:10.2890672Z test_view_tensor_dsplit_lazy_bool (__main__.TestViewOpsLAZY) ... skip: onlyNativeDeviceTypes: doesn't run on lazy (0.001s) 2023-01-11T20:47:10.2891183Z test_view_tensor_dsplit_lazy_complex128 (__main__.TestViewOpsLAZY) ... skip: onlyNativeDeviceTypes: doesn't run on lazy (0.001s) 2023-01-11T20:47:10.2891681Z test_view_tensor_dsplit_lazy_complex64 (__main__.TestViewOpsLAZY) ... skip: onlyNativeDeviceTypes: doesn't run on lazy (0.001s) 2023-01-11T20:47:10.2892186Z test_view_tensor_dsplit_lazy_float16 (__main__.TestViewOpsLAZY) ... skip: onlyNativeDeviceTypes: doesn't run on lazy (0.001s) 2023-01-11T20:47:10.2892686Z test_view_tensor_dsplit_lazy_float32 (__main__.TestViewOpsLAZY) ... skip: onlyNativeDeviceTypes: doesn't run on lazy (0.001s) 2023-01-11T20:47:10.2893180Z test_view_tensor_dsplit_lazy_float64 (__main__.TestViewOpsLAZY) ... skip: onlyNativeDeviceTypes: doesn't run on lazy (0.001s) 2023-01-11T20:47:10.2893663Z test_view_tensor_dsplit_lazy_int16 (__main__.TestViewOpsLAZY) ... skip: onlyNativeDeviceTypes: doesn't run on lazy (0.001s) 2023-01-11T20:47:10.2894154Z test_view_tensor_dsplit_lazy_int32 (__main__.TestViewOpsLAZY) ... skip: onlyNativeDeviceTypes: doesn't run on lazy (0.001s) 2023-01-11T20:47:10.2894646Z test_view_tensor_dsplit_lazy_int64 (__main__.TestViewOpsLAZY) ... skip: onlyNativeDeviceTypes: doesn't run on lazy (0.001s) 2023-01-11T20:47:10.2895136Z test_view_tensor_dsplit_lazy_int8 (__main__.TestViewOpsLAZY) ... skip: onlyNativeDeviceTypes: doesn't run on lazy (0.001s) 2023-01-11T20:47:10.2895617Z test_view_tensor_dsplit_lazy_uint8 (__main__.TestViewOpsLAZY) ... skip: onlyNativeDeviceTypes: doesn't run on lazy (0.001s) 2023-01-11T20:47:10.2896116Z test_view_tensor_hsplit_lazy_bfloat16 (__main__.TestViewOpsLAZY) ... skip: onlyNativeDeviceTypes: doesn't run on lazy (0.001s) 2023-01-11T20:47:10.2896611Z test_view_tensor_hsplit_lazy_bool (__main__.TestViewOpsLAZY) ... skip: onlyNativeDeviceTypes: doesn't run on lazy (0.001s) 2023-01-11T20:47:10.2897102Z test_view_tensor_hsplit_lazy_complex128 (__main__.TestViewOpsLAZY) ... skip: onlyNativeDeviceTypes: doesn't run on lazy (0.001s) 2023-01-11T20:47:10.2897608Z test_view_tensor_hsplit_lazy_complex64 (__main__.TestViewOpsLAZY) ... skip: onlyNativeDeviceTypes: doesn't run on lazy (0.001s) 2023-01-11T20:47:10.2898113Z test_view_tensor_hsplit_lazy_float16 (__main__.TestViewOpsLAZY) ... skip: onlyNativeDeviceTypes: doesn't run on lazy (0.001s) 2023-01-11T20:47:10.2898615Z test_view_tensor_hsplit_lazy_float32 (__main__.TestViewOpsLAZY) ... skip: onlyNativeDeviceTypes: doesn't run on lazy (0.001s) 2023-01-11T20:47:10.2899139Z test_view_tensor_hsplit_lazy_float64 (__main__.TestViewOpsLAZY) ... skip: onlyNativeDeviceTypes: doesn't run on lazy (0.001s) 2023-01-11T20:47:10.2899646Z test_view_tensor_hsplit_lazy_int16 (__main__.TestViewOpsLAZY) ... skip: onlyNativeDeviceTypes: doesn't run on lazy (0.001s) 2023-01-11T20:47:10.2900249Z test_view_tensor_hsplit_lazy_int32 (__main__.TestViewOpsLAZY) ... skip: onlyNativeDeviceTypes: doesn't run on lazy (0.001s) 2023-01-11T20:47:10.2900747Z test_view_tensor_hsplit_lazy_int64 (__main__.TestViewOpsLAZY) ... skip: onlyNativeDeviceTypes: doesn't run on lazy (0.001s) 2023-01-11T20:47:10.2901229Z test_view_tensor_hsplit_lazy_int8 (__main__.TestViewOpsLAZY) ... skip: onlyNativeDeviceTypes: doesn't run on lazy (0.001s) 2023-01-11T20:47:10.2901727Z test_view_tensor_hsplit_lazy_uint8 (__main__.TestViewOpsLAZY) ... skip: onlyNativeDeviceTypes: doesn't run on lazy (0.001s) 2023-01-11T20:47:10.2902229Z test_view_tensor_split_lazy_bfloat16 (__main__.TestViewOpsLAZY) ... skip: onlyNativeDeviceTypes: doesn't run on lazy (0.001s) 2023-01-11T20:47:10.2902767Z test_view_tensor_split_lazy_bool (__main__.TestViewOpsLAZY) ... skip: onlyNativeDeviceTypes: doesn't run on lazy (0.001s) 2023-01-11T20:47:10.2903267Z test_view_tensor_split_lazy_complex128 (__main__.TestViewOpsLAZY) ... skip: onlyNativeDeviceTypes: doesn't run on lazy (0.001s) 2023-01-11T20:47:10.2903777Z test_view_tensor_split_lazy_complex64 (__main__.TestViewOpsLAZY) ... skip: onlyNativeDeviceTypes: doesn't run on lazy (0.001s) 2023-01-11T20:47:10.2904285Z test_view_tensor_split_lazy_float16 (__main__.TestViewOpsLAZY) ... skip: onlyNativeDeviceTypes: doesn't run on lazy (0.001s) 2023-01-11T20:47:10.2904784Z test_view_tensor_split_lazy_float32 (__main__.TestViewOpsLAZY) ... skip: onlyNativeDeviceTypes: doesn't run on lazy (0.001s) 2023-01-11T20:47:10.2905270Z test_view_tensor_split_lazy_float64 (__main__.TestViewOpsLAZY) ... skip: onlyNativeDeviceTypes: doesn't run on lazy (0.001s) 2023-01-11T20:47:10.2905773Z test_view_tensor_split_lazy_int16 (__main__.TestViewOpsLAZY) ... skip: onlyNativeDeviceTypes: doesn't run on lazy (0.001s) 2023-01-11T20:47:10.2906268Z test_view_tensor_split_lazy_int32 (__main__.TestViewOpsLAZY) ... skip: onlyNativeDeviceTypes: doesn't run on lazy (0.001s) 2023-01-11T20:47:10.2906758Z test_view_tensor_split_lazy_int64 (__main__.TestViewOpsLAZY) ... skip: onlyNativeDeviceTypes: doesn't run on lazy (0.001s) 2023-01-11T20:47:10.2907234Z test_view_tensor_split_lazy_int8 (__main__.TestViewOpsLAZY) ... skip: onlyNativeDeviceTypes: doesn't run on lazy (0.001s) 2023-01-11T20:47:10.2907726Z test_view_tensor_split_lazy_uint8 (__main__.TestViewOpsLAZY) ... skip: onlyNativeDeviceTypes: doesn't run on lazy (0.001s) 2023-01-11T20:47:10.2908234Z test_view_tensor_vsplit_lazy_bfloat16 (__main__.TestViewOpsLAZY) ... skip: onlyNativeDeviceTypes: doesn't run on lazy (0.001s) 2023-01-11T20:47:10.2908740Z test_view_tensor_vsplit_lazy_bool (__main__.TestViewOpsLAZY) ... skip: onlyNativeDeviceTypes: doesn't run on lazy (0.001s) 2023-01-11T20:47:10.2909238Z test_view_tensor_vsplit_lazy_complex128 (__main__.TestViewOpsLAZY) ... skip: onlyNativeDeviceTypes: doesn't run on lazy (0.001s) 2023-01-11T20:47:10.2909753Z test_view_tensor_vsplit_lazy_complex64 (__main__.TestViewOpsLAZY) ... skip: onlyNativeDeviceTypes: doesn't run on lazy (0.001s) 2023-01-11T20:47:10.2910268Z test_view_tensor_vsplit_lazy_float16 (__main__.TestViewOpsLAZY) ... skip: onlyNativeDeviceTypes: doesn't run on lazy (0.001s) 2023-01-11T20:47:10.2910767Z test_view_tensor_vsplit_lazy_float32 (__main__.TestViewOpsLAZY) ... skip: onlyNativeDeviceTypes: doesn't run on lazy (0.001s) 2023-01-11T20:47:10.2911252Z test_view_tensor_vsplit_lazy_float64 (__main__.TestViewOpsLAZY) ... skip: onlyNativeDeviceTypes: doesn't run on lazy (0.001s) 2023-01-11T20:47:10.2911751Z test_view_tensor_vsplit_lazy_int16 (__main__.TestViewOpsLAZY) ... skip: onlyNativeDeviceTypes: doesn't run on lazy (0.001s) 2023-01-11T20:47:10.2912289Z test_view_tensor_vsplit_lazy_int32 (__main__.TestViewOpsLAZY) ... skip: onlyNativeDeviceTypes: doesn't run on lazy (0.001s) 2023-01-11T20:47:10.2912790Z test_view_tensor_vsplit_lazy_int64 (__main__.TestViewOpsLAZY) ... skip: onlyNativeDeviceTypes: doesn't run on lazy (0.001s) 2023-01-11T20:47:10.2913271Z test_view_tensor_vsplit_lazy_int8 (__main__.TestViewOpsLAZY) ... skip: onlyNativeDeviceTypes: doesn't run on lazy (0.001s) 2023-01-11T20:47:10.2913767Z test_view_tensor_vsplit_lazy_uint8 (__main__.TestViewOpsLAZY) ... skip: onlyNativeDeviceTypes: doesn't run on lazy (0.001s) 2023-01-11T20:47:10.2914107Z test_view_view_lazy (__main__.TestViewOpsLAZY) ... ok (0.008s) 2023-01-11T20:47:10.2914267Z 2023-01-11T20:47:10.2914471Z ---------------------------------------------------------------------- 2023-01-11T20:47:10.2914704Z Ran 441 tests in 49.467s 2023-01-11T20:47:10.2914823Z 2023-01-11T20:47:10.2914896Z OK (skipped=123) 2023-01-11T20:47:10.2915007Z 2023-01-11T20:47:10.2915092Z Generating XML reports... 2023-01-11T20:47:10.2915492Z Generated XML report: test-reports/python-unittest/test_view_ops/TEST-TestOldViewOpsCPU-20230111204620.xml 2023-01-11T20:47:10.2916042Z Generated XML report: test-reports/python-unittest/test_view_ops/TEST-TestViewOpsCPU-20230111204620.xml 2023-01-11T20:47:10.2916551Z Generated XML report: test-reports/python-unittest/test_view_ops/TEST-TestViewOpsLAZY-20230111204620.xml 2023-01-11T20:47:10.2916779Z 2023-01-11T20:47:10.2917115Z ##[endgroup] 2023-01-11T20:47:10.2917494Z FINISHED PRINTING LOG FILE of test_view_ops (/var/lib/jenkins/workspace/test/test-reports/test_view_ops_gjmfh89f) 2023-01-11T20:47:10.2917709Z 2023-01-11T20:47:15.3993390Z No CUDA runtime is found, using CUDA_HOME='/usr/local/cuda' 2023-01-11T20:47:15.5811956Z Ignoring disabled issues: ['91003'] 2023-01-11T20:47:15.6077051Z Running test_tensorboard ... [2023-01-11 20:47:15.607189] 2023-01-11T20:47:15.6077690Z Executing ['/opt/conda/bin/python', '-bb', 'test_tensorboard.py', '-v', '--import-slow-tests', '--import-disabled-tests'] ... [2023-01-11 20:47:15.607477] 2023-01-11T20:47:22.9962814Z 2023-01-11T20:47:22.9963372Z Expand the folded group to see the log file of test_tensorboard 2023-01-11T20:47:22.9964492Z ##[group]PRINTING LOG FILE of test_tensorboard (/var/lib/jenkins/workspace/test/test-reports/test_tensorboard_mmq19wan) 2023-01-11T20:47:22.9965441Z Test results will be stored in test-reports/python-unittest/test_tensorboard 2023-01-11T20:47:22.9965770Z 2023-01-11T20:47:22.9965891Z Running tests... 2023-01-11T20:47:22.9966423Z ---------------------------------------------------------------------- 2023-01-11T20:47:22.9967114Z test_embedding (__main__.TestTensorBoardEmbedding) ... warning: Embedding dir exists, did you set global_step for add_embedding()? 2023-01-11T20:47:22.9967638Z ok (0.065s) 2023-01-11T20:47:22.9971674Z test_embedding_64 (__main__.TestTensorBoardEmbedding) ... warning: Embedding dir exists, did you set global_step for add_embedding()? 2023-01-11T20:47:22.9972229Z ok (0.018s) 2023-01-11T20:47:22.9972682Z test_figure (__main__.TestTensorBoardFigure) ... skip: no matplotlib (0.002s) 2023-01-11T20:47:22.9973268Z test_figure_list (__main__.TestTensorBoardFigure) ... skip: no matplotlib (0.002s) 2023-01-11T20:47:22.9973827Z test_caffe2_np (__main__.TestTensorBoardNumpy) ... skip: no caffe2 (0.001s) 2023-01-11T20:47:22.9974411Z test_caffe2_np_expect_fail (__main__.TestTensorBoardNumpy) ... skip: no caffe2 (0.000s) 2023-01-11T20:47:22.9975019Z test_caffe2_simple_cnnmodel (__main__.TestTensorBoardNumpy) ... skip: no caffe2 (0.002s) 2023-01-11T20:47:23.0044685Z test_caffe2_simple_model (__main__.TestTensorBoardNumpy) ... skip: no caffe2 (0.003s) 2023-01-11T20:47:23.0045298Z test_pytorch_np_expect_fail (__main__.TestTensorBoardNumpy) ... ok (0.001s) 2023-01-11T20:47:23.0045820Z test_scalar (__main__.TestTensorBoardNumpy) ... ok (0.002s) 2023-01-11T20:47:23.0046393Z test_pytorch_autograd_np (__main__.TestTensorBoardPyTorchNumpy) ... ok (0.001s) 2023-01-11T20:47:23.0047201Z test_pytorch_histogram (__main__.TestTensorBoardPyTorchNumpy) ... ok (0.017s) 2023-01-11T20:47:23.0047818Z test_pytorch_histogram_raw (__main__.TestTensorBoardPyTorchNumpy) ... ok (0.016s) 2023-01-11T20:47:23.0048426Z test_pytorch_np (__main__.TestTensorBoardPyTorchNumpy) ... ok (0.002s) 2023-01-11T20:47:23.0048991Z test_pytorch_write (__main__.TestTensorBoardPyTorchNumpy) ... ok (0.009s) 2023-01-11T20:47:23.0049555Z test_mlp_graph (__main__.TestTensorBoardPytorchGraph) ... ok (0.566s) 2023-01-11T20:47:23.0050141Z test_nested_nn_squential (__main__.TestTensorBoardPytorchGraph) ... ok (0.234s) 2023-01-11T20:47:23.0050734Z test_pytorch_graph (__main__.TestTensorBoardPytorchGraph) ... ok (0.051s) 2023-01-11T20:47:23.0052788Z test_pytorch_graph_dict_input (__main__.TestTensorBoardPytorchGraph) ... Encountering a dict at the output of the tracer might cause the trace to be incorrect, this is only valid if the container structure does not change based on the module's inputs. Consider using a constant container instead (e.g. for `list`, use a `tuple` instead. for `dict`, use a `NamedTuple` instead). If you absolutely need this and know the side effects, pass strict=False to trace() to allow this behavior. 2023-01-11T20:47:23.0054200Z Error occurs, No graph saved 2023-01-11T20:47:23.0054525Z ok (0.091s) 2023-01-11T20:47:23.0055007Z test_torchvision_smoke (__main__.TestTensorBoardPytorchGraph) ... skip: no torchvision (0.001s) 2023-01-11T20:47:23.0055732Z test_wrong_input_size (__main__.TestTensorBoardPytorchGraph) ... mat1 and mat2 shapes cannot be multiplied (1x9 and 3x5) 2023-01-11T20:47:23.0056270Z Error occurs, No graph saved 2023-01-11T20:47:23.0056574Z ok (0.032s) 2023-01-11T20:47:23.0057062Z test_audio (__main__.TestTensorBoardSummary) ... warning: audio amplitude out of range, auto clipped. 2023-01-11T20:47:23.0057529Z ok (0.012s) 2023-01-11T20:47:23.0057935Z test_custom_scalars (__main__.TestTensorBoardSummary) ... ok (0.001s) 2023-01-11T20:47:23.0058459Z test_empty_input (__main__.TestTensorBoardSummary) ... ok (0.001s) 2023-01-11T20:47:23.0058957Z test_float32_image (__main__.TestTensorBoardSummary) 2023-01-11T20:47:23.0059485Z Tests that float32 image (pixel values in [0, 1]) are scaled correctly ... ok (0.001s) 2023-01-11T20:47:23.0060112Z test_histogram_auto (__main__.TestTensorBoardSummary) ... ok (0.003s) 2023-01-11T20:47:23.0060655Z test_histogram_doane (__main__.TestTensorBoardSummary) ... ok (0.003s) 2023-01-11T20:47:23.0061189Z test_histogram_fd (__main__.TestTensorBoardSummary) ... ok (0.002s) 2023-01-11T20:47:23.0061709Z test_hparams_bool (__main__.TestTensorBoardSummary) ... ok (0.014s) 2023-01-11T20:47:23.0062254Z test_hparams_domain_discrete (__main__.TestTensorBoardSummary) ... ok (0.002s) 2023-01-11T20:47:23.0114041Z test_hparams_number (__main__.TestTensorBoardSummary) ... ok (0.002s) 2023-01-11T20:47:23.0114677Z test_hparams_smoke (__main__.TestTensorBoardSummary) ... ok (0.002s) 2023-01-11T20:47:23.0115279Z test_hparams_string (__main__.TestTensorBoardSummary) ... ok (0.002s) 2023-01-11T20:47:23.0116006Z test_hparams_wrong_parameter (__main__.TestTensorBoardSummary) ... parameter: hparam_dict should be a dictionary, nothing logged. 2023-01-11T20:47:23.0116682Z parameter: metric_dict should be a dictionary, nothing logged. 2023-01-11T20:47:23.0117110Z ok (0.010s) 2023-01-11T20:47:23.0117577Z test_image_with_3_channel_batched (__main__.TestTensorBoardSummary) ... ok (0.003s) 2023-01-11T20:47:23.0118171Z test_image_with_boxes (__main__.TestTensorBoardSummary) ... ok (0.084s) 2023-01-11T20:47:23.0118730Z test_image_with_one_channel (__main__.TestTensorBoardSummary) ... ok (0.002s) 2023-01-11T20:47:23.0119344Z test_image_with_one_channel_batched (__main__.TestTensorBoardSummary) ... ok (0.002s) 2023-01-11T20:47:23.0164962Z test_image_without_channel (__main__.TestTensorBoardSummary) ... ok (0.002s) 2023-01-11T20:47:23.0165559Z test_list_input (__main__.TestTensorBoardSummary) ... ok (0.001s) 2023-01-11T20:47:23.0166317Z test_mesh (__main__.TestTensorBoardSummary) ... ok (0.009s) 2023-01-11T20:47:23.0167812Z test_scalar_new_style (__main__.TestTensorBoardSummary) ... ok (0.002s) 2023-01-11T20:47:23.0168328Z test_text (__main__.TestTensorBoardSummary) ... ok (0.002s) 2023-01-11T20:47:23.0168809Z test_uint8_image (__main__.TestTensorBoardSummary) 2023-01-11T20:47:23.0170237Z Tests that uint8 image (pixel values in [0, 255]) is not changed ... ok (0.001s) 2023-01-11T20:47:23.0170778Z test_video (__main__.TestTensorBoardSummary) ... ok (0.001s) 2023-01-11T20:47:23.0171551Z test_pathlib (__main__.TestTensorBoardSummaryWriter) ... ok (0.018s) 2023-01-11T20:47:23.0173084Z test_summary_writer_close (__main__.TestTensorBoardSummaryWriter) ... ok (0.002s) 2023-01-11T20:47:23.0173706Z test_summary_writer_ctx (__main__.TestTensorBoardSummaryWriter) ... ok (0.021s) 2023-01-11T20:47:23.0174291Z test_convert_to_HWC_dtype_remains_same (__main__.TestTensorBoardUtils) ... ok (0.001s) 2023-01-11T20:47:23.0174860Z test_numpy_vid_uint8 (__main__.TestTensorBoardUtils) ... ok (0.048s) 2023-01-11T20:47:23.0175396Z test_prepare_video (__main__.TestTensorBoardUtils) ... ok (0.375s) 2023-01-11T20:47:23.0176026Z test_to_HWC (__main__.TestTensorBoardUtils) ... ok (0.002s) 2023-01-11T20:47:23.0176608Z test_writer (__main__.TestTensorBoardWriter) ... add_video needs package moviepy 2023-01-11T20:47:23.0177043Z ok (0.087s) 2023-01-11T20:47:23.0177223Z 2023-01-11T20:47:23.0177667Z ---------------------------------------------------------------------- 2023-01-11T20:47:23.0178083Z Ran 53 tests in 1.836s 2023-01-11T20:47:23.0178274Z 2023-01-11T20:47:23.0178396Z OK (skipped=7) 2023-01-11T20:47:23.0178589Z 2023-01-11T20:47:23.0178741Z Generating XML reports... 2023-01-11T20:47:23.0179571Z Generated XML report: test-reports/python-unittest/test_tensorboard/TEST-TestTensorBoardEmbedding-20230111204720.xml 2023-01-11T20:47:23.0180721Z Generated XML report: test-reports/python-unittest/test_tensorboard/TEST-TestTensorBoardNumpy-20230111204720.xml 2023-01-11T20:47:23.0181776Z Generated XML report: test-reports/python-unittest/test_tensorboard/TEST-TestTensorBoardPyTorchNumpy-20230111204720.xml 2023-01-11T20:47:23.0182890Z Generated XML report: test-reports/python-unittest/test_tensorboard/TEST-TestTensorBoardPytorchGraph-20230111204720.xml 2023-01-11T20:47:23.0183927Z Generated XML report: test-reports/python-unittest/test_tensorboard/TEST-TestTensorBoardSummary-20230111204720.xml 2023-01-11T20:47:23.0184994Z Generated XML report: test-reports/python-unittest/test_tensorboard/TEST-TestTensorBoardSummaryWriter-20230111204720.xml 2023-01-11T20:47:23.0186024Z Generated XML report: test-reports/python-unittest/test_tensorboard/TEST-TestTensorBoardUtils-20230111204720.xml 2023-01-11T20:47:23.0187034Z Generated XML report: test-reports/python-unittest/test_tensorboard/TEST-TestTensorBoardWriter-20230111204720.xml 2023-01-11T20:47:23.0188032Z Generated XML report: test-reports/python-unittest/test_tensorboard/TEST-TestTensorBoardFigure-20230111204720.xml 2023-01-11T20:47:23.0188487Z 2023-01-11T20:47:23.0189084Z ##[endgroup] 2023-01-11T20:47:23.0189812Z FINISHED PRINTING LOG FILE of test_tensorboard (/var/lib/jenkins/workspace/test/test-reports/test_tensorboard_mmq19wan) 2023-01-11T20:47:23.0190219Z 2023-01-11T20:47:28.0249007Z No CUDA runtime is found, using CUDA_HOME='/usr/local/cuda' 2023-01-11T20:47:28.1992642Z Ignoring disabled issues: ['91003'] 2023-01-11T20:47:28.2378839Z Running nn/test_parametrization ... [2023-01-11 20:47:28.237471] 2023-01-11T20:47:28.2380225Z Executing ['/opt/conda/bin/python', '-bb', 'nn/test_parametrization.py', '-v', '--import-slow-tests', '--import-disabled-tests'] ... [2023-01-11 20:47:28.237782] 2023-01-11T20:47:34.7246100Z 2023-01-11T20:47:34.7246826Z Expand the folded group to see the log file of nn/test_parametrization 2023-01-11T20:47:34.7247846Z ##[group]PRINTING LOG FILE of nn/test_parametrization (/var/lib/jenkins/workspace/test/test-reports/nn-test_parametrization_uoiu6z50) 2023-01-11T20:47:34.7249141Z Test results will be stored in test-reports/python-unittest/nn.test_parametrization 2023-01-11T20:47:34.7249504Z 2023-01-11T20:47:34.7249632Z Running tests... 2023-01-11T20:47:34.7250180Z ---------------------------------------------------------------------- 2023-01-11T20:47:34.7250714Z test_caching_parametrization (__main__.TestNNParametrization) 2023-01-11T20:47:34.7251201Z Test the caching system of a parametrization ... ok (0.030s) 2023-01-11T20:47:34.7251532Z test_caching_parametrization_with_transfer_parametrizations_and_params (__main__.TestNNParametrization) 2023-01-11T20:47:34.7251977Z Test that transferring parametrizations doesn't cause issues with caching ... ok (0.009s) 2023-01-11T20:47:34.7252306Z test_deepcopy_after_parametrization (__main__.TestNNParametrization) 2023-01-11T20:47:34.7252715Z Test that we are able to create a deepcopy of the module when it's parametrized. ... ok (0.027s) 2023-01-11T20:47:34.7253061Z test_errors_parametrized_tensor_parametrization (__main__.TestNNParametrization) ... ok (0.010s) 2023-01-11T20:47:34.7253430Z test_errors_unparametrized_tensor_parametrization (__main__.TestNNParametrization) ... ok (0.012s) 2023-01-11T20:47:34.7253844Z test_initialization_parametrization (__main__.TestNNParametrization) 2023-01-11T20:47:34.7254151Z Test that it is possible to initialize a parametrization when it ... ok (0.025s) 2023-01-11T20:47:34.7254476Z test_multiple_inputs_parametrization (__main__.TestNNParametrization) ... ok (0.043s) 2023-01-11T20:47:34.7254797Z test_new_spectral_norm (__main__.TestNNParametrization) ... ok (0.239s) 2023-01-11T20:47:34.7255099Z test_new_spectral_norm_dim (__main__.TestNNParametrization) ... ok (0.014s) 2023-01-11T20:47:34.7255396Z test_new_spectral_norm_forward (__main__.TestNNParametrization) ... ok (0.010s) 2023-01-11T20:47:34.7255722Z test_new_spectral_norm_load_state_dict (__main__.TestNNParametrization) ... ok (0.056s) 2023-01-11T20:47:34.7256040Z test_orthogonal_errors (__main__.TestNNParametrization) ... ok (0.007s) 2023-01-11T20:47:34.7256345Z test_orthogonal_parametrization (__main__.TestNNParametrization) ... ok (0.840s) 2023-01-11T20:47:34.7256671Z test_parametrization_same_training_mode (__main__.TestNNParametrization) 2023-01-11T20:47:34.7256991Z Test training mode updated on parametrization registration ... ok (0.002s) 2023-01-11T20:47:34.7257316Z test_register_and_remove_buffer_parametrization (__main__.TestNNParametrization) 2023-01-11T20:47:34.7257635Z Test that it is possible to add and remove parametrizations on buffers ... ok (0.005s) 2023-01-11T20:47:34.7257969Z test_register_and_remove_nested_parametrization (__main__.TestNNParametrization) 2023-01-11T20:47:34.7258283Z Test that it is possible to nest the parametrizations ... ok (0.006s) 2023-01-11T20:47:34.7258574Z test_register_and_remove_parametrization (__main__.TestNNParametrization) 2023-01-11T20:47:34.7258878Z Test that it is possible to add a few parametrizations ... ok (0.057s) 2023-01-11T20:47:34.7259180Z test_serialization_parametrization (__main__.TestNNParametrization) 2023-01-11T20:47:34.7259503Z Test that it is possible to serialize a parametrized model via state_dict ... ok (0.033s) 2023-01-11T20:47:34.7259817Z test_transfer_parametrizations_and_params (__main__.TestNNParametrization) 2023-01-11T20:47:34.7260258Z Test that all parametrizations and their associated parameters are transferred. ... ok (0.012s) 2023-01-11T20:47:34.7260624Z test_transfer_parametrizations_and_params_many_to_one (__main__.TestNNParametrization) ... ok (0.015s) 2023-01-11T20:47:34.7260977Z test_transfer_parametrizations_and_params_right_inverse (__main__.TestNNParametrization) 2023-01-11T20:47:34.7261332Z Test that all parametrizations and their associated parameters are transferred. ... ok (0.005s) 2023-01-11T20:47:34.7261684Z test_transfer_parametrizations_and_params_single_param (__main__.TestNNParametrization) 2023-01-11T20:47:34.7262036Z Test that all parametrizations and their associated parameters are transferred. ... ok (0.007s) 2023-01-11T20:47:34.7262401Z test_type_before_parametrizations (__main__.TestNNParametrization) 2023-01-11T20:47:34.7262719Z Test that type_before_parametrizations always retrieves original type ... ok (0.002s) 2023-01-11T20:47:34.7262899Z 2023-01-11T20:47:34.7263108Z ---------------------------------------------------------------------- 2023-01-11T20:47:34.7263332Z Ran 23 tests in 1.465s 2023-01-11T20:47:34.7263447Z 2023-01-11T20:47:34.7263505Z OK 2023-01-11T20:47:34.7263594Z 2023-01-11T20:47:34.7263677Z Generating XML reports... 2023-01-11T20:47:34.7264124Z Generated XML report: test-reports/python-unittest/nn.test_parametrization/TEST-TestNNParametrization-20230111204732.xml 2023-01-11T20:47:34.7264367Z 2023-01-11T20:47:34.7264642Z ##[endgroup] 2023-01-11T20:47:34.7265062Z FINISHED PRINTING LOG FILE of nn/test_parametrization (/var/lib/jenkins/workspace/test/test-reports/nn-test_parametrization_uoiu6z50) 2023-01-11T20:47:34.7265301Z 2023-01-11T20:47:39.8265170Z No CUDA runtime is found, using CUDA_HOME='/usr/local/cuda' 2023-01-11T20:47:40.0445013Z Ignoring disabled issues: ['91003'] 2023-01-11T20:47:40.0776136Z Running dynamo/test_verify_correctness ... [2023-01-11 20:47:40.076967] 2023-01-11T20:47:40.0777571Z Executing ['/opt/conda/bin/python', '-bb', 'dynamo/test_verify_correctness.py', '-v', '--import-slow-tests', '--import-disabled-tests'] ... [2023-01-11 20:47:40.077351] 2023-01-11T20:47:46.3056050Z 2023-01-11T20:47:46.3056777Z Expand the folded group to see the log file of dynamo/test_verify_correctness 2023-01-11T20:47:46.3058321Z ##[group]PRINTING LOG FILE of dynamo/test_verify_correctness (/var/lib/jenkins/workspace/test/test-reports/dynamo-test_verify_correctness_75ta2zgw) 2023-01-11T20:47:46.3059491Z Test results will be stored in test-reports/python-unittest/dynamo.test_verify_correctness 2023-01-11T20:47:46.3059857Z 2023-01-11T20:47:46.3060041Z Running tests... 2023-01-11T20:47:46.3060608Z ---------------------------------------------------------------------- 2023-01-11T20:47:46.3061150Z test_example_inputs (__main__.TestVerifyCorrectness) ... ok (0.516s) 2023-01-11T20:47:46.3061712Z test_incorrect_verify_false (__main__.TestVerifyCorrectness) 2023-01-11T20:47:46.3062543Z The bad optimization return a graph that ... stats [('calls_captured', 3), ('fusions_possible', 2), ('unique_graphs', 1)] 2023-01-11T20:47:46.3063137Z frames [('total', 2), ('ok', 2)] 2023-01-11T20:47:46.3063700Z stats [('calls_captured', 7), ('fusions_possible', 5), ('unique_graphs', 2)] 2023-01-11T20:47:46.3064118Z ok (0.037s) 2023-01-11T20:47:46.3064535Z test_incorrect_verify_true (__main__.TestVerifyCorrectness) 2023-01-11T20:47:46.3065367Z If a bad optimization return a graph that ... [2023-01-11 20:47:44,980] torch._dynamo.output_graph: [ERROR] error in verify_correctness 2023-01-11T20:47:46.3065917Z Traceback (most recent call last): 2023-01-11T20:47:46.3066606Z File "/opt/conda/lib/python3.7/site-packages/torch/_dynamo/output_graph.py", line 173, in __call__ 2023-01-11T20:47:46.3067178Z raise RuntimeError(f"incorrect results of backend {self}") 2023-01-11T20:47:46.3067822Z RuntimeError: incorrect results of backend 2023-01-11T20:47:46.3068429Z frames [('total', 2), ('ok', 1)] 2023-01-11T20:47:46.3069005Z stats [('calls_captured', 7), ('fusions_possible', 5), ('unique_graphs', 1)] 2023-01-11T20:47:46.3069403Z ok (0.033s) 2023-01-11T20:47:46.3069856Z test_ipex_fp32 (__main__.TestVerifyCorrectness) ... skip: requires ipex (0.001s) 2023-01-11T20:47:46.3070560Z test_nnc (__main__.TestVerifyCorrectness) ... frames [('total', 1), ('ok', 1)] 2023-01-11T20:47:46.3071211Z stats [('calls_captured', 4), ('fusions_possible', 3), ('unique_graphs', 1)] 2023-01-11T20:47:46.3071622Z ok (0.636s) 2023-01-11T20:47:46.3071806Z 2023-01-11T20:47:46.3072169Z ---------------------------------------------------------------------- 2023-01-11T20:47:46.3072588Z Ran 5 tests in 1.224s 2023-01-11T20:47:46.3072795Z 2023-01-11T20:47:46.3072924Z OK (skipped=1) 2023-01-11T20:47:46.3073380Z 2023-01-11T20:47:46.3073533Z Generating XML reports... 2023-01-11T20:47:46.3074392Z Generated XML report: test-reports/python-unittest/dynamo.test_verify_correctness/TEST-TestVerifyCorrectness-20230111204744.xml 2023-01-11T20:47:46.3074876Z 2023-01-11T20:47:46.3075315Z ##[endgroup] 2023-01-11T20:47:46.3076129Z FINISHED PRINTING LOG FILE of dynamo/test_verify_correctness (/var/lib/jenkins/workspace/test/test-reports/dynamo-test_verify_correctness_75ta2zgw) 2023-01-11T20:47:46.3076594Z 2023-01-11T20:47:51.6323062Z No CUDA runtime is found, using CUDA_HOME='/usr/local/cuda' 2023-01-11T20:47:51.8085688Z Ignoring disabled issues: ['91003'] 2023-01-11T20:47:51.8281026Z Running test_native_mha ... [2023-01-11 20:47:51.827770] 2023-01-11T20:47:51.8282595Z Executing ['/opt/conda/bin/python', '-bb', 'test_native_mha.py', '-v', '--import-slow-tests', '--import-disabled-tests'] ... [2023-01-11 20:47:51.828036] 2023-01-11T20:47:58.1459158Z 2023-01-11T20:47:58.1459643Z Expand the folded group to see the log file of test_native_mha 2023-01-11T20:47:58.1460714Z ##[group]PRINTING LOG FILE of test_native_mha (/var/lib/jenkins/workspace/test/test-reports/test_native_mha_pcih3xzr) 2023-01-11T20:47:58.1461726Z Test results will be stored in test-reports/python-unittest/test_native_mha 2023-01-11T20:47:58.1461924Z 2023-01-11T20:47:58.1461998Z Running tests... 2023-01-11T20:47:58.1462309Z ---------------------------------------------------------------------- 2023-01-11T20:47:58.1462693Z test_native_multihead_attention_cpu_float32 (__main__.TestMHADeviceTypeCPU) ... ok (0.048s) 2023-01-11T20:47:58.1463049Z test_native_multihead_encoder_decoder_attention_cpu_float32 (__main__.TestMHADeviceTypeCPU) ... ok (0.022s) 2023-01-11T20:47:58.1463571Z test_native_multihead_self_attention_use_nt_False_use_padding_False_pad_all_False_need_weights_False_average_attn_weights_False_fused_False_cpu_float32 (__main__.TestMHADeviceTypeCPU) ... ok (0.037s) 2023-01-11T20:47:58.1464175Z test_native_multihead_self_attention_use_nt_False_use_padding_False_pad_all_False_need_weights_False_average_attn_weights_False_fused_True_cpu_float32 (__main__.TestMHADeviceTypeCPU) ... ok (0.056s) 2023-01-11T20:47:58.1464766Z test_native_multihead_self_attention_use_nt_False_use_padding_False_pad_all_False_need_weights_False_average_attn_weights_True_fused_False_cpu_float32 (__main__.TestMHADeviceTypeCPU) ... ok (0.034s) 2023-01-11T20:47:58.1465305Z test_native_multihead_self_attention_use_nt_False_use_padding_False_pad_all_False_need_weights_False_average_attn_weights_True_fused_True_cpu_float32 (__main__.TestMHADeviceTypeCPU) ... ok (0.027s) 2023-01-11T20:47:58.1465906Z test_native_multihead_self_attention_use_nt_False_use_padding_True_pad_all_False_need_weights_False_average_attn_weights_False_fused_False_cpu_float32 (__main__.TestMHADeviceTypeCPU) ... ok (0.031s) 2023-01-11T20:47:58.1466493Z test_native_multihead_self_attention_use_nt_False_use_padding_True_pad_all_False_need_weights_False_average_attn_weights_False_fused_True_cpu_float32 (__main__.TestMHADeviceTypeCPU) ... ok (0.030s) 2023-01-11T20:47:58.1467083Z test_native_multihead_self_attention_use_nt_False_use_padding_True_pad_all_False_need_weights_False_average_attn_weights_True_fused_False_cpu_float32 (__main__.TestMHADeviceTypeCPU) ... ok (0.029s) 2023-01-11T20:47:58.1467622Z test_native_multihead_self_attention_use_nt_False_use_padding_True_pad_all_False_need_weights_False_average_attn_weights_True_fused_True_cpu_float32 (__main__.TestMHADeviceTypeCPU) ... ok (0.028s) 2023-01-11T20:47:58.1468201Z test_native_multihead_self_attention_use_nt_False_use_padding_True_pad_all_True_need_weights_False_average_attn_weights_False_fused_False_cpu_float32 (__main__.TestMHADeviceTypeCPU) ... ok (0.062s) 2023-01-11T20:47:58.1468781Z test_native_multihead_self_attention_use_nt_False_use_padding_True_pad_all_True_need_weights_False_average_attn_weights_False_fused_True_cpu_float32 (__main__.TestMHADeviceTypeCPU) ... ok (0.032s) 2023-01-11T20:47:58.1469367Z test_native_multihead_self_attention_use_nt_False_use_padding_True_pad_all_True_need_weights_False_average_attn_weights_True_fused_False_cpu_float32 (__main__.TestMHADeviceTypeCPU) ... ok (0.041s) 2023-01-11T20:47:58.1469995Z test_native_multihead_self_attention_use_nt_False_use_padding_True_pad_all_True_need_weights_False_average_attn_weights_True_fused_True_cpu_float32 (__main__.TestMHADeviceTypeCPU) ... ok (0.039s) 2023-01-11T20:47:58.1470819Z test_native_multihead_self_attention_use_nt_True_use_padding_False_pad_all_False_need_weights_False_average_attn_weights_False_fused_False_cpu_float32 (__main__.TestMHADeviceTypeCPU) ... test_native_mha.py:207: UserWarning: The PyTorch API of nested tensors is in prototype stage and will change in the near future. (Triggered internally at /var/lib/jenkins/workspace/aten/src/ATen/NestedTensorImpl.cpp:179.) 2023-01-11T20:47:58.1471454Z q = torch.nested.nested_tensor(qs, device=device, dtype=dtype) 2023-01-11T20:47:58.1471717Z ok (0.064s) 2023-01-11T20:47:58.1472081Z test_native_multihead_self_attention_use_nt_True_use_padding_False_pad_all_False_need_weights_False_average_attn_weights_False_fused_True_cpu_float32 (__main__.TestMHADeviceTypeCPU) ... ok (0.058s) 2023-01-11T20:47:58.1472711Z test_native_multihead_self_attention_use_nt_True_use_padding_False_pad_all_False_need_weights_False_average_attn_weights_True_fused_False_cpu_float32 (__main__.TestMHADeviceTypeCPU) ... ok (0.074s) 2023-01-11T20:47:58.1473297Z test_native_multihead_self_attention_use_nt_True_use_padding_False_pad_all_False_need_weights_False_average_attn_weights_True_fused_True_cpu_float32 (__main__.TestMHADeviceTypeCPU) ... ok (0.035s) 2023-01-11T20:47:58.1473860Z test_native_multihead_self_attention_use_nt_True_use_padding_True_pad_all_False_need_weights_False_average_attn_weights_False_fused_False_cpu_float32 (__main__.TestMHADeviceTypeCPU) ... ok (0.039s) 2023-01-11T20:47:58.1474403Z test_native_multihead_self_attention_use_nt_True_use_padding_True_pad_all_False_need_weights_False_average_attn_weights_False_fused_True_cpu_float32 (__main__.TestMHADeviceTypeCPU) ... ok (0.039s) 2023-01-11T20:47:58.1474985Z test_native_multihead_self_attention_use_nt_True_use_padding_True_pad_all_False_need_weights_False_average_attn_weights_True_fused_False_cpu_float32 (__main__.TestMHADeviceTypeCPU) ... ok (0.038s) 2023-01-11T20:47:58.1475565Z test_native_multihead_self_attention_use_nt_True_use_padding_True_pad_all_False_need_weights_False_average_attn_weights_True_fused_True_cpu_float32 (__main__.TestMHADeviceTypeCPU) ... ok (0.039s) 2023-01-11T20:47:58.1476134Z test_native_multihead_self_attention_use_nt_True_use_padding_True_pad_all_True_need_weights_False_average_attn_weights_False_fused_False_cpu_float32 (__main__.TestMHADeviceTypeCPU) ... ok (0.045s) 2023-01-11T20:47:58.1476669Z test_native_multihead_self_attention_use_nt_True_use_padding_True_pad_all_True_need_weights_False_average_attn_weights_False_fused_True_cpu_float32 (__main__.TestMHADeviceTypeCPU) ... ok (0.044s) 2023-01-11T20:47:58.1477255Z test_native_multihead_self_attention_use_nt_True_use_padding_True_pad_all_True_need_weights_False_average_attn_weights_True_fused_False_cpu_float32 (__main__.TestMHADeviceTypeCPU) ... ok (0.044s) 2023-01-11T20:47:58.1477842Z test_native_multihead_self_attention_use_nt_True_use_padding_True_pad_all_True_need_weights_False_average_attn_weights_True_fused_True_cpu_float32 (__main__.TestMHADeviceTypeCPU) ... ok (0.044s) 2023-01-11T20:47:58.1478272Z test_transform_bias_rescale_qkv_cpu_float32 (__main__.TestMHADeviceTypeCPU) ... ok (0.069s) 2023-01-11T20:47:58.1478689Z test_transform_bias_rescale_qkv_nested_cpu_float32 (__main__.TestMHADeviceTypeCPU) ... skip: Only runs on cuda (0.001s) 2023-01-11T20:47:58.1478900Z 2023-01-11T20:47:58.1479115Z ---------------------------------------------------------------------- 2023-01-11T20:47:58.1493386Z Ran 28 tests in 1.152s 2023-01-11T20:47:58.1493527Z 2023-01-11T20:47:58.1493619Z OK (skipped=1) 2023-01-11T20:47:58.1493746Z 2023-01-11T20:47:58.1493835Z Generating XML reports... 2023-01-11T20:47:58.1494531Z Generated XML report: test-reports/python-unittest/test_native_mha/TEST-TestMHADeviceTypeCPU-20230111204756.xml 2023-01-11T20:47:58.1494781Z 2023-01-11T20:47:58.1495060Z ##[endgroup] 2023-01-11T20:47:58.1495483Z FINISHED PRINTING LOG FILE of test_native_mha (/var/lib/jenkins/workspace/test/test-reports/test_native_mha_pcih3xzr) 2023-01-11T20:47:58.1495693Z 2023-01-11T20:48:03.7993422Z No CUDA runtime is found, using CUDA_HOME='/usr/local/cuda' 2023-01-11T20:48:03.9809041Z Ignoring disabled issues: ['91003'] 2023-01-11T20:48:04.0010046Z Running dynamo/test_python_autograd ... [2023-01-11 20:48:04.000612] 2023-01-11T20:48:04.0012317Z Executing ['/opt/conda/bin/python', '-bb', 'dynamo/test_python_autograd.py', '-v', '--import-slow-tests', '--import-disabled-tests'] ... [2023-01-11 20:48:04.000962] 2023-01-11T20:48:09.7106074Z 2023-01-11T20:48:09.7106914Z Expand the folded group to see the log file of dynamo/test_python_autograd 2023-01-11T20:48:09.7108012Z ##[group]PRINTING LOG FILE of dynamo/test_python_autograd (/var/lib/jenkins/workspace/test/test-reports/dynamo-test_python_autograd_ynrf8r71) 2023-01-11T20:48:09.7108955Z Test results will be stored in test-reports/python-unittest/dynamo.test_python_autograd 2023-01-11T20:48:09.7109539Z 2023-01-11T20:48:09.7109661Z Running tests... 2023-01-11T20:48:09.7110158Z ---------------------------------------------------------------------- 2023-01-11T20:48:09.7110652Z test_backwards1 (__main__.TestPythonAutograd) ... ok (0.602s) 2023-01-11T20:48:09.7111107Z test_backwards2 (__main__.TestPythonAutograd) ... inline_call [] 2023-01-11T20:48:09.7111782Z stats [('calls_captured', 8), ('fusions_possible', 7), ('unique_graphs', 1)] 2023-01-11T20:48:09.7112223Z inline_call [] 2023-01-11T20:48:09.7112769Z stats [('calls_captured', 8), ('fusions_possible', 7), ('unique_graphs', 1)] 2023-01-11T20:48:09.7113222Z ok (0.216s) 2023-01-11T20:48:09.7113655Z test_forwards1 (__main__.TestPythonAutograd) ... inline_call [] 2023-01-11T20:48:09.7114316Z stats [('calls_captured', 3), ('fusions_possible', 2), ('unique_graphs', 1)] 2023-01-11T20:48:09.7114734Z ok (0.081s) 2023-01-11T20:48:09.7115162Z test_forwards2 (__main__.TestPythonAutograd) ... inline_call [] 2023-01-11T20:48:09.7115834Z stats [('calls_captured', 3), ('fusions_possible', 2), ('unique_graphs', 1)] 2023-01-11T20:48:09.7116241Z ok (0.054s) 2023-01-11T20:48:09.7116660Z test_split (__main__.TestPythonAutograd) ... inline_call [] 2023-01-11T20:48:09.7117312Z stats [('calls_captured', 8), ('fusions_possible', 6), ('unique_graphs', 2)] 2023-01-11T20:48:09.7117723Z ok (0.180s) 2023-01-11T20:48:09.7117914Z 2023-01-11T20:48:09.7118285Z ---------------------------------------------------------------------- 2023-01-11T20:48:09.7118737Z Ran 5 tests in 1.135s 2023-01-11T20:48:09.7118955Z 2023-01-11T20:48:09.7119069Z OK 2023-01-11T20:48:09.7119230Z 2023-01-11T20:48:09.7119387Z Generating XML reports... 2023-01-11T20:48:09.7120220Z Generated XML report: test-reports/python-unittest/dynamo.test_python_autograd/TEST-TestPythonAutograd-20230111204807.xml 2023-01-11T20:48:09.7120926Z 2023-01-11T20:48:09.7121406Z ##[endgroup] 2023-01-11T20:48:09.7122222Z FINISHED PRINTING LOG FILE of dynamo/test_python_autograd (/var/lib/jenkins/workspace/test/test-reports/dynamo-test_python_autograd_ynrf8r71) 2023-01-11T20:48:09.7122690Z 2023-01-11T20:48:14.9491499Z No CUDA runtime is found, using CUDA_HOME='/usr/local/cuda' 2023-01-11T20:48:15.1609883Z Ignoring disabled issues: ['91003'] 2023-01-11T20:48:15.1931147Z Running test_futures ... [2023-01-11 20:48:15.192684] 2023-01-11T20:48:15.1933004Z Executing ['/opt/conda/bin/python', '-bb', 'test_futures.py', '-v', '--import-slow-tests', '--import-disabled-tests'] ... [2023-01-11 20:48:15.193029] 2023-01-11T20:48:20.8402870Z 2023-01-11T20:48:20.8403741Z Expand the folded group to see the log file of test_futures 2023-01-11T20:48:20.8405107Z ##[group]PRINTING LOG FILE of test_futures (/var/lib/jenkins/workspace/test/test-reports/test_futures_367qbelt) 2023-01-11T20:48:20.8406029Z Test results will be stored in test-reports/python-unittest/test_futures 2023-01-11T20:48:20.8406214Z 2023-01-11T20:48:20.8441467Z Running tests... 2023-01-11T20:48:20.8441997Z ---------------------------------------------------------------------- 2023-01-11T20:48:20.8442713Z test_add_done_callback_error_is_ignored (__main__.TestFuture) ... [E pybind_utils.h:212] Got the following error when running the callback: ValueError: Expected error 2023-01-11T20:48:20.8443176Z 2023-01-11T20:48:20.8443294Z At: 2023-01-11T20:48:20.8443614Z test_futures.py(236): raise_value_error 2023-01-11T20:48:20.8444269Z /opt/conda/lib/python3.7/site-packages/torch/futures/__init__.py(244): set_result 2023-01-11T20:48:20.8444647Z test_futures.py(229): _test_add_done_callback_error_ignored 2023-01-11T20:48:20.8444918Z test_futures.py(238): test_add_done_callback_error_is_ignored 2023-01-11T20:48:20.8445174Z /opt/conda/lib/python3.7/unittest/case.py(628): run 2023-01-11T20:48:20.8445569Z /opt/conda/lib/python3.7/site-packages/torch/testing/_internal/common_utils.py(2154): _run_with_retry 2023-01-11T20:48:20.8481515Z /opt/conda/lib/python3.7/site-packages/torch/testing/_internal/common_utils.py(2230): run 2023-01-11T20:48:20.8482248Z /opt/conda/lib/python3.7/unittest/case.py(676): __call__ 2023-01-11T20:48:20.8482734Z /opt/conda/lib/python3.7/unittest/suite.py(122): run 2023-01-11T20:48:20.8483228Z /opt/conda/lib/python3.7/unittest/suite.py(84): __call__ 2023-01-11T20:48:20.8483714Z /opt/conda/lib/python3.7/unittest/suite.py(122): run 2023-01-11T20:48:20.8484133Z /opt/conda/lib/python3.7/unittest/suite.py(84): __call__ 2023-01-11T20:48:20.8528400Z /opt/conda/lib/python3.7/site-packages/xmlrunner/runner.py(67): run 2023-01-11T20:48:20.8528955Z /opt/conda/lib/python3.7/unittest/main.py(271): runTests 2023-01-11T20:48:20.8529440Z /opt/conda/lib/python3.7/unittest/main.py(101): __init__ 2023-01-11T20:48:20.8530164Z /opt/conda/lib/python3.7/site-packages/torch/testing/_internal/common_utils.py(790): run_tests 2023-01-11T20:48:20.8530598Z test_futures.py(340): 2023-01-11T20:48:20.8530799Z 2023-01-11T20:48:20.8530925Z ok (0.390s) 2023-01-11T20:48:20.8531387Z test_add_done_callback_maintains_callback_order (__main__.TestFuture) ... ok (0.006s) 2023-01-11T20:48:20.8532207Z test_add_done_callback_no_arg_error_is_ignored (__main__.TestFuture) ... [E pybind_utils.h:212] Got the following error when running the callback: TypeError: no_arg() takes 0 positional arguments but 1 was given 2023-01-11T20:48:20.8532809Z ok (0.001s) 2023-01-11T20:48:20.8533509Z test_add_done_callback_simple (__main__.TestFuture) ... ok (0.003s) 2023-01-11T20:48:20.8534020Z test_chained_then (__main__.TestFuture) ... ok (0.024s) 2023-01-11T20:48:20.8534482Z test_collect_all (__main__.TestFuture) ... ok (0.103s) 2023-01-11T20:48:20.8534921Z test_done (__main__.TestFuture) ... ok (0.002s) 2023-01-11T20:48:20.8535358Z test_done_exception (__main__.TestFuture) ... ok (0.003s) 2023-01-11T20:48:20.8535953Z test_interleaving_then_and_add_done_callback_maintains_callback_order (__main__.TestFuture) ... ok (0.005s) 2023-01-11T20:48:20.8536844Z test_interleaving_then_and_add_done_callback_propagates_error (__main__.TestFuture) ... [E pybind_utils.h:212] Got the following error when running the callback: ValueError: Expected error 2023-01-11T20:48:20.8537363Z 2023-01-11T20:48:20.8537473Z At: 2023-01-11T20:48:20.8537788Z test_futures.py(280): raise_value_error 2023-01-11T20:48:20.8538496Z /opt/conda/lib/python3.7/site-packages/torch/futures/__init__.py(244): set_result 2023-01-11T20:48:20.8539105Z test_futures.py(285): test_interleaving_then_and_add_done_callback_propagates_error 2023-01-11T20:48:20.8539631Z /opt/conda/lib/python3.7/unittest/case.py(628): run 2023-01-11T20:48:20.8540473Z /opt/conda/lib/python3.7/site-packages/torch/testing/_internal/common_utils.py(2154): _run_with_retry 2023-01-11T20:48:20.8541272Z /opt/conda/lib/python3.7/site-packages/torch/testing/_internal/common_utils.py(2230): run 2023-01-11T20:48:20.8542022Z /opt/conda/lib/python3.7/unittest/case.py(676): __call__ 2023-01-11T20:48:20.8542481Z /opt/conda/lib/python3.7/unittest/suite.py(122): run 2023-01-11T20:48:20.8542956Z /opt/conda/lib/python3.7/unittest/suite.py(84): __call__ 2023-01-11T20:48:20.8543434Z /opt/conda/lib/python3.7/unittest/suite.py(122): run 2023-01-11T20:48:20.8543895Z /opt/conda/lib/python3.7/unittest/suite.py(84): __call__ 2023-01-11T20:48:20.8544532Z /opt/conda/lib/python3.7/site-packages/xmlrunner/runner.py(67): run 2023-01-11T20:48:20.8545050Z /opt/conda/lib/python3.7/unittest/main.py(271): runTests 2023-01-11T20:48:20.8545506Z /opt/conda/lib/python3.7/unittest/main.py(101): __init__ 2023-01-11T20:48:20.8546216Z /opt/conda/lib/python3.7/site-packages/torch/testing/_internal/common_utils.py(790): run_tests 2023-01-11T20:48:20.8546715Z test_futures.py(340): 2023-01-11T20:48:20.8546939Z 2023-01-11T20:48:20.8547054Z ok (0.004s) 2023-01-11T20:48:20.8547429Z test_mark_future_twice (__main__.TestFuture) ... ok (0.005s) 2023-01-11T20:48:20.8547903Z test_pickle_future (__main__.TestFuture) ... ok (0.006s) 2023-01-11T20:48:20.8548368Z test_set_exception (__main__.TestFuture) ... ok (0.003s) 2023-01-11T20:48:20.8548964Z test_set_exception_multithreading (__main__.TestFuture) ... ok (0.004s) 2023-01-11T20:48:20.8549455Z test_then (__main__.TestFuture) ... ok (0.004s) 2023-01-11T20:48:20.8549895Z test_then_no_arg (__main__.TestFuture) ... ok (0.002s) 2023-01-11T20:48:20.8550327Z test_then_raise (__main__.TestFuture) ... ok (0.002s) 2023-01-11T20:48:20.8550808Z test_then_wrong_arg (__main__.TestFuture) ... ok (0.002s) 2023-01-11T20:48:20.8551245Z test_wait (__main__.TestFuture) ... ok (0.002s) 2023-01-11T20:48:20.8551666Z test_wait_all (__main__.TestFuture) ... [1, 2] 2023-01-11T20:48:20.8552011Z ok (0.003s) 2023-01-11T20:48:20.8552401Z test_wait_multi_thread (__main__.TestFuture) ... ok (0.504s) 2023-01-11T20:48:20.8552862Z test_wait_none (__main__.TestFuture) ... ok (0.010s) 2023-01-11T20:48:20.8553120Z 2023-01-11T20:48:20.8553487Z ---------------------------------------------------------------------- 2023-01-11T20:48:20.8553931Z Ran 22 tests in 1.089s 2023-01-11T20:48:20.8554135Z 2023-01-11T20:48:20.8554242Z OK 2023-01-11T20:48:20.8554409Z 2023-01-11T20:48:20.8554563Z Generating XML reports... 2023-01-11T20:48:20.8555269Z Generated XML report: test-reports/python-unittest/test_futures/TEST-TestFuture-20230111204819.xml 2023-01-11T20:48:20.8555669Z 2023-01-11T20:48:20.8556234Z ##[endgroup] 2023-01-11T20:48:20.8556927Z FINISHED PRINTING LOG FILE of test_futures (/var/lib/jenkins/workspace/test/test-reports/test_futures_367qbelt) 2023-01-11T20:48:20.8557315Z 2023-01-11T20:48:26.2968244Z No CUDA runtime is found, using CUDA_HOME='/usr/local/cuda' 2023-01-11T20:48:26.4741053Z Ignoring disabled issues: ['91003'] 2023-01-11T20:48:26.5016858Z Running test_fx_reinplace_pass ... [2023-01-11 20:48:26.501167] 2023-01-11T20:48:26.5017817Z Executing ['/opt/conda/bin/python', '-bb', 'test_fx_reinplace_pass.py', '-v', '--import-slow-tests', '--import-disabled-tests'] ... [2023-01-11 20:48:26.501481] 2023-01-11T20:48:33.3651144Z 2023-01-11T20:48:33.3651701Z Expand the folded group to see the log file of test_fx_reinplace_pass 2023-01-11T20:48:33.3652925Z ##[group]PRINTING LOG FILE of test_fx_reinplace_pass (/var/lib/jenkins/workspace/test/test-reports/test_fx_reinplace_pass_le6q_nub) 2023-01-11T20:48:33.3653872Z Test results will be stored in test-reports/python-unittest/test_fx_reinplace_pass 2023-01-11T20:48:33.3654213Z 2023-01-11T20:48:33.3654342Z Running tests... 2023-01-11T20:48:33.3654897Z ---------------------------------------------------------------------- 2023-01-11T20:48:33.3655441Z test_out_node_updated (__main__.TestReinplacePass) ... ok (0.505s) 2023-01-11T20:48:33.3723751Z test_reinplace_basic (__main__.TestReinplacePass) ... ok (0.198s) 2023-01-11T20:48:33.3724388Z test_reinplace_different_metadata (__main__.TestReinplacePass) ... ok (0.059s) 2023-01-11T20:48:33.3724942Z test_reinplace_index_mutation (__main__.TestReinplacePass) ... ok (0.226s) 2023-01-11T20:48:33.3725803Z test_reinplace_overlapping_memory (__main__.TestReinplacePass) ... ok (0.054s) 2023-01-11T20:48:33.3726360Z test_reinplace_scatter_op (__main__.TestReinplacePass) ... ok (0.371s) 2023-01-11T20:48:33.3726885Z test_reinplace_scatter_twice (__main__.TestReinplacePass) ... ok (0.344s) 2023-01-11T20:48:33.3727508Z test_reinplace_scatter_twice_with_different_view_op_invalid (__main__.TestReinplacePass) ... ok (0.119s) 2023-01-11T20:48:33.3728172Z test_reinplace_scatter_twice_with_different_view_op_invalid2 (__main__.TestReinplacePass) ... ok (0.118s) 2023-01-11T20:48:33.3728838Z test_reinplace_scatter_twice_with_different_view_op_valid (__main__.TestReinplacePass) ... ok (0.125s) 2023-01-11T20:48:33.3729433Z test_reinplace_with_view (__main__.TestReinplacePass) ... ok (0.073s) 2023-01-11T20:48:33.3729736Z 2023-01-11T20:48:33.3730173Z ---------------------------------------------------------------------- 2023-01-11T20:48:33.3730609Z Ran 11 tests in 2.192s 2023-01-11T20:48:33.3730795Z 2023-01-11T20:48:33.3730903Z OK 2023-01-11T20:48:33.3731072Z 2023-01-11T20:48:33.3731226Z Generating XML reports... 2023-01-11T20:48:33.3732145Z Generated XML report: test-reports/python-unittest/test_fx_reinplace_pass/TEST-TestReinplacePass-20230111204830.xml 2023-01-11T20:48:33.3732535Z 2023-01-11T20:48:33.3732883Z ##[endgroup] 2023-01-11T20:48:33.3733299Z FINISHED PRINTING LOG FILE of test_fx_reinplace_pass (/var/lib/jenkins/workspace/test/test-reports/test_fx_reinplace_pass_le6q_nub) 2023-01-11T20:48:33.3733530Z 2023-01-11T20:48:38.4860113Z No CUDA runtime is found, using CUDA_HOME='/usr/local/cuda' 2023-01-11T20:48:38.6666082Z Ignoring disabled issues: ['91003'] 2023-01-11T20:48:38.6874374Z Running test_model_dump ... [2023-01-11 20:48:38.686797] 2023-01-11T20:48:38.6875438Z Executing ['/opt/conda/bin/python', '-bb', 'test_model_dump.py', '-v', '--import-slow-tests', '--import-disabled-tests'] ... [2023-01-11 20:48:38.687150] 2023-01-11T20:48:44.4358523Z 2023-01-11T20:48:44.4359383Z Expand the folded group to see the log file of test_model_dump 2023-01-11T20:48:44.4360808Z ##[group]PRINTING LOG FILE of test_model_dump (/var/lib/jenkins/workspace/test/test-reports/test_model_dump_2qhp7hco) 2023-01-11T20:48:44.4361822Z Test results will be stored in test-reports/python-unittest/test_model_dump 2023-01-11T20:48:44.4362367Z 2023-01-11T20:48:44.4362676Z Running tests... 2023-01-11T20:48:44.4363249Z ---------------------------------------------------------------------- 2023-01-11T20:48:44.4363730Z test_inline_skeleton (__main__.TestModelDump) ... ok (0.376s) 2023-01-11T20:48:44.4366072Z test_invalid_json (__main__.TestModelDump) ... ok (0.071s) 2023-01-11T20:48:44.4366685Z test_main (__main__.TestModelDump) ... ok (0.045s) 2023-01-11T20:48:44.4367322Z test_memory_computation (__main__.TestModelDump) ... skip: Webdriver not requested (0.002s) 2023-01-11T20:48:44.4367951Z test_model_with_lists (__main__.TestModelDump) ... ok (0.011s) 2023-01-11T20:48:44.4368649Z test_optimized_quantized_model (__main__.TestModelDump) ... skip: QNNPACK not available (0.001s) 2023-01-11T20:48:44.4369363Z test_quantized_model (__main__.TestModelDump) ... skip: QNNPACK not available (0.000s) 2023-01-11T20:48:44.4369850Z test_scripted_model (__main__.TestModelDump) ... ok (0.023s) 2023-01-11T20:48:44.4370277Z test_traced_model (__main__.TestModelDump) ... ok (0.482s) 2023-01-11T20:48:44.4370513Z 2023-01-11T20:48:44.4370828Z ---------------------------------------------------------------------- 2023-01-11T20:48:44.4376059Z Ran 9 tests in 1.012s 2023-01-11T20:48:44.4376256Z 2023-01-11T20:48:44.4376356Z OK (skipped=3) 2023-01-11T20:48:44.4376527Z 2023-01-11T20:48:44.4376661Z Generating XML reports... 2023-01-11T20:48:44.4378548Z Generated XML report: test-reports/python-unittest/test_model_dump/TEST-TestModelDump-20230111204842.xml 2023-01-11T20:48:44.4378895Z 2023-01-11T20:48:44.4379532Z ##[endgroup] 2023-01-11T20:48:44.4380277Z FINISHED PRINTING LOG FILE of test_model_dump (/var/lib/jenkins/workspace/test/test-reports/test_model_dump_2qhp7hco) 2023-01-11T20:48:44.4381023Z 2023-01-11T20:48:49.6114316Z No CUDA runtime is found, using CUDA_HOME='/usr/local/cuda' 2023-01-11T20:48:49.7809732Z Ignoring disabled issues: ['91003'] 2023-01-11T20:48:49.8013815Z Running test_datapipe ... [2023-01-11 20:48:49.800855] 2023-01-11T20:48:49.8014421Z Executing ['/opt/conda/bin/python', '-bb', 'test_datapipe.py', '-v', '--import-slow-tests', '--import-disabled-tests'] ... [2023-01-11 20:48:49.801143] 2023-01-11T20:48:55.6114821Z 2023-01-11T20:48:55.6115716Z Expand the folded group to see the log file of test_datapipe 2023-01-11T20:48:55.6116989Z ##[group]PRINTING LOG FILE of test_datapipe (/var/lib/jenkins/workspace/test/test-reports/test_datapipe_nvv47c7m) 2023-01-11T20:48:55.6117652Z 2023-01-11T20:48:55.6118004Z Running tests... 2023-01-11T20:48:55.6118609Z ---------------------------------------------------------------------- 2023-01-11T20:48:55.6119443Z test_basic_capture (__main__.TestCaptureDataFrame) ... Test results will be stored in test-reports/python-unittest/test_datapipe 2023-01-11T20:48:55.6120109Z skip: no dataframes (pandas) (0.001s) 2023-01-11T20:48:55.6121130Z test_circular_serialization_with_dill (__main__.TestCircularSerialization) ... skip: no dill (0.004s) 2023-01-11T20:48:55.6122695Z test_circular_serialization_with_pickle (__main__.TestCircularSerialization) ... /opt/conda/lib/python3.7/site-packages/torch/utils/data/datapipes/iter/combining.py:298: UserWarning: Some child DataPipes are not exhausted when __iter__ is called. We are resetting the buffer and each child DataPipe will read from the start again. 2023-01-11T20:48:55.6123788Z "the buffer and each child DataPipe will read from the start again.", UserWarning) 2023-01-11T20:48:55.6124209Z ok (0.385s) 2023-01-11T20:48:55.6124595Z test_as_string (__main__.TestDataChunk) ... ok (0.001s) 2023-01-11T20:48:55.6125029Z test_getitem (__main__.TestDataChunk) ... ok (0.001s) 2023-01-11T20:48:55.6125272Z test_iter (__main__.TestDataChunk) ... ok (0.001s) 2023-01-11T20:48:55.6125513Z test_len (__main__.TestDataChunk) ... ok (0.000s) 2023-01-11T20:48:55.6125767Z test_random_shuffle (__main__.TestDataChunk) ... ok (0.001s) 2023-01-11T20:48:55.6126010Z test_reverse (__main__.TestDataChunk) ... ok (0.001s) 2023-01-11T20:48:55.6126249Z test_sort (__main__.TestDataChunk) ... ok (0.001s) 2023-01-11T20:48:55.6126542Z test_batch (__main__.TestDataFramesPipes) ... skip: no dataframes (pandas) (0.001s) 2023-01-11T20:48:55.6126876Z test_capture (__main__.TestDataFramesPipes) ... skip: no dataframes (pandas) (0.001s) 2023-01-11T20:48:55.6127193Z test_collate (__main__.TestDataFramesPipes) ... skip: no dataframes (pandas) (0.001s) 2023-01-11T20:48:55.6127520Z test_filter (__main__.TestDataFramesPipes) ... skip: no dataframes (pandas) (0.001s) 2023-01-11T20:48:55.6127844Z test_shuffle (__main__.TestDataFramesPipes) ... skip: no dataframes (pandas) (0.001s) 2023-01-11T20:48:55.6128159Z test_unbatch (__main__.TestDataFramesPipes) ... skip: no dataframes (pandas) (0.000s) 2023-01-11T20:48:55.6128489Z test_batch_iterdatapipe (__main__.TestFunctionalIterDataPipe) ... ok (0.004s) 2023-01-11T20:48:55.6129222Z test_collate_iterdatapipe (__main__.TestFunctionalIterDataPipe) ... /opt/conda/lib/python3.7/site-packages/torch/utils/data/datapipes/utils/common.py:138: UserWarning: Local function is not supported by pickle, please use regular python function or functools.partial instead. 2023-01-11T20:48:55.6129724Z "Local function is not supported by pickle, please use " 2023-01-11T20:48:55.6129924Z ok (0.012s) 2023-01-11T20:48:55.6130174Z test_concat_iterdatapipe (__main__.TestFunctionalIterDataPipe) ... ok (0.004s) 2023-01-11T20:48:55.6130895Z test_demux_iterdatapipe (__main__.TestFunctionalIterDataPipe) ... /opt/conda/lib/python3.7/site-packages/torch/utils/data/datapipes/utils/common.py:138: UserWarning: Local function is not supported by pickle, please use regular python function or functools.partial instead. 2023-01-11T20:48:55.6131470Z "Local function is not supported by pickle, please use " 2023-01-11T20:48:55.6132047Z /opt/conda/lib/python3.7/site-packages/torch/utils/data/datapipes/utils/common.py:138: UserWarning: Local function is not supported by pickle, please use regular python function or functools.partial instead. 2023-01-11T20:48:55.6132470Z "Local function is not supported by pickle, please use " 2023-01-11T20:48:55.6133034Z /opt/conda/lib/python3.7/site-packages/torch/utils/data/datapipes/utils/common.py:138: UserWarning: Local function is not supported by pickle, please use regular python function or functools.partial instead. 2023-01-11T20:48:55.6133454Z "Local function is not supported by pickle, please use " 2023-01-11T20:48:55.6134001Z /opt/conda/lib/python3.7/site-packages/torch/utils/data/datapipes/utils/common.py:138: UserWarning: Local function is not supported by pickle, please use regular python function or functools.partial instead. 2023-01-11T20:48:55.6134416Z "Local function is not supported by pickle, please use " 2023-01-11T20:48:55.6134627Z ok (0.055s) 2023-01-11T20:48:55.6134862Z test_filter_datapipe (__main__.TestFunctionalIterDataPipe) ... ok (0.014s) 2023-01-11T20:48:55.6135227Z test_fork_iterdatapipe (__main__.TestFunctionalIterDataPipe) ... ok (0.028s) 2023-01-11T20:48:55.6135567Z test_iterable_wrapper_datapipe (__main__.TestFunctionalIterDataPipe) ... ok (0.005s) 2023-01-11T20:48:55.6135918Z test_map_dict_with_col_iterdatapipe (__main__.TestFunctionalIterDataPipe) ... ok (0.043s) 2023-01-11T20:48:55.6136628Z test_map_iterdatapipe (__main__.TestFunctionalIterDataPipe) ... /opt/conda/lib/python3.7/site-packages/torch/utils/data/datapipes/utils/common.py:138: UserWarning: Local function is not supported by pickle, please use regular python function or functools.partial instead. 2023-01-11T20:48:55.6137116Z "Local function is not supported by pickle, please use " 2023-01-11T20:48:55.6137327Z ok (0.021s) 2023-01-11T20:48:55.6137586Z test_map_tuple_list_with_col_iterdatapipe (__main__.TestFunctionalIterDataPipe) ... ok (0.045s) 2023-01-11T20:48:55.6137931Z test_mux_iterdatapipe (__main__.TestFunctionalIterDataPipe) ... ok (0.003s) 2023-01-11T20:48:55.6138263Z test_sampler_iterdatapipe (__main__.TestFunctionalIterDataPipe) ... ok (0.002s) 2023-01-11T20:48:55.6139030Z test_serializable (__main__.TestFunctionalIterDataPipe) ... /opt/conda/lib/python3.7/site-packages/torch/utils/data/datapipes/iter/combining.py:298: UserWarning: Some child DataPipes are not exhausted when __iter__ is called. We are resetting the buffer and each child DataPipe will read from the start again. 2023-01-11T20:48:55.6139567Z "the buffer and each child DataPipe will read from the start again.", UserWarning) 2023-01-11T20:48:55.6140292Z /opt/conda/lib/python3.7/site-packages/torch/utils/data/datapipes/iter/combining.py:298: UserWarning: Some child DataPipes are not exhausted when __iter__ is called. We are resetting the buffer and each child DataPipe will read from the start again. 2023-01-11T20:48:55.6140781Z "the buffer and each child DataPipe will read from the start again.", UserWarning) 2023-01-11T20:48:55.6141022Z ok (0.060s) 2023-01-11T20:48:55.6141252Z test_serializable_with_dill (__main__.TestFunctionalIterDataPipe) 2023-01-11T20:48:55.6141558Z Only for DataPipes that take in a function as argument ... ok (0.021s) 2023-01-11T20:48:55.6141880Z test_shuffler_iterdatapipe (__main__.TestFunctionalIterDataPipe) ... ok (0.009s) 2023-01-11T20:48:55.6142225Z test_stream_reader_iterdatapipe (__main__.TestFunctionalIterDataPipe) ... ok (0.002s) 2023-01-11T20:48:55.6142558Z test_unbatch_iterdatapipe (__main__.TestFunctionalIterDataPipe) ... ok (0.006s) 2023-01-11T20:48:55.6142887Z test_zip_iterdatapipe (__main__.TestFunctionalIterDataPipe) ... ok (0.003s) 2023-01-11T20:48:55.6143216Z test_batch_mapdatapipe (__main__.TestFunctionalMapDataPipe) ... ok (0.004s) 2023-01-11T20:48:55.6143531Z test_concat_mapdatapipe (__main__.TestFunctionalMapDataPipe) ... ok (0.003s) 2023-01-11T20:48:55.6144295Z test_map_mapdatapipe (__main__.TestFunctionalMapDataPipe) ... /opt/conda/lib/python3.7/site-packages/torch/utils/data/datapipes/utils/common.py:138: UserWarning: Local function is not supported by pickle, please use regular python function or functools.partial instead. 2023-01-11T20:48:55.6144778Z "Local function is not supported by pickle, please use " 2023-01-11T20:48:55.6144988Z ok (0.011s) 2023-01-11T20:48:55.6145273Z test_sequence_wrapper_datapipe (__main__.TestFunctionalMapDataPipe) ... ok (0.003s) 2023-01-11T20:48:55.6145739Z test_serializable (__main__.TestFunctionalMapDataPipe) ... ok (0.013s) 2023-01-11T20:48:55.6146051Z test_serializable_with_dill (__main__.TestFunctionalMapDataPipe) 2023-01-11T20:48:55.6146337Z Only for DataPipes that take in a function as argument ... ok (0.006s) 2023-01-11T20:48:55.6146649Z test_shuffler_mapdatapipe (__main__.TestFunctionalMapDataPipe) ... ok (0.006s) 2023-01-11T20:48:55.6146975Z test_zip_mapdatapipe (__main__.TestFunctionalMapDataPipe) ... ok (0.003s) 2023-01-11T20:48:55.6147684Z test_simple_traverse (__main__.TestGraph) ... /opt/conda/lib/python3.7/site-packages/torch/utils/data/datapipes/utils/common.py:138: UserWarning: Local function is not supported by pickle, please use regular python function or functools.partial instead. 2023-01-11T20:48:55.6148130Z "Local function is not supported by pickle, please use " 2023-01-11T20:48:55.6148342Z ok (0.003s) 2023-01-11T20:48:55.6148566Z test_traverse_circular_datapipe (__main__.TestGraph) ... ok (0.002s) 2023-01-11T20:48:55.6148839Z test_traverse_forked (__main__.TestGraph) ... ok (0.004s) 2023-01-11T20:48:55.6149089Z test_traverse_mapdatapipe (__main__.TestGraph) ... ok (0.016s) 2023-01-11T20:48:55.6149366Z test_traverse_mixdatapipe (__main__.TestGraph) ... ok (0.001s) 2023-01-11T20:48:55.6149644Z test_traverse_unhashable_datapipe (__main__.TestGraph) ... ok (0.002s) 2023-01-11T20:48:55.6149997Z test_iterdatapipe_sample_yielded_generator_function (__main__.TestIterDataPipeCountSampleYielded) ... ok (0.001s) 2023-01-11T20:48:55.6150448Z test_iterdatapipe_sample_yielded_generator_function_exception (__main__.TestIterDataPipeCountSampleYielded) ... ok (0.002s) 2023-01-11T20:48:55.6150877Z test_iterdatapipe_sample_yielded_next (__main__.TestIterDataPipeCountSampleYielded) ... ok (0.001s) 2023-01-11T20:48:55.6151290Z test_iterdatapipe_sample_yielded_next_exception (__main__.TestIterDataPipeCountSampleYielded) ... ok (0.002s) 2023-01-11T20:48:55.6151699Z test_iterdatapipe_sample_yielded_return_self (__main__.TestIterDataPipeCountSampleYielded) ... ok (0.001s) 2023-01-11T20:48:55.6152103Z test_simple_snapshot_custom_non_generator (__main__.TestIterDataPipeGraphFastForward) ... ok (0.001s) 2023-01-11T20:48:55.6152491Z test_simple_snapshot_custom_self_next (__main__.TestIterDataPipeGraphFastForward) ... ok (0.002s) 2023-01-11T20:48:55.6152849Z test_simple_snapshot_graph (__main__.TestIterDataPipeGraphFastForward) ... ok (0.020s) 2023-01-11T20:48:55.6153685Z test_simple_snapshot_graph_repeated (__main__.TestIterDataPipeGraphFastForward) ... /opt/conda/lib/python3.7/site-packages/torch/utils/data/datapipes/iter/combining.py:298: UserWarning: Some child DataPipes are not exhausted when __iter__ is called. We are resetting the buffer and each child DataPipe will read from the start again. 2023-01-11T20:48:55.6154267Z "the buffer and each child DataPipe will read from the start again.", UserWarning) 2023-01-11T20:48:55.6154507Z ok (0.007s) 2023-01-11T20:48:55.6154784Z test_simple_snapshot_graph_with_serialization (__main__.TestIterDataPipeGraphFastForward) ... ok (0.016s) 2023-01-11T20:48:55.6155174Z test_iterdatapipe_singleton_buggy (__main__.TestIterDataPipeSingletonConstraint) 2023-01-11T20:48:55.6155622Z Buggy test case case where IterDataPipe's `__iter__` returns a new object, but also has ... ok (0.004s) 2023-01-11T20:48:55.6156008Z test_iterdatapipe_singleton_constraint_multiple_outputs (__main__.TestIterDataPipeSingletonConstraint) 2023-01-11T20:48:55.6156420Z Testing for the case where IterDataPipe has multiple child DataPipes as outputs. ... ok (0.009s) 2023-01-11T20:48:55.6156787Z test_iterdatapipe_singleton_generator (__main__.TestIterDataPipeSingletonConstraint) 2023-01-11T20:48:55.6157221Z Testing for the case where IterDataPipe's `__iter__` is a generator function. ... ok (0.004s) 2023-01-11T20:48:55.6157574Z test_iterdatapipe_singleton_new_object (__main__.TestIterDataPipeSingletonConstraint) 2023-01-11T20:48:55.6158011Z Testing for the case where IterDataPipe's `__iter__` isn't a generator nor returns `self`, ... ok (0.003s) 2023-01-11T20:48:55.6158379Z test_iterdatapipe_singleton_self_next (__main__.TestIterDataPipeSingletonConstraint) 2023-01-11T20:48:55.6158842Z Testing for the case where IterDataPipe's `__iter__` returns `self` and there is a `__next__` method ... ok (0.005s) 2023-01-11T20:48:55.6159577Z test_demux_mux_datapipe (__main__.TestIterableDataPipeBasic) ... /opt/conda/lib/python3.7/site-packages/torch/utils/data/datapipes/utils/common.py:138: UserWarning: Local function is not supported by pickle, please use regular python function or functools.partial instead. 2023-01-11T20:48:55.6160056Z "Local function is not supported by pickle, please use " 2023-01-11T20:48:55.6160299Z ok (0.004s) 2023-01-11T20:48:55.6160558Z test_groupby_iterable_datapipe (__main__.TestIterableDataPipeBasic) ... ok (0.009s) 2023-01-11T20:48:55.6161006Z test_listdirfiles_iterable_datapipe (__main__.TestIterableDataPipeBasic) ... ok (0.003s) 2023-01-11T20:48:55.6161387Z test_listdirfilesdeterministic_iterable_datapipe (__main__.TestIterableDataPipeBasic) ... ok (0.004s) 2023-01-11T20:48:55.6161766Z test_map_with_col_file_handle_datapipe (__main__.TestIterableDataPipeBasic) ... ok (0.006s) 2023-01-11T20:48:55.6162129Z test_openfilesfromdisk_iterable_datapipe (__main__.TestIterableDataPipeBasic) ... ok (0.009s) 2023-01-11T20:48:55.6162479Z test_routeddecoder_iterable_datapipe (__main__.TestIterableDataPipeBasic) ... ok (0.006s) 2023-01-11T20:48:55.6162817Z test_spawn_lambdas_iter (__main__.TestSerialization) ... skip: no dill (0.001s) 2023-01-11T20:48:55.6163130Z test_spawn_lambdas_map (__main__.TestSerialization) ... skip: no dill (0.001s) 2023-01-11T20:48:55.6163404Z test_multi_sharding (__main__.TestSharding) ... ok (0.006s) 2023-01-11T20:48:55.6163670Z test_old_dataloader (__main__.TestSharding) ... ok (0.073s) 2023-01-11T20:48:55.6163936Z test_sharding_groups (__main__.TestSharding) ... ok (0.003s) 2023-01-11T20:48:55.6164201Z test_sharding_length (__main__.TestSharding) ... ok (0.002s) 2023-01-11T20:48:55.6164449Z test_simple_sharding (__main__.TestSharding) ... ok (0.004s) 2023-01-11T20:48:55.6164706Z test_api (__main__.TestStreamWrapper) ... ok (0.001s) 2023-01-11T20:48:55.6164959Z test_dir (__main__.TestStreamWrapper) ... ok (0.001s) 2023-01-11T20:48:55.6165205Z test_pickle (__main__.TestStreamWrapper) ... ok (0.002s) 2023-01-11T20:48:55.6165462Z test_repr (__main__.TestStreamWrapper) ... ok (0.001s) 2023-01-11T20:48:55.6165751Z test_compile_time (__main__.TestTyping) ... skip: TODO: Fix typing bug (0.005s) 2023-01-11T20:48:55.6166046Z test_construct_time (__main__.TestTyping) ... skip: TODO: Fix typing bug (0.001s) 2023-01-11T20:48:55.6166419Z test_isinstance (__main__.TestTyping) ... ok (0.001s) 2023-01-11T20:48:55.6166695Z test_issubinstance (__main__.TestTyping) ... skip: TODO: Fix typing bug (0.002s) 2023-01-11T20:48:55.6166968Z test_protocol (__main__.TestTyping) ... ok (0.001s) 2023-01-11T20:48:55.6167223Z test_reinforce (__main__.TestTyping) ... skip: TODO: Fix typing bug (0.001s) 2023-01-11T20:48:55.6167512Z test_runtime (__main__.TestTyping) ... skip: TODO: Fix typing bug (0.001s) 2023-01-11T20:48:55.6167805Z test_subtype (__main__.TestTyping) ... skip: TODO: Fix typing bug (0.002s) 2023-01-11T20:48:55.6167967Z 2023-01-11T20:48:55.6168161Z ---------------------------------------------------------------------- 2023-01-11T20:48:55.6168401Z Ran 89 tests in 1.046s 2023-01-11T20:48:55.6168590Z 2023-01-11T20:48:55.6168662Z OK (skipped=16) 2023-01-11T20:48:55.6168772Z 2023-01-11T20:48:55.6168855Z Generating XML reports... 2023-01-11T20:48:55.6169285Z Generated XML report: test-reports/python-unittest/test_datapipe/TEST-TestCircularSerialization-20230111204853.xml 2023-01-11T20:48:55.6169815Z Generated XML report: test-reports/python-unittest/test_datapipe/TEST-TestDataChunk-20230111204853.xml 2023-01-11T20:48:55.6170356Z Generated XML report: test-reports/python-unittest/test_datapipe/TEST-TestFunctionalIterDataPipe-20230111204853.xml 2023-01-11T20:48:55.6170909Z Generated XML report: test-reports/python-unittest/test_datapipe/TEST-TestFunctionalMapDataPipe-20230111204853.xml 2023-01-11T20:48:55.6171423Z Generated XML report: test-reports/python-unittest/test_datapipe/TEST-TestGraph-20230111204853.xml 2023-01-11T20:48:55.6171973Z Generated XML report: test-reports/python-unittest/test_datapipe/TEST-TestIterDataPipeCountSampleYielded-20230111204853.xml 2023-01-11T20:48:55.6172591Z Generated XML report: test-reports/python-unittest/test_datapipe/TEST-TestIterDataPipeGraphFastForward-20230111204853.xml 2023-01-11T20:48:55.6173245Z Generated XML report: test-reports/python-unittest/test_datapipe/TEST-TestIterDataPipeSingletonConstraint-20230111204853.xml 2023-01-11T20:48:55.6173832Z Generated XML report: test-reports/python-unittest/test_datapipe/TEST-TestIterableDataPipeBasic-20230111204853.xml 2023-01-11T20:48:55.6174346Z Generated XML report: test-reports/python-unittest/test_datapipe/TEST-TestSharding-20230111204853.xml 2023-01-11T20:48:55.6174841Z Generated XML report: test-reports/python-unittest/test_datapipe/TEST-TestStreamWrapper-20230111204853.xml 2023-01-11T20:48:55.6175317Z Generated XML report: test-reports/python-unittest/test_datapipe/TEST-TestTyping-20230111204853.xml 2023-01-11T20:48:55.6175815Z Generated XML report: test-reports/python-unittest/test_datapipe/TEST-TestCaptureDataFrame-20230111204853.xml 2023-01-11T20:48:55.6176338Z Generated XML report: test-reports/python-unittest/test_datapipe/TEST-TestDataFramesPipes-20230111204853.xml 2023-01-11T20:48:55.6176936Z Generated XML report: test-reports/python-unittest/test_datapipe/TEST-TestSerialization-20230111204853.xml 2023-01-11T20:48:55.6177234Z 2023-01-11T20:48:55.6177541Z ##[endgroup] 2023-01-11T20:48:55.6177926Z FINISHED PRINTING LOG FILE of test_datapipe (/var/lib/jenkins/workspace/test/test-reports/test_datapipe_nvv47c7m) 2023-01-11T20:48:55.6178144Z 2023-01-11T20:49:00.6778674Z No CUDA runtime is found, using CUDA_HOME='/usr/local/cuda' 2023-01-11T20:49:00.8408032Z Ignoring disabled issues: ['91003'] 2023-01-11T20:49:00.8608238Z Running test_autocast ... [2023-01-11 20:49:00.860564] 2023-01-11T20:49:00.8611224Z Executing ['/opt/conda/bin/python', '-bb', 'test_autocast.py', '-v', '--import-slow-tests', '--import-disabled-tests'] ... [2023-01-11 20:49:00.860896] 2023-01-11T20:49:06.3065537Z 2023-01-11T20:49:06.3066034Z Expand the folded group to see the log file of test_autocast 2023-01-11T20:49:06.3066787Z ##[group]PRINTING LOG FILE of test_autocast (/var/lib/jenkins/workspace/test/test-reports/test_autocast_y9xc83rh) 2023-01-11T20:49:06.3067420Z Test results will be stored in test-reports/python-unittest/test_autocast 2023-01-11T20:49:06.3067600Z 2023-01-11T20:49:06.3067680Z Running tests... 2023-01-11T20:49:06.3067989Z ---------------------------------------------------------------------- 2023-01-11T20:49:06.3068366Z test_autocast_methods_expect_builtin_promote (__main__.TestAutocastCPU) ... ok (0.360s) 2023-01-11T20:49:06.3068675Z test_autocast_nn_bf16 (__main__.TestAutocastCPU) ... ok (0.013s) 2023-01-11T20:49:06.3069005Z test_autocast_nn_fp32 (__main__.TestAutocastCPU) ... ok (0.039s) 2023-01-11T20:49:06.3069282Z test_autocast_torch_bf16 (__main__.TestAutocastCPU) ... ok (0.036s) 2023-01-11T20:49:06.3069574Z test_autocast_torch_expect_builtin_promote (__main__.TestAutocastCPU) ... ok (0.014s) 2023-01-11T20:49:06.3069932Z test_autocast_torch_fp32 (__main__.TestAutocastCPU) ... ok (0.447s) 2023-01-11T20:49:06.3070476Z test_autocast_torch_need_autocast_promote (__main__.TestAutocastCPU) ... ok (0.012s) 2023-01-11T20:49:06.3070766Z test_cast_cache_is_global (__main__.TestAutocastGPU) 2023-01-11T20:49:06.3071069Z Verifies that the autocast cache is global. This is done by ... skip: requires cuda (0.002s) 2023-01-11T20:49:06.3071443Z test_autocast_fast_dtype (__main__.TestTorchAutocast) ... ok (0.001s) 2023-01-11T20:49:06.3071607Z 2023-01-11T20:49:06.3071812Z ---------------------------------------------------------------------- 2023-01-11T20:49:06.3072090Z Ran 9 tests in 0.926s 2023-01-11T20:49:06.3072205Z 2023-01-11T20:49:06.3072277Z OK (skipped=1) 2023-01-11T20:49:06.3072381Z 2023-01-11T20:49:06.3072464Z Generating XML reports... 2023-01-11T20:49:06.3072928Z Generated XML report: test-reports/python-unittest/test_autocast/TEST-TestAutocastCPU-20230111204904.xml 2023-01-11T20:49:06.3073438Z Generated XML report: test-reports/python-unittest/test_autocast/TEST-TestTorchAutocast-20230111204904.xml 2023-01-11T20:49:06.3074008Z Generated XML report: test-reports/python-unittest/test_autocast/TEST-TestAutocastGPU-20230111204904.xml 2023-01-11T20:49:06.3074231Z 2023-01-11T20:49:06.3074512Z ##[endgroup] 2023-01-11T20:49:06.3074961Z FINISHED PRINTING LOG FILE of test_autocast (/var/lib/jenkins/workspace/test/test-reports/test_autocast_y9xc83rh) 2023-01-11T20:49:06.3075240Z 2023-01-11T20:49:11.4260068Z No CUDA runtime is found, using CUDA_HOME='/usr/local/cuda' 2023-01-11T20:49:11.5966364Z Ignoring disabled issues: ['91003'] 2023-01-11T20:49:11.6166772Z Running test_native_functions ... [2023-01-11 20:49:11.616300] 2023-01-11T20:49:11.6167910Z Executing ['/opt/conda/bin/python', '-bb', 'test_native_functions.py', '-v', '--import-slow-tests', '--import-disabled-tests'] ... [2023-01-11 20:49:11.616571] 2023-01-11T20:49:17.2291005Z 2023-01-11T20:49:17.2291643Z Expand the folded group to see the log file of test_native_functions 2023-01-11T20:49:17.2292755Z ##[group]PRINTING LOG FILE of test_native_functions (/var/lib/jenkins/workspace/test/test-reports/test_native_functions_9wge8wsv) 2023-01-11T20:49:17.2293518Z Test results will be stored in test-reports/python-unittest/test_native_functions 2023-01-11T20:49:17.2293701Z 2023-01-11T20:49:17.2293781Z Running tests... 2023-01-11T20:49:17.2294084Z ---------------------------------------------------------------------- 2023-01-11T20:49:17.2294398Z test_intlist_error_with_overload (__main__.TestNativeFunctions) ... ok (0.359s) 2023-01-11T20:49:17.2294902Z test_optional_filled_intlist (__main__.TestNativeFunctions) ... pad(): argument 'pad' (position 2) must be tuple of ints, but found element of type str at pos 0 2023-01-11T20:49:17.2295355Z pad(): argument 'pad' must be tuple of ints, but found element of type str at pos 2 2023-01-11T20:49:17.2295758Z pad(): argument 'pad' (position 2) must be tuple of ints, but found element of type str at pos 0 2023-01-11T20:49:17.2296153Z pad(): argument 'pad' (position 2) must be tuple of ints, but found element of type str at pos 0 2023-01-11T20:49:17.2296544Z pad(): argument 'pad' must be tuple of ints, but found element of type str at pos 2 2023-01-11T20:49:17.2296944Z pad(): argument 'pad' (position 2) must be tuple of ints, but found element of type str at pos 0 2023-01-11T20:49:17.2297302Z pad(): argument 'pad' (position 2) must be tuple of ints, not str 2023-01-11T20:49:17.2297505Z ok (0.383s) 2023-01-11T20:49:17.2297741Z test_optional_floatlist (__main__.TestNativeFunctions) ... ok (0.038s) 2023-01-11T20:49:17.2298047Z test_optional_floatlist_invalid (__main__.TestNativeFunctions) ... ok (0.021s) 2023-01-11T20:49:17.2298336Z test_optional_intlist (__main__.TestNativeFunctions) ... ok (0.037s) 2023-01-11T20:49:17.2298630Z test_optional_intlist_invalid (__main__.TestNativeFunctions) ... ok (0.018s) 2023-01-11T20:49:17.2298926Z test_string_defaults (__main__.TestNativeFunctions) ... ok (0.015s) 2023-01-11T20:49:17.2299408Z test_symintlist_error (__main__.TestNativeFunctions) ... pad(): argument 'pad' (position 2) must be tuple of ints, but found element of type str at pos 0 2023-01-11T20:49:17.2300111Z pad(): argument 'pad' must be tuple of ints, but found element of type str at pos 2 2023-01-11T20:49:17.2300514Z pad(): argument 'pad' (position 2) must be tuple of ints, but found element of type str at pos 0 2023-01-11T20:49:17.2300921Z pad(): argument 'pad' (position 2) must be tuple of ints, but found element of type str at pos 0 2023-01-11T20:49:17.2301298Z pad(): argument 'pad' must be tuple of ints, but found element of type str at pos 2 2023-01-11T20:49:17.2301692Z pad(): argument 'pad' (position 2) must be tuple of ints, but found element of type str at pos 0 2023-01-11T20:49:17.2302050Z pad(): argument 'pad' (position 2) must be tuple of ints, not str 2023-01-11T20:49:17.2302266Z ok (0.032s) 2023-01-11T20:49:17.2302696Z test_symintlist_error_with_overload (__main__.TestNativeFunctions) ... view() received an invalid combination of arguments - got (tuple), but expected one of: 2023-01-11T20:49:17.2303017Z * (torch.dtype dtype) 2023-01-11T20:49:17.2303342Z didn't match because some of the arguments have invalid types: (!tuple of (str,)!) 2023-01-11T20:49:17.2303571Z * (tuple of ints size) 2023-01-11T20:49:17.2303951Z didn't match because some of the arguments have invalid types: (!tuple of (str,)!) 2023-01-11T20:49:17.2304130Z 2023-01-11T20:49:17.2304344Z view(): argument 'size' must be tuple of ints, but found element of type str at pos 2 2023-01-11T20:49:17.2304730Z view() received an invalid combination of arguments - got (tuple), but expected one of: 2023-01-11T20:49:17.2304969Z * (torch.dtype dtype) 2023-01-11T20:49:17.2305293Z didn't match because some of the arguments have invalid types: (!tuple of (str, int)!) 2023-01-11T20:49:17.2305541Z * (tuple of ints size) 2023-01-11T20:49:17.2305855Z didn't match because some of the arguments have invalid types: (!tuple of (str, int)!) 2023-01-11T20:49:17.2306032Z 2023-01-11T20:49:17.2306249Z view() received an invalid combination of arguments - got (list), but expected one of: 2023-01-11T20:49:17.2306500Z * (torch.dtype dtype) 2023-01-11T20:49:17.2306819Z didn't match because some of the arguments have invalid types: (!list of [str]!) 2023-01-11T20:49:17.2307052Z * (tuple of ints size) 2023-01-11T20:49:17.2307359Z didn't match because some of the arguments have invalid types: (!list of [str]!) 2023-01-11T20:49:17.2307528Z 2023-01-11T20:49:17.2307738Z view(): argument 'size' must be tuple of ints, but found element of type str at pos 2 2023-01-11T20:49:17.2308106Z view() received an invalid combination of arguments - got (list), but expected one of: 2023-01-11T20:49:17.2308357Z * (torch.dtype dtype) 2023-01-11T20:49:17.2308678Z didn't match because some of the arguments have invalid types: (!list of [str, int]!) 2023-01-11T20:49:17.2308912Z * (tuple of ints size) 2023-01-11T20:49:17.2309235Z didn't match because some of the arguments have invalid types: (!list of [str, int]!) 2023-01-11T20:49:17.2309411Z 2023-01-11T20:49:17.2309628Z view() received an invalid combination of arguments - got (str), but expected one of: 2023-01-11T20:49:17.2309873Z * (torch.dtype dtype) 2023-01-11T20:49:17.2310163Z didn't match because some of the arguments have invalid types: (!str!) 2023-01-11T20:49:17.2310398Z * (tuple of ints size) 2023-01-11T20:49:17.2310696Z didn't match because some of the arguments have invalid types: (!str!) 2023-01-11T20:49:17.2310860Z 2023-01-11T20:49:17.2310913Z ok (0.031s) 2023-01-11T20:49:17.2311393Z test_symintlist_error_with_overload_but_is_unique (__main__.TestNativeFunctions) ... set_() received an invalid combination of arguments - got (Tensor, int, tuple), but expected one of: 2023-01-11T20:49:17.2311718Z * () 2023-01-11T20:49:17.2311882Z * (torch.Storage source) 2023-01-11T20:49:17.2312130Z * (torch.Storage source, int storage_offset, tuple of ints size, tuple of ints stride) 2023-01-11T20:49:17.2312370Z * (Tensor source) 2023-01-11T20:49:17.2312609Z * (Tensor source, int storage_offset, tuple of ints size, tuple of ints stride) 2023-01-11T20:49:17.2312820Z 2023-01-11T20:49:17.2313020Z set_(): argument 'size' must be tuple of ints, but found element of type str at pos 2 2023-01-11T20:49:17.2313440Z set_() received an invalid combination of arguments - got (Tensor, int, tuple), but expected one of: 2023-01-11T20:49:17.2313692Z * () 2023-01-11T20:49:17.2313846Z * (torch.Storage source) 2023-01-11T20:49:17.2314107Z * (torch.Storage source, int storage_offset, tuple of ints size, tuple of ints stride) 2023-01-11T20:49:17.2314344Z * (Tensor source) 2023-01-11T20:49:17.2314581Z * (Tensor source, int storage_offset, tuple of ints size, tuple of ints stride) 2023-01-11T20:49:17.2314735Z 2023-01-11T20:49:17.2314973Z set_() received an invalid combination of arguments - got (Tensor, int, list), but expected one of: 2023-01-11T20:49:17.2315217Z * () 2023-01-11T20:49:17.2315380Z * (torch.Storage source) 2023-01-11T20:49:17.2315624Z * (torch.Storage source, int storage_offset, tuple of ints size, tuple of ints stride) 2023-01-11T20:49:17.2315863Z * (Tensor source) 2023-01-11T20:49:17.2316103Z * (Tensor source, int storage_offset, tuple of ints size, tuple of ints stride) 2023-01-11T20:49:17.2316264Z 2023-01-11T20:49:17.2316505Z set_(): argument 'size' must be tuple of ints, but found element of type str at pos 2 2023-01-11T20:49:17.2316901Z set_() received an invalid combination of arguments - got (Tensor, int, list), but expected one of: 2023-01-11T20:49:17.2317142Z * () 2023-01-11T20:49:17.2317305Z * (torch.Storage source) 2023-01-11T20:49:17.2317550Z * (torch.Storage source, int storage_offset, tuple of ints size, tuple of ints stride) 2023-01-11T20:49:17.2317789Z * (Tensor source) 2023-01-11T20:49:17.2318026Z * (Tensor source, int storage_offset, tuple of ints size, tuple of ints stride) 2023-01-11T20:49:17.2318191Z 2023-01-11T20:49:17.2318416Z set_() received an invalid combination of arguments - got (Tensor, int, str), but expected one of: 2023-01-11T20:49:17.2318664Z * () 2023-01-11T20:49:17.2318839Z * (torch.Storage source) 2023-01-11T20:49:17.2319098Z * (torch.Storage source, int storage_offset, tuple of ints size, tuple of ints stride) 2023-01-11T20:49:17.2319322Z * (Tensor source) 2023-01-11T20:49:17.2319564Z * (Tensor source, int storage_offset, tuple of ints size, tuple of ints stride) 2023-01-11T20:49:17.2319727Z 2023-01-11T20:49:17.2319791Z ok (0.032s) 2023-01-11T20:49:17.2320217Z test_vararg_symintlist_error (__main__.TestNativeFunctions) ... rand(): argument 'size' (position 1) must be tuple of ints, but found element of type str at pos 0 2023-01-11T20:49:17.2320853Z rand(): argument 'size' must be tuple of ints, but found element of type str at pos 2 2023-01-11T20:49:17.2321256Z rand(): argument 'size' (position 1) must be tuple of ints, but found element of type str at pos 0 2023-01-11T20:49:17.2321666Z rand(): argument 'size' (position 1) must be tuple of ints, but found element of type str at pos 0 2023-01-11T20:49:17.2322042Z rand(): argument 'size' must be tuple of ints, but found element of type str at pos 2 2023-01-11T20:49:17.2322443Z rand(): argument 'size' (position 1) must be tuple of ints, but found element of type str at pos 0 2023-01-11T20:49:17.2322941Z rand(): argument 'size' (position 1) must be tuple of ints, but found element of type str at pos 0 2023-01-11T20:49:17.2323337Z rand(): argument 'size' (position 1) must be tuple of ints, but found element of type str at pos 0 2023-01-11T20:49:17.2323720Z rand(): argument 'size' must be tuple of ints, but found element of type str at pos 2 2023-01-11T20:49:17.2324112Z rand() received an invalid combination of arguments - got (str, int), but expected one of: 2023-01-11T20:49:17.2324539Z * (tuple of ints size, *, torch.Generator generator, tuple of names names, torch.dtype dtype, torch.layout layout, torch.device device, bool pin_memory, bool requires_grad) 2023-01-11T20:49:17.2325018Z * (tuple of ints size, *, torch.Generator generator, Tensor out, torch.dtype dtype, torch.layout layout, torch.device device, bool pin_memory, bool requires_grad) 2023-01-11T20:49:17.2325544Z * (tuple of ints size, *, Tensor out, torch.dtype dtype, torch.layout layout, torch.device device, bool pin_memory, bool requires_grad) 2023-01-11T20:49:17.2325980Z * (tuple of ints size, *, tuple of names names, torch.dtype dtype, torch.layout layout, torch.device device, bool pin_memory, bool requires_grad) 2023-01-11T20:49:17.2326212Z 2023-01-11T20:49:17.2326445Z rand(): argument 'size' (position 1) must be tuple of ints, but found element of type str at pos 0 2023-01-11T20:49:17.2326821Z rand(): argument 'size' must be tuple of ints, but found element of type str at pos 2 2023-01-11T20:49:17.2327207Z rand() received an invalid combination of arguments - got (str, int), but expected one of: 2023-01-11T20:49:17.2327633Z * (tuple of ints size, *, torch.Generator generator, tuple of names names, torch.dtype dtype, torch.layout layout, torch.device device, bool pin_memory, bool requires_grad) 2023-01-11T20:49:17.2328121Z * (tuple of ints size, *, torch.Generator generator, Tensor out, torch.dtype dtype, torch.layout layout, torch.device device, bool pin_memory, bool requires_grad) 2023-01-11T20:49:17.2328597Z * (tuple of ints size, *, Tensor out, torch.dtype dtype, torch.layout layout, torch.device device, bool pin_memory, bool requires_grad) 2023-01-11T20:49:17.2329025Z * (tuple of ints size, *, tuple of names names, torch.dtype dtype, torch.layout layout, torch.device device, bool pin_memory, bool requires_grad) 2023-01-11T20:49:17.2329256Z 2023-01-11T20:49:17.2329491Z rand() received an invalid combination of arguments - got (str, str, str), but expected one of: 2023-01-11T20:49:17.2329913Z * (tuple of ints size, *, torch.Generator generator, tuple of names names, torch.dtype dtype, torch.layout layout, torch.device device, bool pin_memory, bool requires_grad) 2023-01-11T20:49:17.2330399Z * (tuple of ints size, *, torch.Generator generator, Tensor out, torch.dtype dtype, torch.layout layout, torch.device device, bool pin_memory, bool requires_grad) 2023-01-11T20:49:17.2330829Z * (tuple of ints size, *, Tensor out, torch.dtype dtype, torch.layout layout, torch.device device, bool pin_memory, bool requires_grad) 2023-01-11T20:49:17.2331252Z * (tuple of ints size, *, tuple of names names, torch.dtype dtype, torch.layout layout, torch.device device, bool pin_memory, bool requires_grad) 2023-01-11T20:49:17.2331483Z 2023-01-11T20:49:17.2331547Z ok (0.075s) 2023-01-11T20:49:17.2331648Z 2023-01-11T20:49:17.2331848Z ---------------------------------------------------------------------- 2023-01-11T20:49:17.2332076Z Ran 11 tests in 1.042s 2023-01-11T20:49:17.2332186Z 2023-01-11T20:49:17.2332244Z OK 2023-01-11T20:49:17.2332332Z 2023-01-11T20:49:17.2332414Z Generating XML reports... 2023-01-11T20:49:17.2332832Z Generated XML report: test-reports/python-unittest/test_native_functions/TEST-TestNativeFunctions-20230111204915.xml 2023-01-11T20:49:17.2333077Z 2023-01-11T20:49:17.2333358Z ##[endgroup] 2023-01-11T20:49:17.2333754Z FINISHED PRINTING LOG FILE of test_native_functions (/var/lib/jenkins/workspace/test/test-reports/test_native_functions_9wge8wsv) 2023-01-11T20:49:17.2333981Z 2023-01-11T20:49:22.0765412Z No CUDA runtime is found, using CUDA_HOME='/usr/local/cuda' 2023-01-11T20:49:22.2371746Z Ignoring disabled issues: ['91003'] 2023-01-11T20:49:22.2573441Z Running benchmark_utils/test_benchmark_utils ... [2023-01-11 20:49:22.257050] 2023-01-11T20:49:22.2575521Z Executing ['/opt/conda/bin/python', '-bb', 'benchmark_utils/test_benchmark_utils.py', '-v', '--import-slow-tests', '--import-disabled-tests'] ... [2023-01-11 20:49:22.257323] 2023-01-11T20:49:28.0589651Z 2023-01-11T20:49:28.0590230Z Expand the folded group to see the log file of benchmark_utils/test_benchmark_utils 2023-01-11T20:49:28.0591182Z ##[group]PRINTING LOG FILE of benchmark_utils/test_benchmark_utils (/var/lib/jenkins/workspace/test/test-reports/benchmark_utils-test_benchmark_utils_d89f9_3e) 2023-01-11T20:49:28.0591978Z Test results will be stored in test-reports/python-unittest/benchmark_utils.test_benchmark_utils 2023-01-11T20:49:28.0592872Z No CUDA runtime is found, using CUDA_HOME='/usr/local/cuda' 2023-01-11T20:49:28.0593023Z 2023-01-11T20:49:28.0593083Z Running tests... 2023-01-11T20:49:28.0593387Z ---------------------------------------------------------------------- 2023-01-11T20:49:28.0593887Z test_adaptive_timer (__main__.TestBenchmarkUtils) ... [W ParallelNative.cpp:230] Warning: Cannot set number of intraop threads after parallel work has started or after set_num_threads call when using native parallel backend (function set_num_threads) 2023-01-11T20:49:28.0594493Z [W ParallelNative.cpp:230] Warning: Cannot set number of intraop threads after parallel work has started or after set_num_threads call when using native parallel backend (function set_num_threads) 2023-01-11T20:49:28.0595033Z [W ParallelNative.cpp:230] Warning: Cannot set number of intraop threads after parallel work has started or after set_num_threads call when using native parallel backend (function set_num_threads) 2023-01-11T20:49:28.0595365Z ok (0.311s) 2023-01-11T20:49:28.0595661Z test_collect_callgrind (__main__.TestBenchmarkUtils) ... skip: test is slow; run with PYTORCH_TEST_WITH_SLOW to enable test (0.002s) 2023-01-11T20:49:28.0596120Z test_collect_cpp_callgrind (__main__.TestBenchmarkUtils) ... skip: Failing on clang, see 74398 (0.001s) 2023-01-11T20:49:28.0596428Z test_compare (__main__.TestBenchmarkUtils) ... ok (0.347s) 2023-01-11T20:49:28.0596716Z test_cpp_timer (__main__.TestBenchmarkUtils) ... skip: Failing on clang, see 74398 (0.001s) 2023-01-11T20:49:28.0597007Z test_fuzzer (__main__.TestBenchmarkUtils) ... ok (0.007s) 2023-01-11T20:49:28.0597296Z test_manipulate_callgrind_stats (__main__.TestBenchmarkUtils) ... ok (0.085s) 2023-01-11T20:49:28.0597569Z test_timer (__main__.TestBenchmarkUtils) ... ok (0.082s) 2023-01-11T20:49:28.0597876Z test_timer_tiny_fast_snippet (__main__.TestBenchmarkUtils) ... skip: Failing on clang, see 74398 (0.001s) 2023-01-11T20:49:28.0598070Z 2023-01-11T20:49:28.0598271Z ---------------------------------------------------------------------- 2023-01-11T20:49:28.0598507Z Ran 9 tests in 0.838s 2023-01-11T20:49:28.0598606Z 2023-01-11T20:49:28.0598674Z OK (skipped=4) 2023-01-11T20:49:28.0598780Z 2023-01-11T20:49:28.0598862Z Generating XML reports... 2023-01-11T20:49:28.0599328Z Generated XML report: test-reports/python-unittest/benchmark_utils.test_benchmark_utils/TEST-TestBenchmarkUtils-20230111204926.xml 2023-01-11T20:49:28.0599586Z 2023-01-11T20:49:28.0599804Z ##[endgroup] 2023-01-11T20:49:28.0600249Z FINISHED PRINTING LOG FILE of benchmark_utils/test_benchmark_utils (/var/lib/jenkins/workspace/test/test-reports/benchmark_utils-test_benchmark_utils_d89f9_3e) 2023-01-11T20:49:28.0600496Z 2023-01-11T20:49:32.8524809Z No CUDA runtime is found, using CUDA_HOME='/usr/local/cuda' 2023-01-11T20:49:33.0140204Z Ignoring disabled issues: ['91003'] 2023-01-11T20:49:33.0354825Z Running test_fx_passes ... [2023-01-11 20:49:33.035153] 2023-01-11T20:49:33.0357241Z Executing ['/opt/conda/bin/python', '-bb', 'test_fx_passes.py', '-v', '--import-slow-tests', '--import-disabled-tests'] ... [2023-01-11 20:49:33.035456] 2023-01-11T20:49:38.2917589Z 2023-01-11T20:49:38.2918172Z Expand the folded group to see the log file of test_fx_passes 2023-01-11T20:49:38.2919175Z ##[group]PRINTING LOG FILE of test_fx_passes (/var/lib/jenkins/workspace/test/test-reports/test_fx_passes_vado6vee) 2023-01-11T20:49:38.2919741Z Test results will be stored in test-reports/python-unittest/test_fx_passes 2023-01-11T20:49:38.2919909Z 2023-01-11T20:49:38.2919983Z Running tests... 2023-01-11T20:49:38.2920288Z ---------------------------------------------------------------------- 2023-01-11T20:49:38.2920594Z test_fuser_pass_deep_model (__main__.TestFXGraphPasses) ... ok (0.406s) 2023-01-11T20:49:38.2921098Z test_fuser_util_partition_[['add', 'add_1', 'add_2']] (__main__.TestFXGraphPasses) ... ok (0.024s) 2023-01-11T20:49:38.2921526Z test_fuser_util_partition_[['add', 'add_1'], ['add_5', 'add_6']] (__main__.TestFXGraphPasses) ... ok (0.011s) 2023-01-11T20:49:38.2922271Z test_fuser_util_partition_[['add', 'linear', 'add_1', 'param', 'add_2', 'add_3', 'add_4', 'linear2', 'add_5', 'add_6', 'relu']] (__main__.TestFXGraphPasses) ... ok (0.010s) 2023-01-11T20:49:38.2922726Z test_fuser_util_partition_[['add_2', 'add_3']] (__main__.TestFXGraphPasses) ... ok (0.010s) 2023-01-11T20:49:38.2923107Z test_fuser_util_partition_[['add_3', 'add_4']] (__main__.TestFXGraphPasses) ... ok (0.009s) 2023-01-11T20:49:38.2923522Z test_fuser_util_partition_[['add_4', 'add_1', 'add_3', 'add_2']] (__main__.TestFXGraphPasses) ... ok (0.009s) 2023-01-11T20:49:38.2923974Z test_fuser_util_partition_[['add_5', 'add_6'], ['add_1', 'add_2', 'add_3', 'add_4']] (__main__.TestFXGraphPasses) ... ok (0.010s) 2023-01-11T20:49:38.2924392Z test_fuser_util_partition_[['add_5', 'linear2']] (__main__.TestFXGraphPasses) ... ok (0.009s) 2023-01-11T20:49:38.2924771Z test_fuser_util_partition_[['add_6', 'add_5']] (__main__.TestFXGraphPasses) ... ok (0.009s) 2023-01-11T20:49:38.2925158Z test_fuser_util_partition_[['add_6', 'relu']] (__main__.TestFXGraphPasses) ... ok (0.009s) 2023-01-11T20:49:38.2925621Z test_fuser_util_partition_[['param', 'add_1', 'linear']] (__main__.TestFXGraphPasses) ... ok (0.010s) 2023-01-11T20:49:38.2926015Z test_fuser_util_partition_[['param', 'add_2']] (__main__.TestFXGraphPasses) ... ok (0.009s) 2023-01-11T20:49:38.2926433Z test_fuser_util_xfail_partition_[['add', 'add_1', 'add_3']] (__main__.TestFXGraphPasses) ... ok (0.004s) 2023-01-11T20:49:38.2926878Z test_fuser_util_xfail_partition_[['add', 'add_1'], ['add_1', 'add_5', 'add_6']] (__main__.TestFXGraphPasses) ... ok (0.005s) 2023-01-11T20:49:38.2927297Z test_fuser_util_xfail_partition_[['add_4', 'add_5']] (__main__.TestFXGraphPasses) ... ok (0.004s) 2023-01-11T20:49:38.2927692Z test_fuser_util_xfail_partition_[['relu', 'add_5']] (__main__.TestFXGraphPasses) ... ok (0.004s) 2023-01-11T20:49:38.2928338Z test_partitioner_fn__expected_partition_[['add_7', 'add_6'], ['add_5', 'add_4', 'add_3'], ['add_2', 'add_1', 'add']]_bookend_non_compute_pass_False (__main__.TestFXGraphPasses) ... ok (0.010s) 2023-01-11T20:49:38.2929070Z test_partitioner_fn__expected_partition_[['add_3', 'add_2', 'add', 'add_1']]_bookend_non_compute_pass_False (__main__.TestFXGraphPasses) ... ok (0.019s) 2023-01-11T20:49:38.2929752Z test_partitioner_fn__expected_partition_[['add_1'], ['add']]_bookend_non_compute_pass_False (__main__.TestFXGraphPasses) ... ok (0.009s) 2023-01-11T20:49:38.2930463Z test_partitioner_fn__expected_partition_[['add_2'], ['add_3', 'add_4', 'add_1'], ['add']]_bookend_non_compute_pass_False (__main__.TestFXGraphPasses) ... ok (0.010s) 2023-01-11T20:49:38.2931161Z test_partitioner_fn__expected_partition_[['add_2', 'add_1', 'add']]_bookend_non_compute_pass_False (__main__.TestFXGraphPasses) ... ok (0.008s) 2023-01-11T20:49:38.2931863Z test_partitioner_fn__expected_partition_[['add', 'std_mean', 'getitem', 'getitem_1']]_bookend_non_compute_pass_False (__main__.TestFXGraphPasses) ... ok (0.008s) 2023-01-11T20:49:38.2932639Z test_partitioner_fn__expected_partition_[['add_1', 'add', 'permute_1', 'view', 'permute_2', 'permute_3', 'permute']]_bookend_non_compute_pass_False (__main__.TestFXGraphPasses) ... ok (0.020s) 2023-01-11T20:49:38.2933369Z test_partitioner_fn__expected_partition_[['permute_1', 'add_1', 'add']]_bookend_non_compute_pass_True (__main__.TestFXGraphPasses) ... ok (0.009s) 2023-01-11T20:49:38.2934120Z test_partitioner_fn__expected_partition_[['add_1', 'add', 'permute_1', 'view', 'permute_2', 'permute_3', 'permute']]_bookend_non_compute_pass_False (__main__.TestFXGraphPasses) ... ok (0.010s) 2023-01-11T20:49:38.2934885Z test_partitioner_fn__expected_partition_[['permute_1', 'add_1', 'add']]_bookend_non_compute_pass_True (__main__.TestFXGraphPasses) ... ok (0.012s) 2023-01-11T20:49:38.2935570Z test_partitioner_fn__expected_partition_[['add_3', 'add_2'], ['add_1', 'add']]_bookend_non_compute_pass_False (__main__.TestFXGraphPasses) ... ok (0.012s) 2023-01-11T20:49:38.2936251Z test_partitioner_fn__expected_partition_[['add_2', 'add_1', 'add']]_bookend_non_compute_pass_False (__main__.TestFXGraphPasses) ... ok (0.011s) 2023-01-11T20:49:38.2936934Z test_partitioner_fn__expected_partition_[['add_2', 'add_1', 'add']]_bookend_non_compute_pass_False (__main__.TestFXGraphPasses) ... ok (0.011s) 2023-01-11T20:49:38.2937631Z test_partitioner_fn__expected_partition_[['add_1', 'add']]_bookend_non_compute_pass_False (__main__.TestFXGraphPasses) ... ok (0.011s) 2023-01-11T20:49:38.2938291Z test_partitioner_fn__expected_partition_[['add']]_bookend_non_compute_pass_False (__main__.TestFXGraphPasses) ... ok (0.010s) 2023-01-11T20:49:38.2938973Z test_partitioner_fn__expected_partition_[['add_3', 'add_2', 'add', 'add_1']]_bookend_non_compute_pass_False (__main__.TestFXGraphPasses) ... ok (0.011s) 2023-01-11T20:49:38.2939648Z test_partitioner_fn__expected_partition_[['add_3', 'add_2', 'add', 'add_1']]_bookend_non_compute_pass_False (__main__.TestFXGraphPasses) ... ok (0.010s) 2023-01-11T20:49:38.2940421Z test_partitioner_fn__expected_partition_[['add_3', 'add_2', 'add_1', 'add']]_bookend_non_compute_pass_False (__main__.TestFXGraphPasses) ... ok (0.011s) 2023-01-11T20:49:38.2940987Z test_subgraph_matcher_test_model_ (__main__.TestFXMatcherUtils) ... ok (0.007s) 2023-01-11T20:49:38.2941499Z test_subgraph_matcher_test_model_ (__main__.TestFXMatcherUtils) ... ok (0.007s) 2023-01-11T20:49:38.2942021Z test_subgraph_matcher_test_model_ (__main__.TestFXMatcherUtils) ... ok (0.008s) 2023-01-11T20:49:38.2942558Z test_subgraph_matcher_test_model_ (__main__.TestFXMatcherUtils) ... ok (0.005s) 2023-01-11T20:49:38.2943095Z test_subgraph_matcher_test_model_ (__main__.TestFXMatcherUtils) ... ok (0.005s) 2023-01-11T20:49:38.2943672Z test_subgraph_matcher_test_model_ (__main__.TestFXMatcherUtils) ... ok (0.005s) 2023-01-11T20:49:38.2944255Z test_subgraph_matcher_test_model_ (__main__.TestFXMatcherUtils) ... ok (0.005s) 2023-01-11T20:49:38.2944809Z test_subgraph_matcher_test_model_ (__main__.TestFXMatcherUtils) ... ok (0.004s) 2023-01-11T20:49:38.2945338Z test_subgraph_matcher_test_model_ (__main__.TestFXMatcherUtils) ... ok (0.005s) 2023-01-11T20:49:38.2945829Z test_subgraph_matcher_test_model_ (__main__.TestFXMatcherUtils) ... ok (0.004s) 2023-01-11T20:49:38.2946298Z test_subgraph_matcher_test_model_ (__main__.TestFXMatcherUtils) ... ok (0.006s) 2023-01-11T20:49:38.2946833Z test_subgraph_matcher_test_model_ (__main__.TestFXMatcherUtils) ... ok (0.007s) 2023-01-11T20:49:38.2947316Z test_subgraph_matcher_test_model_ (__main__.TestFXMatcherUtils) ... ok (0.005s) 2023-01-11T20:49:38.2947801Z test_subgraph_matcher_test_model_ (__main__.TestFXMatcherUtils) ... ok (0.005s) 2023-01-11T20:49:38.2948259Z test_subgraph_matcher_test_model_ (__main__.TestFXMatcherUtils) ... ok (0.006s) 2023-01-11T20:49:38.2948720Z test_subgraph_matcher_test_model_ (__main__.TestFXMatcherUtils) ... ok (0.004s) 2023-01-11T20:49:38.2948926Z 2023-01-11T20:49:38.2949123Z ---------------------------------------------------------------------- 2023-01-11T20:49:38.2949360Z Ran 51 tests in 0.846s 2023-01-11T20:49:38.2949460Z 2023-01-11T20:49:38.2949520Z OK 2023-01-11T20:49:38.2949612Z 2023-01-11T20:49:38.2949697Z Generating XML reports... 2023-01-11T20:49:38.2950106Z Generated XML report: test-reports/python-unittest/test_fx_passes/TEST-TestFXGraphPasses-20230111204936.xml 2023-01-11T20:49:38.2950646Z Generated XML report: test-reports/python-unittest/test_fx_passes/TEST-TestFXMatcherUtils-20230111204936.xml 2023-01-11T20:49:38.2950875Z 2023-01-11T20:49:38.2951134Z ##[endgroup] 2023-01-11T20:49:38.2951510Z FINISHED PRINTING LOG FILE of test_fx_passes (/var/lib/jenkins/workspace/test/test-reports/test_fx_passes_vado6vee) 2023-01-11T20:49:38.2951719Z 2023-01-11T20:49:43.1242426Z No CUDA runtime is found, using CUDA_HOME='/usr/local/cuda' 2023-01-11T20:49:43.2915435Z Ignoring disabled issues: ['91003'] 2023-01-11T20:49:43.3119427Z Running test_monitor ... [2023-01-11 20:49:43.311569] 2023-01-11T20:49:43.3120499Z Executing ['/opt/conda/bin/python', '-bb', 'test_monitor.py', '-v', '--import-slow-tests', '--import-disabled-tests'] ... [2023-01-11 20:49:43.311842] 2023-01-11T20:49:48.2999523Z 2023-01-11T20:49:48.3000017Z Expand the folded group to see the log file of test_monitor 2023-01-11T20:49:48.3001171Z ##[group]PRINTING LOG FILE of test_monitor (/var/lib/jenkins/workspace/test/test-reports/test_monitor_eynq69bh) 2023-01-11T20:49:48.3002036Z Test results will be stored in test-reports/python-unittest/test_monitor 2023-01-11T20:49:48.3002341Z 2023-01-11T20:49:48.3002441Z Running tests... 2023-01-11T20:49:48.3002948Z ---------------------------------------------------------------------- 2023-01-11T20:49:48.3003395Z test_event_handler (__main__.TestMonitor) ... ok (0.332s) 2023-01-11T20:49:48.3004218Z test_fixed_count_stat (__main__.TestMonitor) ... ok (0.002s) 2023-01-11T20:49:48.3004636Z test_interval_stat (__main__.TestMonitor) ... ok (0.002s) 2023-01-11T20:49:48.3005094Z test_log_event (__main__.TestMonitor) ... ok (0.001s) 2023-01-11T20:49:48.3005608Z test_event_handler (__main__.TestMonitorTensorboard) ... ok (0.304s) 2023-01-11T20:49:48.3005931Z 2023-01-11T20:49:48.3006293Z ---------------------------------------------------------------------- 2023-01-11T20:49:48.3006762Z Ran 5 tests in 0.642s 2023-01-11T20:49:48.3006981Z 2023-01-11T20:49:48.3009256Z OK 2023-01-11T20:49:48.3009500Z 2023-01-11T20:49:48.3009681Z Generating XML reports... 2023-01-11T20:49:48.3010490Z Generated XML report: test-reports/python-unittest/test_monitor/TEST-TestMonitor-20230111204947.xml 2023-01-11T20:49:48.3011465Z Generated XML report: test-reports/python-unittest/test_monitor/TEST-TestMonitorTensorboard-20230111204947.xml 2023-01-11T20:49:48.3011933Z 2023-01-11T20:49:48.3012470Z ##[endgroup] 2023-01-11T20:49:48.3013184Z FINISHED PRINTING LOG FILE of test_monitor (/var/lib/jenkins/workspace/test/test-reports/test_monitor_eynq69bh) 2023-01-11T20:49:48.3013588Z 2023-01-11T20:49:53.0469771Z No CUDA runtime is found, using CUDA_HOME='/usr/local/cuda' 2023-01-11T20:49:53.2069784Z Ignoring disabled issues: ['91003'] 2023-01-11T20:49:53.2285473Z Running dynamo/test_global ... [2023-01-11 20:49:53.226887] 2023-01-11T20:49:53.2286224Z Executing ['/opt/conda/bin/python', '-bb', 'dynamo/test_global.py', '-v', '--import-slow-tests', '--import-disabled-tests'] ... [2023-01-11 20:49:53.227147] 2023-01-11T20:49:58.3530358Z 2023-01-11T20:49:58.3530916Z Expand the folded group to see the log file of dynamo/test_global 2023-01-11T20:49:58.3532332Z ##[group]PRINTING LOG FILE of dynamo/test_global (/var/lib/jenkins/workspace/test/test-reports/dynamo-test_global_njfk0qqm) 2023-01-11T20:49:58.3532879Z Test results will be stored in test-reports/python-unittest/dynamo.test_global 2023-01-11T20:49:58.3533126Z 2023-01-11T20:49:58.3533201Z Running tests... 2023-01-11T20:49:58.3533512Z ---------------------------------------------------------------------- 2023-01-11T20:49:58.3533858Z test_store_global_1 (__main__.TestGlobals) ... ok (0.484s) 2023-01-11T20:49:58.3534195Z test_store_global_2 (__main__.TestGlobals) ... frames [('total', 1), ('ok', 1)] 2023-01-11T20:49:58.3534602Z stats [('calls_captured', 1), ('unique_graphs', 1), ('fusions_possible', 0)] 2023-01-11T20:49:58.3534903Z frames [('total', 2), ('ok', 2)] 2023-01-11T20:49:58.3535200Z stats [('calls_captured', 2), ('unique_graphs', 2), ('fusions_possible', 0)] 2023-01-11T20:49:58.3535487Z ok (0.015s) 2023-01-11T20:49:58.3535998Z test_store_global_cross_file (__main__.TestGlobals) ... frames [('total', 2), ('ok', 2)] 2023-01-11T20:49:58.3536301Z unimplemented [] 2023-01-11T20:49:58.3536715Z graph_break [('call_function BuiltinVariable(setattr) [PythonModuleVariable(), ConstantVariable(str), TensorVariable()] {}', 1)] 2023-01-11T20:49:58.3537200Z stats [('calls_captured', 2), ('fusions_possible', 1), ('unique_graphs', 1)] 2023-01-11T20:49:58.3537424Z ok (0.013s) 2023-01-11T20:49:58.3537766Z test_store_global_dict (__main__.TestGlobals) ... frames [('total', 1), ('ok', 1)] 2023-01-11T20:49:58.3542002Z stats [('calls_captured', 1), ('unique_graphs', 1), ('fusions_possible', 0)] 2023-01-11T20:49:58.3542270Z ok (0.009s) 2023-01-11T20:49:58.3542755Z test_store_global_dict_2 (__main__.TestGlobals) ... frames [('total', 1), ('ok', 1)] 2023-01-11T20:49:58.3543133Z inline_call [] 2023-01-11T20:49:58.3543531Z stats [('calls_captured', 1), ('unique_graphs', 1), ('fusions_possible', 0)] 2023-01-11T20:49:58.3543754Z ok (0.010s) 2023-01-11T20:49:58.3544060Z test_store_global_inline_1 (__main__.TestGlobals) ... frames [('total', 1), ('ok', 1)] 2023-01-11T20:49:58.3544278Z inline_call [] 2023-01-11T20:49:58.3544573Z stats [('calls_captured', 1), ('unique_graphs', 1), ('fusions_possible', 0)] 2023-01-11T20:49:58.3544793Z ok (0.014s) 2023-01-11T20:49:58.3545081Z test_store_global_inline_2 (__main__.TestGlobals) ... frames [('total', 1), ('ok', 1)] 2023-01-11T20:49:58.3545317Z inline_call [] 2023-01-11T20:49:58.3545605Z stats [('calls_captured', 1), ('unique_graphs', 1), ('fusions_possible', 0)] 2023-01-11T20:49:58.3545823Z ok (0.015s) 2023-01-11T20:49:58.3546106Z test_store_global_list (__main__.TestGlobals) ... frames [('total', 1), ('ok', 1)] 2023-01-11T20:49:58.3546456Z stats [('calls_captured', 1), ('unique_graphs', 1), ('fusions_possible', 0)] 2023-01-11T20:49:58.3546676Z ok (0.009s) 2023-01-11T20:49:58.3547081Z test_store_global_list_2 (__main__.TestGlobals) ... frames [('total', 1), ('ok', 1)] 2023-01-11T20:49:58.3547315Z inline_call [] 2023-01-11T20:49:58.3547646Z stats [('calls_captured', 1), ('unique_graphs', 1), ('fusions_possible', 0)] 2023-01-11T20:49:58.3547854Z ok (0.011s) 2023-01-11T20:49:58.3548154Z test_store_global_new (__main__.TestGlobals) ... frames [('total', 1), ('ok', 1)] 2023-01-11T20:49:58.3548505Z stats [('calls_captured', 2), ('fusions_possible', 1), ('unique_graphs', 1)] 2023-01-11T20:49:58.3548722Z ok (0.008s) 2023-01-11T20:49:58.3549008Z test_store_global_object (__main__.TestGlobals) ... frames [('total', 1), ('ok', 1)] 2023-01-11T20:49:58.3562177Z stats [('calls_captured', 1), ('unique_graphs', 1), ('fusions_possible', 0)] 2023-01-11T20:49:58.3562784Z ok (0.008s) 2023-01-11T20:49:58.3562972Z 2023-01-11T20:49:58.3563372Z ---------------------------------------------------------------------- 2023-01-11T20:49:58.3563847Z Ran 11 tests in 0.598s 2023-01-11T20:49:58.3563962Z 2023-01-11T20:49:58.3564009Z OK 2023-01-11T20:49:58.3564098Z 2023-01-11T20:49:58.3564183Z Generating XML reports... 2023-01-11T20:49:58.3564602Z Generated XML report: test-reports/python-unittest/dynamo.test_global/TEST-TestGlobals-20230111204957.xml 2023-01-11T20:49:58.3564828Z 2023-01-11T20:49:58.3565166Z ##[endgroup] 2023-01-11T20:49:58.3565547Z FINISHED PRINTING LOG FILE of dynamo/test_global (/var/lib/jenkins/workspace/test/test-reports/dynamo-test_global_njfk0qqm) 2023-01-11T20:49:58.3565771Z 2023-01-11T20:50:03.1543560Z No CUDA runtime is found, using CUDA_HOME='/usr/local/cuda' 2023-01-11T20:50:03.3596379Z Ignoring disabled issues: ['91003'] 2023-01-11T20:50:03.3893141Z Running dynamo/test_comptime ... [2023-01-11 20:50:03.388863] 2023-01-11T20:50:03.3894101Z Executing ['/opt/conda/bin/python', '-bb', 'dynamo/test_comptime.py', '-v', '--import-slow-tests', '--import-disabled-tests'] ... [2023-01-11 20:50:03.389191] 2023-01-11T20:50:08.4665892Z 2023-01-11T20:50:08.4666527Z Expand the folded group to see the log file of dynamo/test_comptime 2023-01-11T20:50:08.4669026Z ##[group]PRINTING LOG FILE of dynamo/test_comptime (/var/lib/jenkins/workspace/test/test-reports/dynamo-test_comptime_1g1g732f) 2023-01-11T20:50:08.4671676Z Test results will be stored in test-reports/python-unittest/dynamo.test_comptime 2023-01-11T20:50:08.4672026Z 2023-01-11T20:50:08.4672162Z Running tests... 2023-01-11T20:50:08.4672688Z ---------------------------------------------------------------------- 2023-01-11T20:50:08.4673175Z test_get_local (__main__.ComptimeTests) ... ok (0.355s) 2023-01-11T20:50:08.4673545Z test_graph_break (__main__.ComptimeTests) ... frames [('total', 1), ('ok', 1)] 2023-01-11T20:50:08.4673888Z stats [('calls_captured', 3), ('fusions_possible', 2), ('unique_graphs', 1)] 2023-01-11T20:50:08.4674260Z frames [('total', 6), ('ok', 6)] 2023-01-11T20:50:08.4674767Z stats [('calls_captured', 5), ('unique_graphs', 4), ('fusions_possible', 1)] 2023-01-11T20:50:08.4675035Z unimplemented [] 2023-01-11T20:50:08.4675432Z graph_break [('ComptimeContext.graph_break', 2)] 2023-01-11T20:50:08.4675992Z inline_call [('ComptimeContext.graph_break', 1)] 2023-01-11T20:50:08.4676336Z ok (0.027s) 2023-01-11T20:50:08.4676576Z test_print_bt (__main__.ComptimeTests) ... File "dynamo/test_comptime.py", line 152, in f 2023-01-11T20:50:08.4676822Z y = g(y) 2023-01-11T20:50:08.4677023Z File "dynamo/test_comptime.py", line 145, in g 2023-01-11T20:50:08.4677222Z comptime.print_bt() 2023-01-11T20:50:08.4677338Z 2023-01-11T20:50:08.4677455Z frames [('total', 1), ('ok', 1)] 2023-01-11T20:50:08.4677637Z inline_call [] 2023-01-11T20:50:08.4677922Z stats [('calls_captured', 3), ('fusions_possible', 2), ('unique_graphs', 1)] 2023-01-11T20:50:08.4678143Z ok (0.110s) 2023-01-11T20:50:08.4678379Z test_print_disas (__main__.ComptimeTests) ... 54 0 LOAD_FAST 0 (x) 2023-01-11T20:50:08.4678619Z 2 LOAD_CONST 1 (2) 2023-01-11T20:50:08.4678818Z 4 BINARY_MULTIPLY 2023-01-11T20:50:08.4679015Z 6 STORE_FAST 1 (y) 2023-01-11T20:50:08.4679136Z 2023-01-11T20:50:08.4679235Z 56 8 LOAD_GLOBAL 0 (comptime) 2023-01-11T20:50:08.4679508Z 10 LOAD_CONST 2 () 2023-01-11T20:50:08.4679913Z 12 LOAD_CONST 3 ('ComptimeTests.test_print_disas..f.._') 2023-01-11T20:50:08.4680169Z 14 MAKE_FUNCTION 0 2023-01-11T20:50:08.4680360Z 16 CALL_FUNCTION 1 2023-01-11T20:50:08.4680583Z 18 STORE_FAST 2 (_) 2023-01-11T20:50:08.4680922Z 2023-01-11T20:50:08.4681022Z 60 20 LOAD_GLOBAL 0 (comptime) 2023-01-11T20:50:08.4681265Z 22 LOAD_METHOD 1 (print_disas) 2023-01-11T20:50:08.4681493Z 24 CALL_METHOD 0 2023-01-11T20:50:08.4681881Z --> 26 POP_TOP 2023-01-11T20:50:08.4682039Z 2023-01-11T20:50:08.4682175Z 62 28 LOAD_FAST 1 (y) 2023-01-11T20:50:08.4682422Z 30 LOAD_CONST 4 (3) 2023-01-11T20:50:08.4682653Z 32 BINARY_ADD 2023-01-11T20:50:08.4682928Z 34 RETURN_VALUE 2023-01-11T20:50:08.4683101Z 2023-01-11T20:50:08.4683307Z frames [('total', 1), ('ok', 1)] 2023-01-11T20:50:08.4683633Z inline_call [] 2023-01-11T20:50:08.4684183Z stats [('calls_captured', 2), ('fusions_possible', 1), ('unique_graphs', 1)] 2023-01-11T20:50:08.4684581Z ok (0.011s) 2023-01-11T20:50:08.4684938Z test_print_graph (__main__.ComptimeTests) ... 2023-01-11T20:50:08.4685196Z 2023-01-11T20:50:08.4685203Z 2023-01-11T20:50:08.4685360Z def forward(self, x : torch.Tensor): 2023-01-11T20:50:08.4685666Z # File: dynamo/test_comptime.py:26, code: y = x * 2 2023-01-11T20:50:08.4685990Z mul = x * 2; x = None 2023-01-11T20:50:08.4686277Z 2023-01-11T20:50:08.4686699Z frames [('total', 1), ('ok', 1)] 2023-01-11T20:50:08.4687024Z inline_call [] 2023-01-11T20:50:08.4687551Z stats [('calls_captured', 2), ('fusions_possible', 1), ('unique_graphs', 1)] 2023-01-11T20:50:08.4688078Z ok (0.010s) 2023-01-11T20:50:08.4688321Z test_print_guards (__main__.ComptimeTests) ... - 2023-01-11T20:50:08.4688569Z local 'x' TENSOR_MATCH 2023-01-11T20:50:08.4688748Z { 2023-01-11T20:50:08.4688960Z 'guard_types': None, 2023-01-11T20:50:08.4689166Z 'code': None, 2023-01-11T20:50:08.4689388Z 'obj_weakref': None 2023-01-11T20:50:08.4689621Z 'guarded_class': None 2023-01-11T20:50:08.4689785Z } 2023-01-11T20:50:08.4689940Z 2023-01-11T20:50:08.4690145Z frames [('total', 1), ('ok', 1)] 2023-01-11T20:50:08.4690315Z inline_call [] 2023-01-11T20:50:08.4690607Z stats [('calls_captured', 2), ('fusions_possible', 1), ('unique_graphs', 1)] 2023-01-11T20:50:08.4690836Z ok (0.010s) 2023-01-11T20:50:08.4691054Z test_print_locals (__main__.ComptimeTests) ... x = TensorVariable() 2023-01-11T20:50:08.4691286Z y = TensorVariable() 2023-01-11T20:50:08.4691484Z _ = ConstantVariable(NoneType) 2023-01-11T20:50:08.4691712Z frames [('total', 1), ('ok', 1)] 2023-01-11T20:50:08.4691891Z inline_call [] 2023-01-11T20:50:08.4692186Z stats [('calls_captured', 2), ('fusions_possible', 1), ('unique_graphs', 1)] 2023-01-11T20:50:08.4692395Z ok (0.009s) 2023-01-11T20:50:08.4692685Z test_print_value_stack (__main__.ComptimeTests) ... - TensorVariable() 2023-01-11T20:50:08.4692963Z frames [('total', 1), ('ok', 1)] 2023-01-11T20:50:08.4693142Z inline_call [] 2023-01-11T20:50:08.4693420Z stats [('calls_captured', 3), ('fusions_possible', 2), ('unique_graphs', 1)] 2023-01-11T20:50:08.4693643Z ok (0.012s) 2023-01-11T20:50:08.4693742Z 2023-01-11T20:50:08.4693936Z ---------------------------------------------------------------------- 2023-01-11T20:50:08.4694160Z Ran 8 tests in 0.546s 2023-01-11T20:50:08.4694273Z 2023-01-11T20:50:08.4694333Z OK 2023-01-11T20:50:08.4694425Z 2023-01-11T20:50:08.4694506Z Generating XML reports... 2023-01-11T20:50:08.4694910Z Generated XML report: test-reports/python-unittest/dynamo.test_comptime/TEST-ComptimeTests-20230111205007.xml 2023-01-11T20:50:08.4695144Z 2023-01-11T20:50:08.4695424Z ##[endgroup] 2023-01-11T20:50:08.4695832Z FINISHED PRINTING LOG FILE of dynamo/test_comptime (/var/lib/jenkins/workspace/test/test-reports/dynamo-test_comptime_1g1g732f) 2023-01-11T20:50:08.4696061Z 2023-01-11T20:50:13.3747192Z No CUDA runtime is found, using CUDA_HOME='/usr/local/cuda' 2023-01-11T20:50:13.5433766Z Ignoring disabled issues: ['91003'] 2023-01-11T20:50:13.5638865Z Running dynamo/test_skip_non_tensor ... [2023-01-11 20:50:13.563465] 2023-01-11T20:50:13.5640400Z Executing ['/opt/conda/bin/python', '-bb', 'dynamo/test_skip_non_tensor.py', '-v', '--import-slow-tests', '--import-disabled-tests'] ... [2023-01-11 20:50:13.563817] 2023-01-11T20:50:18.6135885Z 2023-01-11T20:50:18.6136416Z Expand the folded group to see the log file of dynamo/test_skip_non_tensor 2023-01-11T20:50:18.6137385Z ##[group]PRINTING LOG FILE of dynamo/test_skip_non_tensor (/var/lib/jenkins/workspace/test/test-reports/dynamo-test_skip_non_tensor_zyl84iag) 2023-01-11T20:50:18.6138010Z Test results will be stored in test-reports/python-unittest/dynamo.test_skip_non_tensor 2023-01-11T20:50:18.6138284Z 2023-01-11T20:50:18.6138360Z Running tests... 2023-01-11T20:50:18.6138658Z ---------------------------------------------------------------------- 2023-01-11T20:50:18.6138955Z test_add_skip (__main__.SkipNonTensorTests) ... ok (0.343s) 2023-01-11T20:50:18.6139400Z test_add_tensor1 (__main__.SkipNonTensorTests) ... stats [('calls_captured', 1), ('unique_graphs', 1), ('fusions_possible', 0)] 2023-01-11T20:50:18.6139661Z ok (0.111s) 2023-01-11T20:50:18.6140103Z test_add_tensor2 (__main__.SkipNonTensorTests) ... stats [('calls_captured', 1), ('unique_graphs', 1), ('fusions_possible', 0)] 2023-01-11T20:50:18.6140382Z ok (0.007s) 2023-01-11T20:50:18.6140770Z test_add_tensor_dict (__main__.SkipNonTensorTests) ... stats [('calls_captured', 1), ('unique_graphs', 1), ('fusions_possible', 0)] 2023-01-11T20:50:18.6141033Z ok (0.007s) 2023-01-11T20:50:18.6141620Z test_add_tensor_list (__main__.SkipNonTensorTests) ... stats [('calls_captured', 1), ('unique_graphs', 1), ('fusions_possible', 0)] 2023-01-11T20:50:18.6141898Z ok (0.007s) 2023-01-11T20:50:18.6142108Z test_custom_list (__main__.SkipNonTensorTests) ... ok (0.002s) 2023-01-11T20:50:18.6142393Z test_recursive_list (__main__.SkipNonTensorTests) ... ok (0.001s) 2023-01-11T20:50:18.6142553Z 2023-01-11T20:50:18.6142752Z ---------------------------------------------------------------------- 2023-01-11T20:50:18.6142998Z Ran 7 tests in 0.479s 2023-01-11T20:50:18.6143099Z 2023-01-11T20:50:18.6143161Z OK 2023-01-11T20:50:18.6143253Z 2023-01-11T20:50:18.6143339Z Generating XML reports... 2023-01-11T20:50:18.6143783Z Generated XML report: test-reports/python-unittest/dynamo.test_skip_non_tensor/TEST-SkipNonTensorTests-20230111205017.xml 2023-01-11T20:50:18.6144031Z 2023-01-11T20:50:18.6144261Z ##[endgroup] 2023-01-11T20:50:18.6144687Z FINISHED PRINTING LOG FILE of dynamo/test_skip_non_tensor (/var/lib/jenkins/workspace/test/test-reports/dynamo-test_skip_non_tensor_zyl84iag) 2023-01-11T20:50:18.6144927Z 2023-01-11T20:50:23.4517860Z No CUDA runtime is found, using CUDA_HOME='/usr/local/cuda' 2023-01-11T20:50:23.6181950Z Ignoring disabled issues: ['91003'] 2023-01-11T20:50:23.6387619Z Running test_tensorexpr_pybind ... [2023-01-11 20:50:23.638400] 2023-01-11T20:50:23.6389823Z Executing ['/opt/conda/bin/python', '-bb', 'test_tensorexpr_pybind.py', '-v', '--import-slow-tests', '--import-disabled-tests'] ... [2023-01-11 20:50:23.638699] 2023-01-11T20:50:28.6024519Z 2023-01-11T20:50:28.6025020Z Expand the folded group to see the log file of test_tensorexpr_pybind 2023-01-11T20:50:28.6026239Z ##[group]PRINTING LOG FILE of test_tensorexpr_pybind (/var/lib/jenkins/workspace/test/test-reports/test_tensorexpr_pybind_0zoxvqfq) 2023-01-11T20:50:28.6027119Z Test results will be stored in test-reports/python-unittest/test_tensorexpr_pybind 2023-01-11T20:50:28.6027309Z 2023-01-11T20:50:28.6027391Z Running tests... 2023-01-11T20:50:28.6027696Z ---------------------------------------------------------------------- 2023-01-11T20:50:28.6027983Z test_unary_ops (__main__.TestExprHandlePyBind) ... ok (0.430s) 2023-01-11T20:50:28.6028303Z test_alloc_in_loop (__main__.TestTensorExprPyBind) ... skip: LLVM backend not enabled (0.001s) 2023-01-11T20:50:28.6028618Z test_call_raw (__main__.TestTensorExprPyBind) ... ok (0.005s) 2023-01-11T20:50:28.6028890Z test_dtype_error (__main__.TestTensorExprPyBind) ... ok (0.004s) 2023-01-11T20:50:28.6029174Z test_dynamic_shape (__main__.TestTensorExprPyBind) ... ok (0.020s) 2023-01-11T20:50:28.6029467Z test_dynamic_shape_2d (__main__.TestTensorExprPyBind) ... ok (0.017s) 2023-01-11T20:50:28.6029759Z test_external_calls (__main__.TestTensorExprPyBind) ... ok (0.004s) 2023-01-11T20:50:28.6030270Z test_kernel_shape_prop (__main__.TestTensorExprPyBind) ... skip: LLVM backend not enabled (0.001s) 2023-01-11T20:50:28.6030640Z test_kernel_shape_prop_module (__main__.TestTensorExprPyBind) ... skip: LLVM backend not enabled (0.002s) 2023-01-11T20:50:28.6031014Z test_kernel_with_custom_lowering (__main__.TestTensorExprPyBind) ... skip: LLVM backend not enabled (0.001s) 2023-01-11T20:50:28.6031364Z test_kernel_with_expand (__main__.TestTensorExprPyBind) ... skip: LLVM backend not enabled (0.001s) 2023-01-11T20:50:28.6031722Z test_kernel_with_permute (__main__.TestTensorExprPyBind) ... skip: LLVM backend not enabled (0.001s) 2023-01-11T20:50:28.6032088Z test_kernel_with_scalar_inputs (__main__.TestTensorExprPyBind) ... skip: LLVM backend not enabled (0.001s) 2023-01-11T20:50:28.6032442Z test_kernel_with_t (__main__.TestTensorExprPyBind) ... skip: LLVM backend not enabled (0.001s) 2023-01-11T20:50:28.6032785Z test_kernel_with_tensor_inputs (__main__.TestTensorExprPyBind) ... skip: LLVM backend not enabled (0.001s) 2023-01-11T20:50:28.6033147Z test_kernel_with_transpose (__main__.TestTensorExprPyBind) ... skip: LLVM backend not enabled (0.001s) 2023-01-11T20:50:28.6033533Z test_simple_sum (__main__.TestTensorExprPyBind) ... ok (0.004s) 2023-01-11T20:50:28.6033696Z 2023-01-11T20:50:28.6033898Z ---------------------------------------------------------------------- 2023-01-11T20:50:28.6034124Z Ran 17 tests in 0.496s 2023-01-11T20:50:28.6034236Z 2023-01-11T20:50:28.6034308Z OK (skipped=10) 2023-01-11T20:50:28.6034415Z 2023-01-11T20:50:28.6034496Z Generating XML reports... 2023-01-11T20:50:28.6034928Z Generated XML report: test-reports/python-unittest/test_tensorexpr_pybind/TEST-TestExprHandlePyBind-20230111205027.xml 2023-01-11T20:50:28.6035482Z Generated XML report: test-reports/python-unittest/test_tensorexpr_pybind/TEST-TestTensorExprPyBind-20230111205027.xml 2023-01-11T20:50:28.6035727Z 2023-01-11T20:50:28.6035975Z ##[endgroup] 2023-01-11T20:50:28.6036369Z FINISHED PRINTING LOG FILE of test_tensorexpr_pybind (/var/lib/jenkins/workspace/test/test-reports/test_tensorexpr_pybind_0zoxvqfq) 2023-01-11T20:50:28.6036599Z 2023-01-11T20:50:33.4674293Z No CUDA runtime is found, using CUDA_HOME='/usr/local/cuda' 2023-01-11T20:50:33.6319174Z Ignoring disabled issues: ['91003'] 2023-01-11T20:50:33.6523918Z Running dynamo/test_export_mutations ... [2023-01-11 20:50:33.651952] 2023-01-11T20:50:33.6525012Z Executing ['/opt/conda/bin/python', '-bb', 'dynamo/test_export_mutations.py', '-v', '--import-slow-tests', '--import-disabled-tests'] ... [2023-01-11 20:50:33.652242] 2023-01-11T20:50:38.5636726Z 2023-01-11T20:50:38.5637299Z Expand the folded group to see the log file of dynamo/test_export_mutations 2023-01-11T20:50:38.5638272Z ##[group]PRINTING LOG FILE of dynamo/test_export_mutations (/var/lib/jenkins/workspace/test/test-reports/dynamo-test_export_mutations_by0_w6fq) 2023-01-11T20:50:38.5638870Z Test results will be stored in test-reports/python-unittest/dynamo.test_export_mutations 2023-01-11T20:50:38.5639080Z 2023-01-11T20:50:38.5639152Z Running tests... 2023-01-11T20:50:38.5639441Z ---------------------------------------------------------------------- 2023-01-11T20:50:38.5640368Z test_module_attribute_mutation_violation_negative_1 (__main__.MutationExportTests) ... skip: Test is disabled because an issue exists disabling it: https://github.com/pytorch/pytorch/issues/88468 for platform(s) linux, macos, mac. If you're seeing this on your local machine and would like to enable this test, please make sure CI is not set and you are not using the flag --import-disabled-tests. (0.323s) 2023-01-11T20:50:38.5641712Z test_module_attribute_mutation_violation_negative_2 (__main__.MutationExportTests) ... skip: Test is disabled because an issue exists disabling it: https://github.com/pytorch/pytorch/issues/88475 for platform(s) linux, mac, macos. If you're seeing this on your local machine and would like to enable this test, please make sure CI is not set and you are not using the flag --import-disabled-tests. (0.001s) 2023-01-11T20:50:38.5643102Z test_module_attribute_mutation_violation_negative_3 (__main__.MutationExportTests) ... skip: Test is disabled because an issue exists disabling it: https://github.com/pytorch/pytorch/issues/88466 for platform(s) linux, mac, macos. If you're seeing this on your local machine and would like to enable this test, please make sure CI is not set and you are not using the flag --import-disabled-tests. (0.001s) 2023-01-11T20:50:38.5644289Z test_module_attribute_mutation_violation_negative_4 (__main__.MutationExportTests) ... skip: Test is disabled because an issue exists disabling it: https://github.com/pytorch/pytorch/issues/88467 for platform(s) linux, macos. If you're seeing this on your local machine and would like to enable this test, please make sure CI is not set and you are not using the flag --import-disabled-tests. (0.001s) 2023-01-11T20:50:38.5644916Z test_module_attribute_mutation_violation_positive_1 (__main__.MutationExportTests) ... ok (0.042s) 2023-01-11T20:50:38.5645280Z test_module_attribute_mutation_violation_positive_2 (__main__.MutationExportTests) ... ok (0.004s) 2023-01-11T20:50:38.5645702Z test_module_attribute_mutation_violation_positive_3 (__main__.MutationExportTests) ... ok (0.003s) 2023-01-11T20:50:38.5646138Z test_module_attribute_mutation_violation_positive_4 (__main__.MutationExportTests) ... inline_call [] 2023-01-11T20:50:38.5646395Z ok (0.005s) 2023-01-11T20:50:38.5646497Z 2023-01-11T20:50:38.5646702Z ---------------------------------------------------------------------- 2023-01-11T20:50:38.5646928Z Ran 8 tests in 0.381s 2023-01-11T20:50:38.5647041Z 2023-01-11T20:50:38.5647113Z OK (skipped=4) 2023-01-11T20:50:38.5647218Z 2023-01-11T20:50:38.5647301Z Generating XML reports... 2023-01-11T20:50:38.5647740Z Generated XML report: test-reports/python-unittest/dynamo.test_export_mutations/TEST-MutationExportTests-20230111205037.xml 2023-01-11T20:50:38.5647980Z 2023-01-11T20:50:38.5648225Z ##[endgroup] 2023-01-11T20:50:38.5648645Z FINISHED PRINTING LOG FILE of dynamo/test_export_mutations (/var/lib/jenkins/workspace/test/test-reports/dynamo-test_export_mutations_by0_w6fq) 2023-01-11T20:50:38.5648887Z 2023-01-11T20:50:43.4451659Z No CUDA runtime is found, using CUDA_HOME='/usr/local/cuda' 2023-01-11T20:50:43.6084612Z Ignoring disabled issues: ['91003'] 2023-01-11T20:50:43.6293444Z Running dynamo/test_nops ... [2023-01-11 20:50:43.628968] 2023-01-11T20:50:43.6294512Z Executing ['/opt/conda/bin/python', '-bb', 'dynamo/test_nops.py', '-v', '--import-slow-tests', '--import-disabled-tests'] ... [2023-01-11 20:50:43.629239] 2023-01-11T20:50:48.4970886Z 2023-01-11T20:50:48.4971417Z Expand the folded group to see the log file of dynamo/test_nops 2023-01-11T20:50:48.4972460Z ##[group]PRINTING LOG FILE of dynamo/test_nops (/var/lib/jenkins/workspace/test/test-reports/dynamo-test_nops_rf797dxh) 2023-01-11T20:50:48.4973368Z Test results will be stored in test-reports/python-unittest/dynamo.test_nops 2023-01-11T20:50:48.4973729Z 2023-01-11T20:50:48.4973862Z Running tests... 2023-01-11T20:50:48.4974405Z ---------------------------------------------------------------------- 2023-01-11T20:50:48.4974891Z test1 (__main__.NopTests) ... ok (0.319s) 2023-01-11T20:50:48.5116875Z test2 (__main__.NopTests) ... ok (0.003s) 2023-01-11T20:50:48.5117264Z test3 (__main__.NopTests) ... ok (0.002s) 2023-01-11T20:50:48.5117651Z test_extended_args (__main__.NopTests) ... ok (0.050s) 2023-01-11T20:50:48.5117910Z 2023-01-11T20:50:48.5118335Z ---------------------------------------------------------------------- 2023-01-11T20:50:48.5118711Z Ran 4 tests in 0.374s 2023-01-11T20:50:48.5118892Z 2023-01-11T20:50:48.5118990Z OK 2023-01-11T20:50:48.5119137Z 2023-01-11T20:50:48.5119274Z Generating XML reports... 2023-01-11T20:50:48.5119930Z Generated XML report: test-reports/python-unittest/dynamo.test_nops/TEST-NopTests-20230111205047.xml 2023-01-11T20:50:48.5120290Z 2023-01-11T20:50:48.5120934Z ##[endgroup] 2023-01-11T20:50:48.5121801Z FINISHED PRINTING LOG FILE of dynamo/test_nops (/var/lib/jenkins/workspace/test/test-reports/dynamo-test_nops_rf797dxh) 2023-01-11T20:50:48.5122161Z 2023-01-11T20:50:53.2142481Z No CUDA runtime is found, using CUDA_HOME='/usr/local/cuda' 2023-01-11T20:50:53.3784488Z Ignoring disabled issues: ['91003'] 2023-01-11T20:50:53.3993217Z Running test_pytree ... [2023-01-11 20:50:53.398897] 2023-01-11T20:50:53.3994846Z Executing ['/opt/conda/bin/python', '-bb', 'test_pytree.py', '-v', '--import-slow-tests', '--import-disabled-tests'] ... [2023-01-11 20:50:53.399183] 2023-01-11T20:50:58.2068072Z 2023-01-11T20:50:58.2068541Z Expand the folded group to see the log file of test_pytree 2023-01-11T20:50:58.2069571Z ##[group]PRINTING LOG FILE of test_pytree (/var/lib/jenkins/workspace/test/test-reports/test_pytree_cxv0ci3o) 2023-01-11T20:50:58.2070251Z Test results will be stored in test-reports/python-unittest/test_pytree 2023-01-11T20:50:58.2070440Z 2023-01-11T20:50:58.2070516Z Running tests... 2023-01-11T20:50:58.2070829Z ---------------------------------------------------------------------- 2023-01-11T20:50:58.2071281Z test_broadcast_to_and_flatten (__main__.TestPytree) ... ok (0.326s) 2023-01-11T20:50:58.2072036Z test_flatten_unflatten_dict (__main__.TestPytree) ... ok (0.008s) 2023-01-11T20:50:58.2072428Z test_flatten_unflatten_leaf (__main__.TestPytree) ... ok (0.003s) 2023-01-11T20:50:58.2072707Z test_flatten_unflatten_list (__main__.TestPytree) ... ok (0.003s) 2023-01-11T20:50:58.2073053Z test_flatten_unflatten_namedtuple (__main__.TestPytree) ... ok (0.003s) 2023-01-11T20:50:58.2073349Z test_flatten_unflatten_nested (__main__.TestPytree) ... ok (0.001s) 2023-01-11T20:50:58.2073617Z test_flatten_unflatten_odict (__main__.TestPytree) ... ok (0.003s) 2023-01-11T20:50:58.2073906Z test_flatten_unflatten_return_type_max (__main__.TestPytree) ... ok (0.003s) 2023-01-11T20:50:58.2074214Z test_flatten_unflatten_return_type_min (__main__.TestPytree) ... ok (0.002s) 2023-01-11T20:50:58.2074509Z test_flatten_unflatten_tuple (__main__.TestPytree) ... ok (0.003s) 2023-01-11T20:50:58.2074760Z test_tree_all_any (__main__.TestPytree) ... ok (0.001s) 2023-01-11T20:50:58.2075008Z test_tree_only (__main__.TestPytree) ... ok (0.001s) 2023-01-11T20:50:58.2075252Z test_treemap (__main__.TestPytree) ... ok (0.001s) 2023-01-11T20:50:58.2075491Z test_treespec_equality (__main__.TestPytree) ... ok (0.001s) 2023-01-11T20:50:58.2077582Z test_treespec_repr (__main__.TestPytree) ... ok (0.001s) 2023-01-11T20:50:58.2077975Z 2023-01-11T20:50:58.2078423Z ---------------------------------------------------------------------- 2023-01-11T20:50:58.2078906Z Ran 15 tests in 0.362s 2023-01-11T20:50:58.2079042Z 2023-01-11T20:50:58.2079104Z OK 2023-01-11T20:50:58.2079196Z 2023-01-11T20:50:58.2079283Z Generating XML reports... 2023-01-11T20:50:58.2079688Z Generated XML report: test-reports/python-unittest/test_pytree/TEST-TestPytree-20230111205057.xml 2023-01-11T20:50:58.2079906Z 2023-01-11T20:50:58.2080202Z ##[endgroup] 2023-01-11T20:50:58.2080573Z FINISHED PRINTING LOG FILE of test_pytree (/var/lib/jenkins/workspace/test/test-reports/test_pytree_cxv0ci3o) 2023-01-11T20:50:58.2081011Z 2023-01-11T20:51:03.0357012Z No CUDA runtime is found, using CUDA_HOME='/usr/local/cuda' 2023-01-11T20:51:03.1982718Z Ignoring disabled issues: ['91003'] 2023-01-11T20:51:03.2189193Z Running nn/test_module_hooks ... [2023-01-11 20:51:03.218607] 2023-01-11T20:51:03.2191731Z Executing ['/opt/conda/bin/python', '-bb', 'nn/test_module_hooks.py', '-v', '--import-slow-tests', '--import-disabled-tests'] ... [2023-01-11 20:51:03.218949] 2023-01-11T20:51:08.3361631Z 2023-01-11T20:51:08.3362201Z Expand the folded group to see the log file of nn/test_module_hooks 2023-01-11T20:51:08.3363331Z ##[group]PRINTING LOG FILE of nn/test_module_hooks (/var/lib/jenkins/workspace/test/test-reports/nn-test_module_hooks_q8y8f08h) 2023-01-11T20:51:08.3364258Z Test results will be stored in test-reports/python-unittest/nn.test_module_hooks 2023-01-11T20:51:08.3364829Z 2023-01-11T20:51:08.3364936Z Running tests... 2023-01-11T20:51:08.3365485Z ---------------------------------------------------------------------- 2023-01-11T20:51:08.3367180Z test_global_and_local_hooks_order (__main__.TestModuleGlobalHooks) ... /opt/conda/lib/python3.7/site-packages/torch/nn/modules/module.py:1331: UserWarning: Using a non-full backward hook when the forward contains multiple autograd Nodes is deprecated and will be removed in future versions. This hook will be missing some grad_input. Please use register_full_backward_hook to get the documented behavior. 2023-01-11T20:51:08.3368516Z warnings.warn("Using a non-full backward hook when the forward contains multiple autograd Nodes " 2023-01-11T20:51:08.3368988Z ok (0.017s) 2023-01-11T20:51:08.3369442Z test_module_backward_global_hook_writeable (__main__.TestModuleGlobalHooks) ... ok (0.004s) 2023-01-11T20:51:08.3370063Z test_module_forward_forward_hook_removable (__main__.TestModuleGlobalHooks) 2023-01-11T20:51:08.3370663Z This test is to test when multiple forward hook functions can be registered ... ok (0.003s) 2023-01-11T20:51:08.3371235Z test_module_forward_preforward_hook_removable (__main__.TestModuleGlobalHooks) 2023-01-11T20:51:08.3372061Z This test is to test when multiple pre-forward hook functions can be ... ok (0.002s) 2023-01-11T20:51:08.3372647Z test_module_global_forward_preforward_hook_writeable (__main__.TestModuleGlobalHooks) ... ok (0.004s) 2023-01-11T20:51:08.3373293Z test_module_global_hook_invalid_outputs (__main__.TestModuleGlobalHooks) ... ok (0.007s) 2023-01-11T20:51:08.3373850Z test_module_global_hooks (__main__.TestModuleGlobalHooks) ... ok (0.033s) 2023-01-11T20:51:08.3374316Z test_backward_hooks_interaction (__main__.TestModuleHookNN) ... ok (0.003s) 2023-01-11T20:51:08.3374838Z test_hook_backward_size (__main__.TestModuleHookNN) ... ok (0.004s) 2023-01-11T20:51:08.3375385Z test_hook_backward_writeable (__main__.TestModuleHookNN) ... ok (0.003s) 2023-01-11T20:51:08.3375915Z test_hook_buffer_registration (__main__.TestModuleHookNN) ... ok (0.003s) 2023-01-11T20:51:08.3376363Z test_hook_cpp (__main__.TestModuleHookNN) ... ok (0.006s) 2023-01-11T20:51:08.3376840Z test_hook_extra_input (__main__.TestModuleHookNN) ... ok (0.002s) 2023-01-11T20:51:08.3377342Z test_hook_forward_preforward_writable (__main__.TestModuleHookNN) ... ok (0.004s) 2023-01-11T20:51:08.3377837Z test_hook_inplace (__main__.TestModuleHookNN) ... ok (0.055s) 2023-01-11T20:51:08.3378323Z test_hook_invalid_outputs (__main__.TestModuleHookNN) ... ok (0.005s) 2023-01-11T20:51:08.3378825Z test_hook_last_arg_requires_grad (__main__.TestModuleHookNN) ... ok (0.002s) 2023-01-11T20:51:08.3379307Z test_hook_no_requires_grad (__main__.TestModuleHookNN) ... ok (0.006s) 2023-01-11T20:51:08.3379913Z test_hook_non_full_warning (__main__.TestModuleHookNN) ... ok (0.011s) 2023-01-11T20:51:08.3380422Z test_hook_parameter_registration (__main__.TestModuleHookNN) ... ok (0.002s) 2023-01-11T20:51:08.3380913Z test_hook_requires_grad (__main__.TestModuleHookNN) ... ok (0.002s) 2023-01-11T20:51:08.3381430Z test_hook_submodule_registration (__main__.TestModuleHookNN) ... ok (0.002s) 2023-01-11T20:51:08.3382964Z test_hooks (__main__.TestModuleHookNN) ... /opt/conda/lib/python3.7/site-packages/torch/nn/modules/module.py:1331: UserWarning: Using a non-full backward hook when the forward contains multiple autograd Nodes is deprecated and will be removed in future versions. This hook will be missing some grad_input. Please use register_full_backward_hook to get the documented behavior. 2023-01-11T20:51:08.3384155Z warnings.warn("Using a non-full backward hook when the forward contains multiple autograd Nodes " 2023-01-11T20:51:08.3384606Z ok (0.075s) 2023-01-11T20:51:08.3384978Z test_forward_hooks (__main__.TestModuleHooks) ... ok (0.012s) 2023-01-11T20:51:08.3385460Z test_forward_pre_hooks (__main__.TestModuleHooks) ... ok (0.011s) 2023-01-11T20:51:08.3385952Z test_full_backward_hooks (__main__.TestModuleHooks) ... ok (0.012s) 2023-01-11T20:51:08.3386586Z test_full_backward_pre_hooks (__main__.TestModuleHooks) ... ok (0.012s) 2023-01-11T20:51:08.3387087Z test_kwarg_hooks (__main__.TestModuleHooks) ... ok (0.009s) 2023-01-11T20:51:08.3387561Z test_mixed_hooks (__main__.TestModuleHooks) ... ok (0.011s) 2023-01-11T20:51:08.3388002Z test_remove_kwarg_hooks (__main__.TestModuleHooks) ... ok (0.007s) 2023-01-11T20:51:08.3388523Z test_load_state_dict_module_pre_hook (__main__.TestStateDictHooks) ... ok (0.003s) 2023-01-11T20:51:08.3389065Z test_load_state_dict_post_hook (__main__.TestStateDictHooks) ... ok (0.003s) 2023-01-11T20:51:08.3389633Z test_load_state_dict_post_hook_backward_compatibility (__main__.TestStateDictHooks) ... ok (0.004s) 2023-01-11T20:51:08.3390190Z test_load_state_dict_pre_hook (__main__.TestStateDictHooks) ... ok (0.005s) 2023-01-11T20:51:08.3390699Z test_no_extra_ref_to_module (__main__.TestStateDictHooks) ... ok (0.001s) 2023-01-11T20:51:08.3391189Z test_pickled_hook (__main__.TestStateDictHooks) ... ok (0.002s) 2023-01-11T20:51:08.3391473Z 2023-01-11T20:51:08.3391809Z ---------------------------------------------------------------------- 2023-01-11T20:51:08.3392222Z Ran 36 tests in 0.349s 2023-01-11T20:51:08.3392415Z 2023-01-11T20:51:08.3392612Z OK 2023-01-11T20:51:08.3392775Z 2023-01-11T20:51:08.3392930Z Generating XML reports... 2023-01-11T20:51:08.3393673Z Generated XML report: test-reports/python-unittest/nn.test_module_hooks/TEST-TestModuleGlobalHooks-20230111205107.xml 2023-01-11T20:51:08.3394598Z Generated XML report: test-reports/python-unittest/nn.test_module_hooks/TEST-TestModuleHookNN-20230111205107.xml 2023-01-11T20:51:08.3395689Z Generated XML report: test-reports/python-unittest/nn.test_module_hooks/TEST-TestModuleHooks-20230111205107.xml 2023-01-11T20:51:08.3396587Z Generated XML report: test-reports/python-unittest/nn.test_module_hooks/TEST-TestStateDictHooks-20230111205107.xml 2023-01-11T20:51:08.3396987Z 2023-01-11T20:51:08.3397449Z ##[endgroup] 2023-01-11T20:51:08.3398151Z FINISHED PRINTING LOG FILE of nn/test_module_hooks (/var/lib/jenkins/workspace/test/test-reports/nn-test_module_hooks_q8y8f08h) 2023-01-11T20:51:08.3398532Z 2023-01-11T20:51:13.1689586Z No CUDA runtime is found, using CUDA_HOME='/usr/local/cuda' 2023-01-11T20:51:13.3305797Z Ignoring disabled issues: ['91003'] 2023-01-11T20:51:13.3512995Z Running test_per_overload_api ... [2023-01-11 20:51:13.351018] 2023-01-11T20:51:13.3515890Z Executing ['/opt/conda/bin/python', '-bb', 'test_per_overload_api.py', '-v', '--import-slow-tests', '--import-disabled-tests'] ... [2023-01-11 20:51:13.351358] 2023-01-11T20:51:18.0553222Z 2023-01-11T20:51:18.0553963Z Expand the folded group to see the log file of test_per_overload_api 2023-01-11T20:51:18.0554829Z ##[group]PRINTING LOG FILE of test_per_overload_api (/var/lib/jenkins/workspace/test/test-reports/test_per_overload_api_fwrrvdqj) 2023-01-11T20:51:18.0555400Z Test results will be stored in test-reports/python-unittest/test_per_overload_api 2023-01-11T20:51:18.0555602Z 2023-01-11T20:51:18.0555677Z Running tests... 2023-01-11T20:51:18.0555965Z ---------------------------------------------------------------------- 2023-01-11T20:51:18.0556277Z test_basics_opoverload (__main__.TestPerOverloadAPI) ... ok (0.321s) 2023-01-11T20:51:18.0556583Z test_basics_opoverloadpacket (__main__.TestPerOverloadAPI) ... ok (0.002s) 2023-01-11T20:51:18.0556863Z test_decompose (__main__.TestPerOverloadAPI) ... ok (0.033s) 2023-01-11T20:51:18.0557016Z 2023-01-11T20:51:18.0557208Z ---------------------------------------------------------------------- 2023-01-11T20:51:18.0557441Z Ran 3 tests in 0.356s 2023-01-11T20:51:18.0557552Z 2023-01-11T20:51:18.0557601Z OK 2023-01-11T20:51:18.0557689Z 2023-01-11T20:51:18.0557774Z Generating XML reports... 2023-01-11T20:51:18.0558206Z Generated XML report: test-reports/python-unittest/test_per_overload_api/TEST-TestPerOverloadAPI-20230111205117.xml 2023-01-11T20:51:18.0558451Z 2023-01-11T20:51:18.0558655Z ##[endgroup] 2023-01-11T20:51:18.0559265Z FINISHED PRINTING LOG FILE of test_per_overload_api (/var/lib/jenkins/workspace/test/test-reports/test_per_overload_api_fwrrvdqj) 2023-01-11T20:51:18.0559492Z 2023-01-11T20:51:22.8757261Z No CUDA runtime is found, using CUDA_HOME='/usr/local/cuda' 2023-01-11T20:51:23.0422186Z Ignoring disabled issues: ['91003'] 2023-01-11T20:51:23.0630162Z Running test_license ... [2023-01-11 20:51:23.062700] 2023-01-11T20:51:23.0632499Z Executing ['/opt/conda/bin/python', '-bb', 'test_license.py', '-v', '--import-slow-tests', '--import-disabled-tests'] ... [2023-01-11 20:51:23.063049] 2023-01-11T20:51:27.8023058Z 2023-01-11T20:51:27.8023551Z Expand the folded group to see the log file of test_license 2023-01-11T20:51:27.8024430Z ##[group]PRINTING LOG FILE of test_license (/var/lib/jenkins/workspace/test/test-reports/test_license_rtyq9ulp) 2023-01-11T20:51:27.8025179Z Test results will be stored in test-reports/python-unittest/test_license 2023-01-11T20:51:27.8025436Z 2023-01-11T20:51:27.8025541Z Running tests... 2023-01-11T20:51:27.8026020Z ---------------------------------------------------------------------- 2023-01-11T20:51:27.8026398Z test_distinfo_license (__main__.TestLicense) 2023-01-11T20:51:27.8027092Z If run when pytorch is installed via a wheel, the license will be in ... ok (0.336s) 2023-01-11T20:51:27.8027607Z test_license_for_wheel (__main__.TestLicense) ... skip: can only be run in a source tree (0.001s) 2023-01-11T20:51:27.8027875Z 2023-01-11T20:51:27.8028161Z ---------------------------------------------------------------------- 2023-01-11T20:51:27.8028517Z Ran 2 tests in 0.337s 2023-01-11T20:51:27.8028679Z 2023-01-11T20:51:27.8028783Z OK (skipped=1) 2023-01-11T20:51:27.8028934Z 2023-01-11T20:51:27.8029052Z Generating XML reports... 2023-01-11T20:51:27.8029619Z Generated XML report: test-reports/python-unittest/test_license/TEST-TestLicense-20230111205126.xml 2023-01-11T20:51:27.8029937Z 2023-01-11T20:51:27.8030308Z ##[endgroup] 2023-01-11T20:51:27.8030867Z FINISHED PRINTING LOG FILE of test_license (/var/lib/jenkins/workspace/test/test-reports/test_license_rtyq9ulp) 2023-01-11T20:51:27.8031176Z 2023-01-11T20:51:32.5321343Z No CUDA runtime is found, using CUDA_HOME='/usr/local/cuda' 2023-01-11T20:51:32.7091484Z Ignoring disabled issues: ['91003'] 2023-01-11T20:51:32.7296311Z Running test_set_default_mobile_cpu_allocator ... [2023-01-11 20:51:32.729336] 2023-01-11T20:51:32.7298727Z Executing ['/opt/conda/bin/python', '-bb', 'test_set_default_mobile_cpu_allocator.py', '-v', '--import-slow-tests', '--import-disabled-tests'] ... [2023-01-11 20:51:32.729605] 2023-01-11T20:51:37.4838311Z 2023-01-11T20:51:37.4839282Z Expand the folded group to see the log file of test_set_default_mobile_cpu_allocator 2023-01-11T20:51:37.4840521Z ##[group]PRINTING LOG FILE of test_set_default_mobile_cpu_allocator (/var/lib/jenkins/workspace/test/test-reports/test_set_default_mobile_cpu_allocator_tyq4pmsh) 2023-01-11T20:51:37.4841700Z Test results will be stored in test-reports/python-unittest/test_set_default_mobile_cpu_allocator 2023-01-11T20:51:37.4842058Z 2023-01-11T20:51:37.4842177Z Running tests... 2023-01-11T20:51:37.4842644Z ---------------------------------------------------------------------- 2023-01-11T20:51:37.4843182Z test_exception (__main__.TestSetDefaultMobileCPUAllocator) ... ok (0.326s) 2023-01-11T20:51:37.4843752Z test_no_exception (__main__.TestSetDefaultMobileCPUAllocator) ... ok (0.001s) 2023-01-11T20:51:37.4844109Z 2023-01-11T20:51:37.4844472Z ---------------------------------------------------------------------- 2023-01-11T20:51:37.4844917Z Ran 2 tests in 0.327s 2023-01-11T20:51:37.4845119Z 2023-01-11T20:51:37.4845237Z OK 2023-01-11T20:51:37.4845409Z 2023-01-11T20:51:37.4845571Z Generating XML reports... 2023-01-11T20:51:37.4846524Z Generated XML report: test-reports/python-unittest/test_set_default_mobile_cpu_allocator/TEST-TestSetDefaultMobileCPUAllocator-20230111205136.xml 2023-01-11T20:51:37.4847088Z 2023-01-11T20:51:37.4847542Z ##[endgroup] 2023-01-11T20:51:37.4848401Z FINISHED PRINTING LOG FILE of test_set_default_mobile_cpu_allocator (/var/lib/jenkins/workspace/test/test-reports/test_set_default_mobile_cpu_allocator_tyq4pmsh) 2023-01-11T20:51:37.4849194Z 2023-01-11T20:51:42.2687993Z No CUDA runtime is found, using CUDA_HOME='/usr/local/cuda' 2023-01-11T20:51:42.4291519Z Ignoring disabled issues: ['91003'] 2023-01-11T20:51:42.4498396Z Running test_type_info ... [2023-01-11 20:51:42.449569] 2023-01-11T20:51:42.4500704Z Executing ['/opt/conda/bin/python', '-bb', 'test_type_info.py', '-v', '--import-slow-tests', '--import-disabled-tests'] ... [2023-01-11 20:51:42.449838] 2023-01-11T20:51:47.1279928Z 2023-01-11T20:51:47.1280412Z Expand the folded group to see the log file of test_type_info 2023-01-11T20:51:47.1281613Z ##[group]PRINTING LOG FILE of test_type_info (/var/lib/jenkins/workspace/test/test-reports/test_type_info_nkfg_lz3) 2023-01-11T20:51:47.1282400Z Test results will be stored in test-reports/python-unittest/test_type_info 2023-01-11T20:51:47.1282691Z 2023-01-11T20:51:47.1282809Z Running tests... 2023-01-11T20:51:47.1283296Z ---------------------------------------------------------------------- 2023-01-11T20:51:47.1283714Z test_finfo (__main__.TestDTypeInfo) ... ok (0.331s) 2023-01-11T20:51:47.1284323Z test_iinfo (__main__.TestDTypeInfo) ... ok (0.003s) 2023-01-11T20:51:47.1284675Z test_invalid_input (__main__.TestDTypeInfo) ... ok (0.001s) 2023-01-11T20:51:47.1284897Z 2023-01-11T20:51:47.1285214Z ---------------------------------------------------------------------- 2023-01-11T20:51:47.1285600Z Ran 3 tests in 0.335s 2023-01-11T20:51:47.1285774Z 2023-01-11T20:51:47.1285857Z OK 2023-01-11T20:51:47.1285992Z 2023-01-11T20:51:47.1286128Z Generating XML reports... 2023-01-11T20:51:47.1286761Z Generated XML report: test-reports/python-unittest/test_type_info/TEST-TestDTypeInfo-20230111205146.xml 2023-01-11T20:51:47.1287097Z 2023-01-11T20:51:47.1287428Z ##[endgroup] 2023-01-11T20:51:47.1287988Z FINISHED PRINTING LOG FILE of test_type_info (/var/lib/jenkins/workspace/test/test-reports/test_type_info_nkfg_lz3) 2023-01-11T20:51:47.1288314Z 2023-01-11T20:51:51.9316915Z No CUDA runtime is found, using CUDA_HOME='/usr/local/cuda' 2023-01-11T20:51:52.0923593Z Ignoring disabled issues: ['91003'] 2023-01-11T20:51:52.1135832Z Running test_itt ... [2023-01-11 20:51:52.113278] 2023-01-11T20:51:52.1138013Z Executing ['/opt/conda/bin/python', '-bb', 'test_itt.py', '-v', '--import-slow-tests', '--import-disabled-tests'] ... [2023-01-11 20:51:52.113580] 2023-01-11T20:51:56.7772776Z 2023-01-11T20:51:56.7773220Z Expand the folded group to see the log file of test_itt 2023-01-11T20:51:56.7773889Z ##[group]PRINTING LOG FILE of test_itt (/var/lib/jenkins/workspace/test/test-reports/test_itt_kkqn1xno) 2023-01-11T20:51:56.7774420Z Test results will be stored in test-reports/python-unittest/test_itt 2023-01-11T20:51:56.7774656Z 2023-01-11T20:51:56.7774730Z Running tests... 2023-01-11T20:51:56.7775025Z ---------------------------------------------------------------------- 2023-01-11T20:51:56.7775346Z test_itt (__main__.TestItt) ... ok (0.335s) 2023-01-11T20:51:56.7775501Z 2023-01-11T20:51:56.7775699Z ---------------------------------------------------------------------- 2023-01-11T20:51:56.7775938Z Ran 1 test in 0.335s 2023-01-11T20:51:56.7776077Z 2023-01-11T20:51:56.7776160Z OK 2023-01-11T20:51:56.7776251Z 2023-01-11T20:51:56.7776335Z Generating XML reports... 2023-01-11T20:51:56.7776717Z Generated XML report: test-reports/python-unittest/test_itt/TEST-TestItt-20230111205155.xml 2023-01-11T20:51:56.7776983Z 2023-01-11T20:51:56.7777188Z ##[endgroup] 2023-01-11T20:51:56.7777545Z FINISHED PRINTING LOG FILE of test_itt (/var/lib/jenkins/workspace/test/test-reports/test_itt_kkqn1xno) 2023-01-11T20:51:56.7777801Z 2023-01-11T20:52:01.6013034Z No CUDA runtime is found, using CUDA_HOME='/usr/local/cuda' 2023-01-11T20:52:01.7600915Z Ignoring disabled issues: ['91003'] 2023-01-11T20:52:01.7809888Z Running test_numpy_interop ... [2023-01-11 20:52:01.780737] 2023-01-11T20:52:01.7812554Z Executing ['/opt/conda/bin/python', '-bb', 'test_numpy_interop.py', '-v', '--import-slow-tests', '--import-disabled-tests'] ... [2023-01-11 20:52:01.781036] 2023-01-11T20:52:06.9925379Z 2023-01-11T20:52:06.9925913Z Expand the folded group to see the log file of test_numpy_interop 2023-01-11T20:52:06.9927098Z ##[group]PRINTING LOG FILE of test_numpy_interop (/var/lib/jenkins/workspace/test/test-reports/test_numpy_interop_bgoxu0aw) 2023-01-11T20:52:06.9928031Z Test results will be stored in test-reports/python-unittest/test_numpy_interop 2023-01-11T20:52:06.9928412Z 2023-01-11T20:52:06.9928541Z Running tests... 2023-01-11T20:52:06.9929101Z ---------------------------------------------------------------------- 2023-01-11T20:52:06.9930292Z test_ctor_with_invalid_numpy_array_sequence_cpu (__main__.TestNumPyInteropCPU) ... test_numpy_interop.py:265: UserWarning: Creating a tensor from a list of numpy.ndarrays is extremely slow. Please consider converting the list to a single numpy.ndarray with numpy.array() before converting to a tensor. (Triggered internally at /var/lib/jenkins/workspace/torch/csrc/utils/tensor_new.cpp:259.) 2023-01-11T20:52:06.9931490Z torch.tensor([np.random.random(size=(3, 3)), np.random.random(size=(3, 0))], device=device) 2023-01-11T20:52:06.9953808Z ok (0.015s) 2023-01-11T20:52:06.9954385Z test_ctor_with_numpy_scalar_ctor_cpu (__main__.TestNumPyInteropCPU) ... ok (0.002s) 2023-01-11T20:52:06.9954990Z test_from_list_of_ndarray_warning_cpu (__main__.TestNumPyInteropCPU) ... ok (0.001s) 2023-01-11T20:52:06.9955555Z test_from_numpy_cpu (__main__.TestNumPyInteropCPU) ... ok (0.018s) 2023-01-11T20:52:06.9956706Z test_has_storage_numpy_cpu (__main__.TestNumPyInteropCPU) ... test_numpy_interop.py:441: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T20:52:06.9957869Z self.assertIsNotNone(torch.tensor(arr, device=device, dtype=torch.float32).storage()) 2023-01-11T20:52:06.9958956Z test_numpy_interop.py:442: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T20:52:06.9959970Z self.assertIsNotNone(torch.tensor(arr, device=device, dtype=torch.double).storage()) 2023-01-11T20:52:06.9961224Z test_numpy_interop.py:443: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T20:52:06.9962247Z self.assertIsNotNone(torch.tensor(arr, device=device, dtype=torch.int).storage()) 2023-01-11T20:52:06.9963294Z test_numpy_interop.py:444: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T20:52:06.9964315Z self.assertIsNotNone(torch.tensor(arr, device=device, dtype=torch.long).storage()) 2023-01-11T20:52:06.9965365Z test_numpy_interop.py:445: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T20:52:06.9966404Z self.assertIsNotNone(torch.tensor(arr, device=device, dtype=torch.uint8).storage()) 2023-01-11T20:52:06.9966863Z ok (0.004s) 2023-01-11T20:52:06.9967319Z test_multiplication_numpy_scalar_cpu (__main__.TestNumPyInteropCPU) ... ok (0.004s) 2023-01-11T20:52:06.9968053Z test_numpy_array_interface_cpu (__main__.TestNumPyInteropCPU) ... ok (0.019s) 2023-01-11T20:52:06.9968613Z test_numpy_index_cpu (__main__.TestNumPyInteropCPU) ... ok (0.003s) 2023-01-11T20:52:06.9969176Z test_numpy_non_writeable_cpu (__main__.TestNumPyInteropCPU) ... ok (0.004s) 2023-01-11T20:52:06.9969736Z test_numpy_scalar_cmp_cpu_bfloat16 (__main__.TestNumPyInteropCPU) ... ok (0.009s) 2023-01-11T20:52:06.9970321Z test_numpy_scalar_cmp_cpu_bool (__main__.TestNumPyInteropCPU) ... ok (0.004s) 2023-01-11T20:52:06.9970914Z test_numpy_scalar_cmp_cpu_complex128 (__main__.TestNumPyInteropCPU) ... ok (0.004s) 2023-01-11T20:52:06.9971713Z test_numpy_scalar_cmp_cpu_complex64 (__main__.TestNumPyInteropCPU) ... test_numpy_interop.py:471: ComplexWarning: Casting complex values to real discards the imaginary part 2023-01-11T20:52:06.9972346Z self.assertFalse(t == a) 2023-01-11T20:52:06.9972676Z ok (0.004s) 2023-01-11T20:52:06.9973122Z test_numpy_scalar_cmp_cpu_float16 (__main__.TestNumPyInteropCPU) ... ok (0.004s) 2023-01-11T20:52:06.9973703Z test_numpy_scalar_cmp_cpu_float32 (__main__.TestNumPyInteropCPU) ... ok (0.004s) 2023-01-11T20:52:06.9974388Z test_numpy_scalar_cmp_cpu_float64 (__main__.TestNumPyInteropCPU) ... ok (0.004s) 2023-01-11T20:52:06.9974982Z test_numpy_scalar_cmp_cpu_int16 (__main__.TestNumPyInteropCPU) ... ok (0.004s) 2023-01-11T20:52:06.9975580Z test_numpy_scalar_cmp_cpu_int32 (__main__.TestNumPyInteropCPU) ... ok (0.004s) 2023-01-11T20:52:06.9976139Z test_numpy_scalar_cmp_cpu_int64 (__main__.TestNumPyInteropCPU) ... ok (0.004s) 2023-01-11T20:52:06.9976711Z test_numpy_scalar_cmp_cpu_int8 (__main__.TestNumPyInteropCPU) ... ok (0.004s) 2023-01-11T20:52:06.9977289Z test_numpy_scalar_cmp_cpu_uint8 (__main__.TestNumPyInteropCPU) ... ok (0.004s) 2023-01-11T20:52:06.9977848Z test_numpy_unresizable_cpu (__main__.TestNumPyInteropCPU) ... ok (0.026s) 2023-01-11T20:52:06.9979028Z test_parse_numpy_int_cpu (__main__.TestNumPyInteropCPU) ... test_numpy_interop.py:424: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T20:52:06.9980496Z self.assertEqual(torch.Storage(np_val).size(), scalar) # type: ignore[attr-defined] 2023-01-11T20:52:06.9980941Z ok (0.014s) 2023-01-11T20:52:06.9981361Z test_to_numpy_bool_cpu (__main__.TestNumPyInteropCPU) ... ok (0.002s) 2023-01-11T20:52:06.9981878Z test_to_numpy_cpu (__main__.TestNumPyInteropCPU) ... ok (0.076s) 2023-01-11T20:52:06.9982437Z test_to_numpy_force_argument_cpu (__main__.TestNumPyInteropCPU) ... ok (0.044s) 2023-01-11T20:52:06.9982770Z 2023-01-11T20:52:06.9983150Z ---------------------------------------------------------------------- 2023-01-11T20:52:06.9983575Z Ran 26 tests in 0.284s 2023-01-11T20:52:06.9983773Z 2023-01-11T20:52:06.9983881Z OK 2023-01-11T20:52:06.9984053Z 2023-01-11T20:52:06.9984203Z Generating XML reports... 2023-01-11T20:52:06.9985004Z Generated XML report: test-reports/python-unittest/test_numpy_interop/TEST-TestNumPyInteropCPU-20230111205205.xml 2023-01-11T20:52:06.9985465Z 2023-01-11T20:52:06.9985922Z ##[endgroup] 2023-01-11T20:52:06.9986650Z FINISHED PRINTING LOG FILE of test_numpy_interop (/var/lib/jenkins/workspace/test/test-reports/test_numpy_interop_bgoxu0aw) 2023-01-11T20:52:06.9987060Z 2023-01-11T20:52:11.9115192Z No CUDA runtime is found, using CUDA_HOME='/usr/local/cuda' 2023-01-11T20:52:12.0756004Z Ignoring disabled issues: ['91003'] 2023-01-11T20:52:12.0967178Z Running nn/test_pruning ... [2023-01-11 20:52:12.096348] 2023-01-11T20:52:12.0968167Z Executing ['/opt/conda/bin/python', '-bb', 'nn/test_pruning.py', '-v', '--import-slow-tests', '--import-disabled-tests'] ... [2023-01-11 20:52:12.096621] 2023-01-11T20:52:17.1241206Z 2023-01-11T20:52:17.1241692Z Expand the folded group to see the log file of nn/test_pruning 2023-01-11T20:52:17.1243037Z ##[group]PRINTING LOG FILE of nn/test_pruning (/var/lib/jenkins/workspace/test/test-reports/nn-test_pruning_z706f_a3) 2023-01-11T20:52:17.1244008Z Test results will be stored in test-reports/python-unittest/nn.test_pruning 2023-01-11T20:52:17.1244345Z 2023-01-11T20:52:17.1244479Z Running tests... 2023-01-11T20:52:17.1245048Z ---------------------------------------------------------------------- 2023-01-11T20:52:17.1245561Z test_compute_nparams_to_prune (__main__.TestPruningNN) 2023-01-11T20:52:17.1246105Z Test that requested pruning `amount` gets translated into the ... ok (0.013s) 2023-01-11T20:52:17.1246636Z test_custom_from_mask_pruning (__main__.TestPruningNN) 2023-01-11T20:52:17.1247151Z Test that the CustomFromMask is capable of receiving ... ok (0.003s) 2023-01-11T20:52:17.1247631Z test_global_pruning (__main__.TestPruningNN) 2023-01-11T20:52:17.1248165Z Test that global l1 unstructured pruning over 2 parameters removes ... ok (0.009s) 2023-01-11T20:52:17.1248742Z test_global_pruning_importance_scores (__main__.TestPruningNN) 2023-01-11T20:52:17.1249296Z Test that global l1 unstructured pruning over 2 parameters removes ... ok (0.006s) 2023-01-11T20:52:17.1249958Z test_identity_pruning (__main__.TestPruningNN) 2023-01-11T20:52:17.1250474Z Test that a mask of 1s does not change forward or backward. ... ok (0.008s) 2023-01-11T20:52:17.1250991Z test_l1_unstructured_pruning (__main__.TestPruningNN) 2023-01-11T20:52:17.1251508Z Test that l1 unstructured pruning actually removes the lowest ... ok (0.004s) 2023-01-11T20:52:17.1252088Z test_l1_unstructured_pruning_with_importance_scores (__main__.TestPruningNN) 2023-01-11T20:52:17.1252673Z Test that l1 unstructured pruning actually removes the lowest ... ok (0.004s) 2023-01-11T20:52:17.1253180Z test_ln_structured_pruning (__main__.TestPruningNN) 2023-01-11T20:52:17.1253652Z Check Ln structured pruning by hand. ... ok (0.005s) 2023-01-11T20:52:17.1254164Z test_ln_structured_pruning_importance_scores (__main__.TestPruningNN) 2023-01-11T20:52:17.1254667Z Check Ln structured pruning by hand. ... ok (0.005s) 2023-01-11T20:52:17.1255171Z test_multiple_pruning_calls (__main__.TestPruningNN) ... ok (0.005s) 2023-01-11T20:52:17.1255667Z test_prune (__main__.TestPruningNN) ... ok (0.002s) 2023-01-11T20:52:17.1256161Z test_prune_importance_scores (__main__.TestPruningNN) ... ok (0.002s) 2023-01-11T20:52:17.1256715Z test_prune_importance_scores_mimic_default (__main__.TestPruningNN) ... ok (0.003s) 2023-01-11T20:52:17.1257272Z test_pruning_container (__main__.TestPruningNN) ... ok (0.001s) 2023-01-11T20:52:17.1257792Z test_pruning_container_compute_mask (__main__.TestPruningNN) 2023-01-11T20:52:17.1258313Z Test `compute_mask` of pruning container with a known `t` and ... ok (0.006s) 2023-01-11T20:52:17.1258828Z test_pruning_id_consistency (__main__.TestPruningNN) 2023-01-11T20:52:17.1259612Z Test that pruning doesn't change the id of the parameters, which ... ok (0.002s) 2023-01-11T20:52:17.1260122Z test_pruning_rollback (__main__.TestPruningNN) 2023-01-11T20:52:17.1260638Z Test that if something fails when the we try to compute the mask, ... ok (0.003s) 2023-01-11T20:52:17.1261202Z test_pruning_serialization_model (__main__.TestPruningNN) ... ok (0.008s) 2023-01-11T20:52:17.1261776Z test_pruning_serialization_state_dict (__main__.TestPruningNN) ... ok (0.007s) 2023-01-11T20:52:17.1262299Z test_random_pruning (__main__.TestPruningNN) ... ok (0.006s) 2023-01-11T20:52:17.1262781Z test_random_pruning_0perc (__main__.TestPruningNN) 2023-01-11T20:52:17.1263289Z Test that a mask of 1s does not change forward or backward. ... ok (0.008s) 2023-01-11T20:52:17.1263783Z test_random_pruning_forward (__main__.TestPruningNN) 2023-01-11T20:52:17.1264245Z check forward with mask (by hand). ... ok (0.004s) 2023-01-11T20:52:17.1264714Z test_random_pruning_new_weight (__main__.TestPruningNN) 2023-01-11T20:52:17.1265224Z Test that module.name now contains a pruned version of ... ok (0.006s) 2023-01-11T20:52:17.1265707Z test_random_pruning_orig (__main__.TestPruningNN) 2023-01-11T20:52:17.1266479Z Test that original tensor is correctly stored in 'orig' ... ok (0.005s) 2023-01-11T20:52:17.1267012Z test_random_pruning_pickle (__main__.TestPruningNN) ... ok (0.010s) 2023-01-11T20:52:17.1267498Z test_random_pruning_sizes (__main__.TestPruningNN) 2023-01-11T20:52:17.1268030Z Test that the new parameters and buffers created by the pruning ... ok (0.019s) 2023-01-11T20:52:17.1268613Z test_random_structured_pruning_amount (__main__.TestPruningNN) ... ok (0.004s) 2023-01-11T20:52:17.1269105Z test_remove_pruning (__main__.TestPruningNN) 2023-01-11T20:52:17.1269619Z `prune.remove` removes the hook and the reparametrization ... ok (0.007s) 2023-01-11T20:52:17.1270150Z test_remove_pruning_exception (__main__.TestPruningNN) 2023-01-11T20:52:17.1270679Z Removing from an unpruned tensor throws an assertion error ... ok (0.002s) 2023-01-11T20:52:17.1271181Z test_remove_pruning_forward (__main__.TestPruningNN) 2023-01-11T20:52:17.1271715Z Remove pruning and check forward is unchanged from previous ... ok (0.003s) 2023-01-11T20:52:17.1272247Z test_rnn_pruning (__main__.TestPruningNN) ... ok (0.004s) 2023-01-11T20:52:17.1272813Z test_unstructured_pruning_same_magnitude (__main__.TestPruningNN) 2023-01-11T20:52:17.1273386Z Since it may happen that the tensor to prune has entries with the ... ok (0.004s) 2023-01-11T20:52:17.1273917Z test_validate_pruning_amount (__main__.TestPruningNN) 2023-01-11T20:52:17.1274424Z Tests the second util function that validates the pruning ... ok (0.001s) 2023-01-11T20:52:17.1274956Z test_validate_pruning_amount_init (__main__.TestPruningNN) 2023-01-11T20:52:17.1275477Z Test the first util function that validates the pruning ... ok (0.001s) 2023-01-11T20:52:17.1275783Z 2023-01-11T20:52:17.1276161Z ---------------------------------------------------------------------- 2023-01-11T20:52:17.1276580Z Ran 34 tests in 0.185s 2023-01-11T20:52:17.1276785Z 2023-01-11T20:52:17.1276895Z OK 2023-01-11T20:52:17.1277065Z 2023-01-11T20:52:17.1277219Z Generating XML reports... 2023-01-11T20:52:17.1277967Z Generated XML report: test-reports/python-unittest/nn.test_pruning/TEST-TestPruningNN-20230111205216.xml 2023-01-11T20:52:17.1278390Z 2023-01-11T20:52:17.1278822Z ##[endgroup] 2023-01-11T20:52:17.1279539Z FINISHED PRINTING LOG FILE of nn/test_pruning (/var/lib/jenkins/workspace/test/test-reports/nn-test_pruning_z706f_a3) 2023-01-11T20:52:17.1279943Z 2023-01-11T20:52:21.9030026Z No CUDA runtime is found, using CUDA_HOME='/usr/local/cuda' 2023-01-11T20:52:22.0677283Z Ignoring disabled issues: ['91003'] 2023-01-11T20:52:22.0888574Z Running test_decomp ... [2023-01-11 20:52:22.088484] 2023-01-11T20:52:22.0889631Z Executing ['/opt/conda/bin/python', '-bb', 'test_decomp.py', '-v', '--import-slow-tests', '--import-disabled-tests'] ... [2023-01-11 20:52:22.088755] 2023-01-11T20:52:32.4230200Z 2023-01-11T20:52:32.4230682Z Expand the folded group to see the log file of test_decomp 2023-01-11T20:52:32.4231394Z ##[group]PRINTING LOG FILE of test_decomp (/var/lib/jenkins/workspace/test/test-reports/test_decomp_0t79n_gg) 2023-01-11T20:52:32.4251889Z Test results will be stored in test-reports/python-unittest/test_decomp 2023-01-11T20:52:32.4252197Z 2023-01-11T20:52:32.4252331Z Running tests... 2023-01-11T20:52:32.4252829Z ---------------------------------------------------------------------- 2023-01-11T20:52:32.4253339Z test_amp_batch_norm_backward_cpu (__main__.DecompAmpTestsCPU) ... skip: Skipped under ASAN (0.002s) 2023-01-11T20:52:32.4253932Z test_contiguous_log_softmax_cpu (__main__.DecompContiguousTestsCPU) ... skip: Skipped under ASAN (0.001s) 2023-01-11T20:52:32.4255943Z test_contiguous_softmax_cpu (__main__.DecompContiguousTestsCPU) ... skip: Skipped under ASAN (0.001s) 2023-01-11T20:52:32.4332196Z test_comprehensive_H_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4332768Z test_comprehensive_H_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4333506Z test_comprehensive_H_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4334037Z test_comprehensive_H_cpu_complex32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4334550Z test_comprehensive_H_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4335068Z test_comprehensive_H_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4335521Z test_comprehensive_H_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4336023Z test_comprehensive_H_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4337237Z test_comprehensive_H_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4338725Z test_comprehensive_H_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4339686Z test_comprehensive_H_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4340201Z test_comprehensive_H_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4341889Z test_comprehensive_H_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4342608Z test_comprehensive_T_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4343293Z test_comprehensive_T_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4343820Z test_comprehensive_T_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4344299Z test_comprehensive_T_cpu_complex32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4345213Z test_comprehensive_T_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4349748Z test_comprehensive_T_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4350956Z test_comprehensive_T_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4351436Z test_comprehensive_T_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4351960Z test_comprehensive_T_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4352463Z test_comprehensive_T_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4352938Z test_comprehensive_T_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4353434Z test_comprehensive_T_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4353832Z test_comprehensive_T_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4354289Z test_comprehensive___getitem___cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4354862Z test_comprehensive___getitem___cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4355360Z test_comprehensive___getitem___cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4355885Z test_comprehensive___getitem___cpu_complex32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4356379Z test_comprehensive___getitem___cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4356899Z test_comprehensive___getitem___cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4357438Z test_comprehensive___getitem___cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4357978Z test_comprehensive___getitem___cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4358634Z test_comprehensive___getitem___cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4359160Z test_comprehensive___getitem___cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4359685Z test_comprehensive___getitem___cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4360240Z test_comprehensive___getitem___cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4360864Z test_comprehensive___getitem___cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4361300Z test_comprehensive___radd___cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4364242Z test_comprehensive___radd___cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4364933Z test_comprehensive___radd___cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4365542Z test_comprehensive___radd___cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4366470Z test_comprehensive___radd___cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4367241Z test_comprehensive___radd___cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4368010Z test_comprehensive___radd___cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4368787Z test_comprehensive___radd___cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4369558Z test_comprehensive___radd___cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4402467Z test_comprehensive___radd___cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4403369Z test_comprehensive___radd___cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4404070Z test_comprehensive___radd___cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4404740Z test_comprehensive___rand___cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4405389Z test_comprehensive___rand___cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4406052Z test_comprehensive___rand___cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4406706Z test_comprehensive___rand___cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4407368Z test_comprehensive___rand___cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4408021Z test_comprehensive___rand___cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4408694Z test_comprehensive___rdiv___cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4444540Z test_comprehensive___rdiv___cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4445380Z test_comprehensive___rdiv___cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4445971Z test_comprehensive___rdiv___cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4446331Z test_comprehensive___rdiv___cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4446685Z test_comprehensive___rdiv___cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4447023Z test_comprehensive___rdiv___cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4447376Z test_comprehensive___rdiv___cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4448091Z test_comprehensive___rdiv___cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4448521Z test_comprehensive___rdiv___cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4448869Z test_comprehensive___rdiv___cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4449216Z test_comprehensive___rdiv___cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4449609Z test_comprehensive___rmatmul___cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4450281Z test_comprehensive___rmatmul___cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4450824Z test_comprehensive___rmatmul___cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4451187Z test_comprehensive___rmatmul___cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4451620Z test_comprehensive___rmatmul___cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4451958Z test_comprehensive___rmatmul___cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4452311Z test_comprehensive___rmatmul___cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4452656Z test_comprehensive___rmatmul___cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4453012Z test_comprehensive___rmatmul___cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4453347Z test_comprehensive___rmatmul___cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4453709Z test_comprehensive___rmod___cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4454057Z test_comprehensive___rmod___cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4454409Z test_comprehensive___rmod___cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4454744Z test_comprehensive___rmod___cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4455089Z test_comprehensive___rmul___cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4455437Z test_comprehensive___rmul___cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4455772Z test_comprehensive___rmul___cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4456130Z test_comprehensive___rmul___cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4456481Z test_comprehensive___rmul___cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4456828Z test_comprehensive___rmul___cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4457160Z test_comprehensive___rmul___cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4457505Z test_comprehensive___rmul___cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4457849Z test_comprehensive___rmul___cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4458185Z test_comprehensive___rmul___cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4458516Z test_comprehensive___rmul___cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4458858Z test_comprehensive___rmul___cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4459346Z test_comprehensive___ror___cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4459692Z test_comprehensive___ror___cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4460018Z test_comprehensive___ror___cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4460357Z test_comprehensive___ror___cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4460695Z test_comprehensive___ror___cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4461024Z test_comprehensive___ror___cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4461371Z test_comprehensive___rpow___cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4461728Z test_comprehensive___rpow___cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4462089Z test_comprehensive___rpow___cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4462462Z test_comprehensive___rpow___cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4462811Z test_comprehensive___rpow___cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4463155Z test_comprehensive___rpow___cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4464925Z test_comprehensive___rpow___cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4465562Z test_comprehensive___rpow___cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4466183Z test_comprehensive___rpow___cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4466538Z test_comprehensive___rpow___cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4466874Z test_comprehensive___rpow___cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4467230Z test_comprehensive___rsub___cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4467584Z test_comprehensive___rsub___cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4468060Z test_comprehensive___rsub___cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4468663Z test_comprehensive___rsub___cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4469310Z test_comprehensive___rsub___cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4469889Z test_comprehensive___rsub___cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4470482Z test_comprehensive___rsub___cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4471116Z test_comprehensive___rsub___cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4471782Z test_comprehensive___rsub___cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4472289Z test_comprehensive___rsub___cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4472634Z test_comprehensive___rsub___cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4472964Z test_comprehensive___rxor___cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4473305Z test_comprehensive___rxor___cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4473645Z test_comprehensive___rxor___cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4474029Z test_comprehensive___rxor___cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4474374Z test_comprehensive___rxor___cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4474719Z test_comprehensive___rxor___cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4475089Z test_comprehensive__native_batch_norm_legit_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4475466Z test_comprehensive__native_batch_norm_legit_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4475860Z test_comprehensive__native_batch_norm_legit_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4476308Z test_comprehensive__softmax_backward_data_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4476985Z test_comprehensive__softmax_backward_data_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4477627Z test_comprehensive__softmax_backward_data_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4478301Z test_comprehensive_abs_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4478742Z test_comprehensive_abs_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.011s) 2023-01-11T20:52:32.4479095Z test_comprehensive_abs_cpu_complex32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4479435Z test_comprehensive_abs_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4479787Z test_comprehensive_abs_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4480136Z test_comprehensive_abs_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4480470Z test_comprehensive_abs_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4480971Z test_comprehensive_abs_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4481544Z test_comprehensive_abs_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4482099Z test_comprehensive_abs_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4482707Z test_comprehensive_abs_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4483326Z test_comprehensive_abs_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4483964Z test_comprehensive_acos_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4484386Z test_comprehensive_acos_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4484723Z test_comprehensive_acos_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4485079Z test_comprehensive_acos_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4485430Z test_comprehensive_acos_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4485764Z test_comprehensive_acos_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4486106Z test_comprehensive_acos_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4486463Z test_comprehensive_acos_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4486997Z test_comprehensive_acos_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4487560Z test_comprehensive_acos_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4488298Z test_comprehensive_acos_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4488949Z test_comprehensive_acosh_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4489594Z test_comprehensive_acosh_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4490204Z test_comprehensive_acosh_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4490866Z test_comprehensive_acosh_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4491530Z test_comprehensive_acosh_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4492129Z test_comprehensive_acosh_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4492464Z test_comprehensive_acosh_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4492812Z test_comprehensive_acosh_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4493208Z test_comprehensive_acosh_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4493537Z test_comprehensive_acosh_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4493883Z test_comprehensive_acosh_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4494259Z test_comprehensive_add_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4494813Z test_comprehensive_add_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4495369Z test_comprehensive_add_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4496113Z test_comprehensive_add_cpu_complex32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4496675Z test_comprehensive_add_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4497240Z test_comprehensive_add_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4497805Z test_comprehensive_add_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4498367Z test_comprehensive_add_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4498919Z test_comprehensive_add_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4499629Z test_comprehensive_add_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4500195Z test_comprehensive_add_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4500755Z test_comprehensive_add_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4501289Z test_comprehensive_add_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4501870Z test_comprehensive_addbmm_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4502471Z test_comprehensive_addbmm_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4503076Z test_comprehensive_addbmm_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4503644Z test_comprehensive_addbmm_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4504231Z test_comprehensive_addbmm_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4504829Z test_comprehensive_addbmm_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4505472Z test_comprehensive_addbmm_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4506029Z test_comprehensive_addbmm_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4506603Z test_comprehensive_addbmm_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4507186Z test_comprehensive_addbmm_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4507746Z test_comprehensive_addcdiv_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4508347Z test_comprehensive_addcdiv_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4508949Z test_comprehensive_addcdiv_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4509844Z test_comprehensive_addcdiv_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4510620Z test_comprehensive_addcdiv_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4511410Z test_comprehensive_addcmul_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4512162Z test_comprehensive_addcmul_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4512899Z test_comprehensive_addcmul_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4513478Z test_comprehensive_addcmul_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4514194Z test_comprehensive_addcmul_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4514952Z test_comprehensive_addcmul_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4515676Z test_comprehensive_addcmul_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4516374Z test_comprehensive_addcmul_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4517104Z test_comprehensive_addcmul_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4517818Z test_comprehensive_addcmul_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4518543Z test_comprehensive_addmm_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4519285Z test_comprehensive_addmm_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4520007Z test_comprehensive_addmm_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4520797Z test_comprehensive_addmm_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4521454Z test_comprehensive_addmm_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4522072Z test_comprehensive_addmm_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4522595Z test_comprehensive_addmm_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4523224Z test_comprehensive_addmm_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4523852Z test_comprehensive_addmm_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4524475Z test_comprehensive_addmm_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4525139Z test_comprehensive_addmm_decomposed_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4525813Z test_comprehensive_addmm_decomposed_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4526699Z test_comprehensive_addmm_decomposed_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4527440Z test_comprehensive_addmm_decomposed_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4528203Z test_comprehensive_addmm_decomposed_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4528945Z test_comprehensive_addmm_decomposed_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4529809Z test_comprehensive_addmm_decomposed_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4530536Z test_comprehensive_addmm_decomposed_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4531283Z test_comprehensive_addmm_decomposed_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4532020Z test_comprehensive_addmm_decomposed_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4532818Z test_comprehensive_addmv_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4533608Z test_comprehensive_addmv_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4534200Z test_comprehensive_addmv_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4534912Z test_comprehensive_addmv_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.001s) 2023-01-11T20:52:32.4535598Z test_comprehensive_addmv_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.001s) 2023-01-11T20:52:32.4536322Z test_comprehensive_addmv_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.001s) 2023-01-11T20:52:32.4537051Z test_comprehensive_addmv_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.001s) 2023-01-11T20:52:32.4537763Z test_comprehensive_addmv_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.001s) 2023-01-11T20:52:32.4538444Z test_comprehensive_addmv_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.001s) 2023-01-11T20:52:32.4539140Z test_comprehensive_addmv_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.001s) 2023-01-11T20:52:32.4539918Z test_comprehensive_addr_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.001s) 2023-01-11T20:52:32.4540620Z test_comprehensive_addr_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.001s) 2023-01-11T20:52:32.4541312Z test_comprehensive_addr_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.001s) 2023-01-11T20:52:32.4542030Z test_comprehensive_addr_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.001s) 2023-01-11T20:52:32.4542614Z test_comprehensive_addr_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.001s) 2023-01-11T20:52:32.4543324Z test_comprehensive_addr_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.001s) 2023-01-11T20:52:32.4544008Z test_comprehensive_addr_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.001s) 2023-01-11T20:52:32.4544705Z test_comprehensive_addr_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.001s) 2023-01-11T20:52:32.4545405Z test_comprehensive_addr_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.001s) 2023-01-11T20:52:32.4546095Z test_comprehensive_addr_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.001s) 2023-01-11T20:52:32.4546764Z test_comprehensive_addr_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.001s) 2023-01-11T20:52:32.4547457Z test_comprehensive_addr_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.001s) 2023-01-11T20:52:32.4548165Z test_comprehensive_all_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.001s) 2023-01-11T20:52:32.4548934Z test_comprehensive_all_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.001s) 2023-01-11T20:52:32.4549500Z test_comprehensive_all_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.001s) 2023-01-11T20:52:32.4550233Z test_comprehensive_all_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.001s) 2023-01-11T20:52:32.4550804Z test_comprehensive_all_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.001s) 2023-01-11T20:52:32.4551488Z test_comprehensive_all_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.001s) 2023-01-11T20:52:32.4552045Z test_comprehensive_all_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.001s) 2023-01-11T20:52:32.4552602Z test_comprehensive_all_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.001s) 2023-01-11T20:52:32.4553175Z test_comprehensive_all_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.001s) 2023-01-11T20:52:32.4553853Z test_comprehensive_all_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.001s) 2023-01-11T20:52:32.4554512Z test_comprehensive_all_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.001s) 2023-01-11T20:52:32.4555082Z test_comprehensive_all_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.001s) 2023-01-11T20:52:32.4555656Z test_comprehensive_allclose_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.001s) 2023-01-11T20:52:32.4556237Z test_comprehensive_allclose_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.001s) 2023-01-11T20:52:32.4556863Z test_comprehensive_allclose_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.001s) 2023-01-11T20:52:32.4557532Z test_comprehensive_allclose_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.001s) 2023-01-11T20:52:32.4558196Z test_comprehensive_allclose_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.001s) 2023-01-11T20:52:32.4558839Z test_comprehensive_allclose_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.001s) 2023-01-11T20:52:32.4559495Z test_comprehensive_amax_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.001s) 2023-01-11T20:52:32.4559945Z test_comprehensive_amax_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.001s) 2023-01-11T20:52:32.4560293Z test_comprehensive_amax_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.001s) 2023-01-11T20:52:32.4560725Z test_comprehensive_amax_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.001s) 2023-01-11T20:52:32.4561138Z test_comprehensive_amax_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.001s) 2023-01-11T20:52:32.4561487Z test_comprehensive_amax_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.001s) 2023-01-11T20:52:32.4561819Z test_comprehensive_amax_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.001s) 2023-01-11T20:52:32.4562225Z test_comprehensive_amax_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.001s) 2023-01-11T20:52:32.4562859Z test_comprehensive_amax_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.001s) 2023-01-11T20:52:32.4563420Z test_comprehensive_amax_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.001s) 2023-01-11T20:52:32.4563755Z test_comprehensive_amin_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.001s) 2023-01-11T20:52:32.4564103Z test_comprehensive_amin_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.001s) 2023-01-11T20:52:32.4564449Z test_comprehensive_amin_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.001s) 2023-01-11T20:52:32.4564794Z test_comprehensive_amin_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.001s) 2023-01-11T20:52:32.4565130Z test_comprehensive_amin_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.001s) 2023-01-11T20:52:32.4565557Z test_comprehensive_amin_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.001s) 2023-01-11T20:52:32.4565907Z test_comprehensive_amin_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.001s) 2023-01-11T20:52:32.4566239Z test_comprehensive_amin_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.001s) 2023-01-11T20:52:32.4566581Z test_comprehensive_amin_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.001s) 2023-01-11T20:52:32.4566932Z test_comprehensive_amin_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.001s) 2023-01-11T20:52:32.4567280Z test_comprehensive_aminmax_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.001s) 2023-01-11T20:52:32.4567624Z test_comprehensive_aminmax_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.001s) 2023-01-11T20:52:32.4567981Z test_comprehensive_aminmax_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.001s) 2023-01-11T20:52:32.4568332Z test_comprehensive_aminmax_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.001s) 2023-01-11T20:52:32.4568717Z test_comprehensive_aminmax_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.001s) 2023-01-11T20:52:32.4569050Z test_comprehensive_aminmax_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.001s) 2023-01-11T20:52:32.4569399Z test_comprehensive_aminmax_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.001s) 2023-01-11T20:52:32.4569745Z test_comprehensive_aminmax_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.001s) 2023-01-11T20:52:32.4570083Z test_comprehensive_angle_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.001s) 2023-01-11T20:52:32.4570431Z test_comprehensive_angle_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.001s) 2023-01-11T20:52:32.4570785Z test_comprehensive_angle_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.001s) 2023-01-11T20:52:32.4571146Z test_comprehensive_angle_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.001s) 2023-01-11T20:52:32.4571490Z test_comprehensive_angle_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.001s) 2023-01-11T20:52:32.4571845Z test_comprehensive_angle_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4572191Z test_comprehensive_angle_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4572532Z test_comprehensive_angle_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4572862Z test_comprehensive_angle_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4573202Z test_comprehensive_angle_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4573547Z test_comprehensive_angle_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4573880Z test_comprehensive_angle_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4574227Z test_comprehensive_any_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4574572Z test_comprehensive_any_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4574920Z test_comprehensive_any_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4575260Z test_comprehensive_any_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4575606Z test_comprehensive_any_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4575945Z test_comprehensive_any_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4576315Z test_comprehensive_any_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4576640Z test_comprehensive_any_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4576987Z test_comprehensive_any_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4577324Z test_comprehensive_any_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4577652Z test_comprehensive_any_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4577989Z test_comprehensive_any_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4578338Z test_comprehensive_arange_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4578694Z test_comprehensive_arange_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4579036Z test_comprehensive_arange_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4579494Z test_comprehensive_arange_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4579853Z test_comprehensive_arange_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4580206Z test_comprehensive_arange_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4580542Z test_comprehensive_arange_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4580889Z test_comprehensive_arange_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4581245Z test_comprehensive_arange_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4581584Z test_comprehensive_argmax_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4581945Z test_comprehensive_argmax_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4582304Z test_comprehensive_argmax_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4582660Z test_comprehensive_argmax_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4582998Z test_comprehensive_argmax_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4583342Z test_comprehensive_argmax_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4583690Z test_comprehensive_argmax_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4584036Z test_comprehensive_argmax_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4584369Z test_comprehensive_argmax_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4584726Z test_comprehensive_argmin_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4585080Z test_comprehensive_argmin_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4585431Z test_comprehensive_argmin_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4585766Z test_comprehensive_argmin_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4586114Z test_comprehensive_argmin_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4586462Z test_comprehensive_argmin_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4586796Z test_comprehensive_argmin_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4587139Z test_comprehensive_argmin_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4587516Z test_comprehensive_argmin_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4587869Z test_comprehensive_argsort_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4588207Z test_comprehensive_argsort_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4588554Z test_comprehensive_argsort_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4588905Z test_comprehensive_argsort_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4589259Z test_comprehensive_argsort_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4589597Z test_comprehensive_argsort_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4589945Z test_comprehensive_argsort_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4590315Z test_comprehensive_argsort_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4590650Z test_comprehensive_argsort_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4591001Z test_comprehensive_argsort_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4591367Z test_comprehensive_argwhere_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4591723Z test_comprehensive_argwhere_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4592071Z test_comprehensive_argwhere_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4592441Z test_comprehensive_argwhere_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4592802Z test_comprehensive_argwhere_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4593166Z test_comprehensive_argwhere_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4593507Z test_comprehensive_argwhere_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4593867Z test_comprehensive_argwhere_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4594221Z test_comprehensive_argwhere_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4594554Z test_comprehensive_argwhere_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4594905Z test_comprehensive_argwhere_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4595259Z test_comprehensive_argwhere_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4595620Z test_comprehensive_as_strided_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4595968Z test_comprehensive_as_strided_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4596328Z test_comprehensive_as_strided_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4596699Z test_comprehensive_as_strided_cpu_complex32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4597062Z test_comprehensive_as_strided_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4597408Z test_comprehensive_as_strided_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4597772Z test_comprehensive_as_strided_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4598174Z test_comprehensive_as_strided_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4598527Z test_comprehensive_as_strided_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4598870Z test_comprehensive_as_strided_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4599222Z test_comprehensive_as_strided_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4599576Z test_comprehensive_as_strided_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4599914Z test_comprehensive_as_strided_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4600289Z test_comprehensive_as_strided_partial_views_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4600812Z test_comprehensive_as_strided_partial_views_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4601216Z test_comprehensive_as_strided_partial_views_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4601653Z test_comprehensive_as_strided_partial_views_cpu_complex32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4602050Z test_comprehensive_as_strided_partial_views_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4602443Z test_comprehensive_as_strided_partial_views_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4602832Z test_comprehensive_as_strided_partial_views_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4603209Z test_comprehensive_as_strided_partial_views_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4603594Z test_comprehensive_as_strided_partial_views_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4603984Z test_comprehensive_as_strided_partial_views_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4604370Z test_comprehensive_as_strided_partial_views_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4604739Z test_comprehensive_as_strided_partial_views_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4605122Z test_comprehensive_as_strided_partial_views_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4605529Z test_comprehensive_as_strided_scatter_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Expected: new_empty_strided is not comparable (0.000s) 2023-01-11T20:52:32.4605962Z test_comprehensive_as_strided_scatter_cpu_bool (__main__.TestDecompCPU) ... skip: Expected: new_empty_strided is not comparable (0.000s) 2023-01-11T20:52:32.4606383Z test_comprehensive_as_strided_scatter_cpu_complex128 (__main__.TestDecompCPU) ... skip: Expected: new_empty_strided is not comparable (0.000s) 2023-01-11T20:52:32.4606821Z test_comprehensive_as_strided_scatter_cpu_complex32 (__main__.TestDecompCPU) ... skip: Expected: new_empty_strided is not comparable (0.000s) 2023-01-11T20:52:32.4607249Z test_comprehensive_as_strided_scatter_cpu_complex64 (__main__.TestDecompCPU) ... skip: Expected: new_empty_strided is not comparable (0.000s) 2023-01-11T20:52:32.4607679Z test_comprehensive_as_strided_scatter_cpu_float16 (__main__.TestDecompCPU) ... skip: Expected: new_empty_strided is not comparable (0.000s) 2023-01-11T20:52:32.4608094Z test_comprehensive_as_strided_scatter_cpu_float32 (__main__.TestDecompCPU) ... skip: Expected: new_empty_strided is not comparable (0.000s) 2023-01-11T20:52:32.4608520Z test_comprehensive_as_strided_scatter_cpu_float64 (__main__.TestDecompCPU) ... skip: Expected: new_empty_strided is not comparable (0.000s) 2023-01-11T20:52:32.4608989Z test_comprehensive_as_strided_scatter_cpu_int16 (__main__.TestDecompCPU) ... skip: Expected: new_empty_strided is not comparable (0.000s) 2023-01-11T20:52:32.4609412Z test_comprehensive_as_strided_scatter_cpu_int32 (__main__.TestDecompCPU) ... skip: Expected: new_empty_strided is not comparable (0.000s) 2023-01-11T20:52:32.4609817Z test_comprehensive_as_strided_scatter_cpu_int64 (__main__.TestDecompCPU) ... skip: Expected: new_empty_strided is not comparable (0.000s) 2023-01-11T20:52:32.4610235Z test_comprehensive_as_strided_scatter_cpu_int8 (__main__.TestDecompCPU) ... skip: Expected: new_empty_strided is not comparable (0.000s) 2023-01-11T20:52:32.4610656Z test_comprehensive_as_strided_scatter_cpu_uint8 (__main__.TestDecompCPU) ... skip: Expected: new_empty_strided is not comparable (0.000s) 2023-01-11T20:52:32.4615297Z test_comprehensive_asin_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4615657Z test_comprehensive_asin_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4616012Z test_comprehensive_asin_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4616437Z test_comprehensive_asin_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4616796Z test_comprehensive_asin_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4617131Z test_comprehensive_asin_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4617482Z test_comprehensive_asin_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4617829Z test_comprehensive_asin_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4618173Z test_comprehensive_asin_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4618506Z test_comprehensive_asin_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4618853Z test_comprehensive_asin_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4619200Z test_comprehensive_asinh_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4619643Z test_comprehensive_asinh_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4619983Z test_comprehensive_asinh_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4620341Z test_comprehensive_asinh_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4620697Z test_comprehensive_asinh_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4621035Z test_comprehensive_asinh_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4621382Z test_comprehensive_asinh_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4621729Z test_comprehensive_asinh_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4622072Z test_comprehensive_asinh_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4622398Z test_comprehensive_asinh_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4622740Z test_comprehensive_asinh_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4623089Z test_comprehensive_atan2_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4623430Z test_comprehensive_atan2_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4623763Z test_comprehensive_atan2_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4624148Z test_comprehensive_atan2_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4624487Z test_comprehensive_atan2_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4624816Z test_comprehensive_atan2_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4625155Z test_comprehensive_atan2_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4625492Z test_comprehensive_atan2_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4625835Z test_comprehensive_atan2_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4626166Z test_comprehensive_atan_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4626514Z test_comprehensive_atan_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4626868Z test_comprehensive_atan_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4627253Z test_comprehensive_atan_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4627591Z test_comprehensive_atan_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4627937Z test_comprehensive_atan_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4628280Z test_comprehensive_atan_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4628606Z test_comprehensive_atan_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4628942Z test_comprehensive_atan_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4629278Z test_comprehensive_atan_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4629616Z test_comprehensive_atan_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4629951Z test_comprehensive_atanh_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4630411Z test_comprehensive_atanh_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4630761Z test_comprehensive_atanh_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4631122Z test_comprehensive_atanh_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4631461Z test_comprehensive_atanh_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4631812Z test_comprehensive_atanh_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4632155Z test_comprehensive_atanh_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4632486Z test_comprehensive_atanh_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4632829Z test_comprehensive_atanh_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4633174Z test_comprehensive_atanh_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4633521Z test_comprehensive_atanh_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4633862Z test_comprehensive_atleast_1d_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4634218Z test_comprehensive_atleast_1d_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4634581Z test_comprehensive_atleast_1d_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4634951Z test_comprehensive_atleast_1d_cpu_complex32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4635339Z test_comprehensive_atleast_1d_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4635702Z test_comprehensive_atleast_1d_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4636058Z test_comprehensive_atleast_1d_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4636411Z test_comprehensive_atleast_1d_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4636746Z test_comprehensive_atleast_1d_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4637097Z test_comprehensive_atleast_1d_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4637449Z test_comprehensive_atleast_1d_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4637793Z test_comprehensive_atleast_1d_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4638169Z test_comprehensive_atleast_1d_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4638526Z test_comprehensive_atleast_2d_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4638884Z test_comprehensive_atleast_2d_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4639234Z test_comprehensive_atleast_2d_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4639597Z test_comprehensive_atleast_2d_cpu_complex32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4639957Z test_comprehensive_atleast_2d_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4640316Z test_comprehensive_atleast_2d_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4640845Z test_comprehensive_atleast_2d_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4641211Z test_comprehensive_atleast_2d_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4641563Z test_comprehensive_atleast_2d_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4641902Z test_comprehensive_atleast_2d_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4642253Z test_comprehensive_atleast_2d_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4642606Z test_comprehensive_atleast_2d_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4642958Z test_comprehensive_atleast_2d_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4643309Z test_comprehensive_atleast_3d_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4643669Z test_comprehensive_atleast_3d_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4644030Z test_comprehensive_atleast_3d_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4644396Z test_comprehensive_atleast_3d_cpu_complex32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4644746Z test_comprehensive_atleast_3d_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4645104Z test_comprehensive_atleast_3d_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4645462Z test_comprehensive_atleast_3d_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4645813Z test_comprehensive_atleast_3d_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4646210Z test_comprehensive_atleast_3d_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4646568Z test_comprehensive_atleast_3d_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4646921Z test_comprehensive_atleast_3d_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4647261Z test_comprehensive_atleast_3d_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4647616Z test_comprehensive_atleast_3d_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4647971Z test_comprehensive_baddbmm_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4648331Z test_comprehensive_baddbmm_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4648681Z test_comprehensive_baddbmm_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4649078Z test_comprehensive_baddbmm_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4649429Z test_comprehensive_baddbmm_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4649777Z test_comprehensive_baddbmm_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4650166Z test_comprehensive_baddbmm_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4650517Z test_comprehensive_baddbmm_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4650861Z test_comprehensive_baddbmm_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4651211Z test_comprehensive_baddbmm_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4651554Z test_comprehensive_bernoulli_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4651913Z test_comprehensive_bernoulli_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4652272Z test_comprehensive_bernoulli_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4652616Z test_comprehensive_bfloat16_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4652969Z test_comprehensive_bfloat16_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4653328Z test_comprehensive_bfloat16_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4653687Z test_comprehensive_bfloat16_cpu_complex32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4654030Z test_comprehensive_bfloat16_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4654388Z test_comprehensive_bfloat16_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4654744Z test_comprehensive_bfloat16_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4655098Z test_comprehensive_bfloat16_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4655438Z test_comprehensive_bfloat16_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4655784Z test_comprehensive_bfloat16_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4656125Z test_comprehensive_bfloat16_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4656470Z test_comprehensive_bfloat16_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4656842Z test_comprehensive_bfloat16_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4657190Z test_comprehensive_bincount_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4657537Z test_comprehensive_bincount_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4657870Z test_comprehensive_bincount_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4658219Z test_comprehensive_bincount_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4658566Z test_comprehensive_bincount_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4658915Z test_comprehensive_bitwise_and_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4659330Z test_comprehensive_bitwise_and_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4659693Z test_comprehensive_bitwise_and_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4660078Z test_comprehensive_bitwise_and_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4660437Z test_comprehensive_bitwise_and_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4660776Z test_comprehensive_bitwise_and_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4661137Z test_comprehensive_bitwise_left_shift_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4661507Z test_comprehensive_bitwise_left_shift_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4661856Z test_comprehensive_bitwise_left_shift_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4662228Z test_comprehensive_bitwise_left_shift_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4662595Z test_comprehensive_bitwise_left_shift_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4662957Z test_comprehensive_bitwise_not_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4663297Z test_comprehensive_bitwise_not_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4663646Z test_comprehensive_bitwise_not_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4663997Z test_comprehensive_bitwise_not_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4664350Z test_comprehensive_bitwise_not_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4664687Z test_comprehensive_bitwise_not_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4665036Z test_comprehensive_bitwise_or_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4665389Z test_comprehensive_bitwise_or_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4665738Z test_comprehensive_bitwise_or_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4666076Z test_comprehensive_bitwise_or_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4666425Z test_comprehensive_bitwise_or_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4666774Z test_comprehensive_bitwise_or_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4667126Z test_comprehensive_bitwise_right_shift_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4667495Z test_comprehensive_bitwise_right_shift_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4667910Z test_comprehensive_bitwise_right_shift_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4668282Z test_comprehensive_bitwise_right_shift_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4668632Z test_comprehensive_bitwise_right_shift_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4668990Z test_comprehensive_bitwise_xor_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4669348Z test_comprehensive_bitwise_xor_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4669701Z test_comprehensive_bitwise_xor_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4670042Z test_comprehensive_bitwise_xor_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4670396Z test_comprehensive_bitwise_xor_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4670778Z test_comprehensive_bitwise_xor_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4671139Z test_comprehensive_block_diag_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4671485Z test_comprehensive_block_diag_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4671849Z test_comprehensive_block_diag_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4672217Z test_comprehensive_block_diag_cpu_complex32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4672566Z test_comprehensive_block_diag_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4672930Z test_comprehensive_block_diag_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4673291Z test_comprehensive_block_diag_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4673650Z test_comprehensive_block_diag_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.002s) 2023-01-11T20:52:32.4673991Z test_comprehensive_block_diag_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4674344Z test_comprehensive_block_diag_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4674695Z test_comprehensive_block_diag_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4675049Z test_comprehensive_block_diag_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4675387Z test_comprehensive_block_diag_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4675737Z test_comprehensive_bmm_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4676092Z test_comprehensive_bmm_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4676445Z test_comprehensive_bmm_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4676779Z test_comprehensive_bmm_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4677124Z test_comprehensive_bmm_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4677466Z test_comprehensive_bmm_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4677791Z test_comprehensive_bmm_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4678126Z test_comprehensive_bmm_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4678519Z test_comprehensive_bmm_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4678862Z test_comprehensive_bmm_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4679192Z test_comprehensive_bool_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4679541Z test_comprehensive_bool_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4679888Z test_comprehensive_bool_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4680242Z test_comprehensive_bool_cpu_complex32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4680583Z test_comprehensive_bool_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4681069Z test_comprehensive_bool_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4681420Z test_comprehensive_bool_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4681815Z test_comprehensive_bool_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4682162Z test_comprehensive_bool_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4682511Z test_comprehensive_bool_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4682853Z test_comprehensive_bool_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4683183Z test_comprehensive_bool_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4683524Z test_comprehensive_bool_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4683884Z test_comprehensive_broadcast_shapes_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4684272Z test_comprehensive_broadcast_tensors_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4684640Z test_comprehensive_broadcast_tensors_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4685021Z test_comprehensive_broadcast_tensors_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4685403Z test_comprehensive_broadcast_tensors_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4685781Z test_comprehensive_broadcast_tensors_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4686138Z test_comprehensive_broadcast_tensors_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4686504Z test_comprehensive_broadcast_tensors_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4686882Z test_comprehensive_broadcast_tensors_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4687235Z test_comprehensive_broadcast_tensors_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4687599Z test_comprehensive_broadcast_tensors_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4687964Z test_comprehensive_broadcast_tensors_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4688328Z test_comprehensive_broadcast_tensors_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4688681Z test_comprehensive_broadcast_to_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4689041Z test_comprehensive_broadcast_to_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4689448Z test_comprehensive_broadcast_to_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4689818Z test_comprehensive_broadcast_to_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4690172Z test_comprehensive_broadcast_to_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4690534Z test_comprehensive_broadcast_to_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4690893Z test_comprehensive_broadcast_to_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4691252Z test_comprehensive_broadcast_to_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4691599Z test_comprehensive_broadcast_to_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4691957Z test_comprehensive_broadcast_to_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4692313Z test_comprehensive_broadcast_to_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4692684Z test_comprehensive_broadcast_to_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4693044Z test_comprehensive_bucketize_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4693399Z test_comprehensive_bucketize_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4693754Z test_comprehensive_bucketize_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4694094Z test_comprehensive_bucketize_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4694449Z test_comprehensive_bucketize_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4694801Z test_comprehensive_bucketize_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4695155Z test_comprehensive_bucketize_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4695494Z test_comprehensive_bucketize_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4695843Z test_comprehensive_bucketize_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4696191Z test_comprehensive_byte_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4696533Z test_comprehensive_byte_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4696865Z test_comprehensive_byte_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4697214Z test_comprehensive_byte_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4697566Z test_comprehensive_byte_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4697900Z test_comprehensive_byte_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4698242Z test_comprehensive_byte_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4698582Z test_comprehensive_byte_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4698920Z test_comprehensive_byte_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4699318Z test_comprehensive_byte_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4699663Z test_comprehensive_byte_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4700003Z test_comprehensive_byte_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4700407Z test_comprehensive_cartesian_prod_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4700766Z test_comprehensive_cartesian_prod_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4701141Z test_comprehensive_cartesian_prod_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4701521Z test_comprehensive_cartesian_prod_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4701880Z test_comprehensive_cartesian_prod_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4702251Z test_comprehensive_cartesian_prod_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4702615Z test_comprehensive_cartesian_prod_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4702992Z test_comprehensive_cartesian_prod_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4703376Z test_comprehensive_cartesian_prod_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4703739Z test_comprehensive_cartesian_prod_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4704103Z test_comprehensive_cartesian_prod_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4704466Z test_comprehensive_cartesian_prod_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4704804Z test_comprehensive_cat_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4705150Z test_comprehensive_cat_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4705496Z test_comprehensive_cat_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4705849Z test_comprehensive_cat_cpu_complex32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4706187Z test_comprehensive_cat_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4706535Z test_comprehensive_cat_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4706880Z test_comprehensive_cat_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4707212Z test_comprehensive_cat_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4707549Z test_comprehensive_cat_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4707884Z test_comprehensive_cat_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4708213Z test_comprehensive_cat_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4708540Z test_comprehensive_cat_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4708876Z test_comprehensive_cat_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4709215Z test_comprehensive_cdist_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4709563Z test_comprehensive_cdist_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4709903Z test_comprehensive_cdouble_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4710254Z test_comprehensive_cdouble_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4710611Z test_comprehensive_cdouble_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4710961Z test_comprehensive_cdouble_cpu_complex32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4711351Z test_comprehensive_cdouble_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4711708Z test_comprehensive_cdouble_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4712059Z test_comprehensive_cdouble_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4712398Z test_comprehensive_cdouble_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4712746Z test_comprehensive_cdouble_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4713097Z test_comprehensive_cdouble_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4713440Z test_comprehensive_cdouble_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4713773Z test_comprehensive_cdouble_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4714119Z test_comprehensive_cdouble_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4714494Z test_comprehensive_ceil_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4714839Z test_comprehensive_ceil_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4715174Z test_comprehensive_ceil_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4715517Z test_comprehensive_ceil_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4715860Z test_comprehensive_ceil_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4716182Z test_comprehensive_ceil_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4716522Z test_comprehensive_ceil_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4716863Z test_comprehensive_ceil_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4717209Z test_comprehensive_cfloat_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4717545Z test_comprehensive_cfloat_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4717896Z test_comprehensive_cfloat_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4718254Z test_comprehensive_cfloat_cpu_complex32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4718612Z test_comprehensive_cfloat_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4718955Z test_comprehensive_cfloat_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4719310Z test_comprehensive_cfloat_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4719658Z test_comprehensive_cfloat_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4719994Z test_comprehensive_cfloat_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4720338Z test_comprehensive_cfloat_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4720802Z test_comprehensive_cfloat_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4721155Z test_comprehensive_cfloat_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4721489Z test_comprehensive_cfloat_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4721843Z test_comprehensive_chalf_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4722289Z test_comprehensive_chalf_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4722645Z test_comprehensive_chalf_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4722990Z test_comprehensive_chalf_cpu_complex32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4723345Z test_comprehensive_chalf_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4723703Z test_comprehensive_chalf_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4724038Z test_comprehensive_chalf_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4724385Z test_comprehensive_chalf_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4724731Z test_comprehensive_chalf_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4725079Z test_comprehensive_chalf_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4725446Z test_comprehensive_chalf_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4725792Z test_comprehensive_chalf_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4726135Z test_comprehensive_chalf_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4726481Z test_comprehensive_char_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4726813Z test_comprehensive_char_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4727167Z test_comprehensive_char_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4727521Z test_comprehensive_char_cpu_complex32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4727864Z test_comprehensive_char_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4728222Z test_comprehensive_char_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4728570Z test_comprehensive_char_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4728916Z test_comprehensive_char_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4729245Z test_comprehensive_char_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4729589Z test_comprehensive_char_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4729932Z test_comprehensive_char_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4730274Z test_comprehensive_char_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4730605Z test_comprehensive_char_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4730962Z test_comprehensive_cholesky_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4731327Z test_comprehensive_cholesky_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4731687Z test_comprehensive_cholesky_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4732032Z test_comprehensive_cholesky_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4732403Z test_comprehensive_cholesky_inverse_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4732787Z test_comprehensive_cholesky_inverse_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4733185Z test_comprehensive_cholesky_inverse_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4733558Z test_comprehensive_cholesky_inverse_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4733924Z test_comprehensive_cholesky_solve_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4734299Z test_comprehensive_cholesky_solve_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4734652Z test_comprehensive_cholesky_solve_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4735012Z test_comprehensive_cholesky_solve_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4735371Z test_comprehensive_chunk_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4735718Z test_comprehensive_chunk_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4736060Z test_comprehensive_chunk_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4736443Z test_comprehensive_chunk_cpu_complex32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4736799Z test_comprehensive_chunk_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4737149Z test_comprehensive_chunk_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4737487Z test_comprehensive_chunk_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4737833Z test_comprehensive_chunk_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4738173Z test_comprehensive_chunk_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4738502Z test_comprehensive_chunk_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4738842Z test_comprehensive_chunk_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4739185Z test_comprehensive_chunk_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4739613Z test_comprehensive_chunk_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4739948Z test_comprehensive_clamp_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4740298Z test_comprehensive_clamp_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4740646Z test_comprehensive_clamp_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4740989Z test_comprehensive_clamp_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4741323Z test_comprehensive_clamp_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4741672Z test_comprehensive_clamp_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4742020Z test_comprehensive_clamp_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4742353Z test_comprehensive_clamp_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4742703Z test_comprehensive_clamp_max_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4743060Z test_comprehensive_clamp_max_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4743416Z test_comprehensive_clamp_max_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4743757Z test_comprehensive_clamp_max_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4744155Z test_comprehensive_clamp_max_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4744511Z test_comprehensive_clamp_max_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4744860Z test_comprehensive_clamp_max_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4745197Z test_comprehensive_clamp_max_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4745548Z test_comprehensive_clamp_max_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4745898Z test_comprehensive_clamp_max_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4746246Z test_comprehensive_clamp_min_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4746599Z test_comprehensive_clamp_min_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4746951Z test_comprehensive_clamp_min_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4747334Z test_comprehensive_clamp_min_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4747675Z test_comprehensive_clamp_min_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4748026Z test_comprehensive_clamp_min_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4748372Z test_comprehensive_clamp_min_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4748718Z test_comprehensive_clamp_min_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4749056Z test_comprehensive_clamp_min_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4749404Z test_comprehensive_clamp_min_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4749750Z test_comprehensive_clone_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4750093Z test_comprehensive_clone_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4750431Z test_comprehensive_clone_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4750784Z test_comprehensive_clone_cpu_complex32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4751134Z test_comprehensive_clone_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4751468Z test_comprehensive_clone_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4751816Z test_comprehensive_clone_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4752162Z test_comprehensive_clone_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4752503Z test_comprehensive_clone_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4752832Z test_comprehensive_clone_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4753172Z test_comprehensive_clone_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4753513Z test_comprehensive_clone_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4753852Z test_comprehensive_clone_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4754193Z test_comprehensive_column_stack_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4754554Z test_comprehensive_column_stack_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4754949Z test_comprehensive_column_stack_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4755305Z test_comprehensive_column_stack_cpu_complex32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4755675Z test_comprehensive_column_stack_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4756036Z test_comprehensive_column_stack_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4756393Z test_comprehensive_column_stack_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4756740Z test_comprehensive_column_stack_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4757098Z test_comprehensive_column_stack_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4757455Z test_comprehensive_column_stack_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4757836Z test_comprehensive_column_stack_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4758177Z test_comprehensive_column_stack_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4758531Z test_comprehensive_column_stack_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4758885Z test_comprehensive_combinations_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4759247Z test_comprehensive_combinations_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4759602Z test_comprehensive_combinations_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4759972Z test_comprehensive_combinations_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4760342Z test_comprehensive_combinations_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4760828Z test_comprehensive_combinations_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4761181Z test_comprehensive_combinations_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4761547Z test_comprehensive_combinations_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4761909Z test_comprehensive_combinations_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4762252Z test_comprehensive_combinations_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4762607Z test_comprehensive_combinations_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4762968Z test_comprehensive_combinations_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4763321Z test_comprehensive_complex_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4763665Z test_comprehensive_complex_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4764016Z test_comprehensive_complex_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4764367Z test_comprehensive_conj_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4764712Z test_comprehensive_conj_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4765047Z test_comprehensive_conj_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4765398Z test_comprehensive_conj_cpu_complex32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4765805Z test_comprehensive_conj_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4766145Z test_comprehensive_conj_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4766498Z test_comprehensive_conj_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4766845Z test_comprehensive_conj_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4767194Z test_comprehensive_conj_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4767526Z test_comprehensive_conj_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4767876Z test_comprehensive_conj_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4768217Z test_comprehensive_conj_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4768558Z test_comprehensive_conj_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4768939Z test_comprehensive_conj_physical_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4769307Z test_comprehensive_conj_physical_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4769675Z test_comprehensive_conj_physical_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4770049Z test_comprehensive_conj_physical_cpu_complex32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4770403Z test_comprehensive_conj_physical_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4770764Z test_comprehensive_conj_physical_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4771136Z test_comprehensive_conj_physical_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4771492Z test_comprehensive_conj_physical_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4771854Z test_comprehensive_conj_physical_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4772208Z test_comprehensive_conj_physical_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4772559Z test_comprehensive_conj_physical_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4772900Z test_comprehensive_conj_physical_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4773258Z test_comprehensive_conj_physical_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4773625Z test_comprehensive_constant_pad_nd_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4773999Z test_comprehensive_constant_pad_nd_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4774357Z test_comprehensive_constant_pad_nd_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4774732Z test_comprehensive_constant_pad_nd_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4775104Z test_comprehensive_constant_pad_nd_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4775469Z test_comprehensive_constant_pad_nd_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4775818Z test_comprehensive_constant_pad_nd_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4776182Z test_comprehensive_constant_pad_nd_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4776575Z test_comprehensive_constant_pad_nd_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4776926Z test_comprehensive_constant_pad_nd_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4777290Z test_comprehensive_constant_pad_nd_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4777654Z test_comprehensive_constant_pad_nd_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4778017Z test_comprehensive_contiguous_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4778366Z test_comprehensive_contiguous_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4778727Z test_comprehensive_contiguous_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4779096Z test_comprehensive_contiguous_cpu_complex32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4779594Z test_comprehensive_contiguous_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4779951Z test_comprehensive_contiguous_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4780314Z test_comprehensive_contiguous_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4780672Z test_comprehensive_contiguous_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4781028Z test_comprehensive_contiguous_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4781373Z test_comprehensive_contiguous_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4781727Z test_comprehensive_contiguous_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4782089Z test_comprehensive_contiguous_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4782431Z test_comprehensive_contiguous_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4782791Z test_comprehensive_copysign_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4783148Z test_comprehensive_copysign_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4783502Z test_comprehensive_copysign_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4783845Z test_comprehensive_copysign_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4784197Z test_comprehensive_copysign_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4784551Z test_comprehensive_copysign_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4784906Z test_comprehensive_copysign_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4785246Z test_comprehensive_copysign_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4785602Z test_comprehensive_copysign_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4785952Z test_comprehensive_copysign_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4786305Z test_comprehensive_corrcoef_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4786654Z test_comprehensive_corrcoef_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4787018Z test_comprehensive_corrcoef_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4787408Z test_comprehensive_corrcoef_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4787756Z test_comprehensive_corrcoef_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4788108Z test_comprehensive_corrcoef_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4788453Z test_comprehensive_corrcoef_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4788801Z test_comprehensive_corrcoef_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4789138Z test_comprehensive_corrcoef_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4789490Z test_comprehensive_corrcoef_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4789837Z test_comprehensive_cos_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4790184Z test_comprehensive_cos_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4790543Z test_comprehensive_cos_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4790893Z test_comprehensive_cos_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4791238Z test_comprehensive_cos_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4791569Z test_comprehensive_cos_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4791909Z test_comprehensive_cos_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4792246Z test_comprehensive_cos_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4792578Z test_comprehensive_cos_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4792907Z test_comprehensive_cos_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4793244Z test_comprehensive_cos_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4793586Z test_comprehensive_cosh_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4793928Z test_comprehensive_cosh_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4794263Z test_comprehensive_cosh_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4794613Z test_comprehensive_cosh_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4794960Z test_comprehensive_cosh_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4795293Z test_comprehensive_cosh_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4795641Z test_comprehensive_cosh_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4795984Z test_comprehensive_cosh_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4796325Z test_comprehensive_cosh_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4796648Z test_comprehensive_cosh_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4796989Z test_comprehensive_cosh_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4797340Z test_comprehensive_count_nonzero_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4797702Z test_comprehensive_count_nonzero_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4798062Z test_comprehensive_count_nonzero_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4798467Z test_comprehensive_count_nonzero_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4798839Z test_comprehensive_count_nonzero_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4799203Z test_comprehensive_count_nonzero_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4799548Z test_comprehensive_count_nonzero_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4799910Z test_comprehensive_count_nonzero_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4800266Z test_comprehensive_count_nonzero_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4800749Z test_comprehensive_count_nonzero_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4801122Z test_comprehensive_count_nonzero_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4801539Z test_comprehensive_count_nonzero_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4801895Z test_comprehensive_cov_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4802239Z test_comprehensive_cov_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4802593Z test_comprehensive_cov_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4802938Z test_comprehensive_cov_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4803282Z test_comprehensive_cov_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4803609Z test_comprehensive_cov_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4803951Z test_comprehensive_cov_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4804289Z test_comprehensive_cov_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4804614Z test_comprehensive_cov_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4804945Z test_comprehensive_cov_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4805290Z test_comprehensive_cross_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4805646Z test_comprehensive_cross_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4805987Z test_comprehensive_cross_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4806337Z test_comprehensive_cross_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4806687Z test_comprehensive_cross_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4807030Z test_comprehensive_cross_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4807362Z test_comprehensive_cross_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4807702Z test_comprehensive_cross_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4808041Z test_comprehensive_cross_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4808367Z test_comprehensive_cross_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4808714Z test_comprehensive_cummax_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4809068Z test_comprehensive_cummax_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4809454Z test_comprehensive_cummax_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4809794Z test_comprehensive_cummax_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4810141Z test_comprehensive_cummax_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4810487Z test_comprehensive_cummax_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4810836Z test_comprehensive_cummax_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4811164Z test_comprehensive_cummax_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4841095Z test_comprehensive_cummax_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4841464Z test_comprehensive_cummin_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4841839Z test_comprehensive_cummin_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4842332Z test_comprehensive_cummin_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4842692Z test_comprehensive_cummin_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4843036Z test_comprehensive_cummin_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4843384Z test_comprehensive_cummin_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4843735Z test_comprehensive_cummin_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4844069Z test_comprehensive_cummin_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4844418Z test_comprehensive_cummin_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4844779Z test_comprehensive_cumprod_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4845143Z test_comprehensive_cumprod_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4845496Z test_comprehensive_cumprod_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4845854Z test_comprehensive_cumprod_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4846203Z test_comprehensive_cumprod_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4846556Z test_comprehensive_cumprod_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4846888Z test_comprehensive_cumprod_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4847237Z test_comprehensive_cumprod_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4847583Z test_comprehensive_cumprod_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4847921Z test_comprehensive_cumprod_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4848276Z test_comprehensive_cumsum_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4848634Z test_comprehensive_cumsum_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4848991Z test_comprehensive_cumsum_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4849329Z test_comprehensive_cumsum_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4849675Z test_comprehensive_cumsum_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4850078Z test_comprehensive_cumsum_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4850423Z test_comprehensive_cumsum_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4850752Z test_comprehensive_cumsum_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4851096Z test_comprehensive_cumsum_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4851447Z test_comprehensive_cumsum_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4851806Z test_comprehensive_cumulative_trapezoid_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4852204Z test_comprehensive_cumulative_trapezoid_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4852603Z test_comprehensive_cumulative_trapezoid_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4853026Z test_comprehensive_cumulative_trapezoid_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4853394Z test_comprehensive_cumulative_trapezoid_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4853773Z test_comprehensive_cumulative_trapezoid_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4854145Z test_comprehensive_cumulative_trapezoid_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4854521Z test_comprehensive_cumulative_trapezoid_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4854885Z test_comprehensive_cumulative_trapezoid_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4855266Z test_comprehensive_cumulative_trapezoid_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4855636Z test_comprehensive_deg2rad_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4855988Z test_comprehensive_deg2rad_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4856328Z test_comprehensive_deg2rad_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4856682Z test_comprehensive_deg2rad_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4857034Z test_comprehensive_deg2rad_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4857391Z test_comprehensive_deg2rad_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4857727Z test_comprehensive_deg2rad_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4858074Z test_comprehensive_deg2rad_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4858420Z test_comprehensive_deg2rad_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4858754Z test_comprehensive_deg2rad_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4859099Z test_comprehensive_diag_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4859531Z test_comprehensive_diag_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4859885Z test_comprehensive_diag_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4860228Z test_comprehensive_diag_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4860588Z test_comprehensive_diag_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4860975Z test_comprehensive_diag_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4861321Z test_comprehensive_diag_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4861471Z test_comprehensive_diag_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4861627Z test_comprehensive_diag_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4861781Z test_comprehensive_diag_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4861940Z test_comprehensive_diag_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4862100Z test_comprehensive_diag_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4862274Z test_comprehensive_diag_embed_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4862444Z test_comprehensive_diag_embed_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.003s) 2023-01-11T20:52:32.4862654Z test_comprehensive_diag_embed_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4862834Z test_comprehensive_diag_embed_cpu_complex32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4862995Z test_comprehensive_diag_embed_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4863169Z test_comprehensive_diag_embed_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4863339Z test_comprehensive_diag_embed_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4863506Z test_comprehensive_diag_embed_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4863677Z test_comprehensive_diag_embed_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4863844Z test_comprehensive_diag_embed_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4864015Z test_comprehensive_diag_embed_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4864183Z test_comprehensive_diag_embed_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4864353Z test_comprehensive_diag_embed_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4864512Z test_comprehensive_diagflat_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4864676Z test_comprehensive_diagflat_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4864847Z test_comprehensive_diagflat_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4865021Z test_comprehensive_diagflat_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4865190Z test_comprehensive_diagflat_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4865360Z test_comprehensive_diagflat_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4865526Z test_comprehensive_diagflat_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4865694Z test_comprehensive_diagflat_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4865860Z test_comprehensive_diagflat_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4866012Z test_comprehensive_diagflat_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4866179Z test_comprehensive_diagflat_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4866384Z test_comprehensive_diagflat_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4866565Z test_comprehensive_diagonal_copy_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4866737Z test_comprehensive_diagonal_copy_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4866917Z test_comprehensive_diagonal_copy_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4867098Z test_comprehensive_diagonal_copy_cpu_complex32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4867278Z test_comprehensive_diagonal_copy_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4867450Z test_comprehensive_diagonal_copy_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4867613Z test_comprehensive_diagonal_copy_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4867810Z test_comprehensive_diagonal_copy_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4867983Z test_comprehensive_diagonal_copy_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4868156Z test_comprehensive_diagonal_copy_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4868324Z test_comprehensive_diagonal_copy_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4868495Z test_comprehensive_diagonal_copy_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4868661Z test_comprehensive_diagonal_copy_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4868831Z test_comprehensive_diagonal_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4869000Z test_comprehensive_diagonal_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4869162Z test_comprehensive_diagonal_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4869331Z test_comprehensive_diagonal_cpu_complex32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4869500Z test_comprehensive_diagonal_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4869671Z test_comprehensive_diagonal_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4869835Z test_comprehensive_diagonal_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4870004Z test_comprehensive_diagonal_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4870174Z test_comprehensive_diagonal_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4870340Z test_comprehensive_diagonal_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4870508Z test_comprehensive_diagonal_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4870663Z test_comprehensive_diagonal_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4870831Z test_comprehensive_diagonal_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4871014Z test_comprehensive_diagonal_scatter_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4871187Z test_comprehensive_diagonal_scatter_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4871362Z test_comprehensive_diagonal_scatter_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4871575Z test_comprehensive_diagonal_scatter_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4871757Z test_comprehensive_diagonal_scatter_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4871936Z test_comprehensive_diagonal_scatter_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4872114Z test_comprehensive_diagonal_scatter_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4872276Z test_comprehensive_diagonal_scatter_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4872451Z test_comprehensive_diagonal_scatter_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4872626Z test_comprehensive_diagonal_scatter_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4872800Z test_comprehensive_diagonal_scatter_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4873003Z test_comprehensive_diagonal_scatter_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4873169Z test_comprehensive_diff_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4873328Z test_comprehensive_diff_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4873498Z test_comprehensive_diff_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4873668Z test_comprehensive_diff_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4873831Z test_comprehensive_diff_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4873981Z test_comprehensive_diff_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4874140Z test_comprehensive_diff_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4874303Z test_comprehensive_diff_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4874460Z test_comprehensive_diff_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4874622Z test_comprehensive_diff_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4874781Z test_comprehensive_diff_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4874943Z test_comprehensive_diff_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4875114Z test_comprehensive_digamma_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4875270Z test_comprehensive_digamma_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4875441Z test_comprehensive_digamma_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4875610Z test_comprehensive_digamma_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4875776Z test_comprehensive_digamma_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4875935Z test_comprehensive_digamma_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4876096Z test_comprehensive_digamma_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4876260Z test_comprehensive_digamma_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4876424Z test_comprehensive_digamma_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4876614Z test_comprehensive_dist_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4876768Z test_comprehensive_dist_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4876938Z test_comprehensive_dist_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4877100Z test_comprehensive_dist_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4877258Z test_comprehensive_dist_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4877414Z test_comprehensive_dist_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4877597Z test_comprehensive_div_floor_rounding_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4877776Z test_comprehensive_div_floor_rounding_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4877959Z test_comprehensive_div_floor_rounding_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4878160Z test_comprehensive_div_floor_rounding_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4878325Z test_comprehensive_div_floor_rounding_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4878503Z test_comprehensive_div_floor_rounding_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4878679Z test_comprehensive_div_floor_rounding_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4878854Z test_comprehensive_div_floor_rounding_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4879030Z test_comprehensive_div_floor_rounding_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4879217Z test_comprehensive_div_no_rounding_mode_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4879401Z test_comprehensive_div_no_rounding_mode_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4879590Z test_comprehensive_div_no_rounding_mode_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4879773Z test_comprehensive_div_no_rounding_mode_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4879956Z test_comprehensive_div_no_rounding_mode_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4880122Z test_comprehensive_div_no_rounding_mode_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4880295Z test_comprehensive_div_no_rounding_mode_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4880473Z test_comprehensive_div_no_rounding_mode_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4880769Z test_comprehensive_div_no_rounding_mode_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4880951Z test_comprehensive_div_no_rounding_mode_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4881130Z test_comprehensive_div_no_rounding_mode_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4881312Z test_comprehensive_div_no_rounding_mode_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4881497Z test_comprehensive_div_trunc_rounding_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4881677Z test_comprehensive_div_trunc_rounding_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4881890Z test_comprehensive_div_trunc_rounding_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4882066Z test_comprehensive_div_trunc_rounding_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4882242Z test_comprehensive_div_trunc_rounding_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4882422Z test_comprehensive_div_trunc_rounding_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4882598Z test_comprehensive_div_trunc_rounding_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4882775Z test_comprehensive_div_trunc_rounding_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4882953Z test_comprehensive_div_trunc_rounding_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4883120Z test_comprehensive_dot_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4883297Z test_comprehensive_dot_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4883518Z test_comprehensive_dot_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4883689Z test_comprehensive_dot_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4883850Z test_comprehensive_dot_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4884012Z test_comprehensive_dot_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4884174Z test_comprehensive_dot_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4884334Z test_comprehensive_dot_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4884499Z test_comprehensive_dot_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4884660Z test_comprehensive_dot_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4884834Z test_comprehensive_double_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4884985Z test_comprehensive_double_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4885159Z test_comprehensive_double_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4885330Z test_comprehensive_double_cpu_complex32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4885502Z test_comprehensive_double_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4885671Z test_comprehensive_double_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4885842Z test_comprehensive_double_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4886013Z test_comprehensive_double_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4886176Z test_comprehensive_double_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4886337Z test_comprehensive_double_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4886482Z test_comprehensive_double_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4886691Z test_comprehensive_double_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4886878Z test_comprehensive_double_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4887052Z test_comprehensive_dsplit_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4887261Z test_comprehensive_dsplit_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4887435Z test_comprehensive_dsplit_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4887607Z test_comprehensive_dsplit_cpu_complex32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4887777Z test_comprehensive_dsplit_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4887944Z test_comprehensive_dsplit_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4888095Z test_comprehensive_dsplit_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4888263Z test_comprehensive_dsplit_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4888427Z test_comprehensive_dsplit_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4888590Z test_comprehensive_dsplit_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4888769Z test_comprehensive_dsplit_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4888936Z test_comprehensive_dsplit_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4889099Z test_comprehensive_dsplit_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4889270Z test_comprehensive_dstack_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4889435Z test_comprehensive_dstack_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4889595Z test_comprehensive_dstack_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4889761Z test_comprehensive_dstack_cpu_complex32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4889932Z test_comprehensive_dstack_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4890100Z test_comprehensive_dstack_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4890265Z test_comprehensive_dstack_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4890431Z test_comprehensive_dstack_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4890593Z test_comprehensive_dstack_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4890753Z test_comprehensive_dstack_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4890909Z test_comprehensive_dstack_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4891060Z test_comprehensive_dstack_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4891219Z test_comprehensive_dstack_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4891387Z test_comprehensive_einsum_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4891559Z test_comprehensive_einsum_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4891728Z test_comprehensive_einsum_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4891892Z test_comprehensive_einsum_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4892057Z test_comprehensive_einsum_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4892218Z test_comprehensive_einsum_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4892406Z test_comprehensive_einsum_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4892553Z test_comprehensive_einsum_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4892713Z test_comprehensive_einsum_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4892869Z test_comprehensive_einsum_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4893034Z test_comprehensive_empty_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4893197Z test_comprehensive_empty_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4893367Z test_comprehensive_empty_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4893536Z test_comprehensive_empty_cpu_complex32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4893708Z test_comprehensive_empty_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4893886Z test_comprehensive_empty_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4894051Z test_comprehensive_empty_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4894210Z test_comprehensive_empty_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4894372Z test_comprehensive_empty_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4894528Z test_comprehensive_empty_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4894689Z test_comprehensive_empty_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4894851Z test_comprehensive_empty_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4895015Z test_comprehensive_empty_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4895190Z test_comprehensive_empty_like_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4895345Z test_comprehensive_empty_like_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4895520Z test_comprehensive_empty_like_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4895688Z test_comprehensive_empty_like_cpu_complex32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4895862Z test_comprehensive_empty_like_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4896026Z test_comprehensive_empty_like_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4896198Z test_comprehensive_empty_like_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4896368Z test_comprehensive_empty_like_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4896538Z test_comprehensive_empty_like_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4896708Z test_comprehensive_empty_like_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4896863Z test_comprehensive_empty_like_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4897028Z test_comprehensive_empty_like_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4897195Z test_comprehensive_empty_like_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4897359Z test_comprehensive_eq_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4897545Z test_comprehensive_eq_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4897715Z test_comprehensive_eq_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4897882Z test_comprehensive_eq_cpu_complex32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4898047Z test_comprehensive_eq_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4898207Z test_comprehensive_eq_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4898350Z test_comprehensive_eq_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4898504Z test_comprehensive_eq_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4898663Z test_comprehensive_eq_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4898823Z test_comprehensive_eq_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4899015Z test_comprehensive_eq_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4899168Z test_comprehensive_eq_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4899410Z test_comprehensive_eq_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4899586Z test_comprehensive_equal_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4899750Z test_comprehensive_equal_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4899907Z test_comprehensive_equal_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4900079Z test_comprehensive_equal_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4900250Z test_comprehensive_equal_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4900415Z test_comprehensive_equal_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4900581Z test_comprehensive_equal_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4900744Z test_comprehensive_equal_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4900904Z test_comprehensive_equal_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4901064Z test_comprehensive_equal_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4901227Z test_comprehensive_equal_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4901378Z test_comprehensive_equal_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4901548Z test_comprehensive_erf_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4901711Z test_comprehensive_erf_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4901876Z test_comprehensive_erf_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4902037Z test_comprehensive_erf_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4902198Z test_comprehensive_erf_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4902358Z test_comprehensive_erf_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4902519Z test_comprehensive_erf_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4902680Z test_comprehensive_erf_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4902859Z test_comprehensive_erf_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4903027Z test_comprehensive_erfc_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4903187Z test_comprehensive_erfc_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4903352Z test_comprehensive_erfc_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4903506Z test_comprehensive_erfc_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4903667Z test_comprehensive_erfc_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4903822Z test_comprehensive_erfc_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4903977Z test_comprehensive_erfc_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4904125Z test_comprehensive_erfc_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4904316Z test_comprehensive_erfc_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4904486Z test_comprehensive_erfinv_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4904647Z test_comprehensive_erfinv_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4904814Z test_comprehensive_erfinv_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4904982Z test_comprehensive_erfinv_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4905146Z test_comprehensive_erfinv_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4905306Z test_comprehensive_erfinv_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4905475Z test_comprehensive_erfinv_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4905626Z test_comprehensive_erfinv_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4905790Z test_comprehensive_erfinv_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4905957Z test_comprehensive_exp2_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4906117Z test_comprehensive_exp2_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4906282Z test_comprehensive_exp2_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4906445Z test_comprehensive_exp2_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4906604Z test_comprehensive_exp2_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4906770Z test_comprehensive_exp2_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4906931Z test_comprehensive_exp2_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4907080Z test_comprehensive_exp2_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4907239Z test_comprehensive_exp2_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4907400Z test_comprehensive_exp2_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4907564Z test_comprehensive_exp_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4907725Z test_comprehensive_exp_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4907894Z test_comprehensive_exp_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4908091Z test_comprehensive_exp_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4908257Z test_comprehensive_exp_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4908416Z test_comprehensive_exp_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4908564Z test_comprehensive_exp_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4908722Z test_comprehensive_exp_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4908880Z test_comprehensive_exp_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4909033Z test_comprehensive_exp_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4909192Z test_comprehensive_exp_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4909365Z test_comprehensive_expand_as_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4909563Z test_comprehensive_expand_as_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4909734Z test_comprehensive_expand_as_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4909900Z test_comprehensive_expand_as_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4910059Z test_comprehensive_expand_as_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4910229Z test_comprehensive_expand_as_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4910390Z test_comprehensive_expand_as_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4910563Z test_comprehensive_expand_as_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4910723Z test_comprehensive_expand_as_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4910883Z test_comprehensive_expand_as_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4911051Z test_comprehensive_expand_as_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4911213Z test_comprehensive_expand_as_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4911371Z test_comprehensive_expand_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4911523Z test_comprehensive_expand_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4911695Z test_comprehensive_expand_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4911861Z test_comprehensive_expand_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4912022Z test_comprehensive_expand_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4912184Z test_comprehensive_expand_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4912344Z test_comprehensive_expand_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4912512Z test_comprehensive_expand_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4912670Z test_comprehensive_expand_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4912823Z test_comprehensive_expand_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4912974Z test_comprehensive_expand_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4913165Z test_comprehensive_expand_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4913325Z test_comprehensive_expm1_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4913487Z test_comprehensive_expm1_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4913644Z test_comprehensive_expm1_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4913799Z test_comprehensive_expm1_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4913960Z test_comprehensive_expm1_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4914107Z test_comprehensive_expm1_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4914269Z test_comprehensive_expm1_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4914420Z test_comprehensive_expm1_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4914606Z test_comprehensive_expm1_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4914768Z test_comprehensive_eye_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4914929Z test_comprehensive_eye_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4915096Z test_comprehensive_eye_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4915258Z test_comprehensive_eye_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4915408Z test_comprehensive_eye_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4915557Z test_comprehensive_eye_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4915707Z test_comprehensive_eye_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4915867Z test_comprehensive_eye_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4916016Z test_comprehensive_eye_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4916167Z test_comprehensive_eye_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4916325Z test_comprehensive_eye_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4916482Z test_comprehensive_fft_fft2_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4916646Z test_comprehensive_fft_fft2_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4916812Z test_comprehensive_fft_fft2_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4916981Z test_comprehensive_fft_fft2_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4917139Z test_comprehensive_fft_fft2_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4917296Z test_comprehensive_fft_fft2_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4917448Z test_comprehensive_fft_fft2_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4917610Z test_comprehensive_fft_fft2_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4917766Z test_comprehensive_fft_fft2_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4917922Z test_comprehensive_fft_fft2_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4918117Z test_comprehensive_fft_fft_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4918283Z test_comprehensive_fft_fft_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4918446Z test_comprehensive_fft_fft_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4918600Z test_comprehensive_fft_fft_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4918766Z test_comprehensive_fft_fft_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4918919Z test_comprehensive_fft_fft_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4919080Z test_comprehensive_fft_fft_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4919231Z test_comprehensive_fft_fft_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4919389Z test_comprehensive_fft_fft_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4919575Z test_comprehensive_fft_fft_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4919727Z test_comprehensive_fft_fftn_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4919895Z test_comprehensive_fft_fftn_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4920053Z test_comprehensive_fft_fftn_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4920222Z test_comprehensive_fft_fftn_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4920380Z test_comprehensive_fft_fftn_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4920537Z test_comprehensive_fft_fftn_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4920842Z test_comprehensive_fft_fftn_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4921002Z test_comprehensive_fft_fftn_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4921161Z test_comprehensive_fft_fftn_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4921326Z test_comprehensive_fft_fftn_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4921496Z test_comprehensive_fft_fftshift_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4921655Z test_comprehensive_fft_fftshift_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4921827Z test_comprehensive_fft_fftshift_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4922007Z test_comprehensive_fft_fftshift_cpu_complex32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4922176Z test_comprehensive_fft_fftshift_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4922351Z test_comprehensive_fft_fftshift_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4922524Z test_comprehensive_fft_fftshift_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4922693Z test_comprehensive_fft_fftshift_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4922855Z test_comprehensive_fft_fftshift_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4923027Z test_comprehensive_fft_fftshift_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4923186Z test_comprehensive_fft_fftshift_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4923415Z test_comprehensive_fft_fftshift_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4923577Z test_comprehensive_fft_fftshift_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4923743Z test_comprehensive_fft_hfft2_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4923908Z test_comprehensive_fft_hfft2_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4924073Z test_comprehensive_fft_hfft2_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4924237Z test_comprehensive_fft_hfft2_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4924405Z test_comprehensive_fft_hfft2_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4924565Z test_comprehensive_fft_hfft2_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4924768Z test_comprehensive_fft_hfft2_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4924918Z test_comprehensive_fft_hfft2_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4925081Z test_comprehensive_fft_hfft2_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4925233Z test_comprehensive_fft_hfft2_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4925399Z test_comprehensive_fft_hfft_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4925564Z test_comprehensive_fft_hfft_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4925729Z test_comprehensive_fft_hfft_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4925898Z test_comprehensive_fft_hfft_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4926059Z test_comprehensive_fft_hfft_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4926218Z test_comprehensive_fft_hfft_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4926366Z test_comprehensive_fft_hfft_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4926525Z test_comprehensive_fft_hfft_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4926683Z test_comprehensive_fft_hfft_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4926841Z test_comprehensive_fft_hfft_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4927005Z test_comprehensive_fft_hfftn_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4927176Z test_comprehensive_fft_hfftn_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4927343Z test_comprehensive_fft_hfftn_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4927512Z test_comprehensive_fft_hfftn_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4927671Z test_comprehensive_fft_hfftn_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4927824Z test_comprehensive_fft_hfftn_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4927977Z test_comprehensive_fft_hfftn_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4928141Z test_comprehensive_fft_hfftn_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4928335Z test_comprehensive_fft_hfftn_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4928496Z test_comprehensive_fft_hfftn_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4928659Z test_comprehensive_fft_ifft2_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4928825Z test_comprehensive_fft_ifft2_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4928987Z test_comprehensive_fft_ifft2_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4929146Z test_comprehensive_fft_ifft2_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4929302Z test_comprehensive_fft_ifft2_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4929456Z test_comprehensive_fft_ifft2_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4929613Z test_comprehensive_fft_ifft2_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4929806Z test_comprehensive_fft_ifft2_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4929966Z test_comprehensive_fft_ifft2_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4930122Z test_comprehensive_fft_ifft2_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4930284Z test_comprehensive_fft_ifft_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4930449Z test_comprehensive_fft_ifft_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4930619Z test_comprehensive_fft_ifft_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4930774Z test_comprehensive_fft_ifft_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4930936Z test_comprehensive_fft_ifft_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4931096Z test_comprehensive_fft_ifft_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4931260Z test_comprehensive_fft_ifft_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4931414Z test_comprehensive_fft_ifft_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4931571Z test_comprehensive_fft_ifft_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4931727Z test_comprehensive_fft_ifft_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4931887Z test_comprehensive_fft_ifftn_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4932057Z test_comprehensive_fft_ifftn_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4932219Z test_comprehensive_fft_ifftn_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4932380Z test_comprehensive_fft_ifftn_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4932541Z test_comprehensive_fft_ifftn_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4932704Z test_comprehensive_fft_ifftn_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4932864Z test_comprehensive_fft_ifftn_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4933021Z test_comprehensive_fft_ifftn_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4933186Z test_comprehensive_fft_ifftn_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4933370Z test_comprehensive_fft_ifftn_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4933542Z test_comprehensive_fft_ifftshift_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4933702Z test_comprehensive_fft_ifftshift_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4933875Z test_comprehensive_fft_ifftshift_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4934049Z test_comprehensive_fft_ifftshift_cpu_complex32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4934220Z test_comprehensive_fft_ifftshift_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4934393Z test_comprehensive_fft_ifftshift_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4934560Z test_comprehensive_fft_ifftshift_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4934749Z test_comprehensive_fft_ifftshift_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4934915Z test_comprehensive_fft_ifftshift_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4935083Z test_comprehensive_fft_ifftshift_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4935240Z test_comprehensive_fft_ifftshift_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4935403Z test_comprehensive_fft_ifftshift_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4935562Z test_comprehensive_fft_ifftshift_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4935728Z test_comprehensive_fft_ihfft2_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4935890Z test_comprehensive_fft_ihfft2_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4936052Z test_comprehensive_fft_ihfft2_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4936211Z test_comprehensive_fft_ihfft2_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4936378Z test_comprehensive_fft_ihfft2_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4936536Z test_comprehensive_fft_ihfft2_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4936688Z test_comprehensive_fft_ihfft2_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4936856Z test_comprehensive_fft_ihfft2_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4937017Z test_comprehensive_fft_ihfft_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4937188Z test_comprehensive_fft_ihfft_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4937350Z test_comprehensive_fft_ihfft_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4937508Z test_comprehensive_fft_ihfft_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4937667Z test_comprehensive_fft_ihfft_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4937829Z test_comprehensive_fft_ihfft_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4937987Z test_comprehensive_fft_ihfft_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.002s) 2023-01-11T20:52:32.4938139Z test_comprehensive_fft_ihfft_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4938328Z test_comprehensive_fft_ihfftn_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4938501Z test_comprehensive_fft_ihfftn_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4938665Z test_comprehensive_fft_ihfftn_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4938826Z test_comprehensive_fft_ihfftn_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4938991Z test_comprehensive_fft_ihfftn_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4939148Z test_comprehensive_fft_ihfftn_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4939374Z test_comprehensive_fft_ihfftn_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4939543Z test_comprehensive_fft_ihfftn_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4939700Z test_comprehensive_fft_irfft2_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4939900Z test_comprehensive_fft_irfft2_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4940069Z test_comprehensive_fft_irfft2_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4940230Z test_comprehensive_fft_irfft2_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4940390Z test_comprehensive_fft_irfft2_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4940558Z test_comprehensive_fft_irfft2_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4940716Z test_comprehensive_fft_irfft2_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4940871Z test_comprehensive_fft_irfft2_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4941038Z test_comprehensive_fft_irfft2_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4941191Z test_comprehensive_fft_irfft2_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4941351Z test_comprehensive_fft_irfft_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4941517Z test_comprehensive_fft_irfft_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4941692Z test_comprehensive_fft_irfft_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4941854Z test_comprehensive_fft_irfft_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4942018Z test_comprehensive_fft_irfft_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4942185Z test_comprehensive_fft_irfft_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4942345Z test_comprehensive_fft_irfft_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4942501Z test_comprehensive_fft_irfft_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4942655Z test_comprehensive_fft_irfft_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4942820Z test_comprehensive_fft_irfft_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4942977Z test_comprehensive_fft_irfftn_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4943149Z test_comprehensive_fft_irfftn_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4943323Z test_comprehensive_fft_irfftn_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4943519Z test_comprehensive_fft_irfftn_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4943691Z test_comprehensive_fft_irfftn_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4943855Z test_comprehensive_fft_irfftn_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4944015Z test_comprehensive_fft_irfftn_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4944164Z test_comprehensive_fft_irfftn_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4944331Z test_comprehensive_fft_irfftn_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4944489Z test_comprehensive_fft_irfftn_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4944658Z test_comprehensive_fft_rfft2_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4944847Z test_comprehensive_fft_rfft2_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4945006Z test_comprehensive_fft_rfft2_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4945168Z test_comprehensive_fft_rfft2_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4945324Z test_comprehensive_fft_rfft2_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4945486Z test_comprehensive_fft_rfft2_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4945638Z test_comprehensive_fft_rfft2_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4945796Z test_comprehensive_fft_rfft2_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4945957Z test_comprehensive_fft_rfft_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4946126Z test_comprehensive_fft_rfft_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4946286Z test_comprehensive_fft_rfft_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4946445Z test_comprehensive_fft_rfft_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4946605Z test_comprehensive_fft_rfft_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4946760Z test_comprehensive_fft_rfft_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4946917Z test_comprehensive_fft_rfft_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4947071Z test_comprehensive_fft_rfft_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4947238Z test_comprehensive_fft_rfftn_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4947403Z test_comprehensive_fft_rfftn_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4947568Z test_comprehensive_fft_rfftn_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4947732Z test_comprehensive_fft_rfftn_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4947893Z test_comprehensive_fft_rfftn_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4948052Z test_comprehensive_fft_rfftn_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4948216Z test_comprehensive_fft_rfftn_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4948414Z test_comprehensive_fft_rfftn_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4948570Z test_comprehensive_fill_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4948734Z test_comprehensive_fill_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4948892Z test_comprehensive_fill_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4949054Z test_comprehensive_fill_cpu_complex32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4949219Z test_comprehensive_fill_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4949378Z test_comprehensive_fill_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4949539Z test_comprehensive_fill_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4949694Z test_comprehensive_fill_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4949885Z test_comprehensive_fill_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4950030Z test_comprehensive_fill_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4950185Z test_comprehensive_fill_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4950334Z test_comprehensive_fill_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4950490Z test_comprehensive_fill_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4950661Z test_comprehensive_flatten_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4950819Z test_comprehensive_flatten_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4950989Z test_comprehensive_flatten_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4951162Z test_comprehensive_flatten_cpu_complex32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4951325Z test_comprehensive_flatten_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4951480Z test_comprehensive_flatten_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4951642Z test_comprehensive_flatten_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4951806Z test_comprehensive_flatten_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4951964Z test_comprehensive_flatten_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4952124Z test_comprehensive_flatten_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4952286Z test_comprehensive_flatten_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4952449Z test_comprehensive_flatten_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4952610Z test_comprehensive_flatten_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4952769Z test_comprehensive_flip_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4952920Z test_comprehensive_flip_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4953081Z test_comprehensive_flip_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4953240Z test_comprehensive_flip_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4953428Z test_comprehensive_flip_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4953582Z test_comprehensive_flip_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4953735Z test_comprehensive_flip_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4953890Z test_comprehensive_flip_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4954041Z test_comprehensive_flip_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4954183Z test_comprehensive_flip_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4954334Z test_comprehensive_flip_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4954490Z test_comprehensive_flip_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4954656Z test_comprehensive_fliplr_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4954822Z test_comprehensive_fliplr_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4955017Z test_comprehensive_fliplr_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4955190Z test_comprehensive_fliplr_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4955351Z test_comprehensive_fliplr_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4955513Z test_comprehensive_fliplr_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4955668Z test_comprehensive_fliplr_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4955831Z test_comprehensive_fliplr_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4955995Z test_comprehensive_fliplr_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4956150Z test_comprehensive_fliplr_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4956306Z test_comprehensive_fliplr_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4956472Z test_comprehensive_fliplr_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4956633Z test_comprehensive_flipud_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4956793Z test_comprehensive_flipud_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4956964Z test_comprehensive_flipud_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4957121Z test_comprehensive_flipud_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4957287Z test_comprehensive_flipud_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4957449Z test_comprehensive_flipud_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4957614Z test_comprehensive_flipud_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4957773Z test_comprehensive_flipud_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4957936Z test_comprehensive_flipud_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4958091Z test_comprehensive_flipud_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4958247Z test_comprehensive_flipud_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4958402Z test_comprehensive_flipud_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4958594Z test_comprehensive_float_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4958760Z test_comprehensive_float_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4958927Z test_comprehensive_float_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4959090Z test_comprehensive_float_cpu_complex32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4959258Z test_comprehensive_float_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4959419Z test_comprehensive_float_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4959582Z test_comprehensive_float_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4959742Z test_comprehensive_float_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4959904Z test_comprehensive_float_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4960075Z test_comprehensive_float_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4960232Z test_comprehensive_float_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4960390Z test_comprehensive_float_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4960544Z test_comprehensive_float_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4960878Z test_comprehensive_float_power_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4961052Z test_comprehensive_float_power_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4961230Z test_comprehensive_float_power_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4961410Z test_comprehensive_float_power_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4961577Z test_comprehensive_float_power_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4961736Z test_comprehensive_float_power_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4961897Z test_comprehensive_float_power_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4962064Z test_comprehensive_float_power_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4962223Z test_comprehensive_float_power_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4962390Z test_comprehensive_float_power_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4962556Z test_comprehensive_float_power_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4962720Z test_comprehensive_float_power_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4962881Z test_comprehensive_floor_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4963047Z test_comprehensive_floor_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4963194Z test_comprehensive_floor_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4963350Z test_comprehensive_floor_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4963507Z test_comprehensive_floor_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4963660Z test_comprehensive_floor_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4963916Z test_comprehensive_floor_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4964075Z test_comprehensive_floor_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4964252Z test_comprehensive_floor_divide_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4964422Z test_comprehensive_floor_divide_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4964591Z test_comprehensive_floor_divide_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4964752Z test_comprehensive_floor_divide_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4964924Z test_comprehensive_floor_divide_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4965092Z test_comprehensive_floor_divide_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4965296Z test_comprehensive_floor_divide_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4965462Z test_comprehensive_floor_divide_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4965629Z test_comprehensive_floor_divide_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4965794Z test_comprehensive_fmax_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4965951Z test_comprehensive_fmax_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4966118Z test_comprehensive_fmax_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4966268Z test_comprehensive_fmax_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4966430Z test_comprehensive_fmax_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4966586Z test_comprehensive_fmax_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4966741Z test_comprehensive_fmax_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4966896Z test_comprehensive_fmax_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4967050Z test_comprehensive_fmax_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4967206Z test_comprehensive_fmax_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4967371Z test_comprehensive_fmin_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4967525Z test_comprehensive_fmin_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4967676Z test_comprehensive_fmin_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4967832Z test_comprehensive_fmin_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4967996Z test_comprehensive_fmin_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4968149Z test_comprehensive_fmin_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4968297Z test_comprehensive_fmin_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4968452Z test_comprehensive_fmin_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4968605Z test_comprehensive_fmin_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4968764Z test_comprehensive_fmin_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4968959Z test_comprehensive_fmod_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4969115Z test_comprehensive_fmod_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4969272Z test_comprehensive_fmod_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4969429Z test_comprehensive_fmod_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4969586Z test_comprehensive_fmod_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4969738Z test_comprehensive_fmod_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4969892Z test_comprehensive_fmod_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4970044Z test_comprehensive_fmod_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4970200Z test_comprehensive_fmod_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4970383Z test_comprehensive_frac_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4970550Z test_comprehensive_frac_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4970702Z test_comprehensive_frac_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4970857Z test_comprehensive_frac_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4971019Z test_comprehensive_frexp_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4971177Z test_comprehensive_frexp_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4971336Z test_comprehensive_frexp_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4971490Z test_comprehensive_frexp_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4971648Z test_comprehensive_full_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4971797Z test_comprehensive_full_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4971960Z test_comprehensive_full_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4972121Z test_comprehensive_full_cpu_complex32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4972285Z test_comprehensive_full_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4972444Z test_comprehensive_full_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4972598Z test_comprehensive_full_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4972758Z test_comprehensive_full_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4972916Z test_comprehensive_full_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4973069Z test_comprehensive_full_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4973210Z test_comprehensive_full_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4973366Z test_comprehensive_full_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4973519Z test_comprehensive_full_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4973685Z test_comprehensive_full_like_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4973876Z test_comprehensive_full_like_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4974049Z test_comprehensive_full_like_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4974224Z test_comprehensive_full_like_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4974388Z test_comprehensive_full_like_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4974553Z test_comprehensive_full_like_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4974709Z test_comprehensive_full_like_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4974876Z test_comprehensive_full_like_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4975034Z test_comprehensive_full_like_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4975201Z test_comprehensive_full_like_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4975395Z test_comprehensive_full_like_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4975562Z test_comprehensive_full_like_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4975727Z test_comprehensive_gather_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4975889Z test_comprehensive_gather_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4976062Z test_comprehensive_gather_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4976220Z test_comprehensive_gather_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4976382Z test_comprehensive_gather_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4976546Z test_comprehensive_gather_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4976714Z test_comprehensive_gather_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4976874Z test_comprehensive_gather_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4977029Z test_comprehensive_gather_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4977187Z test_comprehensive_gather_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4977344Z test_comprehensive_gather_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4977497Z test_comprehensive_gather_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4977645Z test_comprehensive_gcd_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4977807Z test_comprehensive_gcd_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4977964Z test_comprehensive_gcd_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4978126Z test_comprehensive_gcd_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4978277Z test_comprehensive_gcd_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4978439Z test_comprehensive_ge_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4978592Z test_comprehensive_ge_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4978753Z test_comprehensive_ge_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4978911Z test_comprehensive_ge_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4979081Z test_comprehensive_ge_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4979318Z test_comprehensive_ge_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4979477Z test_comprehensive_ge_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4979635Z test_comprehensive_ge_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4979790Z test_comprehensive_ge_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4979942Z test_comprehensive_ge_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4980112Z test_comprehensive_geqrf_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4980277Z test_comprehensive_geqrf_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4980442Z test_comprehensive_geqrf_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4980623Z test_comprehensive_geqrf_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4980800Z test_comprehensive_gradient_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4980973Z test_comprehensive_gradient_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4981146Z test_comprehensive_gradient_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4981317Z test_comprehensive_gradient_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4981485Z test_comprehensive_gradient_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4981661Z test_comprehensive_gradient_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4981826Z test_comprehensive_gradient_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4981993Z test_comprehensive_gradient_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4982151Z test_comprehensive_gradient_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4982317Z test_comprehensive_gradient_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4982490Z test_comprehensive_grid_sampler_2d_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4982663Z test_comprehensive_grid_sampler_2d_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4982829Z test_comprehensive_gt_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4982988Z test_comprehensive_gt_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4983148Z test_comprehensive_gt_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4983308Z test_comprehensive_gt_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4983463Z test_comprehensive_gt_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4983609Z test_comprehensive_gt_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4983761Z test_comprehensive_gt_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4983920Z test_comprehensive_gt_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4984072Z test_comprehensive_gt_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4984262Z test_comprehensive_gt_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4984426Z test_comprehensive_half_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4984582Z test_comprehensive_half_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4984752Z test_comprehensive_half_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4984907Z test_comprehensive_half_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4985066Z test_comprehensive_half_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4985224Z test_comprehensive_half_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4985377Z test_comprehensive_half_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4985535Z test_comprehensive_half_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4985720Z test_comprehensive_half_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4985877Z test_comprehensive_half_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4986037Z test_comprehensive_half_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4986192Z test_comprehensive_half_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4986355Z test_comprehensive_heaviside_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4986518Z test_comprehensive_heaviside_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4986689Z test_comprehensive_heaviside_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4986856Z test_comprehensive_heaviside_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4987029Z test_comprehensive_heaviside_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4987194Z test_comprehensive_heaviside_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4987357Z test_comprehensive_heaviside_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4987519Z test_comprehensive_heaviside_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4987684Z test_comprehensive_heaviside_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4987841Z test_comprehensive_heaviside_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4988008Z test_comprehensive_histc_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4988170Z test_comprehensive_histc_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4988333Z test_comprehensive_histc_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4988505Z test_comprehensive_histogram_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4988670Z test_comprehensive_histogram_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4988840Z test_comprehensive_histogramdd_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4989015Z test_comprehensive_histogramdd_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4989176Z test_comprehensive_hsplit_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4989357Z test_comprehensive_hsplit_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4989524Z test_comprehensive_hsplit_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4989693Z test_comprehensive_hsplit_cpu_complex32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4989855Z test_comprehensive_hsplit_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4990018Z test_comprehensive_hsplit_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4990185Z test_comprehensive_hsplit_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4990350Z test_comprehensive_hsplit_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4990511Z test_comprehensive_hsplit_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4990677Z test_comprehensive_hsplit_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4990858Z test_comprehensive_hsplit_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4991017Z test_comprehensive_hsplit_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4991173Z test_comprehensive_hsplit_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4991341Z test_comprehensive_hstack_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4991497Z test_comprehensive_hstack_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4991661Z test_comprehensive_hstack_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4991826Z test_comprehensive_hstack_cpu_complex32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4991993Z test_comprehensive_hstack_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4992155Z test_comprehensive_hstack_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4992304Z test_comprehensive_hstack_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4992470Z test_comprehensive_hstack_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4992632Z test_comprehensive_hstack_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4992791Z test_comprehensive_hstack_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4992946Z test_comprehensive_hstack_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4993103Z test_comprehensive_hstack_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4993264Z test_comprehensive_hstack_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4993430Z test_comprehensive_hypot_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4993595Z test_comprehensive_hypot_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4993744Z test_comprehensive_hypot_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4993904Z test_comprehensive_i0_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4994063Z test_comprehensive_i0_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4994226Z test_comprehensive_i0_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4994431Z test_comprehensive_i0_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4994592Z test_comprehensive_i0_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4994754Z test_comprehensive_i0_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4994912Z test_comprehensive_i0_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4995070Z test_comprehensive_i0_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4995216Z test_comprehensive_i0_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4995387Z test_comprehensive_igamma_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4995553Z test_comprehensive_igamma_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4995724Z test_comprehensive_igamma_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4995889Z test_comprehensive_igamma_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4996087Z test_comprehensive_igammac_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4996257Z test_comprehensive_igammac_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4996419Z test_comprehensive_igammac_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4996575Z test_comprehensive_igammac_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4996744Z test_comprehensive_imag_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4996913Z test_comprehensive_imag_cpu_complex32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4997080Z test_comprehensive_imag_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4997254Z test_comprehensive_index_add_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4997421Z test_comprehensive_index_add_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4997598Z test_comprehensive_index_add_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4997774Z test_comprehensive_index_add_cpu_complex32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4997949Z test_comprehensive_index_add_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4998117Z test_comprehensive_index_add_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4998276Z test_comprehensive_index_add_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4998448Z test_comprehensive_index_add_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4998619Z test_comprehensive_index_add_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4998785Z test_comprehensive_index_add_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4998947Z test_comprehensive_index_add_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4999115Z test_comprehensive_index_add_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4999283Z test_comprehensive_index_add_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4999458Z test_comprehensive_index_copy_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4999664Z test_comprehensive_index_copy_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.4999830Z test_comprehensive_index_copy_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5000005Z test_comprehensive_index_copy_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5000178Z test_comprehensive_index_copy_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5000348Z test_comprehensive_index_copy_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5000517Z test_comprehensive_index_copy_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5000862Z test_comprehensive_index_copy_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5001051Z test_comprehensive_index_copy_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5001223Z test_comprehensive_index_copy_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5001442Z test_comprehensive_index_copy_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5001597Z test_comprehensive_index_copy_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5001771Z test_comprehensive_index_fill_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5001939Z test_comprehensive_index_fill_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5002115Z test_comprehensive_index_fill_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5002291Z test_comprehensive_index_fill_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5002463Z test_comprehensive_index_fill_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5002633Z test_comprehensive_index_fill_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5002804Z test_comprehensive_index_fill_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5002972Z test_comprehensive_index_fill_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5003126Z test_comprehensive_index_fill_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5003294Z test_comprehensive_index_fill_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5003460Z test_comprehensive_index_fill_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5003631Z test_comprehensive_index_fill_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5003804Z test_comprehensive_index_put_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5003978Z test_comprehensive_index_put_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5004155Z test_comprehensive_index_put_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5004330Z test_comprehensive_index_put_cpu_complex32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5004503Z test_comprehensive_index_put_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5004661Z test_comprehensive_index_put_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5004831Z test_comprehensive_index_put_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5005000Z test_comprehensive_index_put_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5005210Z test_comprehensive_index_put_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5005378Z test_comprehensive_index_put_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5005545Z test_comprehensive_index_put_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5005712Z test_comprehensive_index_put_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5005879Z test_comprehensive_index_put_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5006055Z test_comprehensive_index_reduce_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5006218Z test_comprehensive_index_reduce_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5006397Z test_comprehensive_index_reduce_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5006614Z test_comprehensive_index_reduce_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5006786Z test_comprehensive_index_reduce_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5006954Z test_comprehensive_index_reduce_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5007124Z test_comprehensive_index_reduce_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5007292Z test_comprehensive_index_reduce_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5007464Z test_comprehensive_index_reduce_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5007639Z test_comprehensive_index_select_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5007797Z test_comprehensive_index_select_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5007984Z test_comprehensive_index_select_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5008163Z test_comprehensive_index_select_cpu_complex32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5008341Z test_comprehensive_index_select_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5008513Z test_comprehensive_index_select_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5008685Z test_comprehensive_index_select_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5008855Z test_comprehensive_index_select_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5009027Z test_comprehensive_index_select_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5009198Z test_comprehensive_index_select_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5009355Z test_comprehensive_index_select_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5009523Z test_comprehensive_index_select_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5009691Z test_comprehensive_index_select_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5009862Z test_comprehensive_inner_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5010030Z test_comprehensive_inner_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5010197Z test_comprehensive_inner_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5010396Z test_comprehensive_inner_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5010560Z test_comprehensive_inner_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5010724Z test_comprehensive_inner_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5010870Z test_comprehensive_inner_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5011031Z test_comprehensive_inner_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5011192Z test_comprehensive_inner_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5011351Z test_comprehensive_inner_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5011515Z test_comprehensive_int_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5011681Z test_comprehensive_int_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5011882Z test_comprehensive_int_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5012050Z test_comprehensive_int_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5012212Z test_comprehensive_int_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5012357Z test_comprehensive_int_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5012513Z test_comprehensive_int_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5012672Z test_comprehensive_int_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5012832Z test_comprehensive_int_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5012994Z test_comprehensive_int_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.012s) 2023-01-11T20:52:32.5013156Z test_comprehensive_int_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5013314Z test_comprehensive_int_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5013487Z test_comprehensive_isclose_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5013654Z test_comprehensive_isclose_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5013815Z test_comprehensive_isclose_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5013987Z test_comprehensive_isclose_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5014155Z test_comprehensive_isclose_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5014319Z test_comprehensive_isclose_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5014488Z test_comprehensive_isclose_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5014653Z test_comprehensive_isclose_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5014814Z test_comprehensive_isclose_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5014971Z test_comprehensive_isclose_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5015137Z test_comprehensive_isclose_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5015288Z test_comprehensive_isclose_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5015490Z test_comprehensive_isfinite_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5015653Z test_comprehensive_isfinite_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5015829Z test_comprehensive_isfinite_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5016004Z test_comprehensive_isfinite_cpu_complex32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5016176Z test_comprehensive_isfinite_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5016347Z test_comprehensive_isfinite_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5016516Z test_comprehensive_isfinite_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5016683Z test_comprehensive_isfinite_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5016838Z test_comprehensive_isfinite_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5017035Z test_comprehensive_isfinite_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5017201Z test_comprehensive_isfinite_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5017369Z test_comprehensive_isfinite_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5017534Z test_comprehensive_isfinite_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5017699Z test_comprehensive_isin_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5017861Z test_comprehensive_isin_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5018025Z test_comprehensive_isin_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5018185Z test_comprehensive_isin_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5018328Z test_comprehensive_isin_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5018488Z test_comprehensive_isin_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5018652Z test_comprehensive_isin_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5018819Z test_comprehensive_isinf_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5018980Z test_comprehensive_isinf_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5019149Z test_comprehensive_isinf_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5019389Z test_comprehensive_isinf_cpu_complex32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5019563Z test_comprehensive_isinf_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5019718Z test_comprehensive_isinf_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5019883Z test_comprehensive_isinf_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5020045Z test_comprehensive_isinf_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5020209Z test_comprehensive_isinf_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5020368Z test_comprehensive_isinf_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5020524Z test_comprehensive_isinf_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5020723Z test_comprehensive_isinf_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5020881Z test_comprehensive_isinf_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5021053Z test_comprehensive_isnan_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5021200Z test_comprehensive_isnan_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5021371Z test_comprehensive_isnan_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5021538Z test_comprehensive_isnan_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5021702Z test_comprehensive_isnan_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5021865Z test_comprehensive_isnan_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5022025Z test_comprehensive_isnan_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5022216Z test_comprehensive_isnan_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5022375Z test_comprehensive_isnan_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5022532Z test_comprehensive_isnan_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5022680Z test_comprehensive_isnan_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5022841Z test_comprehensive_isnan_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5023014Z test_comprehensive_isneginf_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5023179Z test_comprehensive_isneginf_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5023351Z test_comprehensive_isneginf_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5023520Z test_comprehensive_isneginf_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5023687Z test_comprehensive_isneginf_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5023853Z test_comprehensive_isneginf_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5024020Z test_comprehensive_isneginf_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5024173Z test_comprehensive_isneginf_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5024336Z test_comprehensive_isneginf_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5024500Z test_comprehensive_isneginf_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5024674Z test_comprehensive_isposinf_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5024843Z test_comprehensive_isposinf_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5025014Z test_comprehensive_isposinf_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5025181Z test_comprehensive_isposinf_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5025349Z test_comprehensive_isposinf_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5025513Z test_comprehensive_isposinf_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5025666Z test_comprehensive_isposinf_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5025862Z test_comprehensive_isposinf_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5026027Z test_comprehensive_isposinf_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5026195Z test_comprehensive_isposinf_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5026364Z test_comprehensive_isreal_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5026530Z test_comprehensive_isreal_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5026702Z test_comprehensive_isreal_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5026872Z test_comprehensive_isreal_cpu_complex32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5027041Z test_comprehensive_isreal_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5027196Z test_comprehensive_isreal_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5027390Z test_comprehensive_isreal_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5027555Z test_comprehensive_isreal_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5027719Z test_comprehensive_isreal_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5027880Z test_comprehensive_isreal_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5028037Z test_comprehensive_isreal_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5028198Z test_comprehensive_isreal_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5028356Z test_comprehensive_isreal_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5028526Z test_comprehensive_istft_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5028683Z test_comprehensive_istft_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5028873Z test_comprehensive_jiterator_2inputs_2outputs_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5029060Z test_comprehensive_jiterator_2inputs_2outputs_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5029254Z test_comprehensive_jiterator_2inputs_2outputs_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5029444Z test_comprehensive_jiterator_2inputs_2outputs_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5029629Z test_comprehensive_jiterator_2inputs_2outputs_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5029818Z test_comprehensive_jiterator_2inputs_2outputs_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5030009Z test_comprehensive_jiterator_2inputs_2outputs_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5030196Z test_comprehensive_jiterator_2inputs_2outputs_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5030382Z test_comprehensive_jiterator_2inputs_2outputs_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5030555Z test_comprehensive_jiterator_2inputs_2outputs_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5030738Z test_comprehensive_jiterator_2inputs_2outputs_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5030922Z test_comprehensive_jiterator_2inputs_2outputs_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5031165Z test_comprehensive_jiterator_4inputs_with_extra_args_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5031360Z test_comprehensive_jiterator_4inputs_with_extra_args_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5031559Z test_comprehensive_jiterator_4inputs_with_extra_args_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5031760Z test_comprehensive_jiterator_4inputs_with_extra_args_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5031953Z test_comprehensive_jiterator_4inputs_with_extra_args_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5032146Z test_comprehensive_jiterator_4inputs_with_extra_args_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5032343Z test_comprehensive_jiterator_4inputs_with_extra_args_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5032553Z test_comprehensive_jiterator_4inputs_with_extra_args_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5032747Z test_comprehensive_jiterator_4inputs_with_extra_args_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5032938Z test_comprehensive_jiterator_4inputs_with_extra_args_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5033128Z test_comprehensive_jiterator_4inputs_with_extra_args_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5033322Z test_comprehensive_jiterator_4inputs_with_extra_args_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5033504Z test_comprehensive_jiterator_binary_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5033686Z test_comprehensive_jiterator_binary_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5033873Z test_comprehensive_jiterator_binary_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5034054Z test_comprehensive_jiterator_binary_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5034219Z test_comprehensive_jiterator_binary_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5034400Z test_comprehensive_jiterator_binary_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5034578Z test_comprehensive_jiterator_binary_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5034752Z test_comprehensive_jiterator_binary_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5034928Z test_comprehensive_jiterator_binary_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5035103Z test_comprehensive_jiterator_binary_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5035277Z test_comprehensive_jiterator_binary_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5035447Z test_comprehensive_jiterator_binary_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5035639Z test_comprehensive_jiterator_binary_return_by_ref_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5035827Z test_comprehensive_jiterator_binary_return_by_ref_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5036009Z test_comprehensive_jiterator_binary_return_by_ref_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5036244Z test_comprehensive_jiterator_binary_return_by_ref_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5036442Z test_comprehensive_jiterator_binary_return_by_ref_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5036633Z test_comprehensive_jiterator_binary_return_by_ref_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5036823Z test_comprehensive_jiterator_binary_return_by_ref_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5037011Z test_comprehensive_jiterator_binary_return_by_ref_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5037199Z test_comprehensive_jiterator_binary_return_by_ref_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5037383Z test_comprehensive_jiterator_binary_return_by_ref_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5037572Z test_comprehensive_jiterator_binary_return_by_ref_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5037786Z test_comprehensive_jiterator_binary_return_by_ref_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5037953Z test_comprehensive_jiterator_unary_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5038129Z test_comprehensive_jiterator_unary_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5038312Z test_comprehensive_jiterator_unary_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5038489Z test_comprehensive_jiterator_unary_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5038666Z test_comprehensive_jiterator_unary_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5038843Z test_comprehensive_jiterator_unary_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5039022Z test_comprehensive_jiterator_unary_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5039195Z test_comprehensive_jiterator_unary_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5039367Z test_comprehensive_jiterator_unary_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5039522Z test_comprehensive_jiterator_unary_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5039697Z test_comprehensive_jiterator_unary_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5039870Z test_comprehensive_jiterator_unary_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5040038Z test_comprehensive_kron_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5040202Z test_comprehensive_kron_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5040375Z test_comprehensive_kron_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5040542Z test_comprehensive_kron_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5040879Z test_comprehensive_kron_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5041049Z test_comprehensive_kron_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5041192Z test_comprehensive_kron_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5041355Z test_comprehensive_kron_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5041568Z test_comprehensive_kron_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5041733Z test_comprehensive_kron_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5041894Z test_comprehensive_kron_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5042059Z test_comprehensive_kron_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5042232Z test_comprehensive_kthvalue_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5042405Z test_comprehensive_kthvalue_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5042575Z test_comprehensive_kthvalue_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5042729Z test_comprehensive_kthvalue_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5042899Z test_comprehensive_kthvalue_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5043134Z test_comprehensive_kthvalue_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5043303Z test_comprehensive_kthvalue_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5043469Z test_comprehensive_kthvalue_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5043631Z test_comprehensive_lcm_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5043792Z test_comprehensive_lcm_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5043952Z test_comprehensive_lcm_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5044108Z test_comprehensive_lcm_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5044255Z test_comprehensive_lcm_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5044420Z test_comprehensive_ldexp_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5044583Z test_comprehensive_ldexp_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5044753Z test_comprehensive_ldexp_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5044921Z test_comprehensive_ldexp_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5045085Z test_comprehensive_ldexp_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5045244Z test_comprehensive_ldexp_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5045407Z test_comprehensive_ldexp_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5045573Z test_comprehensive_ldexp_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5045722Z test_comprehensive_ldexp_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5045886Z test_comprehensive_ldexp_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5046047Z test_comprehensive_ldexp_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5046209Z test_comprehensive_ldexp_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5046368Z test_comprehensive_le_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5046529Z test_comprehensive_le_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5046723Z test_comprehensive_le_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5046881Z test_comprehensive_le_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5047027Z test_comprehensive_le_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5047187Z test_comprehensive_le_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5047345Z test_comprehensive_le_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5047504Z test_comprehensive_le_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5047663Z test_comprehensive_le_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5047818Z test_comprehensive_le_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5047987Z test_comprehensive_lerp_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5048156Z test_comprehensive_lerp_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5048352Z test_comprehensive_lerp_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5048507Z test_comprehensive_lerp_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5048670Z test_comprehensive_lerp_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5048838Z test_comprehensive_lgamma_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5049004Z test_comprehensive_lgamma_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5049179Z test_comprehensive_lgamma_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5049350Z test_comprehensive_lgamma_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5049516Z test_comprehensive_lgamma_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5049678Z test_comprehensive_lgamma_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5049835Z test_comprehensive_lgamma_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5049985Z test_comprehensive_lgamma_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5050150Z test_comprehensive_lgamma_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5050331Z test_comprehensive_linalg_cholesky_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5050512Z test_comprehensive_linalg_cholesky_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5050694Z test_comprehensive_linalg_cholesky_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5050877Z test_comprehensive_linalg_cholesky_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5051064Z test_comprehensive_linalg_cholesky_ex_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5051248Z test_comprehensive_linalg_cholesky_ex_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5051426Z test_comprehensive_linalg_cholesky_ex_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5051592Z test_comprehensive_linalg_cholesky_ex_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5051770Z test_comprehensive_linalg_cond_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5051976Z test_comprehensive_linalg_cond_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5052152Z test_comprehensive_linalg_cond_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5052325Z test_comprehensive_linalg_cond_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5052498Z test_comprehensive_linalg_cross_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5052676Z test_comprehensive_linalg_cross_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5052855Z test_comprehensive_linalg_cross_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5053031Z test_comprehensive_linalg_cross_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5053205Z test_comprehensive_linalg_cross_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5053363Z test_comprehensive_linalg_cross_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5053568Z test_comprehensive_linalg_cross_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5053735Z test_comprehensive_linalg_cross_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5053905Z test_comprehensive_linalg_cross_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5054074Z test_comprehensive_linalg_cross_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5054251Z test_comprehensive_linalg_det_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5054427Z test_comprehensive_linalg_det_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5054599Z test_comprehensive_linalg_det_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5054772Z test_comprehensive_linalg_det_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5054947Z test_comprehensive_linalg_det_singular_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5055132Z test_comprehensive_linalg_det_singular_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5055315Z test_comprehensive_linalg_det_singular_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5055497Z test_comprehensive_linalg_det_singular_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5055670Z test_comprehensive_linalg_eig_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5055847Z test_comprehensive_linalg_eig_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5056020Z test_comprehensive_linalg_eig_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5056190Z test_comprehensive_linalg_eig_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5056370Z test_comprehensive_linalg_eigh_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5056532Z test_comprehensive_linalg_eigh_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5056707Z test_comprehensive_linalg_eigh_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5056880Z test_comprehensive_linalg_eigh_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5057064Z test_comprehensive_linalg_eigvals_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5057276Z test_comprehensive_linalg_eigvals_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5057457Z test_comprehensive_linalg_eigvals_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5057634Z test_comprehensive_linalg_eigvals_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5057815Z test_comprehensive_linalg_eigvalsh_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5057994Z test_comprehensive_linalg_eigvalsh_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5058160Z test_comprehensive_linalg_eigvalsh_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5058338Z test_comprehensive_linalg_eigvalsh_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5058533Z test_comprehensive_linalg_householder_product_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5058759Z test_comprehensive_linalg_householder_product_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5058949Z test_comprehensive_linalg_householder_product_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5059137Z test_comprehensive_linalg_householder_product_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5059384Z test_comprehensive_linalg_inv_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5059562Z test_comprehensive_linalg_inv_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5059736Z test_comprehensive_linalg_inv_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5059912Z test_comprehensive_linalg_inv_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5060080Z test_comprehensive_linalg_inv_ex_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5060258Z test_comprehensive_linalg_inv_ex_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5060435Z test_comprehensive_linalg_inv_ex_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5060609Z test_comprehensive_linalg_inv_ex_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5060795Z test_comprehensive_linalg_ldl_factor_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5060980Z test_comprehensive_linalg_ldl_factor_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5061162Z test_comprehensive_linalg_ldl_factor_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5061345Z test_comprehensive_linalg_ldl_factor_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5061534Z test_comprehensive_linalg_ldl_factor_ex_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5061706Z test_comprehensive_linalg_ldl_factor_ex_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5061887Z test_comprehensive_linalg_ldl_factor_ex_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5062066Z test_comprehensive_linalg_ldl_factor_ex_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5062247Z test_comprehensive_linalg_ldl_solve_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5062465Z test_comprehensive_linalg_ldl_solve_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5062646Z test_comprehensive_linalg_ldl_solve_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5062826Z test_comprehensive_linalg_ldl_solve_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5063005Z test_comprehensive_linalg_lstsq_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5063185Z test_comprehensive_linalg_lstsq_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5063358Z test_comprehensive_linalg_lstsq_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5063518Z test_comprehensive_linalg_lstsq_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5063711Z test_comprehensive_linalg_lstsq_grad_oriented_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5063934Z test_comprehensive_linalg_lstsq_grad_oriented_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5064125Z test_comprehensive_linalg_lstsq_grad_oriented_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5064314Z test_comprehensive_linalg_lstsq_grad_oriented_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5064490Z test_comprehensive_linalg_lu_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5064665Z test_comprehensive_linalg_lu_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5064836Z test_comprehensive_linalg_lu_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5065010Z test_comprehensive_linalg_lu_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5065180Z test_comprehensive_linalg_lu_factor_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5065363Z test_comprehensive_linalg_lu_factor_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5065540Z test_comprehensive_linalg_lu_factor_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5065718Z test_comprehensive_linalg_lu_factor_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5065902Z test_comprehensive_linalg_lu_factor_ex_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5066085Z test_comprehensive_linalg_lu_factor_ex_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5066264Z test_comprehensive_linalg_lu_factor_ex_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5066444Z test_comprehensive_linalg_lu_factor_ex_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5066623Z test_comprehensive_linalg_lu_solve_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5066788Z test_comprehensive_linalg_lu_solve_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5066962Z test_comprehensive_linalg_lu_solve_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5067136Z test_comprehensive_linalg_lu_solve_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5067313Z test_comprehensive_linalg_matrix_norm_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5067494Z test_comprehensive_linalg_matrix_norm_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5067717Z test_comprehensive_linalg_matrix_norm_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5067901Z test_comprehensive_linalg_matrix_norm_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5068075Z test_comprehensive_linalg_matrix_norm_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5068254Z test_comprehensive_linalg_matrix_norm_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5068439Z test_comprehensive_linalg_matrix_power_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5068611Z test_comprehensive_linalg_matrix_power_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5068791Z test_comprehensive_linalg_matrix_power_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5068969Z test_comprehensive_linalg_matrix_power_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5069182Z test_comprehensive_linalg_matrix_rank_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5069365Z test_comprehensive_linalg_matrix_rank_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5069540Z test_comprehensive_linalg_matrix_rank_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5069714Z test_comprehensive_linalg_matrix_rank_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5069910Z test_comprehensive_linalg_matrix_rank_hermitian_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5070100Z test_comprehensive_linalg_matrix_rank_hermitian_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5070283Z test_comprehensive_linalg_matrix_rank_hermitian_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5070475Z test_comprehensive_linalg_matrix_rank_hermitian_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5070653Z test_comprehensive_linalg_multi_dot_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5070834Z test_comprehensive_linalg_multi_dot_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5071011Z test_comprehensive_linalg_multi_dot_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5071186Z test_comprehensive_linalg_multi_dot_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5071362Z test_comprehensive_linalg_multi_dot_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5071538Z test_comprehensive_linalg_multi_dot_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5071716Z test_comprehensive_linalg_multi_dot_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5071891Z test_comprehensive_linalg_multi_dot_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5072050Z test_comprehensive_linalg_multi_dot_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5072219Z test_comprehensive_linalg_multi_dot_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5072395Z test_comprehensive_linalg_norm_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5072569Z test_comprehensive_linalg_norm_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5072772Z test_comprehensive_linalg_norm_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5072946Z test_comprehensive_linalg_norm_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5073118Z test_comprehensive_linalg_norm_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5073285Z test_comprehensive_linalg_norm_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5073478Z test_comprehensive_linalg_norm_subgradients_at_zero_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5073665Z test_comprehensive_linalg_norm_subgradients_at_zero_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5073860Z test_comprehensive_linalg_norm_subgradients_at_zero_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5074056Z test_comprehensive_linalg_norm_subgradients_at_zero_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5074279Z test_comprehensive_linalg_norm_subgradients_at_zero_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5074473Z test_comprehensive_linalg_norm_subgradients_at_zero_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5074650Z test_comprehensive_linalg_pinv_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5074826Z test_comprehensive_linalg_pinv_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5075001Z test_comprehensive_linalg_pinv_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5075177Z test_comprehensive_linalg_pinv_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5075366Z test_comprehensive_linalg_pinv_hermitian_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5075542Z test_comprehensive_linalg_pinv_hermitian_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5075725Z test_comprehensive_linalg_pinv_hermitian_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5075907Z test_comprehensive_linalg_pinv_hermitian_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5076090Z test_comprehensive_linalg_pinv_singular_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5076274Z test_comprehensive_linalg_pinv_singular_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5076456Z test_comprehensive_linalg_pinv_singular_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5076639Z test_comprehensive_linalg_pinv_singular_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5076813Z test_comprehensive_linalg_qr_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5076987Z test_comprehensive_linalg_qr_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5077144Z test_comprehensive_linalg_qr_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5077317Z test_comprehensive_linalg_qr_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5077495Z test_comprehensive_linalg_slogdet_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5077673Z test_comprehensive_linalg_slogdet_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5077877Z test_comprehensive_linalg_slogdet_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5078057Z test_comprehensive_linalg_slogdet_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5078236Z test_comprehensive_linalg_solve_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5078410Z test_comprehensive_linalg_solve_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5078588Z test_comprehensive_linalg_solve_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5078760Z test_comprehensive_linalg_solve_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5078928Z test_comprehensive_linalg_solve_ex_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5079107Z test_comprehensive_linalg_solve_ex_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5079306Z test_comprehensive_linalg_solve_ex_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5079482Z test_comprehensive_linalg_solve_ex_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5079670Z test_comprehensive_linalg_solve_triangular_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5079856Z test_comprehensive_linalg_solve_triangular_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5080045Z test_comprehensive_linalg_solve_triangular_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5080230Z test_comprehensive_linalg_solve_triangular_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5080406Z test_comprehensive_linalg_svd_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5080569Z test_comprehensive_linalg_svd_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5080850Z test_comprehensive_linalg_svd_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5081021Z test_comprehensive_linalg_svd_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5081201Z test_comprehensive_linalg_svdvals_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5081381Z test_comprehensive_linalg_svdvals_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5081560Z test_comprehensive_linalg_svdvals_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5081738Z test_comprehensive_linalg_svdvals_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5081928Z test_comprehensive_linalg_tensorinv_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5082115Z test_comprehensive_linalg_tensorinv_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5082279Z test_comprehensive_linalg_tensorinv_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5082460Z test_comprehensive_linalg_tensorinv_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5082644Z test_comprehensive_linalg_tensorsolve_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5082830Z test_comprehensive_linalg_tensorsolve_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5083009Z test_comprehensive_linalg_tensorsolve_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5083233Z test_comprehensive_linalg_tensorsolve_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5083415Z test_comprehensive_linalg_vander_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5083595Z test_comprehensive_linalg_vander_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5083771Z test_comprehensive_linalg_vander_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5083947Z test_comprehensive_linalg_vander_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5084108Z test_comprehensive_linalg_vander_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5084282Z test_comprehensive_linalg_vander_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5084457Z test_comprehensive_linalg_vander_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5084665Z test_comprehensive_linalg_vander_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5084836Z test_comprehensive_linalg_vander_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5085016Z test_comprehensive_linalg_vecdot_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5085196Z test_comprehensive_linalg_vecdot_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5085375Z test_comprehensive_linalg_vecdot_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5085552Z test_comprehensive_linalg_vecdot_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5085714Z test_comprehensive_linalg_vecdot_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5085899Z test_comprehensive_linalg_vector_norm_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5086081Z test_comprehensive_linalg_vector_norm_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5086262Z test_comprehensive_linalg_vector_norm_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5086439Z test_comprehensive_linalg_vector_norm_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5086615Z test_comprehensive_linalg_vector_norm_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5086793Z test_comprehensive_linalg_vector_norm_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5086964Z test_comprehensive_linspace_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5087145Z test_comprehensive_linspace_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5087309Z test_comprehensive_linspace_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5087479Z test_comprehensive_linspace_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5087646Z test_comprehensive_linspace_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5087816Z test_comprehensive_linspace_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5087985Z test_comprehensive_linspace_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5088153Z test_comprehensive_linspace_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5088349Z test_comprehensive_linspace_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5088516Z test_comprehensive_linspace_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5088679Z test_comprehensive_linspace_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5088834Z test_comprehensive_log10_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5088997Z test_comprehensive_log10_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5089165Z test_comprehensive_log10_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5089331Z test_comprehensive_log10_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5089496Z test_comprehensive_log10_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5089658Z test_comprehensive_log10_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5089850Z test_comprehensive_log10_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5090010Z test_comprehensive_log10_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5090171Z test_comprehensive_log10_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5090320Z test_comprehensive_log10_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5090478Z test_comprehensive_log10_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5090645Z test_comprehensive_log1p_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5090806Z test_comprehensive_log1p_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5090979Z test_comprehensive_log1p_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5091148Z test_comprehensive_log1p_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5091311Z test_comprehensive_log1p_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5091473Z test_comprehensive_log1p_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5091636Z test_comprehensive_log1p_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5091785Z test_comprehensive_log1p_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5091941Z test_comprehensive_log1p_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5092101Z test_comprehensive_log1p_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5092259Z test_comprehensive_log1p_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5092426Z test_comprehensive_log2_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5092587Z test_comprehensive_log2_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.002s) 2023-01-11T20:52:32.5092755Z test_comprehensive_log2_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5092923Z test_comprehensive_log2_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5093087Z test_comprehensive_log2_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5093234Z test_comprehensive_log2_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5093398Z test_comprehensive_log2_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5093583Z test_comprehensive_log2_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5093739Z test_comprehensive_log2_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5093899Z test_comprehensive_log2_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5094060Z test_comprehensive_log2_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5094227Z test_comprehensive_log_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5094389Z test_comprehensive_log_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5094556Z test_comprehensive_log_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5094710Z test_comprehensive_log_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5094875Z test_comprehensive_log_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5095061Z test_comprehensive_log_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5095222Z test_comprehensive_log_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5095380Z test_comprehensive_log_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5095538Z test_comprehensive_log_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5095699Z test_comprehensive_log_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5095858Z test_comprehensive_log_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5096034Z test_comprehensive_log_softmax_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5096195Z test_comprehensive_log_softmax_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5096369Z test_comprehensive_log_softmax_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5096554Z test_comprehensive_log_softmax_with_dtype_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5096735Z test_comprehensive_log_softmax_with_dtype_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5096920Z test_comprehensive_log_softmax_with_dtype_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5097110Z test_comprehensive_log_softmax_with_dtype_cpu_complex32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5097297Z test_comprehensive_log_softmax_with_dtype_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5097481Z test_comprehensive_log_softmax_with_dtype_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5097667Z test_comprehensive_log_softmax_with_dtype_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5097836Z test_comprehensive_log_softmax_with_dtype_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5098021Z test_comprehensive_log_softmax_with_dtype_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5098199Z test_comprehensive_log_softmax_with_dtype_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5098373Z test_comprehensive_log_softmax_with_dtype_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5098551Z test_comprehensive_log_softmax_with_dtype_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5098758Z test_comprehensive_log_softmax_with_dtype_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5098936Z test_comprehensive_logaddexp2_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5099111Z test_comprehensive_logaddexp2_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5099364Z test_comprehensive_logaddexp2_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5099529Z test_comprehensive_logaddexp_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5099703Z test_comprehensive_logaddexp_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5099874Z test_comprehensive_logaddexp_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5100056Z test_comprehensive_logcumsumexp_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5100263Z test_comprehensive_logcumsumexp_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5100449Z test_comprehensive_logcumsumexp_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5100623Z test_comprehensive_logdet_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5100797Z test_comprehensive_logdet_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5100967Z test_comprehensive_logdet_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5101121Z test_comprehensive_logdet_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5101297Z test_comprehensive_logical_and_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5101471Z test_comprehensive_logical_and_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5101652Z test_comprehensive_logical_and_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5101831Z test_comprehensive_logical_and_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5102002Z test_comprehensive_logical_and_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5102174Z test_comprehensive_logical_and_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5102343Z test_comprehensive_logical_and_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5102515Z test_comprehensive_logical_and_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5102685Z test_comprehensive_logical_and_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5102843Z test_comprehensive_logical_and_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5103015Z test_comprehensive_logical_and_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5103182Z test_comprehensive_logical_and_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5103356Z test_comprehensive_logical_not_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5103526Z test_comprehensive_logical_not_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5103705Z test_comprehensive_logical_not_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5103881Z test_comprehensive_logical_not_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5104100Z test_comprehensive_logical_not_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5104273Z test_comprehensive_logical_not_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5104432Z test_comprehensive_logical_not_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5104599Z test_comprehensive_logical_not_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5104769Z test_comprehensive_logical_not_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5104937Z test_comprehensive_logical_not_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5105108Z test_comprehensive_logical_not_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5105278Z test_comprehensive_logical_not_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5105479Z test_comprehensive_logical_or_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5105650Z test_comprehensive_logical_or_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5105827Z test_comprehensive_logical_or_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5105989Z test_comprehensive_logical_or_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5106162Z test_comprehensive_logical_or_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5106335Z test_comprehensive_logical_or_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5106501Z test_comprehensive_logical_or_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5106674Z test_comprehensive_logical_or_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5106841Z test_comprehensive_logical_or_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5107011Z test_comprehensive_logical_or_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5107179Z test_comprehensive_logical_or_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5107349Z test_comprehensive_logical_or_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5107509Z test_comprehensive_logical_xor_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5107677Z test_comprehensive_logical_xor_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5107859Z test_comprehensive_logical_xor_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5108037Z test_comprehensive_logical_xor_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5108206Z test_comprehensive_logical_xor_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5108382Z test_comprehensive_logical_xor_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5108554Z test_comprehensive_logical_xor_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5108724Z test_comprehensive_logical_xor_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5108891Z test_comprehensive_logical_xor_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5109046Z test_comprehensive_logical_xor_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5109243Z test_comprehensive_logical_xor_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5109412Z test_comprehensive_logical_xor_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5109584Z test_comprehensive_logit_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5109747Z test_comprehensive_logit_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5109912Z test_comprehensive_logit_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5110079Z test_comprehensive_logit_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5110242Z test_comprehensive_logit_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5110399Z test_comprehensive_logit_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5110546Z test_comprehensive_logit_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5110735Z test_comprehensive_logit_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5110898Z test_comprehensive_logit_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5111068Z test_comprehensive_logspace_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5111242Z test_comprehensive_logspace_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5111418Z test_comprehensive_logspace_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5111589Z test_comprehensive_logspace_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5111757Z test_comprehensive_logspace_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5111928Z test_comprehensive_logspace_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5112086Z test_comprehensive_logspace_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5112255Z test_comprehensive_logspace_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5112422Z test_comprehensive_logspace_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5112590Z test_comprehensive_logspace_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5112765Z test_comprehensive_logsumexp_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5112933Z test_comprehensive_logsumexp_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5113105Z test_comprehensive_logsumexp_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5113276Z test_comprehensive_logsumexp_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5113445Z test_comprehensive_logsumexp_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5113599Z test_comprehensive_logsumexp_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5113770Z test_comprehensive_logsumexp_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5113935Z test_comprehensive_logsumexp_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5114101Z test_comprehensive_logsumexp_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5114264Z test_comprehensive_long_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5114459Z test_comprehensive_long_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5114627Z test_comprehensive_long_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5114797Z test_comprehensive_long_cpu_complex32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5114963Z test_comprehensive_long_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5115115Z test_comprehensive_long_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5115275Z test_comprehensive_long_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5115433Z test_comprehensive_long_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5115594Z test_comprehensive_long_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5115753Z test_comprehensive_long_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5115945Z test_comprehensive_long_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5116104Z test_comprehensive_long_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5116266Z test_comprehensive_long_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5116428Z test_comprehensive_lt_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5116577Z test_comprehensive_lt_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5116739Z test_comprehensive_lt_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5116895Z test_comprehensive_lt_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5117051Z test_comprehensive_lt_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5117212Z test_comprehensive_lt_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5117372Z test_comprehensive_lt_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5117534Z test_comprehensive_lt_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5117692Z test_comprehensive_lt_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5117835Z test_comprehensive_lt_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5118003Z test_comprehensive_lu_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5118167Z test_comprehensive_lu_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5118331Z test_comprehensive_lu_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5118490Z test_comprehensive_lu_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5118665Z test_comprehensive_lu_solve_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5118836Z test_comprehensive_lu_solve_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5119002Z test_comprehensive_lu_solve_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5119167Z test_comprehensive_lu_solve_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5119331Z test_comprehensive_lu_unpack_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5119543Z test_comprehensive_lu_unpack_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5119716Z test_comprehensive_lu_unpack_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5119886Z test_comprehensive_lu_unpack_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5120047Z test_comprehensive_mH_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5120208Z test_comprehensive_mH_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5120374Z test_comprehensive_mH_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5120537Z test_comprehensive_mH_cpu_complex32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5120813Z test_comprehensive_mH_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5120967Z test_comprehensive_mH_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5121172Z test_comprehensive_mH_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5121328Z test_comprehensive_mH_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5121487Z test_comprehensive_mH_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5121645Z test_comprehensive_mH_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5121801Z test_comprehensive_mH_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5121957Z test_comprehensive_mH_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5122116Z test_comprehensive_mH_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5122282Z test_comprehensive_mT_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5122428Z test_comprehensive_mT_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5122596Z test_comprehensive_mT_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5122761Z test_comprehensive_mT_cpu_complex32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5122923Z test_comprehensive_mT_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5123087Z test_comprehensive_mT_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5123244Z test_comprehensive_mT_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5123407Z test_comprehensive_mT_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5123568Z test_comprehensive_mT_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5123729Z test_comprehensive_mT_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5123874Z test_comprehensive_mT_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5124033Z test_comprehensive_mT_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5124189Z test_comprehensive_mT_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5124364Z test_comprehensive_masked_amax_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5124537Z test_comprehensive_masked_amax_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5124713Z test_comprehensive_masked_amax_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5124959Z test_comprehensive_masked_amax_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5125133Z test_comprehensive_masked_amax_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5125301Z test_comprehensive_masked_amax_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5125458Z test_comprehensive_masked_amax_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5125628Z test_comprehensive_masked_amax_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5125797Z test_comprehensive_masked_amax_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5125973Z test_comprehensive_masked_amin_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5126145Z test_comprehensive_masked_amin_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5126319Z test_comprehensive_masked_amin_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5126519Z test_comprehensive_masked_amin_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5126689Z test_comprehensive_masked_amin_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5126851Z test_comprehensive_masked_amin_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5127007Z test_comprehensive_masked_amin_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5127180Z test_comprehensive_masked_amin_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5127348Z test_comprehensive_masked_amin_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5127529Z test_comprehensive_masked_argmax_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5127707Z test_comprehensive_masked_argmax_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5127881Z test_comprehensive_masked_argmax_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5128050Z test_comprehensive_masked_argmax_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5128223Z test_comprehensive_masked_argmax_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5128394Z test_comprehensive_masked_argmax_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5128553Z test_comprehensive_masked_argmax_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5128728Z test_comprehensive_masked_argmax_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5128898Z test_comprehensive_masked_argmax_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5129080Z test_comprehensive_masked_argmin_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5129253Z test_comprehensive_masked_argmin_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5129428Z test_comprehensive_masked_argmin_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5129602Z test_comprehensive_masked_argmin_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5129774Z test_comprehensive_masked_argmin_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5129943Z test_comprehensive_masked_argmin_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5130129Z test_comprehensive_masked_argmin_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5130304Z test_comprehensive_masked_argmin_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5130473Z test_comprehensive_masked_argmin_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5130653Z test_comprehensive_masked_cumprod_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5130835Z test_comprehensive_masked_cumprod_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5131016Z test_comprehensive_masked_cumprod_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5131194Z test_comprehensive_masked_cumprod_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5131372Z test_comprehensive_masked_cumprod_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5131582Z test_comprehensive_masked_cumprod_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5131745Z test_comprehensive_masked_cumprod_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5131920Z test_comprehensive_masked_cumprod_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5132093Z test_comprehensive_masked_cumprod_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5132264Z test_comprehensive_masked_cumprod_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5132438Z test_comprehensive_masked_cumsum_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5132616Z test_comprehensive_masked_cumsum_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5132798Z test_comprehensive_masked_cumsum_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5132973Z test_comprehensive_masked_cumsum_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5133147Z test_comprehensive_masked_cumsum_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5133304Z test_comprehensive_masked_cumsum_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5133473Z test_comprehensive_masked_cumsum_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.020s) 2023-01-11T20:52:32.5133640Z test_comprehensive_masked_cumsum_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5133811Z test_comprehensive_masked_cumsum_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5133984Z test_comprehensive_masked_cumsum_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5134158Z test_comprehensive_masked_fill_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5134327Z test_comprehensive_masked_fill_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5134504Z test_comprehensive_masked_fill_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5134678Z test_comprehensive_masked_fill_cpu_complex32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5134850Z test_comprehensive_masked_fill_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5135009Z test_comprehensive_masked_fill_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5135180Z test_comprehensive_masked_fill_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5135378Z test_comprehensive_masked_fill_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5135551Z test_comprehensive_masked_fill_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5135716Z test_comprehensive_masked_fill_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5135884Z test_comprehensive_masked_fill_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5136053Z test_comprehensive_masked_fill_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5136223Z test_comprehensive_masked_fill_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5136409Z test_comprehensive_masked_log_softmax_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5136580Z test_comprehensive_masked_log_softmax_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5136781Z test_comprehensive_masked_log_softmax_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5136963Z test_comprehensive_masked_logaddexp_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5137145Z test_comprehensive_masked_logaddexp_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5137324Z test_comprehensive_masked_logaddexp_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5137496Z test_comprehensive_masked_logsumexp_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped! (0.000s) 2023-01-11T20:52:32.5137667Z test_comprehensive_masked_logsumexp_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped! (0.000s) 2023-01-11T20:52:32.5137838Z test_comprehensive_masked_logsumexp_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped! (0.000s) 2023-01-11T20:52:32.5138006Z test_comprehensive_masked_logsumexp_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped! (0.000s) 2023-01-11T20:52:32.5138163Z test_comprehensive_masked_logsumexp_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped! (0.000s) 2023-01-11T20:52:32.5138323Z test_comprehensive_masked_logsumexp_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped! (0.000s) 2023-01-11T20:52:32.5138488Z test_comprehensive_masked_logsumexp_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped! (0.000s) 2023-01-11T20:52:32.5138648Z test_comprehensive_masked_logsumexp_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped! (0.000s) 2023-01-11T20:52:32.5138822Z test_comprehensive_masked_mean_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5138992Z test_comprehensive_masked_mean_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5139171Z test_comprehensive_masked_mean_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5139429Z test_comprehensive_masked_mean_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5139608Z test_comprehensive_masked_mean_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5139767Z test_comprehensive_masked_mean_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5139938Z test_comprehensive_masked_mean_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5140107Z test_comprehensive_masked_mean_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5140276Z test_comprehensive_masked_mean_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5140444Z test_comprehensive_masked_mean_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5140663Z test_comprehensive_masked_mean_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5140838Z test_comprehensive_masked_mean_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5141016Z test_comprehensive_masked_median_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5141190Z test_comprehensive_masked_median_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5141352Z test_comprehensive_masked_median_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5141526Z test_comprehensive_masked_norm_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5141696Z test_comprehensive_masked_norm_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5141867Z test_comprehensive_masked_norm_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5142061Z test_comprehensive_masked_norm_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5142244Z test_comprehensive_masked_normalize_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5142428Z test_comprehensive_masked_normalize_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5142610Z test_comprehensive_masked_normalize_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5142789Z test_comprehensive_masked_normalize_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5142955Z test_comprehensive_masked_normalize_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5143137Z test_comprehensive_masked_normalize_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5143311Z test_comprehensive_masked_prod_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5143482Z test_comprehensive_masked_prod_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5143662Z test_comprehensive_masked_prod_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5143838Z test_comprehensive_masked_prod_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5144011Z test_comprehensive_masked_prod_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5144184Z test_comprehensive_masked_prod_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5144359Z test_comprehensive_masked_prod_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5144517Z test_comprehensive_masked_prod_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5144695Z test_comprehensive_masked_prod_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5144866Z test_comprehensive_masked_prod_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5145033Z test_comprehensive_masked_prod_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5145212Z test_comprehensive_masked_scatter_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5145383Z test_comprehensive_masked_scatter_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5145562Z test_comprehensive_masked_scatter_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5145776Z test_comprehensive_masked_scatter_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5145955Z test_comprehensive_masked_scatter_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5146130Z test_comprehensive_masked_scatter_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5146292Z test_comprehensive_masked_scatter_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5146466Z test_comprehensive_masked_scatter_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5146640Z test_comprehensive_masked_scatter_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5146811Z test_comprehensive_masked_scatter_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5146983Z test_comprehensive_masked_scatter_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5147155Z test_comprehensive_masked_scatter_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5147365Z test_comprehensive_masked_select_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5147539Z test_comprehensive_masked_select_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5147718Z test_comprehensive_masked_select_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5147885Z test_comprehensive_masked_select_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5148060Z test_comprehensive_masked_select_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5148233Z test_comprehensive_masked_select_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5148411Z test_comprehensive_masked_select_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5148584Z test_comprehensive_masked_select_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5148755Z test_comprehensive_masked_select_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5148924Z test_comprehensive_masked_select_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5149096Z test_comprehensive_masked_select_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5149268Z test_comprehensive_masked_select_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5149434Z test_comprehensive_masked_softmax_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5149611Z test_comprehensive_masked_softmax_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5149787Z test_comprehensive_masked_softmax_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5149961Z test_comprehensive_masked_softmin_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5150133Z test_comprehensive_masked_softmin_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5150309Z test_comprehensive_masked_softmin_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5150484Z test_comprehensive_masked_std_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5150659Z test_comprehensive_masked_std_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5150833Z test_comprehensive_masked_std_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5151020Z test_comprehensive_masked_std_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5151195Z test_comprehensive_masked_std_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5151366Z test_comprehensive_masked_std_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5151532Z test_comprehensive_masked_std_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5151701Z test_comprehensive_masked_std_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5151871Z test_comprehensive_masked_std_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5152039Z test_comprehensive_masked_std_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5152212Z test_comprehensive_masked_sum_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5152411Z test_comprehensive_masked_sum_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5152573Z test_comprehensive_masked_sum_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5152749Z test_comprehensive_masked_sum_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5152921Z test_comprehensive_masked_sum_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5153092Z test_comprehensive_masked_sum_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5153257Z test_comprehensive_masked_sum_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5153425Z test_comprehensive_masked_sum_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5153598Z test_comprehensive_masked_sum_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5153765Z test_comprehensive_masked_sum_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5153935Z test_comprehensive_masked_sum_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5154089Z test_comprehensive_masked_sum_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5154262Z test_comprehensive_masked_var_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5154437Z test_comprehensive_masked_var_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5154613Z test_comprehensive_masked_var_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5154789Z test_comprehensive_masked_var_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5154962Z test_comprehensive_masked_var_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5155131Z test_comprehensive_masked_var_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5155298Z test_comprehensive_masked_var_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5155462Z test_comprehensive_masked_var_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5155618Z test_comprehensive_masked_var_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5155785Z test_comprehensive_masked_var_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5155954Z test_comprehensive_masked_var_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5156149Z test_comprehensive_matmul_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5156323Z test_comprehensive_matmul_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5156491Z test_comprehensive_matmul_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5156660Z test_comprehensive_matmul_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5156829Z test_comprehensive_matmul_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5156996Z test_comprehensive_matmul_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5157149Z test_comprehensive_matmul_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5157313Z test_comprehensive_matmul_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5157477Z test_comprehensive_matmul_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5157671Z test_comprehensive_matmul_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5157845Z test_comprehensive_matrix_exp_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5158021Z test_comprehensive_matrix_exp_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5158199Z test_comprehensive_matrix_exp_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5158371Z test_comprehensive_matrix_exp_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5158541Z test_comprehensive_matrix_exp_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5158703Z test_comprehensive_max_binary_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5158873Z test_comprehensive_max_binary_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5159045Z test_comprehensive_max_binary_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5159213Z test_comprehensive_max_binary_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5159378Z test_comprehensive_max_binary_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5159546Z test_comprehensive_max_binary_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5159711Z test_comprehensive_max_binary_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5159881Z test_comprehensive_max_binary_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5160050Z test_comprehensive_max_binary_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5160208Z test_comprehensive_max_binary_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5160405Z test_comprehensive_max_pool2d_with_indices_backward_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5160707Z test_comprehensive_max_pool2d_with_indices_backward_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5160907Z test_comprehensive_max_pool2d_with_indices_backward_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5161092Z test_comprehensive_max_reduction_no_dim_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5161273Z test_comprehensive_max_reduction_no_dim_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5161507Z test_comprehensive_max_reduction_no_dim_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5161692Z test_comprehensive_max_reduction_no_dim_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5161867Z test_comprehensive_max_reduction_no_dim_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5162045Z test_comprehensive_max_reduction_no_dim_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5162214Z test_comprehensive_max_reduction_no_dim_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5162389Z test_comprehensive_max_reduction_no_dim_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5162572Z test_comprehensive_max_reduction_no_dim_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5162754Z test_comprehensive_max_reduction_no_dim_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5162978Z test_comprehensive_max_reduction_with_dim_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5163162Z test_comprehensive_max_reduction_with_dim_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5163347Z test_comprehensive_max_reduction_with_dim_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5163531Z test_comprehensive_max_reduction_with_dim_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5163711Z test_comprehensive_max_reduction_with_dim_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5163891Z test_comprehensive_max_reduction_with_dim_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5164056Z test_comprehensive_max_reduction_with_dim_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5164230Z test_comprehensive_max_reduction_with_dim_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5164411Z test_comprehensive_max_reduction_with_dim_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5164590Z test_comprehensive_max_reduction_with_dim_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5164761Z test_comprehensive_maximum_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5164926Z test_comprehensive_maximum_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5165094Z test_comprehensive_maximum_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5165259Z test_comprehensive_maximum_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5165429Z test_comprehensive_maximum_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5165581Z test_comprehensive_maximum_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5165741Z test_comprehensive_maximum_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5165897Z test_comprehensive_maximum_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5166063Z test_comprehensive_maximum_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5166226Z test_comprehensive_maximum_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5166389Z test_comprehensive_mean_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5166586Z test_comprehensive_mean_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5166759Z test_comprehensive_mean_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5166927Z test_comprehensive_mean_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5167074Z test_comprehensive_mean_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5167230Z test_comprehensive_mean_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5167398Z test_comprehensive_median_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5167565Z test_comprehensive_median_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5167727Z test_comprehensive_median_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.003s) 2023-01-11T20:52:32.5167894Z test_comprehensive_median_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5168086Z test_comprehensive_median_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5168245Z test_comprehensive_median_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5168394Z test_comprehensive_median_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5168558Z test_comprehensive_median_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5168746Z test_comprehensive_meshgrid_list_of_tensors_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5168927Z test_comprehensive_meshgrid_list_of_tensors_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5169119Z test_comprehensive_meshgrid_list_of_tensors_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5169309Z test_comprehensive_meshgrid_list_of_tensors_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5169493Z test_comprehensive_meshgrid_list_of_tensors_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5169679Z test_comprehensive_meshgrid_list_of_tensors_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5169862Z test_comprehensive_meshgrid_list_of_tensors_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5170043Z test_comprehensive_meshgrid_list_of_tensors_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5170214Z test_comprehensive_meshgrid_list_of_tensors_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5170398Z test_comprehensive_meshgrid_list_of_tensors_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5170582Z test_comprehensive_meshgrid_list_of_tensors_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5170761Z test_comprehensive_meshgrid_list_of_tensors_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5170950Z test_comprehensive_meshgrid_variadic_tensors_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5171135Z test_comprehensive_meshgrid_variadic_tensors_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5171329Z test_comprehensive_meshgrid_variadic_tensors_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5171522Z test_comprehensive_meshgrid_variadic_tensors_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5171743Z test_comprehensive_meshgrid_variadic_tensors_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5171931Z test_comprehensive_meshgrid_variadic_tensors_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5172105Z test_comprehensive_meshgrid_variadic_tensors_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5172289Z test_comprehensive_meshgrid_variadic_tensors_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5172473Z test_comprehensive_meshgrid_variadic_tensors_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5172658Z test_comprehensive_meshgrid_variadic_tensors_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5172841Z test_comprehensive_meshgrid_variadic_tensors_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5173027Z test_comprehensive_meshgrid_variadic_tensors_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5173230Z test_comprehensive_min_binary_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5173402Z test_comprehensive_min_binary_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5173573Z test_comprehensive_min_binary_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5173732Z test_comprehensive_min_binary_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5173902Z test_comprehensive_min_binary_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5174072Z test_comprehensive_min_binary_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5174243Z test_comprehensive_min_binary_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5174413Z test_comprehensive_min_binary_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5174579Z test_comprehensive_min_binary_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5174745Z test_comprehensive_min_binary_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5174931Z test_comprehensive_min_reduction_no_dim_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5175108Z test_comprehensive_min_reduction_no_dim_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5175275Z test_comprehensive_min_reduction_no_dim_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5175456Z test_comprehensive_min_reduction_no_dim_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5175634Z test_comprehensive_min_reduction_no_dim_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5175814Z test_comprehensive_min_reduction_no_dim_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5175990Z test_comprehensive_min_reduction_no_dim_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5176167Z test_comprehensive_min_reduction_no_dim_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5176344Z test_comprehensive_min_reduction_no_dim_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5176521Z test_comprehensive_min_reduction_no_dim_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5176705Z test_comprehensive_min_reduction_with_dim_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5176924Z test_comprehensive_min_reduction_with_dim_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5177094Z test_comprehensive_min_reduction_with_dim_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5177278Z test_comprehensive_min_reduction_with_dim_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5177461Z test_comprehensive_min_reduction_with_dim_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5177640Z test_comprehensive_min_reduction_with_dim_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5177818Z test_comprehensive_min_reduction_with_dim_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5177994Z test_comprehensive_min_reduction_with_dim_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5178173Z test_comprehensive_min_reduction_with_dim_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5178382Z test_comprehensive_min_reduction_with_dim_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5178551Z test_comprehensive_minimum_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5178704Z test_comprehensive_minimum_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5178873Z test_comprehensive_minimum_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5179040Z test_comprehensive_minimum_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5179203Z test_comprehensive_minimum_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5179444Z test_comprehensive_minimum_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5179613Z test_comprehensive_minimum_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5179773Z test_comprehensive_minimum_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5179939Z test_comprehensive_minimum_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5180106Z test_comprehensive_minimum_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5180256Z test_comprehensive_mm_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5180422Z test_comprehensive_mm_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5180590Z test_comprehensive_mm_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5180756Z test_comprehensive_mm_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5180922Z test_comprehensive_mm_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5181084Z test_comprehensive_mm_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5181245Z test_comprehensive_mm_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5181405Z test_comprehensive_mm_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5181568Z test_comprehensive_mm_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5181712Z test_comprehensive_mm_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5181880Z test_comprehensive_mode_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5182081Z test_comprehensive_mode_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5182249Z test_comprehensive_mode_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5182410Z test_comprehensive_mode_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5182576Z test_comprehensive_mode_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5182737Z test_comprehensive_mode_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5182895Z test_comprehensive_mode_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5183048Z test_comprehensive_mode_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5183195Z test_comprehensive_mode_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5183356Z test_comprehensive_mode_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5183561Z test_comprehensive_movedim_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5183730Z test_comprehensive_movedim_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5183902Z test_comprehensive_movedim_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5184075Z test_comprehensive_movedim_cpu_complex32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5184244Z test_comprehensive_movedim_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5184412Z test_comprehensive_movedim_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5184579Z test_comprehensive_movedim_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5184736Z test_comprehensive_movedim_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5184905Z test_comprehensive_movedim_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5185069Z test_comprehensive_movedim_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5185229Z test_comprehensive_movedim_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5185393Z test_comprehensive_movedim_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5185555Z test_comprehensive_movedim_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5185721Z test_comprehensive_msort_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5185884Z test_comprehensive_msort_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5186047Z test_comprehensive_msort_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5186195Z test_comprehensive_msort_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5186353Z test_comprehensive_msort_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5186516Z test_comprehensive_msort_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5186682Z test_comprehensive_msort_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5186843Z test_comprehensive_msort_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5187006Z test_comprehensive_msort_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5187195Z test_comprehensive_msort_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5187363Z test_comprehensive_mul_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5187514Z test_comprehensive_mul_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5187683Z test_comprehensive_mul_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5187851Z test_comprehensive_mul_cpu_complex32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5188012Z test_comprehensive_mul_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5188175Z test_comprehensive_mul_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5188336Z test_comprehensive_mul_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5188497Z test_comprehensive_mul_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5188656Z test_comprehensive_mul_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5188847Z test_comprehensive_mul_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5188994Z test_comprehensive_mul_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5189155Z test_comprehensive_mul_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5189313Z test_comprehensive_mul_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5189489Z test_comprehensive_multinomial_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5189664Z test_comprehensive_multinomial_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5189839Z test_comprehensive_multinomial_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5190003Z test_comprehensive_mv_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5190167Z test_comprehensive_mv_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5190331Z test_comprehensive_mv_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5190480Z test_comprehensive_mv_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5190637Z test_comprehensive_mv_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5190796Z test_comprehensive_mv_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5190956Z test_comprehensive_mv_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5191115Z test_comprehensive_mv_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5191276Z test_comprehensive_mv_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5191435Z test_comprehensive_mv_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5191623Z test_comprehensive_mvlgamma_mvlgamma_p_1_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5191805Z test_comprehensive_mvlgamma_mvlgamma_p_1_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5191970Z test_comprehensive_mvlgamma_mvlgamma_p_1_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5192150Z test_comprehensive_mvlgamma_mvlgamma_p_1_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5192330Z test_comprehensive_mvlgamma_mvlgamma_p_1_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5192537Z test_comprehensive_mvlgamma_mvlgamma_p_1_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5192719Z test_comprehensive_mvlgamma_mvlgamma_p_1_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5192893Z test_comprehensive_mvlgamma_mvlgamma_p_1_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5193076Z test_comprehensive_mvlgamma_mvlgamma_p_3_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5193256Z test_comprehensive_mvlgamma_mvlgamma_p_3_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5193431Z test_comprehensive_mvlgamma_mvlgamma_p_3_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5193608Z test_comprehensive_mvlgamma_mvlgamma_p_3_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5193777Z test_comprehensive_mvlgamma_mvlgamma_p_3_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5193979Z test_comprehensive_mvlgamma_mvlgamma_p_3_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5194158Z test_comprehensive_mvlgamma_mvlgamma_p_3_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5194331Z test_comprehensive_mvlgamma_mvlgamma_p_3_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5194515Z test_comprehensive_mvlgamma_mvlgamma_p_5_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5194696Z test_comprehensive_mvlgamma_mvlgamma_p_5_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5194873Z test_comprehensive_mvlgamma_mvlgamma_p_5_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5195049Z test_comprehensive_mvlgamma_mvlgamma_p_5_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5195231Z test_comprehensive_mvlgamma_mvlgamma_p_5_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5195392Z test_comprehensive_mvlgamma_mvlgamma_p_5_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5195569Z test_comprehensive_mvlgamma_mvlgamma_p_5_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5195742Z test_comprehensive_mvlgamma_mvlgamma_p_5_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5195914Z test_comprehensive_nan_to_num_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5196080Z test_comprehensive_nan_to_num_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5196253Z test_comprehensive_nan_to_num_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5196424Z test_comprehensive_nan_to_num_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5196590Z test_comprehensive_nan_to_num_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5196758Z test_comprehensive_nan_to_num_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5196913Z test_comprehensive_nan_to_num_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5197080Z test_comprehensive_nan_to_num_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5197244Z test_comprehensive_nan_to_num_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5197446Z test_comprehensive_nan_to_num_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5197611Z test_comprehensive_nanmean_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5197783Z test_comprehensive_nanmean_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5197949Z test_comprehensive_nanmean_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5198119Z test_comprehensive_nanmean_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5198293Z test_comprehensive_nanmedian_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5198454Z test_comprehensive_nanmedian_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5198625Z test_comprehensive_nanmedian_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5198796Z test_comprehensive_nanmedian_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5198994Z test_comprehensive_nanmedian_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5199162Z test_comprehensive_nanmedian_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5199335Z test_comprehensive_nanmedian_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5199501Z test_comprehensive_nanmedian_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5199676Z test_comprehensive_nanquantile_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5199851Z test_comprehensive_nanquantile_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5200003Z test_comprehensive_nansum_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5200170Z test_comprehensive_nansum_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5200338Z test_comprehensive_nansum_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5200505Z test_comprehensive_nansum_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5200776Z test_comprehensive_nansum_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5200944Z test_comprehensive_nansum_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5201110Z test_comprehensive_nansum_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5201274Z test_comprehensive_nansum_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5201437Z test_comprehensive_nansum_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5201587Z test_comprehensive_nansum_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5201770Z test_comprehensive_narrow_copy_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5201941Z test_comprehensive_narrow_copy_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5202124Z test_comprehensive_narrow_copy_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5202300Z test_comprehensive_narrow_copy_cpu_complex32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5202475Z test_comprehensive_narrow_copy_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5202650Z test_comprehensive_narrow_copy_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5202878Z test_comprehensive_narrow_copy_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5203054Z test_comprehensive_narrow_copy_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5203213Z test_comprehensive_narrow_copy_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5203382Z test_comprehensive_narrow_copy_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5203552Z test_comprehensive_narrow_copy_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5203723Z test_comprehensive_narrow_copy_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5203892Z test_comprehensive_narrow_copy_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5204065Z test_comprehensive_narrow_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5204233Z test_comprehensive_narrow_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5204472Z test_comprehensive_narrow_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5204648Z test_comprehensive_narrow_cpu_complex32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5204805Z test_comprehensive_narrow_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5204974Z test_comprehensive_narrow_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5205142Z test_comprehensive_narrow_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5205305Z test_comprehensive_narrow_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5205473Z test_comprehensive_narrow_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5205636Z test_comprehensive_narrow_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5205798Z test_comprehensive_narrow_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5205960Z test_comprehensive_narrow_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5206127Z test_comprehensive_narrow_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5206294Z test_comprehensive_native_batch_norm_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5206473Z test_comprehensive_native_batch_norm_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5206652Z test_comprehensive_native_batch_norm_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5206846Z test_comprehensive_native_dropout_backward_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5207033Z test_comprehensive_native_dropout_backward_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5207218Z test_comprehensive_native_dropout_backward_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5207407Z test_comprehensive_native_dropout_backward_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5207589Z test_comprehensive_native_dropout_backward_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5207773Z test_comprehensive_native_dropout_backward_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5207951Z test_comprehensive_native_dropout_backward_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5208144Z test_comprehensive_native_dropout_backward_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5208333Z test_comprehensive_native_dropout_backward_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5208518Z test_comprehensive_native_dropout_backward_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5208695Z test_comprehensive_native_layer_norm_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5208871Z test_comprehensive_native_layer_norm_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5209051Z test_comprehensive_native_layer_norm_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5209214Z test_comprehensive_ne_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5209375Z test_comprehensive_ne_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5209568Z test_comprehensive_ne_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5209723Z test_comprehensive_ne_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5209887Z test_comprehensive_ne_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5210044Z test_comprehensive_ne_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5210198Z test_comprehensive_ne_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5210362Z test_comprehensive_ne_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5210521Z test_comprehensive_ne_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5210680Z test_comprehensive_ne_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5210840Z test_comprehensive_ne_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5210999Z test_comprehensive_ne_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5211153Z test_comprehensive_neg_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5211324Z test_comprehensive_neg_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5211489Z test_comprehensive_neg_cpu_complex32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5211649Z test_comprehensive_neg_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5211812Z test_comprehensive_neg_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5211972Z test_comprehensive_neg_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5212132Z test_comprehensive_neg_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5212292Z test_comprehensive_neg_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5212451Z test_comprehensive_neg_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5212599Z test_comprehensive_neg_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5212760Z test_comprehensive_neg_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5212917Z test_comprehensive_neg_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5213092Z test_comprehensive_new_empty_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5213301Z test_comprehensive_new_empty_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5213479Z test_comprehensive_new_empty_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5213653Z test_comprehensive_new_empty_cpu_complex32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5213827Z test_comprehensive_new_empty_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5213999Z test_comprehensive_new_empty_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5214157Z test_comprehensive_new_empty_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5214326Z test_comprehensive_new_empty_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5214492Z test_comprehensive_new_empty_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5214660Z test_comprehensive_new_empty_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5214851Z test_comprehensive_new_empty_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5215022Z test_comprehensive_new_empty_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5215193Z test_comprehensive_new_empty_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5215405Z test_comprehensive_new_empty_strided_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Expected: new_empty_strided is not comparable (0.000s) 2023-01-11T20:52:32.5215612Z test_comprehensive_new_empty_strided_cpu_bool (__main__.TestDecompCPU) ... skip: Expected: new_empty_strided is not comparable (0.000s) 2023-01-11T20:52:32.5215812Z test_comprehensive_new_empty_strided_cpu_complex128 (__main__.TestDecompCPU) ... skip: Expected: new_empty_strided is not comparable (0.000s) 2023-01-11T20:52:32.5216027Z test_comprehensive_new_empty_strided_cpu_complex32 (__main__.TestDecompCPU) ... skip: Expected: new_empty_strided is not comparable (0.000s) 2023-01-11T20:52:32.5216237Z test_comprehensive_new_empty_strided_cpu_complex64 (__main__.TestDecompCPU) ... skip: Expected: new_empty_strided is not comparable (0.000s) 2023-01-11T20:52:32.5216444Z test_comprehensive_new_empty_strided_cpu_float16 (__main__.TestDecompCPU) ... skip: Expected: new_empty_strided is not comparable (0.000s) 2023-01-11T20:52:32.5216649Z test_comprehensive_new_empty_strided_cpu_float32 (__main__.TestDecompCPU) ... skip: Expected: new_empty_strided is not comparable (0.000s) 2023-01-11T20:52:32.5216848Z test_comprehensive_new_empty_strided_cpu_float64 (__main__.TestDecompCPU) ... skip: Expected: new_empty_strided is not comparable (0.000s) 2023-01-11T20:52:32.5217050Z test_comprehensive_new_empty_strided_cpu_int16 (__main__.TestDecompCPU) ... skip: Expected: new_empty_strided is not comparable (0.000s) 2023-01-11T20:52:32.5217258Z test_comprehensive_new_empty_strided_cpu_int32 (__main__.TestDecompCPU) ... skip: Expected: new_empty_strided is not comparable (0.000s) 2023-01-11T20:52:32.5217464Z test_comprehensive_new_empty_strided_cpu_int64 (__main__.TestDecompCPU) ... skip: Expected: new_empty_strided is not comparable (0.000s) 2023-01-11T20:52:32.5217664Z test_comprehensive_new_empty_strided_cpu_int8 (__main__.TestDecompCPU) ... skip: Expected: new_empty_strided is not comparable (0.000s) 2023-01-11T20:52:32.5217868Z test_comprehensive_new_empty_strided_cpu_uint8 (__main__.TestDecompCPU) ... skip: Expected: new_empty_strided is not comparable (0.000s) 2023-01-11T20:52:32.5218027Z test_comprehensive_new_full_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5218194Z test_comprehensive_new_full_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5218398Z test_comprehensive_new_full_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5218575Z test_comprehensive_new_full_cpu_complex32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5218746Z test_comprehensive_new_full_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5218916Z test_comprehensive_new_full_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5219085Z test_comprehensive_new_full_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5219331Z test_comprehensive_new_full_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5219502Z test_comprehensive_new_full_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5219656Z test_comprehensive_new_full_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5219822Z test_comprehensive_new_full_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5220028Z test_comprehensive_new_full_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5220196Z test_comprehensive_new_full_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5220367Z test_comprehensive_new_ones_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5220532Z test_comprehensive_new_ones_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5220710Z test_comprehensive_new_ones_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5220884Z test_comprehensive_new_ones_cpu_complex32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5221058Z test_comprehensive_new_ones_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5221217Z test_comprehensive_new_ones_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5221385Z test_comprehensive_new_ones_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5221550Z test_comprehensive_new_ones_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5221716Z test_comprehensive_new_ones_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5221878Z test_comprehensive_new_ones_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5222043Z test_comprehensive_new_ones_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5222207Z test_comprehensive_new_ones_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5222372Z test_comprehensive_new_ones_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5222545Z test_comprehensive_new_zeros_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5222695Z test_comprehensive_new_zeros_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5222869Z test_comprehensive_new_zeros_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5223043Z test_comprehensive_new_zeros_cpu_complex32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5223215Z test_comprehensive_new_zeros_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5223385Z test_comprehensive_new_zeros_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5223553Z test_comprehensive_new_zeros_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5223750Z test_comprehensive_new_zeros_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5223919Z test_comprehensive_new_zeros_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5224085Z test_comprehensive_new_zeros_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5224239Z test_comprehensive_new_zeros_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5224403Z test_comprehensive_new_zeros_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5224568Z test_comprehensive_new_zeros_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5224742Z test_comprehensive_nextafter_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5224915Z test_comprehensive_nextafter_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5225112Z test_comprehensive_nextafter_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5225313Z test_comprehensive_nn_functional__scaled_dot_product_attention_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped (0.000s) 2023-01-11T20:52:32.5225513Z test_comprehensive_nn_functional__scaled_dot_product_attention_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped (0.000s) 2023-01-11T20:52:32.5225708Z test_comprehensive_nn_functional__scaled_dot_product_attention_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped (0.000s) 2023-01-11T20:52:32.5225895Z test_comprehensive_nn_functional_adaptive_avg_pool1d_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5226090Z test_comprehensive_nn_functional_adaptive_avg_pool1d_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5226291Z test_comprehensive_nn_functional_adaptive_avg_pool1d_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5226489Z test_comprehensive_nn_functional_adaptive_avg_pool2d_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5226683Z test_comprehensive_nn_functional_adaptive_avg_pool2d_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5226873Z test_comprehensive_nn_functional_adaptive_avg_pool2d_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5227066Z test_comprehensive_nn_functional_adaptive_avg_pool3d_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5227254Z test_comprehensive_nn_functional_adaptive_avg_pool3d_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5227442Z test_comprehensive_nn_functional_adaptive_avg_pool3d_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5227644Z test_comprehensive_nn_functional_adaptive_max_pool1d_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5227823Z test_comprehensive_nn_functional_adaptive_max_pool1d_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5228011Z test_comprehensive_nn_functional_adaptive_max_pool1d_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5228205Z test_comprehensive_nn_functional_adaptive_max_pool2d_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5228394Z test_comprehensive_nn_functional_adaptive_max_pool2d_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5228582Z test_comprehensive_nn_functional_adaptive_max_pool2d_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5228802Z test_comprehensive_nn_functional_adaptive_max_pool3d_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5228992Z test_comprehensive_nn_functional_adaptive_max_pool3d_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5229186Z test_comprehensive_nn_functional_alpha_dropout_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5229378Z test_comprehensive_nn_functional_alpha_dropout_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5229569Z test_comprehensive_nn_functional_alpha_dropout_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5229742Z test_comprehensive_nn_functional_avg_pool1d_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5229928Z test_comprehensive_nn_functional_avg_pool1d_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5230141Z test_comprehensive_nn_functional_avg_pool1d_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5230327Z test_comprehensive_nn_functional_avg_pool1d_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5230514Z test_comprehensive_nn_functional_avg_pool2d_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5230698Z test_comprehensive_nn_functional_avg_pool2d_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5230877Z test_comprehensive_nn_functional_avg_pool2d_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5231062Z test_comprehensive_nn_functional_avg_pool2d_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5231249Z test_comprehensive_nn_functional_avg_pool3d_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5231437Z test_comprehensive_nn_functional_avg_pool3d_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5231606Z test_comprehensive_nn_functional_avg_pool3d_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5231791Z test_comprehensive_nn_functional_batch_norm_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5231973Z test_comprehensive_nn_functional_batch_norm_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5232153Z test_comprehensive_nn_functional_batch_norm_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5232337Z test_comprehensive_nn_functional_bilinear_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5232522Z test_comprehensive_nn_functional_bilinear_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5232706Z test_comprehensive_nn_functional_bilinear_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5232889Z test_comprehensive_nn_functional_bilinear_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5233068Z test_comprehensive_nn_functional_bilinear_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5233244Z test_comprehensive_nn_functional_bilinear_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5233411Z test_comprehensive_nn_functional_bilinear_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5233586Z test_comprehensive_nn_functional_bilinear_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5233814Z test_comprehensive_nn_functional_binary_cross_entropy_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5234008Z test_comprehensive_nn_functional_binary_cross_entropy_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5234217Z test_comprehensive_nn_functional_binary_cross_entropy_with_logits_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5234427Z test_comprehensive_nn_functional_binary_cross_entropy_with_logits_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5234633Z test_comprehensive_nn_functional_binary_cross_entropy_with_logits_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5234816Z test_comprehensive_nn_functional_celu_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5234998Z test_comprehensive_nn_functional_celu_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5235198Z test_comprehensive_nn_functional_celu_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5235370Z test_comprehensive_nn_functional_conv1d_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5235553Z test_comprehensive_nn_functional_conv1d_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5235738Z test_comprehensive_nn_functional_conv1d_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5235919Z test_comprehensive_nn_functional_conv1d_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5236099Z test_comprehensive_nn_functional_conv1d_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5236276Z test_comprehensive_nn_functional_conv1d_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5236459Z test_comprehensive_nn_functional_conv2d_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5236646Z test_comprehensive_nn_functional_conv2d_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5236830Z test_comprehensive_nn_functional_conv2d_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5236996Z test_comprehensive_nn_functional_conv2d_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5237175Z test_comprehensive_nn_functional_conv2d_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5237355Z test_comprehensive_nn_functional_conv2d_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5237557Z test_comprehensive_nn_functional_conv_transpose1d_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5237755Z test_comprehensive_nn_functional_conv_transpose1d_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5237950Z test_comprehensive_nn_functional_conv_transpose1d_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5238144Z test_comprehensive_nn_functional_conv_transpose1d_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5238333Z test_comprehensive_nn_functional_conv_transpose1d_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5238527Z test_comprehensive_nn_functional_conv_transpose2d_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5238724Z test_comprehensive_nn_functional_conv_transpose2d_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5238932Z test_comprehensive_nn_functional_conv_transpose2d_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5239126Z test_comprehensive_nn_functional_conv_transpose2d_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5239318Z test_comprehensive_nn_functional_conv_transpose2d_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5239515Z test_comprehensive_nn_functional_conv_transpose3d_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5239712Z test_comprehensive_nn_functional_conv_transpose3d_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5239901Z test_comprehensive_nn_functional_conv_transpose3d_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5240093Z test_comprehensive_nn_functional_conv_transpose3d_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5240314Z test_comprehensive_nn_functional_conv_transpose3d_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5240516Z test_comprehensive_nn_functional_cosine_embedding_loss_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5240814Z test_comprehensive_nn_functional_cosine_embedding_loss_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5240999Z test_comprehensive_nn_functional_cosine_embedding_loss_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5241192Z test_comprehensive_nn_functional_cosine_embedding_loss_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5241385Z test_comprehensive_nn_functional_cosine_embedding_loss_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5241582Z test_comprehensive_nn_functional_cosine_embedding_loss_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5241780Z test_comprehensive_nn_functional_cosine_embedding_loss_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5241972Z test_comprehensive_nn_functional_cosine_embedding_loss_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5242168Z test_comprehensive_nn_functional_cosine_embedding_loss_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5242364Z test_comprehensive_nn_functional_cosine_similarity_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5242557Z test_comprehensive_nn_functional_cosine_similarity_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5242753Z test_comprehensive_nn_functional_cosine_similarity_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5242931Z test_comprehensive_nn_functional_cross_entropy_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5243122Z test_comprehensive_nn_functional_cross_entropy_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5243310Z test_comprehensive_nn_functional_cross_entropy_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5243494Z test_comprehensive_nn_functional_ctc_loss_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5243676Z test_comprehensive_nn_functional_ctc_loss_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5243862Z test_comprehensive_nn_functional_dropout2d_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5244099Z test_comprehensive_nn_functional_dropout2d_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5244287Z test_comprehensive_nn_functional_dropout2d_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5244474Z test_comprehensive_nn_functional_dropout3d_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5244658Z test_comprehensive_nn_functional_dropout3d_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5244829Z test_comprehensive_nn_functional_dropout3d_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5245016Z test_comprehensive_nn_functional_dropout_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5245200Z test_comprehensive_nn_functional_dropout_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.003s) 2023-01-11T20:52:32.5245385Z test_comprehensive_nn_functional_dropout_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5245602Z test_comprehensive_nn_functional_elu_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5245785Z test_comprehensive_nn_functional_elu_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5245963Z test_comprehensive_nn_functional_elu_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5246154Z test_comprehensive_nn_functional_embedding_bag_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5246344Z test_comprehensive_nn_functional_embedding_bag_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5246517Z test_comprehensive_nn_functional_embedding_bag_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5246705Z test_comprehensive_nn_functional_embedding_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5246891Z test_comprehensive_nn_functional_embedding_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5247075Z test_comprehensive_nn_functional_embedding_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5247257Z test_comprehensive_nn_functional_embedding_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5247467Z test_comprehensive_nn_functional_feature_alpha_dropout_with_train_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5247675Z test_comprehensive_nn_functional_feature_alpha_dropout_with_train_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5247885Z test_comprehensive_nn_functional_feature_alpha_dropout_with_train_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5248104Z test_comprehensive_nn_functional_feature_alpha_dropout_without_train_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5248312Z test_comprehensive_nn_functional_feature_alpha_dropout_without_train_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5248528Z test_comprehensive_nn_functional_feature_alpha_dropout_without_train_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5248727Z test_comprehensive_nn_functional_feature_alpha_dropout_without_train_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5248941Z test_comprehensive_nn_functional_feature_alpha_dropout_without_train_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5249196Z test_comprehensive_nn_functional_feature_alpha_dropout_without_train_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5249408Z test_comprehensive_nn_functional_feature_alpha_dropout_without_train_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5249615Z test_comprehensive_nn_functional_feature_alpha_dropout_without_train_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5249822Z test_comprehensive_nn_functional_feature_alpha_dropout_without_train_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5250029Z test_comprehensive_nn_functional_feature_alpha_dropout_without_train_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5250234Z test_comprehensive_nn_functional_feature_alpha_dropout_without_train_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5250441Z test_comprehensive_nn_functional_feature_alpha_dropout_without_train_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5250667Z test_comprehensive_nn_functional_fractional_max_pool2d_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5250860Z test_comprehensive_nn_functional_fractional_max_pool2d_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5251047Z test_comprehensive_nn_functional_fractional_max_pool3d_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5251240Z test_comprehensive_nn_functional_fractional_max_pool3d_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5251433Z test_comprehensive_nn_functional_gaussian_nll_loss_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5251625Z test_comprehensive_nn_functional_gaussian_nll_loss_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5251820Z test_comprehensive_nn_functional_gaussian_nll_loss_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5252001Z test_comprehensive_nn_functional_gelu_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5252181Z test_comprehensive_nn_functional_gelu_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5252354Z test_comprehensive_nn_functional_gelu_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5252534Z test_comprehensive_nn_functional_glu_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5252698Z test_comprehensive_nn_functional_glu_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5252876Z test_comprehensive_nn_functional_glu_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5253069Z test_comprehensive_nn_functional_grid_sample_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5253256Z test_comprehensive_nn_functional_grid_sample_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5253441Z test_comprehensive_nn_functional_group_norm_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5253628Z test_comprehensive_nn_functional_group_norm_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5253814Z test_comprehensive_nn_functional_group_norm_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5254004Z test_comprehensive_nn_functional_hardshrink_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5254222Z test_comprehensive_nn_functional_hardshrink_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5254412Z test_comprehensive_nn_functional_hardshrink_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5254589Z test_comprehensive_nn_functional_hardsigmoid_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5254779Z test_comprehensive_nn_functional_hardsigmoid_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5254961Z test_comprehensive_nn_functional_hardsigmoid_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5255146Z test_comprehensive_nn_functional_hardswish_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5255332Z test_comprehensive_nn_functional_hardswish_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5255514Z test_comprehensive_nn_functional_hardswish_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5255738Z test_comprehensive_nn_functional_hardtanh_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5255924Z test_comprehensive_nn_functional_hardtanh_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5256108Z test_comprehensive_nn_functional_hardtanh_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5256292Z test_comprehensive_nn_functional_hardtanh_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5256460Z test_comprehensive_nn_functional_hardtanh_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5256637Z test_comprehensive_nn_functional_hardtanh_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5256819Z test_comprehensive_nn_functional_hardtanh_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5257021Z test_comprehensive_nn_functional_hinge_embedding_loss_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5257219Z test_comprehensive_nn_functional_hinge_embedding_loss_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5257411Z test_comprehensive_nn_functional_hinge_embedding_loss_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5257595Z test_comprehensive_nn_functional_huber_loss_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5257778Z test_comprehensive_nn_functional_huber_loss_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5257964Z test_comprehensive_nn_functional_huber_loss_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5258151Z test_comprehensive_nn_functional_huber_loss_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5258331Z test_comprehensive_nn_functional_instance_norm_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5258522Z test_comprehensive_nn_functional_instance_norm_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5258711Z test_comprehensive_nn_functional_instance_norm_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5258905Z test_comprehensive_nn_functional_interpolate_area_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5259099Z test_comprehensive_nn_functional_interpolate_area_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5259404Z test_comprehensive_nn_functional_interpolate_bicubic_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5259606Z test_comprehensive_nn_functional_interpolate_bicubic_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5259803Z test_comprehensive_nn_functional_interpolate_bicubic_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5260002Z test_comprehensive_nn_functional_interpolate_bilinear_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5260205Z test_comprehensive_nn_functional_interpolate_bilinear_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5260387Z test_comprehensive_nn_functional_interpolate_bilinear_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5260583Z test_comprehensive_nn_functional_interpolate_linear_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5260786Z test_comprehensive_nn_functional_interpolate_linear_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5261013Z test_comprehensive_nn_functional_interpolate_linear_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5261210Z test_comprehensive_nn_functional_interpolate_nearest_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5261403Z test_comprehensive_nn_functional_interpolate_nearest_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5261598Z test_comprehensive_nn_functional_interpolate_nearest_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5261793Z test_comprehensive_nn_functional_interpolate_nearest_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5261996Z test_comprehensive_nn_functional_interpolate_trilinear_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5262197Z test_comprehensive_nn_functional_interpolate_trilinear_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5262377Z test_comprehensive_nn_functional_interpolate_trilinear_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5262561Z test_comprehensive_nn_functional_kl_div_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5262742Z test_comprehensive_nn_functional_kl_div_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5262918Z test_comprehensive_nn_functional_kl_div_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5263099Z test_comprehensive_nn_functional_l1_loss_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5263283Z test_comprehensive_nn_functional_l1_loss_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5263468Z test_comprehensive_nn_functional_l1_loss_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5263649Z test_comprehensive_nn_functional_l1_loss_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5263823Z test_comprehensive_nn_functional_l1_loss_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5263989Z test_comprehensive_nn_functional_l1_loss_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5264175Z test_comprehensive_nn_functional_layer_norm_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5264358Z test_comprehensive_nn_functional_layer_norm_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5264575Z test_comprehensive_nn_functional_layer_norm_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5264763Z test_comprehensive_nn_functional_leaky_relu_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5264946Z test_comprehensive_nn_functional_leaky_relu_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5265130Z test_comprehensive_nn_functional_leaky_relu_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5265312Z test_comprehensive_nn_functional_linear_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5265496Z test_comprehensive_nn_functional_linear_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5265680Z test_comprehensive_nn_functional_linear_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5265853Z test_comprehensive_nn_functional_linear_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5266062Z test_comprehensive_nn_functional_linear_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5266242Z test_comprehensive_nn_functional_linear_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5266416Z test_comprehensive_nn_functional_linear_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5266586Z test_comprehensive_nn_functional_linear_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5266762Z test_comprehensive_nn_functional_linear_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5266940Z test_comprehensive_nn_functional_linear_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5267136Z test_comprehensive_nn_functional_local_response_norm_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5267332Z test_comprehensive_nn_functional_local_response_norm_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5267527Z test_comprehensive_nn_functional_local_response_norm_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5267706Z test_comprehensive_nn_functional_local_response_norm_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5267891Z test_comprehensive_nn_functional_logsigmoid_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5268081Z test_comprehensive_nn_functional_logsigmoid_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5268272Z test_comprehensive_nn_functional_logsigmoid_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5268469Z test_comprehensive_nn_functional_margin_ranking_loss_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5268660Z test_comprehensive_nn_functional_margin_ranking_loss_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5268854Z test_comprehensive_nn_functional_margin_ranking_loss_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5269044Z test_comprehensive_nn_functional_margin_ranking_loss_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5269234Z test_comprehensive_nn_functional_margin_ranking_loss_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5269420Z test_comprehensive_nn_functional_margin_ranking_loss_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5269636Z test_comprehensive_nn_functional_margin_ranking_loss_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5269827Z test_comprehensive_nn_functional_margin_ranking_loss_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5270009Z test_comprehensive_nn_functional_max_pool1d_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5270197Z test_comprehensive_nn_functional_max_pool1d_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5270381Z test_comprehensive_nn_functional_max_pool1d_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5270568Z test_comprehensive_nn_functional_max_pool2d_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5270754Z test_comprehensive_nn_functional_max_pool2d_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5270938Z test_comprehensive_nn_functional_max_pool2d_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5271148Z test_comprehensive_nn_functional_max_pool3d_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5271318Z test_comprehensive_nn_functional_max_pool3d_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5271504Z test_comprehensive_nn_functional_max_unpool1d_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5271689Z test_comprehensive_nn_functional_max_unpool1d_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5271879Z test_comprehensive_nn_functional_max_unpool1d_grad_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5272074Z test_comprehensive_nn_functional_max_unpool1d_grad_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5272262Z test_comprehensive_nn_functional_max_unpool2d_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5272448Z test_comprehensive_nn_functional_max_unpool2d_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5272640Z test_comprehensive_nn_functional_max_unpool2d_grad_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5272828Z test_comprehensive_nn_functional_max_unpool2d_grad_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5273014Z test_comprehensive_nn_functional_max_unpool3d_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5273185Z test_comprehensive_nn_functional_max_unpool3d_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5273377Z test_comprehensive_nn_functional_max_unpool3d_grad_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5273571Z test_comprehensive_nn_functional_max_unpool3d_grad_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5273752Z test_comprehensive_nn_functional_mish_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5273931Z test_comprehensive_nn_functional_mish_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5274105Z test_comprehensive_nn_functional_mish_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5274287Z test_comprehensive_nn_functional_mse_loss_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5274465Z test_comprehensive_nn_functional_mse_loss_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5274677Z test_comprehensive_nn_functional_mse_loss_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5274868Z test_comprehensive_nn_functional_multi_margin_loss_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5275044Z test_comprehensive_nn_functional_multi_margin_loss_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5275242Z test_comprehensive_nn_functional_multilabel_margin_loss_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5275434Z test_comprehensive_nn_functional_multilabel_margin_loss_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5275639Z test_comprehensive_nn_functional_multilabel_soft_margin_loss_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5275842Z test_comprehensive_nn_functional_multilabel_soft_margin_loss_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5276072Z test_comprehensive_nn_functional_multilabel_soft_margin_loss_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5276259Z test_comprehensive_nn_functional_nll_loss_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5276442Z test_comprehensive_nn_functional_nll_loss_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5276621Z test_comprehensive_nn_functional_nll_loss_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5276807Z test_comprehensive_nn_functional_normalize_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5276981Z test_comprehensive_nn_functional_normalize_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5277171Z test_comprehensive_nn_functional_normalize_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5277357Z test_comprehensive_nn_functional_normalize_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5277537Z test_comprehensive_nn_functional_normalize_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5277715Z test_comprehensive_nn_functional_one_hot_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5277935Z test_comprehensive_nn_functional_pad_circular_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Expected: new_empty_strided is not comparable (0.000s) 2023-01-11T20:52:32.5278148Z test_comprehensive_nn_functional_pad_circular_cpu_bool (__main__.TestDecompCPU) ... skip: Expected: new_empty_strided is not comparable (0.000s) 2023-01-11T20:52:32.5278371Z test_comprehensive_nn_functional_pad_circular_cpu_complex128 (__main__.TestDecompCPU) ... skip: Expected: new_empty_strided is not comparable (0.000s) 2023-01-11T20:52:32.5278595Z test_comprehensive_nn_functional_pad_circular_cpu_complex64 (__main__.TestDecompCPU) ... skip: Expected: new_empty_strided is not comparable (0.000s) 2023-01-11T20:52:32.5278811Z test_comprehensive_nn_functional_pad_circular_cpu_float16 (__main__.TestDecompCPU) ... skip: Expected: new_empty_strided is not comparable (0.000s) 2023-01-11T20:52:32.5279026Z test_comprehensive_nn_functional_pad_circular_cpu_float32 (__main__.TestDecompCPU) ... skip: Expected: new_empty_strided is not comparable (0.000s) 2023-01-11T20:52:32.5279221Z test_comprehensive_nn_functional_pad_circular_cpu_float64 (__main__.TestDecompCPU) ... skip: Expected: new_empty_strided is not comparable (0.000s) 2023-01-11T20:52:32.5279433Z test_comprehensive_nn_functional_pad_circular_cpu_int16 (__main__.TestDecompCPU) ... skip: Expected: new_empty_strided is not comparable (0.000s) 2023-01-11T20:52:32.5279679Z test_comprehensive_nn_functional_pad_circular_cpu_int32 (__main__.TestDecompCPU) ... skip: Expected: new_empty_strided is not comparable (0.000s) 2023-01-11T20:52:32.5279895Z test_comprehensive_nn_functional_pad_circular_cpu_int64 (__main__.TestDecompCPU) ... skip: Expected: new_empty_strided is not comparable (0.000s) 2023-01-11T20:52:32.5280109Z test_comprehensive_nn_functional_pad_circular_cpu_int8 (__main__.TestDecompCPU) ... skip: Expected: new_empty_strided is not comparable (0.000s) 2023-01-11T20:52:32.5280318Z test_comprehensive_nn_functional_pad_circular_cpu_uint8 (__main__.TestDecompCPU) ... skip: Expected: new_empty_strided is not comparable (0.000s) 2023-01-11T20:52:32.5280509Z test_comprehensive_nn_functional_pad_constant_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5280803Z test_comprehensive_nn_functional_pad_constant_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5281004Z test_comprehensive_nn_functional_pad_constant_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5281243Z test_comprehensive_nn_functional_pad_constant_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5281418Z test_comprehensive_nn_functional_pad_constant_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5281607Z test_comprehensive_nn_functional_pad_constant_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5281793Z test_comprehensive_nn_functional_pad_constant_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5281981Z test_comprehensive_nn_functional_pad_constant_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5282172Z test_comprehensive_nn_functional_pad_constant_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5282360Z test_comprehensive_nn_functional_pad_constant_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5282549Z test_comprehensive_nn_functional_pad_constant_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5282736Z test_comprehensive_nn_functional_pad_constant_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5282928Z test_comprehensive_nn_functional_pad_reflect_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5283118Z test_comprehensive_nn_functional_pad_reflect_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5283291Z test_comprehensive_nn_functional_pad_reflect_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5283477Z test_comprehensive_nn_functional_pad_reflect_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5283673Z test_comprehensive_nn_functional_pad_replicate_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5283868Z test_comprehensive_nn_functional_pad_replicate_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5284060Z test_comprehensive_nn_functional_pad_replicate_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5284247Z test_comprehensive_nn_functional_pad_replicate_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5284444Z test_comprehensive_nn_functional_pairwise_distance_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5284644Z test_comprehensive_nn_functional_pairwise_distance_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5284922Z test_comprehensive_nn_functional_pairwise_distance_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5285121Z test_comprehensive_nn_functional_pairwise_distance_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5285305Z test_comprehensive_nn_functional_pairwise_distance_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5285499Z test_comprehensive_nn_functional_pairwise_distance_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5285691Z test_comprehensive_nn_functional_pairwise_distance_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5285881Z test_comprehensive_nn_functional_pairwise_distance_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5286068Z test_comprehensive_nn_functional_pairwise_distance_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5286265Z test_comprehensive_nn_functional_pairwise_distance_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5286487Z test_comprehensive_nn_functional_pairwise_distance_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5286671Z test_comprehensive_nn_functional_pdist_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5286849Z test_comprehensive_nn_functional_pdist_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5287044Z test_comprehensive_nn_functional_pixel_shuffle_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5287217Z test_comprehensive_nn_functional_pixel_shuffle_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5287413Z test_comprehensive_nn_functional_pixel_shuffle_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5287607Z test_comprehensive_nn_functional_pixel_shuffle_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5287795Z test_comprehensive_nn_functional_pixel_shuffle_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5287984Z test_comprehensive_nn_functional_pixel_shuffle_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5288166Z test_comprehensive_nn_functional_pixel_shuffle_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5300947Z test_comprehensive_nn_functional_pixel_shuffle_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5301240Z test_comprehensive_nn_functional_pixel_shuffle_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5301444Z test_comprehensive_nn_functional_pixel_shuffle_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5301643Z test_comprehensive_nn_functional_pixel_shuffle_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5301820Z test_comprehensive_nn_functional_pixel_shuffle_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5302014Z test_comprehensive_nn_functional_pixel_unshuffle_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5302204Z test_comprehensive_nn_functional_pixel_unshuffle_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5302402Z test_comprehensive_nn_functional_pixel_unshuffle_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5302596Z test_comprehensive_nn_functional_pixel_unshuffle_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5302899Z test_comprehensive_nn_functional_pixel_unshuffle_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5303092Z test_comprehensive_nn_functional_pixel_unshuffle_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5303281Z test_comprehensive_nn_functional_pixel_unshuffle_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5303469Z test_comprehensive_nn_functional_pixel_unshuffle_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5303659Z test_comprehensive_nn_functional_pixel_unshuffle_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5303834Z test_comprehensive_nn_functional_pixel_unshuffle_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5304023Z test_comprehensive_nn_functional_pixel_unshuffle_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5304214Z test_comprehensive_nn_functional_pixel_unshuffle_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5304444Z test_comprehensive_nn_functional_poisson_nll_loss_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5304640Z test_comprehensive_nn_functional_poisson_nll_loss_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5304829Z test_comprehensive_nn_functional_poisson_nll_loss_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5305018Z test_comprehensive_nn_functional_poisson_nll_loss_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5305204Z test_comprehensive_nn_functional_poisson_nll_loss_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5305394Z test_comprehensive_nn_functional_poisson_nll_loss_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5305568Z test_comprehensive_nn_functional_poisson_nll_loss_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5305754Z test_comprehensive_nn_functional_poisson_nll_loss_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5305939Z test_comprehensive_nn_functional_prelu_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5306119Z test_comprehensive_nn_functional_prelu_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5306292Z test_comprehensive_nn_functional_prelu_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5306468Z test_comprehensive_nn_functional_relu6_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5306649Z test_comprehensive_nn_functional_relu6_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5306826Z test_comprehensive_nn_functional_relu6_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5307002Z test_comprehensive_nn_functional_relu6_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5307187Z test_comprehensive_nn_functional_relu6_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5307437Z test_comprehensive_nn_functional_relu6_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5307661Z test_comprehensive_nn_functional_relu6_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5307839Z test_comprehensive_nn_functional_relu6_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5308061Z test_comprehensive_nn_functional_relu_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5308241Z test_comprehensive_nn_functional_relu_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5308419Z test_comprehensive_nn_functional_relu_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5308596Z test_comprehensive_nn_functional_relu_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5308777Z test_comprehensive_nn_functional_relu_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5308952Z test_comprehensive_nn_functional_relu_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5309115Z test_comprehensive_nn_functional_relu_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5309294Z test_comprehensive_nn_functional_relu_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5309507Z test_comprehensive_nn_functional_rrelu_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5309688Z test_comprehensive_nn_functional_rrelu_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5309864Z test_comprehensive_nn_functional_rrelu_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5310039Z test_comprehensive_nn_functional_selu_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5310216Z test_comprehensive_nn_functional_selu_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5310395Z test_comprehensive_nn_functional_selu_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5310587Z test_comprehensive_nn_functional_silu_complex_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5310783Z test_comprehensive_nn_functional_silu_complex_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5310950Z test_comprehensive_nn_functional_silu_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5311129Z test_comprehensive_nn_functional_silu_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5311303Z test_comprehensive_nn_functional_silu_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5311493Z test_comprehensive_nn_functional_smooth_l1_loss_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5311684Z test_comprehensive_nn_functional_smooth_l1_loss_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5311871Z test_comprehensive_nn_functional_smooth_l1_loss_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5312059Z test_comprehensive_nn_functional_smooth_l1_loss_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5312252Z test_comprehensive_nn_functional_soft_margin_loss_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5312443Z test_comprehensive_nn_functional_soft_margin_loss_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5312634Z test_comprehensive_nn_functional_soft_margin_loss_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5312805Z test_comprehensive_nn_functional_softmin_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5312987Z test_comprehensive_nn_functional_softmin_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5313193Z test_comprehensive_nn_functional_softmin_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5313392Z test_comprehensive_nn_functional_softmin_with_dtype_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5313593Z test_comprehensive_nn_functional_softmin_with_dtype_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5313789Z test_comprehensive_nn_functional_softmin_with_dtype_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5313981Z test_comprehensive_nn_functional_softmin_with_dtype_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5314173Z test_comprehensive_nn_functional_softmin_with_dtype_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5314364Z test_comprehensive_nn_functional_softmin_with_dtype_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5314585Z test_comprehensive_nn_functional_softmin_with_dtype_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5314764Z test_comprehensive_nn_functional_softmin_with_dtype_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5314953Z test_comprehensive_nn_functional_softmin_with_dtype_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5315142Z test_comprehensive_nn_functional_softmin_with_dtype_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5315334Z test_comprehensive_nn_functional_softmin_with_dtype_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5315521Z test_comprehensive_nn_functional_softplus_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5315706Z test_comprehensive_nn_functional_softplus_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5315894Z test_comprehensive_nn_functional_softplus_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5316081Z test_comprehensive_nn_functional_softshrink_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5316268Z test_comprehensive_nn_functional_softshrink_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5316437Z test_comprehensive_nn_functional_softshrink_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5316619Z test_comprehensive_nn_functional_softsign_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5316807Z test_comprehensive_nn_functional_softsign_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5316997Z test_comprehensive_nn_functional_softsign_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5317182Z test_comprehensive_nn_functional_softsign_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5317367Z test_comprehensive_nn_functional_softsign_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5317549Z test_comprehensive_nn_functional_softsign_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5317732Z test_comprehensive_nn_functional_softsign_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5317913Z test_comprehensive_nn_functional_softsign_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5318091Z test_comprehensive_nn_functional_softsign_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5318287Z test_comprehensive_nn_functional_softsign_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5318466Z test_comprehensive_nn_functional_softsign_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5318654Z test_comprehensive_nn_functional_tanhshrink_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5318842Z test_comprehensive_nn_functional_tanhshrink_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5319032Z test_comprehensive_nn_functional_tanhshrink_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5319217Z test_comprehensive_nn_functional_tanhshrink_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5319399Z test_comprehensive_nn_functional_tanhshrink_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5319587Z test_comprehensive_nn_functional_tanhshrink_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5319797Z test_comprehensive_nn_functional_tanhshrink_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5319981Z test_comprehensive_nn_functional_tanhshrink_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5320149Z test_comprehensive_nn_functional_tanhshrink_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5320332Z test_comprehensive_nn_functional_tanhshrink_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5320517Z test_comprehensive_nn_functional_threshold_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5320855Z test_comprehensive_nn_functional_threshold_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5321040Z test_comprehensive_nn_functional_threshold_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5321228Z test_comprehensive_nn_functional_threshold_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5321407Z test_comprehensive_nn_functional_threshold_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5321582Z test_comprehensive_nn_functional_threshold_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5321768Z test_comprehensive_nn_functional_threshold_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5321936Z test_comprehensive_nn_functional_threshold_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5322135Z test_comprehensive_nn_functional_triplet_margin_loss_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5322340Z test_comprehensive_nn_functional_triplet_margin_loss_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5322540Z test_comprehensive_nn_functional_triplet_margin_loss_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5322734Z test_comprehensive_nn_functional_triplet_margin_loss_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5322929Z test_comprehensive_nn_functional_triplet_margin_loss_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5323123Z test_comprehensive_nn_functional_triplet_margin_loss_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5323315Z test_comprehensive_nn_functional_triplet_margin_loss_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5323568Z test_comprehensive_nn_functional_triplet_margin_loss_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5323761Z test_comprehensive_nn_functional_triplet_margin_loss_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5323942Z test_comprehensive_nn_functional_triplet_margin_loss_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5324156Z test_comprehensive_nn_functional_triplet_margin_with_distance_loss_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5324374Z test_comprehensive_nn_functional_triplet_margin_with_distance_loss_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5324589Z test_comprehensive_nn_functional_triplet_margin_with_distance_loss_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5324804Z test_comprehensive_nn_functional_triplet_margin_with_distance_loss_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5325051Z test_comprehensive_nn_functional_triplet_margin_with_distance_loss_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5325256Z test_comprehensive_nn_functional_triplet_margin_with_distance_loss_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5325461Z test_comprehensive_nn_functional_triplet_margin_with_distance_loss_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5325659Z test_comprehensive_nn_functional_triplet_margin_with_distance_loss_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5325864Z test_comprehensive_nn_functional_triplet_margin_with_distance_loss_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5326066Z test_comprehensive_nn_functional_triplet_margin_with_distance_loss_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5326238Z test_comprehensive_nn_functional_unfold_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5326424Z test_comprehensive_nn_functional_unfold_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5326608Z test_comprehensive_nn_functional_unfold_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5326792Z test_comprehensive_nn_functional_unfold_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5326970Z test_comprehensive_nn_functional_unfold_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5327151Z test_comprehensive_nn_functional_unfold_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5327349Z test_comprehensive_nn_functional_upsample_bilinear_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5327549Z test_comprehensive_nn_functional_upsample_bilinear_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5327742Z test_comprehensive_nn_functional_upsample_bilinear_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5327936Z test_comprehensive_nn_functional_upsample_nearest_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5328212Z test_comprehensive_nn_functional_upsample_nearest_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5328480Z test_comprehensive_nn_functional_upsample_nearest_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5328698Z test_comprehensive_nn_functional_upsample_nearest_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5328944Z test_comprehensive_nonzero_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5329117Z test_comprehensive_nonzero_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5329293Z test_comprehensive_nonzero_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5329466Z test_comprehensive_nonzero_cpu_complex32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5329636Z test_comprehensive_nonzero_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5329807Z test_comprehensive_nonzero_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5329964Z test_comprehensive_nonzero_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5330135Z test_comprehensive_nonzero_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5330333Z test_comprehensive_nonzero_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5330494Z test_comprehensive_nonzero_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5330659Z test_comprehensive_nonzero_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5330825Z test_comprehensive_nonzero_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5330988Z test_comprehensive_nonzero_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5331146Z test_comprehensive_norm_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5331313Z test_comprehensive_norm_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5331470Z test_comprehensive_norm_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5331638Z test_comprehensive_norm_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5331800Z test_comprehensive_norm_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5331959Z test_comprehensive_norm_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5332128Z test_comprehensive_norm_fro_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5332301Z test_comprehensive_norm_fro_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5332474Z test_comprehensive_norm_fro_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5332642Z test_comprehensive_norm_fro_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5332811Z test_comprehensive_norm_fro_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5332969Z test_comprehensive_norm_fro_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5333140Z test_comprehensive_norm_inf_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5333312Z test_comprehensive_norm_inf_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5333483Z test_comprehensive_norm_inf_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5333653Z test_comprehensive_norm_inf_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5333818Z test_comprehensive_norm_inf_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5334025Z test_comprehensive_norm_inf_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5334199Z test_comprehensive_norm_nuc_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5334371Z test_comprehensive_norm_nuc_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5334524Z test_comprehensive_norm_nuc_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5334691Z test_comprehensive_norm_nuc_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5334860Z test_comprehensive_normal_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5335027Z test_comprehensive_normal_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5335195Z test_comprehensive_normal_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5335364Z test_comprehensive_normal_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5335577Z test_comprehensive_normal_number_mean_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5335761Z test_comprehensive_normal_number_mean_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5335934Z test_comprehensive_normal_number_mean_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5336093Z test_comprehensive_normal_number_mean_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5336259Z test_comprehensive_ones_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5336420Z test_comprehensive_ones_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5336593Z test_comprehensive_ones_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5336766Z test_comprehensive_ones_cpu_complex32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5336934Z test_comprehensive_ones_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5337100Z test_comprehensive_ones_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5337264Z test_comprehensive_ones_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5337425Z test_comprehensive_ones_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5337572Z test_comprehensive_ones_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5337729Z test_comprehensive_ones_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5337885Z test_comprehensive_ones_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5338053Z test_comprehensive_ones_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5338216Z test_comprehensive_ones_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5338387Z test_comprehensive_ones_like_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5338554Z test_comprehensive_ones_like_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5338731Z test_comprehensive_ones_like_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5338904Z test_comprehensive_ones_like_cpu_complex32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5339065Z test_comprehensive_ones_like_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5339341Z test_comprehensive_ones_like_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5339516Z test_comprehensive_ones_like_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5339681Z test_comprehensive_ones_like_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5339849Z test_comprehensive_ones_like_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5340015Z test_comprehensive_ones_like_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5340182Z test_comprehensive_ones_like_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5340350Z test_comprehensive_ones_like_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5340518Z test_comprehensive_ones_like_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5340676Z test_comprehensive_ormqr_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5340875Z test_comprehensive_ormqr_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5341042Z test_comprehensive_ormqr_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5341204Z test_comprehensive_ormqr_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5341369Z test_comprehensive_outer_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5341534Z test_comprehensive_outer_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5341706Z test_comprehensive_outer_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5341875Z test_comprehensive_outer_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5342044Z test_comprehensive_outer_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5342197Z test_comprehensive_outer_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5342357Z test_comprehensive_outer_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5342520Z test_comprehensive_outer_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5342677Z test_comprehensive_outer_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5342832Z test_comprehensive_outer_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5342996Z test_comprehensive_outer_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5343161Z test_comprehensive_outer_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5343337Z test_comprehensive_pca_lowrank_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.003s) 2023-01-11T20:52:32.5343514Z test_comprehensive_pca_lowrank_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5343674Z test_comprehensive_permute_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5343841Z test_comprehensive_permute_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5344015Z test_comprehensive_permute_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5344185Z test_comprehensive_permute_cpu_complex32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5344357Z test_comprehensive_permute_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5344555Z test_comprehensive_permute_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5344726Z test_comprehensive_permute_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5344894Z test_comprehensive_permute_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5345059Z test_comprehensive_permute_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5345207Z test_comprehensive_permute_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5345372Z test_comprehensive_permute_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5345538Z test_comprehensive_permute_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5345702Z test_comprehensive_permute_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5345878Z test_comprehensive_pinverse_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5346086Z test_comprehensive_pinverse_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5346259Z test_comprehensive_pinverse_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5346433Z test_comprehensive_pinverse_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5346598Z test_comprehensive_polar_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5346744Z test_comprehensive_polar_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5346936Z test_comprehensive_polygamma_polygamma_n_0_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5347121Z test_comprehensive_polygamma_polygamma_n_0_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5347308Z test_comprehensive_polygamma_polygamma_n_0_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5347494Z test_comprehensive_polygamma_polygamma_n_0_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5347678Z test_comprehensive_polygamma_polygamma_n_0_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5347861Z test_comprehensive_polygamma_polygamma_n_0_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5348037Z test_comprehensive_polygamma_polygamma_n_0_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5348215Z test_comprehensive_polygamma_polygamma_n_0_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5348399Z test_comprehensive_polygamma_polygamma_n_0_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5348592Z test_comprehensive_polygamma_polygamma_n_1_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5348773Z test_comprehensive_polygamma_polygamma_n_1_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5348956Z test_comprehensive_polygamma_polygamma_n_1_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5349141Z test_comprehensive_polygamma_polygamma_n_1_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5349322Z test_comprehensive_polygamma_polygamma_n_1_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5349485Z test_comprehensive_polygamma_polygamma_n_1_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5349689Z test_comprehensive_polygamma_polygamma_n_1_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5349874Z test_comprehensive_polygamma_polygamma_n_1_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5350053Z test_comprehensive_polygamma_polygamma_n_1_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5350238Z test_comprehensive_polygamma_polygamma_n_2_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5350421Z test_comprehensive_polygamma_polygamma_n_2_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5350605Z test_comprehensive_polygamma_polygamma_n_2_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5350784Z test_comprehensive_polygamma_polygamma_n_2_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5350971Z test_comprehensive_polygamma_polygamma_n_2_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5351165Z test_comprehensive_polygamma_polygamma_n_2_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5351343Z test_comprehensive_polygamma_polygamma_n_2_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5351522Z test_comprehensive_polygamma_polygamma_n_2_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5351699Z test_comprehensive_polygamma_polygamma_n_2_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5351880Z test_comprehensive_polygamma_polygamma_n_3_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5352061Z test_comprehensive_polygamma_polygamma_n_3_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5352242Z test_comprehensive_polygamma_polygamma_n_3_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5352429Z test_comprehensive_polygamma_polygamma_n_3_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5352613Z test_comprehensive_polygamma_polygamma_n_3_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5352791Z test_comprehensive_polygamma_polygamma_n_3_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5352955Z test_comprehensive_polygamma_polygamma_n_3_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5353135Z test_comprehensive_polygamma_polygamma_n_3_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5353312Z test_comprehensive_polygamma_polygamma_n_3_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5353498Z test_comprehensive_polygamma_polygamma_n_4_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5353681Z test_comprehensive_polygamma_polygamma_n_4_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5353866Z test_comprehensive_polygamma_polygamma_n_4_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5354051Z test_comprehensive_polygamma_polygamma_n_4_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5354232Z test_comprehensive_polygamma_polygamma_n_4_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5354412Z test_comprehensive_polygamma_polygamma_n_4_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5354574Z test_comprehensive_polygamma_polygamma_n_4_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5354788Z test_comprehensive_polygamma_polygamma_n_4_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5354965Z test_comprehensive_polygamma_polygamma_n_4_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5355137Z test_comprehensive_positive_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5355311Z test_comprehensive_positive_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5355485Z test_comprehensive_positive_cpu_complex32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5355657Z test_comprehensive_positive_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5355828Z test_comprehensive_positive_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5355996Z test_comprehensive_positive_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5356195Z test_comprehensive_positive_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5356351Z test_comprehensive_positive_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5356518Z test_comprehensive_positive_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5356683Z test_comprehensive_positive_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5356850Z test_comprehensive_positive_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5357015Z test_comprehensive_positive_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5357183Z test_comprehensive_pow_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5357357Z test_comprehensive_pow_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5357527Z test_comprehensive_pow_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5357693Z test_comprehensive_pow_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5357841Z test_comprehensive_pow_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5358000Z test_comprehensive_pow_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5358168Z test_comprehensive_pow_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5358328Z test_comprehensive_pow_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5358486Z test_comprehensive_pow_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5358651Z test_comprehensive_pow_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5358813Z test_comprehensive_pow_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5358981Z test_comprehensive_prod_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5359130Z test_comprehensive_prod_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5359304Z test_comprehensive_prod_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5359472Z test_comprehensive_prod_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5359638Z test_comprehensive_prod_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5359801Z test_comprehensive_prod_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5359994Z test_comprehensive_prod_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5360159Z test_comprehensive_prod_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5360317Z test_comprehensive_prod_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5360477Z test_comprehensive_prod_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5360738Z test_comprehensive_prod_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5360907Z test_comprehensive_put_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5361071Z test_comprehensive_put_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5361241Z test_comprehensive_put_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5361411Z test_comprehensive_put_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5361628Z test_comprehensive_put_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5361789Z test_comprehensive_put_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5361953Z test_comprehensive_put_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5362112Z test_comprehensive_put_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5362260Z test_comprehensive_put_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5362420Z test_comprehensive_put_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5362581Z test_comprehensive_put_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5362743Z test_comprehensive_put_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5362913Z test_comprehensive_qr_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5363081Z test_comprehensive_qr_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5363244Z test_comprehensive_qr_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5363403Z test_comprehensive_qr_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5363576Z test_comprehensive_quantile_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5363732Z test_comprehensive_quantile_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5363908Z test_comprehensive_rad2deg_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5364077Z test_comprehensive_rad2deg_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5364249Z test_comprehensive_rad2deg_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5364413Z test_comprehensive_rad2deg_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5364585Z test_comprehensive_rad2deg_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5364751Z test_comprehensive_rad2deg_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5364912Z test_comprehensive_rad2deg_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5365070Z test_comprehensive_rad2deg_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5365275Z test_comprehensive_rad2deg_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5365443Z test_comprehensive_rad2deg_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5365617Z test_comprehensive_rand_like_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5365793Z test_comprehensive_rand_like_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5365967Z test_comprehensive_rand_like_cpu_complex32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5366142Z test_comprehensive_rand_like_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5366311Z test_comprehensive_rand_like_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5366481Z test_comprehensive_rand_like_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5366653Z test_comprehensive_rand_like_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5366842Z test_comprehensive_randint_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5367013Z test_comprehensive_randint_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5367181Z test_comprehensive_randint_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5367349Z test_comprehensive_randint_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5367515Z test_comprehensive_randint_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5367679Z test_comprehensive_randint_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5367842Z test_comprehensive_randint_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5368012Z test_comprehensive_randint_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5368177Z test_comprehensive_randint_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5368340Z test_comprehensive_randint_like_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5368514Z test_comprehensive_randint_like_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5368689Z test_comprehensive_randint_like_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5368863Z test_comprehensive_randint_like_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5369036Z test_comprehensive_randint_like_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5369210Z test_comprehensive_randint_like_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5369381Z test_comprehensive_randint_like_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5369553Z test_comprehensive_randint_like_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5369721Z test_comprehensive_randint_like_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5369876Z test_comprehensive_randn_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5370048Z test_comprehensive_randn_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5370218Z test_comprehensive_randn_cpu_complex32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5370382Z test_comprehensive_randn_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5370593Z test_comprehensive_randn_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5370758Z test_comprehensive_randn_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5370918Z test_comprehensive_randn_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5371094Z test_comprehensive_randn_like_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5371271Z test_comprehensive_randn_like_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5371433Z test_comprehensive_randn_like_cpu_complex32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5371607Z test_comprehensive_randn_like_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5371781Z test_comprehensive_randn_like_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5371977Z test_comprehensive_randn_like_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5372149Z test_comprehensive_randn_like_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5372318Z test_comprehensive_ravel_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5372484Z test_comprehensive_ravel_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5372659Z test_comprehensive_ravel_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5372829Z test_comprehensive_ravel_cpu_complex32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5372981Z test_comprehensive_ravel_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5373151Z test_comprehensive_ravel_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5373315Z test_comprehensive_ravel_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5373474Z test_comprehensive_ravel_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5373638Z test_comprehensive_ravel_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5373801Z test_comprehensive_ravel_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5373959Z test_comprehensive_ravel_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5374123Z test_comprehensive_ravel_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5374281Z test_comprehensive_ravel_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5374436Z test_comprehensive_real_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5374600Z test_comprehensive_real_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5374770Z test_comprehensive_real_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5374939Z test_comprehensive_real_cpu_complex32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5375110Z test_comprehensive_real_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5375275Z test_comprehensive_real_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5375439Z test_comprehensive_real_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5375601Z test_comprehensive_real_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5375798Z test_comprehensive_real_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5375945Z test_comprehensive_real_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5376099Z test_comprehensive_real_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5376259Z test_comprehensive_real_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5376420Z test_comprehensive_real_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5376595Z test_comprehensive_reciprocal_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5376766Z test_comprehensive_reciprocal_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5376944Z test_comprehensive_reciprocal_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5377124Z test_comprehensive_reciprocal_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5377362Z test_comprehensive_reciprocal_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5377524Z test_comprehensive_reciprocal_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5377696Z test_comprehensive_reciprocal_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5377868Z test_comprehensive_reciprocal_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5378036Z test_comprehensive_reciprocal_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5378207Z test_comprehensive_reciprocal_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5378381Z test_comprehensive_reciprocal_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5378558Z test_comprehensive_reciprocal_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5378731Z test_comprehensive_remainder_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5378906Z test_comprehensive_remainder_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5379065Z test_comprehensive_remainder_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5379336Z test_comprehensive_remainder_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5379512Z test_comprehensive_remainder_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5379678Z test_comprehensive_remainder_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5379850Z test_comprehensive_remainder_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5380022Z test_comprehensive_remainder_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5380193Z test_comprehensive_remainder_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5380359Z test_comprehensive_renorm_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5380534Z test_comprehensive_renorm_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5380690Z test_comprehensive_renorm_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5380864Z test_comprehensive_renorm_cpu_float16 (__main__.TestDecompCPU) ... skip: Inconsistent accuracy (0.000s) 2023-01-11T20:52:32.5381070Z test_comprehensive_renorm_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5381239Z test_comprehensive_renorm_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5381409Z test_comprehensive_repeat_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5381578Z test_comprehensive_repeat_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5381753Z test_comprehensive_repeat_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5381927Z test_comprehensive_repeat_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5382095Z test_comprehensive_repeat_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5382245Z test_comprehensive_repeat_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5382416Z test_comprehensive_repeat_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5382613Z test_comprehensive_repeat_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5382776Z test_comprehensive_repeat_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5382934Z test_comprehensive_repeat_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5383098Z test_comprehensive_repeat_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5383262Z test_comprehensive_repeat_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5383444Z test_comprehensive_repeat_interleave_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5383623Z test_comprehensive_repeat_interleave_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5383801Z test_comprehensive_repeat_interleave_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5383989Z test_comprehensive_repeat_interleave_cpu_complex32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5384167Z test_comprehensive_repeat_interleave_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5384347Z test_comprehensive_repeat_interleave_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5384527Z test_comprehensive_repeat_interleave_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5384707Z test_comprehensive_repeat_interleave_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5384885Z test_comprehensive_repeat_interleave_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5385067Z test_comprehensive_repeat_interleave_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5385245Z test_comprehensive_repeat_interleave_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5385412Z test_comprehensive_repeat_interleave_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5385588Z test_comprehensive_repeat_interleave_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5385761Z test_comprehensive_reshape_as_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5385935Z test_comprehensive_reshape_as_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5386110Z test_comprehensive_reshape_as_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5386314Z test_comprehensive_reshape_as_cpu_complex32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5386491Z test_comprehensive_reshape_as_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5386662Z test_comprehensive_reshape_as_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5386832Z test_comprehensive_reshape_as_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5386986Z test_comprehensive_reshape_as_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5387155Z test_comprehensive_reshape_as_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5387322Z test_comprehensive_reshape_as_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5387490Z test_comprehensive_reshape_as_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5387661Z test_comprehensive_reshape_as_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5387856Z test_comprehensive_reshape_as_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5388024Z test_comprehensive_reshape_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5388190Z test_comprehensive_reshape_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5388362Z test_comprehensive_reshape_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5388520Z test_comprehensive_reshape_cpu_complex32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5388691Z test_comprehensive_reshape_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5388858Z test_comprehensive_reshape_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5389028Z test_comprehensive_reshape_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5389198Z test_comprehensive_reshape_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5389367Z test_comprehensive_reshape_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5389529Z test_comprehensive_reshape_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5389694Z test_comprehensive_reshape_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5389860Z test_comprehensive_reshape_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5390008Z test_comprehensive_reshape_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5390181Z test_comprehensive_resize__cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5390347Z test_comprehensive_resize__cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5390521Z test_comprehensive_resize__cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5390688Z test_comprehensive_resize__cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5390854Z test_comprehensive_resize__cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5391021Z test_comprehensive_resize__cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5391187Z test_comprehensive_resize__cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5391348Z test_comprehensive_resize__cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5391523Z test_comprehensive_resize__cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5391682Z test_comprehensive_resize__cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5391845Z test_comprehensive_resize__cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5392003Z test_comprehensive_resize__cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5392174Z test_comprehensive_resize_as__cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5392344Z test_comprehensive_resize_as__cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5392519Z test_comprehensive_resize_as__cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5392692Z test_comprehensive_resize_as__cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5392866Z test_comprehensive_resize_as__cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5393051Z test_comprehensive_resize_as__cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5393222Z test_comprehensive_resize_as__cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5393389Z test_comprehensive_resize_as__cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5393557Z test_comprehensive_resize_as__cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5393725Z test_comprehensive_resize_as__cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5393895Z test_comprehensive_resize_as__cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5394063Z test_comprehensive_resize_as__cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5394241Z test_comprehensive_resolve_conj_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5394413Z test_comprehensive_resolve_conj_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5394577Z test_comprehensive_resolve_conj_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5394755Z test_comprehensive_resolve_conj_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5394928Z test_comprehensive_resolve_conj_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5395098Z test_comprehensive_resolve_conj_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5395269Z test_comprehensive_resolve_conj_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5395439Z test_comprehensive_resolve_conj_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5395611Z test_comprehensive_resolve_conj_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5395778Z test_comprehensive_resolve_conj_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5395947Z test_comprehensive_resolve_conj_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5396104Z test_comprehensive_resolve_conj_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5396277Z test_comprehensive_resolve_neg_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5396444Z test_comprehensive_resolve_neg_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5396652Z test_comprehensive_resolve_neg_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5396830Z test_comprehensive_resolve_neg_cpu_complex32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5397003Z test_comprehensive_resolve_neg_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5397176Z test_comprehensive_resolve_neg_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5397349Z test_comprehensive_resolve_neg_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5397517Z test_comprehensive_resolve_neg_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5397674Z test_comprehensive_resolve_neg_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5397837Z test_comprehensive_resolve_neg_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5398005Z test_comprehensive_resolve_neg_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5398207Z test_comprehensive_resolve_neg_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5398376Z test_comprehensive_resolve_neg_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5398543Z test_comprehensive_roll_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5398704Z test_comprehensive_roll_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5398873Z test_comprehensive_roll_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5399046Z test_comprehensive_roll_cpu_complex32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5399205Z test_comprehensive_roll_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5399369Z test_comprehensive_roll_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5399537Z test_comprehensive_roll_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5399697Z test_comprehensive_roll_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5399859Z test_comprehensive_roll_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5400017Z test_comprehensive_roll_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5400173Z test_comprehensive_roll_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5400333Z test_comprehensive_roll_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5400495Z test_comprehensive_roll_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5400765Z test_comprehensive_rot90_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5400930Z test_comprehensive_rot90_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5401099Z test_comprehensive_rot90_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5401266Z test_comprehensive_rot90_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5401432Z test_comprehensive_rot90_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5401591Z test_comprehensive_rot90_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5401751Z test_comprehensive_rot90_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5401971Z test_comprehensive_rot90_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5402135Z test_comprehensive_rot90_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5402280Z test_comprehensive_rot90_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5402441Z test_comprehensive_rot90_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5402604Z test_comprehensive_rot90_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5402771Z test_comprehensive_round_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5402936Z test_comprehensive_round_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5403097Z test_comprehensive_round_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5403262Z test_comprehensive_round_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5403455Z test_comprehensive_round_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5403611Z test_comprehensive_round_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5403760Z test_comprehensive_round_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5403922Z test_comprehensive_round_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5404101Z test_comprehensive_round_decimals_0_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5404281Z test_comprehensive_round_decimals_0_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5404460Z test_comprehensive_round_decimals_0_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5404638Z test_comprehensive_round_decimals_3_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5404813Z test_comprehensive_round_decimals_3_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5404987Z test_comprehensive_round_decimals_3_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5405170Z test_comprehensive_round_decimals_neg_3_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5405339Z test_comprehensive_round_decimals_neg_3_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5405513Z test_comprehensive_round_decimals_neg_3_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5405679Z test_comprehensive_rsqrt_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5405845Z test_comprehensive_rsqrt_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5406018Z test_comprehensive_rsqrt_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5406187Z test_comprehensive_rsqrt_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5406352Z test_comprehensive_rsqrt_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5406512Z test_comprehensive_rsqrt_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5406672Z test_comprehensive_rsqrt_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5406817Z test_comprehensive_rsqrt_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5406977Z test_comprehensive_rsqrt_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5407179Z test_comprehensive_rsqrt_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5407340Z test_comprehensive_rsqrt_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5407503Z test_comprehensive_rsub_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5407670Z test_comprehensive_rsub_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5407837Z test_comprehensive_rsub_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5408002Z test_comprehensive_rsub_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5408161Z test_comprehensive_rsub_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5408306Z test_comprehensive_rsub_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5408469Z test_comprehensive_rsub_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5408655Z test_comprehensive_rsub_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5408812Z test_comprehensive_rsub_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5408971Z test_comprehensive_rsub_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5409134Z test_comprehensive_rsub_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5409312Z test_comprehensive_scalar_tensor_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5409488Z test_comprehensive_scalar_tensor_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5409672Z test_comprehensive_scalar_tensor_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5409839Z test_comprehensive_scalar_tensor_cpu_complex32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5410019Z test_comprehensive_scalar_tensor_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5410193Z test_comprehensive_scalar_tensor_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5410369Z test_comprehensive_scalar_tensor_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5410537Z test_comprehensive_scalar_tensor_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5410707Z test_comprehensive_scalar_tensor_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5410878Z test_comprehensive_scalar_tensor_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5411052Z test_comprehensive_scalar_tensor_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5411227Z test_comprehensive_scalar_tensor_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5411386Z test_comprehensive_scalar_tensor_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5411563Z test_comprehensive_scatter_add_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5411736Z test_comprehensive_scatter_add_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5411913Z test_comprehensive_scatter_add_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5412089Z test_comprehensive_scatter_add_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5412291Z test_comprehensive_scatter_add_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5412465Z test_comprehensive_scatter_add_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5412634Z test_comprehensive_scatter_add_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5412805Z test_comprehensive_scatter_add_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5412960Z test_comprehensive_scatter_add_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5413128Z test_comprehensive_scatter_add_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5413299Z test_comprehensive_scatter_add_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5413469Z test_comprehensive_scatter_add_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5413642Z test_comprehensive_scatter_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5413836Z test_comprehensive_scatter_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5414011Z test_comprehensive_scatter_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5414182Z test_comprehensive_scatter_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5414349Z test_comprehensive_scatter_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5414500Z test_comprehensive_scatter_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5414667Z test_comprehensive_scatter_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5414837Z test_comprehensive_scatter_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5414998Z test_comprehensive_scatter_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5415159Z test_comprehensive_scatter_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5415324Z test_comprehensive_scatter_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5415489Z test_comprehensive_scatter_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5415674Z test_comprehensive_scatter_reduce_amax_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5415853Z test_comprehensive_scatter_reduce_amax_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5416024Z test_comprehensive_scatter_reduce_amax_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5416207Z test_comprehensive_scatter_reduce_amax_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5416384Z test_comprehensive_scatter_reduce_amax_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5416563Z test_comprehensive_scatter_reduce_amax_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5416743Z test_comprehensive_scatter_reduce_amax_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5416922Z test_comprehensive_scatter_reduce_amax_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5417101Z test_comprehensive_scatter_reduce_amax_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5417281Z test_comprehensive_scatter_reduce_amax_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5417498Z test_comprehensive_scatter_reduce_amin_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5417682Z test_comprehensive_scatter_reduce_amin_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5417848Z test_comprehensive_scatter_reduce_amin_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5418022Z test_comprehensive_scatter_reduce_amin_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5418195Z test_comprehensive_scatter_reduce_amin_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5418372Z test_comprehensive_scatter_reduce_amin_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5418549Z test_comprehensive_scatter_reduce_amin_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5418732Z test_comprehensive_scatter_reduce_amin_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5418939Z test_comprehensive_scatter_reduce_amin_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5419118Z test_comprehensive_scatter_reduce_amin_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5419387Z test_comprehensive_scatter_reduce_mean_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5419564Z test_comprehensive_scatter_reduce_mean_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5419739Z test_comprehensive_scatter_reduce_mean_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5419917Z test_comprehensive_scatter_reduce_mean_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5420099Z test_comprehensive_scatter_reduce_mean_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5420279Z test_comprehensive_scatter_reduce_mean_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5420457Z test_comprehensive_scatter_reduce_mean_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5420636Z test_comprehensive_scatter_reduce_mean_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5420811Z test_comprehensive_scatter_reduce_mean_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5420995Z test_comprehensive_scatter_reduce_prod_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5421176Z test_comprehensive_scatter_reduce_prod_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5421346Z test_comprehensive_scatter_reduce_prod_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.003s) 2023-01-11T20:52:32.5421525Z test_comprehensive_scatter_reduce_prod_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5421701Z test_comprehensive_scatter_reduce_prod_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5421879Z test_comprehensive_scatter_reduce_prod_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5422056Z test_comprehensive_scatter_reduce_prod_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5422233Z test_comprehensive_scatter_reduce_prod_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5422414Z test_comprehensive_scatter_reduce_prod_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5422591Z test_comprehensive_scatter_reduce_prod_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5422803Z test_comprehensive_scatter_reduce_sum_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5422970Z test_comprehensive_scatter_reduce_sum_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5423155Z test_comprehensive_scatter_reduce_sum_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5423330Z test_comprehensive_scatter_reduce_sum_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5423509Z test_comprehensive_scatter_reduce_sum_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5423691Z test_comprehensive_scatter_reduce_sum_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5423867Z test_comprehensive_scatter_reduce_sum_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5424049Z test_comprehensive_scatter_reduce_sum_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5424254Z test_comprehensive_scatter_reduce_sum_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5424431Z test_comprehensive_scatter_reduce_sum_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5424598Z test_comprehensive_searchsorted_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5424774Z test_comprehensive_searchsorted_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5424955Z test_comprehensive_searchsorted_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5425130Z test_comprehensive_searchsorted_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5425306Z test_comprehensive_searchsorted_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5425483Z test_comprehensive_searchsorted_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5425650Z test_comprehensive_searchsorted_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5425823Z test_comprehensive_searchsorted_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5425993Z test_comprehensive_searchsorted_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5426181Z test_comprehensive_segment_reduce_lengths_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5426356Z test_comprehensive_segment_reduce_lengths_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5426540Z test_comprehensive_segment_reduce_lengths_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5426728Z test_comprehensive_segment_reduce_lengths_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5426915Z test_comprehensive_segment_reduce_offsets_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5427101Z test_comprehensive_segment_reduce_offsets_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5427279Z test_comprehensive_segment_reduce_offsets_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5427460Z test_comprehensive_segment_reduce_offsets_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5427631Z test_comprehensive_select_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5427828Z test_comprehensive_select_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5427988Z test_comprehensive_select_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5428161Z test_comprehensive_select_cpu_complex32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5428331Z test_comprehensive_select_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5428500Z test_comprehensive_select_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5428665Z test_comprehensive_select_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5428829Z test_comprehensive_select_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5428994Z test_comprehensive_select_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5429156Z test_comprehensive_select_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5429343Z test_comprehensive_select_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5429493Z test_comprehensive_select_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5429659Z test_comprehensive_select_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5429837Z test_comprehensive_select_scatter_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5430012Z test_comprehensive_select_scatter_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5430189Z test_comprehensive_select_scatter_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5430366Z test_comprehensive_select_scatter_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5430543Z test_comprehensive_select_scatter_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5430720Z test_comprehensive_select_scatter_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5430894Z test_comprehensive_select_scatter_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5431049Z test_comprehensive_select_scatter_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5431221Z test_comprehensive_select_scatter_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5431396Z test_comprehensive_select_scatter_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5431561Z test_comprehensive_sgn_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5431725Z test_comprehensive_sgn_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5431895Z test_comprehensive_sgn_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5432064Z test_comprehensive_sgn_cpu_complex32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5432229Z test_comprehensive_sgn_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5432392Z test_comprehensive_sgn_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5432536Z test_comprehensive_sgn_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5432690Z test_comprehensive_sgn_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5432848Z test_comprehensive_sgn_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5433036Z test_comprehensive_sgn_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5433197Z test_comprehensive_sgn_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5433356Z test_comprehensive_sgn_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5433518Z test_comprehensive_sgn_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5433685Z test_comprehensive_short_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5433848Z test_comprehensive_short_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5434004Z test_comprehensive_short_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5434173Z test_comprehensive_short_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5434340Z test_comprehensive_short_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5434529Z test_comprehensive_short_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5434698Z test_comprehensive_short_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5434860Z test_comprehensive_short_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5435019Z test_comprehensive_short_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5435174Z test_comprehensive_short_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5435334Z test_comprehensive_short_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5435484Z test_comprehensive_short_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5435656Z test_comprehensive_sigmoid_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5435825Z test_comprehensive_sigmoid_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5436000Z test_comprehensive_sigmoid_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5436174Z test_comprehensive_sigmoid_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5436342Z test_comprehensive_sigmoid_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5436508Z test_comprehensive_sigmoid_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5436674Z test_comprehensive_sigmoid_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5436834Z test_comprehensive_sigmoid_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5436982Z test_comprehensive_sigmoid_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5437149Z test_comprehensive_sigmoid_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5437314Z test_comprehensive_sigmoid_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5437476Z test_comprehensive_sign_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5437639Z test_comprehensive_sign_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5437807Z test_comprehensive_sign_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5437970Z test_comprehensive_sign_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5438127Z test_comprehensive_sign_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5438319Z test_comprehensive_sign_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5438466Z test_comprehensive_sign_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5438622Z test_comprehensive_sign_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5438781Z test_comprehensive_sign_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5438942Z test_comprehensive_sign_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5439129Z test_comprehensive_signal_windows_bartlett_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5439316Z test_comprehensive_signal_windows_bartlett_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5439505Z test_comprehensive_signal_windows_blackman_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5439712Z test_comprehensive_signal_windows_blackman_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5439897Z test_comprehensive_signal_windows_cosine_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5440062Z test_comprehensive_signal_windows_cosine_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5440252Z test_comprehensive_signal_windows_exponential_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5440443Z test_comprehensive_signal_windows_exponential_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5440729Z test_comprehensive_signal_windows_gaussian_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5440919Z test_comprehensive_signal_windows_gaussian_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5441114Z test_comprehensive_signal_windows_general_cosine_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5441307Z test_comprehensive_signal_windows_general_cosine_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5441502Z test_comprehensive_signal_windows_general_hamming_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5441696Z test_comprehensive_signal_windows_general_hamming_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5441883Z test_comprehensive_signal_windows_hamming_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5442049Z test_comprehensive_signal_windows_hamming_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5442235Z test_comprehensive_signal_windows_hann_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5442416Z test_comprehensive_signal_windows_hann_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5442602Z test_comprehensive_signal_windows_kaiser_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5442784Z test_comprehensive_signal_windows_kaiser_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5442965Z test_comprehensive_signal_windows_nuttall_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5443149Z test_comprehensive_signal_windows_nuttall_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5443321Z test_comprehensive_signbit_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5443553Z test_comprehensive_signbit_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5443710Z test_comprehensive_signbit_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5443881Z test_comprehensive_signbit_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5444049Z test_comprehensive_signbit_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5444216Z test_comprehensive_signbit_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5444381Z test_comprehensive_signbit_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5444542Z test_comprehensive_signbit_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5444707Z test_comprehensive_signbit_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5444872Z test_comprehensive_signbit_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5445077Z test_comprehensive_sin_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5445227Z test_comprehensive_sin_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5445396Z test_comprehensive_sin_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5445563Z test_comprehensive_sin_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5445729Z test_comprehensive_sin_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5445886Z test_comprehensive_sin_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5446045Z test_comprehensive_sin_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5446211Z test_comprehensive_sin_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5446371Z test_comprehensive_sin_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5446531Z test_comprehensive_sin_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5446676Z test_comprehensive_sin_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5446839Z test_comprehensive_sinc_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5446997Z test_comprehensive_sinc_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5447166Z test_comprehensive_sinc_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5447334Z test_comprehensive_sinc_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5447501Z test_comprehensive_sinc_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5447666Z test_comprehensive_sinc_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5447827Z test_comprehensive_sinc_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5447984Z test_comprehensive_sinc_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5448125Z test_comprehensive_sinc_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5448281Z test_comprehensive_sinc_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5448443Z test_comprehensive_sinc_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5448638Z test_comprehensive_sinh_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5448798Z test_comprehensive_sinh_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5448969Z test_comprehensive_sinh_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5449138Z test_comprehensive_sinh_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5449301Z test_comprehensive_sinh_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5449449Z test_comprehensive_sinh_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5449611Z test_comprehensive_sinh_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5449769Z test_comprehensive_sinh_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5449926Z test_comprehensive_sinh_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5450088Z test_comprehensive_sinh_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5450273Z test_comprehensive_sinh_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5450441Z test_comprehensive_slice_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5450605Z test_comprehensive_slice_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5450775Z test_comprehensive_slice_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5450932Z test_comprehensive_slice_cpu_complex32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5451100Z test_comprehensive_slice_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5451270Z test_comprehensive_slice_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5451432Z test_comprehensive_slice_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5451591Z test_comprehensive_slice_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5451754Z test_comprehensive_slice_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5451911Z test_comprehensive_slice_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5452066Z test_comprehensive_slice_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5452225Z test_comprehensive_slice_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5452370Z test_comprehensive_slice_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5452550Z test_comprehensive_slice_scatter_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5452725Z test_comprehensive_slice_scatter_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5452902Z test_comprehensive_slice_scatter_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5453075Z test_comprehensive_slice_scatter_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5453245Z test_comprehensive_slice_scatter_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5453417Z test_comprehensive_slice_scatter_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5453590Z test_comprehensive_slice_scatter_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5453756Z test_comprehensive_slice_scatter_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5453943Z test_comprehensive_slice_scatter_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5454114Z test_comprehensive_slice_scatter_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5454285Z test_comprehensive_softmax_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5454455Z test_comprehensive_softmax_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5454622Z test_comprehensive_softmax_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5454805Z test_comprehensive_softmax_with_dtype_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5454984Z test_comprehensive_softmax_with_dtype_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5455170Z test_comprehensive_softmax_with_dtype_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5455378Z test_comprehensive_softmax_with_dtype_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5455559Z test_comprehensive_softmax_with_dtype_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5455723Z test_comprehensive_softmax_with_dtype_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5455902Z test_comprehensive_softmax_with_dtype_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5456079Z test_comprehensive_softmax_with_dtype_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5456256Z test_comprehensive_softmax_with_dtype_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5456434Z test_comprehensive_softmax_with_dtype_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5456612Z test_comprehensive_softmax_with_dtype_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5456786Z test_comprehensive_softmax_with_dtype_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5456955Z test_comprehensive_sort_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5457118Z test_comprehensive_sort_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5457272Z test_comprehensive_sort_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5457437Z test_comprehensive_sort_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5457597Z test_comprehensive_sort_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5457761Z test_comprehensive_sort_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5457921Z test_comprehensive_sort_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5458075Z test_comprehensive_sort_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5458235Z test_comprehensive_sort_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5458396Z test_comprehensive_sort_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5458586Z test_comprehensive_sparse_sampled_addmm_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5458762Z test_comprehensive_sparse_sampled_addmm_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5459023Z test_comprehensive_sparse_sampled_addmm_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5459208Z test_comprehensive_sparse_sampled_addmm_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5459457Z test_comprehensive_special_airy_ai_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5459638Z test_comprehensive_special_airy_ai_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5459817Z test_comprehensive_special_airy_ai_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5459992Z test_comprehensive_special_airy_ai_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5460168Z test_comprehensive_special_airy_ai_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5460343Z test_comprehensive_special_airy_ai_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5460506Z test_comprehensive_special_airy_ai_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5460711Z test_comprehensive_special_airy_ai_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5460895Z test_comprehensive_special_bessel_j0_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5461075Z test_comprehensive_special_bessel_j0_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5461253Z test_comprehensive_special_bessel_j0_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5461430Z test_comprehensive_special_bessel_j0_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5461606Z test_comprehensive_special_bessel_j0_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5461782Z test_comprehensive_special_bessel_j0_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5461961Z test_comprehensive_special_bessel_j0_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5462122Z test_comprehensive_special_bessel_j0_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5462299Z test_comprehensive_special_bessel_j1_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5462477Z test_comprehensive_special_bessel_j1_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5462657Z test_comprehensive_special_bessel_j1_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5462829Z test_comprehensive_special_bessel_j1_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5463004Z test_comprehensive_special_bessel_j1_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5463177Z test_comprehensive_special_bessel_j1_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5463353Z test_comprehensive_special_bessel_j1_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5463527Z test_comprehensive_special_bessel_j1_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5463700Z test_comprehensive_special_bessel_y0_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5463865Z test_comprehensive_special_bessel_y0_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5464041Z test_comprehensive_special_bessel_y0_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5464257Z test_comprehensive_special_bessel_y0_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5464430Z test_comprehensive_special_bessel_y0_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5464602Z test_comprehensive_special_bessel_y0_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5464775Z test_comprehensive_special_bessel_y0_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5464948Z test_comprehensive_special_bessel_y0_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5465122Z test_comprehensive_special_bessel_y1_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5465299Z test_comprehensive_special_bessel_y1_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5465464Z test_comprehensive_special_bessel_y1_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5465638Z test_comprehensive_special_bessel_y1_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5465839Z test_comprehensive_special_bessel_y1_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5466017Z test_comprehensive_special_bessel_y1_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5466191Z test_comprehensive_special_bessel_y1_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5466365Z test_comprehensive_special_bessel_y1_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5466560Z test_comprehensive_special_chebyshev_polynomial_t_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5466756Z test_comprehensive_special_chebyshev_polynomial_t_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5466954Z test_comprehensive_special_chebyshev_polynomial_t_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5467150Z test_comprehensive_special_chebyshev_polynomial_t_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5467328Z test_comprehensive_special_chebyshev_polynomial_t_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5467518Z test_comprehensive_special_chebyshev_polynomial_t_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5467707Z test_comprehensive_special_chebyshev_polynomial_t_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5467896Z test_comprehensive_special_chebyshev_polynomial_t_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5468089Z test_comprehensive_special_chebyshev_polynomial_u_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5468284Z test_comprehensive_special_chebyshev_polynomial_u_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5468478Z test_comprehensive_special_chebyshev_polynomial_u_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5468669Z test_comprehensive_special_chebyshev_polynomial_u_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5468859Z test_comprehensive_special_chebyshev_polynomial_u_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5469032Z test_comprehensive_special_chebyshev_polynomial_u_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5469220Z test_comprehensive_special_chebyshev_polynomial_u_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5469438Z test_comprehensive_special_chebyshev_polynomial_u_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5469899Z test_comprehensive_special_chebyshev_polynomial_v_cpu_bool (__main__.TestDecompCPU) ... skip: Skipping - testing takes an unreasonably long time, #79528 (0.000s) 2023-01-11T20:52:32.5470254Z test_comprehensive_special_chebyshev_polynomial_v_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipping - testing takes an unreasonably long time, #79528 (0.000s) 2023-01-11T20:52:32.5470604Z test_comprehensive_special_chebyshev_polynomial_v_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipping - testing takes an unreasonably long time, #79528 (0.000s) 2023-01-11T20:52:32.5470947Z test_comprehensive_special_chebyshev_polynomial_v_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipping - testing takes an unreasonably long time, #79528 (0.000s) 2023-01-11T20:52:32.5471281Z test_comprehensive_special_chebyshev_polynomial_v_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipping - testing takes an unreasonably long time, #79528 (0.000s) 2023-01-11T20:52:32.5471645Z test_comprehensive_special_chebyshev_polynomial_v_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipping - testing takes an unreasonably long time, #79528 (0.000s) 2023-01-11T20:52:32.5471987Z test_comprehensive_special_chebyshev_polynomial_v_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipping - testing takes an unreasonably long time, #79528 (0.000s) 2023-01-11T20:52:32.5472331Z test_comprehensive_special_chebyshev_polynomial_v_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipping - testing takes an unreasonably long time, #79528 (0.000s) 2023-01-11T20:52:32.5472664Z test_comprehensive_special_chebyshev_polynomial_w_cpu_bool (__main__.TestDecompCPU) ... skip: Skipping - testing takes an unreasonably long time, #79528 (0.000s) 2023-01-11T20:52:32.5472997Z test_comprehensive_special_chebyshev_polynomial_w_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipping - testing takes an unreasonably long time, #79528 (0.000s) 2023-01-11T20:52:32.5473350Z test_comprehensive_special_chebyshev_polynomial_w_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipping - testing takes an unreasonably long time, #79528 (0.000s) 2023-01-11T20:52:32.5473686Z test_comprehensive_special_chebyshev_polynomial_w_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipping - testing takes an unreasonably long time, #79528 (0.000s) 2023-01-11T20:52:32.5474024Z test_comprehensive_special_chebyshev_polynomial_w_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipping - testing takes an unreasonably long time, #79528 (0.000s) 2023-01-11T20:52:32.5474358Z test_comprehensive_special_chebyshev_polynomial_w_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipping - testing takes an unreasonably long time, #79528 (0.000s) 2023-01-11T20:52:32.5474691Z test_comprehensive_special_chebyshev_polynomial_w_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipping - testing takes an unreasonably long time, #79528 (0.000s) 2023-01-11T20:52:32.5475035Z test_comprehensive_special_chebyshev_polynomial_w_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipping - testing takes an unreasonably long time, #79528 (0.000s) 2023-01-11T20:52:32.5475214Z test_comprehensive_special_entr_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5475390Z test_comprehensive_special_entr_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5475568Z test_comprehensive_special_entr_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5475743Z test_comprehensive_special_entr_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5475903Z test_comprehensive_special_entr_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5476075Z test_comprehensive_special_entr_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5476273Z test_comprehensive_special_entr_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5476445Z test_comprehensive_special_entr_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5476614Z test_comprehensive_special_entr_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5476782Z test_comprehensive_special_erfcx_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5476959Z test_comprehensive_special_erfcx_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5477135Z test_comprehensive_special_erfcx_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5477311Z test_comprehensive_special_erfcx_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5477472Z test_comprehensive_special_erfcx_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5477651Z test_comprehensive_special_erfcx_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5477850Z test_comprehensive_special_erfcx_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5478021Z test_comprehensive_special_erfcx_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5478211Z test_comprehensive_special_hermite_polynomial_h_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5478403Z test_comprehensive_special_hermite_polynomial_h_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5478597Z test_comprehensive_special_hermite_polynomial_h_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5478784Z test_comprehensive_special_hermite_polynomial_h_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5478977Z test_comprehensive_special_hermite_polynomial_h_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5479166Z test_comprehensive_special_hermite_polynomial_h_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5479342Z test_comprehensive_special_hermite_polynomial_h_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5479528Z test_comprehensive_special_hermite_polynomial_h_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5479718Z test_comprehensive_special_hermite_polynomial_he_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5479909Z test_comprehensive_special_hermite_polynomial_he_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5480102Z test_comprehensive_special_hermite_polynomial_he_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5480291Z test_comprehensive_special_hermite_polynomial_he_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5480478Z test_comprehensive_special_hermite_polynomial_he_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5480799Z test_comprehensive_special_hermite_polynomial_he_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5480989Z test_comprehensive_special_hermite_polynomial_he_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5481163Z test_comprehensive_special_hermite_polynomial_he_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5481339Z test_comprehensive_special_i0e_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5481581Z test_comprehensive_special_i0e_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5481758Z test_comprehensive_special_i0e_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5481928Z test_comprehensive_special_i0e_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5482099Z test_comprehensive_special_i0e_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5482268Z test_comprehensive_special_i0e_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5482435Z test_comprehensive_special_i0e_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5482607Z test_comprehensive_special_i0e_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5482776Z test_comprehensive_special_i0e_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5482934Z test_comprehensive_special_i1_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5483144Z test_comprehensive_special_i1_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5483319Z test_comprehensive_special_i1_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5483488Z test_comprehensive_special_i1_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5483652Z test_comprehensive_special_i1_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5483820Z test_comprehensive_special_i1_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5483986Z test_comprehensive_special_i1_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5484157Z test_comprehensive_special_i1_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5484328Z test_comprehensive_special_i1e_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5484488Z test_comprehensive_special_i1e_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5484659Z test_comprehensive_special_i1e_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5484827Z test_comprehensive_special_i1e_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5484995Z test_comprehensive_special_i1e_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5485160Z test_comprehensive_special_i1e_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5485327Z test_comprehensive_special_i1e_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5485495Z test_comprehensive_special_i1e_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5485688Z test_comprehensive_special_laguerre_polynomial_l_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5485882Z test_comprehensive_special_laguerre_polynomial_l_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5486061Z test_comprehensive_special_laguerre_polynomial_l_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5486253Z test_comprehensive_special_laguerre_polynomial_l_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5486445Z test_comprehensive_special_laguerre_polynomial_l_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5486636Z test_comprehensive_special_laguerre_polynomial_l_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5486859Z test_comprehensive_special_laguerre_polynomial_l_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5487048Z test_comprehensive_special_laguerre_polynomial_l_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5487407Z test_comprehensive_special_legendre_polynomial_p_cpu_bool (__main__.TestDecompCPU) ... skip: Skipping - testing takes an unreasonably long time, #79528 (0.000s) 2023-01-11T20:52:32.5487756Z test_comprehensive_special_legendre_polynomial_p_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipping - testing takes an unreasonably long time, #79528 (0.000s) 2023-01-11T20:52:32.5488095Z test_comprehensive_special_legendre_polynomial_p_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipping - testing takes an unreasonably long time, #79528 (0.000s) 2023-01-11T20:52:32.5488437Z test_comprehensive_special_legendre_polynomial_p_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipping - testing takes an unreasonably long time, #79528 (0.000s) 2023-01-11T20:52:32.5488789Z test_comprehensive_special_legendre_polynomial_p_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipping - testing takes an unreasonably long time, #79528 (0.000s) 2023-01-11T20:52:32.5489121Z test_comprehensive_special_legendre_polynomial_p_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipping - testing takes an unreasonably long time, #79528 (0.000s) 2023-01-11T20:52:32.5489462Z test_comprehensive_special_legendre_polynomial_p_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipping - testing takes an unreasonably long time, #79528 (0.000s) 2023-01-11T20:52:32.5489801Z test_comprehensive_special_legendre_polynomial_p_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipping - testing takes an unreasonably long time, #79528 (0.000s) 2023-01-11T20:52:32.5489977Z test_comprehensive_special_log_ndtr_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5490159Z test_comprehensive_special_log_ndtr_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5490339Z test_comprehensive_special_log_ndtr_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5490516Z test_comprehensive_special_log_ndtr_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5490690Z test_comprehensive_special_log_ndtr_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5490867Z test_comprehensive_special_log_ndtr_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5491040Z test_comprehensive_special_log_ndtr_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5491199Z test_comprehensive_special_log_ndtr_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5491389Z test_comprehensive_special_modified_bessel_i0_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5491580Z test_comprehensive_special_modified_bessel_i0_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5491767Z test_comprehensive_special_modified_bessel_i0_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5491952Z test_comprehensive_special_modified_bessel_i0_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5492137Z test_comprehensive_special_modified_bessel_i0_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5492322Z test_comprehensive_special_modified_bessel_i0_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5492504Z test_comprehensive_special_modified_bessel_i0_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5492720Z test_comprehensive_special_modified_bessel_i0_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5492894Z test_comprehensive_special_modified_bessel_i1_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5493083Z test_comprehensive_special_modified_bessel_i1_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5493268Z test_comprehensive_special_modified_bessel_i1_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5493449Z test_comprehensive_special_modified_bessel_i1_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5493631Z test_comprehensive_special_modified_bessel_i1_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5493814Z test_comprehensive_special_modified_bessel_i1_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5493997Z test_comprehensive_special_modified_bessel_i1_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5494214Z test_comprehensive_special_modified_bessel_i1_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5494397Z test_comprehensive_special_modified_bessel_k0_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5494585Z test_comprehensive_special_modified_bessel_k0_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5494759Z test_comprehensive_special_modified_bessel_k0_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5494939Z test_comprehensive_special_modified_bessel_k0_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5495119Z test_comprehensive_special_modified_bessel_k0_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5495301Z test_comprehensive_special_modified_bessel_k0_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5495483Z test_comprehensive_special_modified_bessel_k0_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5495666Z test_comprehensive_special_modified_bessel_k0_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5495849Z test_comprehensive_special_modified_bessel_k1_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5496035Z test_comprehensive_special_modified_bessel_k1_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5496220Z test_comprehensive_special_modified_bessel_k1_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5496401Z test_comprehensive_special_modified_bessel_k1_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5496572Z test_comprehensive_special_modified_bessel_k1_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5496754Z test_comprehensive_special_modified_bessel_k1_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5496934Z test_comprehensive_special_modified_bessel_k1_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5497116Z test_comprehensive_special_modified_bessel_k1_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5497291Z test_comprehensive_special_ndtr_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5497462Z test_comprehensive_special_ndtr_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5497637Z test_comprehensive_special_ndtr_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5497840Z test_comprehensive_special_ndtr_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5498014Z test_comprehensive_special_ndtr_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5498173Z test_comprehensive_special_ndtr_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5498339Z test_comprehensive_special_ndtr_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5498510Z test_comprehensive_special_ndtr_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5498678Z test_comprehensive_special_ndtr_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5498844Z test_comprehensive_special_ndtri_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5499020Z test_comprehensive_special_ndtri_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5499220Z test_comprehensive_special_ndtri_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5499472Z test_comprehensive_special_ndtri_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5499647Z test_comprehensive_special_ndtri_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5499802Z test_comprehensive_special_ndtri_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5499977Z test_comprehensive_special_ndtri_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5500145Z test_comprehensive_special_ndtri_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5500354Z test_comprehensive_special_polygamma_special_polygamma_n_0_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5500567Z test_comprehensive_special_polygamma_special_polygamma_n_0_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5500774Z test_comprehensive_special_polygamma_special_polygamma_n_0_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5500980Z test_comprehensive_special_polygamma_special_polygamma_n_0_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5501180Z test_comprehensive_special_polygamma_special_polygamma_n_0_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5501375Z test_comprehensive_special_polygamma_special_polygamma_n_0_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5501566Z test_comprehensive_special_polygamma_special_polygamma_n_0_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5501755Z test_comprehensive_special_polygamma_special_polygamma_n_0_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5501959Z test_comprehensive_special_polygamma_special_polygamma_n_0_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5502155Z test_comprehensive_special_scaled_modified_bessel_k0_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5502353Z test_comprehensive_special_scaled_modified_bessel_k0_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5502548Z test_comprehensive_special_scaled_modified_bessel_k0_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.003s) 2023-01-11T20:52:32.5502745Z test_comprehensive_special_scaled_modified_bessel_k0_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5502975Z test_comprehensive_special_scaled_modified_bessel_k0_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5503170Z test_comprehensive_special_scaled_modified_bessel_k0_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5503364Z test_comprehensive_special_scaled_modified_bessel_k0_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5503552Z test_comprehensive_special_scaled_modified_bessel_k0_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5503732Z test_comprehensive_special_scaled_modified_bessel_k1_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5503927Z test_comprehensive_special_scaled_modified_bessel_k1_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5504120Z test_comprehensive_special_scaled_modified_bessel_k1_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5504312Z test_comprehensive_special_scaled_modified_bessel_k1_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5504534Z test_comprehensive_special_scaled_modified_bessel_k1_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5504724Z test_comprehensive_special_scaled_modified_bessel_k1_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5504915Z test_comprehensive_special_scaled_modified_bessel_k1_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5505106Z test_comprehensive_special_scaled_modified_bessel_k1_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5505477Z test_comprehensive_special_shifted_chebyshev_polynomial_t_cpu_bool (__main__.TestDecompCPU) ... skip: Skipping - testing takes an unreasonably long time, #79528 (0.000s) 2023-01-11T20:52:32.5505841Z test_comprehensive_special_shifted_chebyshev_polynomial_t_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipping - testing takes an unreasonably long time, #79528 (0.000s) 2023-01-11T20:52:32.5506201Z test_comprehensive_special_shifted_chebyshev_polynomial_t_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipping - testing takes an unreasonably long time, #79528 (0.000s) 2023-01-11T20:52:32.5506545Z test_comprehensive_special_shifted_chebyshev_polynomial_t_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipping - testing takes an unreasonably long time, #79528 (0.000s) 2023-01-11T20:52:32.5506901Z test_comprehensive_special_shifted_chebyshev_polynomial_t_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipping - testing takes an unreasonably long time, #79528 (0.000s) 2023-01-11T20:52:32.5507255Z test_comprehensive_special_shifted_chebyshev_polynomial_t_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipping - testing takes an unreasonably long time, #79528 (0.000s) 2023-01-11T20:52:32.5507607Z test_comprehensive_special_shifted_chebyshev_polynomial_t_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipping - testing takes an unreasonably long time, #79528 (0.000s) 2023-01-11T20:52:32.5507959Z test_comprehensive_special_shifted_chebyshev_polynomial_t_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipping - testing takes an unreasonably long time, #79528 (0.000s) 2023-01-11T20:52:32.5508316Z test_comprehensive_special_shifted_chebyshev_polynomial_u_cpu_bool (__main__.TestDecompCPU) ... skip: Skipping - testing takes an unreasonably long time, #79528 (0.000s) 2023-01-11T20:52:32.5508675Z test_comprehensive_special_shifted_chebyshev_polynomial_u_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipping - testing takes an unreasonably long time, #79528 (0.000s) 2023-01-11T20:52:32.5509027Z test_comprehensive_special_shifted_chebyshev_polynomial_u_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipping - testing takes an unreasonably long time, #79528 (0.000s) 2023-01-11T20:52:32.5509404Z test_comprehensive_special_shifted_chebyshev_polynomial_u_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipping - testing takes an unreasonably long time, #79528 (0.000s) 2023-01-11T20:52:32.5509754Z test_comprehensive_special_shifted_chebyshev_polynomial_u_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipping - testing takes an unreasonably long time, #79528 (0.000s) 2023-01-11T20:52:32.5510101Z test_comprehensive_special_shifted_chebyshev_polynomial_u_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipping - testing takes an unreasonably long time, #79528 (0.000s) 2023-01-11T20:52:32.5510451Z test_comprehensive_special_shifted_chebyshev_polynomial_u_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipping - testing takes an unreasonably long time, #79528 (0.000s) 2023-01-11T20:52:32.5510806Z test_comprehensive_special_shifted_chebyshev_polynomial_u_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipping - testing takes an unreasonably long time, #79528 (0.000s) 2023-01-11T20:52:32.5511145Z test_comprehensive_special_shifted_chebyshev_polynomial_v_cpu_bool (__main__.TestDecompCPU) ... skip: Skipping - testing takes an unreasonably long time, #79528 (0.000s) 2023-01-11T20:52:32.5511527Z test_comprehensive_special_shifted_chebyshev_polynomial_v_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipping - testing takes an unreasonably long time, #79528 (0.000s) 2023-01-11T20:52:32.5511888Z test_comprehensive_special_shifted_chebyshev_polynomial_v_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipping - testing takes an unreasonably long time, #79528 (0.000s) 2023-01-11T20:52:32.5512237Z test_comprehensive_special_shifted_chebyshev_polynomial_v_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipping - testing takes an unreasonably long time, #79528 (0.000s) 2023-01-11T20:52:32.5512587Z test_comprehensive_special_shifted_chebyshev_polynomial_v_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipping - testing takes an unreasonably long time, #79528 (0.000s) 2023-01-11T20:52:32.5512940Z test_comprehensive_special_shifted_chebyshev_polynomial_v_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipping - testing takes an unreasonably long time, #79528 (0.000s) 2023-01-11T20:52:32.5513291Z test_comprehensive_special_shifted_chebyshev_polynomial_v_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipping - testing takes an unreasonably long time, #79528 (0.000s) 2023-01-11T20:52:32.5513641Z test_comprehensive_special_shifted_chebyshev_polynomial_v_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipping - testing takes an unreasonably long time, #79528 (0.000s) 2023-01-11T20:52:32.5513996Z test_comprehensive_special_shifted_chebyshev_polynomial_w_cpu_bool (__main__.TestDecompCPU) ... skip: Skipping - testing takes an unreasonably long time, #79528 (0.000s) 2023-01-11T20:52:32.5514349Z test_comprehensive_special_shifted_chebyshev_polynomial_w_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipping - testing takes an unreasonably long time, #79528 (0.000s) 2023-01-11T20:52:32.5514709Z test_comprehensive_special_shifted_chebyshev_polynomial_w_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipping - testing takes an unreasonably long time, #79528 (0.000s) 2023-01-11T20:52:32.5515062Z test_comprehensive_special_shifted_chebyshev_polynomial_w_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipping - testing takes an unreasonably long time, #79528 (0.000s) 2023-01-11T20:52:32.5515413Z test_comprehensive_special_shifted_chebyshev_polynomial_w_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipping - testing takes an unreasonably long time, #79528 (0.000s) 2023-01-11T20:52:32.5515748Z test_comprehensive_special_shifted_chebyshev_polynomial_w_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipping - testing takes an unreasonably long time, #79528 (0.000s) 2023-01-11T20:52:32.5516096Z test_comprehensive_special_shifted_chebyshev_polynomial_w_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipping - testing takes an unreasonably long time, #79528 (0.000s) 2023-01-11T20:52:32.5516442Z test_comprehensive_special_shifted_chebyshev_polynomial_w_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipping - testing takes an unreasonably long time, #79528 (0.000s) 2023-01-11T20:52:32.5516667Z test_comprehensive_special_spherical_bessel_j0_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5516859Z test_comprehensive_special_spherical_bessel_j0_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5517048Z test_comprehensive_special_spherical_bessel_j0_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5517234Z test_comprehensive_special_spherical_bessel_j0_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5517418Z test_comprehensive_special_spherical_bessel_j0_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5517605Z test_comprehensive_special_spherical_bessel_j0_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5517794Z test_comprehensive_special_spherical_bessel_j0_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5517995Z test_comprehensive_special_spherical_bessel_j0_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5518175Z test_comprehensive_special_xlog1py_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5518352Z test_comprehensive_special_xlog1py_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5518530Z test_comprehensive_special_xlog1py_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5518705Z test_comprehensive_special_xlog1py_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5518878Z test_comprehensive_special_xlog1py_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5519055Z test_comprehensive_special_xlog1py_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5519232Z test_comprehensive_special_xlog1py_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5519403Z test_comprehensive_special_xlog1py_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5519563Z test_comprehensive_special_xlog1py_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5519737Z test_comprehensive_special_xlog1py_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5519907Z test_comprehensive_special_zeta_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5520079Z test_comprehensive_special_zeta_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5520255Z test_comprehensive_special_zeta_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5520430Z test_comprehensive_special_zeta_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5520720Z test_comprehensive_special_zeta_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5520893Z test_comprehensive_special_zeta_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5521066Z test_comprehensive_special_zeta_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5521239Z test_comprehensive_special_zeta_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5521396Z test_comprehensive_split_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5521562Z test_comprehensive_split_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5521797Z test_comprehensive_split_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5521972Z test_comprehensive_split_cpu_complex32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5522144Z test_comprehensive_split_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5522313Z test_comprehensive_split_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5522482Z test_comprehensive_split_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5522645Z test_comprehensive_split_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5522813Z test_comprehensive_split_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5522958Z test_comprehensive_split_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5523118Z test_comprehensive_split_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5523318Z test_comprehensive_split_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5523487Z test_comprehensive_split_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5523667Z test_comprehensive_split_list_args_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5523853Z test_comprehensive_split_list_args_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5524034Z test_comprehensive_split_list_args_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5524214Z test_comprehensive_split_list_args_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5524394Z test_comprehensive_split_list_args_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5524559Z test_comprehensive_split_list_args_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5524736Z test_comprehensive_split_list_args_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5524910Z test_comprehensive_split_list_args_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5525081Z test_comprehensive_split_list_args_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5525249Z test_comprehensive_split_list_args_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5525420Z test_comprehensive_split_list_args_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5525588Z test_comprehensive_split_list_args_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5525766Z test_comprehensive_split_with_sizes_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5525935Z test_comprehensive_split_with_sizes_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5526102Z test_comprehensive_split_with_sizes_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5526279Z test_comprehensive_split_with_sizes_cpu_complex32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5526458Z test_comprehensive_split_with_sizes_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5526633Z test_comprehensive_split_with_sizes_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5526810Z test_comprehensive_split_with_sizes_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5527014Z test_comprehensive_split_with_sizes_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5527190Z test_comprehensive_split_with_sizes_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5527364Z test_comprehensive_split_with_sizes_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5527537Z test_comprehensive_split_with_sizes_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5527696Z test_comprehensive_split_with_sizes_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5527866Z test_comprehensive_split_with_sizes_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5528034Z test_comprehensive_sqrt_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5528196Z test_comprehensive_sqrt_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5528397Z test_comprehensive_sqrt_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5528570Z test_comprehensive_sqrt_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5528732Z test_comprehensive_sqrt_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5528893Z test_comprehensive_sqrt_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5529054Z test_comprehensive_sqrt_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5529197Z test_comprehensive_sqrt_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5529349Z test_comprehensive_sqrt_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5529512Z test_comprehensive_sqrt_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5529677Z test_comprehensive_sqrt_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5529848Z test_comprehensive_square_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5530014Z test_comprehensive_square_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5530187Z test_comprehensive_square_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5530358Z test_comprehensive_square_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5530525Z test_comprehensive_square_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5530680Z test_comprehensive_square_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5530853Z test_comprehensive_square_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5531020Z test_comprehensive_square_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5531185Z test_comprehensive_square_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5531345Z test_comprehensive_square_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5531509Z test_comprehensive_square_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5531670Z test_comprehensive_square_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5531840Z test_comprehensive_squeeze_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5532000Z test_comprehensive_squeeze_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5532190Z test_comprehensive_squeeze_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5532365Z test_comprehensive_squeeze_cpu_complex32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5532537Z test_comprehensive_squeeze_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5532708Z test_comprehensive_squeeze_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5532872Z test_comprehensive_squeeze_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5533041Z test_comprehensive_squeeze_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5533209Z test_comprehensive_squeeze_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5533369Z test_comprehensive_squeeze_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5533529Z test_comprehensive_squeeze_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5533711Z test_comprehensive_squeeze_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5533878Z test_comprehensive_squeeze_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5534045Z test_comprehensive_stack_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5534210Z test_comprehensive_stack_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5534380Z test_comprehensive_stack_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5534548Z test_comprehensive_stack_cpu_complex32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5534721Z test_comprehensive_stack_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5534888Z test_comprehensive_stack_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5535051Z test_comprehensive_stack_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5535196Z test_comprehensive_stack_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5535361Z test_comprehensive_stack_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5535520Z test_comprehensive_stack_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5535677Z test_comprehensive_stack_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5535840Z test_comprehensive_stack_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5535999Z test_comprehensive_stack_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5536168Z test_comprehensive_std_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5536336Z test_comprehensive_std_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5536502Z test_comprehensive_std_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5536649Z test_comprehensive_std_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5536808Z test_comprehensive_std_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5536970Z test_comprehensive_std_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5537139Z test_comprehensive_std_mean_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5537349Z test_comprehensive_std_mean_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5537526Z test_comprehensive_std_mean_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5537694Z test_comprehensive_std_mean_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5537858Z test_comprehensive_std_mean_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5538029Z test_comprehensive_std_mean_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5538198Z test_comprehensive_std_mean_unbiased_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5538385Z test_comprehensive_std_mean_unbiased_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5538568Z test_comprehensive_std_mean_unbiased_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5538776Z test_comprehensive_std_mean_unbiased_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5538958Z test_comprehensive_std_mean_unbiased_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5539136Z test_comprehensive_std_mean_unbiased_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5539381Z test_comprehensive_std_unbiased_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5539564Z test_comprehensive_std_unbiased_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5539743Z test_comprehensive_std_unbiased_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5539906Z test_comprehensive_std_unbiased_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5540084Z test_comprehensive_std_unbiased_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5540260Z test_comprehensive_std_unbiased_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5540431Z test_comprehensive_stft_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5540600Z test_comprehensive_stft_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5540769Z test_comprehensive_stft_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5540934Z test_comprehensive_stft_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5541095Z test_comprehensive_sub_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5541265Z test_comprehensive_sub_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5541419Z test_comprehensive_sub_cpu_complex32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5541588Z test_comprehensive_sub_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5541752Z test_comprehensive_sub_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5541910Z test_comprehensive_sub_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5542066Z test_comprehensive_sub_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5542225Z test_comprehensive_sub_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5542384Z test_comprehensive_sub_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5542576Z test_comprehensive_sub_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5542735Z test_comprehensive_sub_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5542883Z test_comprehensive_sub_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5543050Z test_comprehensive_sum_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5543210Z test_comprehensive_sum_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5543376Z test_comprehensive_sum_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5543541Z test_comprehensive_sum_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5543703Z test_comprehensive_sum_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5543866Z test_comprehensive_sum_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5544085Z test_comprehensive_sum_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5544245Z test_comprehensive_sum_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5544390Z test_comprehensive_sum_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5544547Z test_comprehensive_sum_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5544707Z test_comprehensive_sum_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5544863Z test_comprehensive_sum_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5545036Z test_comprehensive_sum_to_size_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5545206Z test_comprehensive_sum_to_size_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5545386Z test_comprehensive_sum_to_size_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5545562Z test_comprehensive_sum_to_size_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5545734Z test_comprehensive_sum_to_size_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5545892Z test_comprehensive_sum_to_size_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5546065Z test_comprehensive_sum_to_size_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5546235Z test_comprehensive_sum_to_size_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5546401Z test_comprehensive_sum_to_size_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5546572Z test_comprehensive_sum_to_size_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5546743Z test_comprehensive_sum_to_size_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5546911Z test_comprehensive_sum_to_size_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5547080Z test_comprehensive_svd_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5547247Z test_comprehensive_svd_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5547396Z test_comprehensive_svd_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5547561Z test_comprehensive_svd_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5547766Z test_comprehensive_svd_lowrank_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5547938Z test_comprehensive_svd_lowrank_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5548110Z test_comprehensive_symeig_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5548280Z test_comprehensive_symeig_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5548447Z test_comprehensive_symeig_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5548616Z test_comprehensive_symeig_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5548779Z test_comprehensive_t_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5548927Z test_comprehensive_t_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5549096Z test_comprehensive_t_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5549288Z test_comprehensive_t_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5549449Z test_comprehensive_t_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5549609Z test_comprehensive_t_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5549772Z test_comprehensive_t_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5549929Z test_comprehensive_t_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5550086Z test_comprehensive_t_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5550230Z test_comprehensive_t_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5550389Z test_comprehensive_t_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5550546Z test_comprehensive_t_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5550726Z test_comprehensive_take_along_dim_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5550899Z test_comprehensive_take_along_dim_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5551078Z test_comprehensive_take_along_dim_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5551261Z test_comprehensive_take_along_dim_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5551435Z test_comprehensive_take_along_dim_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5551608Z test_comprehensive_take_along_dim_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5551771Z test_comprehensive_take_along_dim_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5551945Z test_comprehensive_take_along_dim_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5552118Z test_comprehensive_take_along_dim_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5552291Z test_comprehensive_take_along_dim_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5552463Z test_comprehensive_take_along_dim_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5552632Z test_comprehensive_take_along_dim_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5552798Z test_comprehensive_take_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5552987Z test_comprehensive_take_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5553160Z test_comprehensive_take_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5553316Z test_comprehensive_take_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5553481Z test_comprehensive_take_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5553641Z test_comprehensive_take_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5553799Z test_comprehensive_take_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5553961Z test_comprehensive_take_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5554119Z test_comprehensive_take_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5554276Z test_comprehensive_take_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5554462Z test_comprehensive_take_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5554626Z test_comprehensive_take_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5554777Z test_comprehensive_tan_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5554937Z test_comprehensive_tan_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5555105Z test_comprehensive_tan_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5555270Z test_comprehensive_tan_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5555434Z test_comprehensive_tan_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5555598Z test_comprehensive_tan_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5555759Z test_comprehensive_tan_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5555916Z test_comprehensive_tan_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5556076Z test_comprehensive_tan_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5556222Z test_comprehensive_tan_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5556377Z test_comprehensive_tan_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5556544Z test_comprehensive_tanh_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5556702Z test_comprehensive_tanh_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5556873Z test_comprehensive_tanh_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5557043Z test_comprehensive_tanh_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5557208Z test_comprehensive_tanh_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5557370Z test_comprehensive_tanh_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5557531Z test_comprehensive_tanh_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5557675Z test_comprehensive_tanh_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5557829Z test_comprehensive_tanh_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5557988Z test_comprehensive_tanh_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5558196Z test_comprehensive_tanh_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5558374Z test_comprehensive_tensor_split_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5558546Z test_comprehensive_tensor_split_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5558725Z test_comprehensive_tensor_split_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5558902Z test_comprehensive_tensor_split_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5559076Z test_comprehensive_tensor_split_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5559238Z test_comprehensive_tensor_split_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5559411Z test_comprehensive_tensor_split_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5559581Z test_comprehensive_tensor_split_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5559782Z test_comprehensive_tensor_split_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5559953Z test_comprehensive_tensor_split_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5560122Z test_comprehensive_tensor_split_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5560292Z test_comprehensive_tensor_split_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5560464Z test_comprehensive_tensordot_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5560754Z test_comprehensive_tensordot_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5560918Z test_comprehensive_tensordot_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5561092Z test_comprehensive_tensordot_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5561264Z test_comprehensive_tensordot_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5561435Z test_comprehensive_tensordot_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5561600Z test_comprehensive_tensordot_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5561774Z test_comprehensive_tensordot_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5561944Z test_comprehensive_tensordot_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5562114Z test_comprehensive_tensordot_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5562284Z test_comprehensive_tile_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5562433Z test_comprehensive_tile_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5562603Z test_comprehensive_tile_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5562771Z test_comprehensive_tile_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5562937Z test_comprehensive_tile_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5563103Z test_comprehensive_tile_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5563263Z test_comprehensive_tile_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5563479Z test_comprehensive_tile_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5563641Z test_comprehensive_tile_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5563801Z test_comprehensive_tile_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5563949Z test_comprehensive_tile_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5564111Z test_comprehensive_tile_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5564275Z test_comprehensive_to_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5564435Z test_comprehensive_to_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5564604Z test_comprehensive_to_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5564771Z test_comprehensive_to_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5564930Z test_comprehensive_to_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5565122Z test_comprehensive_to_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5565278Z test_comprehensive_to_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5565425Z test_comprehensive_to_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5565586Z test_comprehensive_to_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5565745Z test_comprehensive_to_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5565905Z test_comprehensive_to_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5566067Z test_comprehensive_to_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5566243Z test_comprehensive_to_sparse_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5566418Z test_comprehensive_to_sparse_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5566593Z test_comprehensive_to_sparse_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5566767Z test_comprehensive_to_sparse_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5566924Z test_comprehensive_to_sparse_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5567094Z test_comprehensive_to_sparse_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5567257Z test_comprehensive_to_sparse_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5567428Z test_comprehensive_to_sparse_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5567598Z test_comprehensive_to_sparse_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5567764Z test_comprehensive_to_sparse_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5567932Z test_comprehensive_to_sparse_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5568097Z test_comprehensive_to_sparse_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5568263Z test_comprehensive_topk_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5568414Z test_comprehensive_topk_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5568575Z test_comprehensive_topk_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5568774Z test_comprehensive_topk_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5568941Z test_comprehensive_topk_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5569100Z test_comprehensive_topk_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5569259Z test_comprehensive_topk_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5569420Z test_comprehensive_topk_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5569592Z test_comprehensive_trace_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5569748Z test_comprehensive_trace_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5569915Z test_comprehensive_trace_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5570079Z test_comprehensive_trace_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5570270Z test_comprehensive_trace_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5570430Z test_comprehensive_trace_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5570591Z test_comprehensive_trace_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5570751Z test_comprehensive_trace_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5570911Z test_comprehensive_trace_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5571084Z test_comprehensive_transpose_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5571240Z test_comprehensive_transpose_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5571419Z test_comprehensive_transpose_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5571593Z test_comprehensive_transpose_cpu_complex32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5571767Z test_comprehensive_transpose_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5571937Z test_comprehensive_transpose_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5572106Z test_comprehensive_transpose_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5572273Z test_comprehensive_transpose_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5572441Z test_comprehensive_transpose_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5572611Z test_comprehensive_transpose_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5572767Z test_comprehensive_transpose_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5572939Z test_comprehensive_transpose_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5573105Z test_comprehensive_transpose_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5573278Z test_comprehensive_trapezoid_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5573455Z test_comprehensive_trapezoid_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5573627Z test_comprehensive_trapezoid_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5573797Z test_comprehensive_trapezoid_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5573994Z test_comprehensive_trapezoid_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5574166Z test_comprehensive_trapezoid_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5574322Z test_comprehensive_trapezoid_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5574488Z test_comprehensive_trapezoid_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5574655Z test_comprehensive_trapezoid_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5574821Z test_comprehensive_trapezoid_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5574989Z test_comprehensive_trapezoid_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5575154Z test_comprehensive_trapz_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5575328Z test_comprehensive_trapz_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5575519Z test_comprehensive_trapz_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5575689Z test_comprehensive_trapz_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5575838Z test_comprehensive_trapz_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5575997Z test_comprehensive_trapz_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5576163Z test_comprehensive_trapz_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5576324Z test_comprehensive_trapz_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5576488Z test_comprehensive_trapz_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5576653Z test_comprehensive_trapz_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5576813Z test_comprehensive_trapz_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5576998Z test_comprehensive_triangular_solve_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5577183Z test_comprehensive_triangular_solve_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5577350Z test_comprehensive_triangular_solve_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5577530Z test_comprehensive_triangular_solve_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5577697Z test_comprehensive_tril_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5577862Z test_comprehensive_tril_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5578033Z test_comprehensive_tril_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5578203Z test_comprehensive_tril_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5578369Z test_comprehensive_tril_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5578532Z test_comprehensive_tril_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5578697Z test_comprehensive_tril_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5578846Z test_comprehensive_tril_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5579002Z test_comprehensive_tril_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5579188Z test_comprehensive_tril_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5579422Z test_comprehensive_tril_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5579588Z test_comprehensive_tril_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5579763Z test_comprehensive_tril_indices_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5579935Z test_comprehensive_tril_indices_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5580101Z test_comprehensive_triu_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5580261Z test_comprehensive_triu_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5580417Z test_comprehensive_triu_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5580590Z test_comprehensive_triu_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5580794Z test_comprehensive_triu_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5580956Z test_comprehensive_triu_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5581119Z test_comprehensive_triu_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5581279Z test_comprehensive_triu_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5581437Z test_comprehensive_triu_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5581591Z test_comprehensive_triu_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5581751Z test_comprehensive_triu_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5581897Z test_comprehensive_triu_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5582069Z test_comprehensive_triu_indices_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5582240Z test_comprehensive_triu_indices_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5582414Z test_comprehensive_true_divide_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5582584Z test_comprehensive_true_divide_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5582761Z test_comprehensive_true_divide_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.003s) 2023-01-11T20:52:32.5582939Z test_comprehensive_true_divide_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5583116Z test_comprehensive_true_divide_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5583291Z test_comprehensive_true_divide_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5583447Z test_comprehensive_true_divide_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5583616Z test_comprehensive_true_divide_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5583784Z test_comprehensive_true_divide_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5583956Z test_comprehensive_true_divide_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5584125Z test_comprehensive_true_divide_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5584292Z test_comprehensive_true_divide_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5584495Z test_comprehensive_trunc_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5584664Z test_comprehensive_trunc_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5584828Z test_comprehensive_trunc_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5584979Z test_comprehensive_trunc_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5585137Z test_comprehensive_trunc_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5585298Z test_comprehensive_trunc_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5585460Z test_comprehensive_trunc_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5585621Z test_comprehensive_trunc_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5585790Z test_comprehensive_unbind_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5585978Z test_comprehensive_unbind_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5586149Z test_comprehensive_unbind_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5586321Z test_comprehensive_unbind_cpu_complex32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5586477Z test_comprehensive_unbind_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5586645Z test_comprehensive_unbind_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5586810Z test_comprehensive_unbind_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5586976Z test_comprehensive_unbind_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5587144Z test_comprehensive_unbind_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5587305Z test_comprehensive_unbind_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5587463Z test_comprehensive_unbind_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5587623Z test_comprehensive_unbind_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5587785Z test_comprehensive_unbind_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5587944Z test_comprehensive_unflatten_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5588112Z test_comprehensive_unflatten_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5588292Z test_comprehensive_unflatten_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5588471Z test_comprehensive_unflatten_cpu_complex32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5588645Z test_comprehensive_unflatten_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5588814Z test_comprehensive_unflatten_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5588986Z test_comprehensive_unflatten_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5589155Z test_comprehensive_unflatten_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5589324Z test_comprehensive_unflatten_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5589476Z test_comprehensive_unflatten_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5589675Z test_comprehensive_unflatten_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5589844Z test_comprehensive_unflatten_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5590013Z test_comprehensive_unflatten_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5590187Z test_comprehensive_unfold_copy_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5590359Z test_comprehensive_unfold_copy_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5590539Z test_comprehensive_unfold_copy_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5590716Z test_comprehensive_unfold_copy_cpu_complex32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5590893Z test_comprehensive_unfold_copy_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5591087Z test_comprehensive_unfold_copy_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5591262Z test_comprehensive_unfold_copy_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5591433Z test_comprehensive_unfold_copy_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5591603Z test_comprehensive_unfold_copy_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5591770Z test_comprehensive_unfold_copy_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5591939Z test_comprehensive_unfold_copy_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5592109Z test_comprehensive_unfold_copy_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5592278Z test_comprehensive_unfold_copy_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5592450Z test_comprehensive_unfold_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5592602Z test_comprehensive_unfold_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5592771Z test_comprehensive_unfold_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5592940Z test_comprehensive_unfold_cpu_complex32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5593108Z test_comprehensive_unfold_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5593273Z test_comprehensive_unfold_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5593443Z test_comprehensive_unfold_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5593610Z test_comprehensive_unfold_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5593774Z test_comprehensive_unfold_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5593935Z test_comprehensive_unfold_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5594080Z test_comprehensive_unfold_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5594243Z test_comprehensive_unfold_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5594402Z test_comprehensive_unfold_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5594571Z test_comprehensive_uniform_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5594791Z test_comprehensive_uniform_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5594964Z test_comprehensive_uniform_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5595132Z test_comprehensive_uniform_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5595298Z test_comprehensive_uniform_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5595460Z test_comprehensive_uniform_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5595633Z test_comprehensive_unique_consecutive_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5595812Z test_comprehensive_unique_consecutive_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5595995Z test_comprehensive_unique_consecutive_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5596179Z test_comprehensive_unique_consecutive_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5596388Z test_comprehensive_unique_consecutive_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5596567Z test_comprehensive_unique_consecutive_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5596745Z test_comprehensive_unique_consecutive_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5596923Z test_comprehensive_unique_consecutive_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5597098Z test_comprehensive_unique_consecutive_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5597254Z test_comprehensive_unique_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5597419Z test_comprehensive_unique_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5597587Z test_comprehensive_unique_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5597751Z test_comprehensive_unique_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5597918Z test_comprehensive_unique_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5598079Z test_comprehensive_unique_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5598237Z test_comprehensive_unique_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5598398Z test_comprehensive_unique_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5598559Z test_comprehensive_unique_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5598722Z test_comprehensive_unsqueeze_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5598891Z test_comprehensive_unsqueeze_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5599065Z test_comprehensive_unsqueeze_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5599241Z test_comprehensive_unsqueeze_cpu_complex32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5599416Z test_comprehensive_unsqueeze_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5599588Z test_comprehensive_unsqueeze_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5599758Z test_comprehensive_unsqueeze_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5599963Z test_comprehensive_unsqueeze_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5600133Z test_comprehensive_unsqueeze_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5600284Z test_comprehensive_unsqueeze_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5600451Z test_comprehensive_unsqueeze_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5600730Z test_comprehensive_unsqueeze_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5600900Z test_comprehensive_unsqueeze_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5601068Z test_comprehensive_var_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5601237Z test_comprehensive_var_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5601408Z test_comprehensive_var_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5601624Z test_comprehensive_var_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5601784Z test_comprehensive_var_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5601933Z test_comprehensive_var_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5602104Z test_comprehensive_var_mean_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5602279Z test_comprehensive_var_mean_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5602451Z test_comprehensive_var_mean_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5602620Z test_comprehensive_var_mean_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5602794Z test_comprehensive_var_mean_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5602963Z test_comprehensive_var_mean_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5603150Z test_comprehensive_var_mean_unbiased_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5603332Z test_comprehensive_var_mean_unbiased_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5603499Z test_comprehensive_var_mean_unbiased_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5603679Z test_comprehensive_var_mean_unbiased_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5603857Z test_comprehensive_var_mean_unbiased_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5604039Z test_comprehensive_var_mean_unbiased_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5604216Z test_comprehensive_var_unbiased_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5604397Z test_comprehensive_var_unbiased_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5604576Z test_comprehensive_var_unbiased_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5604750Z test_comprehensive_var_unbiased_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5604925Z test_comprehensive_var_unbiased_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5605100Z test_comprehensive_var_unbiased_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5605305Z test_comprehensive_vdot_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5605476Z test_comprehensive_vdot_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5605644Z test_comprehensive_vdot_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5605809Z test_comprehensive_vdot_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5605973Z test_comprehensive_vdot_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5606137Z test_comprehensive_vdot_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5606297Z test_comprehensive_vdot_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5606452Z test_comprehensive_vdot_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5606601Z test_comprehensive_vdot_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5606797Z test_comprehensive_vdot_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5606976Z test_comprehensive_view_as_complex_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5607152Z test_comprehensive_view_as_complex_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5607328Z test_comprehensive_view_as_complex_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5607499Z test_comprehensive_view_as_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5607663Z test_comprehensive_view_as_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5607835Z test_comprehensive_view_as_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5608008Z test_comprehensive_view_as_cpu_complex32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5608169Z test_comprehensive_view_as_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5608335Z test_comprehensive_view_as_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5608497Z test_comprehensive_view_as_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5608664Z test_comprehensive_view_as_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5608827Z test_comprehensive_view_as_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5608986Z test_comprehensive_view_as_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5609143Z test_comprehensive_view_as_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5609316Z test_comprehensive_view_as_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5609484Z test_comprehensive_view_as_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5609648Z test_comprehensive_view_as_real_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5609826Z test_comprehensive_view_as_real_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5609999Z test_comprehensive_view_copy_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5610168Z test_comprehensive_view_copy_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5610340Z test_comprehensive_view_copy_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5610551Z test_comprehensive_view_copy_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5610722Z test_comprehensive_view_copy_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5610887Z test_comprehensive_view_copy_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5611051Z test_comprehensive_view_copy_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5611216Z test_comprehensive_view_copy_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5611372Z test_comprehensive_view_copy_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5611538Z test_comprehensive_view_copy_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5611705Z test_comprehensive_view_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5611868Z test_comprehensive_view_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5612073Z test_comprehensive_view_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5612244Z test_comprehensive_view_cpu_complex32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5612411Z test_comprehensive_view_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5612577Z test_comprehensive_view_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5612728Z test_comprehensive_view_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5612885Z test_comprehensive_view_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5613047Z test_comprehensive_view_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5613206Z test_comprehensive_view_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5613360Z test_comprehensive_view_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5613520Z test_comprehensive_view_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5613681Z test_comprehensive_view_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5613850Z test_comprehensive_vsplit_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5614015Z test_comprehensive_vsplit_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5614174Z test_comprehensive_vsplit_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5614343Z test_comprehensive_vsplit_cpu_complex32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5614515Z test_comprehensive_vsplit_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5614684Z test_comprehensive_vsplit_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5614851Z test_comprehensive_vsplit_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5615018Z test_comprehensive_vsplit_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5615182Z test_comprehensive_vsplit_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5615344Z test_comprehensive_vsplit_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5615502Z test_comprehensive_vsplit_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5615687Z test_comprehensive_vsplit_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5615851Z test_comprehensive_vsplit_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5616019Z test_comprehensive_vstack_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5616181Z test_comprehensive_vstack_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5616353Z test_comprehensive_vstack_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5616524Z test_comprehensive_vstack_cpu_complex32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5616694Z test_comprehensive_vstack_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5616860Z test_comprehensive_vstack_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5617028Z test_comprehensive_vstack_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5617218Z test_comprehensive_vstack_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5617385Z test_comprehensive_vstack_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5617546Z test_comprehensive_vstack_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5617708Z test_comprehensive_vstack_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5617869Z test_comprehensive_vstack_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5618029Z test_comprehensive_vstack_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5618195Z test_comprehensive_where_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5618360Z test_comprehensive_where_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5618533Z test_comprehensive_where_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5618689Z test_comprehensive_where_cpu_complex32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5618858Z test_comprehensive_where_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5619024Z test_comprehensive_where_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5619184Z test_comprehensive_where_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5619423Z test_comprehensive_where_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5619587Z test_comprehensive_where_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5619750Z test_comprehensive_where_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5619909Z test_comprehensive_where_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5620070Z test_comprehensive_where_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5620219Z test_comprehensive_where_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5620387Z test_comprehensive_xlogy_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5620547Z test_comprehensive_xlogy_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5620713Z test_comprehensive_xlogy_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5620877Z test_comprehensive_xlogy_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5621089Z test_comprehensive_xlogy_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5621252Z test_comprehensive_xlogy_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5621410Z test_comprehensive_xlogy_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5621564Z test_comprehensive_xlogy_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5621712Z test_comprehensive_xlogy_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5621875Z test_comprehensive_xlogy_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5622042Z test_comprehensive_zero__cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5622202Z test_comprehensive_zero__cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5622374Z test_comprehensive_zero__cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5622572Z test_comprehensive_zero__cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5622734Z test_comprehensive_zero__cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5622894Z test_comprehensive_zero__cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5623055Z test_comprehensive_zero__cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5623202Z test_comprehensive_zero__cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5623358Z test_comprehensive_zero__cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5623520Z test_comprehensive_zero__cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5623679Z test_comprehensive_zero__cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5623838Z test_comprehensive_zero__cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5624005Z test_comprehensive_zeros_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5624166Z test_comprehensive_zeros_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5624336Z test_comprehensive_zeros_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5624490Z test_comprehensive_zeros_cpu_complex32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5624660Z test_comprehensive_zeros_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5624826Z test_comprehensive_zeros_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5624991Z test_comprehensive_zeros_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5625156Z test_comprehensive_zeros_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5625318Z test_comprehensive_zeros_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5625478Z test_comprehensive_zeros_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5625635Z test_comprehensive_zeros_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5625797Z test_comprehensive_zeros_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5625943Z test_comprehensive_zeros_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5626182Z test_comprehensive_zeros_like_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5626351Z test_comprehensive_zeros_like_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5626529Z test_comprehensive_zeros_like_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5626705Z test_comprehensive_zeros_like_cpu_complex32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5626881Z test_comprehensive_zeros_like_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5627055Z test_comprehensive_zeros_like_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5627227Z test_comprehensive_zeros_like_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5627395Z test_comprehensive_zeros_like_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5627553Z test_comprehensive_zeros_like_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5627748Z test_comprehensive_zeros_like_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5627915Z test_comprehensive_zeros_like_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5628083Z test_comprehensive_zeros_like_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5628254Z test_comprehensive_zeros_like_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5628433Z test_quick__native_batch_norm_legit_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5628609Z test_quick__native_batch_norm_legit_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5628785Z test_quick__native_batch_norm_legit_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5628961Z test_quick__softmax_backward_data_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5629138Z test_quick__softmax_backward_data_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5629301Z test_quick__softmax_backward_data_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5629455Z test_quick_abs_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5629610Z test_quick_abs_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5629766Z test_quick_abs_cpu_complex32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5629922Z test_quick_abs_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5630076Z test_quick_abs_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5630230Z test_quick_abs_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5630382Z test_quick_abs_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5630516Z test_quick_abs_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5630668Z test_quick_abs_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5630816Z test_quick_abs_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5630964Z test_quick_abs_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5631113Z test_quick_abs_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5631318Z test_quick_acos_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5631467Z test_quick_acos_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5631627Z test_quick_acos_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5631785Z test_quick_acos_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5631925Z test_quick_acos_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5632077Z test_quick_acos_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5632225Z test_quick_acos_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5632372Z test_quick_acos_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5632523Z test_quick_acos_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5632673Z test_quick_acos_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5632851Z test_quick_acos_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5633011Z test_quick_acosh_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5633146Z test_quick_acosh_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5633306Z test_quick_acosh_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5633463Z test_quick_acosh_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5633618Z test_quick_acosh_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5633771Z test_quick_acosh_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5633926Z test_quick_acosh_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5634078Z test_quick_acosh_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5634223Z test_quick_acosh_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5634371Z test_quick_acosh_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5634503Z test_quick_acosh_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5634659Z test_quick_add_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5634810Z test_quick_add_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5634966Z test_quick_add_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5635121Z test_quick_add_cpu_complex32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5635276Z test_quick_add_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5635428Z test_quick_add_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5635576Z test_quick_add_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5635710Z test_quick_add_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5635859Z test_quick_add_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5636008Z test_quick_add_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5636152Z test_quick_add_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5636301Z test_quick_add_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5636486Z test_quick_add_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5636647Z test_quick_addcdiv_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5636811Z test_quick_addcdiv_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5636972Z test_quick_addcdiv_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5637117Z test_quick_addcdiv_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5637273Z test_quick_addcdiv_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5637430Z test_quick_addcmul_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5637592Z test_quick_addcmul_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5637757Z test_quick_addcmul_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5637910Z test_quick_addcmul_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5638092Z test_quick_addcmul_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5638248Z test_quick_addcmul_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5638402Z test_quick_addcmul_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5638541Z test_quick_addcmul_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5638696Z test_quick_addcmul_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5638846Z test_quick_addcmul_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5639001Z test_quick_addmm_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5639161Z test_quick_addmm_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5639317Z test_quick_addmm_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5639469Z test_quick_addmm_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5639618Z test_quick_addmm_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5639755Z test_quick_addmm_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5639905Z test_quick_addmm_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5640056Z test_quick_addmm_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5640205Z test_quick_addmm_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5640355Z test_quick_addmm_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5640526Z test_quick_addmm_decomposed_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5640808Z test_quick_addmm_decomposed_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5640983Z test_quick_addmm_decomposed_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5641153Z test_quick_addmm_decomposed_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5641310Z test_quick_addmm_decomposed_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5641479Z test_quick_addmm_decomposed_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5641642Z test_quick_addmm_decomposed_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5641857Z test_quick_addmm_decomposed_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5642023Z test_quick_addmm_decomposed_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5642190Z test_quick_addmm_decomposed_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5642342Z test_quick_addr_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5642493Z test_quick_addr_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5642649Z test_quick_addr_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5642793Z test_quick_addr_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5642947Z test_quick_addr_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5643101Z test_quick_addr_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5643291Z test_quick_addr_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5643444Z test_quick_addr_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5643596Z test_quick_addr_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5643743Z test_quick_addr_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5643892Z test_quick_addr_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5644026Z test_quick_addr_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5644182Z test_quick_all_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5644333Z test_quick_all_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5644487Z test_quick_all_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5644641Z test_quick_all_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5644790Z test_quick_all_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5644940Z test_quick_all_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5645086Z test_quick_all_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5645232Z test_quick_all_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5645366Z test_quick_all_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5645509Z test_quick_all_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5645659Z test_quick_all_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5645811Z test_quick_all_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5645963Z test_quick_amax_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5646111Z test_quick_amax_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5646262Z test_quick_amax_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5646412Z test_quick_amax_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5646547Z test_quick_amax_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5646696Z test_quick_amax_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5646881Z test_quick_amax_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5647029Z test_quick_amax_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5647177Z test_quick_amax_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5647327Z test_quick_amax_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5647479Z test_quick_amin_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5647627Z test_quick_amin_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5647777Z test_quick_amin_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5647913Z test_quick_amin_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5648059Z test_quick_amin_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5648209Z test_quick_amin_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5648385Z test_quick_amin_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5648533Z test_quick_amin_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5648679Z test_quick_amin_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5648824Z test_quick_amin_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5648973Z test_quick_any_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5649122Z test_quick_any_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5649263Z test_quick_any_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5649421Z test_quick_any_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5649574Z test_quick_any_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5649726Z test_quick_any_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5649874Z test_quick_any_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5650021Z test_quick_any_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5650167Z test_quick_any_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5650313Z test_quick_any_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5650447Z test_quick_any_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5650592Z test_quick_any_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5650750Z test_quick_arange_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5650907Z test_quick_arange_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5651064Z test_quick_arange_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5651222Z test_quick_arange_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5651373Z test_quick_arange_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5651526Z test_quick_arange_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5651678Z test_quick_arange_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5651814Z test_quick_arange_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5652002Z test_quick_arange_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5652178Z test_quick_as_strided_scatter_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5652344Z test_quick_as_strided_scatter_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5652519Z test_quick_as_strided_scatter_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5652693Z test_quick_as_strided_scatter_cpu_complex32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5652864Z test_quick_as_strided_scatter_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5653033Z test_quick_as_strided_scatter_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5653201Z test_quick_as_strided_scatter_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5653358Z test_quick_as_strided_scatter_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5653550Z test_quick_as_strided_scatter_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5653719Z test_quick_as_strided_scatter_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5653880Z test_quick_as_strided_scatter_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5654047Z test_quick_as_strided_scatter_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5654211Z test_quick_as_strided_scatter_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.003s) 2023-01-11T20:52:32.5654365Z test_quick_asin_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5654516Z test_quick_asin_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5654659Z test_quick_asin_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5654816Z test_quick_asin_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5654968Z test_quick_asin_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5655119Z test_quick_asin_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5655269Z test_quick_asin_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5655417Z test_quick_asin_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5655565Z test_quick_asin_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5655714Z test_quick_asin_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5655865Z test_quick_asin_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5656008Z test_quick_asinh_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5656155Z test_quick_asinh_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5656312Z test_quick_asinh_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5656468Z test_quick_asinh_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5656622Z test_quick_asinh_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5656774Z test_quick_asinh_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5656923Z test_quick_asinh_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5657101Z test_quick_asinh_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5657250Z test_quick_asinh_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5657385Z test_quick_asinh_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5657531Z test_quick_asinh_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5657688Z test_quick_atan2_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5657835Z test_quick_atan2_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5657987Z test_quick_atan2_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5658142Z test_quick_atan2_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5658288Z test_quick_atan2_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5658439Z test_quick_atan2_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5658606Z test_quick_atan2_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5658756Z test_quick_atan2_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5658901Z test_quick_atan2_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5659053Z test_quick_atan_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5659201Z test_quick_atan_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5659437Z test_quick_atan_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5659596Z test_quick_atan_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5659752Z test_quick_atan_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5659909Z test_quick_atan_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5660044Z test_quick_atan_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5660194Z test_quick_atan_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5660340Z test_quick_atan_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5660488Z test_quick_atan_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5660638Z test_quick_atan_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5660799Z test_quick_atanh_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5660951Z test_quick_atanh_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5661113Z test_quick_atanh_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5661259Z test_quick_atanh_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5661419Z test_quick_atanh_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5661572Z test_quick_atanh_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5661722Z test_quick_atanh_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5661872Z test_quick_atanh_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5662020Z test_quick_atanh_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5662169Z test_quick_atanh_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5662359Z test_quick_atanh_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5662519Z test_quick_bitwise_and_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5662664Z test_quick_bitwise_and_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5662821Z test_quick_bitwise_and_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5662977Z test_quick_bitwise_and_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5663134Z test_quick_bitwise_and_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5663288Z test_quick_bitwise_and_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5663455Z test_quick_bitwise_left_shift_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5663622Z test_quick_bitwise_left_shift_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5663813Z test_quick_bitwise_left_shift_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5663979Z test_quick_bitwise_left_shift_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5664132Z test_quick_bitwise_left_shift_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5664289Z test_quick_bitwise_not_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5664445Z test_quick_bitwise_not_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5664600Z test_quick_bitwise_not_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5664755Z test_quick_bitwise_not_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5664913Z test_quick_bitwise_not_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5665067Z test_quick_bitwise_not_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5665224Z test_quick_bitwise_or_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5665367Z test_quick_bitwise_or_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5665520Z test_quick_bitwise_or_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5665674Z test_quick_bitwise_or_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5665827Z test_quick_bitwise_or_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5665981Z test_quick_bitwise_or_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5666154Z test_quick_bitwise_right_shift_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5666317Z test_quick_bitwise_right_shift_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5666482Z test_quick_bitwise_right_shift_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5666647Z test_quick_bitwise_right_shift_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5666799Z test_quick_bitwise_right_shift_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5666956Z test_quick_bitwise_xor_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5667112Z test_quick_bitwise_xor_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5667267Z test_quick_bitwise_xor_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5667467Z test_quick_bitwise_xor_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5667622Z test_quick_bitwise_xor_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5667776Z test_quick_bitwise_xor_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5667939Z test_quick_bucketize_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5668095Z test_quick_bucketize_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5668240Z test_quick_bucketize_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5668397Z test_quick_bucketize_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5668551Z test_quick_bucketize_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5668709Z test_quick_bucketize_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5668892Z test_quick_bucketize_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5669046Z test_quick_bucketize_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5669201Z test_quick_bucketize_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5669356Z test_quick_cat_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5669508Z test_quick_cat_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5669649Z test_quick_cat_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5669806Z test_quick_cat_cpu_complex32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5669963Z test_quick_cat_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5670116Z test_quick_cat_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5670268Z test_quick_cat_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5670416Z test_quick_cat_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5670565Z test_quick_cat_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5670713Z test_quick_cat_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5670844Z test_quick_cat_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5670993Z test_quick_cat_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5671139Z test_quick_cat_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5671296Z test_quick_ceil_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5671450Z test_quick_ceil_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5671604Z test_quick_ceil_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5671753Z test_quick_ceil_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5671903Z test_quick_ceil_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5672050Z test_quick_ceil_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5672184Z test_quick_ceil_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5672330Z test_quick_ceil_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5672518Z test_quick_clamp_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5672672Z test_quick_clamp_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5672825Z test_quick_clamp_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5672976Z test_quick_clamp_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5673128Z test_quick_clamp_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5673279Z test_quick_clamp_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5673413Z test_quick_clamp_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5673559Z test_quick_clamp_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5673723Z test_quick_clamp_max_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5673878Z test_quick_clamp_max_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5674063Z test_quick_clamp_max_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5674223Z test_quick_clamp_max_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5674385Z test_quick_clamp_max_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5674541Z test_quick_clamp_max_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5674698Z test_quick_clamp_max_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5674839Z test_quick_clamp_max_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5674991Z test_quick_clamp_max_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5675149Z test_quick_clamp_max_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5675311Z test_quick_clamp_min_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5675468Z test_quick_clamp_min_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5675625Z test_quick_clamp_min_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5675781Z test_quick_clamp_min_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5675939Z test_quick_clamp_min_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5676091Z test_quick_clamp_min_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5676231Z test_quick_clamp_min_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5676387Z test_quick_clamp_min_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5676543Z test_quick_clamp_min_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5676697Z test_quick_clamp_min_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5676852Z test_quick_clone_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5677002Z test_quick_clone_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5677160Z test_quick_clone_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5677313Z test_quick_clone_cpu_complex32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5677454Z test_quick_clone_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5677633Z test_quick_clone_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5677787Z test_quick_clone_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5677941Z test_quick_clone_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5678091Z test_quick_clone_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5678240Z test_quick_clone_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5678387Z test_quick_clone_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5678536Z test_quick_clone_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5678685Z test_quick_clone_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5678830Z test_quick_complex_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5678984Z test_quick_complex_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5679167Z test_quick_complex_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5679334Z test_quick_conj_physical_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5679495Z test_quick_conj_physical_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5679664Z test_quick_conj_physical_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5679829Z test_quick_conj_physical_cpu_complex32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5679996Z test_quick_conj_physical_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5680161Z test_quick_conj_physical_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5680310Z test_quick_conj_physical_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5680466Z test_quick_conj_physical_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5680734Z test_quick_conj_physical_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5680892Z test_quick_conj_physical_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5681053Z test_quick_conj_physical_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5681215Z test_quick_conj_physical_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5681375Z test_quick_conj_physical_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5681553Z test_quick_constant_pad_nd_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5681721Z test_quick_constant_pad_nd_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5681878Z test_quick_constant_pad_nd_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5682048Z test_quick_constant_pad_nd_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5682218Z test_quick_constant_pad_nd_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5682382Z test_quick_constant_pad_nd_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5682549Z test_quick_constant_pad_nd_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5682710Z test_quick_constant_pad_nd_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5682918Z test_quick_constant_pad_nd_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5683077Z test_quick_constant_pad_nd_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5683241Z test_quick_constant_pad_nd_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5683384Z test_quick_constant_pad_nd_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5683543Z test_quick_copysign_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5683700Z test_quick_copysign_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5683860Z test_quick_copysign_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5684018Z test_quick_copysign_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5684181Z test_quick_copysign_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5684371Z test_quick_copysign_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5684532Z test_quick_copysign_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5684673Z test_quick_copysign_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5684829Z test_quick_copysign_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5684982Z test_quick_copysign_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5685136Z test_quick_cos_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5685283Z test_quick_cos_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5685441Z test_quick_cos_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5685595Z test_quick_cos_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5685746Z test_quick_cos_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5685897Z test_quick_cos_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5686031Z test_quick_cos_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5686176Z test_quick_cos_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5686322Z test_quick_cos_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5686469Z test_quick_cos_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5686615Z test_quick_cos_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5686771Z test_quick_cosh_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5686919Z test_quick_cosh_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5687075Z test_quick_cosh_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5687219Z test_quick_cosh_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5687371Z test_quick_cosh_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5687520Z test_quick_cosh_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5687669Z test_quick_cosh_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5687816Z test_quick_cosh_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5687988Z test_quick_cosh_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5688138Z test_quick_cosh_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5688283Z test_quick_cosh_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5688438Z test_quick_cumsum_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5688584Z test_quick_cumsum_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5688742Z test_quick_cumsum_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5688893Z test_quick_cumsum_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5689048Z test_quick_cumsum_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5689200Z test_quick_cumsum_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5689350Z test_quick_cumsum_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5689548Z test_quick_cumsum_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5689700Z test_quick_cumsum_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5689851Z test_quick_cumsum_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5689993Z test_quick_diag_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5690143Z test_quick_diag_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5690301Z test_quick_diag_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5690454Z test_quick_diag_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5690610Z test_quick_diag_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5690766Z test_quick_diag_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5690914Z test_quick_diag_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5691063Z test_quick_diag_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5691198Z test_quick_diag_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5691346Z test_quick_diag_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5691494Z test_quick_diag_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5691644Z test_quick_diag_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5691808Z test_quick_diag_embed_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5691968Z test_quick_diag_embed_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5692135Z test_quick_diag_embed_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5692298Z test_quick_diag_embed_cpu_complex32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5692455Z test_quick_diag_embed_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5692604Z test_quick_diag_embed_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5692764Z test_quick_diag_embed_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5692917Z test_quick_diag_embed_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5693103Z test_quick_diag_embed_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5693262Z test_quick_diag_embed_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5693418Z test_quick_diag_embed_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5693573Z test_quick_diag_embed_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5693727Z test_quick_diag_embed_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5693881Z test_quick_diagonal_copy_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5694041Z test_quick_diagonal_copy_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5694209Z test_quick_diagonal_copy_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5694377Z test_quick_diagonal_copy_cpu_complex32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5694574Z test_quick_diagonal_copy_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5694739Z test_quick_diagonal_copy_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5694898Z test_quick_diagonal_copy_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5695056Z test_quick_diagonal_copy_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5695217Z test_quick_diagonal_copy_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5695360Z test_quick_diagonal_copy_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5695513Z test_quick_diagonal_copy_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5695674Z test_quick_diagonal_copy_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5695831Z test_quick_diagonal_copy_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5695989Z test_quick_diagonal_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5696144Z test_quick_diagonal_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5696300Z test_quick_diagonal_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5696459Z test_quick_diagonal_cpu_complex32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5696614Z test_quick_diagonal_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5696760Z test_quick_diagonal_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5696921Z test_quick_diagonal_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5697082Z test_quick_diagonal_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5697237Z test_quick_diagonal_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5697390Z test_quick_diagonal_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5697542Z test_quick_diagonal_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5697696Z test_quick_diagonal_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5697851Z test_quick_diagonal_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5698020Z test_quick_diagonal_scatter_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5698203Z test_quick_diagonal_scatter_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5698378Z test_quick_diagonal_scatter_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5698548Z test_quick_diagonal_scatter_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5698715Z test_quick_diagonal_scatter_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5698881Z test_quick_diagonal_scatter_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5699047Z test_quick_diagonal_scatter_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5699210Z test_quick_diagonal_scatter_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5699459Z test_quick_diagonal_scatter_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5699629Z test_quick_diagonal_scatter_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5699815Z test_quick_diagonal_scatter_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5699982Z test_quick_diagonal_scatter_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5700143Z test_quick_digamma_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5700297Z test_quick_digamma_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5700455Z test_quick_digamma_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5700613Z test_quick_digamma_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5700768Z test_quick_digamma_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5700925Z test_quick_digamma_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5701082Z test_quick_digamma_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5701222Z test_quick_digamma_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5701373Z test_quick_digamma_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5701544Z test_quick_div_floor_rounding_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5701714Z test_quick_div_floor_rounding_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5701882Z test_quick_div_floor_rounding_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5702047Z test_quick_div_floor_rounding_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5702216Z test_quick_div_floor_rounding_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5702382Z test_quick_div_floor_rounding_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5702529Z test_quick_div_floor_rounding_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5702693Z test_quick_div_floor_rounding_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5702857Z test_quick_div_floor_rounding_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5703029Z test_quick_div_no_rounding_mode_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5703196Z test_quick_div_no_rounding_mode_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5703369Z test_quick_div_no_rounding_mode_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5703585Z test_quick_div_no_rounding_mode_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5703759Z test_quick_div_no_rounding_mode_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5703929Z test_quick_div_no_rounding_mode_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5704098Z test_quick_div_no_rounding_mode_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5704253Z test_quick_div_no_rounding_mode_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5704419Z test_quick_div_no_rounding_mode_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5704580Z test_quick_div_no_rounding_mode_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5704748Z test_quick_div_no_rounding_mode_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5704994Z test_quick_div_no_rounding_mode_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5705166Z test_quick_div_trunc_rounding_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5705330Z test_quick_div_trunc_rounding_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5705495Z test_quick_div_trunc_rounding_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5705656Z test_quick_div_trunc_rounding_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5705807Z test_quick_div_trunc_rounding_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5705977Z test_quick_div_trunc_rounding_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5706142Z test_quick_div_trunc_rounding_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5706308Z test_quick_div_trunc_rounding_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5706474Z test_quick_div_trunc_rounding_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5706628Z test_quick_dot_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5706785Z test_quick_dot_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5706941Z test_quick_dot_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5707093Z test_quick_dot_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5707236Z test_quick_dot_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5707384Z test_quick_dot_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5707536Z test_quick_dot_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5707685Z test_quick_dot_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5707832Z test_quick_dot_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5707980Z test_quick_dot_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5708136Z test_quick_empty_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5708289Z test_quick_empty_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5708434Z test_quick_empty_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5708621Z test_quick_empty_cpu_complex32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5708779Z test_quick_empty_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5708931Z test_quick_empty_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5709081Z test_quick_empty_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5709230Z test_quick_empty_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5709379Z test_quick_empty_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5709529Z test_quick_empty_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5709677Z test_quick_empty_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5709817Z test_quick_empty_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5709964Z test_quick_empty_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5710150Z test_quick_empty_like_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5710308Z test_quick_empty_like_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5710474Z test_quick_empty_like_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5710638Z test_quick_empty_like_cpu_complex32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5710798Z test_quick_empty_like_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5710957Z test_quick_empty_like_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5711106Z test_quick_empty_like_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5711260Z test_quick_empty_like_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5711418Z test_quick_empty_like_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5711574Z test_quick_empty_like_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5711731Z test_quick_empty_like_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5711885Z test_quick_empty_like_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5712038Z test_quick_empty_like_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5712189Z test_quick_eq_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5712336Z test_quick_eq_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5712480Z test_quick_eq_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5712634Z test_quick_eq_cpu_complex32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5712787Z test_quick_eq_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5712936Z test_quick_eq_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5713084Z test_quick_eq_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5713228Z test_quick_eq_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5713374Z test_quick_eq_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5713520Z test_quick_eq_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5713688Z test_quick_eq_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5713836Z test_quick_eq_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5713982Z test_quick_eq_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5714133Z test_quick_erf_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5714278Z test_quick_erf_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5714428Z test_quick_erf_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5714578Z test_quick_erf_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5714724Z test_quick_erf_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5714866Z test_quick_erf_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5715004Z test_quick_erf_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5715175Z test_quick_erf_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5715324Z test_quick_erf_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5715478Z test_quick_erfc_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5715624Z test_quick_erfc_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5715775Z test_quick_erfc_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5715927Z test_quick_erfc_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5716076Z test_quick_erfc_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5716213Z test_quick_erfc_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5716361Z test_quick_erfc_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5716509Z test_quick_erfc_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5716655Z test_quick_erfc_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5716811Z test_quick_erfinv_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5716964Z test_quick_erfinv_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5717120Z test_quick_erfinv_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5717275Z test_quick_erfinv_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5717428Z test_quick_erfinv_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5717567Z test_quick_erfinv_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5717716Z test_quick_erfinv_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5717866Z test_quick_erfinv_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5718019Z test_quick_erfinv_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5718173Z test_quick_exp2_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5718321Z test_quick_exp2_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5718473Z test_quick_exp2_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5718621Z test_quick_exp2_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5718805Z test_quick_exp2_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5718940Z test_quick_exp2_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5719088Z test_quick_exp2_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5719233Z test_quick_exp2_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5719381Z test_quick_exp2_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5719527Z test_quick_exp2_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5719677Z test_quick_exp_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5719826Z test_quick_exp_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5719984Z test_quick_exp_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5720126Z test_quick_exp_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5720307Z test_quick_exp_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5720458Z test_quick_exp_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5720812Z test_quick_exp_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5720961Z test_quick_exp_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5721104Z test_quick_exp_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5721254Z test_quick_exp_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5721403Z test_quick_exp_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5721565Z test_quick_expand_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5721707Z test_quick_expand_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5721868Z test_quick_expand_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5722029Z test_quick_expand_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5722185Z test_quick_expand_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5722342Z test_quick_expand_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5722498Z test_quick_expand_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5722654Z test_quick_expand_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.003s) 2023-01-11T20:52:32.5722810Z test_quick_expand_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5722945Z test_quick_expand_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5723099Z test_quick_expand_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5723249Z test_quick_expand_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5723403Z test_quick_expm1_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5723553Z test_quick_expm1_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5723711Z test_quick_expm1_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5723864Z test_quick_expm1_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5724012Z test_quick_expm1_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5724213Z test_quick_expm1_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5724351Z test_quick_expm1_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5724503Z test_quick_expm1_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5724651Z test_quick_expm1_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5724800Z test_quick_eye_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5724956Z test_quick_eye_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5725110Z test_quick_eye_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5725262Z test_quick_eye_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5725414Z test_quick_eye_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5725582Z test_quick_eye_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5725735Z test_quick_eye_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5725883Z test_quick_eye_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5726029Z test_quick_eye_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5726177Z test_quick_eye_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5726324Z test_quick_eye_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5726475Z test_quick_fft_fft2_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5726635Z test_quick_fft_fft2_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5726796Z test_quick_fft_fft2_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5726940Z test_quick_fft_fft2_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5727096Z test_quick_fft_fft2_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5727247Z test_quick_fft_fft2_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5727396Z test_quick_fft_fft2_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5727547Z test_quick_fft_fft2_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5727696Z test_quick_fft_fft2_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5727844Z test_quick_fft_fft2_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5727997Z test_quick_fft_fft_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5728145Z test_quick_fft_fft_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5728301Z test_quick_fft_fft_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5728455Z test_quick_fft_fft_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5728610Z test_quick_fft_fft_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5728763Z test_quick_fft_fft_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5728910Z test_quick_fft_fft_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5729056Z test_quick_fft_fft_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5729236Z test_quick_fft_fft_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5729384Z test_quick_fft_fft_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5729523Z test_quick_fft_fftn_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5729685Z test_quick_fft_fftn_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5729842Z test_quick_fft_fftn_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5729997Z test_quick_fft_fftn_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5730151Z test_quick_fft_fftn_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5730303Z test_quick_fft_fftn_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5730458Z test_quick_fft_fftn_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5730609Z test_quick_fft_fftn_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5730789Z test_quick_fft_fftn_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5730926Z test_quick_fft_fftn_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5731080Z test_quick_fft_hfft2_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5731243Z test_quick_fft_hfft2_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5731401Z test_quick_fft_hfft2_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5731557Z test_quick_fft_hfft2_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5731713Z test_quick_fft_hfft2_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5731865Z test_quick_fft_hfft2_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5732019Z test_quick_fft_hfft2_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5732170Z test_quick_fft_hfft2_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5732309Z test_quick_fft_hfft2_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5732458Z test_quick_fft_hfft2_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5732610Z test_quick_fft_hfft_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5732768Z test_quick_fft_hfft_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5732925Z test_quick_fft_hfft_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5733083Z test_quick_fft_hfft_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5733240Z test_quick_fft_hfft_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5733390Z test_quick_fft_hfft_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5733529Z test_quick_fft_hfft_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5733680Z test_quick_fft_hfft_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5733829Z test_quick_fft_hfft_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5733978Z test_quick_fft_hfft_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5734130Z test_quick_fft_hfftn_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5734324Z test_quick_fft_hfftn_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5734487Z test_quick_fft_hfftn_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5734642Z test_quick_fft_hfftn_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5734797Z test_quick_fft_hfftn_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5734936Z test_quick_fft_hfftn_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5735089Z test_quick_fft_hfftn_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5735240Z test_quick_fft_hfftn_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5735392Z test_quick_fft_hfftn_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5735545Z test_quick_fft_hfftn_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5735721Z test_quick_fft_ifft2_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5735885Z test_quick_fft_ifft2_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5736044Z test_quick_fft_ifft2_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5736198Z test_quick_fft_ifft2_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5736340Z test_quick_fft_ifft2_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5736491Z test_quick_fft_ifft2_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5736643Z test_quick_fft_ifft2_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5736793Z test_quick_fft_ifft2_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5736946Z test_quick_fft_ifft2_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5737095Z test_quick_fft_ifft2_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5737246Z test_quick_fft_ifft_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5737404Z test_quick_fft_ifft_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5737549Z test_quick_fft_ifft_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5737704Z test_quick_fft_ifft_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5737860Z test_quick_fft_ifft_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5738014Z test_quick_fft_ifft_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5738166Z test_quick_fft_ifft_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5738317Z test_quick_fft_ifft_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5738468Z test_quick_fft_ifft_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5738618Z test_quick_fft_ifft_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5738769Z test_quick_fft_ifftn_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5738918Z test_quick_fft_ifftn_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5739077Z test_quick_fft_ifftn_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5739352Z test_quick_fft_ifftn_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5739515Z test_quick_fft_ifftn_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5739669Z test_quick_fft_ifftn_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5739824Z test_quick_fft_ifftn_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5739977Z test_quick_fft_ifftn_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5740128Z test_quick_fft_ifftn_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5740280Z test_quick_fft_ifftn_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5740421Z test_quick_fft_ihfft2_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5740583Z test_quick_fft_ihfft2_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5740739Z test_quick_fft_ihfft2_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5740928Z test_quick_fft_ihfft2_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5741086Z test_quick_fft_ihfft2_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5741239Z test_quick_fft_ihfft2_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5741391Z test_quick_fft_ihfft2_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5741543Z test_quick_fft_ihfft2_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5741682Z test_quick_fft_ihfft_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5741839Z test_quick_fft_ihfft_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5741997Z test_quick_fft_ihfft_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5742151Z test_quick_fft_ihfft_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5742305Z test_quick_fft_ihfft_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5742454Z test_quick_fft_ihfft_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5742608Z test_quick_fft_ihfft_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5742758Z test_quick_fft_ihfft_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5742907Z test_quick_fft_ihfftn_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5743054Z test_quick_fft_ihfftn_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5743209Z test_quick_fft_ihfftn_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5743365Z test_quick_fft_ihfftn_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5743520Z test_quick_fft_ihfftn_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5743674Z test_quick_fft_ihfftn_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5743826Z test_quick_fft_ihfftn_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5743983Z test_quick_fft_ihfftn_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5744135Z test_quick_fft_irfft2_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5744296Z test_quick_fft_irfft2_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5744473Z test_quick_fft_irfft2_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5744631Z test_quick_fft_irfft2_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5744781Z test_quick_fft_irfft2_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5744935Z test_quick_fft_irfft2_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5745087Z test_quick_fft_irfft2_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5745238Z test_quick_fft_irfft2_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5745390Z test_quick_fft_irfft2_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5745545Z test_quick_fft_irfft2_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5745701Z test_quick_fft_irfft_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5745878Z test_quick_fft_irfft_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5766226Z test_quick_fft_irfft_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5766482Z test_quick_fft_irfft_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5766638Z test_quick_fft_irfft_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5766783Z test_quick_fft_irfft_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5766930Z test_quick_fft_irfft_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5767073Z test_quick_fft_irfft_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5767223Z test_quick_fft_irfft_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5767370Z test_quick_fft_irfft_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5767514Z test_quick_fft_irfftn_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5767668Z test_quick_fft_irfftn_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5767833Z test_quick_fft_irfftn_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5767981Z test_quick_fft_irfftn_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5768138Z test_quick_fft_irfftn_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5768295Z test_quick_fft_irfftn_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5768454Z test_quick_fft_irfftn_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5768612Z test_quick_fft_irfftn_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5768769Z test_quick_fft_irfftn_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5768923Z test_quick_fft_irfftn_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5769078Z test_quick_fft_rfft2_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5769234Z test_quick_fft_rfft2_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5769378Z test_quick_fft_rfft2_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5769533Z test_quick_fft_rfft2_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5769822Z test_quick_fft_rfft2_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5769978Z test_quick_fft_rfft2_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5770135Z test_quick_fft_rfft2_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5770285Z test_quick_fft_rfft2_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5770442Z test_quick_fft_rfft_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5770600Z test_quick_fft_rfft_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5770755Z test_quick_fft_rfft_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5770896Z test_quick_fft_rfft_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5771051Z test_quick_fft_rfft_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5771202Z test_quick_fft_rfft_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5771399Z test_quick_fft_rfft_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5771553Z test_quick_fft_rfft_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5771704Z test_quick_fft_rfftn_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5771859Z test_quick_fft_rfftn_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5772017Z test_quick_fft_rfftn_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5772157Z test_quick_fft_rfftn_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5772312Z test_quick_fft_rfftn_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5772466Z test_quick_fft_rfftn_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5772619Z test_quick_fft_rfftn_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5772769Z test_quick_fft_rfftn_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5772924Z test_quick_fill_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5773074Z test_quick_fill_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5773227Z test_quick_fill_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5773382Z test_quick_fill_cpu_complex32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5773523Z test_quick_fill_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5773679Z test_quick_fill_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5773836Z test_quick_fill_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5773985Z test_quick_fill_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5774135Z test_quick_fill_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5774285Z test_quick_fill_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5774430Z test_quick_fill_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5774581Z test_quick_fill_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5774731Z test_quick_fill_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5774901Z test_quick_flip_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5775051Z test_quick_flip_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5775210Z test_quick_flip_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5775365Z test_quick_flip_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5775516Z test_quick_flip_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5775667Z test_quick_flip_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5775816Z test_quick_flip_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5775962Z test_quick_flip_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5776098Z test_quick_flip_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5776246Z test_quick_flip_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5776424Z test_quick_flip_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5776574Z test_quick_flip_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5776727Z test_quick_floor_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5776881Z test_quick_floor_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5777035Z test_quick_floor_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5777185Z test_quick_floor_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5777335Z test_quick_floor_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5777470Z test_quick_floor_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5777619Z test_quick_floor_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5777771Z test_quick_floor_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5777935Z test_quick_floor_divide_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5778098Z test_quick_floor_divide_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5778254Z test_quick_floor_divide_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5778409Z test_quick_floor_divide_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5778567Z test_quick_floor_divide_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5778709Z test_quick_floor_divide_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5778862Z test_quick_floor_divide_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5779020Z test_quick_floor_divide_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5779179Z test_quick_floor_divide_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5779430Z test_quick_fmax_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5779582Z test_quick_fmax_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5779737Z test_quick_fmax_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5779890Z test_quick_fmax_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5780040Z test_quick_fmax_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5780210Z test_quick_fmax_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5780362Z test_quick_fmax_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5780512Z test_quick_fmax_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5780663Z test_quick_fmax_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5780813Z test_quick_fmax_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5780965Z test_quick_fmin_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5781116Z test_quick_fmin_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5781267Z test_quick_fmin_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5781418Z test_quick_fmin_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5781578Z test_quick_fmin_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5781727Z test_quick_fmin_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5781873Z test_quick_fmin_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5782020Z test_quick_fmin_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5782166Z test_quick_fmin_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5782315Z test_quick_fmin_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5782469Z test_quick_fmod_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5782623Z test_quick_fmod_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5782762Z test_quick_fmod_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5782914Z test_quick_fmod_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5783063Z test_quick_fmod_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5783211Z test_quick_fmod_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5783357Z test_quick_fmod_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5783504Z test_quick_fmod_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5783651Z test_quick_fmod_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5783805Z test_quick_frac_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5783957Z test_quick_frac_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5784097Z test_quick_frac_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5784246Z test_quick_frac_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5784394Z test_quick_full_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5784543Z test_quick_full_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5784702Z test_quick_full_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5784856Z test_quick_full_cpu_complex32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5785012Z test_quick_full_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5785191Z test_quick_full_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5785327Z test_quick_full_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5785475Z test_quick_full_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5785622Z test_quick_full_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5785769Z test_quick_full_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5785914Z test_quick_full_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5786061Z test_quick_full_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5786208Z test_quick_full_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5786354Z test_quick_gcd_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5786501Z test_quick_gcd_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5786670Z test_quick_gcd_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5786821Z test_quick_gcd_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5786967Z test_quick_gcd_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5787119Z test_quick_ge_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5787268Z test_quick_ge_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5787417Z test_quick_ge_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5787563Z test_quick_ge_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5787709Z test_quick_ge_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5787845Z test_quick_ge_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5787993Z test_quick_ge_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5788139Z test_quick_ge_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5788287Z test_quick_ge_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5788435Z test_quick_ge_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5788603Z test_quick_grid_sampler_2d_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5788771Z test_quick_grid_sampler_2d_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5788924Z test_quick_gt_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5789074Z test_quick_gt_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5789212Z test_quick_gt_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5789360Z test_quick_gt_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5789504Z test_quick_gt_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5789649Z test_quick_gt_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5789794Z test_quick_gt_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5789939Z test_quick_gt_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5790087Z test_quick_gt_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5790260Z test_quick_gt_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5790412Z test_quick_heaviside_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5790573Z test_quick_heaviside_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5790733Z test_quick_heaviside_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5790894Z test_quick_heaviside_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5791053Z test_quick_heaviside_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5791210Z test_quick_heaviside_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5791367Z test_quick_heaviside_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5791522Z test_quick_heaviside_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5791680Z test_quick_heaviside_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5791850Z test_quick_heaviside_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5792008Z test_quick_hypot_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5792162Z test_quick_hypot_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5792314Z test_quick_hypot_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5792470Z test_quick_igamma_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5792624Z test_quick_igamma_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5792779Z test_quick_igamma_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5792939Z test_quick_igamma_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5793101Z test_quick_igammac_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5793247Z test_quick_igammac_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5793402Z test_quick_igammac_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5793556Z test_quick_igammac_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5793719Z test_quick_index_add_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5793873Z test_quick_index_add_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5794039Z test_quick_index_add_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5794203Z test_quick_index_add_cpu_complex32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5794360Z test_quick_index_add_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5794504Z test_quick_index_add_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5794662Z test_quick_index_add_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5794819Z test_quick_index_add_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5794972Z test_quick_index_add_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5795126Z test_quick_index_add_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5795280Z test_quick_index_add_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5795819Z test_quick_index_add_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5795974Z test_quick_index_add_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5796136Z test_quick_index_copy_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5796278Z test_quick_index_copy_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5796446Z test_quick_index_copy_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5796610Z test_quick_index_copy_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5796770Z test_quick_index_copy_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5796925Z test_quick_index_copy_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5797079Z test_quick_index_copy_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5797265Z test_quick_index_copy_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5797425Z test_quick_index_copy_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5797581Z test_quick_index_copy_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5797722Z test_quick_index_copy_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5797876Z test_quick_index_copy_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5798038Z test_quick_index_fill_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5798193Z test_quick_index_fill_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5798361Z test_quick_index_fill_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5798525Z test_quick_index_fill_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5798685Z test_quick_index_fill_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5798840Z test_quick_index_fill_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5798994Z test_quick_index_fill_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5799136Z test_quick_index_fill_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5799290Z test_quick_index_fill_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5799443Z test_quick_index_fill_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5799600Z test_quick_index_fill_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5799755Z test_quick_index_fill_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5799920Z test_quick_index_select_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5800080Z test_quick_index_select_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5800247Z test_quick_index_select_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5800402Z test_quick_index_select_cpu_complex32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5800567Z test_quick_index_select_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5800857Z test_quick_index_select_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5801065Z test_quick_index_select_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5801225Z test_quick_index_select_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5801384Z test_quick_index_select_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5801540Z test_quick_index_select_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5801691Z test_quick_index_select_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5801848Z test_quick_index_select_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5801994Z test_quick_index_select_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5802148Z test_quick_isinf_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5802307Z test_quick_isinf_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5802499Z test_quick_isinf_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5802660Z test_quick_isinf_cpu_complex32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5802820Z test_quick_isinf_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5802974Z test_quick_isinf_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5803125Z test_quick_isinf_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5803277Z test_quick_isinf_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5803415Z test_quick_isinf_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5803567Z test_quick_isinf_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5803712Z test_quick_isinf_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5803865Z test_quick_isinf_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5804010Z test_quick_isinf_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5804168Z test_quick_isnan_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5804319Z test_quick_isnan_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5804478Z test_quick_isnan_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5804623Z test_quick_isnan_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5804779Z test_quick_isnan_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5804934Z test_quick_isnan_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5805086Z test_quick_isnan_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5805238Z test_quick_isnan_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5805388Z test_quick_isnan_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5805534Z test_quick_isnan_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5805685Z test_quick_isnan_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5805831Z test_quick_isnan_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5805978Z test_quick_isneginf_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5806191Z test_quick_isneginf_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5806353Z test_quick_isneginf_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5806510Z test_quick_isneginf_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5806667Z test_quick_isneginf_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5806821Z test_quick_isneginf_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5806975Z test_quick_isneginf_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5807128Z test_quick_isneginf_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5807282Z test_quick_isneginf_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5807424Z test_quick_isneginf_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5807582Z test_quick_isposinf_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5807760Z test_quick_isposinf_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5807920Z test_quick_isposinf_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5808076Z test_quick_isposinf_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5808237Z test_quick_isposinf_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5808396Z test_quick_isposinf_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5808548Z test_quick_isposinf_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5808689Z test_quick_isposinf_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5808848Z test_quick_isposinf_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5809002Z test_quick_isposinf_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5809154Z test_quick_lcm_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5809301Z test_quick_lcm_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5809438Z test_quick_lcm_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5809584Z test_quick_lcm_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5809729Z test_quick_lcm_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5809880Z test_quick_le_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5810028Z test_quick_le_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5810180Z test_quick_le_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5810330Z test_quick_le_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5810479Z test_quick_le_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5810626Z test_quick_le_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5810758Z test_quick_le_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.003s) 2023-01-11T20:52:32.5810909Z test_quick_le_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5811056Z test_quick_le_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5811200Z test_quick_le_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5811381Z test_quick_lerp_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5811538Z test_quick_lerp_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5811696Z test_quick_lerp_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5811849Z test_quick_lerp_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5811988Z test_quick_lerp_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5812144Z test_quick_lgamma_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5812295Z test_quick_lgamma_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5812448Z test_quick_lgamma_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5812605Z test_quick_lgamma_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5812782Z test_quick_lgamma_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5812934Z test_quick_lgamma_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5813079Z test_quick_lgamma_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5813230Z test_quick_lgamma_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5813363Z test_quick_lgamma_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5813533Z test_quick_linalg_vector_norm_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5813707Z test_quick_linalg_vector_norm_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5813880Z test_quick_linalg_vector_norm_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5814049Z test_quick_linalg_vector_norm_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5814216Z test_quick_linalg_vector_norm_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5814378Z test_quick_linalg_vector_norm_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5814539Z test_quick_linspace_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5814703Z test_quick_linspace_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5814852Z test_quick_linspace_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5815010Z test_quick_linspace_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5815169Z test_quick_linspace_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5815328Z test_quick_linspace_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5815483Z test_quick_linspace_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5815636Z test_quick_linspace_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5815790Z test_quick_linspace_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5815944Z test_quick_linspace_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5816083Z test_quick_linspace_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5816234Z test_quick_log10_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5816416Z test_quick_log10_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5816574Z test_quick_log10_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5816729Z test_quick_log10_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5816880Z test_quick_log10_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5817032Z test_quick_log10_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5817180Z test_quick_log10_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5817326Z test_quick_log10_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5817457Z test_quick_log10_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5817604Z test_quick_log10_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5817750Z test_quick_log10_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5817932Z test_quick_log1p_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5818087Z test_quick_log1p_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5818244Z test_quick_log1p_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5818399Z test_quick_log1p_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5818551Z test_quick_log1p_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5818701Z test_quick_log1p_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5818836Z test_quick_log1p_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5818987Z test_quick_log1p_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5819133Z test_quick_log1p_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5819355Z test_quick_log1p_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5819505Z test_quick_log1p_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5819657Z test_quick_log2_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5819806Z test_quick_log2_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5819962Z test_quick_log2_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5820103Z test_quick_log2_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5820259Z test_quick_log2_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5820412Z test_quick_log2_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5820562Z test_quick_log2_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5820711Z test_quick_log2_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5820860Z test_quick_log2_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5821009Z test_quick_log2_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5821157Z test_quick_log2_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5821310Z test_quick_log_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5821444Z test_quick_log_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5821647Z test_quick_log_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5821800Z test_quick_log_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5821949Z test_quick_log_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5822099Z test_quick_log_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5822244Z test_quick_log_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5822391Z test_quick_log_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5822536Z test_quick_log_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5822672Z test_quick_log_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5822820Z test_quick_log_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5822982Z test_quick_log_softmax_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5823169Z test_quick_log_softmax_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5823326Z test_quick_log_softmax_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5823488Z test_quick_logical_and_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5823647Z test_quick_logical_and_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5823811Z test_quick_logical_and_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5823976Z test_quick_logical_and_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5824123Z test_quick_logical_and_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5824281Z test_quick_logical_and_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5824435Z test_quick_logical_and_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5824594Z test_quick_logical_and_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5824752Z test_quick_logical_and_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5824912Z test_quick_logical_and_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5825073Z test_quick_logical_and_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5825229Z test_quick_logical_and_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5825393Z test_quick_logical_not_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5825537Z test_quick_logical_not_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5825705Z test_quick_logical_not_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5825868Z test_quick_logical_not_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5826027Z test_quick_logical_not_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5826182Z test_quick_logical_not_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5826335Z test_quick_logical_not_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5826491Z test_quick_logical_not_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5826674Z test_quick_logical_not_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5826833Z test_quick_logical_not_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5826976Z test_quick_logical_not_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5827131Z test_quick_logical_not_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5827291Z test_quick_logical_or_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5827447Z test_quick_logical_or_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5827612Z test_quick_logical_or_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5827775Z test_quick_logical_or_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5827937Z test_quick_logical_or_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5828120Z test_quick_logical_or_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5828261Z test_quick_logical_or_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5828417Z test_quick_logical_or_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5828570Z test_quick_logical_or_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5828727Z test_quick_logical_or_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5828880Z test_quick_logical_or_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5829033Z test_quick_logical_or_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5829199Z test_quick_logical_xor_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5829354Z test_quick_logical_xor_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5829522Z test_quick_logical_xor_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5829671Z test_quick_logical_xor_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5829830Z test_quick_logical_xor_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5829985Z test_quick_logical_xor_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5830137Z test_quick_logical_xor_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5830293Z test_quick_logical_xor_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5830451Z test_quick_logical_xor_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5830607Z test_quick_logical_xor_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5830763Z test_quick_logical_xor_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5830915Z test_quick_logical_xor_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5831058Z test_quick_logit_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5831209Z test_quick_logit_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5831360Z test_quick_logit_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5831512Z test_quick_logit_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5831661Z test_quick_logit_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5831850Z test_quick_logit_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5831998Z test_quick_logit_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5832148Z test_quick_logit_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5832281Z test_quick_logit_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5832438Z test_quick_logspace_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5832601Z test_quick_logspace_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5832763Z test_quick_logspace_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5832923Z test_quick_logspace_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5833085Z test_quick_logspace_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5833268Z test_quick_logspace_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5833424Z test_quick_logspace_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5833578Z test_quick_logspace_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5833717Z test_quick_logspace_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5833870Z test_quick_logspace_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5834031Z test_quick_logsumexp_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5834187Z test_quick_logsumexp_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5834350Z test_quick_logsumexp_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5834512Z test_quick_logsumexp_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5834668Z test_quick_logsumexp_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5834825Z test_quick_logsumexp_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5834979Z test_quick_logsumexp_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5835121Z test_quick_logsumexp_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5835274Z test_quick_logsumexp_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5835428Z test_quick_lt_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5835581Z test_quick_lt_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5835731Z test_quick_lt_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5835883Z test_quick_lt_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5836029Z test_quick_lt_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5836178Z test_quick_lt_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5836314Z test_quick_lt_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5836463Z test_quick_lt_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5836611Z test_quick_lt_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5836756Z test_quick_lt_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5836958Z test_quick_masked_fill_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5837121Z test_quick_masked_fill_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5837290Z test_quick_masked_fill_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5837459Z test_quick_masked_fill_cpu_complex32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5837622Z test_quick_masked_fill_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5837770Z test_quick_masked_fill_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5837927Z test_quick_masked_fill_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5838081Z test_quick_masked_fill_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5838242Z test_quick_masked_fill_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5838430Z test_quick_masked_fill_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5838591Z test_quick_masked_fill_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5838750Z test_quick_masked_fill_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5838907Z test_quick_masked_fill_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5839066Z test_quick_maximum_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5839210Z test_quick_maximum_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5839368Z test_quick_maximum_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5839526Z test_quick_maximum_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5839686Z test_quick_maximum_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5839840Z test_quick_maximum_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5839994Z test_quick_maximum_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5840142Z test_quick_maximum_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5840297Z test_quick_maximum_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5840435Z test_quick_maximum_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5840588Z test_quick_mean_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5840863Z test_quick_mean_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5841027Z test_quick_mean_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5841181Z test_quick_mean_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5841336Z test_quick_mean_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5841488Z test_quick_mean_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5841670Z test_quick_meshgrid_list_of_tensors_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5841848Z test_quick_meshgrid_list_of_tensors_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5842019Z test_quick_meshgrid_list_of_tensors_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5842252Z test_quick_meshgrid_list_of_tensors_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5842432Z test_quick_meshgrid_list_of_tensors_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5842611Z test_quick_meshgrid_list_of_tensors_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5842788Z test_quick_meshgrid_list_of_tensors_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5842964Z test_quick_meshgrid_list_of_tensors_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5843139Z test_quick_meshgrid_list_of_tensors_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5843314Z test_quick_meshgrid_list_of_tensors_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5843493Z test_quick_meshgrid_list_of_tensors_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5843686Z test_quick_meshgrid_list_of_tensors_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5843873Z test_quick_meshgrid_variadic_tensors_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5844050Z test_quick_meshgrid_variadic_tensors_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5844235Z test_quick_meshgrid_variadic_tensors_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5844418Z test_quick_meshgrid_variadic_tensors_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5844596Z test_quick_meshgrid_variadic_tensors_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5844777Z test_quick_meshgrid_variadic_tensors_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5844962Z test_quick_meshgrid_variadic_tensors_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5845141Z test_quick_meshgrid_variadic_tensors_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5845317Z test_quick_meshgrid_variadic_tensors_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5845481Z test_quick_meshgrid_variadic_tensors_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5845656Z test_quick_meshgrid_variadic_tensors_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5845829Z test_quick_meshgrid_variadic_tensors_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5845989Z test_quick_minimum_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5846149Z test_quick_minimum_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5846310Z test_quick_minimum_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5846467Z test_quick_minimum_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5846626Z test_quick_minimum_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5846778Z test_quick_minimum_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5846919Z test_quick_minimum_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5847070Z test_quick_minimum_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5847223Z test_quick_minimum_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5847405Z test_quick_minimum_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5847557Z test_quick_mul_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5847709Z test_quick_mul_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5847868Z test_quick_mul_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5848019Z test_quick_mul_cpu_complex32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5848159Z test_quick_mul_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5848312Z test_quick_mul_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5848464Z test_quick_mul_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5848612Z test_quick_mul_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5848761Z test_quick_mul_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5848938Z test_quick_mul_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5849090Z test_quick_mul_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5849240Z test_quick_mul_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5849386Z test_quick_mul_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5849526Z test_quick_mv_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5849681Z test_quick_mv_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5849834Z test_quick_mv_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5849988Z test_quick_mv_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5850139Z test_quick_mv_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5850289Z test_quick_mv_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5850437Z test_quick_mv_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5850584Z test_quick_mv_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5850719Z test_quick_mv_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5850867Z test_quick_mv_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5851047Z test_quick_mvlgamma_mvlgamma_p_1_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5851224Z test_quick_mvlgamma_mvlgamma_p_1_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5851398Z test_quick_mvlgamma_mvlgamma_p_1_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5851571Z test_quick_mvlgamma_mvlgamma_p_1_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5851742Z test_quick_mvlgamma_mvlgamma_p_1_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5851908Z test_quick_mvlgamma_mvlgamma_p_1_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5852078Z test_quick_mvlgamma_mvlgamma_p_1_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5852232Z test_quick_mvlgamma_mvlgamma_p_1_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5852404Z test_quick_mvlgamma_mvlgamma_p_3_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5852608Z test_quick_mvlgamma_mvlgamma_p_3_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5852784Z test_quick_mvlgamma_mvlgamma_p_3_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5852956Z test_quick_mvlgamma_mvlgamma_p_3_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5853126Z test_quick_mvlgamma_mvlgamma_p_3_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5853291Z test_quick_mvlgamma_mvlgamma_p_3_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5853461Z test_quick_mvlgamma_mvlgamma_p_3_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5853626Z test_quick_mvlgamma_mvlgamma_p_3_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5853791Z test_quick_mvlgamma_mvlgamma_p_5_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5853994Z test_quick_mvlgamma_mvlgamma_p_5_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5854168Z test_quick_mvlgamma_mvlgamma_p_5_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5854338Z test_quick_mvlgamma_mvlgamma_p_5_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5854506Z test_quick_mvlgamma_mvlgamma_p_5_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5854671Z test_quick_mvlgamma_mvlgamma_p_5_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5854840Z test_quick_mvlgamma_mvlgamma_p_5_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5855004Z test_quick_mvlgamma_mvlgamma_p_5_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5855169Z test_quick_nan_to_num_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5855328Z test_quick_nan_to_num_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5855478Z test_quick_nan_to_num_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5855635Z test_quick_nan_to_num_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5855789Z test_quick_nan_to_num_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5855946Z test_quick_nan_to_num_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5856105Z test_quick_nan_to_num_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5856264Z test_quick_nan_to_num_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5856422Z test_quick_nan_to_num_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5856581Z test_quick_nan_to_num_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5856733Z test_quick_narrow_copy_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5856894Z test_quick_narrow_copy_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5857063Z test_quick_narrow_copy_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5857230Z test_quick_narrow_copy_cpu_complex32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5857391Z test_quick_narrow_copy_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5857556Z test_quick_narrow_copy_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5857747Z test_quick_narrow_copy_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5857906Z test_quick_narrow_copy_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5858066Z test_quick_narrow_copy_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5858213Z test_quick_narrow_copy_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5858371Z test_quick_narrow_copy_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5858529Z test_quick_narrow_copy_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5858687Z test_quick_narrow_copy_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5858861Z test_quick_native_batch_norm_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5859033Z test_quick_native_batch_norm_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5859230Z test_quick_native_batch_norm_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5859480Z test_quick_native_dropout_backward_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5859659Z test_quick_native_dropout_backward_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5859823Z test_quick_native_dropout_backward_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5860002Z test_quick_native_dropout_backward_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5860178Z test_quick_native_dropout_backward_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5860358Z test_quick_native_dropout_backward_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5860535Z test_quick_native_dropout_backward_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5860709Z test_quick_native_dropout_backward_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5860885Z test_quick_native_dropout_backward_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5861055Z test_quick_native_dropout_backward_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5861228Z test_quick_native_layer_norm_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5861383Z test_quick_native_layer_norm_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5861553Z test_quick_native_layer_norm_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5861711Z test_quick_ne_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5861865Z test_quick_ne_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5862024Z test_quick_ne_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5862180Z test_quick_ne_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5862332Z test_quick_ne_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5862482Z test_quick_ne_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5862628Z test_quick_ne_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5862763Z test_quick_ne_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5862948Z test_quick_ne_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5863098Z test_quick_ne_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5863249Z test_quick_ne_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5863394Z test_quick_ne_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5863550Z test_quick_neg_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5863710Z test_quick_neg_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5863865Z test_quick_neg_cpu_complex32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5864008Z test_quick_neg_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5864163Z test_quick_neg_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5864316Z test_quick_neg_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5864492Z test_quick_neg_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5864643Z test_quick_neg_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5864795Z test_quick_neg_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5864943Z test_quick_neg_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5865094Z test_quick_neg_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5865241Z test_quick_neg_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5865391Z test_quick_new_empty_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5865553Z test_quick_new_empty_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5865720Z test_quick_new_empty_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5865884Z test_quick_new_empty_cpu_complex32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5866041Z test_quick_new_empty_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5866202Z test_quick_new_empty_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5866363Z test_quick_new_empty_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5866520Z test_quick_new_empty_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5866678Z test_quick_new_empty_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5866823Z test_quick_new_empty_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5866981Z test_quick_new_empty_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5867136Z test_quick_new_empty_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5867291Z test_quick_new_empty_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5867494Z test_quick_new_empty_strided_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Expected: new_empty_strided is not comparable (0.000s) 2023-01-11T20:52:32.5867693Z test_quick_new_empty_strided_cpu_bool (__main__.TestDecompCPU) ... skip: Expected: new_empty_strided is not comparable (0.000s) 2023-01-11T20:52:32.5867899Z test_quick_new_empty_strided_cpu_complex128 (__main__.TestDecompCPU) ... skip: Expected: new_empty_strided is not comparable (0.000s) 2023-01-11T20:52:32.5868212Z test_quick_new_empty_strided_cpu_complex32 (__main__.TestDecompCPU) ... skip: Expected: new_empty_strided is not comparable (0.000s) 2023-01-11T20:52:32.5868417Z test_quick_new_empty_strided_cpu_complex64 (__main__.TestDecompCPU) ... skip: Expected: new_empty_strided is not comparable (0.000s) 2023-01-11T20:52:32.5868605Z test_quick_new_empty_strided_cpu_float16 (__main__.TestDecompCPU) ... skip: Expected: new_empty_strided is not comparable (0.000s) 2023-01-11T20:52:32.5868798Z test_quick_new_empty_strided_cpu_float32 (__main__.TestDecompCPU) ... skip: Expected: new_empty_strided is not comparable (0.000s) 2023-01-11T20:52:32.5868998Z test_quick_new_empty_strided_cpu_float64 (__main__.TestDecompCPU) ... skip: Expected: new_empty_strided is not comparable (0.000s) 2023-01-11T20:52:32.5869194Z test_quick_new_empty_strided_cpu_int16 (__main__.TestDecompCPU) ... skip: Expected: new_empty_strided is not comparable (0.000s) 2023-01-11T20:52:32.5869384Z test_quick_new_empty_strided_cpu_int32 (__main__.TestDecompCPU) ... skip: Expected: new_empty_strided is not comparable (0.000s) 2023-01-11T20:52:32.5869600Z test_quick_new_empty_strided_cpu_int64 (__main__.TestDecompCPU) ... skip: Expected: new_empty_strided is not comparable (0.000s) 2023-01-11T20:52:32.5869795Z test_quick_new_empty_strided_cpu_int8 (__main__.TestDecompCPU) ... skip: Expected: new_empty_strided is not comparable (0.000s) 2023-01-11T20:52:32.5869990Z test_quick_new_empty_strided_cpu_uint8 (__main__.TestDecompCPU) ... skip: Expected: new_empty_strided is not comparable (0.000s) 2023-01-11T20:52:32.5870154Z test_quick_new_full_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5870315Z test_quick_new_full_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5870465Z test_quick_new_full_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5870628Z test_quick_new_full_cpu_complex32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5870786Z test_quick_new_full_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5870947Z test_quick_new_full_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5871104Z test_quick_new_full_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5871261Z test_quick_new_full_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5871418Z test_quick_new_full_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5871574Z test_quick_new_full_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5871727Z test_quick_new_full_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5871869Z test_quick_new_full_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5872023Z test_quick_new_full_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5872182Z test_quick_new_ones_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5872336Z test_quick_new_ones_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5872498Z test_quick_new_ones_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5872656Z test_quick_new_ones_cpu_complex32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5872812Z test_quick_new_ones_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5872971Z test_quick_new_ones_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5873114Z test_quick_new_ones_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5873304Z test_quick_new_ones_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5873459Z test_quick_new_ones_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5873613Z test_quick_new_ones_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5873768Z test_quick_new_ones_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5873925Z test_quick_new_ones_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5874079Z test_quick_new_ones_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5874238Z test_quick_new_zeros_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5874393Z test_quick_new_zeros_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5874550Z test_quick_new_zeros_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5874740Z test_quick_new_zeros_cpu_complex32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5874899Z test_quick_new_zeros_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5875058Z test_quick_new_zeros_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5875217Z test_quick_new_zeros_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5875376Z test_quick_new_zeros_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5875533Z test_quick_new_zeros_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5875690Z test_quick_new_zeros_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5875848Z test_quick_new_zeros_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5875991Z test_quick_new_zeros_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5876150Z test_quick_new_zeros_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5876317Z test_quick_nextafter_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5876477Z test_quick_nextafter_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5876641Z test_quick_nextafter_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5876832Z test_quick_nn_functional_binary_cross_entropy_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5877022Z test_quick_nn_functional_binary_cross_entropy_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5877228Z test_quick_nn_functional_binary_cross_entropy_with_logits_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5877431Z test_quick_nn_functional_binary_cross_entropy_with_logits_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5877619Z test_quick_nn_functional_binary_cross_entropy_with_logits_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5877791Z test_quick_nn_functional_elu_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5877961Z test_quick_nn_functional_elu_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5878132Z test_quick_nn_functional_elu_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5878314Z test_quick_nn_functional_embedding_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5878520Z test_quick_nn_functional_embedding_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5878699Z test_quick_nn_functional_embedding_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5878878Z test_quick_nn_functional_embedding_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5879051Z test_quick_nn_functional_gelu_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5879208Z test_quick_nn_functional_gelu_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5879378Z test_quick_nn_functional_gelu_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5879545Z test_quick_nn_functional_glu_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5879717Z test_quick_nn_functional_glu_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5879915Z test_quick_nn_functional_glu_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5880099Z test_quick_nn_functional_hardshrink_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5880282Z test_quick_nn_functional_hardshrink_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5880461Z test_quick_nn_functional_hardshrink_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5880753Z test_quick_nn_functional_hardsigmoid_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5880937Z test_quick_nn_functional_hardsigmoid_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5881101Z test_quick_nn_functional_hardsigmoid_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5881282Z test_quick_nn_functional_hardswish_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5881465Z test_quick_nn_functional_hardswish_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5881644Z test_quick_nn_functional_hardswish_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.003s) 2023-01-11T20:52:32.5881820Z test_quick_nn_functional_hardtanh_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5881996Z test_quick_nn_functional_hardtanh_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5882173Z test_quick_nn_functional_hardtanh_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5882348Z test_quick_nn_functional_hardtanh_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5882525Z test_quick_nn_functional_hardtanh_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5882683Z test_quick_nn_functional_hardtanh_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5882857Z test_quick_nn_functional_hardtanh_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5883033Z test_quick_nn_functional_huber_loss_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5883209Z test_quick_nn_functional_huber_loss_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5883386Z test_quick_nn_functional_huber_loss_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5883564Z test_quick_nn_functional_huber_loss_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5883788Z test_quick_nn_functional_leaky_relu_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5883971Z test_quick_nn_functional_leaky_relu_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5884145Z test_quick_nn_functional_leaky_relu_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5884312Z test_quick_nn_functional_logsigmoid_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5884489Z test_quick_nn_functional_logsigmoid_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5884666Z test_quick_nn_functional_logsigmoid_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5884838Z test_quick_nn_functional_mish_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5885015Z test_quick_nn_functional_mish_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5885187Z test_quick_nn_functional_mish_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5885417Z test_quick_nn_functional_mse_loss_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5885592Z test_quick_nn_functional_mse_loss_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5885764Z test_quick_nn_functional_mse_loss_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5885948Z test_quick_nn_functional_pad_constant_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5886114Z test_quick_nn_functional_pad_constant_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5886300Z test_quick_nn_functional_pad_constant_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5886487Z test_quick_nn_functional_pad_constant_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5886671Z test_quick_nn_functional_pad_constant_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5886849Z test_quick_nn_functional_pad_constant_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5887023Z test_quick_nn_functional_pad_constant_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5887202Z test_quick_nn_functional_pad_constant_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5887381Z test_quick_nn_functional_pad_constant_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5887557Z test_quick_nn_functional_pad_constant_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5887725Z test_quick_nn_functional_pad_constant_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5887904Z test_quick_nn_functional_pad_constant_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5888079Z test_quick_nn_functional_prelu_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5888254Z test_quick_nn_functional_prelu_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5888426Z test_quick_nn_functional_prelu_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5888600Z test_quick_nn_functional_relu6_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5888767Z test_quick_nn_functional_relu6_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5888964Z test_quick_nn_functional_relu6_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5889136Z test_quick_nn_functional_relu6_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5889292Z test_quick_nn_functional_relu6_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5889457Z test_quick_nn_functional_relu6_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5889626Z test_quick_nn_functional_relu6_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5889794Z test_quick_nn_functional_relu6_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5889962Z test_quick_nn_functional_relu_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5890134Z test_quick_nn_functional_relu_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5890303Z test_quick_nn_functional_relu_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5890502Z test_quick_nn_functional_relu_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5890673Z test_quick_nn_functional_relu_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5890827Z test_quick_nn_functional_relu_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5890996Z test_quick_nn_functional_relu_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5891162Z test_quick_nn_functional_relu_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5891333Z test_quick_nn_functional_rrelu_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5891506Z test_quick_nn_functional_rrelu_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5891677Z test_quick_nn_functional_rrelu_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5891847Z test_quick_nn_functional_silu_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5892017Z test_quick_nn_functional_silu_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5892184Z test_quick_nn_functional_silu_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5892349Z test_quick_nn_functional_softplus_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5892527Z test_quick_nn_functional_softplus_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5892701Z test_quick_nn_functional_softplus_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5892880Z test_quick_nn_functional_softshrink_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5893060Z test_quick_nn_functional_softshrink_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5893235Z test_quick_nn_functional_softshrink_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5893407Z test_quick_nn_functional_unfold_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5893584Z test_quick_nn_functional_unfold_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5893757Z test_quick_nn_functional_unfold_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5893919Z test_quick_nn_functional_unfold_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5894120Z test_quick_nn_functional_unfold_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5894292Z test_quick_nn_functional_unfold_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5894449Z test_quick_norm_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5894607Z test_quick_norm_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5894763Z test_quick_norm_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5894916Z test_quick_norm_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5895070Z test_quick_norm_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5895218Z test_quick_norm_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5895366Z test_quick_norm_fro_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5895556Z test_quick_norm_fro_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5895719Z test_quick_norm_fro_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5895876Z test_quick_norm_fro_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5896033Z test_quick_norm_fro_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5896192Z test_quick_norm_fro_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5896348Z test_quick_norm_inf_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5896509Z test_quick_norm_inf_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5896673Z test_quick_norm_inf_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5896819Z test_quick_norm_inf_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5896976Z test_quick_norm_inf_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5897131Z test_quick_norm_inf_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5897293Z test_quick_norm_nuc_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5897452Z test_quick_norm_nuc_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5897611Z test_quick_norm_nuc_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5897767Z test_quick_norm_nuc_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5897924Z test_quick_ones_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5898075Z test_quick_ones_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5898225Z test_quick_ones_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5898383Z test_quick_ones_cpu_complex32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5898540Z test_quick_ones_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5898693Z test_quick_ones_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5898845Z test_quick_ones_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5898994Z test_quick_ones_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5899146Z test_quick_ones_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5899407Z test_quick_ones_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5899549Z test_quick_ones_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5899704Z test_quick_ones_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5899855Z test_quick_ones_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5900017Z test_quick_permute_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5900175Z test_quick_permute_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5900341Z test_quick_permute_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5900505Z test_quick_permute_cpu_complex32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5900671Z test_quick_permute_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5900865Z test_quick_permute_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5901013Z test_quick_permute_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5901173Z test_quick_permute_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5901333Z test_quick_permute_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5901491Z test_quick_permute_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5901641Z test_quick_permute_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5901793Z test_quick_permute_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5901947Z test_quick_permute_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5902096Z test_quick_pow_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5902243Z test_quick_pow_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5902401Z test_quick_pow_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5902555Z test_quick_pow_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5902706Z test_quick_pow_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5902859Z test_quick_pow_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5903008Z test_quick_pow_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5903155Z test_quick_pow_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5903307Z test_quick_pow_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5903459Z test_quick_pow_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5903594Z test_quick_pow_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5903747Z test_quick_prod_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5903898Z test_quick_prod_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5904056Z test_quick_prod_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5904213Z test_quick_prod_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5904368Z test_quick_prod_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5904572Z test_quick_prod_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5904725Z test_quick_prod_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5904876Z test_quick_prod_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5905011Z test_quick_prod_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5905159Z test_quick_prod_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5905310Z test_quick_prod_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5905470Z test_quick_randn_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5905631Z test_quick_randn_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5905789Z test_quick_randn_cpu_complex32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5905951Z test_quick_randn_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5906133Z test_quick_randn_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5906275Z test_quick_randn_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5906425Z test_quick_randn_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5906593Z test_quick_reciprocal_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5906753Z test_quick_reciprocal_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5906923Z test_quick_reciprocal_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5907094Z test_quick_reciprocal_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5907260Z test_quick_reciprocal_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5907422Z test_quick_reciprocal_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5907579Z test_quick_reciprocal_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5907726Z test_quick_reciprocal_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5907888Z test_quick_reciprocal_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5908048Z test_quick_reciprocal_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5908208Z test_quick_reciprocal_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5908365Z test_quick_reciprocal_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5908530Z test_quick_remainder_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5908693Z test_quick_remainder_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5908853Z test_quick_remainder_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5909013Z test_quick_remainder_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5909158Z test_quick_remainder_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5909315Z test_quick_remainder_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5909473Z test_quick_remainder_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5909631Z test_quick_remainder_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5909818Z test_quick_remainder_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5909977Z test_quick_repeat_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5910134Z test_quick_repeat_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5910295Z test_quick_repeat_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5910443Z test_quick_repeat_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5910601Z test_quick_repeat_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5910755Z test_quick_repeat_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5910910Z test_quick_repeat_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5911065Z test_quick_repeat_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5911248Z test_quick_repeat_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5911401Z test_quick_repeat_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5911556Z test_quick_repeat_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5911706Z test_quick_repeat_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5911847Z test_quick_roll_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5911998Z test_quick_roll_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5912153Z test_quick_roll_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5912312Z test_quick_roll_cpu_complex32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5912467Z test_quick_roll_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5912623Z test_quick_roll_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5912776Z test_quick_roll_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5912926Z test_quick_roll_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5913062Z test_quick_roll_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5913212Z test_quick_roll_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5913359Z test_quick_roll_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5913509Z test_quick_roll_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5913661Z test_quick_roll_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5913816Z test_quick_rot90_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5913963Z test_quick_rot90_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5914122Z test_quick_rot90_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5914278Z test_quick_rot90_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5914420Z test_quick_rot90_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5914571Z test_quick_rot90_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5914720Z test_quick_rot90_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5914904Z test_quick_rot90_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5915054Z test_quick_rot90_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5915202Z test_quick_rot90_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5915350Z test_quick_rot90_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5915496Z test_quick_rot90_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5915653Z test_quick_rsqrt_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5915792Z test_quick_rsqrt_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5915951Z test_quick_rsqrt_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5916109Z test_quick_rsqrt_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5916264Z test_quick_rsqrt_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5916444Z test_quick_rsqrt_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5916598Z test_quick_rsqrt_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5916749Z test_quick_rsqrt_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5916899Z test_quick_rsqrt_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5917037Z test_quick_rsqrt_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5917185Z test_quick_rsqrt_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5917339Z test_quick_rsub_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5917499Z test_quick_rsub_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5917659Z test_quick_rsub_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5917814Z test_quick_rsub_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5917967Z test_quick_rsub_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5918117Z test_quick_rsub_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5918268Z test_quick_rsub_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5918403Z test_quick_rsub_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5918553Z test_quick_rsub_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5918702Z test_quick_rsub_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5918853Z test_quick_rsub_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5919015Z test_quick_select_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5919167Z test_quick_select_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5919330Z test_quick_select_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5919490Z test_quick_select_cpu_complex32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5919637Z test_quick_select_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5919794Z test_quick_select_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5919951Z test_quick_select_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5920139Z test_quick_select_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5920294Z test_quick_select_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5920446Z test_quick_select_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5920721Z test_quick_select_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5920951Z test_quick_select_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5921130Z test_quick_select_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5921267Z test_quick_sgn_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5921420Z test_quick_sgn_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5921579Z test_quick_sgn_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5921792Z test_quick_sgn_cpu_complex32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5921946Z test_quick_sgn_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5922097Z test_quick_sgn_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5922247Z test_quick_sgn_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5922394Z test_quick_sgn_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5922528Z test_quick_sgn_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5922679Z test_quick_sgn_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5922825Z test_quick_sgn_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5922978Z test_quick_sgn_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5923125Z test_quick_sgn_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5923284Z test_quick_sigmoid_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5923439Z test_quick_sigmoid_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5923601Z test_quick_sigmoid_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5923761Z test_quick_sigmoid_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5923906Z test_quick_sigmoid_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5924063Z test_quick_sigmoid_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5924220Z test_quick_sigmoid_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5924378Z test_quick_sigmoid_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5924530Z test_quick_sigmoid_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5924684Z test_quick_sigmoid_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5924833Z test_quick_sigmoid_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5924983Z test_quick_sign_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5925132Z test_quick_sign_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5925270Z test_quick_sign_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5925457Z test_quick_sign_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5925605Z test_quick_sign_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5925757Z test_quick_sign_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5925906Z test_quick_sign_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5926052Z test_quick_sign_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5926200Z test_quick_sign_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5926354Z test_quick_sign_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5926498Z test_quick_signbit_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5926650Z test_quick_signbit_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5926810Z test_quick_signbit_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5926993Z test_quick_signbit_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5927149Z test_quick_signbit_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5927300Z test_quick_signbit_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5927449Z test_quick_signbit_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5927597Z test_quick_signbit_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5927748Z test_quick_signbit_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5927882Z test_quick_signbit_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5928033Z test_quick_sin_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5928184Z test_quick_sin_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5928341Z test_quick_sin_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5928489Z test_quick_sin_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5928637Z test_quick_sin_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5928785Z test_quick_sin_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5928932Z test_quick_sin_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5929065Z test_quick_sin_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5929212Z test_quick_sin_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5929359Z test_quick_sin_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5929506Z test_quick_sin_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5929657Z test_quick_sinc_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5929803Z test_quick_sinc_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5929959Z test_quick_sinc_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5930116Z test_quick_sinc_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5930267Z test_quick_sinc_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5930404Z test_quick_sinc_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5930584Z test_quick_sinc_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5930734Z test_quick_sinc_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5930881Z test_quick_sinc_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5931026Z test_quick_sinc_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5931175Z test_quick_sinc_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5931326Z test_quick_sinh_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5931474Z test_quick_sinh_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5931616Z test_quick_sinh_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5931776Z test_quick_sinh_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5931925Z test_quick_sinh_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5932105Z test_quick_sinh_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5932253Z test_quick_sinh_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5932402Z test_quick_sinh_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5932546Z test_quick_sinh_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5932692Z test_quick_sinh_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5932840Z test_quick_sinh_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5932982Z test_quick_slice_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5933129Z test_quick_slice_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5933288Z test_quick_slice_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5933446Z test_quick_slice_cpu_complex32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5933601Z test_quick_slice_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5933754Z test_quick_slice_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5933906Z test_quick_slice_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5934053Z test_quick_slice_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5934189Z test_quick_slice_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5934340Z test_quick_slice_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5934489Z test_quick_slice_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5934636Z test_quick_slice_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5934781Z test_quick_slice_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5934939Z test_quick_softmax_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5935094Z test_quick_softmax_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5935249Z test_quick_softmax_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5935412Z test_quick_special_entr_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5935591Z test_quick_special_entr_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5935755Z test_quick_special_entr_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5935916Z test_quick_special_entr_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5936075Z test_quick_special_entr_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5936231Z test_quick_special_entr_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5936383Z test_quick_special_entr_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5936540Z test_quick_special_entr_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5936701Z test_quick_special_entr_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5936860Z test_quick_special_erfcx_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5937009Z test_quick_special_erfcx_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5937194Z test_quick_special_erfcx_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5937354Z test_quick_special_erfcx_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5937509Z test_quick_special_erfcx_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5937662Z test_quick_special_erfcx_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5937817Z test_quick_special_erfcx_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5937971Z test_quick_special_erfcx_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5938136Z test_quick_special_i0e_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5938292Z test_quick_special_i0e_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5938444Z test_quick_special_i0e_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5938600Z test_quick_special_i0e_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5938758Z test_quick_special_i0e_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5938914Z test_quick_special_i0e_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5939068Z test_quick_special_i0e_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5939221Z test_quick_special_i0e_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5939446Z test_quick_special_i0e_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5939605Z test_quick_special_i1_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5939753Z test_quick_special_i1_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5939912Z test_quick_special_i1_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5940068Z test_quick_special_i1_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5940224Z test_quick_special_i1_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5940381Z test_quick_special_i1_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5940536Z test_quick_special_i1_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5940736Z test_quick_special_i1_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5940893Z test_quick_special_i1e_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5941057Z test_quick_special_i1e_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5941202Z test_quick_special_i1e_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5941360Z test_quick_special_i1e_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5941516Z test_quick_special_i1e_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5941669Z test_quick_special_i1e_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5941823Z test_quick_special_i1e_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5941977Z test_quick_special_i1e_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5942143Z test_quick_special_log_ndtr_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5942342Z test_quick_special_log_ndtr_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5942507Z test_quick_special_log_ndtr_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5942659Z test_quick_special_log_ndtr_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5942823Z test_quick_special_log_ndtr_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5942987Z test_quick_special_log_ndtr_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5943148Z test_quick_special_log_ndtr_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5943311Z test_quick_special_log_ndtr_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5943477Z test_quick_special_ndtr_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5943635Z test_quick_special_ndtr_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5943799Z test_quick_special_ndtr_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5943960Z test_quick_special_ndtr_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5944105Z test_quick_special_ndtr_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5944259Z test_quick_special_ndtr_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5944410Z test_quick_special_ndtr_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5944567Z test_quick_special_ndtr_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5944727Z test_quick_special_ndtr_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5944884Z test_quick_special_ndtri_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5945050Z test_quick_special_ndtri_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5945210Z test_quick_special_ndtri_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5945369Z test_quick_special_ndtri_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5945510Z test_quick_special_ndtri_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5945662Z test_quick_special_ndtri_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5945848Z test_quick_special_ndtri_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5946004Z test_quick_special_ndtri_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5946172Z test_quick_special_xlog1py_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5946334Z test_quick_special_xlog1py_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5946500Z test_quick_special_xlog1py_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5946665Z test_quick_special_xlog1py_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5946830Z test_quick_special_xlog1py_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5946979Z test_quick_special_xlog1py_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5947140Z test_quick_special_xlog1py_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5947328Z test_quick_special_xlog1py_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5947492Z test_quick_special_xlog1py_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5947648Z test_quick_special_xlog1py_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5947805Z test_quick_special_zeta_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5947967Z test_quick_special_zeta_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5948127Z test_quick_special_zeta_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5948288Z test_quick_special_zeta_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5948433Z test_quick_special_zeta_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5948587Z test_quick_special_zeta_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5948744Z test_quick_special_zeta_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5948902Z test_quick_special_zeta_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5949057Z test_quick_split_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5949206Z test_quick_split_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5949364Z test_quick_split_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5949521Z test_quick_split_cpu_complex32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5949668Z test_quick_split_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5949823Z test_quick_split_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5949975Z test_quick_split_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5950125Z test_quick_split_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5950274Z test_quick_split_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5950424Z test_quick_split_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5950570Z test_quick_split_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5950720Z test_quick_split_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5950906Z test_quick_split_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5951060Z test_quick_split_list_args_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.003s) 2023-01-11T20:52:32.5951226Z test_quick_split_list_args_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5951396Z test_quick_split_list_args_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5951564Z test_quick_split_list_args_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5951728Z test_quick_split_list_args_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5951892Z test_quick_split_list_args_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5952057Z test_quick_split_list_args_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5952221Z test_quick_split_list_args_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5952406Z test_quick_split_list_args_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5952548Z test_quick_split_list_args_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5952709Z test_quick_split_list_args_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5952865Z test_quick_split_list_args_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5953031Z test_quick_split_with_sizes_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5953192Z test_quick_split_with_sizes_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5953361Z test_quick_split_with_sizes_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5953535Z test_quick_split_with_sizes_cpu_complex32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5953703Z test_quick_split_with_sizes_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5953866Z test_quick_split_with_sizes_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5954018Z test_quick_split_with_sizes_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5954181Z test_quick_split_with_sizes_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5954346Z test_quick_split_with_sizes_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5954506Z test_quick_split_with_sizes_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5954668Z test_quick_split_with_sizes_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5954829Z test_quick_split_with_sizes_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5954990Z test_quick_split_with_sizes_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5955142Z test_quick_sqrt_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5955290Z test_quick_sqrt_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5955434Z test_quick_sqrt_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5955588Z test_quick_sqrt_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5955740Z test_quick_sqrt_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5955890Z test_quick_sqrt_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5956070Z test_quick_sqrt_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5956219Z test_quick_sqrt_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5956363Z test_quick_sqrt_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5956510Z test_quick_sqrt_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5956646Z test_quick_sqrt_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5956802Z test_quick_squeeze_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5956953Z test_quick_squeeze_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5957114Z test_quick_squeeze_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5957273Z test_quick_squeeze_cpu_complex32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5957474Z test_quick_squeeze_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5957633Z test_quick_squeeze_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5957790Z test_quick_squeeze_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5957945Z test_quick_squeeze_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5958085Z test_quick_squeeze_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5958235Z test_quick_squeeze_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5958386Z test_quick_squeeze_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5958539Z test_quick_squeeze_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5958690Z test_quick_squeeze_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5958846Z test_quick_stack_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5958994Z test_quick_stack_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5959153Z test_quick_stack_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5959296Z test_quick_stack_cpu_complex32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5959452Z test_quick_stack_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5959604Z test_quick_stack_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5959757Z test_quick_stack_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5959908Z test_quick_stack_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5960060Z test_quick_stack_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5960211Z test_quick_stack_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5960356Z test_quick_stack_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5960505Z test_quick_stack_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5960751Z test_quick_stack_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5960908Z test_quick_std_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5961065Z test_quick_std_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5961270Z test_quick_std_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5961422Z test_quick_std_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5961576Z test_quick_std_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5961724Z test_quick_std_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5961883Z test_quick_std_mean_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5962046Z test_quick_std_mean_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5962193Z test_quick_std_mean_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5962352Z test_quick_std_mean_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5962513Z test_quick_std_mean_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5962705Z test_quick_std_mean_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5962878Z test_quick_std_mean_unbiased_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5963052Z test_quick_std_mean_unbiased_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5963223Z test_quick_std_mean_unbiased_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5963389Z test_quick_std_mean_unbiased_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5963556Z test_quick_std_mean_unbiased_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5963709Z test_quick_std_mean_unbiased_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5963875Z test_quick_std_unbiased_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5964043Z test_quick_std_unbiased_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5964209Z test_quick_std_unbiased_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5964373Z test_quick_std_unbiased_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5964532Z test_quick_std_unbiased_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5964688Z test_quick_std_unbiased_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5964839Z test_quick_sub_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5964981Z test_quick_sub_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5965136Z test_quick_sub_cpu_complex32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5965290Z test_quick_sub_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5965439Z test_quick_sub_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5965588Z test_quick_sub_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5965736Z test_quick_sub_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5965884Z test_quick_sub_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5966032Z test_quick_sub_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5966178Z test_quick_sub_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5966370Z test_quick_sub_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5966514Z test_quick_sub_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5966667Z test_quick_sum_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5966814Z test_quick_sum_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5966971Z test_quick_sum_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5967127Z test_quick_sum_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5967278Z test_quick_sum_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5967429Z test_quick_sum_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5967562Z test_quick_sum_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5967712Z test_quick_sum_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5967885Z test_quick_sum_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5968032Z test_quick_sum_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5968179Z test_quick_sum_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5968326Z test_quick_sum_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5968478Z test_quick_t_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5968625Z test_quick_t_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5968779Z test_quick_t_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5968918Z test_quick_t_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5969064Z test_quick_t_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5969213Z test_quick_t_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5969358Z test_quick_t_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5969504Z test_quick_t_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5969649Z test_quick_t_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5969795Z test_quick_t_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5969940Z test_quick_t_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5970073Z test_quick_t_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5970228Z test_quick_tan_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5970379Z test_quick_tan_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5970538Z test_quick_tan_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5970691Z test_quick_tan_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5970842Z test_quick_tan_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5970995Z test_quick_tan_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5971141Z test_quick_tan_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5971287Z test_quick_tan_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5971451Z test_quick_tan_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5971601Z test_quick_tan_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5971747Z test_quick_tan_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5971903Z test_quick_tanh_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5972053Z test_quick_tanh_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5972208Z test_quick_tanh_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5972365Z test_quick_tanh_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5972519Z test_quick_tanh_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5972658Z test_quick_tanh_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5972808Z test_quick_tanh_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5972983Z test_quick_tanh_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5973128Z test_quick_tanh_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5973273Z test_quick_tanh_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5973424Z test_quick_tanh_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5973582Z test_quick_trace_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5973739Z test_quick_trace_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5973893Z test_quick_trace_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5974035Z test_quick_trace_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5974186Z test_quick_trace_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5974339Z test_quick_trace_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5974488Z test_quick_trace_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5974637Z test_quick_trace_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5974783Z test_quick_trace_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5974942Z test_quick_transpose_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5975102Z test_quick_transpose_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5975269Z test_quick_transpose_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5975419Z test_quick_transpose_cpu_complex32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5975577Z test_quick_transpose_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5975734Z test_quick_transpose_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5975891Z test_quick_transpose_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5976049Z test_quick_transpose_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5976205Z test_quick_transpose_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5976358Z test_quick_transpose_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5976513Z test_quick_transpose_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5976699Z test_quick_transpose_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5976856Z test_quick_transpose_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5977010Z test_quick_tril_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5977157Z test_quick_tril_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5977312Z test_quick_tril_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5977466Z test_quick_tril_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5977620Z test_quick_tril_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5977770Z test_quick_tril_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5977921Z test_quick_tril_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5978084Z test_quick_tril_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5978233Z test_quick_tril_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5978378Z test_quick_tril_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5978526Z test_quick_tril_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5978673Z test_quick_tril_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5978831Z test_quick_tril_indices_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5978988Z test_quick_tril_indices_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5979143Z test_quick_triu_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5979375Z test_quick_triu_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5979524Z test_quick_triu_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5979679Z test_quick_triu_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5979830Z test_quick_triu_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5979981Z test_quick_triu_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5980130Z test_quick_triu_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5980278Z test_quick_triu_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5980427Z test_quick_triu_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5980574Z test_quick_triu_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5980711Z test_quick_triu_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5980859Z test_quick_triu_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5981016Z test_quick_triu_indices_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5981171Z test_quick_triu_indices_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5981326Z test_quick_trunc_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5981478Z test_quick_trunc_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5981632Z test_quick_trunc_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5981824Z test_quick_trunc_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5981975Z test_quick_trunc_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5982109Z test_quick_trunc_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5982257Z test_quick_trunc_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5982401Z test_quick_trunc_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5982557Z test_quick_unbind_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5982707Z test_quick_unbind_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5982864Z test_quick_unbind_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5983022Z test_quick_unbind_cpu_complex32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5983181Z test_quick_unbind_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5983357Z test_quick_unbind_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5983514Z test_quick_unbind_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5983669Z test_quick_unbind_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5983820Z test_quick_unbind_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5983969Z test_quick_unbind_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5984118Z test_quick_unbind_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5984268Z test_quick_unbind_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5984415Z test_quick_unbind_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5984579Z test_quick_unfold_copy_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5984724Z test_quick_unfold_copy_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5984890Z test_quick_unfold_copy_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5985053Z test_quick_unfold_copy_cpu_complex32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5985217Z test_quick_unfold_copy_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5985376Z test_quick_unfold_copy_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5985534Z test_quick_unfold_copy_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5985694Z test_quick_unfold_copy_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5985851Z test_quick_unfold_copy_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5986009Z test_quick_unfold_copy_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5986151Z test_quick_unfold_copy_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5986307Z test_quick_unfold_copy_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5986461Z test_quick_unfold_copy_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5986617Z test_quick_unfold_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5986768Z test_quick_unfold_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5986952Z test_quick_unfold_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5987111Z test_quick_unfold_cpu_complex32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5987270Z test_quick_unfold_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5987412Z test_quick_unfold_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5987567Z test_quick_unfold_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5987719Z test_quick_unfold_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5987870Z test_quick_unfold_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5988021Z test_quick_unfold_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5988171Z test_quick_unfold_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5988347Z test_quick_unfold_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5988496Z test_quick_unfold_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5988653Z test_quick_uniform_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5988799Z test_quick_uniform_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5988954Z test_quick_uniform_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5989109Z test_quick_uniform_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5989264Z test_quick_uniform_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5989420Z test_quick_uniform_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5989581Z test_quick_unsqueeze_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5989737Z test_quick_unsqueeze_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5989902Z test_quick_unsqueeze_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5990064Z test_quick_unsqueeze_cpu_complex32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5990208Z test_quick_unsqueeze_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5990366Z test_quick_unsqueeze_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5990522Z test_quick_unsqueeze_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5990682Z test_quick_unsqueeze_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5990838Z test_quick_unsqueeze_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5990995Z test_quick_unsqueeze_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5991150Z test_quick_unsqueeze_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5991305Z test_quick_unsqueeze_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5991443Z test_quick_unsqueeze_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5991596Z test_quick_var_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5991748Z test_quick_var_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5991900Z test_quick_var_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5992080Z test_quick_var_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5992231Z test_quick_var_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5992378Z test_quick_var_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5992533Z test_quick_var_mean_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5992694Z test_quick_var_mean_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5992840Z test_quick_var_mean_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5992996Z test_quick_var_mean_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5993153Z test_quick_var_mean_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5993311Z test_quick_var_mean_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5993506Z test_quick_var_mean_unbiased_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5993680Z test_quick_var_mean_unbiased_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5993849Z test_quick_var_mean_unbiased_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5994014Z test_quick_var_mean_unbiased_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5994180Z test_quick_var_mean_unbiased_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5994333Z test_quick_var_mean_unbiased_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5994497Z test_quick_var_unbiased_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5994666Z test_quick_var_unbiased_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5994835Z test_quick_var_unbiased_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5995000Z test_quick_var_unbiased_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5995159Z test_quick_var_unbiased_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5995315Z test_quick_var_unbiased_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5995468Z test_quick_view_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5995616Z test_quick_view_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5995762Z test_quick_view_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5995917Z test_quick_view_cpu_complex32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5996073Z test_quick_view_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5996226Z test_quick_view_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5996376Z test_quick_view_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5996524Z test_quick_view_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5996671Z test_quick_view_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5996819Z test_quick_view_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5996951Z test_quick_view_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5997130Z test_quick_view_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5997281Z test_quick_view_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5997436Z test_quick_where_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5997582Z test_quick_where_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5997741Z test_quick_where_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5997898Z test_quick_where_cpu_complex32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5998052Z test_quick_where_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5998204Z test_quick_where_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5998346Z test_quick_where_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5998494Z test_quick_where_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5998669Z test_quick_where_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5998819Z test_quick_where_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5998964Z test_quick_where_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5999111Z test_quick_where_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5999255Z test_quick_where_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5999409Z test_quick_xlogy_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5999557Z test_quick_xlogy_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5999699Z test_quick_xlogy_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.5999853Z test_quick_xlogy_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.6000001Z test_quick_xlogy_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.6000149Z test_quick_xlogy_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.6000297Z test_quick_xlogy_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.6000441Z test_quick_xlogy_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.6000588Z test_quick_xlogy_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.6000847Z test_quick_xlogy_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.6000991Z test_quick_zero__cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.6001146Z test_quick_zero__cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.6001304Z test_quick_zero__cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.6001459Z test_quick_zero__cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.6001612Z test_quick_zero__cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.6001764Z test_quick_zero__cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.6001917Z test_quick_zero__cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.6002066Z test_quick_zero__cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.6002263Z test_quick_zero__cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.6002396Z test_quick_zero__cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.6002547Z test_quick_zero__cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.6002694Z test_quick_zero__cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.6002849Z test_quick_zeros_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.6003000Z test_quick_zeros_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.6003159Z test_quick_zeros_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.6003316Z test_quick_zeros_cpu_complex32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.6003473Z test_quick_zeros_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.6003614Z test_quick_zeros_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.6003800Z test_quick_zeros_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.6003951Z test_quick_zeros_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.6004098Z test_quick_zeros_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.6004245Z test_quick_zeros_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.6004389Z test_quick_zeros_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.6004537Z test_quick_zeros_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.6004681Z test_quick_zeros_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.6004843Z test_quick_zeros_like_cpu_bfloat16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.6004987Z test_quick_zeros_like_cpu_bool (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.6005150Z test_quick_zeros_like_cpu_complex128 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.6005310Z test_quick_zeros_like_cpu_complex32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.6005466Z test_quick_zeros_like_cpu_complex64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.6005624Z test_quick_zeros_like_cpu_float16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.6005777Z test_quick_zeros_like_cpu_float32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.6005929Z test_quick_zeros_like_cpu_float64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.6006085Z test_quick_zeros_like_cpu_int16 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.6006241Z test_quick_zeros_like_cpu_int32 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.6006383Z test_quick_zeros_like_cpu_int64 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.6006537Z test_quick_zeros_like_cpu_int8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.6006690Z test_quick_zeros_like_cpu_uint8 (__main__.TestDecompCPU) ... skip: Skipped under ASAN (0.000s) 2023-01-11T20:52:32.6006810Z test_uniform_cpu (__main__.TestDecompCPU) ... ok (0.027s) 2023-01-11T20:52:32.6006823Z 2023-01-11T20:52:32.6007133Z ---------------------------------------------------------------------- 2023-01-11T20:52:32.6007213Z Ran 7557 tests in 2.958s 2023-01-11T20:52:32.6007219Z 2023-01-11T20:52:32.6007292Z OK (skipped=7556) 2023-01-11T20:52:32.6007329Z 2023-01-11T20:52:32.6007417Z Generating XML reports... 2023-01-11T20:52:32.6007702Z Generated XML report: test-reports/python-unittest/test_decomp/TEST-TestDecompCPU-20230111205227.xml 2023-01-11T20:52:32.6007998Z Generated XML report: test-reports/python-unittest/test_decomp/TEST-DecompAmpTestsCPU-20230111205227.xml 2023-01-11T20:52:32.6008312Z Generated XML report: test-reports/python-unittest/test_decomp/TEST-DecompContiguousTestsCPU-20230111205227.xml 2023-01-11T20:52:32.6008318Z 2023-01-11T20:52:32.6008799Z ##[endgroup] 2023-01-11T20:52:32.6009075Z FINISHED PRINTING LOG FILE of test_decomp (/var/lib/jenkins/workspace/test/test-reports/test_decomp_0t79n_gg) 2023-01-11T20:52:32.6009080Z 2023-01-11T20:52:37.2992229Z No CUDA runtime is found, using CUDA_HOME='/usr/local/cuda' 2023-01-11T20:52:37.4635436Z Ignoring disabled issues: ['91003'] 2023-01-11T20:52:37.4846420Z Running test_dlpack ... [2023-01-11 20:52:37.484327] 2023-01-11T20:52:37.4848446Z Executing ['/opt/conda/bin/python', '-bb', 'test_dlpack.py', '-v', '--import-slow-tests', '--import-disabled-tests'] ... [2023-01-11 20:52:37.484623] 2023-01-11T20:52:42.4534246Z 2023-01-11T20:52:42.4534784Z Expand the folded group to see the log file of test_dlpack 2023-01-11T20:52:42.4536266Z ##[group]PRINTING LOG FILE of test_dlpack (/var/lib/jenkins/workspace/test/test-reports/test_dlpack_dc8d7bir) 2023-01-11T20:52:42.4537181Z Test results will be stored in test-reports/python-unittest/test_dlpack 2023-01-11T20:52:42.4537486Z 2023-01-11T20:52:42.4537613Z Running tests... 2023-01-11T20:52:42.4538144Z ---------------------------------------------------------------------- 2023-01-11T20:52:42.4538686Z test_dlpack_capsule_conversion_cpu_bfloat16 (__main__.TestTorchDlPackCPU) ... ok (0.005s) 2023-01-11T20:52:42.4539743Z test_dlpack_capsule_conversion_cpu_complex128 (__main__.TestTorchDlPackCPU) ... ok (0.002s) 2023-01-11T20:52:42.4540509Z test_dlpack_capsule_conversion_cpu_complex64 (__main__.TestTorchDlPackCPU) ... ok (0.002s) 2023-01-11T20:52:42.4541145Z test_dlpack_capsule_conversion_cpu_float16 (__main__.TestTorchDlPackCPU) ... ok (0.002s) 2023-01-11T20:52:42.4541741Z test_dlpack_capsule_conversion_cpu_float32 (__main__.TestTorchDlPackCPU) ... ok (0.002s) 2023-01-11T20:52:42.4542276Z test_dlpack_capsule_conversion_cpu_float64 (__main__.TestTorchDlPackCPU) ... ok (0.001s) 2023-01-11T20:52:42.4542852Z test_dlpack_capsule_conversion_cpu_int16 (__main__.TestTorchDlPackCPU) ... ok (0.001s) 2023-01-11T20:52:42.4543480Z test_dlpack_capsule_conversion_cpu_int32 (__main__.TestTorchDlPackCPU) ... ok (0.001s) 2023-01-11T20:52:42.4544061Z test_dlpack_capsule_conversion_cpu_int64 (__main__.TestTorchDlPackCPU) ... ok (0.001s) 2023-01-11T20:52:42.4544663Z test_dlpack_capsule_conversion_cpu_int8 (__main__.TestTorchDlPackCPU) ... ok (0.001s) 2023-01-11T20:52:42.4545252Z test_dlpack_capsule_conversion_cpu_uint8 (__main__.TestTorchDlPackCPU) ... ok (0.001s) 2023-01-11T20:52:42.4545900Z test_dlpack_conversion_with_diff_streams_cpu_bfloat16 (__main__.TestTorchDlPackCPU) ... skip: Only runs on cuda (0.001s) 2023-01-11T20:52:42.4546572Z test_dlpack_conversion_with_diff_streams_cpu_complex128 (__main__.TestTorchDlPackCPU) ... skip: Only runs on cuda (0.001s) 2023-01-11T20:52:42.4547276Z test_dlpack_conversion_with_diff_streams_cpu_complex64 (__main__.TestTorchDlPackCPU) ... skip: Only runs on cuda (0.001s) 2023-01-11T20:52:42.4547981Z test_dlpack_conversion_with_diff_streams_cpu_float16 (__main__.TestTorchDlPackCPU) ... skip: Only runs on cuda (0.001s) 2023-01-11T20:52:42.4548641Z test_dlpack_conversion_with_diff_streams_cpu_float32 (__main__.TestTorchDlPackCPU) ... skip: Only runs on cuda (0.001s) 2023-01-11T20:52:42.4549318Z test_dlpack_conversion_with_diff_streams_cpu_float64 (__main__.TestTorchDlPackCPU) ... skip: Only runs on cuda (0.001s) 2023-01-11T20:52:42.4550018Z test_dlpack_conversion_with_diff_streams_cpu_int16 (__main__.TestTorchDlPackCPU) ... skip: Only runs on cuda (0.001s) 2023-01-11T20:52:42.4550716Z test_dlpack_conversion_with_diff_streams_cpu_int32 (__main__.TestTorchDlPackCPU) ... skip: Only runs on cuda (0.001s) 2023-01-11T20:52:42.4551485Z test_dlpack_conversion_with_diff_streams_cpu_int64 (__main__.TestTorchDlPackCPU) ... skip: Only runs on cuda (0.001s) 2023-01-11T20:52:42.4552077Z test_dlpack_conversion_with_diff_streams_cpu_int8 (__main__.TestTorchDlPackCPU) ... skip: Only runs on cuda (0.001s) 2023-01-11T20:52:42.4552750Z test_dlpack_conversion_with_diff_streams_cpu_uint8 (__main__.TestTorchDlPackCPU) ... skip: Only runs on cuda (0.001s) 2023-01-11T20:52:42.4553457Z test_dlpack_conversion_with_streams_cpu_bfloat16 (__main__.TestTorchDlPackCPU) ... skip: Only runs on cuda (0.001s) 2023-01-11T20:52:42.4554173Z test_dlpack_conversion_with_streams_cpu_complex128 (__main__.TestTorchDlPackCPU) ... skip: Only runs on cuda (0.001s) 2023-01-11T20:52:42.4554833Z test_dlpack_conversion_with_streams_cpu_complex64 (__main__.TestTorchDlPackCPU) ... skip: Only runs on cuda (0.001s) 2023-01-11T20:52:42.4555531Z test_dlpack_conversion_with_streams_cpu_float16 (__main__.TestTorchDlPackCPU) ... skip: Only runs on cuda (0.001s) 2023-01-11T20:52:42.4556226Z test_dlpack_conversion_with_streams_cpu_float32 (__main__.TestTorchDlPackCPU) ... skip: Only runs on cuda (0.001s) 2023-01-11T20:52:42.4556994Z test_dlpack_conversion_with_streams_cpu_float64 (__main__.TestTorchDlPackCPU) ... skip: Only runs on cuda (0.001s) 2023-01-11T20:52:42.4557671Z test_dlpack_conversion_with_streams_cpu_int16 (__main__.TestTorchDlPackCPU) ... skip: Only runs on cuda (0.001s) 2023-01-11T20:52:42.4558176Z test_dlpack_conversion_with_streams_cpu_int32 (__main__.TestTorchDlPackCPU) ... skip: Only runs on cuda (0.001s) 2023-01-11T20:52:42.4558548Z test_dlpack_conversion_with_streams_cpu_int64 (__main__.TestTorchDlPackCPU) ... skip: Only runs on cuda (0.001s) 2023-01-11T20:52:42.4558946Z test_dlpack_conversion_with_streams_cpu_int8 (__main__.TestTorchDlPackCPU) ... skip: Only runs on cuda (0.001s) 2023-01-11T20:52:42.4559313Z test_dlpack_conversion_with_streams_cpu_uint8 (__main__.TestTorchDlPackCPU) ... skip: Only runs on cuda (0.001s) 2023-01-11T20:52:42.4559663Z test_dlpack_default_stream_cpu (__main__.TestTorchDlPackCPU) ... skip: Only runs on cuda (0.001s) 2023-01-11T20:52:42.4559993Z test_dlpack_error_on_bool_tensor_cpu (__main__.TestTorchDlPackCPU) ... ok (0.004s) 2023-01-11T20:52:42.4560304Z test_dlpack_export_is_conj_cpu (__main__.TestTorchDlPackCPU) ... ok (0.001s) 2023-01-11T20:52:42.4560780Z test_dlpack_export_non_strided_cpu (__main__.TestTorchDlPackCPU) ... ok (0.002s) 2023-01-11T20:52:42.4561091Z test_dlpack_export_requires_grad_cpu (__main__.TestTorchDlPackCPU) ... ok (0.001s) 2023-01-11T20:52:42.4561406Z test_dlpack_normalize_strides_cpu (__main__.TestTorchDlPackCPU) ... ok (0.002s) 2023-01-11T20:52:42.4561731Z test_dlpack_protocol_conversion_cpu_bfloat16 (__main__.TestTorchDlPackCPU) ... ok (0.002s) 2023-01-11T20:52:42.4562060Z test_dlpack_protocol_conversion_cpu_complex128 (__main__.TestTorchDlPackCPU) ... ok (0.002s) 2023-01-11T20:52:42.4562401Z test_dlpack_protocol_conversion_cpu_complex64 (__main__.TestTorchDlPackCPU) ... ok (0.002s) 2023-01-11T20:52:42.4562737Z test_dlpack_protocol_conversion_cpu_float16 (__main__.TestTorchDlPackCPU) ... ok (0.002s) 2023-01-11T20:52:42.4563067Z test_dlpack_protocol_conversion_cpu_float32 (__main__.TestTorchDlPackCPU) ... ok (0.002s) 2023-01-11T20:52:42.4563382Z test_dlpack_protocol_conversion_cpu_float64 (__main__.TestTorchDlPackCPU) ... ok (0.001s) 2023-01-11T20:52:42.4563710Z test_dlpack_protocol_conversion_cpu_int16 (__main__.TestTorchDlPackCPU) ... ok (0.001s) 2023-01-11T20:52:42.4564031Z test_dlpack_protocol_conversion_cpu_int32 (__main__.TestTorchDlPackCPU) ... ok (0.001s) 2023-01-11T20:52:42.4564342Z test_dlpack_protocol_conversion_cpu_int64 (__main__.TestTorchDlPackCPU) ... ok (0.001s) 2023-01-11T20:52:42.4564666Z test_dlpack_protocol_conversion_cpu_int8 (__main__.TestTorchDlPackCPU) ... ok (0.001s) 2023-01-11T20:52:42.4564986Z test_dlpack_protocol_conversion_cpu_uint8 (__main__.TestTorchDlPackCPU) ... ok (0.001s) 2023-01-11T20:52:42.4565380Z test_dlpack_shared_storage_cpu (__main__.TestTorchDlPackCPU) ... ok (0.002s) 2023-01-11T20:52:42.4565695Z test_dlpack_tensor_invalid_stream_cpu_bfloat16 (__main__.TestTorchDlPackCPU) ... ok (0.001s) 2023-01-11T20:52:42.4566030Z test_dlpack_tensor_invalid_stream_cpu_complex128 (__main__.TestTorchDlPackCPU) ... ok (0.001s) 2023-01-11T20:52:42.4566370Z test_dlpack_tensor_invalid_stream_cpu_complex64 (__main__.TestTorchDlPackCPU) ... ok (0.001s) 2023-01-11T20:52:42.4566697Z test_dlpack_tensor_invalid_stream_cpu_float16 (__main__.TestTorchDlPackCPU) ... ok (0.001s) 2023-01-11T20:52:42.4567032Z test_dlpack_tensor_invalid_stream_cpu_float32 (__main__.TestTorchDlPackCPU) ... ok (0.001s) 2023-01-11T20:52:42.4567367Z test_dlpack_tensor_invalid_stream_cpu_float64 (__main__.TestTorchDlPackCPU) ... ok (0.001s) 2023-01-11T20:52:42.4567694Z test_dlpack_tensor_invalid_stream_cpu_int16 (__main__.TestTorchDlPackCPU) ... ok (0.001s) 2023-01-11T20:52:42.4568012Z test_dlpack_tensor_invalid_stream_cpu_int32 (__main__.TestTorchDlPackCPU) ... ok (0.001s) 2023-01-11T20:52:42.4568336Z test_dlpack_tensor_invalid_stream_cpu_int64 (__main__.TestTorchDlPackCPU) ... ok (0.001s) 2023-01-11T20:52:42.4568708Z test_dlpack_tensor_invalid_stream_cpu_int8 (__main__.TestTorchDlPackCPU) ... ok (0.001s) 2023-01-11T20:52:42.4569036Z test_dlpack_tensor_invalid_stream_cpu_uint8 (__main__.TestTorchDlPackCPU) ... ok (0.001s) 2023-01-11T20:52:42.4569333Z test_from_dlpack_cpu_bfloat16 (__main__.TestTorchDlPackCPU) ... ok (0.002s) 2023-01-11T20:52:42.4569634Z test_from_dlpack_cpu_complex128 (__main__.TestTorchDlPackCPU) ... ok (0.002s) 2023-01-11T20:52:42.4569940Z test_from_dlpack_cpu_complex64 (__main__.TestTorchDlPackCPU) ... ok (0.002s) 2023-01-11T20:52:42.4570229Z test_from_dlpack_cpu_float16 (__main__.TestTorchDlPackCPU) ... ok (0.002s) 2023-01-11T20:52:42.4570527Z test_from_dlpack_cpu_float32 (__main__.TestTorchDlPackCPU) ... ok (0.002s) 2023-01-11T20:52:42.4570825Z test_from_dlpack_cpu_float64 (__main__.TestTorchDlPackCPU) ... ok (0.001s) 2023-01-11T20:52:42.4571115Z test_from_dlpack_cpu_int16 (__main__.TestTorchDlPackCPU) ... ok (0.001s) 2023-01-11T20:52:42.4571396Z test_from_dlpack_cpu_int32 (__main__.TestTorchDlPackCPU) ... ok (0.001s) 2023-01-11T20:52:42.4571688Z test_from_dlpack_cpu_int64 (__main__.TestTorchDlPackCPU) ... ok (0.001s) 2023-01-11T20:52:42.4571976Z test_from_dlpack_cpu_int8 (__main__.TestTorchDlPackCPU) ... ok (0.001s) 2023-01-11T20:52:42.4572256Z test_from_dlpack_cpu_uint8 (__main__.TestTorchDlPackCPU) ... ok (0.001s) 2023-01-11T20:52:42.4572557Z test_from_dlpack_dtype_cpu_bfloat16 (__main__.TestTorchDlPackCPU) ... ok (0.001s) 2023-01-11T20:52:42.4572875Z test_from_dlpack_dtype_cpu_complex128 (__main__.TestTorchDlPackCPU) ... ok (0.001s) 2023-01-11T20:52:42.4573191Z test_from_dlpack_dtype_cpu_complex64 (__main__.TestTorchDlPackCPU) ... ok (0.001s) 2023-01-11T20:52:42.4573494Z test_from_dlpack_dtype_cpu_float16 (__main__.TestTorchDlPackCPU) ... ok (0.001s) 2023-01-11T20:52:42.4573807Z test_from_dlpack_dtype_cpu_float32 (__main__.TestTorchDlPackCPU) ... ok (0.001s) 2023-01-11T20:52:42.4574118Z test_from_dlpack_dtype_cpu_float64 (__main__.TestTorchDlPackCPU) ... ok (0.001s) 2023-01-11T20:52:42.4574411Z test_from_dlpack_dtype_cpu_int16 (__main__.TestTorchDlPackCPU) ... ok (0.001s) 2023-01-11T20:52:42.4574712Z test_from_dlpack_dtype_cpu_int32 (__main__.TestTorchDlPackCPU) ... ok (0.001s) 2023-01-11T20:52:42.4575012Z test_from_dlpack_dtype_cpu_int64 (__main__.TestTorchDlPackCPU) ... ok (0.001s) 2023-01-11T20:52:42.4575314Z test_from_dlpack_dtype_cpu_int8 (__main__.TestTorchDlPackCPU) ... ok (0.001s) 2023-01-11T20:52:42.4575607Z test_from_dlpack_dtype_cpu_uint8 (__main__.TestTorchDlPackCPU) ... ok (0.001s) 2023-01-11T20:52:42.4575929Z test_from_dlpack_noncontinguous_cpu_bfloat16 (__main__.TestTorchDlPackCPU) ... ok (0.005s) 2023-01-11T20:52:42.4576270Z test_from_dlpack_noncontinguous_cpu_complex128 (__main__.TestTorchDlPackCPU) ... ok (0.005s) 2023-01-11T20:52:42.4576635Z test_from_dlpack_noncontinguous_cpu_complex64 (__main__.TestTorchDlPackCPU) ... ok (0.005s) 2023-01-11T20:52:42.4576973Z test_from_dlpack_noncontinguous_cpu_float16 (__main__.TestTorchDlPackCPU) ... ok (0.005s) 2023-01-11T20:52:42.4577303Z test_from_dlpack_noncontinguous_cpu_float32 (__main__.TestTorchDlPackCPU) ... ok (0.005s) 2023-01-11T20:52:42.4577631Z test_from_dlpack_noncontinguous_cpu_float64 (__main__.TestTorchDlPackCPU) ... ok (0.004s) 2023-01-11T20:52:42.4577939Z test_from_dlpack_noncontinguous_cpu_int16 (__main__.TestTorchDlPackCPU) ... ok (0.003s) 2023-01-11T20:52:42.4578266Z test_from_dlpack_noncontinguous_cpu_int32 (__main__.TestTorchDlPackCPU) ... ok (0.018s) 2023-01-11T20:52:42.4578588Z test_from_dlpack_noncontinguous_cpu_int64 (__main__.TestTorchDlPackCPU) ... ok (0.003s) 2023-01-11T20:52:42.4578903Z test_from_dlpack_noncontinguous_cpu_int8 (__main__.TestTorchDlPackCPU) ... ok (0.003s) 2023-01-11T20:52:42.4579302Z test_from_dlpack_noncontinguous_cpu_uint8 (__main__.TestTorchDlPackCPU) ... ok (0.003s) 2023-01-11T20:52:42.4579481Z 2023-01-11T20:52:42.4579739Z ---------------------------------------------------------------------- 2023-01-11T20:52:42.4580038Z Ran 95 tests in 0.175s 2023-01-11T20:52:42.4580141Z 2023-01-11T20:52:42.4580213Z OK (skipped=23) 2023-01-11T20:52:42.4580321Z 2023-01-11T20:52:42.4580408Z Generating XML reports... 2023-01-11T20:52:42.4580834Z Generated XML report: test-reports/python-unittest/test_dlpack/TEST-TestTorchDlPackCPU-20230111205241.xml 2023-01-11T20:52:42.4581066Z 2023-01-11T20:52:42.4581336Z ##[endgroup] 2023-01-11T20:52:42.4581706Z FINISHED PRINTING LOG FILE of test_dlpack (/var/lib/jenkins/workspace/test/test-reports/test_dlpack_dc8d7bir) 2023-01-11T20:52:42.4581914Z 2023-01-11T20:52:47.3650456Z No CUDA runtime is found, using CUDA_HOME='/usr/local/cuda' 2023-01-11T20:52:47.5491572Z Ignoring disabled issues: ['91003'] 2023-01-11T20:52:47.5710811Z Running test_jit_llga_fuser ... [2023-01-11 20:52:47.570706] 2023-01-11T20:52:47.5712221Z Executing ['/opt/conda/bin/python', '-bb', 'test_jit_llga_fuser.py', '-v', '--import-slow-tests', '--import-disabled-tests'] ... [2023-01-11 20:52:47.571015] 2023-01-11T20:52:52.6545191Z 2023-01-11T20:52:52.6545744Z Expand the folded group to see the log file of test_jit_llga_fuser 2023-01-11T20:52:52.6546915Z ##[group]PRINTING LOG FILE of test_jit_llga_fuser (/var/lib/jenkins/workspace/test/test-reports/test_jit_llga_fuser_ljnanlup) 2023-01-11T20:52:52.6547407Z 2023-01-11T20:52:52.6547541Z Running tests... 2023-01-11T20:52:52.6548226Z ---------------------------------------------------------------------- 2023-01-11T20:52:52.6548881Z test_dynamo_aot_ts_onednn (__main__.TestDynamoAOT) ... Test results will be stored in test-reports/python-unittest/test_jit_llga_fuser 2023-01-11T20:52:52.6549247Z skip: MKL-DNN build is disabled (0.001s) 2023-01-11T20:52:52.6549644Z test_context_manager (__main__.TestEnableDisableLlgaFuser) ... skip: MKL-DNN build is disabled (0.001s) 2023-01-11T20:52:52.6550117Z test_bn2d_eltwise_cpu_bfloat16 (__main__.TestFusionPatternCPU) ... skip: MKL-DNN build is disabled (0.001s) 2023-01-11T20:52:52.6550565Z test_bn2d_eltwise_cpu_float32 (__main__.TestFusionPatternCPU) ... skip: MKL-DNN build is disabled (0.001s) 2023-01-11T20:52:52.6551013Z test_conv2d_bn_cpu_bfloat16 (__main__.TestFusionPatternCPU) ... skip: MKL-DNN build is disabled (0.001s) 2023-01-11T20:52:52.6551453Z test_conv2d_bn_cpu_float32 (__main__.TestFusionPatternCPU) ... skip: MKL-DNN build is disabled (0.001s) 2023-01-11T20:52:52.6551900Z test_conv2d_bn_relu_cpu_bfloat16 (__main__.TestFusionPatternCPU) ... skip: MKL-DNN build is disabled (0.001s) 2023-01-11T20:52:52.6552343Z test_conv2d_bn_relu_cpu_float32 (__main__.TestFusionPatternCPU) ... skip: MKL-DNN build is disabled (0.001s) 2023-01-11T20:52:52.6552794Z test_conv2d_clamp_cpu_bfloat16 (__main__.TestFusionPatternCPU) ... skip: MKL-DNN build is disabled (0.002s) 2023-01-11T20:52:52.6553453Z test_conv2d_clamp_cpu_float32 (__main__.TestFusionPatternCPU) ... skip: MKL-DNN build is disabled (0.002s) 2023-01-11T20:52:52.6553911Z test_conv2d_eltwise_cpu_bfloat16 (__main__.TestFusionPatternCPU) ... skip: MKL-DNN build is disabled (0.002s) 2023-01-11T20:52:52.6554351Z test_conv2d_eltwise_cpu_float32 (__main__.TestFusionPatternCPU) ... skip: MKL-DNN build is disabled (0.002s) 2023-01-11T20:52:52.6554803Z test_conv2d_silu_cpu_bfloat16 (__main__.TestFusionPatternCPU) ... skip: MKL-DNN build is disabled (0.002s) 2023-01-11T20:52:52.6555252Z test_conv2d_silu_cpu_float32 (__main__.TestFusionPatternCPU) ... skip: MKL-DNN build is disabled (0.002s) 2023-01-11T20:52:52.6555699Z test_conv2d_sum_cpu_bfloat16 (__main__.TestFusionPatternCPU) ... skip: MKL-DNN build is disabled (0.002s) 2023-01-11T20:52:52.6556126Z test_conv2d_sum_cpu_float32 (__main__.TestFusionPatternCPU) ... skip: MKL-DNN build is disabled (0.002s) 2023-01-11T20:52:52.6556599Z test_ensure_tensor_is_rewrapped_cpu_bfloat16 (__main__.TestFusionPatternCPU) ... skip: MKL-DNN build is disabled (0.002s) 2023-01-11T20:52:52.6557085Z test_ensure_tensor_is_rewrapped_cpu_float32 (__main__.TestFusionPatternCPU) ... skip: MKL-DNN build is disabled (0.002s) 2023-01-11T20:52:52.6557596Z test_linear_eltwise_cpu_bfloat16 (__main__.TestFusionPatternCPU) ... skip: MKL-DNN build is disabled (0.001s) 2023-01-11T20:52:52.6558057Z test_linear_eltwise_cpu_float32 (__main__.TestFusionPatternCPU) ... skip: MKL-DNN build is disabled (0.001s) 2023-01-11T20:52:52.6558541Z test_rewrap_tensor_input_to_pytorch_cpu_bfloat16 (__main__.TestFusionPatternCPU) ... skip: MKL-DNN build is disabled (0.002s) 2023-01-11T20:52:52.6559034Z test_rewrap_tensor_input_to_pytorch_cpu_float32 (__main__.TestFusionPatternCPU) ... skip: MKL-DNN build is disabled (0.002s) 2023-01-11T20:52:52.6559481Z test_wildcard_cpu_bfloat16 (__main__.TestFusionPatternCPU) ... skip: MKL-DNN build is disabled (0.001s) 2023-01-11T20:52:52.6559931Z test_wildcard_cpu_float32 (__main__.TestFusionPatternCPU) ... skip: MKL-DNN build is disabled (0.001s) 2023-01-11T20:52:52.6560407Z test_wildcard_unsupported_dtype_cpu_int32 (__main__.TestFusionPatternCPU) ... skip: MKL-DNN build is disabled (0.001s) 2023-01-11T20:52:52.6561023Z test_vision_alexnet_bfloat16 (__main__.TestModel) ... skip: MKL-DNN build is disabled (0.000s) 2023-01-11T20:52:52.6561414Z test_vision_alexnet_float32 (__main__.TestModel) ... skip: MKL-DNN build is disabled (0.000s) 2023-01-11T20:52:52.6561829Z test_vision_densenet121_bfloat16 (__main__.TestModel) ... skip: MKL-DNN build is disabled (0.000s) 2023-01-11T20:52:52.6562246Z test_vision_densenet121_float32 (__main__.TestModel) ... skip: MKL-DNN build is disabled (0.000s) 2023-01-11T20:52:52.6562662Z test_vision_densenet161_bfloat16 (__main__.TestModel) ... skip: MKL-DNN build is disabled (0.000s) 2023-01-11T20:52:52.6563061Z test_vision_densenet161_float32 (__main__.TestModel) ... skip: MKL-DNN build is disabled (0.000s) 2023-01-11T20:52:52.6563478Z test_vision_densenet169_bfloat16 (__main__.TestModel) ... skip: MKL-DNN build is disabled (0.000s) 2023-01-11T20:52:52.6563895Z test_vision_densenet169_float32 (__main__.TestModel) ... skip: MKL-DNN build is disabled (0.000s) 2023-01-11T20:52:52.6564295Z test_vision_densenet201_bfloat16 (__main__.TestModel) ... skip: MKL-DNN build is disabled (0.000s) 2023-01-11T20:52:52.6564703Z test_vision_densenet201_float32 (__main__.TestModel) ... skip: MKL-DNN build is disabled (0.000s) 2023-01-11T20:52:52.6565126Z test_vision_efficientnet_b0_bfloat16 (__main__.TestModel) ... skip: MKL-DNN build is disabled (0.000s) 2023-01-11T20:52:52.6565547Z test_vision_efficientnet_b0_float32 (__main__.TestModel) ... skip: MKL-DNN build is disabled (0.000s) 2023-01-11T20:52:52.6565958Z test_vision_efficientnet_b1_bfloat16 (__main__.TestModel) ... skip: MKL-DNN build is disabled (0.000s) 2023-01-11T20:52:52.6566379Z test_vision_efficientnet_b1_float32 (__main__.TestModel) ... skip: MKL-DNN build is disabled (0.000s) 2023-01-11T20:52:52.6566853Z test_vision_efficientnet_b2_bfloat16 (__main__.TestModel) ... skip: MKL-DNN build is disabled (0.000s) 2023-01-11T20:52:52.6567272Z test_vision_efficientnet_b2_float32 (__main__.TestModel) ... skip: MKL-DNN build is disabled (0.000s) 2023-01-11T20:52:52.6567683Z test_vision_efficientnet_b3_bfloat16 (__main__.TestModel) ... skip: MKL-DNN build is disabled (0.000s) 2023-01-11T20:52:52.6568105Z test_vision_efficientnet_b3_float32 (__main__.TestModel) ... skip: MKL-DNN build is disabled (0.000s) 2023-01-11T20:52:52.6568526Z test_vision_efficientnet_b4_bfloat16 (__main__.TestModel) ... skip: MKL-DNN build is disabled (0.000s) 2023-01-11T20:52:52.6568934Z test_vision_efficientnet_b4_float32 (__main__.TestModel) ... skip: MKL-DNN build is disabled (0.000s) 2023-01-11T20:52:52.6569356Z test_vision_efficientnet_b5_bfloat16 (__main__.TestModel) ... skip: MKL-DNN build is disabled (0.000s) 2023-01-11T20:52:52.6569777Z test_vision_efficientnet_b5_float32 (__main__.TestModel) ... skip: MKL-DNN build is disabled (0.000s) 2023-01-11T20:52:52.6570199Z test_vision_efficientnet_b6_bfloat16 (__main__.TestModel) ... skip: MKL-DNN build is disabled (0.000s) 2023-01-11T20:52:52.6570654Z test_vision_efficientnet_b6_float32 (__main__.TestModel) ... skip: MKL-DNN build is disabled (0.000s) 2023-01-11T20:52:52.6571082Z test_vision_efficientnet_b7_bfloat16 (__main__.TestModel) ... skip: MKL-DNN build is disabled (0.000s) 2023-01-11T20:52:52.6571504Z test_vision_efficientnet_b7_float32 (__main__.TestModel) ... skip: MKL-DNN build is disabled (0.000s) 2023-01-11T20:52:52.6571917Z test_vision_googlenet_bfloat16 (__main__.TestModel) ... skip: MKL-DNN build is disabled (0.000s) 2023-01-11T20:52:52.6572314Z test_vision_googlenet_float32 (__main__.TestModel) ... skip: MKL-DNN build is disabled (0.000s) 2023-01-11T20:52:52.6572726Z test_vision_mnasnet1_0_bfloat16 (__main__.TestModel) ... skip: MKL-DNN build is disabled (0.000s) 2023-01-11T20:52:52.6573129Z test_vision_mnasnet1_0_float32 (__main__.TestModel) ... skip: MKL-DNN build is disabled (0.000s) 2023-01-11T20:52:52.6573543Z test_vision_mobilenet_v2_bfloat16 (__main__.TestModel) ... skip: MKL-DNN build is disabled (0.000s) 2023-01-11T20:52:52.6573946Z test_vision_mobilenet_v2_float32 (__main__.TestModel) ... skip: MKL-DNN build is disabled (0.000s) 2023-01-11T20:52:52.6574375Z test_vision_mobilenet_v3_large_bfloat16 (__main__.TestModel) ... skip: MKL-DNN build is disabled (0.000s) 2023-01-11T20:52:52.6574802Z test_vision_mobilenet_v3_large_float32 (__main__.TestModel) ... skip: MKL-DNN build is disabled (0.000s) 2023-01-11T20:52:52.6575211Z test_vision_regnet_y_400mf_bfloat16 (__main__.TestModel) ... skip: MKL-DNN build is disabled (0.000s) 2023-01-11T20:52:52.6575624Z test_vision_regnet_y_400mf_float32 (__main__.TestModel) ... skip: MKL-DNN build is disabled (0.000s) 2023-01-11T20:52:52.6576031Z test_vision_resnet50_bfloat16 (__main__.TestModel) ... skip: MKL-DNN build is disabled (0.000s) 2023-01-11T20:52:52.6576432Z test_vision_resnet50_float32 (__main__.TestModel) ... skip: MKL-DNN build is disabled (0.000s) 2023-01-11T20:52:52.6576837Z test_vision_resnext101_32x8d_bfloat16 (__main__.TestModel) ... skip: MKL-DNN build is disabled (0.000s) 2023-01-11T20:52:52.6577258Z test_vision_resnext101_32x8d_float32 (__main__.TestModel) ... skip: MKL-DNN build is disabled (0.000s) 2023-01-11T20:52:52.6577681Z test_vision_resnext50_32x4d_bfloat16 (__main__.TestModel) ... skip: MKL-DNN build is disabled (0.000s) 2023-01-11T20:52:52.6578099Z test_vision_resnext50_32x4d_float32 (__main__.TestModel) ... skip: MKL-DNN build is disabled (0.000s) 2023-01-11T20:52:52.6578511Z test_vision_shufflenet_v2_x1_0_bfloat16 (__main__.TestModel) ... skip: MKL-DNN build is disabled (0.000s) 2023-01-11T20:52:52.6578933Z test_vision_shufflenet_v2_x1_0_float32 (__main__.TestModel) ... skip: MKL-DNN build is disabled (0.000s) 2023-01-11T20:52:52.6579471Z test_vision_squeezenet1_0_bfloat16 (__main__.TestModel) ... skip: MKL-DNN build is disabled (0.000s) 2023-01-11T20:52:52.6579926Z test_vision_squeezenet1_0_float32 (__main__.TestModel) ... skip: MKL-DNN build is disabled (0.000s) 2023-01-11T20:52:52.6580331Z test_vision_vgg16_bfloat16 (__main__.TestModel) ... skip: MKL-DNN build is disabled (0.000s) 2023-01-11T20:52:52.6580725Z test_vision_vgg16_float32 (__main__.TestModel) ... skip: MKL-DNN build is disabled (0.000s) 2023-01-11T20:52:52.6581139Z test_vision_wide_resnet50_2_bfloat16 (__main__.TestModel) ... skip: MKL-DNN build is disabled (0.000s) 2023-01-11T20:52:52.6581546Z test_vision_wide_resnet50_2_float32 (__main__.TestModel) ... skip: MKL-DNN build is disabled (0.000s) 2023-01-11T20:52:52.6581943Z test_add_cpu_bfloat16 (__main__.TestOpCPU) ... skip: MKL-DNN build is disabled (0.001s) 2023-01-11T20:52:52.6582332Z test_add_cpu_float32 (__main__.TestOpCPU) ... skip: MKL-DNN build is disabled (0.001s) 2023-01-11T20:52:52.6582733Z test_add_scalar_cpu_bfloat16 (__main__.TestOpCPU) ... skip: MKL-DNN build is disabled (0.001s) 2023-01-11T20:52:52.6583126Z test_add_scalar_cpu_float32 (__main__.TestOpCPU) ... skip: MKL-DNN build is disabled (0.001s) 2023-01-11T20:52:52.6583523Z test_addmm_cpu_bfloat16 (__main__.TestOpCPU) ... skip: MKL-DNN build is disabled (0.001s) 2023-01-11T20:52:52.6583951Z test_addmm_cpu_float32 (__main__.TestOpCPU) ... skip: MKL-DNN build is disabled (0.001s) 2023-01-11T20:52:52.6584342Z test_avg_pool2d_cpu_bfloat16 (__main__.TestOpCPU) ... skip: MKL-DNN build is disabled (0.001s) 2023-01-11T20:52:52.6584745Z test_avg_pool2d_cpu_float32 (__main__.TestOpCPU) ... skip: MKL-DNN build is disabled (0.001s) 2023-01-11T20:52:52.6585136Z test_bn2d_cpu_bfloat16 (__main__.TestOpCPU) ... skip: MKL-DNN build is disabled (0.001s) 2023-01-11T20:52:52.6585521Z test_bn2d_cpu_float32 (__main__.TestOpCPU) ... skip: MKL-DNN build is disabled (0.001s) 2023-01-11T20:52:52.6585888Z test_cat_cpu_bfloat16 (__main__.TestOpCPU) ... skip: MKL-DNN build is disabled (0.001s) 2023-01-11T20:52:52.6586268Z test_cat_cpu_float32 (__main__.TestOpCPU) ... skip: MKL-DNN build is disabled (0.001s) 2023-01-11T20:52:52.6586656Z test_conv2d_cpu_bfloat16 (__main__.TestOpCPU) ... skip: MKL-DNN build is disabled (0.001s) 2023-01-11T20:52:52.6587048Z test_conv2d_cpu_float32 (__main__.TestOpCPU) ... skip: MKL-DNN build is disabled (0.001s) 2023-01-11T20:52:52.6587426Z test_eltwise_cpu_bfloat16 (__main__.TestOpCPU) ... skip: MKL-DNN build is disabled (0.001s) 2023-01-11T20:52:52.6587817Z test_eltwise_cpu_float32 (__main__.TestOpCPU) ... skip: MKL-DNN build is disabled (0.001s) 2023-01-11T20:52:52.6588224Z test_identity_binary_cpu_bfloat16 (__main__.TestOpCPU) ... skip: MKL-DNN build is disabled (0.001s) 2023-01-11T20:52:52.6588630Z test_identity_binary_cpu_float32 (__main__.TestOpCPU) ... skip: MKL-DNN build is disabled (0.001s) 2023-01-11T20:52:52.6589035Z test_layer_norm_cpu_bfloat16 (__main__.TestOpCPU) ... skip: MKL-DNN build is disabled (0.001s) 2023-01-11T20:52:52.6589434Z test_layer_norm_cpu_float32 (__main__.TestOpCPU) ... skip: MKL-DNN build is disabled (0.001s) 2023-01-11T20:52:52.6589836Z test_linear_cpu_bfloat16 (__main__.TestOpCPU) ... skip: MKL-DNN build is disabled (0.001s) 2023-01-11T20:52:52.6590214Z test_linear_cpu_float32 (__main__.TestOpCPU) ... skip: MKL-DNN build is disabled (0.001s) 2023-01-11T20:52:52.6590618Z test_max_pool2d_cpu_bfloat16 (__main__.TestOpCPU) ... skip: MKL-DNN build is disabled (0.001s) 2023-01-11T20:52:52.6591020Z test_max_pool2d_cpu_float32 (__main__.TestOpCPU) ... skip: MKL-DNN build is disabled (0.001s) 2023-01-11T20:52:52.6591401Z test_mul_cpu_bfloat16 (__main__.TestOpCPU) ... skip: MKL-DNN build is disabled (0.001s) 2023-01-11T20:52:52.6591783Z test_mul_cpu_float32 (__main__.TestOpCPU) ... skip: MKL-DNN build is disabled (0.001s) 2023-01-11T20:52:52.6592178Z test_softmax_cpu_bfloat16 (__main__.TestOpCPU) ... skip: MKL-DNN build is disabled (0.001s) 2023-01-11T20:52:52.6592571Z test_softmax_cpu_float32 (__main__.TestOpCPU) ... skip: MKL-DNN build is disabled (0.001s) 2023-01-11T20:52:52.6592996Z test_typecheck_cpu_bfloat16 (__main__.TestOpCPU) ... skip: MKL-DNN build is disabled (0.001s) 2023-01-11T20:52:52.6593398Z test_typecheck_cpu_float32 (__main__.TestOpCPU) ... skip: MKL-DNN build is disabled (0.001s) 2023-01-11T20:52:52.6593837Z test_variable_kernel_avg_pool2d_cpu_bfloat16 (__main__.TestOpCPU) ... skip: MKL-DNN build is disabled (0.001s) 2023-01-11T20:52:52.6594287Z test_variable_kernel_avg_pool2d_cpu_float32 (__main__.TestOpCPU) ... skip: MKL-DNN build is disabled (0.001s) 2023-01-11T20:52:52.6594470Z 2023-01-11T20:52:52.6594668Z ---------------------------------------------------------------------- 2023-01-11T20:52:52.6594913Z Ran 107 tests in 0.077s 2023-01-11T20:52:52.6595027Z 2023-01-11T20:52:52.6595100Z OK (skipped=107) 2023-01-11T20:52:52.6595209Z 2023-01-11T20:52:52.6595279Z Generating XML reports... 2023-01-11T20:52:52.6595689Z Generated XML report: test-reports/python-unittest/test_jit_llga_fuser/TEST-TestDynamoAOT-20230111205251.xml 2023-01-11T20:52:52.6596240Z Generated XML report: test-reports/python-unittest/test_jit_llga_fuser/TEST-TestEnableDisableLlgaFuser-20230111205251.xml 2023-01-11T20:52:52.6596836Z Generated XML report: test-reports/python-unittest/test_jit_llga_fuser/TEST-TestFusionPatternCPU-20230111205251.xml 2023-01-11T20:52:52.6597334Z Generated XML report: test-reports/python-unittest/test_jit_llga_fuser/TEST-TestModel-20230111205251.xml 2023-01-11T20:52:52.6597809Z Generated XML report: test-reports/python-unittest/test_jit_llga_fuser/TEST-TestOpCPU-20230111205251.xml 2023-01-11T20:52:52.6598025Z 2023-01-11T20:52:52.6598304Z ##[endgroup] 2023-01-11T20:52:52.6598687Z FINISHED PRINTING LOG FILE of test_jit_llga_fuser (/var/lib/jenkins/workspace/test/test-reports/test_jit_llga_fuser_ljnanlup) 2023-01-11T20:52:52.6598906Z 2023-01-11T20:52:57.7470776Z No CUDA runtime is found, using CUDA_HOME='/usr/local/cuda' 2023-01-11T20:52:57.9372082Z Ignoring disabled issues: ['91003'] 2023-01-11T20:52:57.9670513Z Running test_mkldnn ... [2023-01-11 20:52:57.966537] 2023-01-11T20:52:57.9671363Z Executing ['/opt/conda/bin/python', '-bb', 'test_mkldnn.py', '-v', '--import-slow-tests', '--import-disabled-tests'] ... [2023-01-11 20:52:57.966848] 2023-01-11T20:53:02.4088590Z 2023-01-11T20:53:02.4089356Z Expand the folded group to see the log file of test_mkldnn 2023-01-11T20:53:02.4090476Z ##[group]PRINTING LOG FILE of test_mkldnn (/var/lib/jenkins/workspace/test/test-reports/test_mkldnn_3_0m5gp6) 2023-01-11T20:53:02.4090806Z 2023-01-11T20:53:02.4090916Z Running tests... 2023-01-11T20:53:02.4094819Z ---------------------------------------------------------------------- 2023-01-11T20:53:02.4095714Z test_0_dimension_tensor (__main__.TestMkldnn) ... Test results will be stored in test-reports/python-unittest/test_mkldnn 2023-01-11T20:53:02.4096382Z skip: MKL-DNN build is disabled (0.002s) 2023-01-11T20:53:02.4097076Z test_adaptive_avg_pool2d (__main__.TestMkldnn) ... skip: MKL-DNN build is disabled (0.001s) 2023-01-11T20:53:02.4097869Z test_adaptive_avg_pool2d_bf16 (__main__.TestMkldnn) ... skip: MKL-DNN build is disabled (0.001s) 2023-01-11T20:53:02.4098615Z test_add (__main__.TestMkldnn) ... skip: MKL-DNN build is disabled (0.002s) 2023-01-11T20:53:02.4099519Z test_autograd_from_mkldnn (__main__.TestMkldnn) ... skip: MKL-DNN build is disabled (0.001s) 2023-01-11T20:53:02.4100265Z test_autograd_to_mkldnn (__main__.TestMkldnn) ... skip: MKL-DNN build is disabled (0.001s) 2023-01-11T20:53:02.4100994Z test_avg_pool2d (__main__.TestMkldnn) ... skip: MKL-DNN build is disabled (0.001s) 2023-01-11T20:53:02.4101857Z test_avg_pool2d_bf16 (__main__.TestMkldnn) ... skip: MKL-DNN build is disabled (0.001s) 2023-01-11T20:53:02.4102609Z test_avg_pool2d_stride_none (__main__.TestMkldnn) ... skip: MKL-DNN build is disabled (0.001s) 2023-01-11T20:53:02.4103346Z test_avg_pool3d (__main__.TestMkldnn) ... skip: MKL-DNN build is disabled (0.001s) 2023-01-11T20:53:02.4104085Z test_avg_pool3d_bf16 (__main__.TestMkldnn) ... skip: MKL-DNN build is disabled (0.001s) 2023-01-11T20:53:02.4105105Z test_batch_norm_2d (__main__.TestMkldnn) ... skip: MKL-DNN build is disabled (0.001s) 2023-01-11T20:53:02.4105837Z test_batch_norm_2d_bf16 (__main__.TestMkldnn) ... skip: MKL-DNN build is disabled (0.001s) 2023-01-11T20:53:02.4106581Z test_batch_norm_3d (__main__.TestMkldnn) ... skip: MKL-DNN build is disabled (0.001s) 2023-01-11T20:53:02.4107318Z test_batch_norm_3d_bf16 (__main__.TestMkldnn) ... skip: MKL-DNN build is disabled (0.001s) 2023-01-11T20:53:02.4108033Z test_clone (__main__.TestMkldnn) ... skip: MKL-DNN build is disabled (0.001s) 2023-01-11T20:53:02.4108702Z test_conv1d (__main__.TestMkldnn) ... skip: MKL-DNN build is disabled (0.000s) 2023-01-11T20:53:02.4109412Z test_conv1d_bf16 (__main__.TestMkldnn) ... skip: MKL-DNN build is disabled (0.000s) 2023-01-11T20:53:02.4110145Z test_conv1d_functional (__main__.TestMkldnn) ... skip: MKL-DNN build is disabled (0.001s) 2023-01-11T20:53:02.4110835Z test_conv2d (__main__.TestMkldnn) ... skip: MKL-DNN build is disabled (0.000s) 2023-01-11T20:53:02.4111535Z test_conv2d_bf16 (__main__.TestMkldnn) ... skip: MKL-DNN build is disabled (0.000s) 2023-01-11T20:53:02.4112046Z test_conv2d_legacy_jit_model (__main__.TestMkldnn) 2023-01-11T20:53:02.4112961Z MKLDNN integration used to serialize models with 5d weight for grouped ... skip: MKL-DNN build is disabled (0.001s) 2023-01-11T20:53:02.4113748Z test_conv2d_nhwc (__main__.TestMkldnn) ... skip: MKL-DNN build is disabled (0.000s) 2023-01-11T20:53:02.4114484Z test_conv2d_nhwc_bf16 (__main__.TestMkldnn) ... skip: MKL-DNN build is disabled (0.000s) 2023-01-11T20:53:02.4115197Z test_conv3d (__main__.TestMkldnn) ... skip: MKL-DNN build is disabled (0.000s) 2023-01-11T20:53:02.4115893Z test_conv3d_bf16 (__main__.TestMkldnn) ... skip: MKL-DNN build is disabled (0.000s) 2023-01-11T20:53:02.4116610Z test_conversion (__main__.TestMkldnn) ... skip: MKL-DNN build is disabled (0.003s) 2023-01-11T20:53:02.4117312Z test_copy (__main__.TestMkldnn) ... skip: MKL-DNN build is disabled (0.001s) 2023-01-11T20:53:02.4118000Z test_detach (__main__.TestMkldnn) ... skip: MKL-DNN build is disabled (0.001s) 2023-01-11T20:53:02.4118672Z test_empty (__main__.TestMkldnn) ... skip: MKL-DNN build is disabled (0.001s) 2023-01-11T20:53:02.4119360Z test_gelu (__main__.TestMkldnn) ... skip: MKL-DNN build is disabled (0.001s) 2023-01-11T20:53:02.4120061Z test_gelu_bf16 (__main__.TestMkldnn) ... skip: MKL-DNN build is disabled (0.001s) 2023-01-11T20:53:02.4120935Z test_is_mkldnn (__main__.TestMkldnn) ... skip: MKL-DNN build is disabled (0.000s) 2023-01-11T20:53:02.4121648Z test_is_mkldnn_jit (__main__.TestMkldnn) ... skip: MKL-DNN build is disabled (0.001s) 2023-01-11T20:53:02.4122392Z test_legacy_new_failure (__main__.TestMkldnn) ... skip: MKL-DNN build is disabled (0.001s) 2023-01-11T20:53:02.4123099Z test_linear (__main__.TestMkldnn) ... skip: MKL-DNN build is disabled (0.001s) 2023-01-11T20:53:02.4123800Z test_linear_backward (__main__.TestMkldnn) ... skip: MKL-DNN build is disabled (0.001s) 2023-01-11T20:53:02.4124529Z test_linear_bf16 (__main__.TestMkldnn) ... skip: MKL-DNN build is disabled (0.001s) 2023-01-11T20:53:02.4125300Z test_linear_non_contiguous_weight (__main__.TestMkldnn) ... skip: MKL-DNN build is disabled (0.001s) 2023-01-11T20:53:02.4126042Z test_max_pool2d (__main__.TestMkldnn) ... skip: MKL-DNN build is disabled (0.001s) 2023-01-11T20:53:02.4126782Z test_max_pool2d_bf16 (__main__.TestMkldnn) ... skip: MKL-DNN build is disabled (0.001s) 2023-01-11T20:53:02.4127532Z test_max_pool2d_stride_none (__main__.TestMkldnn) ... skip: MKL-DNN build is disabled (0.001s) 2023-01-11T20:53:02.4128266Z test_max_pool3d (__main__.TestMkldnn) ... skip: MKL-DNN build is disabled (0.001s) 2023-01-11T20:53:02.4128969Z test_max_pool3d_bf16 (__main__.TestMkldnn) ... skip: MKL-DNN build is disabled (0.001s) 2023-01-11T20:53:02.4129724Z test_max_pool_unsupported (__main__.TestMkldnn) ... skip: MKL-DNN build is disabled (0.001s) 2023-01-11T20:53:02.4130501Z test_mkldnn_conv_shapecheck (__main__.TestMkldnn) ... skip: MKL-DNN build is disabled (0.002s) 2023-01-11T20:53:02.4131381Z test_mul (__main__.TestMkldnn) ... skip: MKL-DNN build is disabled (0.002s) 2023-01-11T20:53:02.4132051Z test_prelu (__main__.TestMkldnn) ... skip: MKL-DNN build is disabled (0.001s) 2023-01-11T20:53:02.4132753Z test_prelu_bf16 (__main__.TestMkldnn) ... skip: MKL-DNN build is disabled (0.001s) 2023-01-11T20:53:02.4133446Z test_relu (__main__.TestMkldnn) ... skip: MKL-DNN build is disabled (0.001s) 2023-01-11T20:53:02.4134100Z test_relu_ (__main__.TestMkldnn) ... skip: MKL-DNN build is disabled (0.001s) 2023-01-11T20:53:02.4134789Z test_relu_bf16 (__main__.TestMkldnn) ... skip: MKL-DNN build is disabled (0.000s) 2023-01-11T20:53:02.4135519Z test_relu_inplace_bf16 (__main__.TestMkldnn) ... skip: MKL-DNN build is disabled (0.000s) 2023-01-11T20:53:02.4136225Z test_repr (__main__.TestMkldnn) ... skip: MKL-DNN build is disabled (0.000s) 2023-01-11T20:53:02.4136906Z test_reshape (__main__.TestMkldnn) ... skip: MKL-DNN build is disabled (0.001s) 2023-01-11T20:53:02.4137644Z test_reshape_backward (__main__.TestMkldnn) ... skip: MKL-DNN build is disabled (0.001s) 2023-01-11T20:53:02.4138563Z test_reshape_blocked_format (__main__.TestMkldnn) ... skip: MKL-DNN build is disabled (0.001s) 2023-01-11T20:53:02.4139384Z test_resnet18 (__main__.TestMkldnn) ... skip: MKL-DNN build is disabled (0.000s) 2023-01-11T20:53:02.4140116Z test_resnext50_32x4d (__main__.TestMkldnn) ... skip: MKL-DNN build is disabled (0.000s) 2023-01-11T20:53:02.4140883Z test_set_data_tensorimpl_type (__main__.TestMkldnn) ... skip: MKL-DNN build is disabled (0.000s) 2023-01-11T20:53:02.4141617Z test_sigmoid (__main__.TestMkldnn) ... skip: MKL-DNN build is disabled (0.001s) 2023-01-11T20:53:02.4142301Z test_softmax (__main__.TestMkldnn) ... skip: MKL-DNN build is disabled (0.000s) 2023-01-11T20:53:02.4142989Z test_tanh (__main__.TestMkldnn) ... skip: MKL-DNN build is disabled (0.001s) 2023-01-11T20:53:02.4143698Z test_transpose (__main__.TestMkldnn) ... skip: MKL-DNN build is disabled (0.001s) 2023-01-11T20:53:02.4144436Z test_transpose_invalid_dime (__main__.TestMkldnn) ... skip: MKL-DNN build is disabled (0.000s) 2023-01-11T20:53:02.4145179Z test_unsupported (__main__.TestMkldnn) ... skip: MKL-DNN build is disabled (0.001s) 2023-01-11T20:53:02.4145874Z test_view (__main__.TestMkldnn) ... skip: MKL-DNN build is disabled (0.000s) 2023-01-11T20:53:02.4146557Z test_zero_ (__main__.TestMkldnn) ... skip: MKL-DNN build is disabled (0.000s) 2023-01-11T20:53:02.4146866Z 2023-01-11T20:53:02.4147226Z ---------------------------------------------------------------------- 2023-01-11T20:53:02.4147673Z Ran 68 tests in 0.053s 2023-01-11T20:53:02.4147887Z 2023-01-11T20:53:02.4148018Z OK (skipped=68) 2023-01-11T20:53:02.4148220Z 2023-01-11T20:53:02.4148363Z Generating XML reports... 2023-01-11T20:53:02.4149090Z Generated XML report: test-reports/python-unittest/test_mkldnn/TEST-TestMkldnn-20230111205301.xml 2023-01-11T20:53:02.4149499Z 2023-01-11T20:53:02.4150011Z ##[endgroup] 2023-01-11T20:53:02.4150700Z FINISHED PRINTING LOG FILE of test_mkldnn (/var/lib/jenkins/workspace/test/test-reports/test_mkldnn_3_0m5gp6) 2023-01-11T20:53:02.4151095Z 2023-01-11T20:53:07.3584950Z No CUDA runtime is found, using CUDA_HOME='/usr/local/cuda' 2023-01-11T20:53:07.5462831Z Ignoring disabled issues: ['91003'] 2023-01-11T20:53:07.5826415Z Running test_nvfuser_frontend ... [2023-01-11 20:53:07.582241] 2023-01-11T20:53:07.5828502Z Executing ['/opt/conda/bin/python', '-bb', 'test_nvfuser_frontend.py', '-v', '--import-slow-tests', '--import-disabled-tests'] ... [2023-01-11 20:53:07.582631] 2023-01-11T20:53:12.4325335Z 2023-01-11T20:53:12.4325880Z Expand the folded group to see the log file of test_nvfuser_frontend 2023-01-11T20:53:12.4326991Z ##[group]PRINTING LOG FILE of test_nvfuser_frontend (/var/lib/jenkins/workspace/test/test-reports/test_nvfuser_frontend_et1uaoj8) 2023-01-11T20:53:12.4327441Z 2023-01-11T20:53:12.4327569Z Running tests... 2023-01-11T20:53:12.4328481Z ---------------------------------------------------------------------- 2023-01-11T20:53:12.4329361Z test_basic (__main__.TestNvFuserFrontend) ... Test results will be stored in test-reports/python-unittest/test_nvfuser_frontend 2023-01-11T20:53:12.4329941Z skip: requires CUDA (0.003s) 2023-01-11T20:53:12.4330410Z test_basic_fp16 (__main__.TestNvFuserFrontend) ... skip: requires CUDA (0.001s) 2023-01-11T20:53:12.4331029Z test_broadcast_mixing (__main__.TestNvFuserFrontend) ... skip: requires CUDA (0.001s) 2023-01-11T20:53:12.4331646Z test_cast_double_to_half (__main__.TestNvFuserFrontend) ... skip: requires CUDA (0.001s) 2023-01-11T20:53:12.4332283Z test_explicit_broadcast_input (__main__.TestNvFuserFrontend) ... skip: requires CUDA (0.001s) 2023-01-11T20:53:12.4332915Z test_implicit_broadcast_input (__main__.TestNvFuserFrontend) ... skip: requires CUDA (0.001s) 2023-01-11T20:53:12.4333529Z test_ops_broadcast (__main__.TestNvFuserFrontend) ... skip: requires CUDA (0.001s) 2023-01-11T20:53:12.4334142Z test_prim_layer_norm_fwd (__main__.TestNvFuserFrontend) ... skip: requires CUDA (0.005s) 2023-01-11T20:53:12.4334754Z test_prim_rms_norm_fwd (__main__.TestNvFuserFrontend) ... skip: requires CUDA (0.003s) 2023-01-11T20:53:12.4335489Z test_promote_to_double (__main__.TestNvFuserFrontend) ... skip: requires CUDA (0.001s) 2023-01-11T20:53:12.4335834Z 2023-01-11T20:53:12.4336217Z ---------------------------------------------------------------------- 2023-01-11T20:53:12.4336648Z Ran 10 tests in 0.019s 2023-01-11T20:53:12.4336850Z 2023-01-11T20:53:12.4336962Z OK (skipped=10) 2023-01-11T20:53:12.4337156Z 2023-01-11T20:53:12.4337307Z Generating XML reports... 2023-01-11T20:53:12.4338124Z Generated XML report: test-reports/python-unittest/test_nvfuser_frontend/TEST-TestNvFuserFrontend-20230111205311.xml 2023-01-11T20:53:12.4338580Z 2023-01-11T20:53:12.4338971Z ##[endgroup] 2023-01-11T20:53:12.4339803Z FINISHED PRINTING LOG FILE of test_nvfuser_frontend (/var/lib/jenkins/workspace/test/test-reports/test_nvfuser_frontend_et1uaoj8) 2023-01-11T20:53:12.4340230Z 2023-01-11T20:53:17.6792723Z No CUDA runtime is found, using CUDA_HOME='/usr/local/cuda' 2023-01-11T20:53:17.8572539Z Ignoring disabled issues: ['91003'] 2023-01-11T20:53:17.8785969Z Running test_mkldnn_fusion ... [2023-01-11 20:53:17.878185] 2023-01-11T20:53:17.8786848Z Executing ['/opt/conda/bin/python', '-bb', 'test_mkldnn_fusion.py', '-v', '--import-slow-tests', '--import-disabled-tests'] ... [2023-01-11 20:53:17.878471] 2023-01-11T20:53:22.2894034Z 2023-01-11T20:53:22.2894563Z Expand the folded group to see the log file of test_mkldnn_fusion 2023-01-11T20:53:22.2895436Z ##[group]PRINTING LOG FILE of test_mkldnn_fusion (/var/lib/jenkins/workspace/test/test-reports/test_mkldnn_fusion_c9b6chnw) 2023-01-11T20:53:22.2895874Z 2023-01-11T20:53:22.2896009Z Running tests... 2023-01-11T20:53:22.2896456Z ---------------------------------------------------------------------- 2023-01-11T20:53:22.2896935Z test_conv_binary_fusion_ops (__main__.TestMkldnnFusion) ... Test results will be stored in test-reports/python-unittest/test_mkldnn_fusion 2023-01-11T20:53:22.2897331Z skip: MKL-DNN build is disabled (0.003s) 2023-01-11T20:53:22.2897704Z test_conv_unary_fusion_nnc (__main__.TestMkldnnFusion) ... skip: MKL-DNN build is disabled (0.002s) 2023-01-11T20:53:22.2898129Z test_conv_unary_fusion_ops (__main__.TestMkldnnFusion) ... skip: MKL-DNN build is disabled (0.002s) 2023-01-11T20:53:22.2898558Z test_linear_binary_fusion_ops (__main__.TestMkldnnFusion) ... skip: MKL-DNN build is disabled (0.001s) 2023-01-11T20:53:22.2899055Z test_linear_unary_fusion_ops (__main__.TestMkldnnFusion) ... skip: MKL-DNN build is disabled (0.001s) 2023-01-11T20:53:22.2899457Z test_single_conv (__main__.TestMkldnnFusion) ... skip: MKL-DNN build is disabled (0.002s) 2023-01-11T20:53:22.2899871Z test_unsupported_conv (__main__.TestMkldnnFusion) ... skip: MKL-DNN build is disabled (0.002s) 2023-01-11T20:53:22.2900060Z 2023-01-11T20:53:22.2900257Z ---------------------------------------------------------------------- 2023-01-11T20:53:22.2900793Z Ran 7 tests in 0.013s 2023-01-11T20:53:22.2900977Z 2023-01-11T20:53:22.2901107Z OK (skipped=7) 2023-01-11T20:53:22.2901301Z 2023-01-11T20:53:22.2901459Z Generating XML reports... 2023-01-11T20:53:22.2901986Z Generated XML report: test-reports/python-unittest/test_mkldnn_fusion/TEST-TestMkldnnFusion-20230111205321.xml 2023-01-11T20:53:22.2902220Z 2023-01-11T20:53:22.2902447Z ##[endgroup] 2023-01-11T20:53:22.2902836Z FINISHED PRINTING LOG FILE of test_mkldnn_fusion (/var/lib/jenkins/workspace/test/test-reports/test_mkldnn_fusion_c9b6chnw) 2023-01-11T20:53:22.2903053Z 2023-01-11T20:53:27.1964610Z No CUDA runtime is found, using CUDA_HOME='/usr/local/cuda' 2023-01-11T20:53:27.3609609Z Ignoring disabled issues: ['91003'] 2023-01-11T20:53:27.3825340Z Running test_numba_integration ... [2023-01-11 20:53:27.382134] 2023-01-11T20:53:27.3826836Z Executing ['/opt/conda/bin/python', '-bb', 'test_numba_integration.py', '-v', '--import-slow-tests', '--import-disabled-tests'] ... [2023-01-11 20:53:27.382446] 2023-01-11T20:53:32.1236195Z 2023-01-11T20:53:32.1237150Z Expand the folded group to see the log file of test_numba_integration 2023-01-11T20:53:32.1238475Z ##[group]PRINTING LOG FILE of test_numba_integration (/var/lib/jenkins/workspace/test/test-reports/test_numba_integration_3pk7e6s2) 2023-01-11T20:53:32.1239344Z Test results will be stored in test-reports/python-unittest/test_numba_integration 2023-01-11T20:53:32.1239654Z 2023-01-11T20:53:32.1239777Z Running tests... 2023-01-11T20:53:32.1240282Z ---------------------------------------------------------------------- 2023-01-11T20:53:32.1240996Z test_active_device (__main__.TestNumbaIntegration) 2023-01-11T20:53:32.1241701Z 'as_cuda_array' tensor device must match active numba context. ... skip: No cuda (0.001s) 2023-01-11T20:53:32.1242262Z test_array_adaptor (__main__.TestNumbaIntegration) 2023-01-11T20:53:32.1242821Z Torch __cuda_array_adaptor__ exposes tensor data to numba.cuda. ... skip: No cuda (0.002s) 2023-01-11T20:53:32.1243391Z test_conversion_errors (__main__.TestNumbaIntegration) 2023-01-11T20:53:32.1243992Z Numba properly detects array interface for tensor.Tensor variants. ... skip: No cuda (0.002s) 2023-01-11T20:53:32.1244599Z test_cuda_array_interface (__main__.TestNumbaIntegration) 2023-01-11T20:53:32.1247589Z torch.Tensor exposes __cuda_array_interface__ for cuda tensors. ... skip: No cuda (0.002s) 2023-01-11T20:53:32.1248724Z test_from_cuda_array_interface (__main__.TestNumbaIntegration) 2023-01-11T20:53:32.1250341Z torch.as_tensor() and torch.tensor() supports the __cuda_array_interface__ protocol. ... skip: Test is temporary disabled, see https://github.com/pytorch/pytorch/issues/54418 (0.003s) 2023-01-11T20:53:32.1251446Z test_from_cuda_array_interface_active_device (__main__.TestNumbaIntegration) 2023-01-11T20:53:32.1252771Z torch.as_tensor() tensor device must match active numba context. ... skip: Test is temporary disabled, see https://github.com/pytorch/pytorch/issues/54418 (0.001s) 2023-01-11T20:53:32.1253666Z test_from_cuda_array_interface_inferred_strides (__main__.TestNumbaIntegration) 2023-01-11T20:53:32.1254456Z torch.as_tensor(numba_ary) should have correct inferred (contiguous) strides ... skip: No cuda (0.001s) 2023-01-11T20:53:32.1255178Z test_from_cuda_array_interface_lifetime (__main__.TestNumbaIntegration) 2023-01-11T20:53:32.1256133Z torch.as_tensor(obj) tensor grabs a reference to obj so that the lifetime of obj exceeds the tensor ... skip: Test is temporary disabled, see https://github.com/pytorch/pytorch/issues/54418 (0.001s) 2023-01-11T20:53:32.1256749Z 2023-01-11T20:53:32.1257269Z ---------------------------------------------------------------------- 2023-01-11T20:53:32.1257774Z Ran 8 tests in 0.013s 2023-01-11T20:53:32.1258014Z 2023-01-11T20:53:32.1258165Z OK (skipped=8) 2023-01-11T20:53:32.1258394Z 2023-01-11T20:53:32.1258571Z Generating XML reports... 2023-01-11T20:53:32.1259595Z Generated XML report: test-reports/python-unittest/test_numba_integration/TEST-TestNumbaIntegration-20230111205331.xml 2023-01-11T20:53:32.1260450Z 2023-01-11T20:53:32.1261010Z ##[endgroup] 2023-01-11T20:53:32.1261924Z FINISHED PRINTING LOG FILE of test_numba_integration (/var/lib/jenkins/workspace/test/test-reports/test_numba_integration_3pk7e6s2) 2023-01-11T20:53:32.1262413Z 2023-01-11T20:53:36.9775581Z No CUDA runtime is found, using CUDA_HOME='/usr/local/cuda' 2023-01-11T20:53:37.1387026Z Ignoring disabled issues: ['91003'] 2023-01-11T20:53:37.1600436Z Running dynamo/test_aot_cudagraphs ... [2023-01-11 20:53:37.159646] 2023-01-11T20:53:37.1601820Z Executing ['/opt/conda/bin/python', '-bb', 'dynamo/test_aot_cudagraphs.py', '-v', '--import-slow-tests', '--import-disabled-tests'] ... [2023-01-11 20:53:37.159930] 2023-01-11T20:53:41.6602561Z 2023-01-11T20:53:41.6603126Z Expand the folded group to see the log file of dynamo/test_aot_cudagraphs 2023-01-11T20:53:41.6604394Z ##[group]PRINTING LOG FILE of dynamo/test_aot_cudagraphs (/var/lib/jenkins/workspace/test/test-reports/dynamo-test_aot_cudagraphs_jezoiuh4) 2023-01-11T20:53:41.6604885Z 2023-01-11T20:53:41.6605005Z Running tests... 2023-01-11T20:53:41.6605628Z ---------------------------------------------------------------------- 2023-01-11T20:53:41.6606875Z test_basic (__main__.TestAotCudagraphs) ... Test results will be stored in test-reports/python-unittest/dynamo.test_aot_cudagraphs 2023-01-11T20:53:41.6607459Z skip: these tests require cuda (0.001s) 2023-01-11T20:53:41.6607934Z test_dead_fill (__main__.TestAotCudagraphs) ... skip: these tests require cuda (0.001s) 2023-01-11T20:53:41.6608499Z test_dtoh (__main__.TestAotCudagraphs) ... skip: these tests require cuda (0.001s) 2023-01-11T20:53:41.6609081Z test_factory (__main__.TestAotCudagraphs) ... skip: these tests require cuda (0.001s) 2023-01-11T20:53:41.6609581Z test_htod (__main__.TestAotCudagraphs) ... skip: these tests require cuda (0.001s) 2023-01-11T20:53:41.6610119Z test_mutate_constant (__main__.TestAotCudagraphs) ... skip: these tests require cuda (0.001s) 2023-01-11T20:53:41.6610708Z test_mutate_input (__main__.TestAotCudagraphs) ... skip: these tests require cuda (0.001s) 2023-01-11T20:53:41.6611280Z test_mutated_metadata (__main__.TestAotCudagraphs) ... skip: these tests require cuda (0.001s) 2023-01-11T20:53:41.6611610Z 2023-01-11T20:53:41.6611991Z ---------------------------------------------------------------------- 2023-01-11T20:53:41.6612376Z Ran 8 tests in 0.007s 2023-01-11T20:53:41.6612570Z 2023-01-11T20:53:41.6612688Z OK (skipped=8) 2023-01-11T20:53:41.6612870Z 2023-01-11T20:53:41.6613013Z Generating XML reports... 2023-01-11T20:53:41.6613776Z Generated XML report: test-reports/python-unittest/dynamo.test_aot_cudagraphs/TEST-TestAotCudagraphs-20230111205341.xml 2023-01-11T20:53:41.6614183Z 2023-01-11T20:53:41.6614617Z ##[endgroup] 2023-01-11T20:53:41.6615373Z FINISHED PRINTING LOG FILE of dynamo/test_aot_cudagraphs (/var/lib/jenkins/workspace/test/test-reports/dynamo-test_aot_cudagraphs_jezoiuh4) 2023-01-11T20:53:41.6615813Z 2023-01-11T20:53:46.5152765Z No CUDA runtime is found, using CUDA_HOME='/usr/local/cuda' 2023-01-11T20:53:46.6813595Z Ignoring disabled issues: ['91003'] 2023-01-11T20:53:46.7032327Z Running dynamo/test_replay_record ... [2023-01-11 20:53:46.702717] 2023-01-11T20:53:46.7033081Z Executing ['/opt/conda/bin/python', '-bb', 'dynamo/test_replay_record.py', '-v', '--import-slow-tests', '--import-disabled-tests'] ... [2023-01-11 20:53:46.703028] 2023-01-11T20:53:51.1531711Z 2023-01-11T20:53:51.1532424Z Expand the folded group to see the log file of dynamo/test_replay_record 2023-01-11T20:53:51.1533891Z ##[group]PRINTING LOG FILE of dynamo/test_replay_record (/var/lib/jenkins/workspace/test/test-reports/dynamo-test_replay_record__y_jny86) 2023-01-11T20:53:51.1534982Z Test results will be stored in test-reports/python-unittest/dynamo.test_replay_record 2023-01-11T20:53:51.1535338Z 2023-01-11T20:53:51.1535455Z Running tests... 2023-01-11T20:53:51.1536012Z ---------------------------------------------------------------------- 2023-01-11T20:53:51.1536835Z test_fn_call_args (__main__.ReplayRecordTests) ... skip: requires dill (0.001s) 2023-01-11T20:53:51.1537285Z test_local_module (__main__.ReplayRecordTests) ... skip: requires dill (0.001s) 2023-01-11T20:53:51.1537789Z test_nonlocal_fn_call (__main__.ReplayRecordTests) ... skip: requires dill (0.001s) 2023-01-11T20:53:51.1538295Z test_nonlocal_module_class (__main__.ReplayRecordTests) ... skip: requires dill (0.001s) 2023-01-11T20:53:51.1538748Z test_nonlocal_module_fn_call (__main__.ReplayRecordTests) ... skip: requires dill (0.001s) 2023-01-11T20:53:51.1539131Z test_successful_inline (__main__.ReplayRecordTests) ... skip: requires dill (0.001s) 2023-01-11T20:53:51.1539460Z test_unsuccessful_inline (__main__.ReplayRecordTests) ... skip: requires dill (0.001s) 2023-01-11T20:53:51.1539642Z 2023-01-11T20:53:51.1539860Z ---------------------------------------------------------------------- 2023-01-11T20:53:51.1540097Z Ran 7 tests in 0.005s 2023-01-11T20:53:51.1540201Z 2023-01-11T20:53:51.1540289Z OK (skipped=7) 2023-01-11T20:53:51.1540396Z 2023-01-11T20:53:51.1540480Z Generating XML reports... 2023-01-11T20:53:51.1541039Z Generated XML report: test-reports/python-unittest/dynamo.test_replay_record/TEST-ReplayRecordTests-20230111205350.xml 2023-01-11T20:53:51.1541285Z 2023-01-11T20:53:51.1541548Z ##[endgroup] 2023-01-11T20:53:51.1541967Z FINISHED PRINTING LOG FILE of dynamo/test_replay_record (/var/lib/jenkins/workspace/test/test-reports/dynamo-test_replay_record__y_jny86) 2023-01-11T20:53:51.1542206Z 2023-01-11T20:53:55.9299857Z No CUDA runtime is found, using CUDA_HOME='/usr/local/cuda' 2023-01-11T20:53:56.0945510Z Ignoring disabled issues: ['91003'] 2023-01-11T20:53:56.1160995Z Running test_complex ... [2023-01-11 20:53:56.115795] 2023-01-11T20:53:56.1163126Z Executing ['/opt/conda/bin/python', '-bb', 'test_complex.py', '-v', '--import-slow-tests', '--import-disabled-tests'] ... [2023-01-11 20:53:56.116100] 2023-01-11T20:54:00.8400042Z 2023-01-11T20:54:00.8400792Z Expand the folded group to see the log file of test_complex 2023-01-11T20:54:00.8401642Z ##[group]PRINTING LOG FILE of test_complex (/var/lib/jenkins/workspace/test/test-reports/test_complex_4xy57yw0) 2023-01-11T20:54:00.8402157Z Test results will be stored in test-reports/python-unittest/test_complex 2023-01-11T20:54:00.8402353Z 2023-01-11T20:54:00.8402427Z Running tests... 2023-01-11T20:54:00.8402740Z ---------------------------------------------------------------------- 2023-01-11T20:54:00.8403046Z test_dtype_inference_cpu_float32 (__main__.TestComplexTensorCPU) ... ok (0.003s) 2023-01-11T20:54:00.8403377Z test_dtype_inference_cpu_float64 (__main__.TestComplexTensorCPU) ... ok (0.001s) 2023-01-11T20:54:00.8403691Z test_to_list_cpu_complex128 (__main__.TestComplexTensorCPU) ... ok (0.001s) 2023-01-11T20:54:00.8403996Z test_to_list_cpu_complex64 (__main__.TestComplexTensorCPU) ... ok (0.001s) 2023-01-11T20:54:00.8404164Z 2023-01-11T20:54:00.8404348Z ---------------------------------------------------------------------- 2023-01-11T20:54:00.8404587Z Ran 4 tests in 0.007s 2023-01-11T20:54:00.8404700Z 2023-01-11T20:54:00.8404758Z OK 2023-01-11T20:54:00.8404846Z 2023-01-11T20:54:00.8404928Z Generating XML reports... 2023-01-11T20:54:00.8405348Z Generated XML report: test-reports/python-unittest/test_complex/TEST-TestComplexTensorCPU-20230111205400.xml 2023-01-11T20:54:00.8405591Z 2023-01-11T20:54:00.8405804Z ##[endgroup] 2023-01-11T20:54:00.8406163Z FINISHED PRINTING LOG FILE of test_complex (/var/lib/jenkins/workspace/test/test-reports/test_complex_4xy57yw0) 2023-01-11T20:54:00.8406369Z 2023-01-11T20:54:05.6647689Z No CUDA runtime is found, using CUDA_HOME='/usr/local/cuda' 2023-01-11T20:54:05.8853733Z Ignoring disabled issues: ['91003'] 2023-01-11T20:54:05.9070017Z Running test_nvfuser_dynamo ... [2023-01-11 20:54:05.906728] 2023-01-11T20:54:05.9072385Z Executing ['/opt/conda/bin/python', '-bb', 'test_nvfuser_dynamo.py', '-v', '--import-slow-tests', '--import-disabled-tests'] ... [2023-01-11 20:54:05.907013] 2023-01-11T20:54:10.4962348Z 2023-01-11T20:54:10.4962883Z Expand the folded group to see the log file of test_nvfuser_dynamo 2023-01-11T20:54:10.4964009Z ##[group]PRINTING LOG FILE of test_nvfuser_dynamo (/var/lib/jenkins/workspace/test/test-reports/test_nvfuser_dynamo_fzg50xqh) 2023-01-11T20:54:10.4964457Z 2023-01-11T20:54:10.4964589Z Running tests... 2023-01-11T20:54:10.4965258Z ---------------------------------------------------------------------- 2023-01-11T20:54:10.4966114Z test_basic (__main__.TestNvFuserDynamo) ... Test results will be stored in test-reports/python-unittest/test_nvfuser_dynamo 2023-01-11T20:54:10.4966668Z skip: requires CUDA (0.001s) 2023-01-11T20:54:10.4967189Z test_batch_norm_implicit_dtype_promotion (__main__.TestNvFuserDynamo) ... skip: requires CUDA (0.001s) 2023-01-11T20:54:10.4967633Z test_dtype_correctness (__main__.TestNvFuserDynamo) ... skip: requires CUDA (0.001s) 2023-01-11T20:54:10.4967949Z test_min_cut (__main__.TestNvFuserDynamo) ... skip: requires CUDA (0.002s) 2023-01-11T20:54:10.4968126Z 2023-01-11T20:54:10.4968324Z ---------------------------------------------------------------------- 2023-01-11T20:54:10.4968549Z Ran 4 tests in 0.005s 2023-01-11T20:54:10.4968660Z 2023-01-11T20:54:10.4968920Z OK (skipped=4) 2023-01-11T20:54:10.4969036Z 2023-01-11T20:54:10.4969121Z Generating XML reports... 2023-01-11T20:54:10.4969557Z Generated XML report: test-reports/python-unittest/test_nvfuser_dynamo/TEST-TestNvFuserDynamo-20230111205409.xml 2023-01-11T20:54:10.4969784Z 2023-01-11T20:54:10.4970019Z ##[endgroup] 2023-01-11T20:54:10.4970411Z FINISHED PRINTING LOG FILE of test_nvfuser_dynamo (/var/lib/jenkins/workspace/test/test-reports/test_nvfuser_dynamo_fzg50xqh) 2023-01-11T20:54:10.4970634Z 2023-01-11T20:54:15.3279886Z No CUDA runtime is found, using CUDA_HOME='/usr/local/cuda' 2023-01-11T20:54:15.4895812Z Ignoring disabled issues: ['91003'] 2023-01-11T20:54:15.5109034Z Running dynamo/test_model_output ... [2023-01-11 20:54:15.510511] 2023-01-11T20:54:15.5110185Z Executing ['/opt/conda/bin/python', '-bb', 'dynamo/test_model_output.py', '-v', '--import-slow-tests', '--import-disabled-tests'] ... [2023-01-11 20:54:15.510771] 2023-01-11T20:54:19.9178351Z 2023-01-11T20:54:19.9178931Z Expand the folded group to see the log file of dynamo/test_model_output 2023-01-11T20:54:19.9180148Z ##[group]PRINTING LOG FILE of dynamo/test_model_output (/var/lib/jenkins/workspace/test/test-reports/dynamo-test_model_output_5xd6_tpm) 2023-01-11T20:54:19.9181131Z Test results will be stored in test-reports/python-unittest/dynamo.test_model_output 2023-01-11T20:54:19.9181456Z 2023-01-11T20:54:19.9181579Z Running tests... 2023-01-11T20:54:19.9182069Z ---------------------------------------------------------------------- 2023-01-11T20:54:19.9182611Z test_pretrained (__main__.TestHFPretrained) ... skip: requires HuggingFace (0.001s) 2023-01-11T20:54:19.9183167Z test_mo_assign (__main__.TestModelOutput) ... skip: requires HuggingFace (0.001s) 2023-01-11T20:54:19.9183703Z test_mo_create (__main__.TestModelOutput) ... skip: requires HuggingFace (0.000s) 2023-01-11T20:54:19.9184239Z test_mo_getattr (__main__.TestModelOutput) ... skip: requires HuggingFace (0.000s) 2023-01-11T20:54:19.9184794Z test_mo_getitem (__main__.TestModelOutput) ... skip: requires HuggingFace (0.000s) 2023-01-11T20:54:19.9185333Z test_mo_index (__main__.TestModelOutput) ... skip: requires HuggingFace (0.000s) 2023-01-11T20:54:19.9185856Z test_mo_init (__main__.TestModelOutput) ... skip: requires HuggingFace (0.002s) 2023-01-11T20:54:19.9186392Z test_mo_tuple (__main__.TestModelOutput) ... skip: requires HuggingFace (0.000s) 2023-01-11T20:54:19.9186686Z 2023-01-11T20:54:19.9187022Z ---------------------------------------------------------------------- 2023-01-11T20:54:19.9187414Z Ran 8 tests in 0.006s 2023-01-11T20:54:19.9187601Z 2023-01-11T20:54:19.9187721Z OK (skipped=8) 2023-01-11T20:54:19.9187901Z 2023-01-11T20:54:19.9188040Z Generating XML reports... 2023-01-11T20:54:19.9188792Z Generated XML report: test-reports/python-unittest/dynamo.test_model_output/TEST-TestHFPretrained-20230111205419.xml 2023-01-11T20:54:19.9189982Z Generated XML report: test-reports/python-unittest/dynamo.test_model_output/TEST-TestModelOutput-20230111205419.xml 2023-01-11T20:54:19.9190403Z 2023-01-11T20:54:19.9190794Z ##[endgroup] 2023-01-11T20:54:19.9191501Z FINISHED PRINTING LOG FILE of dynamo/test_model_output (/var/lib/jenkins/workspace/test/test-reports/dynamo-test_model_output_5xd6_tpm) 2023-01-11T20:54:19.9191890Z 2023-01-11T20:54:24.7689040Z No CUDA runtime is found, using CUDA_HOME='/usr/local/cuda' 2023-01-11T20:54:24.9391289Z Ignoring disabled issues: ['91003'] 2023-01-11T20:54:24.9613534Z Running test_vulkan ... [2023-01-11 20:54:24.961003] 2023-01-11T20:54:24.9615219Z Executing ['/opt/conda/bin/python', '-bb', 'test_vulkan.py', '-v', '--import-slow-tests', '--import-disabled-tests'] ... [2023-01-11 20:54:24.961306] 2023-01-11T20:54:29.2418443Z 2023-01-11T20:54:29.2420628Z Expand the folded group to see the log file of test_vulkan 2023-01-11T20:54:29.2421753Z ##[group]PRINTING LOG FILE of test_vulkan (/var/lib/jenkins/workspace/test/test-reports/test_vulkan_k1h27kn7) 2023-01-11T20:54:29.2422065Z 2023-01-11T20:54:29.2422187Z Running tests... 2023-01-11T20:54:29.2423101Z ---------------------------------------------------------------------- 2023-01-11T20:54:29.2423958Z test_conv (__main__.TestVulkanRewritePass) ... Test results will be stored in test-reports/python-unittest/test_vulkan 2023-01-11T20:54:29.2424619Z skip: Vulkan backend must be available for these tests. (0.004s) 2023-01-11T20:54:29.2424923Z 2023-01-11T20:54:29.2425293Z ---------------------------------------------------------------------- 2023-01-11T20:54:29.2425752Z Ran 1 test in 0.004s 2023-01-11T20:54:29.2425950Z 2023-01-11T20:54:29.2426086Z OK (skipped=1) 2023-01-11T20:54:29.2426293Z 2023-01-11T20:54:29.2426453Z Generating XML reports... 2023-01-11T20:54:29.2427275Z Generated XML report: test-reports/python-unittest/test_vulkan/TEST-TestVulkanRewritePass-20230111205428.xml 2023-01-11T20:54:29.2427741Z 2023-01-11T20:54:29.2428194Z ##[endgroup] 2023-01-11T20:54:29.2428897Z FINISHED PRINTING LOG FILE of test_vulkan (/var/lib/jenkins/workspace/test/test-reports/test_vulkan_k1h27kn7) 2023-01-11T20:54:29.2429284Z 2023-01-11T20:54:33.9883503Z No CUDA runtime is found, using CUDA_HOME='/usr/local/cuda' 2023-01-11T20:54:34.1581596Z Ignoring disabled issues: ['91003'] 2023-01-11T20:54:34.1804989Z Running test_type_hints ... [2023-01-11 20:54:34.180136] 2023-01-11T20:54:34.1807098Z Executing ['/opt/conda/bin/python', '-bb', 'test_type_hints.py', '-v', '--import-slow-tests', '--import-disabled-tests'] ... [2023-01-11 20:54:34.180452] 2023-01-11T20:54:38.6338587Z 2023-01-11T20:54:38.6339241Z Expand the folded group to see the log file of test_type_hints 2023-01-11T20:54:38.6340280Z ##[group]PRINTING LOG FILE of test_type_hints (/var/lib/jenkins/workspace/test/test-reports/test_type_hints_j_elmfq4) 2023-01-11T20:54:38.6341237Z Test results will be stored in test-reports/python-unittest/test_type_hints 2023-01-11T20:54:38.6341605Z 2023-01-11T20:54:38.6341727Z Running tests... 2023-01-11T20:54:38.6342037Z ---------------------------------------------------------------------- 2023-01-11T20:54:38.6342315Z test_doc_examples (__main__.TestTypeHints) 2023-01-11T20:54:38.6342646Z Run documentation examples through mypy. ... skip: test is slow; run with PYTORCH_TEST_WITH_SLOW to enable test (0.002s) 2023-01-11T20:54:38.6342858Z 2023-01-11T20:54:38.6343052Z ---------------------------------------------------------------------- 2023-01-11T20:54:38.6343275Z Ran 1 test in 0.002s 2023-01-11T20:54:38.6343384Z 2023-01-11T20:54:38.6343454Z OK (skipped=1) 2023-01-11T20:54:38.6343559Z 2023-01-11T20:54:38.6343641Z Generating XML reports... 2023-01-11T20:54:38.6344044Z Generated XML report: test-reports/python-unittest/test_type_hints/TEST-TestTypeHints-20230111205438.xml 2023-01-11T20:54:38.6344266Z 2023-01-11T20:54:38.6344485Z ##[endgroup] 2023-01-11T20:54:38.6345082Z FINISHED PRINTING LOG FILE of test_type_hints (/var/lib/jenkins/workspace/test/test-reports/test_type_hints_j_elmfq4) 2023-01-11T20:54:38.6345294Z 2023-01-11T20:54:43.5796856Z No CUDA runtime is found, using CUDA_HOME='/usr/local/cuda' 2023-01-11T20:54:43.7657124Z Ignoring disabled issues: ['91003'] 2023-01-11T20:54:43.7962894Z Running test_openmp ... [2023-01-11 20:54:43.795791] 2023-01-11T20:54:43.7964800Z Executing ['/opt/conda/bin/python', '-bb', 'test_openmp.py', '-v', '--import-slow-tests', '--import-disabled-tests'] ... [2023-01-11 20:54:43.796109] 2023-01-11T20:54:48.0891559Z 2023-01-11T20:54:48.0892129Z Expand the folded group to see the log file of test_openmp 2023-01-11T20:54:48.0893111Z ##[group]PRINTING LOG FILE of test_openmp (/var/lib/jenkins/workspace/test/test-reports/test_openmp_w_gnyf0k) 2023-01-11T20:54:48.0893463Z 2023-01-11T20:54:48.0893570Z Running tests... 2023-01-11T20:54:48.0894179Z ---------------------------------------------------------------------- 2023-01-11T20:54:48.0894641Z test_n_threads (__main__.TestOpenMP_ParallelFor) 2023-01-11T20:54:48.0895154Z Make sure there is no memory leak with many threads ... Test results will be stored in test-reports/python-unittest/test_openmp 2023-01-11T20:54:48.0895660Z skip: Cannot test with ASAN (0.001s) 2023-01-11T20:54:48.0895901Z test_one_thread (__main__.TestOpenMP_ParallelFor) 2023-01-11T20:54:48.0896316Z Make sure there is no memory leak with one thread: issue gh-32284 ... skip: Cannot test with ASAN (0.000s) 2023-01-11T20:54:48.0896514Z 2023-01-11T20:54:48.0896712Z ---------------------------------------------------------------------- 2023-01-11T20:54:48.0896937Z Ran 2 tests in 0.001s 2023-01-11T20:54:48.0897050Z 2023-01-11T20:54:48.0897123Z OK (skipped=2) 2023-01-11T20:54:48.0897228Z 2023-01-11T20:54:48.0897310Z Generating XML reports... 2023-01-11T20:54:48.0897700Z Generated XML report: test-reports/python-unittest/test_openmp/TEST-TestOpenMP_ParallelFor-20230111205447.xml 2023-01-11T20:54:48.0897926Z 2023-01-11T20:54:48.0898180Z ##[endgroup] 2023-01-11T20:54:48.0898542Z FINISHED PRINTING LOG FILE of test_openmp (/var/lib/jenkins/workspace/test/test-reports/test_openmp_w_gnyf0k) 2023-01-11T20:54:48.0898749Z 2023-01-11T20:54:52.8544029Z No CUDA runtime is found, using CUDA_HOME='/usr/local/cuda' 2023-01-11T20:54:53.0211130Z Ignoring disabled issues: ['91003'] 2023-01-11T21:05:10.2331154Z 2023-01-11T21:05:10.2331623Z Expand the folded group to see the log file of inductor/test_torchinductor 2023-01-11T21:05:10.2332575Z ##[group]PRINTING LOG FILE of inductor/test_torchinductor (/var/lib/jenkins/workspace/test/test-reports/inductor-test_torchinductor_1hiiowhq) 2023-01-11T21:05:10.2382535Z No CUDA runtime is found, using CUDA_HOME='/usr/local/cuda' 2023-01-11T21:05:10.2383954Z Test results will be stored in test-reports/python-unittest/inductor.test_torchinductor 2023-01-11T21:05:10.2384413Z 2023-01-11T21:05:10.2384497Z Running tests... 2023-01-11T21:05:10.2384972Z ---------------------------------------------------------------------- 2023-01-11T21:05:10.2385521Z test_auto_simd (__main__.CPUReproTests) ... ok (0.386s) 2023-01-11T21:05:10.2385970Z test_complex_memory_overlap (__main__.CPUReproTests) ... ok (0.013s) 2023-01-11T21:05:10.2386888Z test_conv_stride_constraints (__main__.CPUReproTests) ... [2023-01-11 20:43:34,314] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph None 2023-01-11T21:05:10.2387703Z [2023-01-11 20:43:37,052] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph None 2023-01-11T21:05:10.2388412Z [2023-01-11 20:43:37,104] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph None 2023-01-11T21:05:10.2389123Z [2023-01-11 20:43:37,145] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph None 2023-01-11T21:05:10.2389417Z 2023-01-11T21:05:10.2389563Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.2389866Z import torch 2023-01-11T21:05:10.2390123Z import random 2023-01-11T21:05:10.2390729Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.2391141Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.2391384Z 2023-01-11T21:05:10.2391508Z aten = torch.ops.aten 2023-01-11T21:05:10.2391865Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.2392253Z async_compile = AsyncCompile() 2023-01-11T21:05:10.2392435Z 2023-01-11T21:05:10.2392441Z 2023-01-11T21:05:10.2392638Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.2393157Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.2393701Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:05:10.2394414Z float* __restrict__ out_ptr0) 2023-01-11T21:05:10.2394725Z { 2023-01-11T21:05:10.2395037Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.2395537Z { 2023-01-11T21:05:10.2395858Z #pragma omp for collapse(2) 2023-01-11T21:05:10.2396190Z for(long i0=0; i0<2; i0+=1) 2023-01-11T21:05:10.2396476Z { 2023-01-11T21:05:10.2396771Z for(long i1=0; i1<5; i1+=1) 2023-01-11T21:05:10.2397042Z { 2023-01-11T21:05:10.2397525Z #pragma GCC ivdep 2023-01-11T21:05:10.2397885Z for(long i2=0; i2<256; i2+=1) 2023-01-11T21:05:10.2398164Z { 2023-01-11T21:05:10.2398422Z { 2023-01-11T21:05:10.2398708Z { 2023-01-11T21:05:10.2399039Z auto tmp0 = in_ptr0[i2 + (256*i1) + (1280*i0)]; 2023-01-11T21:05:10.2399439Z out_ptr0[i1 + (5*i2) + (1280*i0)] = tmp0; 2023-01-11T21:05:10.2399769Z } 2023-01-11T21:05:10.2400059Z } 2023-01-11T21:05:10.2400314Z } 2023-01-11T21:05:10.2400751Z } 2023-01-11T21:05:10.2401026Z } 2023-01-11T21:05:10.2401262Z } 2023-01-11T21:05:10.2401523Z } 2023-01-11T21:05:10.2401848Z ''') 2023-01-11T21:05:10.2401995Z 2023-01-11T21:05:10.2402002Z 2023-01-11T21:05:10.2402162Z async_compile.wait(globals()) 2023-01-11T21:05:10.2402465Z del async_compile 2023-01-11T21:05:10.2402654Z 2023-01-11T21:05:10.2402782Z def call(args): 2023-01-11T21:05:10.2403055Z inp_1, weight_1 = args 2023-01-11T21:05:10.2403357Z args.clear() 2023-01-11T21:05:10.2403907Z buf0 = empty_strided((2, 5, 16, 16), (1280, 1, 80, 5), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.2404397Z kernel_cpp_0(c_void_p(inp_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:05:10.2404771Z del inp_1 2023-01-11T21:05:10.2405151Z buf1 = aten.convolution(buf0, weight_1, None, (1, 1), (0, 0), (1, 1), False, (0, 0), 1) 2023-01-11T21:05:10.2405570Z assert_size_stride(buf1, (2, 6, 14, 14), (1176, 1, 84, 6)) 2023-01-11T21:05:10.2405845Z del buf0 2023-01-11T21:05:10.2406110Z del weight_1 2023-01-11T21:05:10.2406386Z return (buf1, ) 2023-01-11T21:05:10.2406550Z 2023-01-11T21:05:10.2406565Z 2023-01-11T21:05:10.2406691Z if __name__ == "__main__": 2023-01-11T21:05:10.2407053Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.2407507Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.2408159Z inp_1 = rand_strided((2, 5, 16, 16), (1280, 256, 16, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.2408817Z weight_1 = rand_strided((6, 5, 3, 3), (45, 1, 15, 5), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.2409270Z print_performance(lambda: call([inp_1, weight_1])) 2023-01-11T21:05:10.2409513Z 2023-01-11T21:05:10.2409520Z 2023-01-11T21:05:10.2409675Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.2409976Z import torch 2023-01-11T21:05:10.2410251Z import random 2023-01-11T21:05:10.2410608Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.2411031Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.2411285Z 2023-01-11T21:05:10.2411413Z aten = torch.ops.aten 2023-01-11T21:05:10.2411958Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.2412337Z async_compile = AsyncCompile() 2023-01-11T21:05:10.2412538Z 2023-01-11T21:05:10.2412545Z 2023-01-11T21:05:10.2412700Z async_compile.wait(globals()) 2023-01-11T21:05:10.2413029Z del async_compile 2023-01-11T21:05:10.2413215Z 2023-01-11T21:05:10.2413327Z def call(args): 2023-01-11T21:05:10.2413611Z inp_1, weight_1 = args 2023-01-11T21:05:10.2413898Z args.clear() 2023-01-11T21:05:10.2414273Z buf0 = aten.convolution(inp_1, weight_1, None, (1, 1), (0, 0), (1, 1), False, (0, 0), 1) 2023-01-11T21:05:10.2414694Z assert_size_stride(buf0, (2, 6, 14, 14), (1176, 196, 14, 1)) 2023-01-11T21:05:10.2415055Z del inp_1 2023-01-11T21:05:10.2415354Z del weight_1 2023-01-11T21:05:10.2415585Z return (buf0, ) 2023-01-11T21:05:10.2415748Z 2023-01-11T21:05:10.2415754Z 2023-01-11T21:05:10.2415862Z if __name__ == "__main__": 2023-01-11T21:05:10.2416178Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.2416550Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.2417155Z inp_1 = rand_strided((2, 5, 16, 16), (1280, 256, 16, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.2417872Z weight_1 = rand_strided((6, 5, 3, 3), (45, 9, 3, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.2418275Z print_performance(lambda: call([inp_1, weight_1])) 2023-01-11T21:05:10.2418575Z 2023-01-11T21:05:10.2418668Z ok (2.958s) 2023-01-11T21:05:10.2419377Z test_cpp_kernel_profile (__main__.CPUReproTests) ... STAGE:2023-01-11 20:43:37 744:744 ActivityProfilerController.cpp:300] Completed Stage: Warm Up 2023-01-11T21:05:10.2420259Z [2023-01-11 20:43:37,193] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 0 2023-01-11T21:05:10.2420934Z [2023-01-11 20:43:43,248] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 0 2023-01-11T21:05:10.2421725Z STAGE:2023-01-11 20:43:43 744:744 ActivityProfilerController.cpp:306] Completed Stage: Collection 2023-01-11T21:05:10.2422381Z STAGE:2023-01-11 20:43:43 744:744 ActivityProfilerController.cpp:310] Completed Stage: Post Processing 2023-01-11T21:05:10.2422709Z 2023-01-11T21:05:10.2422875Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.2423220Z import torch 2023-01-11T21:05:10.2423473Z import random 2023-01-11T21:05:10.2423815Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.2424207Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.2424441Z 2023-01-11T21:05:10.2424559Z aten = torch.ops.aten 2023-01-11T21:05:10.2424927Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.2425309Z async_compile = AsyncCompile() 2023-01-11T21:05:10.2425531Z 2023-01-11T21:05:10.2425538Z 2023-01-11T21:05:10.2425788Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.2426166Z #include 2023-01-11T21:05:10.2426775Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.2427369Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:05:10.2427757Z const float* __restrict__ in_ptr1, 2023-01-11T21:05:10.2428132Z float* __restrict__ out_ptr0) 2023-01-11T21:05:10.2428427Z { 2023-01-11T21:05:10.2428797Z RECORD_FUNCTION("graph_0_kernel_cpp_0", c10::ArrayRef({})); 2023-01-11T21:05:10.2429233Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.2429536Z { 2023-01-11T21:05:10.2429789Z #pragma omp for 2023-01-11T21:05:10.2430090Z for(long i0=0; i0<6; i0+=1) 2023-01-11T21:05:10.2430365Z { 2023-01-11T21:05:10.2430710Z auto tmp0 = at::vec::Vectorized::loadu(in_ptr0 + 16*i0); 2023-01-11T21:05:10.2431164Z auto tmp1 = at::vec::Vectorized::loadu(in_ptr1 + 16*i0); 2023-01-11T21:05:10.2431576Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:05:10.2431944Z tmp2.store(out_ptr0 + 16*i0); 2023-01-11T21:05:10.2432357Z } 2023-01-11T21:05:10.2432677Z #pragma omp for simd simdlen(8) 2023-01-11T21:05:10.2433039Z for(long i0=96; i0<100; i0+=1) 2023-01-11T21:05:10.2433313Z { 2023-01-11T21:05:10.2433598Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:05:10.2433960Z auto tmp1 = in_ptr1[i0]; 2023-01-11T21:05:10.2434277Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:05:10.2434588Z out_ptr0[i0] = tmp2; 2023-01-11T21:05:10.2434891Z } 2023-01-11T21:05:10.2435137Z } 2023-01-11T21:05:10.2435387Z } 2023-01-11T21:05:10.2435662Z ''') 2023-01-11T21:05:10.2435815Z 2023-01-11T21:05:10.2435822Z 2023-01-11T21:05:10.2435947Z async_compile.wait(globals()) 2023-01-11T21:05:10.2436440Z del async_compile 2023-01-11T21:05:10.2436624Z 2023-01-11T21:05:10.2436739Z def call(args): 2023-01-11T21:05:10.2437010Z arg0_1, arg1_1 = args 2023-01-11T21:05:10.2437296Z args.clear() 2023-01-11T21:05:10.2437786Z buf0 = empty_strided((100, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.2438302Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(arg1_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:05:10.2438807Z del arg0_1 2023-01-11T21:05:10.2439110Z del arg1_1 2023-01-11T21:05:10.2439410Z return (buf0, ) 2023-01-11T21:05:10.2443120Z 2023-01-11T21:05:10.2443130Z 2023-01-11T21:05:10.2443306Z if __name__ == "__main__": 2023-01-11T21:05:10.2443666Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.2444094Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.2444694Z arg0_1 = rand_strided((100, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.2445318Z arg1_1 = rand_strided((100, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.2445802Z print_performance(lambda: call([arg0_1, arg1_1])) 2023-01-11T21:05:10.2446067Z 2023-01-11T21:05:10.2446187Z ok (6.132s) 2023-01-11T21:05:10.2446560Z test_cpu_vec_cosim (__main__.CPUReproTests) ... ok (0.002s) 2023-01-11T21:05:10.2447473Z test_inplace_add_alpha (__main__.CPUReproTests) ... [2023-01-11 20:43:43,329] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph None 2023-01-11T21:05:10.2448104Z [2023-01-11 20:43:46,062] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph None 2023-01-11T21:05:10.2448302Z 2023-01-11T21:05:10.2448395Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.2448575Z import torch 2023-01-11T21:05:10.2448743Z import random 2023-01-11T21:05:10.2448958Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.2449204Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.2449355Z 2023-01-11T21:05:10.2449432Z aten = torch.ops.aten 2023-01-11T21:05:10.2449676Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.2449969Z async_compile = AsyncCompile() 2023-01-11T21:05:10.2450131Z 2023-01-11T21:05:10.2450140Z 2023-01-11T21:05:10.2450346Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.2450799Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.2451280Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:05:10.2451612Z const float* __restrict__ in_ptr1, 2023-01-11T21:05:10.2451917Z float* __restrict__ out_ptr0) 2023-01-11T21:05:10.2452176Z { 2023-01-11T21:05:10.2452433Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.2452712Z { 2023-01-11T21:05:10.2452939Z #pragma omp for 2023-01-11T21:05:10.2453190Z for(long i0=0; i0<10; i0+=1) 2023-01-11T21:05:10.2453376Z { 2023-01-11T21:05:10.2453622Z { 2023-01-11T21:05:10.2453842Z { 2023-01-11T21:05:10.2454125Z auto tmp0 = out_ptr0[i0]; 2023-01-11T21:05:10.2454434Z auto tmp1 = in_ptr1[i0]; 2023-01-11T21:05:10.2454753Z auto tmp2 = static_cast(0.55); 2023-01-11T21:05:10.2455222Z auto tmp3 = tmp1 * tmp2; 2023-01-11T21:05:10.2455558Z auto tmp4 = tmp0 + tmp3; 2023-01-11T21:05:10.2455877Z out_ptr0[i0] = tmp4; 2023-01-11T21:05:10.2456182Z } 2023-01-11T21:05:10.2456461Z } 2023-01-11T21:05:10.2456694Z } 2023-01-11T21:05:10.2456952Z } 2023-01-11T21:05:10.2457182Z } 2023-01-11T21:05:10.2457457Z ''') 2023-01-11T21:05:10.2457608Z 2023-01-11T21:05:10.2457615Z 2023-01-11T21:05:10.2457770Z async_compile.wait(globals()) 2023-01-11T21:05:10.2458101Z del async_compile 2023-01-11T21:05:10.2458279Z 2023-01-11T21:05:10.2458399Z def call(args): 2023-01-11T21:05:10.2458725Z x_1, y_1 = args 2023-01-11T21:05:10.2459007Z args.clear() 2023-01-11T21:05:10.2459431Z kernel_cpp_0(c_void_p(x_1.data_ptr()), c_void_p(y_1.data_ptr()), c_void_p(x_1.data_ptr())) 2023-01-11T21:05:10.2459778Z del y_1 2023-01-11T21:05:10.2460051Z return (x_1, ) 2023-01-11T21:05:10.2460220Z 2023-01-11T21:05:10.2460227Z 2023-01-11T21:05:10.2460357Z if __name__ == "__main__": 2023-01-11T21:05:10.2460714Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.2461260Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.2461817Z x_1 = rand_strided((10, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.2462391Z y_1 = rand_strided((10, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.2462763Z print_performance(lambda: call([x_1, y_1])) 2023-01-11T21:05:10.2462957Z 2023-01-11T21:05:10.2463052Z ok (2.783s) 2023-01-11T21:05:10.2463748Z test_inplace_squeeze_needed (__main__.CPUReproTests) ... [2023-01-11 20:43:46,738] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 1 2023-01-11T21:05:10.2464596Z [2023-01-11 20:43:49,510] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 1 2023-01-11T21:05:10.2464920Z 2023-01-11T21:05:10.2465067Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.2465378Z import torch 2023-01-11T21:05:10.2465694Z import random 2023-01-11T21:05:10.2466008Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.2466437Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.2466690Z 2023-01-11T21:05:10.2466818Z aten = torch.ops.aten 2023-01-11T21:05:10.2467246Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.2467650Z async_compile = AsyncCompile() 2023-01-11T21:05:10.2467833Z 2023-01-11T21:05:10.2467839Z 2023-01-11T21:05:10.2468026Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.2468492Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.2468969Z extern "C" void kernel(float* __restrict__ in_out_ptr0, 2023-01-11T21:05:10.2469323Z float* __restrict__ in_out_ptr1, 2023-01-11T21:05:10.2469656Z const float* __restrict__ in_ptr1, 2023-01-11T21:05:10.2469991Z const float* __restrict__ in_ptr2, 2023-01-11T21:05:10.2470327Z const float* __restrict__ in_ptr3, 2023-01-11T21:05:10.2470658Z float* __restrict__ out_ptr0, 2023-01-11T21:05:10.2470984Z float* __restrict__ out_ptr2, 2023-01-11T21:05:10.2471348Z float* __restrict__ out_ptr3, 2023-01-11T21:05:10.2471714Z bool* __restrict__ out_ptr4) 2023-01-11T21:05:10.2471993Z { 2023-01-11T21:05:10.2472292Z auto in_ptr0 = in_out_ptr0; 2023-01-11T21:05:10.2472619Z auto out_ptr1 = in_out_ptr1; 2023-01-11T21:05:10.2472921Z { 2023-01-11T21:05:10.2473171Z { 2023-01-11T21:05:10.2473645Z float tmp3 = 0; 2023-01-11T21:05:10.2474023Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.2474340Z { 2023-01-11T21:05:10.2474668Z #pragma omp for reduction(+:tmp3) 2023-01-11T21:05:10.2475138Z for(long i0=0; i0<10; i0+=1) 2023-01-11T21:05:10.2475428Z { 2023-01-11T21:05:10.2475693Z { 2023-01-11T21:05:10.2476003Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:05:10.2476332Z auto tmp1 = in_ptr1[i0]; 2023-01-11T21:05:10.2476666Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:05:10.2476988Z tmp3 += tmp2; 2023-01-11T21:05:10.2477244Z } 2023-01-11T21:05:10.2477507Z } 2023-01-11T21:05:10.2477769Z } 2023-01-11T21:05:10.2478041Z out_ptr0[0] = tmp3; 2023-01-11T21:05:10.2478331Z } 2023-01-11T21:05:10.2478575Z } 2023-01-11T21:05:10.2478788Z { 2023-01-11T21:05:10.2479038Z { 2023-01-11T21:05:10.2479337Z float tmp8 = 0; 2023-01-11T21:05:10.2479651Z float tmp9 = 0; 2023-01-11T21:05:10.2480016Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.2480357Z { 2023-01-11T21:05:10.2480805Z #pragma omp for reduction(+:tmp8) reduction(+:tmp9) 2023-01-11T21:05:10.2481232Z for(long i0=0; i0<10; i0+=1) 2023-01-11T21:05:10.2481667Z { 2023-01-11T21:05:10.2481939Z { 2023-01-11T21:05:10.2482288Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:05:10.2482614Z auto tmp1 = in_ptr1[i0]; 2023-01-11T21:05:10.2482945Z auto tmp3 = out_ptr0[0]; 2023-01-11T21:05:10.2483266Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:05:10.2483621Z auto tmp4 = static_cast(10); 2023-01-11T21:05:10.2483973Z auto tmp5 = tmp3 / tmp4; 2023-01-11T21:05:10.2484402Z auto tmp6 = tmp2 - tmp5; 2023-01-11T21:05:10.2484735Z auto tmp7 = tmp6 * tmp6; 2023-01-11T21:05:10.2485069Z tmp8 += tmp7; 2023-01-11T21:05:10.2485365Z tmp9 += tmp2; 2023-01-11T21:05:10.2485632Z } 2023-01-11T21:05:10.2485883Z } 2023-01-11T21:05:10.2486113Z } 2023-01-11T21:05:10.2486405Z out_ptr1[0] = tmp8; 2023-01-11T21:05:10.2486710Z out_ptr2[0] = tmp9; 2023-01-11T21:05:10.2486971Z } 2023-01-11T21:05:10.2487219Z } 2023-01-11T21:05:10.2487537Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.2487851Z { 2023-01-11T21:05:10.2488120Z #pragma omp for 2023-01-11T21:05:10.2488449Z for(long i0=0; i0<10; i0+=1) 2023-01-11T21:05:10.2488729Z { 2023-01-11T21:05:10.2488974Z { 2023-01-11T21:05:10.2489235Z { 2023-01-11T21:05:10.2489540Z auto tmp0 = in_out_ptr0[i0]; 2023-01-11T21:05:10.2489903Z auto tmp1 = in_ptr1[i0]; 2023-01-11T21:05:10.2490278Z auto tmp3 = out_ptr2[0]; 2023-01-11T21:05:10.2490638Z auto tmp7 = out_ptr1[0]; 2023-01-11T21:05:10.2490982Z auto tmp13 = in_ptr2[i0]; 2023-01-11T21:05:10.2491348Z auto tmp15 = in_ptr3[i0]; 2023-01-11T21:05:10.2491710Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:05:10.2492088Z auto tmp4 = static_cast(10); 2023-01-11T21:05:10.2492470Z auto tmp5 = tmp3 / tmp4; 2023-01-11T21:05:10.2492928Z auto tmp6 = tmp2 - tmp5; 2023-01-11T21:05:10.2493282Z auto tmp8 = tmp7 / tmp4; 2023-01-11T21:05:10.2493780Z auto tmp9 = static_cast(1e-05); 2023-01-11T21:05:10.2494173Z auto tmp10 = tmp8 + tmp9; 2023-01-11T21:05:10.2494695Z auto tmp11 = 1 / std::sqrt(tmp10); 2023-01-11T21:05:10.2495073Z auto tmp12 = tmp6 * tmp11; 2023-01-11T21:05:10.2495448Z auto tmp14 = tmp12 * tmp13; 2023-01-11T21:05:10.2495802Z auto tmp16 = tmp14 + tmp15; 2023-01-11T21:05:10.2496277Z auto tmp17 = tmp16 * (tmp16>0); 2023-01-11T21:05:10.2496646Z auto tmp18 = static_cast(0); 2023-01-11T21:05:10.2497008Z auto tmp19 = tmp17 <= tmp18; 2023-01-11T21:05:10.2497339Z in_out_ptr0[i0] = tmp12; 2023-01-11T21:05:10.2497667Z out_ptr3[i0] = tmp17; 2023-01-11T21:05:10.2497976Z out_ptr4[i0] = tmp19; 2023-01-11T21:05:10.2498237Z } 2023-01-11T21:05:10.2498555Z } 2023-01-11T21:05:10.2498818Z } 2023-01-11T21:05:10.2499087Z #pragma omp single 2023-01-11T21:05:10.2499365Z { 2023-01-11T21:05:10.2499613Z { 2023-01-11T21:05:10.2499849Z { 2023-01-11T21:05:10.2500145Z auto tmp0 = out_ptr1[0]; 2023-01-11T21:05:10.2500511Z auto tmp1 = static_cast(10); 2023-01-11T21:05:10.2500873Z auto tmp2 = tmp0 / tmp1; 2023-01-11T21:05:10.2501391Z auto tmp3 = static_cast(1e-05); 2023-01-11T21:05:10.2501779Z auto tmp4 = tmp2 + tmp3; 2023-01-11T21:05:10.2502135Z auto tmp5 = 1 / std::sqrt(tmp4); 2023-01-11T21:05:10.2502566Z auto tmp6 = tmp5 / tmp1; 2023-01-11T21:05:10.2502945Z in_out_ptr1[0] = tmp6; 2023-01-11T21:05:10.2503260Z } 2023-01-11T21:05:10.2503520Z } 2023-01-11T21:05:10.2503786Z } 2023-01-11T21:05:10.2504034Z } 2023-01-11T21:05:10.2504282Z } 2023-01-11T21:05:10.2504564Z ''') 2023-01-11T21:05:10.2504721Z 2023-01-11T21:05:10.2504730Z 2023-01-11T21:05:10.2504882Z async_compile.wait(globals()) 2023-01-11T21:05:10.2505183Z del async_compile 2023-01-11T21:05:10.2505363Z 2023-01-11T21:05:10.2505467Z def call(args): 2023-01-11T21:05:10.2505844Z primals_1, primals_2, primals_3, primals_4, primals_5 = args 2023-01-11T21:05:10.2506186Z args.clear() 2023-01-11T21:05:10.2506682Z buf0 = empty_strided((1, 10), (10, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.2507187Z aten.mm.out(as_strided(primals_5, (1, 10), (10, 1)), as_strided(primals_1, (10, 10), (1, 10)), out=buf0) 2023-01-11T21:05:10.2507578Z del primals_1 2023-01-11T21:05:10.2508103Z buf1 = empty_strided((1, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.2508691Z buf2 = empty_strided((1, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.2509301Z buf3 = empty_strided((1, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.2509697Z buf4 = as_strided(buf0, (10, ), (1, )); del buf0 # reuse 2023-01-11T21:05:10.2510251Z buf5 = empty_strided((10, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.2510799Z buf6 = empty_strided((10, ), (1, ), device='cpu', dtype=torch.bool) 2023-01-11T21:05:10.2511188Z buf7 = buf2; del buf2 # reuse 2023-01-11T21:05:10.2511891Z kernel_cpp_0(c_void_p(buf4.data_ptr()), c_void_p(buf7.data_ptr()), c_void_p(primals_2.data_ptr()), c_void_p(primals_3.data_ptr()), c_void_p(primals_4.data_ptr()), c_void_p(buf1.data_ptr()), c_void_p(buf3.data_ptr()), c_void_p(buf5.data_ptr()), c_void_p(buf6.data_ptr())) 2023-01-11T21:05:10.2512559Z del buf1 2023-01-11T21:05:10.2512860Z del buf3 2023-01-11T21:05:10.2513102Z del primals_2 2023-01-11T21:05:10.2513382Z del primals_4 2023-01-11T21:05:10.2513761Z return (buf5, primals_3, as_strided(primals_5, (1, 10), (10, 1)), buf4, buf6, buf7, ) 2023-01-11T21:05:10.2514044Z 2023-01-11T21:05:10.2514050Z 2023-01-11T21:05:10.2514164Z if __name__ == "__main__": 2023-01-11T21:05:10.2514529Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.2514956Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.2515577Z primals_1 = rand_strided((10, 10), (10, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.2516159Z primals_2 = rand_strided((10, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.2516829Z primals_3 = rand_strided((10, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.2517436Z primals_4 = rand_strided((10, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.2518016Z primals_5 = rand_strided((10, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.2518530Z print_performance(lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5])) 2023-01-11T21:05:10.2518833Z 2023-01-11T21:05:10.2518954Z ok (3.578s) 2023-01-11T21:05:10.2519716Z test_load_same_bool_tensor_twice (__main__.CPUReproTests) ... [2023-01-11 20:43:49,753] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 2 2023-01-11T21:05:10.2520516Z [2023-01-11 20:43:52,564] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 2 2023-01-11T21:05:10.2520937Z 2023-01-11T21:05:10.2521107Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.2521426Z import torch 2023-01-11T21:05:10.2521700Z import random 2023-01-11T21:05:10.2522077Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.2522513Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.2522773Z 2023-01-11T21:05:10.2522903Z aten = torch.ops.aten 2023-01-11T21:05:10.2523427Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.2523855Z async_compile = AsyncCompile() 2023-01-11T21:05:10.2524055Z 2023-01-11T21:05:10.2524062Z 2023-01-11T21:05:10.2524306Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.2524827Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.2525379Z extern "C" void kernel(const bool* __restrict__ in_ptr0, 2023-01-11T21:05:10.2525783Z const float* __restrict__ in_ptr1, 2023-01-11T21:05:10.2526155Z float* __restrict__ out_ptr0, 2023-01-11T21:05:10.2526505Z float* __restrict__ out_ptr1) 2023-01-11T21:05:10.2526801Z { 2023-01-11T21:05:10.2527109Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.2527400Z { 2023-01-11T21:05:10.2527667Z #pragma omp for 2023-01-11T21:05:10.2527963Z for(long i0=0; i0<2; i0+=1) 2023-01-11T21:05:10.2528235Z { 2023-01-11T21:05:10.2528550Z float g_tmp_buffer_in_ptr0[16] = {0}; 2023-01-11T21:05:10.2528953Z flag_to_float(in_ptr0 + 16*i0, g_tmp_buffer_in_ptr0, 16); 2023-01-11T21:05:10.2529470Z auto tmp0 = at::vec::Vectorized::loadu(g_tmp_buffer_in_ptr0); 2023-01-11T21:05:10.2529942Z auto tmp2 = at::vec::Vectorized::loadu(in_ptr1 + 16*i0); 2023-01-11T21:05:10.2530386Z flag_to_float(in_ptr0 + 16*i0, g_tmp_buffer_in_ptr0, 16); 2023-01-11T21:05:10.2530980Z auto tmp1 = at::vec::Vectorized(static_cast(-33.0)); 2023-01-11T21:05:10.2531424Z auto tmp3 = decltype(tmp1)::blendv(tmp2, tmp1, tmp0); 2023-01-11T21:05:10.2531824Z tmp3.store(out_ptr0 + 16*i0); 2023-01-11T21:05:10.2532176Z tmp3.store(out_ptr1 + 16*i0); 2023-01-11T21:05:10.2532447Z } 2023-01-11T21:05:10.2532742Z #pragma omp for simd simdlen(8) 2023-01-11T21:05:10.2533084Z for(long i0=32; i0<34; i0+=1) 2023-01-11T21:05:10.2533356Z { 2023-01-11T21:05:10.2533638Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:05:10.2533963Z auto tmp2 = in_ptr1[i0]; 2023-01-11T21:05:10.2534385Z auto tmp1 = static_cast(-33.0); 2023-01-11T21:05:10.2534758Z auto tmp3 = tmp0 ? tmp1 : tmp2; 2023-01-11T21:05:10.2535088Z out_ptr0[i0] = tmp3; 2023-01-11T21:05:10.2535403Z out_ptr1[i0] = tmp3; 2023-01-11T21:05:10.2535675Z } 2023-01-11T21:05:10.2535918Z } 2023-01-11T21:05:10.2536166Z } 2023-01-11T21:05:10.2536414Z ''') 2023-01-11T21:05:10.2536559Z 2023-01-11T21:05:10.2536566Z 2023-01-11T21:05:10.2536719Z async_compile.wait(globals()) 2023-01-11T21:05:10.2537027Z del async_compile 2023-01-11T21:05:10.2537208Z 2023-01-11T21:05:10.2537415Z def call(args): 2023-01-11T21:05:10.2537709Z arg0_1, arg1_1 = args 2023-01-11T21:05:10.2537992Z args.clear() 2023-01-11T21:05:10.2538538Z buf0 = empty_strided((2, 17), (17, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.2539130Z buf1 = empty_strided((2, 17), (17, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.2539675Z kernel_cpp_0(c_void_p(arg1_1.data_ptr()), c_void_p(arg0_1.data_ptr()), c_void_p(buf0.data_ptr()), c_void_p(buf1.data_ptr())) 2023-01-11T21:05:10.2540115Z del arg0_1 2023-01-11T21:05:10.2540373Z del arg1_1 2023-01-11T21:05:10.2540661Z return (buf0, buf1, ) 2023-01-11T21:05:10.2540847Z 2023-01-11T21:05:10.2540854Z 2023-01-11T21:05:10.2540980Z if __name__ == "__main__": 2023-01-11T21:05:10.2541305Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.2541711Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.2542267Z arg0_1 = rand_strided((2, 17), (17, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.2542809Z arg1_1 = rand_strided((2, 17), (17, 1), device='cpu', dtype=torch.bool) 2023-01-11T21:05:10.2543221Z print_performance(lambda: call([arg0_1, arg1_1])) 2023-01-11T21:05:10.2543456Z 2023-01-11T21:05:10.2543653Z ok (2.924s) 2023-01-11T21:05:10.2544413Z test_masked_fill_softmax (__main__.CPUReproTests) ... [2023-01-11 20:43:52,656] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 3 2023-01-11T21:05:10.2545209Z [2023-01-11 20:43:55,567] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 3 2023-01-11T21:05:10.2545513Z 2023-01-11T21:05:10.2545665Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.2545956Z import torch 2023-01-11T21:05:10.2546200Z import random 2023-01-11T21:05:10.2546508Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.2546937Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.2547177Z 2023-01-11T21:05:10.2547294Z aten = torch.ops.aten 2023-01-11T21:05:10.2547678Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.2548084Z async_compile = AsyncCompile() 2023-01-11T21:05:10.2548280Z 2023-01-11T21:05:10.2548287Z 2023-01-11T21:05:10.2548525Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.2549032Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.2549577Z extern "C" void kernel(float* __restrict__ in_out_ptr0, 2023-01-11T21:05:10.2549998Z const unsigned char* __restrict__ in_ptr0, 2023-01-11T21:05:10.2550385Z const float* __restrict__ in_ptr1, 2023-01-11T21:05:10.2550704Z float* __restrict__ out_ptr0, 2023-01-11T21:05:10.2551044Z float* __restrict__ out_ptr2) 2023-01-11T21:05:10.2551325Z { 2023-01-11T21:05:10.2551573Z auto out_ptr1 = in_out_ptr0; 2023-01-11T21:05:10.2551893Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.2552195Z { 2023-01-11T21:05:10.2552439Z #pragma omp for 2023-01-11T21:05:10.2552719Z for(long i0=0; i0<2; i0+=1) 2023-01-11T21:05:10.2552989Z { 2023-01-11T21:05:10.2553208Z { 2023-01-11T21:05:10.2553986Z #pragma omp declare reduction(max:at::vec::Vectorized:omp_out = at::vec::maximum(omp_out, omp_in)) initializer(omp_priv={{-std::numeric_limits::infinity()}}) 2023-01-11T21:05:10.2554772Z float tmp5 = -std::numeric_limits::infinity(); 2023-01-11T21:05:10.2555194Z auto tmp5_vec = at::vec::Vectorized(tmp5); 2023-01-11T21:05:10.2555531Z for(long i1=0; i1<1; i1+=1) 2023-01-11T21:05:10.2555817Z { 2023-01-11T21:05:10.2556116Z float g_tmp_buffer_in_ptr0[16] = {0}; 2023-01-11T21:05:10.2556510Z flag_to_float(in_ptr0 + (16*i1) + (17*i0), g_tmp_buffer_in_ptr0, 16); 2023-01-11T21:05:10.2556971Z auto tmp0 = at::vec::Vectorized::loadu(g_tmp_buffer_in_ptr0); 2023-01-11T21:05:10.2557541Z auto tmp3 = at::vec::Vectorized::loadu(in_ptr1 + (16*i1) + (17*i0)); 2023-01-11T21:05:10.2557912Z auto tmp1 = (tmp0); 2023-01-11T21:05:10.2558408Z auto tmp2 = at::vec::Vectorized(static_cast(-33.0)); 2023-01-11T21:05:10.2558862Z auto tmp4 = decltype(tmp2)::blendv(tmp3, tmp2, tmp1); 2023-01-11T21:05:10.2559266Z tmp5_vec = at::vec::maximum(tmp5_vec, tmp4); 2023-01-11T21:05:10.2559599Z } 2023-01-11T21:05:10.2560109Z tmp5 = at::vec::vec_reduce_all([](at::vec::Vectorized& x, at::vec::Vectorized&y) {return at::vec::maximum(x, y);}, tmp5_vec); 2023-01-11T21:05:10.2560807Z #pragma omp simd simdlen(8) reduction(max:tmp5) 2023-01-11T21:05:10.2561174Z for(long i1=16; i1<17; i1+=1) 2023-01-11T21:05:10.2561468Z { 2023-01-11T21:05:10.2561807Z auto tmp0 = in_ptr0[i1 + (17*i0)]; 2023-01-11T21:05:10.2562201Z auto tmp3 = in_ptr1[i1 + (17*i0)]; 2023-01-11T21:05:10.2562567Z auto tmp1 = static_cast(tmp0); 2023-01-11T21:05:10.2563199Z auto tmp2 = static_cast(-33.0); 2023-01-11T21:05:10.2563618Z auto tmp4 = tmp1 ? tmp2 : tmp3; 2023-01-11T21:05:10.2563984Z tmp5 = std::max(tmp5, tmp4); 2023-01-11T21:05:10.2564317Z } 2023-01-11T21:05:10.2564643Z out_ptr0[i0] = tmp5; 2023-01-11T21:05:10.2564917Z } 2023-01-11T21:05:10.2565186Z } 2023-01-11T21:05:10.2565456Z #pragma omp for 2023-01-11T21:05:10.2565767Z for(long i0=0; i0<2; i0+=1) 2023-01-11T21:05:10.2566056Z { 2023-01-11T21:05:10.2566319Z { 2023-01-11T21:05:10.2566797Z #pragma omp declare reduction(+:at::vec::Vectorized:omp_out += omp_in) initializer(omp_priv={{0}}) 2023-01-11T21:05:10.2567273Z float tmp8 = 0; 2023-01-11T21:05:10.2567664Z auto tmp8_vec = at::vec::Vectorized(tmp8); 2023-01-11T21:05:10.2568020Z for(long i1=0; i1<1; i1+=1) 2023-01-11T21:05:10.2568304Z { 2023-01-11T21:05:10.2568638Z float g_tmp_buffer_in_ptr0[16] = {0}; 2023-01-11T21:05:10.2569070Z flag_to_float(in_ptr0 + (16*i1) + (17*i0), g_tmp_buffer_in_ptr0, 16); 2023-01-11T21:05:10.2569543Z auto tmp0 = at::vec::Vectorized::loadu(g_tmp_buffer_in_ptr0); 2023-01-11T21:05:10.2570071Z auto tmp3 = at::vec::Vectorized::loadu(in_ptr1 + (16*i1) + (17*i0)); 2023-01-11T21:05:10.2570518Z auto tmp5 = at::vec::Vectorized(out_ptr0[i0]); 2023-01-11T21:05:10.2570881Z auto tmp1 = (tmp0); 2023-01-11T21:05:10.2571422Z auto tmp2 = at::vec::Vectorized(static_cast(-33.0)); 2023-01-11T21:05:10.2571890Z auto tmp4 = decltype(tmp2)::blendv(tmp3, tmp2, tmp1); 2023-01-11T21:05:10.2572368Z auto tmp6 = tmp4 - tmp5; 2023-01-11T21:05:10.2572688Z auto tmp7 = tmp6.exp(); 2023-01-11T21:05:10.2573055Z tmp7.store(out_ptr1 + (16*i1) + (17*i0)); 2023-01-11T21:05:10.2573395Z tmp8_vec += tmp7; 2023-01-11T21:05:10.2573691Z } 2023-01-11T21:05:10.2574255Z tmp8 = at::vec::vec_reduce_all([](at::vec::Vectorized& x, at::vec::Vectorized&y) {return x + y;}, tmp8_vec); 2023-01-11T21:05:10.2574804Z #pragma omp simd simdlen(8) reduction(+:tmp8) 2023-01-11T21:05:10.2575192Z for(long i1=16; i1<17; i1+=1) 2023-01-11T21:05:10.2575475Z { 2023-01-11T21:05:10.2575783Z auto tmp0 = in_ptr0[i1 + (17*i0)]; 2023-01-11T21:05:10.2576120Z auto tmp3 = in_ptr1[i1 + (17*i0)]; 2023-01-11T21:05:10.2576580Z auto tmp5 = out_ptr0[i0]; 2023-01-11T21:05:10.2576933Z auto tmp1 = static_cast(tmp0); 2023-01-11T21:05:10.2577422Z auto tmp2 = static_cast(-33.0); 2023-01-11T21:05:10.2577785Z auto tmp4 = tmp1 ? tmp2 : tmp3; 2023-01-11T21:05:10.2578186Z auto tmp6 = tmp4 - tmp5; 2023-01-11T21:05:10.2578575Z auto tmp7 = std::exp(tmp6); 2023-01-11T21:05:10.2578917Z out_ptr1[i1 + (17*i0)] = tmp7; 2023-01-11T21:05:10.2579220Z tmp8 += tmp7; 2023-01-11T21:05:10.2579488Z } 2023-01-11T21:05:10.2579768Z out_ptr2[i0] = tmp8; 2023-01-11T21:05:10.2580055Z } 2023-01-11T21:05:10.2580312Z } 2023-01-11T21:05:10.2580572Z #pragma omp for 2023-01-11T21:05:10.2580857Z for(long i0=0; i0<2; i0+=1) 2023-01-11T21:05:10.2581132Z { 2023-01-11T21:05:10.2581407Z for(long i1=0; i1<1; i1+=1) 2023-01-11T21:05:10.2581685Z { 2023-01-11T21:05:10.2582066Z auto tmp0 = at::vec::Vectorized::loadu(out_ptr1 + (16*i1) + (17*i0)); 2023-01-11T21:05:10.2582591Z auto tmp1 = at::vec::Vectorized(out_ptr2[i0]); 2023-01-11T21:05:10.2582973Z auto tmp2 = tmp0 / tmp1; 2023-01-11T21:05:10.2583325Z tmp2.store(in_out_ptr0 + (16*i1) + (17*i0)); 2023-01-11T21:05:10.2583636Z } 2023-01-11T21:05:10.2583936Z #pragma omp simd simdlen(8) 2023-01-11T21:05:10.2584251Z for(long i1=16; i1<17; i1+=1) 2023-01-11T21:05:10.2584553Z { 2023-01-11T21:05:10.2584851Z auto tmp0 = out_ptr1[i1 + (17*i0)]; 2023-01-11T21:05:10.2585191Z auto tmp1 = out_ptr2[i0]; 2023-01-11T21:05:10.2585524Z auto tmp2 = tmp0 / tmp1; 2023-01-11T21:05:10.2585859Z in_out_ptr0[i1 + (17*i0)] = tmp2; 2023-01-11T21:05:10.2586155Z } 2023-01-11T21:05:10.2586410Z } 2023-01-11T21:05:10.2586660Z } 2023-01-11T21:05:10.2586891Z } 2023-01-11T21:05:10.2587174Z ''') 2023-01-11T21:05:10.2587333Z 2023-01-11T21:05:10.2587341Z 2023-01-11T21:05:10.2587482Z async_compile.wait(globals()) 2023-01-11T21:05:10.2587804Z del async_compile 2023-01-11T21:05:10.2587963Z 2023-01-11T21:05:10.2588075Z def call(args): 2023-01-11T21:05:10.2588366Z arg0_1, arg1_1 = args 2023-01-11T21:05:10.2588648Z args.clear() 2023-01-11T21:05:10.2589119Z buf0 = empty_strided((2, 1), (1, 2), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.2589683Z buf1 = empty_strided((2, 17), (17, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.2590251Z buf2 = empty_strided((2, 1), (1, 2), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.2590627Z buf3 = buf1; del buf1 # reuse 2023-01-11T21:05:10.2591148Z kernel_cpp_0(c_void_p(buf3.data_ptr()), c_void_p(arg1_1.data_ptr()), c_void_p(arg0_1.data_ptr()), c_void_p(buf0.data_ptr()), c_void_p(buf2.data_ptr())) 2023-01-11T21:05:10.2591625Z del arg0_1 2023-01-11T21:05:10.2669897Z del arg1_1 2023-01-11T21:05:10.2670329Z return (buf3, ) 2023-01-11T21:05:10.2670507Z 2023-01-11T21:05:10.2670512Z 2023-01-11T21:05:10.2670655Z if __name__ == "__main__": 2023-01-11T21:05:10.2671042Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.2671481Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.2672034Z arg0_1 = rand_strided((2, 17), (17, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.2672608Z arg1_1 = rand_strided((2, 17), (17, 1), device='cpu', dtype=torch.uint8) 2023-01-11T21:05:10.2673013Z print_performance(lambda: call([arg0_1, arg1_1])) 2023-01-11T21:05:10.2673249Z 2023-01-11T21:05:10.2673350Z ok (3.010s) 2023-01-11T21:05:10.2674076Z test_new_vec_op_cpu_only (__main__.CPUReproTests) ... [2023-01-11 20:43:55,641] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph None 2023-01-11T21:05:10.2674778Z [2023-01-11 20:43:58,386] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph None 2023-01-11T21:05:10.2675294Z 2023-01-11T21:05:10.2675419Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.2675741Z import torch 2023-01-11T21:05:10.2675953Z import random 2023-01-11T21:05:10.2676257Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.2676605Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.2676813Z 2023-01-11T21:05:10.2676923Z aten = torch.ops.aten 2023-01-11T21:05:10.2677213Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.2677559Z async_compile = AsyncCompile() 2023-01-11T21:05:10.2677760Z 2023-01-11T21:05:10.2677765Z 2023-01-11T21:05:10.2677941Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.2678329Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.2678858Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:05:10.2679259Z float* __restrict__ out_ptr0) 2023-01-11T21:05:10.2679549Z { 2023-01-11T21:05:10.2679848Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.2680151Z { 2023-01-11T21:05:10.2680495Z #pragma omp for 2023-01-11T21:05:10.2680866Z for(long i0=0; i0<1; i0+=1) 2023-01-11T21:05:10.2681123Z { 2023-01-11T21:05:10.2681462Z auto tmp0 = at::vec::Vectorized::loadu(in_ptr0 + 16*i0); 2023-01-11T21:05:10.2681806Z auto tmp1 = tmp0.erf(); 2023-01-11T21:05:10.2682119Z auto tmp2 = tmp1.expm1(); 2023-01-11T21:05:10.2682378Z auto tmp3 = tmp2.log1p(); 2023-01-11T21:05:10.2682685Z tmp3.store(out_ptr0 + 16*i0); 2023-01-11T21:05:10.2682983Z } 2023-01-11T21:05:10.2683209Z #pragma omp for simd simdlen(8) 2023-01-11T21:05:10.2683470Z for(long i0=16; i0<18; i0+=1) 2023-01-11T21:05:10.2683754Z { 2023-01-11T21:05:10.2684020Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:05:10.2684271Z auto tmp1 = std::erf(tmp0); 2023-01-11T21:05:10.2684597Z auto tmp2 = std::expm1(tmp1); 2023-01-11T21:05:10.2684934Z auto tmp3 = std::log1p(tmp2); 2023-01-11T21:05:10.2685285Z out_ptr0[i0] = tmp3; 2023-01-11T21:05:10.2685585Z } 2023-01-11T21:05:10.2685854Z } 2023-01-11T21:05:10.2686089Z } 2023-01-11T21:05:10.2686384Z ''') 2023-01-11T21:05:10.2686528Z 2023-01-11T21:05:10.2686535Z 2023-01-11T21:05:10.2686675Z async_compile.wait(globals()) 2023-01-11T21:05:10.2686971Z del async_compile 2023-01-11T21:05:10.2687157Z 2023-01-11T21:05:10.2687244Z def call(args): 2023-01-11T21:05:10.2687493Z x_1, = args 2023-01-11T21:05:10.2687737Z args.clear() 2023-01-11T21:05:10.2688253Z buf0 = empty_strided((2, 9), (9, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.2688737Z kernel_cpp_0(c_void_p(x_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:05:10.2689061Z del x_1 2023-01-11T21:05:10.2689344Z return (buf0, ) 2023-01-11T21:05:10.2689514Z 2023-01-11T21:05:10.2689521Z 2023-01-11T21:05:10.2689647Z if __name__ == "__main__": 2023-01-11T21:05:10.2689975Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.2690406Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.2690959Z x_1 = rand_strided((2, 9), (9, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.2691373Z print_performance(lambda: call([x_1])) 2023-01-11T21:05:10.2691588Z 2023-01-11T21:05:10.2691689Z ok (2.811s) 2023-01-11T21:05:10.2692423Z test_no_op_squeeze (__main__.CPUReproTests) ... [2023-01-11 20:43:58,420] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 4 2023-01-11T21:05:10.2693230Z [2023-01-11 20:43:58,424] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 4 2023-01-11T21:05:10.2693548Z 2023-01-11T21:05:10.2693698Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.2694029Z import torch 2023-01-11T21:05:10.2694450Z import random 2023-01-11T21:05:10.2694800Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.2695214Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.2695459Z 2023-01-11T21:05:10.2695591Z aten = torch.ops.aten 2023-01-11T21:05:10.2695987Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.2696375Z async_compile = AsyncCompile() 2023-01-11T21:05:10.2696572Z 2023-01-11T21:05:10.2696578Z 2023-01-11T21:05:10.2696732Z async_compile.wait(globals()) 2023-01-11T21:05:10.2697052Z del async_compile 2023-01-11T21:05:10.2697249Z 2023-01-11T21:05:10.2697358Z def call(args): 2023-01-11T21:05:10.2697656Z arg0_1, = args 2023-01-11T21:05:10.2697955Z args.clear() 2023-01-11T21:05:10.2698250Z return (arg0_1, ) 2023-01-11T21:05:10.2698426Z 2023-01-11T21:05:10.2698431Z 2023-01-11T21:05:10.2698669Z if __name__ == "__main__": 2023-01-11T21:05:10.2699054Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.2699503Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.2700081Z arg0_1 = rand_strided((10, 20), (20, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.2700604Z print_performance(lambda: call([arg0_1])) 2023-01-11T21:05:10.2700829Z 2023-01-11T21:05:10.2700940Z ok (0.036s) 2023-01-11T21:05:10.2701765Z test_parallel_num_threads (__main__.CPUReproTests) ... [W ParallelNative.cpp:230] Warning: Cannot set number of intraop threads after parallel work has started or after set_num_threads call when using native parallel backend (function set_num_threads) 2023-01-11T21:05:10.2702781Z [2023-01-11 20:43:58,442] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 5 2023-01-11T21:05:10.2703523Z [2023-01-11 20:44:01,169] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 5 2023-01-11T21:05:10.2703802Z 2023-01-11T21:05:10.2703948Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.2704235Z import torch 2023-01-11T21:05:10.2704496Z import random 2023-01-11T21:05:10.2704841Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.2705248Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.2705492Z 2023-01-11T21:05:10.2705616Z aten = torch.ops.aten 2023-01-11T21:05:10.2705992Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.2706353Z async_compile = AsyncCompile() 2023-01-11T21:05:10.2706523Z 2023-01-11T21:05:10.2706530Z 2023-01-11T21:05:10.2706734Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.2707243Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.2707763Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:05:10.2708133Z const float* __restrict__ in_ptr1, 2023-01-11T21:05:10.2708471Z float* __restrict__ out_ptr0) 2023-01-11T21:05:10.2708759Z { 2023-01-11T21:05:10.2709070Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.2709413Z { 2023-01-11T21:05:10.2709708Z #pragma omp for 2023-01-11T21:05:10.2710022Z for(long i0=0; i0<12; i0+=1) 2023-01-11T21:05:10.2710329Z { 2023-01-11T21:05:10.2710713Z auto tmp0 = at::vec::Vectorized::loadu(in_ptr0 + 16*i0); 2023-01-11T21:05:10.2711200Z auto tmp1 = at::vec::Vectorized::loadu(in_ptr1 + 16*i0); 2023-01-11T21:05:10.2711571Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:05:10.2711894Z tmp2.store(out_ptr0 + 16*i0); 2023-01-11T21:05:10.2712173Z } 2023-01-11T21:05:10.2712448Z #pragma omp for simd simdlen(8) 2023-01-11T21:05:10.2712772Z for(long i0=192; i0<200; i0+=1) 2023-01-11T21:05:10.2713058Z { 2023-01-11T21:05:10.2713323Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:05:10.2713640Z auto tmp1 = in_ptr1[i0]; 2023-01-11T21:05:10.2713938Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:05:10.2714246Z out_ptr0[i0] = tmp2; 2023-01-11T21:05:10.2714611Z } 2023-01-11T21:05:10.2714821Z } 2023-01-11T21:05:10.2715035Z } 2023-01-11T21:05:10.2715325Z ''') 2023-01-11T21:05:10.2715487Z 2023-01-11T21:05:10.2715495Z 2023-01-11T21:05:10.2715660Z async_compile.wait(globals()) 2023-01-11T21:05:10.2715968Z del async_compile 2023-01-11T21:05:10.2716130Z 2023-01-11T21:05:10.2716236Z def call(args): 2023-01-11T21:05:10.2716527Z arg0_1, arg1_1 = args 2023-01-11T21:05:10.2716813Z args.clear() 2023-01-11T21:05:10.2717309Z buf0 = empty_strided((10, 20), (20, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.2717839Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(arg1_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:05:10.2718240Z del arg0_1 2023-01-11T21:05:10.2718493Z del arg1_1 2023-01-11T21:05:10.2718767Z return (buf0, ) 2023-01-11T21:05:10.2718930Z 2023-01-11T21:05:10.2718936Z 2023-01-11T21:05:10.2719048Z if __name__ == "__main__": 2023-01-11T21:05:10.2719427Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.2719887Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.2801839Z arg0_1 = rand_strided((10, 20), (20, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.2844437Z arg1_1 = rand_strided((10, 20), (20, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.2844752Z print_performance(lambda: call([arg0_1, arg1_1])) 2023-01-11T21:05:10.2844991Z 2023-01-11T21:05:10.2845100Z ok (2.748s) 2023-01-11T21:05:10.2845840Z test_sign_cpu_only (__main__.CPUReproTests) ... [2023-01-11 20:44:01,208] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph None 2023-01-11T21:05:10.2846623Z [2023-01-11 20:44:03,908] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph None 2023-01-11T21:05:10.2846945Z 2023-01-11T21:05:10.2847099Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.2847409Z import torch 2023-01-11T21:05:10.2847683Z import random 2023-01-11T21:05:10.2848010Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.2848434Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.2848675Z 2023-01-11T21:05:10.2848801Z aten = torch.ops.aten 2023-01-11T21:05:10.2849177Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.2849592Z async_compile = AsyncCompile() 2023-01-11T21:05:10.2849795Z 2023-01-11T21:05:10.2849800Z 2023-01-11T21:05:10.2850024Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.2850547Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.2851077Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:05:10.2851455Z float* __restrict__ out_ptr0) 2023-01-11T21:05:10.2851744Z { 2023-01-11T21:05:10.2852020Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.2852316Z { 2023-01-11T21:05:10.2852578Z #pragma omp for 2023-01-11T21:05:10.2852861Z for(long i0=0; i0<1; i0+=1) 2023-01-11T21:05:10.2853157Z { 2023-01-11T21:05:10.2853526Z auto tmp0 = at::vec::Vectorized::loadu(in_ptr0 + 16*i0); 2023-01-11T21:05:10.2854011Z auto tmp1 = decltype(tmp0)::blendv(decltype(tmp0)(0), decltype(tmp0)(1), decltype(tmp0)(0) < tmp0); 2023-01-11T21:05:10.2854567Z auto tmp2 = decltype(tmp0)::blendv(decltype(tmp0)(0), decltype(tmp0)(1), tmp0 < decltype(tmp0)(0)); 2023-01-11T21:05:10.2855057Z auto tmp3 = tmp1 - tmp2; 2023-01-11T21:05:10.2855388Z tmp3.store(out_ptr0 + 16*i0); 2023-01-11T21:05:10.2855656Z } 2023-01-11T21:05:10.2855949Z #pragma omp for simd simdlen(8) 2023-01-11T21:05:10.2856277Z for(long i0=16; i0<18; i0+=1) 2023-01-11T21:05:10.2856542Z { 2023-01-11T21:05:10.2856823Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:05:10.2857136Z auto tmp1 = tmp0 > 0 ? 1 : 0; 2023-01-11T21:05:10.2857429Z auto tmp2 = tmp0 < 0 ? 1 : 0; 2023-01-11T21:05:10.2858050Z auto tmp3 = tmp1 - tmp2; 2023-01-11T21:05:10.2858368Z out_ptr0[i0] = tmp3; 2023-01-11T21:05:10.2858690Z } 2023-01-11T21:05:10.2858937Z } 2023-01-11T21:05:10.2859165Z } 2023-01-11T21:05:10.2859406Z ''') 2023-01-11T21:05:10.2859551Z 2023-01-11T21:05:10.2859558Z 2023-01-11T21:05:10.2859701Z async_compile.wait(globals()) 2023-01-11T21:05:10.2860002Z del async_compile 2023-01-11T21:05:10.2860178Z 2023-01-11T21:05:10.2860291Z def call(args): 2023-01-11T21:05:10.2860543Z x_1, = args 2023-01-11T21:05:10.2860806Z args.clear() 2023-01-11T21:05:10.2861302Z buf0 = empty_strided((2, 9), (9, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.2861745Z kernel_cpp_0(c_void_p(x_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:05:10.2862093Z del x_1 2023-01-11T21:05:10.2862355Z return (buf0, ) 2023-01-11T21:05:10.2862533Z 2023-01-11T21:05:10.2862542Z 2023-01-11T21:05:10.2862641Z if __name__ == "__main__": 2023-01-11T21:05:10.2862984Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.2863397Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.2864033Z x_1 = rand_strided((2, 9), (9, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.2864420Z print_performance(lambda: call([x_1])) 2023-01-11T21:05:10.2864639Z 2023-01-11T21:05:10.2864743Z ok (2.737s) 2023-01-11T21:05:10.2865086Z test_timed_cpu_only (__main__.CPUReproTests) ... ok (0.007s) 2023-01-11T21:05:10.2865859Z test_vec_dynamic_shapes (__main__.CPUReproTests) ... [2023-01-11 20:44:04,298] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 6 2023-01-11T21:05:10.2866665Z [2023-01-11 20:44:07,015] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 6 2023-01-11T21:05:10.2866991Z 2023-01-11T21:05:10.2867144Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.2867459Z import torch 2023-01-11T21:05:10.2867716Z import random 2023-01-11T21:05:10.2868063Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.2868478Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.2868720Z 2023-01-11T21:05:10.2868835Z aten = torch.ops.aten 2023-01-11T21:05:10.2869236Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.2869629Z async_compile = AsyncCompile() 2023-01-11T21:05:10.2869836Z 2023-01-11T21:05:10.2869845Z 2023-01-11T21:05:10.2870064Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.2870567Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.2871107Z extern "C" void kernel(float* __restrict__ in_out_ptr0, 2023-01-11T21:05:10.2871487Z const float* __restrict__ in_ptr0, 2023-01-11T21:05:10.2871831Z float* __restrict__ out_ptr0, 2023-01-11T21:05:10.2872190Z float* __restrict__ out_ptr2, 2023-01-11T21:05:10.2872560Z const long ks0, 2023-01-11T21:05:10.2872858Z const long ks1) 2023-01-11T21:05:10.2873134Z { 2023-01-11T21:05:10.2873403Z auto out_ptr1 = in_out_ptr0; 2023-01-11T21:05:10.2873750Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.2874037Z { 2023-01-11T21:05:10.2874302Z #pragma omp for 2023-01-11T21:05:10.2874599Z for(long i0=0; i0::infinity(); 2023-01-11T21:05:10.2876275Z for(long i1=0; i10); 2023-01-11T21:05:10.2904699Z auto tmp8 = std::cos(tmp7); 2023-01-11T21:05:10.2904910Z auto tmp9 = std::exp(tmp8); 2023-01-11T21:05:10.2905125Z auto tmp10 = std::sqrt(tmp9); 2023-01-11T21:05:10.2905325Z auto tmp11 = tmp10 + tmp0; 2023-01-11T21:05:10.2905579Z auto tmp13 = tmp11 - tmp12; 2023-01-11T21:05:10.2905783Z auto tmp14 = tmp13 * tmp0; 2023-01-11T21:05:10.2905977Z auto tmp15 = tmp14 / tmp0; 2023-01-11T21:05:10.2906181Z auto tmp16 = tmp15 * tmp15; 2023-01-11T21:05:10.2906389Z auto tmp17 = tmp16 * tmp16; 2023-01-11T21:05:10.2906579Z auto tmp18 = tmp17 * tmp15; 2023-01-11T21:05:10.2906779Z auto tmp19 = tmp18 * tmp18; 2023-01-11T21:05:10.2906990Z auto tmp20 = std::log(tmp19); 2023-01-11T21:05:10.2907194Z auto tmp21 = std::floor(tmp20); 2023-01-11T21:05:10.2907444Z auto tmp22 = std::ceil(tmp21); 2023-01-11T21:05:10.2907660Z auto tmp23 = std::trunc(tmp22); 2023-01-11T21:05:10.2907881Z auto tmp24 = std::lgamma(tmp23); 2023-01-11T21:05:10.2908097Z auto tmp25 = std::fmod(tmp24, tmp12); 2023-01-11T21:05:10.2908311Z auto tmp26 = tmp25 > 0 ? 1 : 0; 2023-01-11T21:05:10.2908516Z auto tmp27 = tmp25 < 0 ? 1 : 0; 2023-01-11T21:05:10.2908758Z auto tmp28 = tmp26 - tmp27; 2023-01-11T21:05:10.2908962Z auto tmp29 = tmp28 + tmp12; 2023-01-11T21:05:10.2909163Z out_ptr0[i0] = tmp29; 2023-01-11T21:05:10.2909325Z } 2023-01-11T21:05:10.2909479Z } 2023-01-11T21:05:10.2909633Z } 2023-01-11T21:05:10.2909767Z } 2023-01-11T21:05:10.2909907Z } 2023-01-11T21:05:10.2910064Z ''') 2023-01-11T21:05:10.2910155Z 2023-01-11T21:05:10.2910162Z 2023-01-11T21:05:10.2910239Z async_compile.wait(globals()) 2023-01-11T21:05:10.2910432Z del async_compile 2023-01-11T21:05:10.2910538Z 2023-01-11T21:05:10.2910605Z def call(args): 2023-01-11T21:05:10.2910768Z x1_1, x2_1 = args 2023-01-11T21:05:10.2910952Z args.clear() 2023-01-11T21:05:10.2911251Z buf0 = empty_strided((10, 20), (20, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.2911559Z kernel_cpp_0(c_void_p(x1_1.data_ptr()), c_void_p(x2_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:05:10.2911783Z del x1_1 2023-01-11T21:05:10.2911939Z del x2_1 2023-01-11T21:05:10.2912100Z return (buf0, ) 2023-01-11T21:05:10.2912193Z 2023-01-11T21:05:10.2912209Z 2023-01-11T21:05:10.2912271Z if __name__ == "__main__": 2023-01-11T21:05:10.2912487Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.2912744Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.2913071Z x1_1 = rand_strided((10, 20), (20, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.2913413Z x2_1 = rand_strided((10, 20), (20, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.2913668Z print_performance(lambda: call([x1_1, x2_1])) 2023-01-11T21:05:10.2913801Z 2023-01-11T21:05:10.2913808Z 2023-01-11T21:05:10.2913898Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.2914077Z import torch 2023-01-11T21:05:10.2914240Z import random 2023-01-11T21:05:10.2914451Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.2914693Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.2914838Z 2023-01-11T21:05:10.2914913Z aten = torch.ops.aten 2023-01-11T21:05:10.2915152Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.2915382Z async_compile = AsyncCompile() 2023-01-11T21:05:10.2915506Z 2023-01-11T21:05:10.2915510Z 2023-01-11T21:05:10.2915642Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.2915965Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.2916304Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:05:10.2916528Z const float* __restrict__ in_ptr1, 2023-01-11T21:05:10.2916748Z float* __restrict__ out_ptr0) 2023-01-11T21:05:10.2916930Z { 2023-01-11T21:05:10.2917094Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.2917277Z { 2023-01-11T21:05:10.2917433Z #pragma omp for 2023-01-11T21:05:10.2917607Z for(long i0=0; i0<12; i0+=1) 2023-01-11T21:05:10.2917778Z { 2023-01-11T21:05:10.2917998Z auto tmp0 = at::vec::Vectorized::loadu(in_ptr0 + 16*i0); 2023-01-11T21:05:10.2918266Z auto tmp11 = at::vec::Vectorized::loadu(in_ptr1 + 16*i0); 2023-01-11T21:05:10.2918499Z auto tmp1 = tmp0.abs(); 2023-01-11T21:05:10.2918693Z auto tmp2 = tmp1.sin(); 2023-01-11T21:05:10.2918881Z auto tmp3 = tmp2.neg(); 2023-01-11T21:05:10.2919060Z auto tmp4 = tmp3 * tmp3; 2023-01-11T21:05:10.2919351Z auto tmp5 = decltype(tmp4)(1)/(decltype(tmp4)(1) + tmp4.neg().exp()); 2023-01-11T21:05:10.2919629Z auto tmp6 = at::vec::clamp_min(tmp5, decltype(tmp5)(0)); 2023-01-11T21:05:10.2919846Z auto tmp7 = tmp6.cos(); 2023-01-11T21:05:10.2920035Z auto tmp8 = tmp7.exp(); 2023-01-11T21:05:10.2920225Z auto tmp9 = tmp8.sqrt(); 2023-01-11T21:05:10.2920409Z auto tmp10 = tmp9 + tmp0; 2023-01-11T21:05:10.2920800Z auto tmp12 = tmp10 - tmp11; 2023-01-11T21:05:10.2921064Z auto tmp13 = tmp12 * tmp0; 2023-01-11T21:05:10.2921253Z auto tmp14 = tmp13 / tmp0; 2023-01-11T21:05:10.2921448Z auto tmp15 = tmp14 * tmp14; 2023-01-11T21:05:10.2921641Z auto tmp16 = tmp15 * tmp15; 2023-01-11T21:05:10.2921822Z auto tmp17 = tmp16 * tmp14; 2023-01-11T21:05:10.2922018Z auto tmp18 = tmp17 * tmp17; 2023-01-11T21:05:10.2922211Z auto tmp19 = tmp18.log(); 2023-01-11T21:05:10.2922414Z auto tmp20 = tmp19.floor(); 2023-01-11T21:05:10.2922596Z auto tmp21 = tmp20.ceil(); 2023-01-11T21:05:10.2922794Z auto tmp22 = tmp21.trunc(); 2023-01-11T21:05:10.2923055Z auto tmp23 = tmp22.lgamma(); 2023-01-11T21:05:10.2923254Z auto tmp24 = tmp23.fmod(tmp11); 2023-01-11T21:05:10.2923546Z auto tmp25 = decltype(tmp24)::blendv(decltype(tmp24)(0), decltype(tmp24)(1), decltype(tmp24)(0) < tmp24); 2023-01-11T21:05:10.2923902Z auto tmp26 = decltype(tmp24)::blendv(decltype(tmp24)(0), decltype(tmp24)(1), tmp24 < decltype(tmp24)(0)); 2023-01-11T21:05:10.2924207Z auto tmp27 = tmp25 - tmp26; 2023-01-11T21:05:10.2924403Z auto tmp28 = tmp27 + tmp11; 2023-01-11T21:05:10.2924611Z tmp28.store(out_ptr0 + 16*i0); 2023-01-11T21:05:10.2924793Z } 2023-01-11T21:05:10.2924962Z #pragma omp for simd simdlen(8) 2023-01-11T21:05:10.2925167Z for(long i0=192; i0<200; i0+=1) 2023-01-11T21:05:10.2925338Z { 2023-01-11T21:05:10.2925497Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:05:10.2925692Z auto tmp12 = in_ptr1[i0]; 2023-01-11T21:05:10.2925895Z auto tmp1 = std::abs(tmp0); 2023-01-11T21:05:10.2926080Z auto tmp2 = std::sin(tmp1); 2023-01-11T21:05:10.2926305Z auto tmp3 = -tmp2; 2023-01-11T21:05:10.2926494Z auto tmp4 = tmp3 * tmp3; 2023-01-11T21:05:10.2926725Z auto tmp5 = std::exp(-tmp4); 2023-01-11T21:05:10.2926923Z auto tmp6 = 1 / (1 + tmp5); 2023-01-11T21:05:10.2927117Z auto tmp7 = tmp6 * (tmp6>0); 2023-01-11T21:05:10.2927304Z auto tmp8 = std::cos(tmp7); 2023-01-11T21:05:10.2927500Z auto tmp9 = std::exp(tmp8); 2023-01-11T21:05:10.2927703Z auto tmp10 = std::sqrt(tmp9); 2023-01-11T21:05:10.2927891Z auto tmp11 = tmp10 + tmp0; 2023-01-11T21:05:10.2928127Z auto tmp13 = tmp11 - tmp12; 2023-01-11T21:05:10.2928324Z auto tmp14 = tmp13 * tmp0; 2023-01-11T21:05:10.2928515Z auto tmp15 = tmp14 / tmp0; 2023-01-11T21:05:10.2928694Z auto tmp16 = tmp15 * tmp15; 2023-01-11T21:05:10.2928887Z auto tmp17 = tmp16 * tmp16; 2023-01-11T21:05:10.2929079Z auto tmp18 = tmp17 * tmp15; 2023-01-11T21:05:10.2929257Z auto tmp19 = tmp18 * tmp18; 2023-01-11T21:05:10.2929455Z auto tmp20 = std::log(tmp19); 2023-01-11T21:05:10.2929664Z auto tmp21 = std::floor(tmp20); 2023-01-11T21:05:10.2929863Z auto tmp22 = std::ceil(tmp21); 2023-01-11T21:05:10.2930069Z auto tmp23 = std::trunc(tmp22); 2023-01-11T21:05:10.2930281Z auto tmp24 = std::lgamma(tmp23); 2023-01-11T21:05:10.2930489Z auto tmp25 = std::fmod(tmp24, tmp12); 2023-01-11T21:05:10.2930704Z auto tmp26 = tmp25 > 0 ? 1 : 0; 2023-01-11T21:05:10.2930907Z auto tmp27 = tmp25 < 0 ? 1 : 0; 2023-01-11T21:05:10.2931192Z auto tmp28 = tmp26 - tmp27; 2023-01-11T21:05:10.2931377Z auto tmp29 = tmp28 + tmp12; 2023-01-11T21:05:10.2931574Z out_ptr0[i0] = tmp29; 2023-01-11T21:05:10.2931746Z } 2023-01-11T21:05:10.2931886Z } 2023-01-11T21:05:10.2932035Z } 2023-01-11T21:05:10.2932195Z ''') 2023-01-11T21:05:10.2932273Z 2023-01-11T21:05:10.2932278Z 2023-01-11T21:05:10.2932365Z async_compile.wait(globals()) 2023-01-11T21:05:10.2932557Z del async_compile 2023-01-11T21:05:10.2932665Z 2023-01-11T21:05:10.2932735Z def call(args): 2023-01-11T21:05:10.2932894Z x1_1, x2_1 = args 2023-01-11T21:05:10.2933069Z args.clear() 2023-01-11T21:05:10.2933372Z buf0 = empty_strided((10, 20), (20, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.2933673Z kernel_cpp_0(c_void_p(x1_1.data_ptr()), c_void_p(x2_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:05:10.2933913Z del x1_1 2023-01-11T21:05:10.2934072Z del x2_1 2023-01-11T21:05:10.2934225Z return (buf0, ) 2023-01-11T21:05:10.2934334Z 2023-01-11T21:05:10.2934338Z 2023-01-11T21:05:10.2934414Z if __name__ == "__main__": 2023-01-11T21:05:10.2934635Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.2934923Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.2935255Z x1_1 = rand_strided((10, 20), (20, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.2935594Z x2_1 = rand_strided((10, 20), (20, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.2935851Z print_performance(lambda: call([x1_1, x2_1])) 2023-01-11T21:05:10.2935991Z 2023-01-11T21:05:10.2935995Z 2023-01-11T21:05:10.2936073Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.2936261Z import torch 2023-01-11T21:05:10.2936430Z import random 2023-01-11T21:05:10.2936627Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.2936888Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.2937038Z 2023-01-11T21:05:10.2937116Z aten = torch.ops.aten 2023-01-11T21:05:10.2937356Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.2937586Z async_compile = AsyncCompile() 2023-01-11T21:05:10.2937591Z 2023-01-11T21:05:10.2937595Z 2023-01-11T21:05:10.2937731Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.2937932Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.2938050Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:05:10.2938149Z const float* __restrict__ in_ptr1, 2023-01-11T21:05:10.2938247Z float* __restrict__ out_ptr0) 2023-01-11T21:05:10.2938306Z { 2023-01-11T21:05:10.2938389Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.2938451Z { 2023-01-11T21:05:10.2938613Z #pragma omp for 2023-01-11T21:05:10.2938697Z for(long i0=0; i0<20; i0+=1) 2023-01-11T21:05:10.2938759Z { 2023-01-11T21:05:10.2938837Z #pragma GCC ivdep 2023-01-11T21:05:10.2938911Z for(long i1=0; i1<10; i1+=1) 2023-01-11T21:05:10.2938972Z { 2023-01-11T21:05:10.2939036Z { 2023-01-11T21:05:10.2939105Z { 2023-01-11T21:05:10.2939211Z auto tmp0 = in_ptr0[i0 + (20*i1)]; 2023-01-11T21:05:10.2939312Z auto tmp12 = in_ptr1[i1 + (10*i0)]; 2023-01-11T21:05:10.2939411Z auto tmp1 = std::abs(tmp0); 2023-01-11T21:05:10.2939495Z auto tmp2 = std::sin(tmp1); 2023-01-11T21:05:10.2939624Z auto tmp3 = -tmp2; 2023-01-11T21:05:10.2939716Z auto tmp4 = tmp3 * tmp3; 2023-01-11T21:05:10.2939865Z auto tmp5 = std::exp(-tmp4); 2023-01-11T21:05:10.2939959Z auto tmp6 = 1 / (1 + tmp5); 2023-01-11T21:05:10.2940054Z auto tmp7 = tmp6 * (tmp6>0); 2023-01-11T21:05:10.2940147Z auto tmp8 = std::cos(tmp7); 2023-01-11T21:05:10.2940286Z auto tmp9 = std::exp(tmp8); 2023-01-11T21:05:10.2940375Z auto tmp10 = std::sqrt(tmp9); 2023-01-11T21:05:10.2940465Z auto tmp11 = tmp10 + tmp0; 2023-01-11T21:05:10.2940608Z auto tmp13 = tmp11 - tmp12; 2023-01-11T21:05:10.2940697Z auto tmp14 = tmp13 * tmp0; 2023-01-11T21:05:10.2940788Z auto tmp15 = tmp14 / tmp0; 2023-01-11T21:05:10.2940881Z auto tmp16 = tmp15 * tmp15; 2023-01-11T21:05:10.2940969Z auto tmp17 = tmp16 * tmp16; 2023-01-11T21:05:10.2941046Z auto tmp18 = tmp17 * tmp15; 2023-01-11T21:05:10.2941132Z auto tmp19 = tmp18 * tmp18; 2023-01-11T21:05:10.2941229Z auto tmp20 = std::log(tmp19); 2023-01-11T21:05:10.2941328Z auto tmp21 = std::floor(tmp20); 2023-01-11T21:05:10.2941428Z auto tmp22 = std::ceil(tmp21); 2023-01-11T21:05:10.2941530Z auto tmp23 = std::trunc(tmp22); 2023-01-11T21:05:10.2941631Z auto tmp24 = std::lgamma(tmp23); 2023-01-11T21:05:10.2941765Z auto tmp25 = std::fmod(tmp24, tmp12); 2023-01-11T21:05:10.2941847Z auto tmp26 = tmp25 > 0 ? 1 : 0; 2023-01-11T21:05:10.2941939Z auto tmp27 = tmp25 < 0 ? 1 : 0; 2023-01-11T21:05:10.2942080Z auto tmp28 = tmp26 - tmp27; 2023-01-11T21:05:10.2942170Z auto tmp29 = tmp28 + tmp12; 2023-01-11T21:05:10.2942261Z out_ptr0[i0 + (20*i1)] = tmp29; 2023-01-11T21:05:10.2942328Z } 2023-01-11T21:05:10.2942391Z } 2023-01-11T21:05:10.2942440Z } 2023-01-11T21:05:10.2942499Z } 2023-01-11T21:05:10.2942558Z } 2023-01-11T21:05:10.2942616Z } 2023-01-11T21:05:10.2942692Z ''') 2023-01-11T21:05:10.2942697Z 2023-01-11T21:05:10.2942704Z 2023-01-11T21:05:10.2942791Z async_compile.wait(globals()) 2023-01-11T21:05:10.2942861Z del async_compile 2023-01-11T21:05:10.2942866Z 2023-01-11T21:05:10.2942922Z def call(args): 2023-01-11T21:05:10.2942993Z x1_1, x2_1 = args 2023-01-11T21:05:10.2943067Z args.clear() 2023-01-11T21:05:10.2943266Z buf0 = empty_strided((20, 10), (1, 20), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.2943421Z kernel_cpp_0(c_void_p(x1_1.data_ptr()), c_void_p(x2_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:05:10.2943486Z del x1_1 2023-01-11T21:05:10.2943548Z del x2_1 2023-01-11T21:05:10.2943606Z return (buf0, ) 2023-01-11T21:05:10.2943622Z 2023-01-11T21:05:10.2943626Z 2023-01-11T21:05:10.2943687Z if __name__ == "__main__": 2023-01-11T21:05:10.2943799Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.2943918Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.2944110Z x1_1 = rand_strided((20, 10), (1, 20), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.2944302Z x2_1 = rand_strided((20, 10), (10, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.2944408Z print_performance(lambda: call([x1_1, x2_1])) 2023-01-11T21:05:10.2944673Z [2023-01-11 20:44:14,836] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph None 2023-01-11T21:05:10.2944931Z [2023-01-11 20:44:15,235] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph None 2023-01-11T21:05:10.2945178Z [2023-01-11 20:44:17,945] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph None 2023-01-11T21:05:10.2945183Z 2023-01-11T21:05:10.2945199Z 2023-01-11T21:05:10.2945280Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.2945347Z import torch 2023-01-11T21:05:10.2945414Z import random 2023-01-11T21:05:10.2945527Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.2945645Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.2945731Z 2023-01-11T21:05:10.2945807Z aten = torch.ops.aten 2023-01-11T21:05:10.2945939Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.2946017Z async_compile = AsyncCompile() 2023-01-11T21:05:10.2946024Z 2023-01-11T21:05:10.2946040Z 2023-01-11T21:05:10.2946160Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.2946361Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.2946478Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:05:10.2946584Z const float* __restrict__ in_ptr1, 2023-01-11T21:05:10.2946681Z float* __restrict__ out_ptr0) 2023-01-11T21:05:10.2946742Z { 2023-01-11T21:05:10.2946839Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.2946887Z { 2023-01-11T21:05:10.2946961Z #pragma omp for 2023-01-11T21:05:10.2947041Z for(long i0=0; i0<4; i0+=1) 2023-01-11T21:05:10.2947104Z { 2023-01-11T21:05:10.2947236Z auto tmp0 = at::vec::Vectorized::loadu(in_ptr0 + 16*i0); 2023-01-11T21:05:10.2947367Z auto tmp11 = at::vec::Vectorized::loadu(in_ptr1 + 16*i0); 2023-01-11T21:05:10.2947477Z auto tmp1 = tmp0.abs(); 2023-01-11T21:05:10.2947545Z auto tmp2 = tmp1.sin(); 2023-01-11T21:05:10.2947622Z auto tmp3 = tmp2.neg(); 2023-01-11T21:05:10.2947704Z auto tmp4 = tmp3 * tmp3; 2023-01-11T21:05:10.2947837Z auto tmp5 = decltype(tmp4)(1)/(decltype(tmp4)(1) + tmp4.neg().exp()); 2023-01-11T21:05:10.2947963Z auto tmp6 = at::vec::clamp_min(tmp5, decltype(tmp5)(0)); 2023-01-11T21:05:10.2948042Z auto tmp7 = tmp6.cos(); 2023-01-11T21:05:10.2948121Z auto tmp8 = tmp7.exp(); 2023-01-11T21:05:10.2948192Z auto tmp9 = tmp8.sqrt(); 2023-01-11T21:05:10.2948273Z auto tmp10 = tmp9 + tmp0; 2023-01-11T21:05:10.2948398Z auto tmp12 = tmp10 - tmp11; 2023-01-11T21:05:10.2948484Z auto tmp13 = tmp12 * tmp0; 2023-01-11T21:05:10.2948564Z auto tmp14 = tmp13 / tmp0; 2023-01-11T21:05:10.2948646Z auto tmp15 = tmp14 * tmp14; 2023-01-11T21:05:10.2948728Z auto tmp16 = tmp15 * tmp15; 2023-01-11T21:05:10.2948796Z auto tmp17 = tmp16 * tmp14; 2023-01-11T21:05:10.2948875Z auto tmp18 = tmp17 * tmp17; 2023-01-11T21:05:10.2948957Z auto tmp19 = tmp18.log(); 2023-01-11T21:05:10.2949039Z auto tmp20 = tmp19.floor(); 2023-01-11T21:05:10.2949121Z auto tmp21 = tmp20.ceil(); 2023-01-11T21:05:10.2949201Z auto tmp22 = tmp21.trunc(); 2023-01-11T21:05:10.2949287Z auto tmp23 = tmp22.lgamma(); 2023-01-11T21:05:10.2949368Z auto tmp24 = tmp23.fmod(tmp11); 2023-01-11T21:05:10.2949536Z auto tmp25 = decltype(tmp24)::blendv(decltype(tmp24)(0), decltype(tmp24)(1), decltype(tmp24)(0) < tmp24); 2023-01-11T21:05:10.2949701Z auto tmp26 = decltype(tmp24)::blendv(decltype(tmp24)(0), decltype(tmp24)(1), tmp24 < decltype(tmp24)(0)); 2023-01-11T21:05:10.2949827Z auto tmp27 = tmp25 - tmp26; 2023-01-11T21:05:10.2949907Z auto tmp28 = tmp27 + tmp11; 2023-01-11T21:05:10.2950003Z tmp28.store(out_ptr0 + 16*i0); 2023-01-11T21:05:10.2950063Z } 2023-01-11T21:05:10.2950155Z #pragma omp for simd simdlen(8) 2023-01-11T21:05:10.2950223Z for(long i0=64; i0<70; i0+=1) 2023-01-11T21:05:10.2950284Z { 2023-01-11T21:05:10.2950365Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:05:10.2950447Z auto tmp12 = in_ptr1[i0]; 2023-01-11T21:05:10.2950534Z auto tmp1 = std::abs(tmp0); 2023-01-11T21:05:10.2950621Z auto tmp2 = std::sin(tmp1); 2023-01-11T21:05:10.2950733Z auto tmp3 = -tmp2; 2023-01-11T21:05:10.2950803Z auto tmp4 = tmp3 * tmp3; 2023-01-11T21:05:10.2950932Z auto tmp5 = std::exp(-tmp4); 2023-01-11T21:05:10.2951040Z auto tmp6 = 1 / (1 + tmp5); 2023-01-11T21:05:10.2951126Z auto tmp7 = tmp6 * (tmp6>0); 2023-01-11T21:05:10.2951209Z auto tmp8 = std::cos(tmp7); 2023-01-11T21:05:10.2951293Z auto tmp9 = std::exp(tmp8); 2023-01-11T21:05:10.2951385Z auto tmp10 = std::sqrt(tmp9); 2023-01-11T21:05:10.2951456Z auto tmp11 = tmp10 + tmp0; 2023-01-11T21:05:10.2951577Z auto tmp13 = tmp11 - tmp12; 2023-01-11T21:05:10.2951659Z auto tmp14 = tmp13 * tmp0; 2023-01-11T21:05:10.2951740Z auto tmp15 = tmp14 / tmp0; 2023-01-11T21:05:10.2951819Z auto tmp16 = tmp15 * tmp15; 2023-01-11T21:05:10.2951895Z auto tmp17 = tmp16 * tmp16; 2023-01-11T21:05:10.2951973Z auto tmp18 = tmp17 * tmp15; 2023-01-11T21:05:10.2952041Z auto tmp19 = tmp18 * tmp18; 2023-01-11T21:05:10.2952128Z auto tmp20 = std::log(tmp19); 2023-01-11T21:05:10.2952220Z auto tmp21 = std::floor(tmp20); 2023-01-11T21:05:10.2952312Z auto tmp22 = std::ceil(tmp21); 2023-01-11T21:05:10.2952404Z auto tmp23 = std::trunc(tmp22); 2023-01-11T21:05:10.2952498Z auto tmp24 = std::lgamma(tmp23); 2023-01-11T21:05:10.2952627Z auto tmp25 = std::fmod(tmp24, tmp12); 2023-01-11T21:05:10.2952715Z auto tmp26 = tmp25 > 0 ? 1 : 0; 2023-01-11T21:05:10.2952788Z auto tmp27 = tmp25 < 0 ? 1 : 0; 2023-01-11T21:05:10.2952911Z auto tmp28 = tmp26 - tmp27; 2023-01-11T21:05:10.2952991Z auto tmp29 = tmp28 + tmp12; 2023-01-11T21:05:10.2953069Z out_ptr0[i0] = tmp29; 2023-01-11T21:05:10.2953128Z } 2023-01-11T21:05:10.2953187Z } 2023-01-11T21:05:10.2953244Z } 2023-01-11T21:05:10.2953307Z ''') 2023-01-11T21:05:10.2953313Z 2023-01-11T21:05:10.2953317Z 2023-01-11T21:05:10.2953404Z async_compile.wait(globals()) 2023-01-11T21:05:10.2953475Z del async_compile 2023-01-11T21:05:10.2953480Z 2023-01-11T21:05:10.2953549Z def call(args): 2023-01-11T21:05:10.2953619Z x1_1, x2_1 = args 2023-01-11T21:05:10.2953687Z args.clear() 2023-01-11T21:05:10.2953883Z buf0 = empty_strided((10, 7), (7, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.2954030Z kernel_cpp_0(c_void_p(x1_1.data_ptr()), c_void_p(x2_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:05:10.2954093Z del x1_1 2023-01-11T21:05:10.2954156Z del x2_1 2023-01-11T21:05:10.2954227Z return (buf0, ) 2023-01-11T21:05:10.2954232Z 2023-01-11T21:05:10.2954236Z 2023-01-11T21:05:10.2954308Z if __name__ == "__main__": 2023-01-11T21:05:10.2954420Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.2954541Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.2954735Z x1_1 = rand_strided((10, 7), (7, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.2954913Z x2_1 = rand_strided((10, 7), (7, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.2955021Z print_performance(lambda: call([x1_1, x2_1])) 2023-01-11T21:05:10.2955027Z 2023-01-11T21:05:10.2955095Z ok (10.924s) 2023-01-11T21:05:10.2955534Z test_abs_cpu (__main__.CpuTests) ... inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.2955658Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.2955916Z [2023-01-11 20:44:17,996] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 7 2023-01-11T21:05:10.2956175Z [2023-01-11 20:44:20,727] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 7 2023-01-11T21:05:10.2956180Z 2023-01-11T21:05:10.2956270Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.2956337Z import torch 2023-01-11T21:05:10.2956392Z import random 2023-01-11T21:05:10.2956536Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.2956653Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.2956658Z 2023-01-11T21:05:10.2956733Z aten = torch.ops.aten 2023-01-11T21:05:10.2956866Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.2956954Z async_compile = AsyncCompile() 2023-01-11T21:05:10.2956960Z 2023-01-11T21:05:10.2956964Z 2023-01-11T21:05:10.2957093Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.2957297Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.2957401Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:05:10.2957499Z float* __restrict__ out_ptr0) 2023-01-11T21:05:10.2957557Z { 2023-01-11T21:05:10.2957653Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.2957711Z { 2023-01-11T21:05:10.2957784Z #pragma omp for 2023-01-11T21:05:10.2957865Z for(long i0=0; i0<1; i0+=1) 2023-01-11T21:05:10.2957913Z { 2023-01-11T21:05:10.2958044Z auto tmp0 = at::vec::Vectorized::loadu(in_ptr0 + 16*i0); 2023-01-11T21:05:10.2958151Z auto tmp1 = tmp0.abs(); 2023-01-11T21:05:10.2958282Z auto tmp2 = at::vec::Vectorized(static_cast(1)); 2023-01-11T21:05:10.2958364Z auto tmp3 = tmp1 + tmp2; 2023-01-11T21:05:10.2958445Z auto tmp4 = tmp0 / tmp3; 2023-01-11T21:05:10.2958535Z tmp4.store(out_ptr0 + 16*i0); 2023-01-11T21:05:10.2958583Z } 2023-01-11T21:05:10.2958676Z #pragma omp for simd simdlen(8) 2023-01-11T21:05:10.2958755Z for(long i0=16; i0<17; i0+=1) 2023-01-11T21:05:10.2958813Z { 2023-01-11T21:05:10.2958894Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:05:10.2958984Z auto tmp1 = std::abs(tmp0); 2023-01-11T21:05:10.2959081Z auto tmp2 = static_cast(1); 2023-01-11T21:05:10.2959149Z auto tmp3 = tmp1 + tmp2; 2023-01-11T21:05:10.2959230Z auto tmp4 = tmp0 / tmp3; 2023-01-11T21:05:10.2959307Z out_ptr0[i0] = tmp4; 2023-01-11T21:05:10.2959366Z } 2023-01-11T21:05:10.2959426Z } 2023-01-11T21:05:10.2959487Z } 2023-01-11T21:05:10.2959564Z ''') 2023-01-11T21:05:10.2959569Z 2023-01-11T21:05:10.2959573Z 2023-01-11T21:05:10.2959649Z async_compile.wait(globals()) 2023-01-11T21:05:10.2959719Z del async_compile 2023-01-11T21:05:10.2959724Z 2023-01-11T21:05:10.2959791Z def call(args): 2023-01-11T21:05:10.2959859Z arg0_1, = args 2023-01-11T21:05:10.2959928Z args.clear() 2023-01-11T21:05:10.2960121Z buf0 = empty_strided((17, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.2960253Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:05:10.2960307Z del arg0_1 2023-01-11T21:05:10.2960375Z return (buf0, ) 2023-01-11T21:05:10.2960380Z 2023-01-11T21:05:10.2960384Z 2023-01-11T21:05:10.2960457Z if __name__ == "__main__": 2023-01-11T21:05:10.2960569Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.2960857Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.2961071Z arg0_1 = rand_strided((17, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.2961178Z print_performance(lambda: call([arg0_1])) 2023-01-11T21:05:10.2961183Z 2023-01-11T21:05:10.2961248Z ok (2.787s) 2023-01-11T21:05:10.2961706Z test_adaptive_avg_pool2d1_cpu (__main__.CpuTests) ... inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.2961821Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.2962081Z [2023-01-11 20:44:20,810] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 8 2023-01-11T21:05:10.2962390Z [2023-01-11 20:44:20,832] torch._inductor.ir: [WARNING] Using FallbackKernel: aten._adaptive_avg_pool2d 2023-01-11T21:05:10.2962396Z 2023-01-11T21:05:10.2962493Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.2962562Z import torch 2023-01-11T21:05:10.2962633Z import random 2023-01-11T21:05:10.2962746Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.2962869Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.2962874Z 2023-01-11T21:05:10.2962939Z aten = torch.ops.aten 2023-01-11T21:05:10.2963075Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.2963165Z async_compile = AsyncCompile() 2023-01-11T21:05:10.2963170Z 2023-01-11T21:05:10.2963174Z 2023-01-11T21:05:10.2963308Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.2963512Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.2963634Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:05:10.2963733Z float* __restrict__ out_ptr0, 2023-01-11T21:05:10.2963831Z float* __restrict__ out_ptr1) 2023-01-11T21:05:10.2963920Z { 2023-01-11T21:05:10.2964021Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.2964084Z { 2023-01-11T21:05:10.2964162Z #pragma omp for 2023-01-11T21:05:10.2964243Z for(long i0=0; i0<8; i0+=1) 2023-01-11T21:05:10.2964306Z { 2023-01-11T21:05:10.2964385Z #pragma GCC ivdep 2023-01-11T21:05:10.2964453Z for(long i1=0; i1<6; i1+=1) 2023-01-11T21:05:10.2964518Z { 2023-01-11T21:05:10.2964600Z #pragma GCC ivdep 2023-01-11T21:05:10.2964688Z for(long i2=0; i2<6; i2+=1) 2023-01-11T21:05:10.2964752Z { 2023-01-11T21:05:10.2964819Z { 2023-01-11T21:05:10.2964887Z { 2023-01-11T21:05:10.2964991Z auto tmp0 = static_cast(((8*i1) / 3)); 2023-01-11T21:05:10.2965111Z auto tmp1 = static_cast(((21 + (16*i1)) / 6)); 2023-01-11T21:05:10.2965210Z auto tmp2 = tmp0 < tmp1; 2023-01-11T21:05:10.2965321Z auto tmp3 = static_cast(((8*i2) / 3)); 2023-01-11T21:05:10.2965434Z auto tmp4 = static_cast(((21 + (16*i2)) / 6)); 2023-01-11T21:05:10.2965560Z auto tmp5 = tmp3 < tmp4; 2023-01-11T21:05:10.2965691Z auto tmp6 = tmp2 & tmp5; 2023-01-11T21:05:10.2965795Z float tmp7 = 0.0; 2023-01-11T21:05:10.2965909Z if(tmp6) 2023-01-11T21:05:10.2965991Z { 2023-01-11T21:05:10.2966117Z auto tmp8 = in_ptr0[(16*(((8*i1) / 3))) + (256*i0) + (((8*i2) / 3))]; 2023-01-11T21:05:10.2966204Z tmp7 = tmp8; 2023-01-11T21:05:10.2966277Z } 2023-01-11T21:05:10.2966440Z auto tmp9 = static_cast(1 + (((8*i2) / 3))); 2023-01-11T21:05:10.2966550Z auto tmp10 = tmp9 < tmp4; 2023-01-11T21:05:10.2966636Z auto tmp11 = tmp2 & tmp10; 2023-01-11T21:05:10.2966724Z float tmp12 = 0.0; 2023-01-11T21:05:10.2966803Z if(tmp11) 2023-01-11T21:05:10.2966871Z { 2023-01-11T21:05:10.2966996Z auto tmp13 = in_ptr0[1 + (16*(((8*i1) / 3))) + (256*i0) + (((8*i2) / 3))]; 2023-01-11T21:05:10.2967083Z tmp12 = tmp13; 2023-01-11T21:05:10.2967150Z } 2023-01-11T21:05:10.2967232Z auto tmp14 = tmp12 + tmp7; 2023-01-11T21:05:10.2967346Z auto tmp15 = static_cast(2 + (((8*i2) / 3))); 2023-01-11T21:05:10.2967480Z auto tmp16 = tmp15 < tmp4; 2023-01-11T21:05:10.2967574Z auto tmp17 = tmp2 & tmp16; 2023-01-11T21:05:10.2967661Z float tmp18 = 0.0; 2023-01-11T21:05:10.2967739Z if(tmp17) 2023-01-11T21:05:10.2967806Z { 2023-01-11T21:05:10.2967926Z auto tmp19 = in_ptr0[2 + (16*(((8*i1) / 3))) + (256*i0) + (((8*i2) / 3))]; 2023-01-11T21:05:10.2967998Z tmp18 = tmp19; 2023-01-11T21:05:10.2968065Z } 2023-01-11T21:05:10.2968160Z auto tmp20 = tmp18 + tmp14; 2023-01-11T21:05:10.2968276Z auto tmp21 = static_cast(3 + (((8*i2) / 3))); 2023-01-11T21:05:10.2968369Z auto tmp22 = tmp21 < tmp4; 2023-01-11T21:05:10.2968465Z auto tmp23 = tmp2 & tmp22; 2023-01-11T21:05:10.2968556Z float tmp24 = 0.0; 2023-01-11T21:05:10.2968617Z if(tmp23) 2023-01-11T21:05:10.2968683Z { 2023-01-11T21:05:10.2968832Z auto tmp25 = in_ptr0[3 + (16*(((8*i1) / 3))) + (256*i0) + (((8*i2) / 3))]; 2023-01-11T21:05:10.2968916Z tmp24 = tmp25; 2023-01-11T21:05:10.2968983Z } 2023-01-11T21:05:10.2969076Z auto tmp26 = tmp24 + tmp20; 2023-01-11T21:05:10.2969189Z auto tmp27 = static_cast(1 + (((8*i1) / 3))); 2023-01-11T21:05:10.2969269Z auto tmp28 = tmp27 < tmp1; 2023-01-11T21:05:10.2969362Z auto tmp29 = tmp28 & tmp5; 2023-01-11T21:05:10.2969447Z float tmp30 = 0.0; 2023-01-11T21:05:10.2969526Z if(tmp29) 2023-01-11T21:05:10.2969595Z { 2023-01-11T21:05:10.2969721Z auto tmp31 = in_ptr0[16 + (16*(((8*i1) / 3))) + (256*i0) + (((8*i2) / 3))]; 2023-01-11T21:05:10.2969806Z tmp30 = tmp31; 2023-01-11T21:05:10.2969876Z } 2023-01-11T21:05:10.2969959Z auto tmp32 = tmp30 + tmp26; 2023-01-11T21:05:10.2970052Z auto tmp33 = tmp28 & tmp10; 2023-01-11T21:05:10.2970143Z float tmp34 = 0.0; 2023-01-11T21:05:10.2970221Z if(tmp33) 2023-01-11T21:05:10.2970290Z { 2023-01-11T21:05:10.2970411Z auto tmp35 = in_ptr0[17 + (16*(((8*i1) / 3))) + (256*i0) + (((8*i2) / 3))]; 2023-01-11T21:05:10.2970495Z tmp34 = tmp35; 2023-01-11T21:05:10.2970550Z } 2023-01-11T21:05:10.2970642Z auto tmp36 = tmp34 + tmp32; 2023-01-11T21:05:10.2970736Z auto tmp37 = tmp28 & tmp16; 2023-01-11T21:05:10.2970824Z float tmp38 = 0.0; 2023-01-11T21:05:10.2970900Z if(tmp37) 2023-01-11T21:05:10.2970967Z { 2023-01-11T21:05:10.2971090Z auto tmp39 = in_ptr0[18 + (16*(((8*i1) / 3))) + (256*i0) + (((8*i2) / 3))]; 2023-01-11T21:05:10.2971163Z tmp38 = tmp39; 2023-01-11T21:05:10.2971229Z } 2023-01-11T21:05:10.2971324Z auto tmp40 = tmp38 + tmp36; 2023-01-11T21:05:10.2971416Z auto tmp41 = tmp28 & tmp22; 2023-01-11T21:05:10.2971500Z float tmp42 = 0.0; 2023-01-11T21:05:10.2971575Z if(tmp41) 2023-01-11T21:05:10.2971641Z { 2023-01-11T21:05:10.2971763Z auto tmp43 = in_ptr0[19 + (16*(((8*i1) / 3))) + (256*i0) + (((8*i2) / 3))]; 2023-01-11T21:05:10.2971865Z tmp42 = tmp43; 2023-01-11T21:05:10.2971930Z } 2023-01-11T21:05:10.2972024Z auto tmp44 = tmp42 + tmp40; 2023-01-11T21:05:10.2972141Z auto tmp45 = static_cast(2 + (((8*i1) / 3))); 2023-01-11T21:05:10.2972236Z auto tmp46 = tmp45 < tmp1; 2023-01-11T21:05:10.2972329Z auto tmp47 = tmp46 & tmp5; 2023-01-11T21:05:10.2972414Z float tmp48 = 0.0; 2023-01-11T21:05:10.2972475Z if(tmp47) 2023-01-11T21:05:10.2972541Z { 2023-01-11T21:05:10.2972662Z auto tmp49 = in_ptr0[32 + (16*(((8*i1) / 3))) + (256*i0) + (((8*i2) / 3))]; 2023-01-11T21:05:10.2972744Z tmp48 = tmp49; 2023-01-11T21:05:10.2972811Z } 2023-01-11T21:05:10.2972903Z auto tmp50 = tmp48 + tmp44; 2023-01-11T21:05:10.2972998Z auto tmp51 = tmp46 & tmp10; 2023-01-11T21:05:10.2973073Z float tmp52 = 0.0; 2023-01-11T21:05:10.2973175Z if(tmp51) 2023-01-11T21:05:10.2973242Z { 2023-01-11T21:05:10.2973365Z auto tmp53 = in_ptr0[33 + (16*(((8*i1) / 3))) + (256*i0) + (((8*i2) / 3))]; 2023-01-11T21:05:10.2973450Z tmp52 = tmp53; 2023-01-11T21:05:10.2973517Z } 2023-01-11T21:05:10.2973609Z auto tmp54 = tmp52 + tmp50; 2023-01-11T21:05:10.2973702Z auto tmp55 = tmp46 & tmp16; 2023-01-11T21:05:10.2973776Z float tmp56 = 0.0; 2023-01-11T21:05:10.2973848Z if(tmp55) 2023-01-11T21:05:10.2973915Z { 2023-01-11T21:05:10.2974034Z auto tmp57 = in_ptr0[34 + (16*(((8*i1) / 3))) + (256*i0) + (((8*i2) / 3))]; 2023-01-11T21:05:10.2974119Z tmp56 = tmp57; 2023-01-11T21:05:10.2974185Z } 2023-01-11T21:05:10.2974280Z auto tmp58 = tmp56 + tmp54; 2023-01-11T21:05:10.2974360Z auto tmp59 = tmp46 & tmp22; 2023-01-11T21:05:10.2974444Z float tmp60 = 0.0; 2023-01-11T21:05:10.2974518Z if(tmp59) 2023-01-11T21:05:10.2974585Z { 2023-01-11T21:05:10.2974708Z auto tmp61 = in_ptr0[35 + (16*(((8*i1) / 3))) + (256*i0) + (((8*i2) / 3))]; 2023-01-11T21:05:10.2974790Z tmp60 = tmp61; 2023-01-11T21:05:10.2974857Z } 2023-01-11T21:05:10.2974938Z auto tmp62 = tmp60 + tmp58; 2023-01-11T21:05:10.2975051Z auto tmp63 = static_cast(3 + (((8*i1) / 3))); 2023-01-11T21:05:10.2975148Z auto tmp64 = tmp63 < tmp1; 2023-01-11T21:05:10.2975241Z auto tmp65 = tmp64 & tmp5; 2023-01-11T21:05:10.2975328Z float tmp66 = 0.0; 2023-01-11T21:05:10.2975402Z if(tmp65) 2023-01-11T21:05:10.2975468Z { 2023-01-11T21:05:10.2975587Z auto tmp67 = in_ptr0[48 + (16*(((8*i1) / 3))) + (256*i0) + (((8*i2) / 3))]; 2023-01-11T21:05:10.2975658Z tmp66 = tmp67; 2023-01-11T21:05:10.2975723Z } 2023-01-11T21:05:10.2975816Z auto tmp68 = tmp66 + tmp62; 2023-01-11T21:05:10.2975908Z auto tmp69 = tmp64 & tmp10; 2023-01-11T21:05:10.2975993Z float tmp70 = 0.0; 2023-01-11T21:05:10.2976067Z if(tmp69) 2023-01-11T21:05:10.2976132Z { 2023-01-11T21:05:10.2976271Z auto tmp71 = in_ptr0[49 + (16*(((8*i1) / 3))) + (256*i0) + (((8*i2) / 3))]; 2023-01-11T21:05:10.2976354Z tmp70 = tmp71; 2023-01-11T21:05:10.2976422Z } 2023-01-11T21:05:10.2976516Z auto tmp72 = tmp70 + tmp68; 2023-01-11T21:05:10.2976607Z auto tmp73 = tmp64 & tmp16; 2023-01-11T21:05:10.2976690Z float tmp74 = 0.0; 2023-01-11T21:05:10.2976763Z if(tmp73) 2023-01-11T21:05:10.2976817Z { 2023-01-11T21:05:10.2976938Z auto tmp75 = in_ptr0[50 + (16*(((8*i1) / 3))) + (256*i0) + (((8*i2) / 3))]; 2023-01-11T21:05:10.2977022Z tmp74 = tmp75; 2023-01-11T21:05:10.2977086Z } 2023-01-11T21:05:10.2977179Z auto tmp76 = tmp74 + tmp72; 2023-01-11T21:05:10.2977271Z auto tmp77 = tmp64 & tmp22; 2023-01-11T21:05:10.2977357Z float tmp78 = 0.0; 2023-01-11T21:05:10.2977434Z if(tmp77) 2023-01-11T21:05:10.2977518Z { 2023-01-11T21:05:10.2977640Z auto tmp79 = in_ptr0[51 + (16*(((8*i1) / 3))) + (256*i0) + (((8*i2) / 3))]; 2023-01-11T21:05:10.2977722Z tmp78 = tmp79; 2023-01-11T21:05:10.2977789Z } 2023-01-11T21:05:10.2977883Z auto tmp80 = tmp78 + tmp76; 2023-01-11T21:05:10.2977966Z float tmp81 = 0.0; 2023-01-11T21:05:10.2978040Z if(tmp6) 2023-01-11T21:05:10.2978095Z { 2023-01-11T21:05:10.2978202Z auto tmp82 = static_cast(1); 2023-01-11T21:05:10.2978285Z tmp81 = tmp82; 2023-01-11T21:05:10.2978352Z } 2023-01-11T21:05:10.2978438Z float tmp83 = 0.0; 2023-01-11T21:05:10.2978606Z if(tmp11) 2023-01-11T21:05:10.2978680Z { 2023-01-11T21:05:10.2978775Z auto tmp84 = static_cast(1); 2023-01-11T21:05:10.2978855Z tmp83 = tmp84; 2023-01-11T21:05:10.2978923Z } 2023-01-11T21:05:10.2979019Z auto tmp85 = tmp83 + tmp81; 2023-01-11T21:05:10.2979104Z float tmp86 = 0.0; 2023-01-11T21:05:10.2979178Z if(tmp17) 2023-01-11T21:05:10.2979244Z { 2023-01-11T21:05:10.2979338Z auto tmp87 = static_cast(1); 2023-01-11T21:05:10.2979421Z tmp86 = tmp87; 2023-01-11T21:05:10.2979491Z } 2023-01-11T21:05:10.2979588Z auto tmp88 = tmp86 + tmp85; 2023-01-11T21:05:10.2979674Z float tmp89 = 0.0; 2023-01-11T21:05:10.2979750Z if(tmp23) 2023-01-11T21:05:10.2979820Z { 2023-01-11T21:05:10.2979914Z auto tmp90 = static_cast(1); 2023-01-11T21:05:10.2979997Z tmp89 = tmp90; 2023-01-11T21:05:10.2980065Z } 2023-01-11T21:05:10.2980159Z auto tmp91 = tmp89 + tmp88; 2023-01-11T21:05:10.2980244Z float tmp92 = 0.0; 2023-01-11T21:05:10.2980316Z if(tmp29) 2023-01-11T21:05:10.2980384Z { 2023-01-11T21:05:10.2980478Z auto tmp93 = static_cast(1); 2023-01-11T21:05:10.2980560Z tmp92 = tmp93; 2023-01-11T21:05:10.2980626Z } 2023-01-11T21:05:10.2980770Z auto tmp94 = tmp92 + tmp91; 2023-01-11T21:05:10.2980853Z float tmp95 = 0.0; 2023-01-11T21:05:10.2980927Z if(tmp33) 2023-01-11T21:05:10.2980995Z { 2023-01-11T21:05:10.2981101Z auto tmp96 = static_cast(1); 2023-01-11T21:05:10.2981171Z tmp95 = tmp96; 2023-01-11T21:05:10.2981236Z } 2023-01-11T21:05:10.2981330Z auto tmp97 = tmp95 + tmp94; 2023-01-11T21:05:10.2981415Z float tmp98 = 0.0; 2023-01-11T21:05:10.2981488Z if(tmp37) 2023-01-11T21:05:10.2981556Z { 2023-01-11T21:05:10.2981662Z auto tmp99 = static_cast(1); 2023-01-11T21:05:10.2981731Z tmp98 = tmp99; 2023-01-11T21:05:10.2981798Z } 2023-01-11T21:05:10.2981898Z auto tmp100 = tmp98 + tmp97; 2023-01-11T21:05:10.2981987Z float tmp101 = 0.0; 2023-01-11T21:05:10.2982061Z if(tmp41) 2023-01-11T21:05:10.2982153Z { 2023-01-11T21:05:10.2982263Z auto tmp102 = static_cast(1); 2023-01-11T21:05:10.2982338Z tmp101 = tmp102; 2023-01-11T21:05:10.2982407Z } 2023-01-11T21:05:10.2982504Z auto tmp103 = tmp101 + tmp100; 2023-01-11T21:05:10.2982594Z float tmp104 = 0.0; 2023-01-11T21:05:10.2982667Z if(tmp47) 2023-01-11T21:05:10.2982732Z { 2023-01-11T21:05:10.2982842Z auto tmp105 = static_cast(1); 2023-01-11T21:05:10.2982916Z tmp104 = tmp105; 2023-01-11T21:05:10.2982983Z } 2023-01-11T21:05:10.2983081Z auto tmp106 = tmp104 + tmp103; 2023-01-11T21:05:10.2983168Z float tmp107 = 0.0; 2023-01-11T21:05:10.2983245Z if(tmp51) 2023-01-11T21:05:10.2983310Z { 2023-01-11T21:05:10.2983420Z auto tmp108 = static_cast(1); 2023-01-11T21:05:10.2983495Z tmp107 = tmp108; 2023-01-11T21:05:10.2983560Z } 2023-01-11T21:05:10.2983660Z auto tmp109 = tmp107 + tmp106; 2023-01-11T21:05:10.2983747Z float tmp110 = 0.0; 2023-01-11T21:05:10.2983824Z if(tmp55) 2023-01-11T21:05:10.2983890Z { 2023-01-11T21:05:10.2983997Z auto tmp111 = static_cast(1); 2023-01-11T21:05:10.2984072Z tmp110 = tmp111; 2023-01-11T21:05:10.2984139Z } 2023-01-11T21:05:10.2984235Z auto tmp112 = tmp110 + tmp109; 2023-01-11T21:05:10.2984323Z float tmp113 = 0.0; 2023-01-11T21:05:10.2984401Z if(tmp59) 2023-01-11T21:05:10.2984468Z { 2023-01-11T21:05:10.2984575Z auto tmp114 = static_cast(1); 2023-01-11T21:05:10.2984649Z tmp113 = tmp114; 2023-01-11T21:05:10.2984716Z } 2023-01-11T21:05:10.2984815Z auto tmp115 = tmp113 + tmp112; 2023-01-11T21:05:10.2984902Z float tmp116 = 0.0; 2023-01-11T21:05:10.2984975Z if(tmp65) 2023-01-11T21:05:10.2985042Z { 2023-01-11T21:05:10.2985151Z auto tmp117 = static_cast(1); 2023-01-11T21:05:10.2985236Z tmp116 = tmp117; 2023-01-11T21:05:10.2985322Z } 2023-01-11T21:05:10.2985417Z auto tmp118 = tmp116 + tmp115; 2023-01-11T21:05:10.2985506Z float tmp119 = 0.0; 2023-01-11T21:05:10.2985581Z if(tmp69) 2023-01-11T21:05:10.2985648Z { 2023-01-11T21:05:10.2985756Z auto tmp120 = static_cast(1); 2023-01-11T21:05:10.2985840Z tmp119 = tmp120; 2023-01-11T21:05:10.2985895Z } 2023-01-11T21:05:10.2985994Z auto tmp121 = tmp119 + tmp118; 2023-01-11T21:05:10.2986080Z float tmp122 = 0.0; 2023-01-11T21:05:10.2986155Z if(tmp73) 2023-01-11T21:05:10.2986220Z { 2023-01-11T21:05:10.2986330Z auto tmp123 = static_cast(1); 2023-01-11T21:05:10.2986420Z tmp122 = tmp123; 2023-01-11T21:05:10.2986475Z } 2023-01-11T21:05:10.2986575Z auto tmp124 = tmp122 + tmp121; 2023-01-11T21:05:10.2986702Z float tmp125 = 0.0; 2023-01-11T21:05:10.2986778Z if(tmp77) 2023-01-11T21:05:10.2986844Z { 2023-01-11T21:05:10.2986950Z auto tmp126 = static_cast(1); 2023-01-11T21:05:10.2987034Z tmp125 = tmp126; 2023-01-11T21:05:10.2987088Z } 2023-01-11T21:05:10.2987184Z auto tmp127 = tmp125 + tmp124; 2023-01-11T21:05:10.2987282Z auto tmp128 = tmp80 / tmp127; 2023-01-11T21:05:10.2987385Z out_ptr0[i2 + (6*i1) + (36*i0)] = tmp128; 2023-01-11T21:05:10.2987452Z } 2023-01-11T21:05:10.2987516Z } 2023-01-11T21:05:10.2987590Z } 2023-01-11T21:05:10.2987640Z } 2023-01-11T21:05:10.2987701Z } 2023-01-11T21:05:10.2987780Z #pragma omp for 2023-01-11T21:05:10.2987866Z for(long i0=0; i0<128; i0+=1) 2023-01-11T21:05:10.2987928Z { 2023-01-11T21:05:10.2988070Z auto tmp0 = at::vec::Vectorized::loadu(in_ptr0 + 16*i0); 2023-01-11T21:05:10.2988206Z auto tmp1 = at::vec::Vectorized(static_cast(1)); 2023-01-11T21:05:10.2988276Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:05:10.2988370Z tmp2.store(out_ptr1 + 16*i0); 2023-01-11T21:05:10.2988433Z } 2023-01-11T21:05:10.2988529Z #pragma omp for simd simdlen(8) 2023-01-11T21:05:10.2988614Z for(long i0=2048; i0<2048; i0+=1) 2023-01-11T21:05:10.2988676Z { 2023-01-11T21:05:10.2988759Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:05:10.2988843Z auto tmp1 = static_cast(1); 2023-01-11T21:05:10.2988928Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:05:10.2989008Z out_ptr1[i0] = tmp2; 2023-01-11T21:05:10.2989071Z } 2023-01-11T21:05:10.2989132Z } 2023-01-11T21:05:10.2989191Z } 2023-01-11T21:05:10.2989306Z ''') 2023-01-11T21:05:10.2989314Z 2023-01-11T21:05:10.2989319Z 2023-01-11T21:05:10.2989395Z async_compile.wait(globals()) 2023-01-11T21:05:10.2989466Z del async_compile 2023-01-11T21:05:10.2989471Z 2023-01-11T21:05:10.2989541Z def call(args): 2023-01-11T21:05:10.2989610Z arg0_1, = args 2023-01-11T21:05:10.2989681Z args.clear() 2023-01-11T21:05:10.2989899Z buf0 = empty_strided((2, 4, 6, 6), (144, 36, 6, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.2990121Z buf1 = empty_strided((2, 4, 16, 16), (1024, 256, 16, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.2990284Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(buf0.data_ptr()), c_void_p(buf1.data_ptr())) 2023-01-11T21:05:10.2990340Z del arg0_1 2023-01-11T21:05:10.2990491Z buf2 = aten._adaptive_avg_pool2d(buf1, [2, 5]) 2023-01-11T21:05:10.2990558Z del buf1 2023-01-11T21:05:10.2990627Z buf3 = buf2 2023-01-11T21:05:10.2990733Z assert_size_stride(buf3, (2, 4, 2, 5), (40, 10, 5, 1)) 2023-01-11T21:05:10.2990800Z del buf2 2023-01-11T21:05:10.2990877Z return (buf0, buf3, ) 2023-01-11T21:05:10.2990882Z 2023-01-11T21:05:10.2990886Z 2023-01-11T21:05:10.2990949Z if __name__ == "__main__": 2023-01-11T21:05:10.2991062Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.2991186Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.2991405Z arg0_1 = rand_strided((2, 4, 16, 16), (1024, 256, 16, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.2991514Z print_performance(lambda: call([arg0_1])) 2023-01-11T21:05:10.2991778Z [2023-01-11 20:44:24,404] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 8 2023-01-11T21:05:10.2992215Z inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.2992345Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.2992600Z [2023-01-11 20:44:24,462] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 9 2023-01-11T21:05:10.2992607Z 2023-01-11T21:05:10.2992611Z 2023-01-11T21:05:10.2992706Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.2992762Z import torch 2023-01-11T21:05:10.2992833Z import random 2023-01-11T21:05:10.2992947Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.2993068Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.2993073Z 2023-01-11T21:05:10.2993151Z aten = torch.ops.aten 2023-01-11T21:05:10.2993288Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.2993381Z async_compile = AsyncCompile() 2023-01-11T21:05:10.2993386Z 2023-01-11T21:05:10.2993390Z 2023-01-11T21:05:10.2993510Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.2993716Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.2993833Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:05:10.2993934Z float* __restrict__ out_ptr0, 2023-01-11T21:05:10.2994028Z float* __restrict__ out_ptr1) 2023-01-11T21:05:10.2994087Z { 2023-01-11T21:05:10.2994183Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.2994230Z { 2023-01-11T21:05:10.2994304Z #pragma omp for 2023-01-11T21:05:10.2994382Z for(long i0=0; i0<8; i0+=1) 2023-01-11T21:05:10.2994444Z { 2023-01-11T21:05:10.2994522Z #pragma GCC ivdep 2023-01-11T21:05:10.2994603Z for(long i1=0; i1<6; i1+=1) 2023-01-11T21:05:10.2994667Z { 2023-01-11T21:05:10.2994738Z #pragma GCC ivdep 2023-01-11T21:05:10.2994827Z for(long i2=0; i2<6; i2+=1) 2023-01-11T21:05:10.2994888Z { 2023-01-11T21:05:10.2994956Z { 2023-01-11T21:05:10.2995022Z { 2023-01-11T21:05:10.2995132Z auto tmp0 = static_cast((i1 / 2)); 2023-01-11T21:05:10.2995249Z auto tmp1 = static_cast(((8 + (3*i1)) / 6)); 2023-01-11T21:05:10.2995331Z auto tmp2 = tmp0 < tmp1; 2023-01-11T21:05:10.2995440Z auto tmp3 = static_cast((i2 / 2)); 2023-01-11T21:05:10.2995554Z auto tmp4 = static_cast(((8 + (3*i2)) / 6)); 2023-01-11T21:05:10.2995648Z auto tmp5 = tmp3 < tmp4; 2023-01-11T21:05:10.2995738Z auto tmp6 = tmp2 & tmp5; 2023-01-11T21:05:10.2995825Z float tmp7 = 0.0; 2023-01-11T21:05:10.2995934Z if(tmp6) 2023-01-11T21:05:10.2996003Z { 2023-01-11T21:05:10.2996108Z auto tmp8 = in_ptr0[(3*(i1 / 2)) + (9*i0) + (i2 / 2)]; 2023-01-11T21:05:10.2996191Z tmp7 = tmp8; 2023-01-11T21:05:10.2996258Z } 2023-01-11T21:05:10.2996368Z auto tmp9 = static_cast(1 + (i2 / 2)); 2023-01-11T21:05:10.2996462Z auto tmp10 = tmp9 < tmp4; 2023-01-11T21:05:10.2996557Z auto tmp11 = tmp2 & tmp10; 2023-01-11T21:05:10.2996644Z float tmp12 = 0.0; 2023-01-11T21:05:10.2996707Z if(tmp11) 2023-01-11T21:05:10.2996774Z { 2023-01-11T21:05:10.2996889Z auto tmp13 = in_ptr0[1 + (3*(i1 / 2)) + (9*i0) + (i2 / 2)]; 2023-01-11T21:05:10.2996976Z tmp12 = tmp13; 2023-01-11T21:05:10.2997045Z } 2023-01-11T21:05:10.2997139Z auto tmp14 = tmp12 + tmp7; 2023-01-11T21:05:10.2997288Z auto tmp15 = static_cast(1 + (i1 / 2)); 2023-01-11T21:05:10.2997373Z auto tmp16 = tmp15 < tmp1; 2023-01-11T21:05:10.2997466Z auto tmp17 = tmp16 & tmp5; 2023-01-11T21:05:10.2997553Z float tmp18 = 0.0; 2023-01-11T21:05:10.2997627Z if(tmp17) 2023-01-11T21:05:10.2997696Z { 2023-01-11T21:05:10.2997810Z auto tmp19 = in_ptr0[3 + (3*(i1 / 2)) + (9*i0) + (i2 / 2)]; 2023-01-11T21:05:10.2997894Z tmp18 = tmp19; 2023-01-11T21:05:10.2997959Z } 2023-01-11T21:05:10.2998043Z auto tmp20 = tmp18 + tmp14; 2023-01-11T21:05:10.2998140Z auto tmp21 = tmp16 & tmp10; 2023-01-11T21:05:10.2998227Z float tmp22 = 0.0; 2023-01-11T21:05:10.2998301Z if(tmp21) 2023-01-11T21:05:10.2998373Z { 2023-01-11T21:05:10.2998486Z auto tmp23 = in_ptr0[4 + (3*(i1 / 2)) + (9*i0) + (i2 / 2)]; 2023-01-11T21:05:10.2998570Z tmp22 = tmp23; 2023-01-11T21:05:10.2998624Z } 2023-01-11T21:05:10.2998721Z auto tmp24 = tmp22 + tmp20; 2023-01-11T21:05:10.2998807Z float tmp25 = 0.0; 2023-01-11T21:05:10.2998880Z if(tmp6) 2023-01-11T21:05:10.2998947Z { 2023-01-11T21:05:10.2999054Z auto tmp26 = static_cast(1); 2023-01-11T21:05:10.2999137Z tmp25 = tmp26; 2023-01-11T21:05:10.2999191Z } 2023-01-11T21:05:10.2999279Z float tmp27 = 0.0; 2023-01-11T21:05:10.2999353Z if(tmp11) 2023-01-11T21:05:10.2999420Z { 2023-01-11T21:05:10.2999529Z auto tmp28 = static_cast(1); 2023-01-11T21:05:10.2999610Z tmp27 = tmp28; 2023-01-11T21:05:10.2999676Z } 2023-01-11T21:05:10.2999758Z auto tmp29 = tmp27 + tmp25; 2023-01-11T21:05:10.2999842Z float tmp30 = 0.0; 2023-01-11T21:05:10.2999916Z if(tmp17) 2023-01-11T21:05:10.2999983Z { 2023-01-11T21:05:10.3000089Z auto tmp31 = static_cast(1); 2023-01-11T21:05:10.3000172Z tmp30 = tmp31; 2023-01-11T21:05:10.3000236Z } 2023-01-11T21:05:10.3000318Z auto tmp32 = tmp30 + tmp29; 2023-01-11T21:05:10.3000435Z float tmp33 = 0.0; 2023-01-11T21:05:10.3000508Z if(tmp21) 2023-01-11T21:05:10.3000574Z { 2023-01-11T21:05:10.3000845Z auto tmp34 = static_cast(1); 2023-01-11T21:05:10.3000961Z tmp33 = tmp34; 2023-01-11T21:05:10.3001032Z } 2023-01-11T21:05:10.3001114Z auto tmp35 = tmp33 + tmp32; 2023-01-11T21:05:10.3001210Z auto tmp36 = tmp24 / tmp35; 2023-01-11T21:05:10.3001313Z out_ptr0[i2 + (6*i1) + (36*i0)] = tmp36; 2023-01-11T21:05:10.3001379Z } 2023-01-11T21:05:10.3001444Z } 2023-01-11T21:05:10.3001506Z } 2023-01-11T21:05:10.3001568Z } 2023-01-11T21:05:10.3001615Z } 2023-01-11T21:05:10.3001691Z #pragma omp for 2023-01-11T21:05:10.3001774Z for(long i0=0; i0<8; i0+=1) 2023-01-11T21:05:10.3001836Z { 2023-01-11T21:05:10.3001913Z #pragma GCC ivdep 2023-01-11T21:05:10.3001994Z for(long i1=0; i1<2; i1+=1) 2023-01-11T21:05:10.3002112Z { 2023-01-11T21:05:10.3002182Z #pragma GCC ivdep 2023-01-11T21:05:10.3002266Z for(long i2=0; i2<5; i2+=1) 2023-01-11T21:05:10.3002330Z { 2023-01-11T21:05:10.3002395Z { 2023-01-11T21:05:10.3002461Z { 2023-01-11T21:05:10.3002574Z auto tmp0 = static_cast(((3*i1) / 2)); 2023-01-11T21:05:10.3002688Z auto tmp1 = static_cast(2 + (((3*i1) / 2))); 2023-01-11T21:05:10.3002772Z auto tmp2 = tmp0 < tmp1; 2023-01-11T21:05:10.3002881Z auto tmp3 = static_cast(((3*i2) / 5)); 2023-01-11T21:05:10.3002991Z auto tmp4 = static_cast(((7 + (3*i2)) / 5)); 2023-01-11T21:05:10.3003085Z auto tmp5 = tmp3 < tmp4; 2023-01-11T21:05:10.3003176Z auto tmp6 = tmp2 & tmp5; 2023-01-11T21:05:10.3003266Z float tmp7 = 0.0; 2023-01-11T21:05:10.3003340Z if(tmp6) 2023-01-11T21:05:10.3003396Z { 2023-01-11T21:05:10.3003519Z auto tmp8 = in_ptr0[(3*(((3*i1) / 2))) + (9*i0) + (((3*i2) / 5))]; 2023-01-11T21:05:10.3003628Z auto tmp9 = static_cast(1); 2023-01-11T21:05:10.3003726Z auto tmp10 = tmp8 + tmp9; 2023-01-11T21:05:10.3003814Z tmp7 = tmp10; 2023-01-11T21:05:10.3003882Z } 2023-01-11T21:05:10.3003999Z auto tmp11 = static_cast(1 + (((3*i2) / 5))); 2023-01-11T21:05:10.3004093Z auto tmp12 = tmp11 < tmp4; 2023-01-11T21:05:10.3004179Z auto tmp13 = tmp2 & tmp12; 2023-01-11T21:05:10.3004268Z float tmp14 = 0.0; 2023-01-11T21:05:10.3004344Z if(tmp13) 2023-01-11T21:05:10.3004409Z { 2023-01-11T21:05:10.3004532Z auto tmp15 = in_ptr0[1 + (3*(((3*i1) / 2))) + (9*i0) + (((3*i2) / 5))]; 2023-01-11T21:05:10.3004640Z auto tmp16 = static_cast(1); 2023-01-11T21:05:10.3004744Z auto tmp17 = tmp15 + tmp16; 2023-01-11T21:05:10.3004818Z tmp14 = tmp17; 2023-01-11T21:05:10.3004885Z } 2023-01-11T21:05:10.3004979Z auto tmp18 = tmp14 + tmp7; 2023-01-11T21:05:10.3005095Z auto tmp19 = static_cast(1 + (((3*i1) / 2))); 2023-01-11T21:05:10.3005188Z auto tmp20 = tmp19 < tmp1; 2023-01-11T21:05:10.3005324Z auto tmp21 = tmp20 & tmp5; 2023-01-11T21:05:10.3005411Z float tmp22 = 0.0; 2023-01-11T21:05:10.3005486Z if(tmp21) 2023-01-11T21:05:10.3005542Z { 2023-01-11T21:05:10.3005663Z auto tmp23 = in_ptr0[3 + (3*(((3*i1) / 2))) + (9*i0) + (((3*i2) / 5))]; 2023-01-11T21:05:10.3005770Z auto tmp24 = static_cast(1); 2023-01-11T21:05:10.3005868Z auto tmp25 = tmp23 + tmp24; 2023-01-11T21:05:10.3005953Z tmp22 = tmp25; 2023-01-11T21:05:10.3006023Z } 2023-01-11T21:05:10.3006118Z auto tmp26 = tmp22 + tmp18; 2023-01-11T21:05:10.3006201Z auto tmp27 = tmp20 & tmp12; 2023-01-11T21:05:10.3006287Z float tmp28 = 0.0; 2023-01-11T21:05:10.3006363Z if(tmp27) 2023-01-11T21:05:10.3006429Z { 2023-01-11T21:05:10.3006551Z auto tmp29 = in_ptr0[4 + (3*(((3*i1) / 2))) + (9*i0) + (((3*i2) / 5))]; 2023-01-11T21:05:10.3006692Z auto tmp30 = static_cast(1); 2023-01-11T21:05:10.3006789Z auto tmp31 = tmp29 + tmp30; 2023-01-11T21:05:10.3006865Z tmp28 = tmp31; 2023-01-11T21:05:10.3006932Z } 2023-01-11T21:05:10.3007025Z auto tmp32 = tmp28 + tmp26; 2023-01-11T21:05:10.3007113Z float tmp33 = 0.0; 2023-01-11T21:05:10.3007188Z if(tmp6) 2023-01-11T21:05:10.3007255Z { 2023-01-11T21:05:10.3007362Z auto tmp34 = static_cast(1); 2023-01-11T21:05:10.3007444Z tmp33 = tmp34; 2023-01-11T21:05:10.3007502Z } 2023-01-11T21:05:10.3007588Z float tmp35 = 0.0; 2023-01-11T21:05:10.3007662Z if(tmp13) 2023-01-11T21:05:10.3007777Z { 2023-01-11T21:05:10.3007937Z auto tmp36 = static_cast(1); 2023-01-11T21:05:10.3008051Z tmp35 = tmp36; 2023-01-11T21:05:10.3008184Z } 2023-01-11T21:05:10.3008268Z auto tmp37 = tmp35 + tmp33; 2023-01-11T21:05:10.3008386Z float tmp38 = 0.0; 2023-01-11T21:05:10.3008590Z if(tmp21) 2023-01-11T21:05:10.3008688Z { 2023-01-11T21:05:10.3008826Z auto tmp39 = static_cast(1); 2023-01-11T21:05:10.3008898Z tmp38 = tmp39; 2023-01-11T21:05:10.3009003Z } 2023-01-11T21:05:10.3009131Z auto tmp40 = tmp38 + tmp37; 2023-01-11T21:05:10.3009248Z float tmp41 = 0.0; 2023-01-11T21:05:10.3009355Z if(tmp27) 2023-01-11T21:05:10.3009459Z { 2023-01-11T21:05:10.3009622Z auto tmp42 = static_cast(1); 2023-01-11T21:05:10.3009693Z tmp41 = tmp42; 2023-01-11T21:05:10.3009788Z } 2023-01-11T21:05:10.3009922Z auto tmp43 = tmp41 + tmp40; 2023-01-11T21:05:10.3010045Z auto tmp44 = tmp32 / tmp43; 2023-01-11T21:05:10.3010178Z out_ptr1[i2 + (5*i1) + (10*i0)] = tmp44; 2023-01-11T21:05:10.3010304Z } 2023-01-11T21:05:10.3010397Z } 2023-01-11T21:05:10.3010448Z } 2023-01-11T21:05:10.3010538Z } 2023-01-11T21:05:10.3010642Z } 2023-01-11T21:05:10.3010772Z } 2023-01-11T21:05:10.3010860Z } 2023-01-11T21:05:10.3010988Z ''') 2023-01-11T21:05:10.3010994Z 2023-01-11T21:05:10.3010998Z 2023-01-11T21:05:10.3011117Z async_compile.wait(globals()) 2023-01-11T21:05:10.3011175Z del async_compile 2023-01-11T21:05:10.3011184Z 2023-01-11T21:05:10.3011281Z def call(args): 2023-01-11T21:05:10.3011376Z arg0_1, = args 2023-01-11T21:05:10.3011477Z args.clear() 2023-01-11T21:05:10.3011753Z buf0 = empty_strided((2, 4, 6, 6), (144, 36, 6, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.3011992Z buf1 = empty_strided((2, 4, 2, 5), (40, 10, 5, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.3012188Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(buf0.data_ptr()), c_void_p(buf1.data_ptr())) 2023-01-11T21:05:10.3012287Z del arg0_1 2023-01-11T21:05:10.3012353Z return (buf0, buf1, ) 2023-01-11T21:05:10.3012358Z 2023-01-11T21:05:10.3012362Z 2023-01-11T21:05:10.3012497Z if __name__ == "__main__": 2023-01-11T21:05:10.3012640Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.3012791Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.3013073Z arg0_1 = rand_strided((2, 4, 3, 3), (36, 9, 3, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.3013231Z print_performance(lambda: call([arg0_1])) 2023-01-11T21:05:10.3013529Z [2023-01-11 20:44:27,435] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 9 2023-01-11T21:05:10.3013962Z inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.3014117Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.3014358Z [2023-01-11 20:44:27,525] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 10 2023-01-11T21:05:10.3014366Z 2023-01-11T21:05:10.3014413Z 2023-01-11T21:05:10.3014494Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.3014600Z import torch 2023-01-11T21:05:10.3014702Z import random 2023-01-11T21:05:10.3014844Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.3015018Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.3015023Z 2023-01-11T21:05:10.3015130Z aten = torch.ops.aten 2023-01-11T21:05:10.3015292Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.3015368Z async_compile = AsyncCompile() 2023-01-11T21:05:10.3015373Z 2023-01-11T21:05:10.3015377Z 2023-01-11T21:05:10.3015571Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.3015809Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.3015958Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:05:10.3016085Z float* __restrict__ out_ptr0, 2023-01-11T21:05:10.3016213Z float* __restrict__ out_ptr1) 2023-01-11T21:05:10.3016321Z { 2023-01-11T21:05:10.3016448Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.3016499Z { 2023-01-11T21:05:10.3016602Z #pragma omp for 2023-01-11T21:05:10.3016720Z for(long i0=0; i0<18; i0+=1) 2023-01-11T21:05:10.3016810Z { 2023-01-11T21:05:10.3016978Z auto tmp0 = at::vec::Vectorized::loadu(in_ptr0 + 16*i0); 2023-01-11T21:05:10.3017100Z tmp0.store(out_ptr0 + 16*i0); 2023-01-11T21:05:10.3017149Z } 2023-01-11T21:05:10.3017272Z #pragma omp for simd simdlen(8) 2023-01-11T21:05:10.3017399Z for(long i0=288; i0<288; i0+=1) 2023-01-11T21:05:10.3017489Z { 2023-01-11T21:05:10.3017608Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:05:10.3017746Z out_ptr0[i0] = tmp0; 2023-01-11T21:05:10.3017835Z } 2023-01-11T21:05:10.3017896Z #pragma omp for 2023-01-11T21:05:10.3018039Z for(long i0=0; i0<8; i0+=1) 2023-01-11T21:05:10.3018127Z { 2023-01-11T21:05:10.3018237Z #pragma GCC ivdep 2023-01-11T21:05:10.3018394Z for(long i1=0; i1<2; i1+=1) 2023-01-11T21:05:10.3018588Z { 2023-01-11T21:05:10.3018700Z #pragma GCC ivdep 2023-01-11T21:05:10.3018775Z for(long i2=0; i2<5; i2+=1) 2023-01-11T21:05:10.3018868Z { 2023-01-11T21:05:10.3018960Z { 2023-01-11T21:05:10.3019057Z { 2023-01-11T21:05:10.3019198Z auto tmp0 = static_cast(3*i1); 2023-01-11T21:05:10.3019339Z auto tmp1 = static_cast(3 + (3*i1)); 2023-01-11T21:05:10.3019491Z auto tmp2 = tmp0 < tmp1; 2023-01-11T21:05:10.3019590Z auto tmp3 = static_cast(((6*i2) / 5)); 2023-01-11T21:05:10.3019737Z auto tmp4 = static_cast(2 + (((6*i2) / 5))); 2023-01-11T21:05:10.3019896Z auto tmp5 = tmp3 < tmp4; 2023-01-11T21:05:10.3020014Z auto tmp6 = tmp2 & tmp5; 2023-01-11T21:05:10.3020161Z float tmp7 = 0.0; 2023-01-11T21:05:10.3020266Z if(tmp6) 2023-01-11T21:05:10.3020368Z { 2023-01-11T21:05:10.3020472Z auto tmp8 = in_ptr0[(18*i1) + (36*i0) + (((6*i2) / 5))]; 2023-01-11T21:05:10.3020610Z auto tmp9 = static_cast(1); 2023-01-11T21:05:10.3020755Z auto tmp10 = tmp8 + tmp9; 2023-01-11T21:05:10.3020871Z tmp7 = tmp10; 2023-01-11T21:05:10.3020968Z } 2023-01-11T21:05:10.3021111Z auto tmp11 = static_cast(1 + (((6*i2) / 5))); 2023-01-11T21:05:10.3021235Z auto tmp12 = tmp11 < tmp4; 2023-01-11T21:05:10.3021368Z auto tmp13 = tmp2 & tmp12; 2023-01-11T21:05:10.3021448Z float tmp14 = 0.0; 2023-01-11T21:05:10.3021553Z if(tmp13) 2023-01-11T21:05:10.3021653Z { 2023-01-11T21:05:10.3021820Z auto tmp15 = in_ptr0[1 + (18*i1) + (36*i0) + (((6*i2) / 5))]; 2023-01-11T21:05:10.3021986Z auto tmp16 = static_cast(1); 2023-01-11T21:05:10.3022115Z auto tmp17 = tmp15 + tmp16; 2023-01-11T21:05:10.3022236Z tmp14 = tmp17; 2023-01-11T21:05:10.3022291Z } 2023-01-11T21:05:10.3022423Z auto tmp18 = tmp14 + tmp7; 2023-01-11T21:05:10.3022566Z auto tmp19 = static_cast(1 + (3*i1)); 2023-01-11T21:05:10.3022689Z auto tmp20 = tmp19 < tmp1; 2023-01-11T21:05:10.3022816Z auto tmp21 = tmp20 & tmp5; 2023-01-11T21:05:10.3022951Z float tmp22 = 0.0; 2023-01-11T21:05:10.3023055Z if(tmp21) 2023-01-11T21:05:10.3023112Z { 2023-01-11T21:05:10.3023260Z auto tmp23 = in_ptr0[6 + (18*i1) + (36*i0) + (((6*i2) / 5))]; 2023-01-11T21:05:10.3023404Z auto tmp24 = static_cast(1); 2023-01-11T21:05:10.3023531Z auto tmp25 = tmp23 + tmp24; 2023-01-11T21:05:10.3023646Z tmp22 = tmp25; 2023-01-11T21:05:10.3023741Z } 2023-01-11T21:05:10.3023865Z auto tmp26 = tmp22 + tmp18; 2023-01-11T21:05:10.3024037Z auto tmp27 = tmp20 & tmp12; 2023-01-11T21:05:10.3024114Z float tmp28 = 0.0; 2023-01-11T21:05:10.3024218Z if(tmp27) 2023-01-11T21:05:10.3024354Z { 2023-01-11T21:05:10.3024498Z auto tmp29 = in_ptr0[7 + (18*i1) + (36*i0) + (((6*i2) / 5))]; 2023-01-11T21:05:10.3024637Z auto tmp30 = static_cast(1); 2023-01-11T21:05:10.3024763Z auto tmp31 = tmp29 + tmp30; 2023-01-11T21:05:10.3024876Z tmp28 = tmp31; 2023-01-11T21:05:10.3024932Z } 2023-01-11T21:05:10.3025061Z auto tmp32 = tmp28 + tmp26; 2023-01-11T21:05:10.3025219Z auto tmp33 = static_cast(2 + (3*i1)); 2023-01-11T21:05:10.3025349Z auto tmp34 = tmp33 < tmp1; 2023-01-11T21:05:10.3025471Z auto tmp35 = tmp34 & tmp5; 2023-01-11T21:05:10.3025584Z float tmp36 = 0.0; 2023-01-11T21:05:10.3025688Z if(tmp35) 2023-01-11T21:05:10.3025790Z { 2023-01-11T21:05:10.3025895Z auto tmp37 = in_ptr0[12 + (18*i1) + (36*i0) + (((6*i2) / 5))]; 2023-01-11T21:05:10.3026059Z auto tmp38 = static_cast(1); 2023-01-11T21:05:10.3026222Z auto tmp39 = tmp37 + tmp38; 2023-01-11T21:05:10.3026354Z tmp36 = tmp39; 2023-01-11T21:05:10.3026449Z } 2023-01-11T21:05:10.3026574Z auto tmp40 = tmp36 + tmp32; 2023-01-11T21:05:10.3026699Z auto tmp41 = tmp34 & tmp12; 2023-01-11T21:05:10.3026774Z float tmp42 = 0.0; 2023-01-11T21:05:10.3026877Z if(tmp41) 2023-01-11T21:05:10.3026974Z { 2023-01-11T21:05:10.3027128Z auto tmp43 = in_ptr0[13 + (18*i1) + (36*i0) + (((6*i2) / 5))]; 2023-01-11T21:05:10.3027266Z auto tmp44 = static_cast(1); 2023-01-11T21:05:10.3027410Z auto tmp45 = tmp43 + tmp44; 2023-01-11T21:05:10.3027524Z tmp42 = tmp45; 2023-01-11T21:05:10.3027581Z } 2023-01-11T21:05:10.3027703Z auto tmp46 = tmp42 + tmp40; 2023-01-11T21:05:10.3027827Z auto tmp47 = tmp1 < tmp1; 2023-01-11T21:05:10.3027953Z auto tmp48 = tmp47 & tmp5; 2023-01-11T21:05:10.3028078Z float tmp49 = 0.0; 2023-01-11T21:05:10.3028210Z if(tmp48) 2023-01-11T21:05:10.3028305Z { 2023-01-11T21:05:10.3028467Z auto tmp50 = in_ptr0[18 + (18*i1) + (36*i0) + (((6*i2) / 5))]; 2023-01-11T21:05:10.3028562Z auto tmp51 = static_cast(1); 2023-01-11T21:05:10.3028688Z auto tmp52 = tmp50 + tmp51; 2023-01-11T21:05:10.3028802Z tmp49 = tmp52; 2023-01-11T21:05:10.3028898Z } 2023-01-11T21:05:10.3029028Z auto tmp53 = tmp49 + tmp46; 2023-01-11T21:05:10.3029151Z auto tmp54 = tmp47 & tmp12; 2023-01-11T21:05:10.3029269Z float tmp55 = 0.0; 2023-01-11T21:05:10.3029333Z if(tmp54) 2023-01-11T21:05:10.3029431Z { 2023-01-11T21:05:10.3029593Z auto tmp56 = in_ptr0[19 + (18*i1) + (36*i0) + (((6*i2) / 5))]; 2023-01-11T21:05:10.3029734Z auto tmp57 = static_cast(1); 2023-01-11T21:05:10.3029859Z auto tmp58 = tmp56 + tmp57; 2023-01-11T21:05:10.3029978Z tmp55 = tmp58; 2023-01-11T21:05:10.3030077Z } 2023-01-11T21:05:10.3030160Z auto tmp59 = tmp55 + tmp53; 2023-01-11T21:05:10.3030334Z float tmp60 = 0.0; 2023-01-11T21:05:10.3030436Z if(tmp6) 2023-01-11T21:05:10.3030531Z { 2023-01-11T21:05:10.3030686Z auto tmp61 = static_cast(1); 2023-01-11T21:05:10.3030801Z tmp60 = tmp61; 2023-01-11T21:05:10.3030906Z } 2023-01-11T21:05:10.3030981Z float tmp62 = 0.0; 2023-01-11T21:05:10.3031086Z if(tmp13) 2023-01-11T21:05:10.3031180Z { 2023-01-11T21:05:10.3031318Z auto tmp63 = static_cast(1); 2023-01-11T21:05:10.3031428Z tmp62 = tmp63; 2023-01-11T21:05:10.3031529Z } 2023-01-11T21:05:10.3031673Z auto tmp64 = tmp62 + tmp60; 2023-01-11T21:05:10.3031796Z float tmp65 = 0.0; 2023-01-11T21:05:10.3031861Z if(tmp21) 2023-01-11T21:05:10.3031954Z { 2023-01-11T21:05:10.3032117Z auto tmp66 = static_cast(1); 2023-01-11T21:05:10.3032257Z tmp65 = tmp66; 2023-01-11T21:05:10.3032352Z } 2023-01-11T21:05:10.3032475Z auto tmp67 = tmp65 + tmp64; 2023-01-11T21:05:10.3032596Z float tmp68 = 0.0; 2023-01-11T21:05:10.3032659Z if(tmp27) 2023-01-11T21:05:10.3032774Z { 2023-01-11T21:05:10.3032914Z auto tmp69 = static_cast(1); 2023-01-11T21:05:10.3033030Z tmp68 = tmp69; 2023-01-11T21:05:10.3033126Z } 2023-01-11T21:05:10.3033248Z auto tmp70 = tmp68 + tmp67; 2023-01-11T21:05:10.3033365Z float tmp71 = 0.0; 2023-01-11T21:05:10.3033431Z if(tmp35) 2023-01-11T21:05:10.3033535Z { 2023-01-11T21:05:10.3033673Z auto tmp72 = static_cast(1); 2023-01-11T21:05:10.3033806Z tmp71 = tmp72; 2023-01-11T21:05:10.3033904Z } 2023-01-11T21:05:10.3034027Z auto tmp73 = tmp71 + tmp70; 2023-01-11T21:05:10.3034142Z float tmp74 = 0.0; 2023-01-11T21:05:10.3034205Z if(tmp41) 2023-01-11T21:05:10.3034330Z { 2023-01-11T21:05:10.3034474Z auto tmp75 = static_cast(1); 2023-01-11T21:05:10.3034584Z tmp74 = tmp75; 2023-01-11T21:05:10.3034684Z } 2023-01-11T21:05:10.3034826Z auto tmp76 = tmp74 + tmp73; 2023-01-11T21:05:10.3034943Z float tmp77 = 0.0; 2023-01-11T21:05:10.3035004Z if(tmp48) 2023-01-11T21:05:10.3035100Z { 2023-01-11T21:05:10.3035238Z auto tmp78 = static_cast(1); 2023-01-11T21:05:10.3035357Z tmp77 = tmp78; 2023-01-11T21:05:10.3035453Z } 2023-01-11T21:05:10.3035578Z auto tmp79 = tmp77 + tmp76; 2023-01-11T21:05:10.3035691Z float tmp80 = 0.0; 2023-01-11T21:05:10.3035752Z if(tmp54) 2023-01-11T21:05:10.3035865Z { 2023-01-11T21:05:10.3036000Z auto tmp81 = static_cast(1); 2023-01-11T21:05:10.3036113Z tmp80 = tmp81; 2023-01-11T21:05:10.3036244Z } 2023-01-11T21:05:10.3036366Z auto tmp82 = tmp80 + tmp79; 2023-01-11T21:05:10.3036524Z auto tmp83 = tmp59 / tmp82; 2023-01-11T21:05:10.3036655Z out_ptr1[i2 + (5*i1) + (10*i0)] = tmp83; 2023-01-11T21:05:10.3036710Z } 2023-01-11T21:05:10.3036805Z } 2023-01-11T21:05:10.3036918Z } 2023-01-11T21:05:10.3037009Z } 2023-01-11T21:05:10.3037105Z } 2023-01-11T21:05:10.3037194Z } 2023-01-11T21:05:10.3037242Z } 2023-01-11T21:05:10.3037366Z ''') 2023-01-11T21:05:10.3037374Z 2023-01-11T21:05:10.3037379Z 2023-01-11T21:05:10.3037496Z async_compile.wait(globals()) 2023-01-11T21:05:10.3037595Z del async_compile 2023-01-11T21:05:10.3037600Z 2023-01-11T21:05:10.3037699Z def call(args): 2023-01-11T21:05:10.3037812Z arg0_1, = args 2023-01-11T21:05:10.3037918Z args.clear() 2023-01-11T21:05:10.3038194Z buf0 = empty_strided((2, 4, 6, 6), (144, 36, 6, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.3038392Z buf1 = empty_strided((2, 4, 2, 5), (40, 10, 5, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.3038590Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(buf0.data_ptr()), c_void_p(buf1.data_ptr())) 2023-01-11T21:05:10.3038689Z del arg0_1 2023-01-11T21:05:10.3038838Z return (buf0, buf1, ) 2023-01-11T21:05:10.3038844Z 2023-01-11T21:05:10.3038848Z 2023-01-11T21:05:10.3038954Z if __name__ == "__main__": 2023-01-11T21:05:10.3039105Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.3039284Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.3039528Z arg0_1 = rand_strided((2, 4, 6, 6), (144, 36, 6, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.3039624Z print_performance(lambda: call([arg0_1])) 2023-01-11T21:05:10.3039920Z [2023-01-11 20:44:30,437] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 10 2023-01-11T21:05:10.3039926Z 2023-01-11T21:05:10.3040018Z ok (9.710s) 2023-01-11T21:05:10.3040503Z test_adaptive_avg_pool2d2_cpu (__main__.CpuTests) ... inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.3040804Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.3041131Z [2023-01-11 20:44:30,476] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 11 2023-01-11T21:05:10.3041403Z [2023-01-11 20:44:30,486] torch._inductor.ir: [WARNING] Using FallbackKernel: aten._adaptive_avg_pool2d 2023-01-11T21:05:10.3041722Z [2023-01-11 20:44:30,492] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 11 2023-01-11T21:05:10.3041727Z 2023-01-11T21:05:10.3041886Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.3041943Z import torch 2023-01-11T21:05:10.3042046Z import random 2023-01-11T21:05:10.3042188Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.3042337Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.3042343Z 2023-01-11T21:05:10.3112891Z aten = torch.ops.aten 2023-01-11T21:05:10.3113143Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.3113238Z async_compile = AsyncCompile() 2023-01-11T21:05:10.3113244Z 2023-01-11T21:05:10.3113249Z 2023-01-11T21:05:10.3113328Z async_compile.wait(globals()) 2023-01-11T21:05:10.3113391Z del async_compile 2023-01-11T21:05:10.3113396Z 2023-01-11T21:05:10.3113459Z def call(args): 2023-01-11T21:05:10.3113515Z arg0_1, = args 2023-01-11T21:05:10.3113577Z args.clear() 2023-01-11T21:05:10.3113681Z buf0 = aten._adaptive_avg_pool2d(arg0_1, [4, 4]) 2023-01-11T21:05:10.3113739Z del arg0_1 2023-01-11T21:05:10.3113796Z buf1 = buf0 2023-01-11T21:05:10.3113893Z assert_size_stride(buf1, (2, 4, 4, 4), (64, 16, 4, 1)) 2023-01-11T21:05:10.3114167Z del buf0 2023-01-11T21:05:10.3114225Z return (buf1, ) 2023-01-11T21:05:10.3114231Z 2023-01-11T21:05:10.3114235Z 2023-01-11T21:05:10.3114303Z if __name__ == "__main__": 2023-01-11T21:05:10.3114413Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.3114529Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.3114793Z arg0_1 = rand_strided((2, 4, 21, 21), (1764, 441, 21, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.3114893Z print_performance(lambda: call([arg0_1])) 2023-01-11T21:05:10.3114899Z 2023-01-11T21:05:10.3114956Z ok (0.053s) 2023-01-11T21:05:10.3115394Z test_add_const_float_cpu (__main__.CpuTests) ... inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.3115513Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.3115841Z [2023-01-11 20:44:30,514] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 12 2023-01-11T21:05:10.3116104Z [2023-01-11 20:44:33,210] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 12 2023-01-11T21:05:10.3116110Z 2023-01-11T21:05:10.3116194Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.3116254Z import torch 2023-01-11T21:05:10.3116315Z import random 2023-01-11T21:05:10.3116420Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.3116532Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.3116537Z 2023-01-11T21:05:10.3116605Z aten = torch.ops.aten 2023-01-11T21:05:10.3116728Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.3116810Z async_compile = AsyncCompile() 2023-01-11T21:05:10.3116816Z 2023-01-11T21:05:10.3116823Z 2023-01-11T21:05:10.3116949Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.3117143Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.3117254Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:05:10.3117345Z float* __restrict__ out_ptr0) 2023-01-11T21:05:10.3117397Z { 2023-01-11T21:05:10.3117486Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.3117534Z { 2023-01-11T21:05:10.3117603Z #pragma omp for 2023-01-11T21:05:10.3117676Z for(long i0=0; i0<2; i0+=1) 2023-01-11T21:05:10.3117729Z { 2023-01-11T21:05:10.3117867Z auto tmp0 = at::vec::Vectorized::loadu(in_ptr0 + 16*i0); 2023-01-11T21:05:10.3117994Z auto tmp1 = at::vec::Vectorized(static_cast(1.5)); 2023-01-11T21:05:10.3118071Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:05:10.3118149Z tmp2.store(out_ptr0 + 16*i0); 2023-01-11T21:05:10.3118208Z } 2023-01-11T21:05:10.3118295Z #pragma omp for simd simdlen(8) 2023-01-11T21:05:10.3118369Z for(long i0=32; i0<32; i0+=1) 2023-01-11T21:05:10.3118423Z { 2023-01-11T21:05:10.3118498Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:05:10.3118590Z auto tmp1 = static_cast(1.5); 2023-01-11T21:05:10.3118659Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:05:10.3118729Z out_ptr0[i0] = tmp2; 2023-01-11T21:05:10.3118781Z } 2023-01-11T21:05:10.3118834Z } 2023-01-11T21:05:10.3118884Z } 2023-01-11T21:05:10.3118955Z ''') 2023-01-11T21:05:10.3118960Z 2023-01-11T21:05:10.3118964Z 2023-01-11T21:05:10.3119046Z async_compile.wait(globals()) 2023-01-11T21:05:10.3119105Z del async_compile 2023-01-11T21:05:10.3119109Z 2023-01-11T21:05:10.3119170Z def call(args): 2023-01-11T21:05:10.3119230Z arg0_1, = args 2023-01-11T21:05:10.3119292Z args.clear() 2023-01-11T21:05:10.3119478Z buf0 = empty_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.3119633Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:05:10.3119693Z del arg0_1 2023-01-11T21:05:10.3119749Z return (buf0, ) 2023-01-11T21:05:10.3119756Z 2023-01-11T21:05:10.3119765Z 2023-01-11T21:05:10.3119827Z if __name__ == "__main__": 2023-01-11T21:05:10.3119929Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.3120043Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.3120228Z arg0_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.3120325Z print_performance(lambda: call([arg0_1])) 2023-01-11T21:05:10.3120329Z 2023-01-11T21:05:10.3120386Z ok (2.718s) 2023-01-11T21:05:10.3121042Z test_add_const_int_cpu (__main__.CpuTests) ... inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.3121166Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.3121456Z [2023-01-11 20:44:33,243] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 13 2023-01-11T21:05:10.3121715Z [2023-01-11 20:44:35,881] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 13 2023-01-11T21:05:10.3121720Z 2023-01-11T21:05:10.3121805Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.3121866Z import torch 2023-01-11T21:05:10.3121928Z import random 2023-01-11T21:05:10.3122033Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.3122144Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.3122149Z 2023-01-11T21:05:10.3122217Z aten = torch.ops.aten 2023-01-11T21:05:10.3122337Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.3122421Z async_compile = AsyncCompile() 2023-01-11T21:05:10.3122426Z 2023-01-11T21:05:10.3122431Z 2023-01-11T21:05:10.3122554Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.3122752Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.3122862Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:05:10.3122952Z float* __restrict__ out_ptr0) 2023-01-11T21:05:10.3123004Z { 2023-01-11T21:05:10.3123093Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.3123140Z { 2023-01-11T21:05:10.3123206Z #pragma omp for 2023-01-11T21:05:10.3123277Z for(long i0=0; i0<2; i0+=1) 2023-01-11T21:05:10.3123331Z { 2023-01-11T21:05:10.3123457Z auto tmp0 = at::vec::Vectorized::loadu(in_ptr0 + 16*i0); 2023-01-11T21:05:10.3123581Z auto tmp1 = at::vec::Vectorized(static_cast(1)); 2023-01-11T21:05:10.3123659Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:05:10.3123736Z tmp2.store(out_ptr0 + 16*i0); 2023-01-11T21:05:10.3123790Z } 2023-01-11T21:05:10.3123875Z #pragma omp for simd simdlen(8) 2023-01-11T21:05:10.3123950Z for(long i0=32; i0<32; i0+=1) 2023-01-11T21:05:10.3124004Z { 2023-01-11T21:05:10.3124078Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:05:10.3124170Z auto tmp1 = static_cast(1); 2023-01-11T21:05:10.3124240Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:05:10.3124309Z out_ptr0[i0] = tmp2; 2023-01-11T21:05:10.3124362Z } 2023-01-11T21:05:10.3124414Z } 2023-01-11T21:05:10.3124464Z } 2023-01-11T21:05:10.3124532Z ''') 2023-01-11T21:05:10.3124538Z 2023-01-11T21:05:10.3124541Z 2023-01-11T21:05:10.3124622Z async_compile.wait(globals()) 2023-01-11T21:05:10.3124680Z del async_compile 2023-01-11T21:05:10.3124685Z 2023-01-11T21:05:10.3124745Z def call(args): 2023-01-11T21:05:10.3124804Z arg0_1, = args 2023-01-11T21:05:10.3124906Z args.clear() 2023-01-11T21:05:10.3125095Z buf0 = empty_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.3125223Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:05:10.3125282Z del arg0_1 2023-01-11T21:05:10.3125339Z return (buf0, ) 2023-01-11T21:05:10.3125344Z 2023-01-11T21:05:10.3125354Z 2023-01-11T21:05:10.3125415Z if __name__ == "__main__": 2023-01-11T21:05:10.3125519Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.3125633Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.3125818Z arg0_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.3125916Z print_performance(lambda: call([arg0_1])) 2023-01-11T21:05:10.3125921Z 2023-01-11T21:05:10.3125978Z ok (2.670s) 2023-01-11T21:05:10.3126449Z test_add_inplace_permuted_cpu (__main__.CpuTests) ... inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.3126571Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.3126814Z [2023-01-11 20:44:35,911] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 14 2023-01-11T21:05:10.3127068Z [2023-01-11 20:44:38,654] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 14 2023-01-11T21:05:10.3127074Z 2023-01-11T21:05:10.3127157Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.3127218Z import torch 2023-01-11T21:05:10.3127280Z import random 2023-01-11T21:05:10.3127386Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.3127496Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.3127501Z 2023-01-11T21:05:10.3127574Z aten = torch.ops.aten 2023-01-11T21:05:10.3127694Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.3127777Z async_compile = AsyncCompile() 2023-01-11T21:05:10.3127782Z 2023-01-11T21:05:10.3127788Z 2023-01-11T21:05:10.3127913Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.3128108Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.3128217Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:05:10.3128311Z const float* __restrict__ in_ptr1, 2023-01-11T21:05:10.3128402Z float* __restrict__ out_ptr0) 2023-01-11T21:05:10.3128453Z { 2023-01-11T21:05:10.3128535Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.3128589Z { 2023-01-11T21:05:10.3128671Z #pragma omp for collapse(2) 2023-01-11T21:05:10.3128743Z for(long i0=0; i0<2; i0+=1) 2023-01-11T21:05:10.3128797Z { 2023-01-11T21:05:10.3128876Z for(long i1=0; i1<12; i1+=1) 2023-01-11T21:05:10.3128931Z { 2023-01-11T21:05:10.3129005Z for(long i2=0; i2<13; i2+=1) 2023-01-11T21:05:10.3129061Z { 2023-01-11T21:05:10.3129207Z auto tmp0 = at::vec::Vectorized::loadu(in_ptr0 + (16*i2) + (221*i1) + (2652*i0)); 2023-01-11T21:05:10.3129343Z auto tmp1 = at::vec::Vectorized::loadu(in_ptr1 + (16*i2) + (221*i0)); 2023-01-11T21:05:10.3129427Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:05:10.3129530Z tmp2.store(out_ptr0 + (16*i2) + (221*i1) + (2652*i0)); 2023-01-11T21:05:10.3129587Z } 2023-01-11T21:05:10.3129674Z #pragma omp simd simdlen(8) 2023-01-11T21:05:10.3129751Z for(long i2=208; i2<221; i2+=1) 2023-01-11T21:05:10.3129806Z { 2023-01-11T21:05:10.3129906Z auto tmp0 = out_ptr0[i2 + (221*i1) + (2652*i0)]; 2023-01-11T21:05:10.3130029Z auto tmp1 = in_ptr1[i2 + (221*i0)]; 2023-01-11T21:05:10.3130110Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:05:10.3130202Z out_ptr0[i2 + (221*i1) + (2652*i0)] = tmp2; 2023-01-11T21:05:10.3130260Z } 2023-01-11T21:05:10.3130308Z } 2023-01-11T21:05:10.3130361Z } 2023-01-11T21:05:10.3130413Z } 2023-01-11T21:05:10.3130464Z } 2023-01-11T21:05:10.3130535Z ''') 2023-01-11T21:05:10.3130540Z 2023-01-11T21:05:10.3130544Z 2023-01-11T21:05:10.3130625Z async_compile.wait(globals()) 2023-01-11T21:05:10.3130686Z del async_compile 2023-01-11T21:05:10.3130691Z 2023-01-11T21:05:10.3130746Z def call(args): 2023-01-11T21:05:10.3130811Z arg0_1, arg1_1 = args 2023-01-11T21:05:10.3130874Z args.clear() 2023-01-11T21:05:10.3131027Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(arg1_1.data_ptr()), c_void_p(arg0_1.data_ptr())) 2023-01-11T21:05:10.3131086Z del arg1_1 2023-01-11T21:05:10.3131151Z return (arg0_1, ) 2023-01-11T21:05:10.3131158Z 2023-01-11T21:05:10.3131162Z 2023-01-11T21:05:10.3131229Z if __name__ == "__main__": 2023-01-11T21:05:10.3131329Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.3131471Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.3131690Z arg0_1 = rand_strided((2, 13, 12, 17), (2652, 17, 221, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.3131897Z arg1_1 = rand_strided((2, 13, 1, 17), (221, 17, 17, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.3132002Z print_performance(lambda: call([arg0_1, arg1_1])) 2023-01-11T21:05:10.3132007Z 2023-01-11T21:05:10.3132065Z ok (2.788s) 2023-01-11T21:05:10.3132491Z test_addmm_cpu (__main__.CpuTests) ... inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.3132611Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.3132862Z [2023-01-11 20:44:38,751] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 15 2023-01-11T21:05:10.3133116Z [2023-01-11 20:44:41,595] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 15 2023-01-11T21:05:10.3133122Z 2023-01-11T21:05:10.3133202Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.3133264Z import torch 2023-01-11T21:05:10.3133325Z import random 2023-01-11T21:05:10.3133431Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.3133541Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.3133546Z 2023-01-11T21:05:10.3133615Z aten = torch.ops.aten 2023-01-11T21:05:10.3133739Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.3133817Z async_compile = AsyncCompile() 2023-01-11T21:05:10.3133829Z 2023-01-11T21:05:10.3133833Z 2023-01-11T21:05:10.3133953Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.3134147Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.3134258Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:05:10.3134354Z const float* __restrict__ in_ptr1, 2023-01-11T21:05:10.3134447Z const float* __restrict__ in_ptr2, 2023-01-11T21:05:10.3134537Z float* __restrict__ out_ptr0, 2023-01-11T21:05:10.3134629Z float* __restrict__ out_ptr1, 2023-01-11T21:05:10.3134712Z float* __restrict__ out_ptr2) 2023-01-11T21:05:10.3134763Z { 2023-01-11T21:05:10.3134851Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.3134903Z { 2023-01-11T21:05:10.3134971Z #pragma omp for 2023-01-11T21:05:10.3135042Z for(long i0=0; i0<4; i0+=1) 2023-01-11T21:05:10.3135127Z { 2023-01-11T21:05:10.3135247Z auto tmp0 = at::vec::Vectorized::loadu(in_ptr0 + 16*i0); 2023-01-11T21:05:10.3135370Z auto tmp1 = at::vec::Vectorized(static_cast(1)); 2023-01-11T21:05:10.3135448Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:05:10.3135534Z tmp2.store(out_ptr0 + 16*i0); 2023-01-11T21:05:10.3135588Z } 2023-01-11T21:05:10.3135673Z #pragma omp for simd simdlen(8) 2023-01-11T21:05:10.3135746Z for(long i0=64; i0<64; i0+=1) 2023-01-11T21:05:10.3135795Z { 2023-01-11T21:05:10.3135870Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:05:10.3135958Z auto tmp1 = static_cast(1); 2023-01-11T21:05:10.3136034Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:05:10.3136103Z out_ptr0[i0] = tmp2; 2023-01-11T21:05:10.3136157Z } 2023-01-11T21:05:10.3136222Z #pragma omp for 2023-01-11T21:05:10.3136289Z for(long i0=0; i0<4; i0+=1) 2023-01-11T21:05:10.3136344Z { 2023-01-11T21:05:10.3136464Z auto tmp0 = at::vec::Vectorized::loadu(in_ptr1 + 16*i0); 2023-01-11T21:05:10.3136588Z auto tmp1 = at::vec::Vectorized(static_cast(2)); 2023-01-11T21:05:10.3136689Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:05:10.3136771Z tmp2.store(out_ptr1 + 16*i0); 2023-01-11T21:05:10.3136824Z } 2023-01-11T21:05:10.3136904Z #pragma omp for simd simdlen(8) 2023-01-11T21:05:10.3136977Z for(long i0=64; i0<64; i0+=1) 2023-01-11T21:05:10.3137031Z { 2023-01-11T21:05:10.3137105Z auto tmp0 = in_ptr1[i0]; 2023-01-11T21:05:10.3137195Z auto tmp1 = static_cast(2); 2023-01-11T21:05:10.3137268Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:05:10.3137338Z out_ptr1[i0] = tmp2; 2023-01-11T21:05:10.3137388Z } 2023-01-11T21:05:10.3137454Z #pragma omp for 2023-01-11T21:05:10.3137524Z for(long i0=0; i0<4; i0+=1) 2023-01-11T21:05:10.3137581Z { 2023-01-11T21:05:10.3137704Z auto tmp0 = at::vec::Vectorized::loadu(in_ptr2 + 16*i0); 2023-01-11T21:05:10.3137825Z auto tmp1 = at::vec::Vectorized(static_cast(3)); 2023-01-11T21:05:10.3137900Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:05:10.3137983Z tmp2.store(out_ptr2 + 16*i0); 2023-01-11T21:05:10.3138030Z } 2023-01-11T21:05:10.3138116Z #pragma omp for simd simdlen(8) 2023-01-11T21:05:10.3138188Z for(long i0=64; i0<64; i0+=1) 2023-01-11T21:05:10.3138240Z { 2023-01-11T21:05:10.3138313Z auto tmp0 = in_ptr2[i0]; 2023-01-11T21:05:10.3138403Z auto tmp1 = static_cast(3); 2023-01-11T21:05:10.3138567Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:05:10.3138648Z out_ptr2[i0] = tmp2; 2023-01-11T21:05:10.3138701Z } 2023-01-11T21:05:10.3138754Z } 2023-01-11T21:05:10.3138804Z } 2023-01-11T21:05:10.3138880Z ''') 2023-01-11T21:05:10.3138887Z 2023-01-11T21:05:10.3138891Z 2023-01-11T21:05:10.3139016Z kernel_cpp_1 = async_compile.cpp(''' 2023-01-11T21:05:10.3139213Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.3139318Z extern "C" void kernel(float* __restrict__ in_out_ptr0) 2023-01-11T21:05:10.3139369Z { 2023-01-11T21:05:10.3139455Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.3139508Z { 2023-01-11T21:05:10.3139574Z #pragma omp for 2023-01-11T21:05:10.3139648Z for(long i0=0; i0<4; i0+=1) 2023-01-11T21:05:10.3139696Z { 2023-01-11T21:05:10.3139824Z auto tmp0 = at::vec::Vectorized::loadu(in_out_ptr0 + 16*i0); 2023-01-11T21:05:10.3139948Z auto tmp1 = at::vec::Vectorized(static_cast(4)); 2023-01-11T21:05:10.3140023Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:05:10.3140109Z tmp2.store(in_out_ptr0 + 16*i0); 2023-01-11T21:05:10.3140163Z } 2023-01-11T21:05:10.3140287Z #pragma omp for simd simdlen(8) 2023-01-11T21:05:10.3140360Z for(long i0=64; i0<64; i0+=1) 2023-01-11T21:05:10.3140407Z { 2023-01-11T21:05:10.3140485Z auto tmp0 = in_out_ptr0[i0]; 2023-01-11T21:05:10.3140576Z auto tmp1 = static_cast(4); 2023-01-11T21:05:10.3140652Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:05:10.3140723Z in_out_ptr0[i0] = tmp2; 2023-01-11T21:05:10.3140776Z } 2023-01-11T21:05:10.3140823Z } 2023-01-11T21:05:10.3140872Z } 2023-01-11T21:05:10.3140941Z ''') 2023-01-11T21:05:10.3140945Z 2023-01-11T21:05:10.3140950Z 2023-01-11T21:05:10.3141028Z async_compile.wait(globals()) 2023-01-11T21:05:10.3141091Z del async_compile 2023-01-11T21:05:10.3141096Z 2023-01-11T21:05:10.3141157Z def call(args): 2023-01-11T21:05:10.3141229Z arg0_1, arg1_1, arg2_1 = args 2023-01-11T21:05:10.3141291Z args.clear() 2023-01-11T21:05:10.3141470Z buf0 = empty_strided((8, 8), (8, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.3141655Z buf1 = empty_strided((8, 8), (8, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.3141831Z buf2 = empty_strided((8, 8), (8, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.3142088Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(arg1_1.data_ptr()), c_void_p(arg2_1.data_ptr()), c_void_p(buf0.data_ptr()), c_void_p(buf1.data_ptr()), c_void_p(buf2.data_ptr())) 2023-01-11T21:05:10.3142150Z del arg0_1 2023-01-11T21:05:10.3142206Z del arg1_1 2023-01-11T21:05:10.3142262Z del arg2_1 2023-01-11T21:05:10.3142438Z buf3 = empty_strided((8, 8), (8, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.3142552Z aten.addmm.out(buf0, buf1, buf2, beta=1, alpha=1, out=buf3) 2023-01-11T21:05:10.3142607Z del buf0 2023-01-11T21:05:10.3142664Z del buf1 2023-01-11T21:05:10.3142716Z del buf2 2023-01-11T21:05:10.3142793Z buf4 = buf3; del buf3 # reuse 2023-01-11T21:05:10.3142887Z kernel_cpp_1(c_void_p(buf4.data_ptr())) 2023-01-11T21:05:10.3142947Z return (buf4, ) 2023-01-11T21:05:10.3142957Z 2023-01-11T21:05:10.3142962Z 2023-01-11T21:05:10.3143024Z if __name__ == "__main__": 2023-01-11T21:05:10.3143129Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.3143245Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.3143432Z arg0_1 = rand_strided((8, 8), (8, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.3143615Z arg1_1 = rand_strided((8, 8), (8, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.3143795Z arg2_1 = rand_strided((8, 8), (8, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.3143909Z print_performance(lambda: call([arg0_1, arg1_1, arg2_1])) 2023-01-11T21:05:10.3143914Z 2023-01-11T21:05:10.3143971Z ok (2.930s) 2023-01-11T21:05:10.3144402Z test_alexnet_prefix_cpu (__main__.CpuTests) ... inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.3144523Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.3144773Z [2023-01-11 20:44:41,989] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 16 2023-01-11T21:05:10.3144974Z [2023-01-11 20:44:42,126] torch._inductor.scheduler: [DEBUG] removed dead node: buf2 2023-01-11T21:05:10.3145227Z [2023-01-11 20:44:44,800] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 16 2023-01-11T21:05:10.3145232Z 2023-01-11T21:05:10.3145315Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.3145376Z import torch 2023-01-11T21:05:10.3145437Z import random 2023-01-11T21:05:10.3145541Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.3145648Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.3145697Z 2023-01-11T21:05:10.3145767Z aten = torch.ops.aten 2023-01-11T21:05:10.3145891Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.3145972Z async_compile = AsyncCompile() 2023-01-11T21:05:10.3145979Z 2023-01-11T21:05:10.3145984Z 2023-01-11T21:05:10.3146108Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.3146305Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.3146415Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:05:10.3146505Z float* __restrict__ out_ptr0) 2023-01-11T21:05:10.3146552Z { 2023-01-11T21:05:10.3146640Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.3146692Z { 2023-01-11T21:05:10.3146760Z #pragma omp for 2023-01-11T21:05:10.3146834Z for(long i0=0; i0<1024; i0+=1) 2023-01-11T21:05:10.3146888Z { 2023-01-11T21:05:10.3146954Z #pragma GCC ivdep 2023-01-11T21:05:10.3147031Z for(long i1=0; i1<27; i1+=1) 2023-01-11T21:05:10.3147086Z { 2023-01-11T21:05:10.3147158Z #pragma GCC ivdep 2023-01-11T21:05:10.3147239Z for(long i2=0; i2<27; i2+=1) 2023-01-11T21:05:10.3147321Z { 2023-01-11T21:05:10.3147380Z { 2023-01-11T21:05:10.3147434Z { 2023-01-11T21:05:10.3147536Z auto tmp0 = in_ptr0[(2*i2) + (110*i1) + (3025*i0)]; 2023-01-11T21:05:10.3147643Z auto tmp2 = in_ptr0[1 + (2*i2) + (110*i1) + (3025*i0)]; 2023-01-11T21:05:10.3147749Z auto tmp5 = in_ptr0[2 + (2*i2) + (110*i1) + (3025*i0)]; 2023-01-11T21:05:10.3147855Z auto tmp8 = in_ptr0[55 + (2*i2) + (110*i1) + (3025*i0)]; 2023-01-11T21:05:10.3147960Z auto tmp11 = in_ptr0[56 + (2*i2) + (110*i1) + (3025*i0)]; 2023-01-11T21:05:10.3148061Z auto tmp14 = in_ptr0[57 + (2*i2) + (110*i1) + (3025*i0)]; 2023-01-11T21:05:10.3148168Z auto tmp17 = in_ptr0[110 + (2*i2) + (110*i1) + (3025*i0)]; 2023-01-11T21:05:10.3148271Z auto tmp20 = in_ptr0[111 + (2*i2) + (110*i1) + (3025*i0)]; 2023-01-11T21:05:10.3148376Z auto tmp23 = in_ptr0[112 + (2*i2) + (110*i1) + (3025*i0)]; 2023-01-11T21:05:10.3148473Z auto tmp1 = tmp0 * (tmp0>0); 2023-01-11T21:05:10.3148564Z auto tmp3 = tmp2 * (tmp2>0); 2023-01-11T21:05:10.3148688Z auto tmp4 = (tmp1 != tmp1) ? tmp1 : std::max(tmp3, tmp1); 2023-01-11T21:05:10.3148781Z auto tmp6 = tmp5 * (tmp5>0); 2023-01-11T21:05:10.3148899Z auto tmp7 = (tmp4 != tmp4) ? tmp4 : std::max(tmp6, tmp4); 2023-01-11T21:05:10.3148988Z auto tmp9 = tmp8 * (tmp8>0); 2023-01-11T21:05:10.3149097Z auto tmp10 = (tmp7 != tmp7) ? tmp7 : std::max(tmp9, tmp7); 2023-01-11T21:05:10.3149194Z auto tmp12 = tmp11 * (tmp11>0); 2023-01-11T21:05:10.3149319Z auto tmp13 = (tmp10 != tmp10) ? tmp10 : std::max(tmp12, tmp10); 2023-01-11T21:05:10.3149415Z auto tmp15 = tmp14 * (tmp14>0); 2023-01-11T21:05:10.3149533Z auto tmp16 = (tmp13 != tmp13) ? tmp13 : std::max(tmp15, tmp13); 2023-01-11T21:05:10.3149631Z auto tmp18 = tmp17 * (tmp17>0); 2023-01-11T21:05:10.3149752Z auto tmp19 = (tmp16 != tmp16) ? tmp16 : std::max(tmp18, tmp16); 2023-01-11T21:05:10.3149845Z auto tmp21 = tmp20 * (tmp20>0); 2023-01-11T21:05:10.3149968Z auto tmp22 = (tmp19 != tmp19) ? tmp19 : std::max(tmp21, tmp19); 2023-01-11T21:05:10.3150052Z auto tmp24 = tmp23 * (tmp23>0); 2023-01-11T21:05:10.3150168Z auto tmp25 = (tmp22 != tmp22) ? tmp22 : std::max(tmp24, tmp22); 2023-01-11T21:05:10.3150303Z out_ptr0[i2 + (27*i1) + (729*i0)] = tmp25; 2023-01-11T21:05:10.3150363Z } 2023-01-11T21:05:10.3150428Z } 2023-01-11T21:05:10.3150483Z } 2023-01-11T21:05:10.3150543Z } 2023-01-11T21:05:10.3150591Z } 2023-01-11T21:05:10.3150647Z } 2023-01-11T21:05:10.3150699Z } 2023-01-11T21:05:10.3150775Z ''') 2023-01-11T21:05:10.3150779Z 2023-01-11T21:05:10.3150783Z 2023-01-11T21:05:10.3150865Z async_compile.wait(globals()) 2023-01-11T21:05:10.3150933Z del async_compile 2023-01-11T21:05:10.3150938Z 2023-01-11T21:05:10.3150998Z def call(args): 2023-01-11T21:05:10.3151076Z arg0_1, arg1_1, arg2_1 = args 2023-01-11T21:05:10.3151134Z args.clear() 2023-01-11T21:05:10.3151262Z buf0 = aten.convolution(arg2_1, arg1_1, arg0_1, (4, 4), (2, 2), (1, 1), False, (0, 0), 1) 2023-01-11T21:05:10.3151371Z assert_size_stride(buf0, (16, 64, 55, 55), (193600, 3025, 55, 1)) 2023-01-11T21:05:10.3151432Z del arg0_1 2023-01-11T21:05:10.3151494Z del arg1_1 2023-01-11T21:05:10.3151554Z del arg2_1 2023-01-11T21:05:10.3151820Z buf1 = empty_strided((16, 64, 27, 27), (46656, 729, 27, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.3151943Z kernel_cpp_0(c_void_p(buf0.data_ptr()), c_void_p(buf1.data_ptr())) 2023-01-11T21:05:10.3152010Z return (buf1, ) 2023-01-11T21:05:10.3152015Z 2023-01-11T21:05:10.3152020Z 2023-01-11T21:05:10.3152086Z if __name__ == "__main__": 2023-01-11T21:05:10.3152197Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.3152312Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.3152503Z arg0_1 = rand_strided((64, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.3152713Z arg1_1 = rand_strided((64, 3, 11, 11), (363, 121, 11, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.3152935Z arg2_1 = rand_strided((16, 3, 224, 224), (150528, 50176, 224, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.3153045Z print_performance(lambda: call([arg0_1, arg1_1, arg2_1])) 2023-01-11T21:05:10.3153050Z 2023-01-11T21:05:10.3153111Z ok (4.208s) 2023-01-11T21:05:10.3153543Z test_any_cpu (__main__.CpuTests) ... inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.3153664Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.3153915Z [2023-01-11 20:44:45,891] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 17 2023-01-11T21:05:10.3154172Z [2023-01-11 20:44:48,544] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 17 2023-01-11T21:05:10.3154577Z inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.3154692Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.3154941Z [2023-01-11 20:44:48,658] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 18 2023-01-11T21:05:10.3155191Z [2023-01-11 20:44:51,601] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 18 2023-01-11T21:05:10.3155196Z 2023-01-11T21:05:10.3155286Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.3155341Z import torch 2023-01-11T21:05:10.3155402Z import random 2023-01-11T21:05:10.3155511Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.3155655Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.3155660Z 2023-01-11T21:05:10.3155734Z aten = torch.ops.aten 2023-01-11T21:05:10.3155866Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.3155951Z async_compile = AsyncCompile() 2023-01-11T21:05:10.3155956Z 2023-01-11T21:05:10.3155960Z 2023-01-11T21:05:10.3156089Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.3156281Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.3156386Z extern "C" void kernel(bool* __restrict__ in_out_ptr0, 2023-01-11T21:05:10.3156481Z bool* __restrict__ in_out_ptr1, 2023-01-11T21:05:10.3156579Z const float* __restrict__ in_ptr0, 2023-01-11T21:05:10.3156670Z bool* __restrict__ out_ptr0, 2023-01-11T21:05:10.3156761Z bool* __restrict__ out_ptr1) 2023-01-11T21:05:10.3156816Z { 2023-01-11T21:05:10.3156888Z auto out_ptr2 = in_out_ptr0; 2023-01-11T21:05:10.3156964Z auto out_ptr3 = in_out_ptr1; 2023-01-11T21:05:10.3157021Z { 2023-01-11T21:05:10.3157076Z { 2023-01-11T21:05:10.3157149Z bool tmp2 = 0; 2023-01-11T21:05:10.3157250Z bool tmp4 = 0; 2023-01-11T21:05:10.3157309Z bool tmp8 = 0; 2023-01-11T21:05:10.3157376Z bool tmp10 = 0; 2023-01-11T21:05:10.3157477Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.3157532Z { 2023-01-11T21:05:10.3157693Z #pragma omp for reduction(||:tmp2) reduction(||:tmp4) reduction(||:tmp8) reduction(||:tmp10) 2023-01-11T21:05:10.3157775Z for(long i0=0; i0<64; i0+=1) 2023-01-11T21:05:10.3157831Z { 2023-01-11T21:05:10.3157883Z { 2023-01-11T21:05:10.3157974Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:05:10.3158075Z auto tmp1 = static_cast(tmp0); 2023-01-11T21:05:10.3158172Z auto tmp3 = std::isinf(tmp0); 2023-01-11T21:05:10.3158261Z auto tmp5 = tmp3 == 0; 2023-01-11T21:05:10.3158360Z auto tmp6 = static_cast(tmp5); 2023-01-11T21:05:10.3158466Z auto tmp7 = static_cast(tmp6); 2023-01-11T21:05:10.3158550Z auto tmp9 = tmp5 == 0; 2023-01-11T21:05:10.3158625Z tmp2 = tmp2 || tmp1; 2023-01-11T21:05:10.3158706Z tmp4 = tmp4 || tmp3; 2023-01-11T21:05:10.3158782Z tmp8 = tmp8 || tmp7; 2023-01-11T21:05:10.3158869Z tmp10 = tmp10 || tmp9; 2023-01-11T21:05:10.3158933Z } 2023-01-11T21:05:10.3158987Z } 2023-01-11T21:05:10.3159045Z } 2023-01-11T21:05:10.3159109Z out_ptr0[0] = tmp2; 2023-01-11T21:05:10.3159176Z out_ptr1[0] = tmp4; 2023-01-11T21:05:10.3159249Z out_ptr2[0] = tmp8; 2023-01-11T21:05:10.3159326Z out_ptr3[0] = tmp10; 2023-01-11T21:05:10.3159381Z } 2023-01-11T21:05:10.3159439Z } 2023-01-11T21:05:10.3159486Z { 2023-01-11T21:05:10.3159542Z { 2023-01-11T21:05:10.3159617Z auto tmp0 = out_ptr2[0]; 2023-01-11T21:05:10.3159694Z auto tmp1 = tmp0 == 0; 2023-01-11T21:05:10.3159765Z in_out_ptr0[0] = tmp1; 2023-01-11T21:05:10.3159823Z } 2023-01-11T21:05:10.3159881Z } 2023-01-11T21:05:10.3159926Z { 2023-01-11T21:05:10.3159979Z { 2023-01-11T21:05:10.3160057Z auto tmp0 = out_ptr3[0]; 2023-01-11T21:05:10.3160132Z auto tmp1 = tmp0 == 0; 2023-01-11T21:05:10.3160202Z in_out_ptr1[0] = tmp1; 2023-01-11T21:05:10.3160257Z } 2023-01-11T21:05:10.3160307Z } 2023-01-11T21:05:10.3160352Z } 2023-01-11T21:05:10.3160423Z ''') 2023-01-11T21:05:10.3160428Z 2023-01-11T21:05:10.3160432Z 2023-01-11T21:05:10.3160517Z async_compile.wait(globals()) 2023-01-11T21:05:10.3160580Z del async_compile 2023-01-11T21:05:10.3160788Z 2023-01-11T21:05:10.3160888Z def call(args): 2023-01-11T21:05:10.3160981Z arg0_1, = args 2023-01-11T21:05:10.3161057Z args.clear() 2023-01-11T21:05:10.3161232Z buf0 = empty_strided((), (), device='cpu', dtype=torch.bool) 2023-01-11T21:05:10.3161405Z buf1 = empty_strided((), (), device='cpu', dtype=torch.bool) 2023-01-11T21:05:10.3161571Z buf2 = empty_strided((), (), device='cpu', dtype=torch.bool) 2023-01-11T21:05:10.3161741Z buf3 = empty_strided((), (), device='cpu', dtype=torch.bool) 2023-01-11T21:05:10.3161822Z buf4 = buf2; del buf2 # reuse 2023-01-11T21:05:10.3161895Z buf5 = buf3; del buf3 # reuse 2023-01-11T21:05:10.3162106Z kernel_cpp_0(c_void_p(buf4.data_ptr()), c_void_p(buf5.data_ptr()), c_void_p(arg0_1.data_ptr()), c_void_p(buf0.data_ptr()), c_void_p(buf1.data_ptr())) 2023-01-11T21:05:10.3162162Z del arg0_1 2023-01-11T21:05:10.3162242Z return (buf0, buf1, buf4, buf5, ) 2023-01-11T21:05:10.3162247Z 2023-01-11T21:05:10.3162253Z 2023-01-11T21:05:10.3162324Z if __name__ == "__main__": 2023-01-11T21:05:10.3162431Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.3162545Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.3162779Z arg0_1 = rand_strided((64, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.3162883Z print_performance(lambda: call([arg0_1])) 2023-01-11T21:05:10.3162888Z 2023-01-11T21:05:10.3162892Z 2023-01-11T21:05:10.3162979Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.3163042Z import torch 2023-01-11T21:05:10.3163099Z import random 2023-01-11T21:05:10.3163204Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.3163323Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.3163328Z 2023-01-11T21:05:10.3163399Z aten = torch.ops.aten 2023-01-11T21:05:10.3163524Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.3163611Z async_compile = AsyncCompile() 2023-01-11T21:05:10.3163618Z 2023-01-11T21:05:10.3163622Z 2023-01-11T21:05:10.3163751Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.3163947Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.3164051Z extern "C" void kernel(bool* __restrict__ in_out_ptr0, 2023-01-11T21:05:10.3164145Z bool* __restrict__ in_out_ptr1, 2023-01-11T21:05:10.3164243Z const float* __restrict__ in_ptr0, 2023-01-11T21:05:10.3164335Z bool* __restrict__ out_ptr0, 2023-01-11T21:05:10.3164426Z bool* __restrict__ out_ptr1) 2023-01-11T21:05:10.3164479Z { 2023-01-11T21:05:10.3164560Z auto out_ptr3 = in_out_ptr0; 2023-01-11T21:05:10.3164630Z auto out_ptr2 = in_out_ptr1; 2023-01-11T21:05:10.3164718Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.3164775Z { 2023-01-11T21:05:10.3164842Z #pragma omp for 2023-01-11T21:05:10.3164918Z for(long i0=0; i0<16; i0+=1) 2023-01-11T21:05:10.3164976Z { 2023-01-11T21:05:10.3165026Z { 2023-01-11T21:05:10.3165085Z { 2023-01-11T21:05:10.3165154Z bool tmp2 = 0; 2023-01-11T21:05:10.3165242Z for(long i1=0; i1<8; i1+=1) 2023-01-11T21:05:10.3165307Z { 2023-01-11T21:05:10.3165367Z { 2023-01-11T21:05:10.3165467Z auto tmp0 = in_ptr0[i1 + (8*i0)]; 2023-01-11T21:05:10.3165563Z auto tmp1 = static_cast(tmp0); 2023-01-11T21:05:10.3165647Z tmp2 = tmp2 || tmp1; 2023-01-11T21:05:10.3165712Z } 2023-01-11T21:05:10.3165774Z } 2023-01-11T21:05:10.3165849Z out_ptr0[i0] = tmp2; 2023-01-11T21:05:10.3165910Z } 2023-01-11T21:05:10.3165964Z } 2023-01-11T21:05:10.3166011Z } 2023-01-11T21:05:10.3166067Z } 2023-01-11T21:05:10.3166120Z { 2023-01-11T21:05:10.3166208Z { 2023-01-11T21:05:10.3166274Z bool tmp2 = 0; 2023-01-11T21:05:10.3166341Z bool tmp5 = 0; 2023-01-11T21:05:10.3166438Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.3166488Z { 2023-01-11T21:05:10.3166609Z #pragma omp for reduction(||:tmp2) reduction(||:tmp5) 2023-01-11T21:05:10.3166692Z for(long i0=0; i0<128; i0+=1) 2023-01-11T21:05:10.3166751Z { 2023-01-11T21:05:10.3166807Z { 2023-01-11T21:05:10.3166895Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:05:10.3166993Z auto tmp1 = std::isinf(tmp0); 2023-01-11T21:05:10.3167069Z auto tmp3 = tmp1 == 0; 2023-01-11T21:05:10.3167156Z auto tmp4 = tmp3 == 0; 2023-01-11T21:05:10.3167238Z tmp2 = tmp2 || tmp1; 2023-01-11T21:05:10.3167315Z tmp5 = tmp5 || tmp4; 2023-01-11T21:05:10.3167380Z } 2023-01-11T21:05:10.3167436Z } 2023-01-11T21:05:10.3167493Z } 2023-01-11T21:05:10.3167558Z out_ptr1[0] = tmp2; 2023-01-11T21:05:10.3167627Z out_ptr2[0] = tmp5; 2023-01-11T21:05:10.3167714Z } 2023-01-11T21:05:10.3167770Z } 2023-01-11T21:05:10.3167858Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.3167909Z { 2023-01-11T21:05:10.3167970Z #pragma omp for 2023-01-11T21:05:10.3168042Z for(long i0=0; i0<8; i0+=1) 2023-01-11T21:05:10.3168100Z { 2023-01-11T21:05:10.3168154Z { 2023-01-11T21:05:10.3168213Z { 2023-01-11T21:05:10.3168282Z bool tmp5 = 0; 2023-01-11T21:05:10.3168370Z for(long i1=0; i1<16; i1+=1) 2023-01-11T21:05:10.3168422Z { 2023-01-11T21:05:10.3168482Z { 2023-01-11T21:05:10.3168583Z auto tmp0 = in_ptr0[i0 + (8*i1)]; 2023-01-11T21:05:10.3168684Z auto tmp1 = std::isinf(tmp0); 2023-01-11T21:05:10.3168769Z auto tmp2 = tmp1 == 0; 2023-01-11T21:05:10.3168874Z auto tmp3 = static_cast(tmp2); 2023-01-11T21:05:10.3168978Z auto tmp4 = static_cast(tmp3); 2023-01-11T21:05:10.3169053Z tmp5 = tmp5 || tmp4; 2023-01-11T21:05:10.3169114Z } 2023-01-11T21:05:10.3169174Z } 2023-01-11T21:05:10.3169249Z out_ptr3[i0] = tmp5; 2023-01-11T21:05:10.3169309Z } 2023-01-11T21:05:10.3169363Z } 2023-01-11T21:05:10.3169419Z } 2023-01-11T21:05:10.3169480Z #pragma omp for 2023-01-11T21:05:10.3169551Z for(long i0=0; i0<8; i0+=1) 2023-01-11T21:05:10.3169607Z { 2023-01-11T21:05:10.3169661Z { 2023-01-11T21:05:10.3169719Z { 2023-01-11T21:05:10.3169802Z auto tmp0 = out_ptr3[i0]; 2023-01-11T21:05:10.3169888Z auto tmp1 = tmp0 == 0; 2023-01-11T21:05:10.3169964Z in_out_ptr0[i0] = tmp1; 2023-01-11T21:05:10.3170019Z } 2023-01-11T21:05:10.3170077Z } 2023-01-11T21:05:10.3170130Z } 2023-01-11T21:05:10.3170206Z #pragma omp single 2023-01-11T21:05:10.3170257Z { 2023-01-11T21:05:10.3170305Z { 2023-01-11T21:05:10.3170365Z { 2023-01-11T21:05:10.3170450Z auto tmp0 = out_ptr2[0]; 2023-01-11T21:05:10.3170528Z auto tmp1 = tmp0 == 0; 2023-01-11T21:05:10.3170606Z in_out_ptr1[0] = tmp1; 2023-01-11T21:05:10.3170661Z } 2023-01-11T21:05:10.3170715Z } 2023-01-11T21:05:10.3170761Z } 2023-01-11T21:05:10.3170813Z } 2023-01-11T21:05:10.3170867Z } 2023-01-11T21:05:10.3170940Z ''') 2023-01-11T21:05:10.3170945Z 2023-01-11T21:05:10.3170949Z 2023-01-11T21:05:10.3171033Z async_compile.wait(globals()) 2023-01-11T21:05:10.3171130Z del async_compile 2023-01-11T21:05:10.3171134Z 2023-01-11T21:05:10.3171198Z def call(args): 2023-01-11T21:05:10.3171253Z arg0_1, = args 2023-01-11T21:05:10.3171316Z args.clear() 2023-01-11T21:05:10.3171501Z buf0 = empty_strided((16, ), (1, ), device='cpu', dtype=torch.bool) 2023-01-11T21:05:10.3171673Z buf1 = empty_strided((), (), device='cpu', dtype=torch.bool) 2023-01-11T21:05:10.3171837Z buf4 = empty_strided((), (), device='cpu', dtype=torch.bool) 2023-01-11T21:05:10.3172014Z buf2 = empty_strided((8, ), (1, ), device='cpu', dtype=torch.bool) 2023-01-11T21:05:10.3172090Z buf3 = buf2; del buf2 # reuse 2023-01-11T21:05:10.3172170Z buf5 = buf4; del buf4 # reuse 2023-01-11T21:05:10.3172369Z kernel_cpp_0(c_void_p(buf3.data_ptr()), c_void_p(buf5.data_ptr()), c_void_p(arg0_1.data_ptr()), c_void_p(buf0.data_ptr()), c_void_p(buf1.data_ptr())) 2023-01-11T21:05:10.3172433Z del arg0_1 2023-01-11T21:05:10.3172514Z return (buf0, buf1, buf3, buf5, ) 2023-01-11T21:05:10.3172521Z 2023-01-11T21:05:10.3172525Z 2023-01-11T21:05:10.3172592Z if __name__ == "__main__": 2023-01-11T21:05:10.3172703Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.3172847Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.3173036Z arg0_1 = rand_strided((16, 8), (8, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.3173140Z print_performance(lambda: call([arg0_1])) 2023-01-11T21:05:10.3173145Z 2023-01-11T21:05:10.3173198Z ok (5.796s) 2023-01-11T21:05:10.3173627Z test_arange1_cpu (__main__.CpuTests) ... inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.3173751Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.3174012Z [2023-01-11 20:44:51,744] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 19 2023-01-11T21:05:10.3174266Z [2023-01-11 20:44:54,478] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 19 2023-01-11T21:05:10.3174271Z 2023-01-11T21:05:10.3174360Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.3174426Z import torch 2023-01-11T21:05:10.3174489Z import random 2023-01-11T21:05:10.3174600Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.3174706Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.3174711Z 2023-01-11T21:05:10.3174780Z aten = torch.ops.aten 2023-01-11T21:05:10.3174911Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.3174993Z async_compile = AsyncCompile() 2023-01-11T21:05:10.3174998Z 2023-01-11T21:05:10.3175002Z 2023-01-11T21:05:10.3175132Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.3175333Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.3175443Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:05:10.3175537Z float* __restrict__ out_ptr0, 2023-01-11T21:05:10.3175619Z float* __restrict__ out_ptr1) 2023-01-11T21:05:10.3175673Z { 2023-01-11T21:05:10.3175765Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.3175820Z { 2023-01-11T21:05:10.3175888Z #pragma omp for 2023-01-11T21:05:10.3175968Z for(long i0=0; i0<64; i0+=1) 2023-01-11T21:05:10.3176025Z { 2023-01-11T21:05:10.3176074Z { 2023-01-11T21:05:10.3176129Z { 2023-01-11T21:05:10.3176215Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:05:10.3176311Z auto tmp1 = static_cast(i0); 2023-01-11T21:05:10.3176398Z auto tmp2 = tmp0 * tmp1; 2023-01-11T21:05:10.3176474Z out_ptr0[i0] = tmp2; 2023-01-11T21:05:10.3176592Z } 2023-01-11T21:05:10.3176650Z } 2023-01-11T21:05:10.3176705Z } 2023-01-11T21:05:10.3176778Z #pragma omp for 2023-01-11T21:05:10.3176853Z for(long i0=0; i0<8; i0+=1) 2023-01-11T21:05:10.3176910Z { 2023-01-11T21:05:10.3176982Z #pragma GCC ivdep 2023-01-11T21:05:10.3177050Z for(long i1=0; i1<8; i1+=1) 2023-01-11T21:05:10.3177108Z { 2023-01-11T21:05:10.3177168Z { 2023-01-11T21:05:10.3177225Z { 2023-01-11T21:05:10.3177323Z auto tmp0 = out_ptr0[i1 + (8*i0)]; 2023-01-11T21:05:10.3177425Z auto tmp1 = static_cast(10 + i1); 2023-01-11T21:05:10.3177531Z auto tmp2 = static_cast(tmp1); 2023-01-11T21:05:10.3177610Z auto tmp3 = tmp0 + tmp2; 2023-01-11T21:05:10.3177700Z out_ptr1[i1 + (8*i0)] = tmp3; 2023-01-11T21:05:10.3177760Z } 2023-01-11T21:05:10.3177820Z } 2023-01-11T21:05:10.3177875Z } 2023-01-11T21:05:10.3177933Z } 2023-01-11T21:05:10.3177988Z } 2023-01-11T21:05:10.3178034Z } 2023-01-11T21:05:10.3178133Z ''') 2023-01-11T21:05:10.3178138Z 2023-01-11T21:05:10.3178142Z 2023-01-11T21:05:10.3178228Z async_compile.wait(globals()) 2023-01-11T21:05:10.3178291Z del async_compile 2023-01-11T21:05:10.3178296Z 2023-01-11T21:05:10.3178362Z def call(args): 2023-01-11T21:05:10.3178427Z arg0_1, = args 2023-01-11T21:05:10.3178584Z args.clear() 2023-01-11T21:05:10.3178773Z buf0 = empty_strided((8, 8), (8, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.3178959Z buf1 = empty_strided((8, 8), (8, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.3179115Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(buf0.data_ptr()), c_void_p(buf1.data_ptr())) 2023-01-11T21:05:10.3179178Z del arg0_1 2023-01-11T21:05:10.3179253Z return (buf0, buf1, ) 2023-01-11T21:05:10.3179260Z 2023-01-11T21:05:10.3179264Z 2023-01-11T21:05:10.3179332Z if __name__ == "__main__": 2023-01-11T21:05:10.3179443Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.3179566Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.3179748Z arg0_1 = rand_strided((8, 8), (8, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.3179847Z print_performance(lambda: call([arg0_1])) 2023-01-11T21:05:10.3179853Z 2023-01-11T21:05:10.3179917Z ok (2.877s) 2023-01-11T21:05:10.3180346Z test_arange2_cpu (__main__.CpuTests) ... inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.3180467Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.3180721Z [2023-01-11 20:44:54,559] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 20 2023-01-11T21:05:10.3180980Z [2023-01-11 20:44:57,262] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 20 2023-01-11T21:05:10.3180986Z 2023-01-11T21:05:10.3181075Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.3181137Z import torch 2023-01-11T21:05:10.3181192Z import random 2023-01-11T21:05:10.3181301Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.3181415Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.3181420Z 2023-01-11T21:05:10.3181495Z aten = torch.ops.aten 2023-01-11T21:05:10.3181622Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.3181705Z async_compile = AsyncCompile() 2023-01-11T21:05:10.3181712Z 2023-01-11T21:05:10.3181716Z 2023-01-11T21:05:10.3181845Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.3182089Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.3182191Z extern "C" void kernel(const long* __restrict__ in_ptr0, 2023-01-11T21:05:10.3182281Z long* __restrict__ out_ptr0) 2023-01-11T21:05:10.3182337Z { 2023-01-11T21:05:10.3182425Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.3182486Z { 2023-01-11T21:05:10.3182557Z #pragma omp for 2023-01-11T21:05:10.3182629Z for(long i0=0; i0<8; i0+=1) 2023-01-11T21:05:10.3182677Z { 2023-01-11T21:05:10.3182752Z #pragma GCC ivdep 2023-01-11T21:05:10.3182827Z for(long i1=0; i1<8; i1+=1) 2023-01-11T21:05:10.3182881Z { 2023-01-11T21:05:10.3182943Z { 2023-01-11T21:05:10.3183005Z { 2023-01-11T21:05:10.3183101Z auto tmp0 = in_ptr0[i1 + (8*i0)]; 2023-01-11T21:05:10.3183193Z auto tmp1 = static_cast(i1); 2023-01-11T21:05:10.3183285Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:05:10.3183372Z out_ptr0[i1 + (8*i0)] = tmp2; 2023-01-11T21:05:10.3183436Z } 2023-01-11T21:05:10.3183521Z } 2023-01-11T21:05:10.3183580Z } 2023-01-11T21:05:10.3183635Z } 2023-01-11T21:05:10.3183682Z } 2023-01-11T21:05:10.3183738Z } 2023-01-11T21:05:10.3183822Z ''') 2023-01-11T21:05:10.3183829Z 2023-01-11T21:05:10.3183835Z 2023-01-11T21:05:10.3183956Z async_compile.wait(globals()) 2023-01-11T21:05:10.3184039Z del async_compile 2023-01-11T21:05:10.3184046Z 2023-01-11T21:05:10.3184133Z def call(args): 2023-01-11T21:05:10.3184215Z arg0_1, = args 2023-01-11T21:05:10.3184299Z args.clear() 2023-01-11T21:05:10.3184563Z buf0 = empty_strided((8, 8), (8, 1), device='cpu', dtype=torch.int64) 2023-01-11T21:05:10.3184739Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:05:10.3184826Z del arg0_1 2023-01-11T21:05:10.3184919Z return (buf0, ) 2023-01-11T21:05:10.3184926Z 2023-01-11T21:05:10.3184933Z 2023-01-11T21:05:10.3185040Z if __name__ == "__main__": 2023-01-11T21:05:10.3185195Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.3185362Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.3185634Z arg0_1 = rand_strided((8, 8), (8, 1), device='cpu', dtype=torch.int64) 2023-01-11T21:05:10.3185780Z print_performance(lambda: call([arg0_1])) 2023-01-11T21:05:10.3185786Z 2023-01-11T21:05:10.3185866Z ok (2.781s) 2023-01-11T21:05:10.3186505Z test_arange3_cpu (__main__.CpuTests) ... inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.3186696Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.3187161Z [2023-01-11 20:44:57,355] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 21 2023-01-11T21:05:10.3187634Z [2023-01-11 20:45:00,117] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 21 2023-01-11T21:05:10.3187643Z 2023-01-11T21:05:10.3187818Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.3187948Z import torch 2023-01-11T21:05:10.3188069Z import random 2023-01-11T21:05:10.3188281Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.3188498Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.3188505Z 2023-01-11T21:05:10.3188651Z aten = torch.ops.aten 2023-01-11T21:05:10.3188894Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.3189066Z async_compile = AsyncCompile() 2023-01-11T21:05:10.3189073Z 2023-01-11T21:05:10.3189080Z 2023-01-11T21:05:10.3189315Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.3189816Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.3190021Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:05:10.3190201Z float* __restrict__ out_ptr0) 2023-01-11T21:05:10.3190319Z { 2023-01-11T21:05:10.3190499Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.3190618Z { 2023-01-11T21:05:10.3190760Z #pragma omp for 2023-01-11T21:05:10.3190904Z for(long i0=0; i0<14; i0+=1) 2023-01-11T21:05:10.3191009Z { 2023-01-11T21:05:10.3191128Z { 2023-01-11T21:05:10.3191247Z { 2023-01-11T21:05:10.3191409Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:05:10.3191594Z auto tmp1 = static_cast(4*i0); 2023-01-11T21:05:10.3191783Z auto tmp2 = static_cast(tmp1); 2023-01-11T21:05:10.3191947Z auto tmp3 = tmp0 + tmp2; 2023-01-11T21:05:10.3192088Z out_ptr0[i0] = tmp3; 2023-01-11T21:05:10.3192210Z } 2023-01-11T21:05:10.3192329Z } 2023-01-11T21:05:10.3192446Z } 2023-01-11T21:05:10.3192561Z } 2023-01-11T21:05:10.3192677Z } 2023-01-11T21:05:10.3192928Z ''') 2023-01-11T21:05:10.3192939Z 2023-01-11T21:05:10.3192962Z 2023-01-11T21:05:10.3193118Z async_compile.wait(globals()) 2023-01-11T21:05:10.3193249Z del async_compile 2023-01-11T21:05:10.3193255Z 2023-01-11T21:05:10.3193390Z def call(args): 2023-01-11T21:05:10.3193520Z arg0_1, = args 2023-01-11T21:05:10.3193648Z args.clear() 2023-01-11T21:05:10.3193987Z buf0 = empty_strided((14, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.3194218Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:05:10.3194335Z del arg0_1 2023-01-11T21:05:10.3194467Z return (buf0, ) 2023-01-11T21:05:10.3194474Z 2023-01-11T21:05:10.3194480Z 2023-01-11T21:05:10.3194619Z if __name__ == "__main__": 2023-01-11T21:05:10.3194835Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.3195061Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.3195407Z arg0_1 = rand_strided((14, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.3195604Z print_performance(lambda: call([arg0_1])) 2023-01-11T21:05:10.3195611Z 2023-01-11T21:05:10.3195731Z ok (2.856s) 2023-01-11T21:05:10.3196549Z test_arange4_cpu (__main__.CpuTests) ... inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.3196769Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.3197229Z [2023-01-11 20:45:00,182] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 22 2023-01-11T21:05:10.3197702Z [2023-01-11 20:45:02,891] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 22 2023-01-11T21:05:10.3197710Z 2023-01-11T21:05:10.3197889Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.3198028Z import torch 2023-01-11T21:05:10.3198162Z import random 2023-01-11T21:05:10.3198374Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.3198588Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.3198609Z 2023-01-11T21:05:10.3198743Z aten = torch.ops.aten 2023-01-11T21:05:10.3198993Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.3199163Z async_compile = AsyncCompile() 2023-01-11T21:05:10.3199170Z 2023-01-11T21:05:10.3199177Z 2023-01-11T21:05:10.3199419Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.3199791Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.3200101Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:05:10.3200283Z float* __restrict__ out_ptr0) 2023-01-11T21:05:10.3200405Z { 2023-01-11T21:05:10.3200582Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.3200835Z { 2023-01-11T21:05:10.3200980Z #pragma omp for 2023-01-11T21:05:10.3201131Z for(long i0=0; i0<1024; i0+=1) 2023-01-11T21:05:10.3201250Z { 2023-01-11T21:05:10.3201367Z { 2023-01-11T21:05:10.3201476Z { 2023-01-11T21:05:10.3201639Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:05:10.3201954Z auto tmp1 = static_cast(512 + ((-1)*i0)); 2023-01-11T21:05:10.3202147Z auto tmp2 = static_cast(tmp1); 2023-01-11T21:05:10.3202382Z auto tmp3 = tmp0 - tmp2; 2023-01-11T21:05:10.3202535Z out_ptr0[i0] = tmp3; 2023-01-11T21:05:10.3202659Z } 2023-01-11T21:05:10.3202764Z } 2023-01-11T21:05:10.3202893Z } 2023-01-11T21:05:10.3203013Z } 2023-01-11T21:05:10.3203132Z } 2023-01-11T21:05:10.3203278Z ''') 2023-01-11T21:05:10.3203286Z 2023-01-11T21:05:10.3203292Z 2023-01-11T21:05:10.3203582Z async_compile.wait(globals()) 2023-01-11T21:05:10.3203725Z del async_compile 2023-01-11T21:05:10.3203733Z 2023-01-11T21:05:10.3203854Z def call(args): 2023-01-11T21:05:10.3203987Z arg0_1, = args 2023-01-11T21:05:10.3204117Z args.clear() 2023-01-11T21:05:10.3204472Z buf0 = empty_strided((1024, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.3204712Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:05:10.3204842Z del arg0_1 2023-01-11T21:05:10.3204976Z return (buf0, ) 2023-01-11T21:05:10.3204984Z 2023-01-11T21:05:10.3204991Z 2023-01-11T21:05:10.3205130Z if __name__ == "__main__": 2023-01-11T21:05:10.3205324Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.3205546Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.3205891Z arg0_1 = rand_strided((1024, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.3206089Z print_performance(lambda: call([arg0_1])) 2023-01-11T21:05:10.3206096Z 2023-01-11T21:05:10.3206229Z ok (2.777s) 2023-01-11T21:05:10.3207054Z test_argmax_argmin1_cpu (__main__.CpuTests) ... inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.3207283Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.3207749Z [2023-01-11 20:45:03,016] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 23 2023-01-11T21:05:10.3208225Z [2023-01-11 20:45:05,690] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 23 2023-01-11T21:05:10.3208236Z 2023-01-11T21:05:10.3208403Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.3208536Z import torch 2023-01-11T21:05:10.3208675Z import random 2023-01-11T21:05:10.3208896Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.3209120Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.3209128Z 2023-01-11T21:05:10.3209283Z aten = torch.ops.aten 2023-01-11T21:05:10.3209526Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.3209693Z async_compile = AsyncCompile() 2023-01-11T21:05:10.3209700Z 2023-01-11T21:05:10.3209707Z 2023-01-11T21:05:10.3209937Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.3210297Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.3210510Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:05:10.3210683Z long* __restrict__ out_ptr0, 2023-01-11T21:05:10.3210973Z long* __restrict__ out_ptr1) 2023-01-11T21:05:10.3211091Z { 2023-01-11T21:05:10.3211215Z { 2023-01-11T21:05:10.3211323Z { 2023-01-11T21:05:10.3211539Z struct IndexValue_1 {size_t index; float value;}; 2023-01-11T21:05:10.3211991Z IndexValue_1 tmp1{0, -std::numeric_limits::infinity()}; 2023-01-11T21:05:10.3212243Z #pragma omp declare reduction(argmax : struct IndexValue_1 :\ 2023-01-11T21:05:10.3212512Z omp_out.value = omp_in.value < omp_out.value ? omp_out.value : omp_in.value,\ 2023-01-11T21:05:10.3212772Z omp_out.index = omp_in.value < omp_out.value ? omp_out.index : omp_in.index)\ 2023-01-11T21:05:10.3213182Z initializer(omp_priv = {0, -std::numeric_limits::infinity()}) 2023-01-11T21:05:10.3213395Z struct IndexValue_2 {size_t index; float value;}; 2023-01-11T21:05:10.3213628Z IndexValue_2 tmp2{0, std::numeric_limits::infinity()}; 2023-01-11T21:05:10.3213874Z #pragma omp declare reduction(argmin : struct IndexValue_2 :\ 2023-01-11T21:05:10.3214213Z omp_out.value = omp_in.value > omp_out.value ? omp_out.value : omp_in.value,\ 2023-01-11T21:05:10.3214481Z omp_out.index = omp_in.value > omp_out.value ? omp_out.index : omp_in.index)\ 2023-01-11T21:05:10.3214739Z initializer(omp_priv = {0, std::numeric_limits::infinity()}) 2023-01-11T21:05:10.3214931Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.3215050Z { 2023-01-11T21:05:10.3215304Z #pragma omp for reduction(argmax:tmp1) reduction(argmin:tmp2) 2023-01-11T21:05:10.3215459Z for(long i0=0; i0<524288; i0+=1) 2023-01-11T21:05:10.3215587Z { 2023-01-11T21:05:10.3215710Z { 2023-01-11T21:05:10.3215874Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:05:10.3216040Z if (tmp1.value < tmp0) { 2023-01-11T21:05:10.3216234Z tmp1.index = i0; tmp1.value = tmp0; 2023-01-11T21:05:10.3216362Z } 2023-01-11T21:05:10.3216518Z if (tmp2.value > tmp0) { 2023-01-11T21:05:10.3216718Z tmp2.index = i0; tmp2.value = tmp0; 2023-01-11T21:05:10.3216843Z } 2023-01-11T21:05:10.3216966Z } 2023-01-11T21:05:10.3217087Z } 2023-01-11T21:05:10.3217203Z } 2023-01-11T21:05:10.3217360Z out_ptr0[0] = tmp1.index; 2023-01-11T21:05:10.3217495Z out_ptr1[0] = tmp2.index; 2023-01-11T21:05:10.3217609Z } 2023-01-11T21:05:10.3217733Z } 2023-01-11T21:05:10.3217847Z } 2023-01-11T21:05:10.3218010Z ''') 2023-01-11T21:05:10.3218020Z 2023-01-11T21:05:10.3218027Z 2023-01-11T21:05:10.3218195Z async_compile.wait(globals()) 2023-01-11T21:05:10.3218334Z del async_compile 2023-01-11T21:05:10.3218341Z 2023-01-11T21:05:10.3218587Z def call(args): 2023-01-11T21:05:10.3218706Z arg0_1, = args 2023-01-11T21:05:10.3218842Z args.clear() 2023-01-11T21:05:10.3219172Z buf0 = empty_strided((), (), device='cpu', dtype=torch.int64) 2023-01-11T21:05:10.3219498Z buf1 = empty_strided((), (), device='cpu', dtype=torch.int64) 2023-01-11T21:05:10.3219785Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(buf0.data_ptr()), c_void_p(buf1.data_ptr())) 2023-01-11T21:05:10.3219915Z del arg0_1 2023-01-11T21:05:10.3220060Z return (buf0, buf1, ) 2023-01-11T21:05:10.3220070Z 2023-01-11T21:05:10.3220076Z 2023-01-11T21:05:10.3220208Z if __name__ == "__main__": 2023-01-11T21:05:10.3220417Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.3220645Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.3221014Z arg0_1 = rand_strided((8, 256, 256), (65536, 256, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.3221220Z print_performance(lambda: call([arg0_1])) 2023-01-11T21:05:10.3221317Z 2023-01-11T21:05:10.3221448Z ok (2.925s) 2023-01-11T21:05:10.3222276Z test_argmax_argmin2_cpu (__main__.CpuTests) ... inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.3222495Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.3222960Z [2023-01-11 20:45:05,919] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 24 2023-01-11T21:05:10.3223415Z [2023-01-11 20:45:08,599] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 24 2023-01-11T21:05:10.3223437Z 2023-01-11T21:05:10.3223595Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.3223722Z import torch 2023-01-11T21:05:10.3223854Z import random 2023-01-11T21:05:10.3224063Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.3224283Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.3224292Z 2023-01-11T21:05:10.3224443Z aten = torch.ops.aten 2023-01-11T21:05:10.3224753Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.3224917Z async_compile = AsyncCompile() 2023-01-11T21:05:10.3224924Z 2023-01-11T21:05:10.3224945Z 2023-01-11T21:05:10.3225171Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.3225537Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.3225755Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:05:10.3225931Z long* __restrict__ out_ptr0, 2023-01-11T21:05:10.3226108Z long* __restrict__ out_ptr1, 2023-01-11T21:05:10.3226282Z long* __restrict__ out_ptr2, 2023-01-11T21:05:10.3226452Z long* __restrict__ out_ptr3) 2023-01-11T21:05:10.3226564Z { 2023-01-11T21:05:10.3226745Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.3226860Z { 2023-01-11T21:05:10.3227002Z #pragma omp for 2023-01-11T21:05:10.3227157Z for(long i0=0; i0<144; i0+=1) 2023-01-11T21:05:10.3227272Z { 2023-01-11T21:05:10.3227383Z { 2023-01-11T21:05:10.3227503Z { 2023-01-11T21:05:10.3227727Z struct IndexValue_3 {size_t index; float value;}; 2023-01-11T21:05:10.3228155Z IndexValue_3 tmp1{0, -std::numeric_limits::infinity()}; 2023-01-11T21:05:10.3228410Z #pragma omp declare reduction(argmax : struct IndexValue_3 :\ 2023-01-11T21:05:10.3228686Z omp_out.value = omp_in.value < omp_out.value ? omp_out.value : omp_in.value,\ 2023-01-11T21:05:10.3228960Z omp_out.index = omp_in.value < omp_out.value ? omp_out.index : omp_in.index)\ 2023-01-11T21:05:10.3229404Z initializer(omp_priv = {0, -std::numeric_limits::infinity()}) 2023-01-11T21:05:10.3229625Z struct IndexValue_4 {size_t index; float value;}; 2023-01-11T21:05:10.3229862Z IndexValue_4 tmp2{0, std::numeric_limits::infinity()}; 2023-01-11T21:05:10.3230111Z #pragma omp declare reduction(argmin : struct IndexValue_4 :\ 2023-01-11T21:05:10.3230387Z omp_out.value = omp_in.value > omp_out.value ? omp_out.value : omp_in.value,\ 2023-01-11T21:05:10.3230662Z omp_out.index = omp_in.value > omp_out.value ? omp_out.index : omp_in.index)\ 2023-01-11T21:05:10.3230918Z initializer(omp_priv = {0, std::numeric_limits::infinity()}) 2023-01-11T21:05:10.3231081Z for(long i1=0; i1<144; i1+=1) 2023-01-11T21:05:10.3231205Z { 2023-01-11T21:05:10.3231333Z { 2023-01-11T21:05:10.3231501Z auto tmp0 = in_ptr0[i0 + (144*i1)]; 2023-01-11T21:05:10.3231763Z if (tmp1.value < tmp0) { 2023-01-11T21:05:10.3231958Z tmp1.index = i1; tmp1.value = tmp0; 2023-01-11T21:05:10.3232090Z } 2023-01-11T21:05:10.3232261Z if (tmp2.value > tmp0) { 2023-01-11T21:05:10.3232455Z tmp2.index = i1; tmp2.value = tmp0; 2023-01-11T21:05:10.3232582Z } 2023-01-11T21:05:10.3232697Z } 2023-01-11T21:05:10.3232819Z } 2023-01-11T21:05:10.3232991Z out_ptr0[i0] = tmp1.index; 2023-01-11T21:05:10.3233157Z out_ptr1[i0] = tmp2.index; 2023-01-11T21:05:10.3233276Z } 2023-01-11T21:05:10.3233393Z } 2023-01-11T21:05:10.3233512Z } 2023-01-11T21:05:10.3233636Z #pragma omp for 2023-01-11T21:05:10.3233783Z for(long i0=0; i0<144; i0+=1) 2023-01-11T21:05:10.3233903Z { 2023-01-11T21:05:10.3234021Z { 2023-01-11T21:05:10.3234143Z { 2023-01-11T21:05:10.3234360Z struct IndexValue_5 {size_t index; float value;}; 2023-01-11T21:05:10.3234846Z IndexValue_5 tmp1{0, -std::numeric_limits::infinity()}; 2023-01-11T21:05:10.3235087Z #pragma omp declare reduction(argmax : struct IndexValue_5 :\ 2023-01-11T21:05:10.3235358Z omp_out.value = omp_in.value < omp_out.value ? omp_out.value : omp_in.value,\ 2023-01-11T21:05:10.3235621Z omp_out.index = omp_in.value < omp_out.value ? omp_out.index : omp_in.index)\ 2023-01-11T21:05:10.3236057Z initializer(omp_priv = {0, -std::numeric_limits::infinity()}) 2023-01-11T21:05:10.3236278Z struct IndexValue_6 {size_t index; float value;}; 2023-01-11T21:05:10.3236518Z IndexValue_6 tmp2{0, std::numeric_limits::infinity()}; 2023-01-11T21:05:10.3236774Z #pragma omp declare reduction(argmin : struct IndexValue_6 :\ 2023-01-11T21:05:10.3237049Z omp_out.value = omp_in.value > omp_out.value ? omp_out.value : omp_in.value,\ 2023-01-11T21:05:10.3237320Z omp_out.index = omp_in.value > omp_out.value ? omp_out.index : omp_in.index)\ 2023-01-11T21:05:10.3237568Z initializer(omp_priv = {0, std::numeric_limits::infinity()}) 2023-01-11T21:05:10.3237731Z for(long i1=0; i1<144; i1+=1) 2023-01-11T21:05:10.3237853Z { 2023-01-11T21:05:10.3237980Z { 2023-01-11T21:05:10.3238166Z auto tmp0 = in_ptr0[i1 + (144*i0)]; 2023-01-11T21:05:10.3238336Z if (tmp1.value < tmp0) { 2023-01-11T21:05:10.3238528Z tmp1.index = i1; tmp1.value = tmp0; 2023-01-11T21:05:10.3238643Z } 2023-01-11T21:05:10.3238819Z if (tmp2.value > tmp0) { 2023-01-11T21:05:10.3239013Z tmp2.index = i1; tmp2.value = tmp0; 2023-01-11T21:05:10.3239148Z } 2023-01-11T21:05:10.3239271Z } 2023-01-11T21:05:10.3239395Z } 2023-01-11T21:05:10.3239564Z out_ptr2[i0] = tmp1.index; 2023-01-11T21:05:10.3239712Z out_ptr3[i0] = tmp2.index; 2023-01-11T21:05:10.3239837Z } 2023-01-11T21:05:10.3239959Z } 2023-01-11T21:05:10.3240076Z } 2023-01-11T21:05:10.3240192Z } 2023-01-11T21:05:10.3240307Z } 2023-01-11T21:05:10.3240464Z ''') 2023-01-11T21:05:10.3240473Z 2023-01-11T21:05:10.3240479Z 2023-01-11T21:05:10.3240774Z async_compile.wait(globals()) 2023-01-11T21:05:10.3240915Z del async_compile 2023-01-11T21:05:10.3240923Z 2023-01-11T21:05:10.3241054Z def call(args): 2023-01-11T21:05:10.3241184Z arg0_1, = args 2023-01-11T21:05:10.3241435Z args.clear() 2023-01-11T21:05:10.3241782Z buf0 = empty_strided((144, ), (1, ), device='cpu', dtype=torch.int64) 2023-01-11T21:05:10.3242116Z buf1 = empty_strided((144, ), (1, ), device='cpu', dtype=torch.int64) 2023-01-11T21:05:10.3242444Z buf2 = empty_strided((144, ), (1, ), device='cpu', dtype=torch.int64) 2023-01-11T21:05:10.3242758Z buf3 = empty_strided((144, ), (1, ), device='cpu', dtype=torch.int64) 2023-01-11T21:05:10.3243140Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(buf0.data_ptr()), c_void_p(buf1.data_ptr()), c_void_p(buf2.data_ptr()), c_void_p(buf3.data_ptr())) 2023-01-11T21:05:10.3243268Z del arg0_1 2023-01-11T21:05:10.3243436Z return (buf0, buf1, buf2, buf3, ) 2023-01-11T21:05:10.3243445Z 2023-01-11T21:05:10.3243451Z 2023-01-11T21:05:10.3243591Z if __name__ == "__main__": 2023-01-11T21:05:10.3243800Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.3244024Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.3244379Z arg0_1 = rand_strided((144, 144), (144, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.3244567Z print_performance(lambda: call([arg0_1])) 2023-01-11T21:05:10.3244575Z 2023-01-11T21:05:10.3244791Z ok (2.800s) 2023-01-11T21:05:10.3245006Z test_argmax_argmin3_cpu (__main__.CpuTests) ... skip: 2023-01-11T21:05:10.3245293Z FIXME: In the case of having equally max/min elements, our implementation returns 2023-01-11T21:05:10.3245487Z the last index instead of the first one 2023-01-11T21:05:10.3245611Z (0.002s) 2023-01-11T21:05:10.3246444Z test_as_strided_cpu (__main__.CpuTests) ... inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.3246677Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.3247147Z [2023-01-11 20:45:08,700] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 25 2023-01-11T21:05:10.3247616Z [2023-01-11 20:45:11,435] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 25 2023-01-11T21:05:10.3247625Z 2023-01-11T21:05:10.3247808Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.3247947Z import torch 2023-01-11T21:05:10.3248085Z import random 2023-01-11T21:05:10.3248304Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.3248537Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.3248545Z 2023-01-11T21:05:10.3248692Z aten = torch.ops.aten 2023-01-11T21:05:10.3248922Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.3249098Z async_compile = AsyncCompile() 2023-01-11T21:05:10.3249106Z 2023-01-11T21:05:10.3249113Z 2023-01-11T21:05:10.3249370Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.3249744Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.3249957Z extern "C" void kernel(float* __restrict__ in_out_ptr0, 2023-01-11T21:05:10.3250151Z const float* __restrict__ in_ptr0) 2023-01-11T21:05:10.3250265Z { 2023-01-11T21:05:10.3250447Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.3250556Z { 2023-01-11T21:05:10.3250702Z #pragma omp for 2023-01-11T21:05:10.3250855Z for(long i0=0; i0<256; i0+=1) 2023-01-11T21:05:10.3250968Z { 2023-01-11T21:05:10.3251214Z auto tmp0 = at::vec::Vectorized::loadu(in_ptr0 + 16*i0); 2023-01-11T21:05:10.3251457Z auto tmp1 = at::vec::Vectorized(static_cast(1)); 2023-01-11T21:05:10.3251611Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:05:10.3251847Z auto tmp3 = at::vec::Vectorized(static_cast(2)); 2023-01-11T21:05:10.3252068Z auto tmp4 = tmp2 + tmp3; 2023-01-11T21:05:10.3252245Z tmp4.store(in_out_ptr0 + 16*i0); 2023-01-11T21:05:10.3252364Z } 2023-01-11T21:05:10.3252542Z #pragma omp for simd simdlen(8) 2023-01-11T21:05:10.3252702Z for(long i0=4096; i0<4096; i0+=1) 2023-01-11T21:05:10.3252818Z { 2023-01-11T21:05:10.3252979Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:05:10.3253153Z auto tmp1 = static_cast(1); 2023-01-11T21:05:10.3253312Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:05:10.3253491Z auto tmp3 = static_cast(2); 2023-01-11T21:05:10.3253641Z auto tmp4 = tmp2 + tmp3; 2023-01-11T21:05:10.3253792Z in_out_ptr0[i0] = tmp4; 2023-01-11T21:05:10.3253911Z } 2023-01-11T21:05:10.3254016Z } 2023-01-11T21:05:10.3254133Z } 2023-01-11T21:05:10.3254291Z ''') 2023-01-11T21:05:10.3254300Z 2023-01-11T21:05:10.3254306Z 2023-01-11T21:05:10.3254473Z async_compile.wait(globals()) 2023-01-11T21:05:10.3254616Z del async_compile 2023-01-11T21:05:10.3254624Z 2023-01-11T21:05:10.3254761Z def call(args): 2023-01-11T21:05:10.3254893Z arg0_1, = args 2023-01-11T21:05:10.3255023Z args.clear() 2023-01-11T21:05:10.3255421Z buf0 = empty_strided((64, 64), (64, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.3255632Z buf1 = as_strided(buf0, (8, 8, 64), (512, 64, 1)); del buf0 # reuse 2023-01-11T21:05:10.3255873Z kernel_cpp_0(c_void_p(buf1.data_ptr()), c_void_p(arg0_1.data_ptr())) 2023-01-11T21:05:10.3256064Z return (as_strided(arg0_1, (8, 8, 64), (512, 64, 1)), buf1, ) 2023-01-11T21:05:10.3256073Z 2023-01-11T21:05:10.3256079Z 2023-01-11T21:05:10.3256221Z if __name__ == "__main__": 2023-01-11T21:05:10.3256426Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.3256651Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.3257000Z arg0_1 = rand_strided((64, 64), (64, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.3257190Z print_performance(lambda: call([arg0_1])) 2023-01-11T21:05:10.3257197Z 2023-01-11T21:05:10.3257319Z ok (2.827s) 2023-01-11T21:05:10.3258155Z test_as_strided_scatter_cpu (__main__.CpuTests) ... inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.3258378Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.3258924Z [2023-01-11 20:45:11,531] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 26 2023-01-11T21:05:10.3259396Z [2023-01-11 20:45:14,229] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 26 2023-01-11T21:05:10.3259404Z 2023-01-11T21:05:10.3259580Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.3259717Z import torch 2023-01-11T21:05:10.3259853Z import random 2023-01-11T21:05:10.3260049Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.3260279Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.3260290Z 2023-01-11T21:05:10.3260431Z aten = torch.ops.aten 2023-01-11T21:05:10.3260674Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.3260845Z async_compile = AsyncCompile() 2023-01-11T21:05:10.3260852Z 2023-01-11T21:05:10.3260860Z 2023-01-11T21:05:10.3261093Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.3261460Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.3261671Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:05:10.3261850Z const float* __restrict__ in_ptr1, 2023-01-11T21:05:10.3262029Z float* __restrict__ out_ptr0) 2023-01-11T21:05:10.3262147Z { 2023-01-11T21:05:10.3262413Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.3262532Z { 2023-01-11T21:05:10.3262676Z #pragma omp for 2023-01-11T21:05:10.3262824Z for(long i0=0; i0<640; i0+=1) 2023-01-11T21:05:10.3262927Z { 2023-01-11T21:05:10.3263176Z auto tmp0 = at::vec::Vectorized::loadu(in_ptr0 + 16*i0); 2023-01-11T21:05:10.3263418Z auto tmp1 = at::vec::Vectorized(static_cast(8)); 2023-01-11T21:05:10.3263581Z auto tmp2 = tmp0 * tmp1; 2023-01-11T21:05:10.3263826Z auto tmp3 = at::vec::Vectorized(static_cast(10)); 2023-01-11T21:05:10.3263982Z auto tmp4 = tmp2 + tmp3; 2023-01-11T21:05:10.3264151Z tmp4.store(out_ptr0 + 16*i0); 2023-01-11T21:05:10.3264272Z } 2023-01-11T21:05:10.3264430Z #pragma omp for simd simdlen(8) 2023-01-11T21:05:10.3264592Z for(long i0=10240; i0<10240; i0+=1) 2023-01-11T21:05:10.3264707Z { 2023-01-11T21:05:10.3264860Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:05:10.3265041Z auto tmp1 = static_cast(8); 2023-01-11T21:05:10.3265191Z auto tmp2 = tmp0 * tmp1; 2023-01-11T21:05:10.3265356Z auto tmp3 = static_cast(10); 2023-01-11T21:05:10.3265607Z auto tmp4 = tmp2 + tmp3; 2023-01-11T21:05:10.3265763Z out_ptr0[i0] = tmp4; 2023-01-11T21:05:10.3265880Z } 2023-01-11T21:05:10.3266018Z #pragma omp for 2023-01-11T21:05:10.3266165Z for(long i0=0; i0<5120; i0+=1) 2023-01-11T21:05:10.3266281Z { 2023-01-11T21:05:10.3266388Z { 2023-01-11T21:05:10.3266508Z { 2023-01-11T21:05:10.3266674Z auto tmp0 = in_ptr1[i0]; 2023-01-11T21:05:10.3266862Z auto tmp1 = static_cast(2); 2023-01-11T21:05:10.3267026Z auto tmp2 = tmp0 * tmp1; 2023-01-11T21:05:10.3267206Z auto tmp3 = static_cast(4); 2023-01-11T21:05:10.3267469Z auto tmp4 = tmp2 - tmp3; 2023-01-11T21:05:10.3267619Z out_ptr0[2*i0] = tmp4; 2023-01-11T21:05:10.3267740Z } 2023-01-11T21:05:10.3267858Z } 2023-01-11T21:05:10.3267973Z } 2023-01-11T21:05:10.3268094Z } 2023-01-11T21:05:10.3268207Z } 2023-01-11T21:05:10.3268366Z ''') 2023-01-11T21:05:10.3268375Z 2023-01-11T21:05:10.3268381Z 2023-01-11T21:05:10.3268545Z async_compile.wait(globals()) 2023-01-11T21:05:10.3268686Z del async_compile 2023-01-11T21:05:10.3268693Z 2023-01-11T21:05:10.3268827Z def call(args): 2023-01-11T21:05:10.3268968Z arg0_1, arg1_1 = args 2023-01-11T21:05:10.3269105Z args.clear() 2023-01-11T21:05:10.3269466Z buf0 = empty_strided((10, 1024), (1024, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.3269749Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(arg1_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:05:10.3269865Z del arg0_1 2023-01-11T21:05:10.3269992Z del arg1_1 2023-01-11T21:05:10.3270135Z return (buf0, ) 2023-01-11T21:05:10.3270143Z 2023-01-11T21:05:10.3270150Z 2023-01-11T21:05:10.3270289Z if __name__ == "__main__": 2023-01-11T21:05:10.3270501Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.3270735Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.3271101Z arg0_1 = rand_strided((10, 1024), (1024, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.3271451Z arg1_1 = rand_strided((10, 512), (512, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.3271645Z print_performance(lambda: call([arg0_1, arg1_1])) 2023-01-11T21:05:10.3271668Z 2023-01-11T21:05:10.3271780Z ok (2.803s) 2023-01-11T21:05:10.3272626Z test_avg_pool2d1_cpu (__main__.CpuTests) ... inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.3272949Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.3273416Z [2023-01-11 20:45:14,304] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 27 2023-01-11T21:05:10.3273887Z [2023-01-11 20:45:17,114] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 27 2023-01-11T21:05:10.3273895Z 2023-01-11T21:05:10.3274073Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.3274204Z import torch 2023-01-11T21:05:10.3274342Z import random 2023-01-11T21:05:10.3274542Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.3274759Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.3274768Z 2023-01-11T21:05:10.3274911Z aten = torch.ops.aten 2023-01-11T21:05:10.3275158Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.3275326Z async_compile = AsyncCompile() 2023-01-11T21:05:10.3275337Z 2023-01-11T21:05:10.3275343Z 2023-01-11T21:05:10.3275584Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.3275945Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.3276226Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:05:10.3276392Z float* __restrict__ out_ptr0) 2023-01-11T21:05:10.3276513Z { 2023-01-11T21:05:10.3276695Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.3276779Z { 2023-01-11T21:05:10.3276879Z #pragma omp for 2023-01-11T21:05:10.3276984Z for(long i0=0; i0<8; i0+=1) 2023-01-11T21:05:10.3277067Z { 2023-01-11T21:05:10.3277154Z #pragma GCC ivdep 2023-01-11T21:05:10.3277259Z for(long i1=0; i1<7; i1+=1) 2023-01-11T21:05:10.3277342Z { 2023-01-11T21:05:10.3277446Z #pragma GCC ivdep 2023-01-11T21:05:10.3277569Z for(long i2=0; i2<7; i2+=1) 2023-01-11T21:05:10.3277671Z { 2023-01-11T21:05:10.3277769Z { 2023-01-11T21:05:10.3277858Z { 2023-01-11T21:05:10.3278017Z auto tmp0 = in_ptr0[(2*i2) + (32*i1) + (256*i0)]; 2023-01-11T21:05:10.3278183Z auto tmp1 = in_ptr0[1 + (2*i2) + (32*i1) + (256*i0)]; 2023-01-11T21:05:10.3278336Z auto tmp3 = in_ptr0[2 + (2*i2) + (32*i1) + (256*i0)]; 2023-01-11T21:05:10.3278493Z auto tmp5 = in_ptr0[16 + (2*i2) + (32*i1) + (256*i0)]; 2023-01-11T21:05:10.3278652Z auto tmp7 = in_ptr0[17 + (2*i2) + (32*i1) + (256*i0)]; 2023-01-11T21:05:10.3278802Z auto tmp9 = in_ptr0[18 + (2*i2) + (32*i1) + (256*i0)]; 2023-01-11T21:05:10.3278967Z auto tmp11 = in_ptr0[32 + (2*i2) + (32*i1) + (256*i0)]; 2023-01-11T21:05:10.3279109Z auto tmp13 = in_ptr0[33 + (2*i2) + (32*i1) + (256*i0)]; 2023-01-11T21:05:10.3279274Z auto tmp15 = in_ptr0[34 + (2*i2) + (32*i1) + (256*i0)]; 2023-01-11T21:05:10.3279414Z auto tmp2 = tmp1 + tmp0; 2023-01-11T21:05:10.3279560Z auto tmp4 = tmp3 + tmp2; 2023-01-11T21:05:10.3279696Z auto tmp6 = tmp5 + tmp4; 2023-01-11T21:05:10.3279832Z auto tmp8 = tmp7 + tmp6; 2023-01-11T21:05:10.3279973Z auto tmp10 = tmp9 + tmp8; 2023-01-11T21:05:10.3280097Z auto tmp12 = tmp11 + tmp10; 2023-01-11T21:05:10.3280238Z auto tmp14 = tmp13 + tmp12; 2023-01-11T21:05:10.3280377Z auto tmp16 = tmp15 + tmp14; 2023-01-11T21:05:10.3280551Z auto tmp17 = static_cast(0.1111111111111111); 2023-01-11T21:05:10.3280853Z auto tmp18 = tmp16 * tmp17; 2023-01-11T21:05:10.3281000Z out_ptr0[i2 + (7*i1) + (49*i0)] = tmp18; 2023-01-11T21:05:10.3281213Z } 2023-01-11T21:05:10.3281305Z } 2023-01-11T21:05:10.3281388Z } 2023-01-11T21:05:10.3281485Z } 2023-01-11T21:05:10.3281575Z } 2023-01-11T21:05:10.3281659Z } 2023-01-11T21:05:10.3281751Z } 2023-01-11T21:05:10.3281898Z ''') 2023-01-11T21:05:10.3281907Z 2023-01-11T21:05:10.3281913Z 2023-01-11T21:05:10.3282048Z async_compile.wait(globals()) 2023-01-11T21:05:10.3282142Z del async_compile 2023-01-11T21:05:10.3282150Z 2023-01-11T21:05:10.3282252Z def call(args): 2023-01-11T21:05:10.3282358Z arg0_1, = args 2023-01-11T21:05:10.3282459Z args.clear() 2023-01-11T21:05:10.3282780Z buf0 = empty_strided((2, 4, 7, 7), (196, 49, 7, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.3282981Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:05:10.3283073Z del arg0_1 2023-01-11T21:05:10.3283167Z return (buf0, ) 2023-01-11T21:05:10.3283174Z 2023-01-11T21:05:10.3283180Z 2023-01-11T21:05:10.3283284Z if __name__ == "__main__": 2023-01-11T21:05:10.3283452Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.3283725Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.3284061Z arg0_1 = rand_strided((2, 4, 16, 16), (1024, 256, 16, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.3284214Z print_performance(lambda: call([arg0_1])) 2023-01-11T21:05:10.3284221Z 2023-01-11T21:05:10.3284321Z ok (2.866s) 2023-01-11T21:05:10.3284966Z test_avg_pool2d2_cpu (__main__.CpuTests) ... inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.3285149Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.3285545Z [2023-01-11 20:45:17,331] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 28 2023-01-11T21:05:10.3285934Z [2023-01-11 20:45:20,075] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 28 2023-01-11T21:05:10.3285941Z 2023-01-11T21:05:10.3286082Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.3286181Z import torch 2023-01-11T21:05:10.3286279Z import random 2023-01-11T21:05:10.3286452Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.3286629Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.3286636Z 2023-01-11T21:05:10.3286748Z aten = torch.ops.aten 2023-01-11T21:05:10.3286926Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.3287057Z async_compile = AsyncCompile() 2023-01-11T21:05:10.3287065Z 2023-01-11T21:05:10.3287071Z 2023-01-11T21:05:10.3287269Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.3287581Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.3287751Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:05:10.3287895Z float* __restrict__ out_ptr0) 2023-01-11T21:05:10.3287980Z { 2023-01-11T21:05:10.3288125Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.3288200Z { 2023-01-11T21:05:10.3288317Z #pragma omp for 2023-01-11T21:05:10.3288429Z for(long i0=0; i0<1024; i0+=1) 2023-01-11T21:05:10.3288511Z { 2023-01-11T21:05:10.3288622Z #pragma GCC ivdep 2023-01-11T21:05:10.3288742Z for(long i1=0; i1<27; i1+=1) 2023-01-11T21:05:10.3288816Z { 2023-01-11T21:05:10.3288935Z #pragma GCC ivdep 2023-01-11T21:05:10.3289059Z for(long i2=0; i2<27; i2+=1) 2023-01-11T21:05:10.3289148Z { 2023-01-11T21:05:10.3289250Z { 2023-01-11T21:05:10.3289436Z { 2023-01-11T21:05:10.3289599Z auto tmp0 = in_ptr0[(2*i2) + (110*i1) + (3025*i0)]; 2023-01-11T21:05:10.3289756Z auto tmp1 = in_ptr0[1 + (2*i2) + (110*i1) + (3025*i0)]; 2023-01-11T21:05:10.3289904Z auto tmp3 = in_ptr0[2 + (2*i2) + (110*i1) + (3025*i0)]; 2023-01-11T21:05:10.3290064Z auto tmp5 = in_ptr0[55 + (2*i2) + (110*i1) + (3025*i0)]; 2023-01-11T21:05:10.3290229Z auto tmp7 = in_ptr0[56 + (2*i2) + (110*i1) + (3025*i0)]; 2023-01-11T21:05:10.3290392Z auto tmp9 = in_ptr0[57 + (2*i2) + (110*i1) + (3025*i0)]; 2023-01-11T21:05:10.3290557Z auto tmp11 = in_ptr0[110 + (2*i2) + (110*i1) + (3025*i0)]; 2023-01-11T21:05:10.3290717Z auto tmp13 = in_ptr0[111 + (2*i2) + (110*i1) + (3025*i0)]; 2023-01-11T21:05:10.3290884Z auto tmp15 = in_ptr0[112 + (2*i2) + (110*i1) + (3025*i0)]; 2023-01-11T21:05:10.3291025Z auto tmp2 = tmp1 + tmp0; 2023-01-11T21:05:10.3291143Z auto tmp4 = tmp3 + tmp2; 2023-01-11T21:05:10.3291331Z auto tmp6 = tmp5 + tmp4; 2023-01-11T21:05:10.3291460Z auto tmp8 = tmp7 + tmp6; 2023-01-11T21:05:10.3291593Z auto tmp10 = tmp9 + tmp8; 2023-01-11T21:05:10.3291732Z auto tmp12 = tmp11 + tmp10; 2023-01-11T21:05:10.3291865Z auto tmp14 = tmp13 + tmp12; 2023-01-11T21:05:10.3292001Z auto tmp16 = tmp15 + tmp14; 2023-01-11T21:05:10.3292158Z auto tmp17 = static_cast(0.1111111111111111); 2023-01-11T21:05:10.3292301Z auto tmp18 = tmp16 * tmp17; 2023-01-11T21:05:10.3292450Z out_ptr0[i2 + (27*i1) + (729*i0)] = tmp18; 2023-01-11T21:05:10.3292550Z } 2023-01-11T21:05:10.3292649Z } 2023-01-11T21:05:10.3292740Z } 2023-01-11T21:05:10.3292832Z } 2023-01-11T21:05:10.3292903Z } 2023-01-11T21:05:10.3292989Z } 2023-01-11T21:05:10.3293078Z } 2023-01-11T21:05:10.3293214Z ''') 2023-01-11T21:05:10.3293222Z 2023-01-11T21:05:10.3293228Z 2023-01-11T21:05:10.3293364Z async_compile.wait(globals()) 2023-01-11T21:05:10.3293463Z del async_compile 2023-01-11T21:05:10.3293471Z 2023-01-11T21:05:10.3293569Z def call(args): 2023-01-11T21:05:10.3293656Z arg0_1, = args 2023-01-11T21:05:10.3293763Z args.clear() 2023-01-11T21:05:10.3294112Z buf0 = empty_strided((16, 64, 27, 27), (46656, 729, 27, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.3294304Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:05:10.3294399Z del arg0_1 2023-01-11T21:05:10.3294496Z return (buf0, ) 2023-01-11T21:05:10.3294502Z 2023-01-11T21:05:10.3294512Z 2023-01-11T21:05:10.3294622Z if __name__ == "__main__": 2023-01-11T21:05:10.3294790Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.3294954Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.3295297Z arg0_1 = rand_strided((16, 64, 55, 55), (193600, 3025, 55, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.3295453Z print_performance(lambda: call([arg0_1])) 2023-01-11T21:05:10.3295460Z 2023-01-11T21:05:10.3295556Z ok (3.846s) 2023-01-11T21:05:10.3296202Z test_avg_pool2d3_cpu (__main__.CpuTests) ... inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.3296389Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.3296860Z [2023-01-11 20:45:21,000] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 29 2023-01-11T21:05:10.3297264Z [2023-01-11 20:45:23,767] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 29 2023-01-11T21:05:10.3297272Z 2023-01-11T21:05:10.3297410Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.3297495Z import torch 2023-01-11T21:05:10.3297588Z import random 2023-01-11T21:05:10.3297758Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.3297936Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.3297942Z 2023-01-11T21:05:10.3298052Z aten = torch.ops.aten 2023-01-11T21:05:10.3298228Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.3298345Z async_compile = AsyncCompile() 2023-01-11T21:05:10.3298352Z 2023-01-11T21:05:10.3298358Z 2023-01-11T21:05:10.3298669Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.3298908Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.3299066Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:05:10.3299195Z float* __restrict__ out_ptr0) 2023-01-11T21:05:10.3299363Z { 2023-01-11T21:05:10.3299506Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.3299587Z { 2023-01-11T21:05:10.3299690Z #pragma omp for 2023-01-11T21:05:10.3299795Z for(long i0=0; i0<4; i0+=1) 2023-01-11T21:05:10.3299886Z { 2023-01-11T21:05:10.3300003Z #pragma GCC ivdep 2023-01-11T21:05:10.3300123Z for(long i1=0; i1<4; i1+=1) 2023-01-11T21:05:10.3300216Z { 2023-01-11T21:05:10.3300306Z { 2023-01-11T21:05:10.3300407Z { 2023-01-11T21:05:10.3300676Z auto tmp0 = static_cast((-1) + (2*i0)); 2023-01-11T21:05:10.3300824Z auto tmp1 = static_cast(0); 2023-01-11T21:05:10.3300970Z auto tmp2 = tmp0 >= tmp1; 2023-01-11T21:05:10.3301122Z auto tmp3 = static_cast(8); 2023-01-11T21:05:10.3301262Z auto tmp4 = tmp0 < tmp3; 2023-01-11T21:05:10.3301395Z auto tmp5 = tmp2 & tmp4; 2023-01-11T21:05:10.3301653Z auto tmp6 = static_cast((-1) + (2*i1)); 2023-01-11T21:05:10.3301774Z auto tmp7 = tmp6 >= tmp1; 2023-01-11T21:05:10.3301905Z auto tmp8 = tmp6 < tmp3; 2023-01-11T21:05:10.3302035Z auto tmp9 = tmp7 & tmp8; 2023-01-11T21:05:10.3302177Z auto tmp10 = tmp5 & tmp9; 2023-01-11T21:05:10.3302301Z float tmp11 = 0.0; 2023-01-11T21:05:10.3302407Z if(tmp10) 2023-01-11T21:05:10.3302509Z { 2023-01-11T21:05:10.3302759Z auto tmp12 = in_ptr0[(-9) + (2*i1) + (16*i0)]; 2023-01-11T21:05:10.3302880Z tmp11 = tmp12; 2023-01-11T21:05:10.3302977Z } 2023-01-11T21:05:10.3303132Z auto tmp13 = static_cast(2*i1); 2023-01-11T21:05:10.3303269Z auto tmp14 = tmp13 >= tmp1; 2023-01-11T21:05:10.3303405Z auto tmp15 = tmp13 < tmp3; 2023-01-11T21:05:10.3303537Z auto tmp16 = tmp14 & tmp15; 2023-01-11T21:05:10.3303674Z auto tmp17 = tmp5 & tmp16; 2023-01-11T21:05:10.3303775Z float tmp18 = 0.0; 2023-01-11T21:05:10.3303891Z if(tmp17) 2023-01-11T21:05:10.3303990Z { 2023-01-11T21:05:10.3304247Z auto tmp19 = in_ptr0[(-8) + (2*i1) + (16*i0)]; 2023-01-11T21:05:10.3304357Z tmp18 = tmp19; 2023-01-11T21:05:10.3304450Z } 2023-01-11T21:05:10.3304580Z auto tmp20 = tmp18 + tmp11; 2023-01-11T21:05:10.3304813Z auto tmp21 = static_cast(1 + (2*i1)); 2023-01-11T21:05:10.3304949Z auto tmp22 = tmp21 >= tmp1; 2023-01-11T21:05:10.3305086Z auto tmp23 = tmp21 < tmp3; 2023-01-11T21:05:10.3305226Z auto tmp24 = tmp22 & tmp23; 2023-01-11T21:05:10.3305351Z auto tmp25 = tmp5 & tmp24; 2023-01-11T21:05:10.3305471Z float tmp26 = 0.0; 2023-01-11T21:05:10.3305571Z if(tmp25) 2023-01-11T21:05:10.3305652Z { 2023-01-11T21:05:10.3305915Z auto tmp27 = in_ptr0[(-7) + (2*i1) + (16*i0)]; 2023-01-11T21:05:10.3306038Z tmp26 = tmp27; 2023-01-11T21:05:10.3306136Z } 2023-01-11T21:05:10.3306257Z auto tmp28 = tmp26 + tmp20; 2023-01-11T21:05:10.3306415Z auto tmp29 = static_cast(2*i0); 2023-01-11T21:05:10.3306547Z auto tmp30 = tmp29 >= tmp1; 2023-01-11T21:05:10.3306675Z auto tmp31 = tmp29 < tmp3; 2023-01-11T21:05:10.3306812Z auto tmp32 = tmp30 & tmp31; 2023-01-11T21:05:10.3307010Z auto tmp33 = tmp32 & tmp9; 2023-01-11T21:05:10.3307135Z float tmp34 = 0.0; 2023-01-11T21:05:10.3307250Z if(tmp33) 2023-01-11T21:05:10.3307349Z { 2023-01-11T21:05:10.3307609Z auto tmp35 = in_ptr0[(-1) + (2*i1) + (16*i0)]; 2023-01-11T21:05:10.3307714Z tmp34 = tmp35; 2023-01-11T21:05:10.3307813Z } 2023-01-11T21:05:10.3307953Z auto tmp36 = tmp34 + tmp28; 2023-01-11T21:05:10.3308085Z auto tmp37 = tmp32 & tmp16; 2023-01-11T21:05:10.3308206Z float tmp38 = 0.0; 2023-01-11T21:05:10.3308312Z if(tmp37) 2023-01-11T21:05:10.3308411Z { 2023-01-11T21:05:10.3308564Z auto tmp39 = in_ptr0[(2*i1) + (16*i0)]; 2023-01-11T21:05:10.3308673Z tmp38 = tmp39; 2023-01-11T21:05:10.3308771Z } 2023-01-11T21:05:10.3308905Z auto tmp40 = tmp38 + tmp36; 2023-01-11T21:05:10.3309039Z auto tmp41 = tmp32 & tmp24; 2023-01-11T21:05:10.3309164Z float tmp42 = 0.0; 2023-01-11T21:05:10.3309265Z if(tmp41) 2023-01-11T21:05:10.3309353Z { 2023-01-11T21:05:10.3309491Z auto tmp43 = in_ptr0[1 + (2*i1) + (16*i0)]; 2023-01-11T21:05:10.3309607Z tmp42 = tmp43; 2023-01-11T21:05:10.3309710Z } 2023-01-11T21:05:10.3309841Z auto tmp44 = tmp42 + tmp40; 2023-01-11T21:05:10.3309997Z auto tmp45 = static_cast(1 + (2*i0)); 2023-01-11T21:05:10.3310135Z auto tmp46 = tmp45 >= tmp1; 2023-01-11T21:05:10.3310262Z auto tmp47 = tmp45 < tmp3; 2023-01-11T21:05:10.3310381Z auto tmp48 = tmp46 & tmp47; 2023-01-11T21:05:10.3310514Z auto tmp49 = tmp48 & tmp9; 2023-01-11T21:05:10.3310627Z float tmp50 = 0.0; 2023-01-11T21:05:10.3310727Z if(tmp49) 2023-01-11T21:05:10.3310821Z { 2023-01-11T21:05:10.3310963Z auto tmp51 = in_ptr0[7 + (2*i1) + (16*i0)]; 2023-01-11T21:05:10.3311080Z tmp50 = tmp51; 2023-01-11T21:05:10.3311154Z } 2023-01-11T21:05:10.3311270Z auto tmp52 = tmp50 + tmp44; 2023-01-11T21:05:10.3311388Z auto tmp53 = tmp48 & tmp16; 2023-01-11T21:05:10.3311497Z float tmp54 = 0.0; 2023-01-11T21:05:10.3311594Z if(tmp53) 2023-01-11T21:05:10.3311786Z { 2023-01-11T21:05:10.3311940Z auto tmp55 = in_ptr0[8 + (2*i1) + (16*i0)]; 2023-01-11T21:05:10.3312050Z tmp54 = tmp55; 2023-01-11T21:05:10.3312163Z } 2023-01-11T21:05:10.3312309Z auto tmp56 = tmp54 + tmp52; 2023-01-11T21:05:10.3312445Z auto tmp57 = tmp48 & tmp24; 2023-01-11T21:05:10.3312568Z float tmp58 = 0.0; 2023-01-11T21:05:10.3312674Z if(tmp57) 2023-01-11T21:05:10.3312771Z { 2023-01-11T21:05:10.3312915Z auto tmp59 = in_ptr0[9 + (2*i1) + (16*i0)]; 2023-01-11T21:05:10.3313035Z tmp58 = tmp59; 2023-01-11T21:05:10.3313129Z } 2023-01-11T21:05:10.3313262Z auto tmp60 = tmp58 + tmp56; 2023-01-11T21:05:10.3313420Z auto tmp61 = static_cast(0.1111111111111111); 2023-01-11T21:05:10.3313562Z auto tmp62 = tmp60 * tmp61; 2023-01-11T21:05:10.3313701Z out_ptr0[i1 + (4*i0)] = tmp62; 2023-01-11T21:05:10.3313785Z } 2023-01-11T21:05:10.3313988Z } 2023-01-11T21:05:10.3314086Z } 2023-01-11T21:05:10.3314180Z } 2023-01-11T21:05:10.3314273Z } 2023-01-11T21:05:10.3314362Z } 2023-01-11T21:05:10.3314505Z ''') 2023-01-11T21:05:10.3314514Z 2023-01-11T21:05:10.3314520Z 2023-01-11T21:05:10.3314647Z async_compile.wait(globals()) 2023-01-11T21:05:10.3314757Z del async_compile 2023-01-11T21:05:10.3314765Z 2023-01-11T21:05:10.3314872Z def call(args): 2023-01-11T21:05:10.3314975Z arg0_1, = args 2023-01-11T21:05:10.3315073Z args.clear() 2023-01-11T21:05:10.3315389Z buf0 = empty_strided((1, 1, 4, 4), (16, 16, 4, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.3315589Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:05:10.3315693Z del arg0_1 2023-01-11T21:05:10.3315777Z return (buf0, ) 2023-01-11T21:05:10.3315783Z 2023-01-11T21:05:10.3315790Z 2023-01-11T21:05:10.3315893Z if __name__ == "__main__": 2023-01-11T21:05:10.3316062Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.3316238Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.3316564Z arg0_1 = rand_strided((1, 1, 8, 8), (64, 64, 8, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.3316722Z print_performance(lambda: call([arg0_1])) 2023-01-11T21:05:10.3316731Z 2023-01-11T21:05:10.3316830Z ok (2.804s) 2023-01-11T21:05:10.3317471Z test_avg_pool2d4_cpu (__main__.CpuTests) ... inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.3317648Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.3318027Z [2023-01-11 20:45:23,826] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 30 2023-01-11T21:05:10.3318413Z [2023-01-11 20:45:26,709] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 30 2023-01-11T21:05:10.3318422Z 2023-01-11T21:05:10.3318558Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.3318654Z import torch 2023-01-11T21:05:10.3318746Z import random 2023-01-11T21:05:10.3318912Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.3319094Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.3319101Z 2023-01-11T21:05:10.3319208Z aten = torch.ops.aten 2023-01-11T21:05:10.3319377Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.3319508Z async_compile = AsyncCompile() 2023-01-11T21:05:10.3319516Z 2023-01-11T21:05:10.3319610Z 2023-01-11T21:05:10.3319817Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.3320109Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.3320287Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:05:10.3320439Z float* __restrict__ out_ptr0) 2023-01-11T21:05:10.3320534Z { 2023-01-11T21:05:10.3320807Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.3320904Z { 2023-01-11T21:05:10.3321032Z #pragma omp for 2023-01-11T21:05:10.3321153Z for(long i0=0; i0<16; i0+=1) 2023-01-11T21:05:10.3321244Z { 2023-01-11T21:05:10.3321355Z #pragma GCC ivdep 2023-01-11T21:05:10.3321478Z for(long i1=0; i1<55; i1+=1) 2023-01-11T21:05:10.3321560Z { 2023-01-11T21:05:10.3321681Z #pragma GCC ivdep 2023-01-11T21:05:10.3321819Z for(long i2=0; i2<55; i2+=1) 2023-01-11T21:05:10.3321922Z { 2023-01-11T21:05:10.3322020Z { 2023-01-11T21:05:10.3322116Z { 2023-01-11T21:05:10.3322279Z auto tmp0 = in_ptr0[(2*i2) + (222*i1) + (12321*i0)]; 2023-01-11T21:05:10.3322570Z auto tmp1 = in_ptr0[1 + (2*i2) + (222*i1) + (12321*i0)]; 2023-01-11T21:05:10.3322733Z auto tmp3 = in_ptr0[2 + (2*i2) + (222*i1) + (12321*i0)]; 2023-01-11T21:05:10.3322895Z auto tmp5 = in_ptr0[111 + (2*i2) + (222*i1) + (12321*i0)]; 2023-01-11T21:05:10.3323052Z auto tmp7 = in_ptr0[112 + (2*i2) + (222*i1) + (12321*i0)]; 2023-01-11T21:05:10.3323203Z auto tmp9 = in_ptr0[113 + (2*i2) + (222*i1) + (12321*i0)]; 2023-01-11T21:05:10.3323363Z auto tmp11 = in_ptr0[222 + (2*i2) + (222*i1) + (12321*i0)]; 2023-01-11T21:05:10.3323527Z auto tmp13 = in_ptr0[223 + (2*i2) + (222*i1) + (12321*i0)]; 2023-01-11T21:05:10.3323682Z auto tmp15 = in_ptr0[224 + (2*i2) + (222*i1) + (12321*i0)]; 2023-01-11T21:05:10.3323801Z auto tmp2 = tmp1 + tmp0; 2023-01-11T21:05:10.3323939Z auto tmp4 = tmp3 + tmp2; 2023-01-11T21:05:10.3324075Z auto tmp6 = tmp5 + tmp4; 2023-01-11T21:05:10.3324209Z auto tmp8 = tmp7 + tmp6; 2023-01-11T21:05:10.3324344Z auto tmp10 = tmp9 + tmp8; 2023-01-11T21:05:10.3324482Z auto tmp12 = tmp11 + tmp10; 2023-01-11T21:05:10.3324614Z auto tmp14 = tmp13 + tmp12; 2023-01-11T21:05:10.3324754Z auto tmp16 = tmp15 + tmp14; 2023-01-11T21:05:10.3324900Z auto tmp17 = static_cast(0.1111111111111111); 2023-01-11T21:05:10.3325032Z auto tmp18 = tmp16 * tmp17; 2023-01-11T21:05:10.3325175Z out_ptr0[i2 + (55*i1) + (3025*i0)] = tmp18; 2023-01-11T21:05:10.3325270Z } 2023-01-11T21:05:10.3325358Z } 2023-01-11T21:05:10.3325447Z } 2023-01-11T21:05:10.3325538Z } 2023-01-11T21:05:10.3325615Z } 2023-01-11T21:05:10.3325696Z } 2023-01-11T21:05:10.3325781Z } 2023-01-11T21:05:10.3325921Z ''') 2023-01-11T21:05:10.3325930Z 2023-01-11T21:05:10.3325935Z 2023-01-11T21:05:10.3326071Z async_compile.wait(globals()) 2023-01-11T21:05:10.3326176Z del async_compile 2023-01-11T21:05:10.3326184Z 2023-01-11T21:05:10.3326287Z def call(args): 2023-01-11T21:05:10.3326374Z arg0_1, = args 2023-01-11T21:05:10.3326476Z args.clear() 2023-01-11T21:05:10.3326814Z buf0 = empty_strided((2, 8, 55, 55), (24200, 3025, 55, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.3327005Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:05:10.3327098Z del arg0_1 2023-01-11T21:05:10.3327317Z return (buf0, ) 2023-01-11T21:05:10.3327324Z 2023-01-11T21:05:10.3327330Z 2023-01-11T21:05:10.3327439Z if __name__ == "__main__": 2023-01-11T21:05:10.3327601Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.3327771Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.3328108Z arg0_1 = rand_strided((2, 8, 111, 111), (98568, 12321, 111, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.3328259Z print_performance(lambda: call([arg0_1])) 2023-01-11T21:05:10.3328267Z 2023-01-11T21:05:10.3328372Z ok (3.023s) 2023-01-11T21:05:10.3329037Z test_avg_pool2d5_cpu (__main__.CpuTests) ... inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.3329211Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.3329579Z [2023-01-11 20:45:26,841] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 31 2023-01-11T21:05:10.3329587Z 2023-01-11T21:05:10.3329794Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.3329902Z import torch 2023-01-11T21:05:10.3329996Z import random 2023-01-11T21:05:10.3330173Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.3330357Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.3330364Z 2023-01-11T21:05:10.3330480Z aten = torch.ops.aten 2023-01-11T21:05:10.3330687Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.3330826Z async_compile = AsyncCompile() 2023-01-11T21:05:10.3330833Z 2023-01-11T21:05:10.3330839Z 2023-01-11T21:05:10.3331051Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.3331352Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.3331524Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:05:10.3331675Z float* __restrict__ out_ptr0) 2023-01-11T21:05:10.3331769Z { 2023-01-11T21:05:10.3331918Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.3332007Z { 2023-01-11T21:05:10.3332117Z #pragma omp for 2023-01-11T21:05:10.3332237Z for(long i0=0; i0<4; i0+=1) 2023-01-11T21:05:10.3332315Z { 2023-01-11T21:05:10.3332428Z #pragma GCC ivdep 2023-01-11T21:05:10.3332545Z for(long i1=0; i1<4; i1+=1) 2023-01-11T21:05:10.3332644Z { 2023-01-11T21:05:10.3332730Z { 2023-01-11T21:05:10.3332823Z { 2023-01-11T21:05:10.3333075Z auto tmp0 = static_cast((-1) + (2*i0)); 2023-01-11T21:05:10.3333227Z auto tmp1 = static_cast(0); 2023-01-11T21:05:10.3333366Z auto tmp2 = tmp0 >= tmp1; 2023-01-11T21:05:10.3333513Z auto tmp3 = static_cast(8); 2023-01-11T21:05:10.3333656Z auto tmp4 = tmp0 < tmp3; 2023-01-11T21:05:10.3333813Z auto tmp5 = tmp2 & tmp4; 2023-01-11T21:05:10.3334125Z auto tmp6 = static_cast((-1) + (2*i1)); 2023-01-11T21:05:10.3334283Z auto tmp7 = tmp6 >= tmp1; 2023-01-11T21:05:10.3334429Z auto tmp8 = tmp6 < tmp3; 2023-01-11T21:05:10.3334582Z auto tmp9 = tmp7 & tmp8; 2023-01-11T21:05:10.3334742Z auto tmp10 = tmp5 & tmp9; 2023-01-11T21:05:10.3334871Z float tmp11 = 0.0; 2023-01-11T21:05:10.3334975Z if(tmp10) 2023-01-11T21:05:10.3335072Z { 2023-01-11T21:05:10.3335338Z auto tmp12 = in_ptr0[(-9) + (2*i1) + (16*i0)]; 2023-01-11T21:05:10.3335446Z tmp11 = tmp12; 2023-01-11T21:05:10.3335638Z } 2023-01-11T21:05:10.3335793Z auto tmp13 = static_cast(2*i1); 2023-01-11T21:05:10.3335927Z auto tmp14 = tmp13 >= tmp1; 2023-01-11T21:05:10.3336057Z auto tmp15 = tmp13 < tmp3; 2023-01-11T21:05:10.3336175Z auto tmp16 = tmp14 & tmp15; 2023-01-11T21:05:10.3336294Z auto tmp17 = tmp5 & tmp16; 2023-01-11T21:05:10.3336390Z float tmp18 = 0.0; 2023-01-11T21:05:10.3336495Z if(tmp17) 2023-01-11T21:05:10.3336595Z { 2023-01-11T21:05:10.3336866Z auto tmp19 = in_ptr0[(-8) + (2*i1) + (16*i0)]; 2023-01-11T21:05:10.3336986Z tmp18 = tmp19; 2023-01-11T21:05:10.3337083Z } 2023-01-11T21:05:10.3337224Z auto tmp20 = tmp18 + tmp11; 2023-01-11T21:05:10.3337384Z auto tmp21 = static_cast(1 + (2*i1)); 2023-01-11T21:05:10.3337533Z auto tmp22 = tmp21 >= tmp1; 2023-01-11T21:05:10.3337671Z auto tmp23 = tmp21 < tmp3; 2023-01-11T21:05:10.3337884Z auto tmp24 = tmp22 & tmp23; 2023-01-11T21:05:10.3338034Z auto tmp25 = tmp5 & tmp24; 2023-01-11T21:05:10.3338164Z float tmp26 = 0.0; 2023-01-11T21:05:10.3338279Z if(tmp25) 2023-01-11T21:05:10.3338370Z { 2023-01-11T21:05:10.3338757Z auto tmp27 = in_ptr0[(-7) + (2*i1) + (16*i0)]; 2023-01-11T21:05:10.3338883Z tmp26 = tmp27; 2023-01-11T21:05:10.3338986Z } 2023-01-11T21:05:10.3339127Z auto tmp28 = tmp26 + tmp20; 2023-01-11T21:05:10.3339279Z auto tmp29 = static_cast(2*i0); 2023-01-11T21:05:10.3339411Z auto tmp30 = tmp29 >= tmp1; 2023-01-11T21:05:10.3339550Z auto tmp31 = tmp29 < tmp3; 2023-01-11T21:05:10.3339669Z auto tmp32 = tmp30 & tmp31; 2023-01-11T21:05:10.3339810Z auto tmp33 = tmp32 & tmp9; 2023-01-11T21:05:10.3339942Z float tmp34 = 0.0; 2023-01-11T21:05:10.3340050Z if(tmp33) 2023-01-11T21:05:10.3340150Z { 2023-01-11T21:05:10.3340418Z auto tmp35 = in_ptr0[(-1) + (2*i1) + (16*i0)]; 2023-01-11T21:05:10.3340542Z tmp34 = tmp35; 2023-01-11T21:05:10.3340627Z } 2023-01-11T21:05:10.3340771Z auto tmp36 = tmp34 + tmp28; 2023-01-11T21:05:10.3340910Z auto tmp37 = tmp32 & tmp16; 2023-01-11T21:05:10.3341037Z float tmp38 = 0.0; 2023-01-11T21:05:10.3341145Z if(tmp37) 2023-01-11T21:05:10.3341243Z { 2023-01-11T21:05:10.3341401Z auto tmp39 = in_ptr0[(2*i1) + (16*i0)]; 2023-01-11T21:05:10.3341509Z tmp38 = tmp39; 2023-01-11T21:05:10.3341609Z } 2023-01-11T21:05:10.3341739Z auto tmp40 = tmp38 + tmp36; 2023-01-11T21:05:10.3341882Z auto tmp41 = tmp32 & tmp24; 2023-01-11T21:05:10.3342009Z float tmp42 = 0.0; 2023-01-11T21:05:10.3342112Z if(tmp41) 2023-01-11T21:05:10.3342215Z { 2023-01-11T21:05:10.3342357Z auto tmp43 = in_ptr0[1 + (2*i1) + (16*i0)]; 2023-01-11T21:05:10.3342477Z tmp42 = tmp43; 2023-01-11T21:05:10.3342577Z } 2023-01-11T21:05:10.3342714Z auto tmp44 = tmp42 + tmp40; 2023-01-11T21:05:10.3342872Z auto tmp45 = static_cast(1 + (2*i0)); 2023-01-11T21:05:10.3343008Z auto tmp46 = tmp45 >= tmp1; 2023-01-11T21:05:10.3343246Z auto tmp47 = tmp45 < tmp3; 2023-01-11T21:05:10.3343365Z auto tmp48 = tmp46 & tmp47; 2023-01-11T21:05:10.3343495Z auto tmp49 = tmp48 & tmp9; 2023-01-11T21:05:10.3343623Z float tmp50 = 0.0; 2023-01-11T21:05:10.3343732Z if(tmp49) 2023-01-11T21:05:10.3343831Z { 2023-01-11T21:05:10.3343986Z auto tmp51 = in_ptr0[7 + (2*i1) + (16*i0)]; 2023-01-11T21:05:10.3344100Z tmp50 = tmp51; 2023-01-11T21:05:10.3344185Z } 2023-01-11T21:05:10.3344312Z auto tmp52 = tmp50 + tmp44; 2023-01-11T21:05:10.3344445Z auto tmp53 = tmp48 & tmp16; 2023-01-11T21:05:10.3344565Z float tmp54 = 0.0; 2023-01-11T21:05:10.3344671Z if(tmp53) 2023-01-11T21:05:10.3344765Z { 2023-01-11T21:05:10.3344932Z auto tmp55 = in_ptr0[8 + (2*i1) + (16*i0)]; 2023-01-11T21:05:10.3345051Z tmp54 = tmp55; 2023-01-11T21:05:10.3345140Z } 2023-01-11T21:05:10.3345337Z auto tmp56 = tmp54 + tmp52; 2023-01-11T21:05:10.3345477Z auto tmp57 = tmp48 & tmp24; 2023-01-11T21:05:10.3345592Z float tmp58 = 0.0; 2023-01-11T21:05:10.3345697Z if(tmp57) 2023-01-11T21:05:10.3345784Z { 2023-01-11T21:05:10.3345956Z auto tmp59 = in_ptr0[9 + (2*i1) + (16*i0)]; 2023-01-11T21:05:10.3346056Z tmp58 = tmp59; 2023-01-11T21:05:10.3346152Z } 2023-01-11T21:05:10.3346289Z auto tmp60 = tmp58 + tmp56; 2023-01-11T21:05:10.3346421Z float tmp61 = 0.0; 2023-01-11T21:05:10.3346533Z if(tmp10) 2023-01-11T21:05:10.3346636Z { 2023-01-11T21:05:10.3346794Z auto tmp62 = static_cast(1); 2023-01-11T21:05:10.3346896Z tmp61 = tmp62; 2023-01-11T21:05:10.3346989Z } 2023-01-11T21:05:10.3347113Z float tmp63 = 0.0; 2023-01-11T21:05:10.3347222Z if(tmp17) 2023-01-11T21:05:10.3347316Z { 2023-01-11T21:05:10.3347466Z auto tmp64 = static_cast(1); 2023-01-11T21:05:10.3347587Z tmp63 = tmp64; 2023-01-11T21:05:10.3347667Z } 2023-01-11T21:05:10.3347800Z auto tmp65 = tmp63 + tmp61; 2023-01-11T21:05:10.3347924Z float tmp66 = 0.0; 2023-01-11T21:05:10.3348031Z if(tmp25) 2023-01-11T21:05:10.3348129Z { 2023-01-11T21:05:10.3348280Z auto tmp67 = static_cast(1); 2023-01-11T21:05:10.3348401Z tmp66 = tmp67; 2023-01-11T21:05:10.3348481Z } 2023-01-11T21:05:10.3348622Z auto tmp68 = tmp66 + tmp65; 2023-01-11T21:05:10.3348750Z float tmp69 = 0.0; 2023-01-11T21:05:10.3348858Z if(tmp33) 2023-01-11T21:05:10.3348959Z { 2023-01-11T21:05:10.3349113Z auto tmp70 = static_cast(1); 2023-01-11T21:05:10.3349213Z tmp69 = tmp70; 2023-01-11T21:05:10.3349295Z } 2023-01-11T21:05:10.3349425Z auto tmp71 = tmp69 + tmp68; 2023-01-11T21:05:10.3349552Z float tmp72 = 0.0; 2023-01-11T21:05:10.3349657Z if(tmp37) 2023-01-11T21:05:10.3349761Z { 2023-01-11T21:05:10.3349912Z auto tmp73 = static_cast(1); 2023-01-11T21:05:10.3350112Z tmp72 = tmp73; 2023-01-11T21:05:10.3350197Z } 2023-01-11T21:05:10.3350328Z auto tmp74 = tmp72 + tmp71; 2023-01-11T21:05:10.3350455Z float tmp75 = 0.0; 2023-01-11T21:05:10.3350562Z if(tmp41) 2023-01-11T21:05:10.3350660Z { 2023-01-11T21:05:10.3350812Z auto tmp76 = static_cast(1); 2023-01-11T21:05:10.3350915Z tmp75 = tmp76; 2023-01-11T21:05:10.3350990Z } 2023-01-11T21:05:10.3351112Z auto tmp77 = tmp75 + tmp74; 2023-01-11T21:05:10.3351221Z float tmp78 = 0.0; 2023-01-11T21:05:10.3351325Z if(tmp49) 2023-01-11T21:05:10.3351424Z { 2023-01-11T21:05:10.3351558Z auto tmp79 = static_cast(1); 2023-01-11T21:05:10.3351668Z tmp78 = tmp79; 2023-01-11T21:05:10.3351758Z } 2023-01-11T21:05:10.3351892Z auto tmp80 = tmp78 + tmp77; 2023-01-11T21:05:10.3352023Z float tmp81 = 0.0; 2023-01-11T21:05:10.3352198Z if(tmp53) 2023-01-11T21:05:10.3352308Z { 2023-01-11T21:05:10.3352462Z auto tmp82 = static_cast(1); 2023-01-11T21:05:10.3352582Z tmp81 = tmp82; 2023-01-11T21:05:10.3352667Z } 2023-01-11T21:05:10.3352791Z auto tmp83 = tmp81 + tmp80; 2023-01-11T21:05:10.3352911Z float tmp84 = 0.0; 2023-01-11T21:05:10.3353023Z if(tmp57) 2023-01-11T21:05:10.3353124Z { 2023-01-11T21:05:10.3353281Z auto tmp85 = static_cast(1); 2023-01-11T21:05:10.3353402Z tmp84 = tmp85; 2023-01-11T21:05:10.3353495Z } 2023-01-11T21:05:10.3353637Z auto tmp86 = tmp84 + tmp83; 2023-01-11T21:05:10.3353765Z auto tmp87 = tmp60 / tmp86; 2023-01-11T21:05:10.3353906Z out_ptr0[i1 + (4*i0)] = tmp87; 2023-01-11T21:05:10.3354002Z } 2023-01-11T21:05:10.3354096Z } 2023-01-11T21:05:10.3354186Z } 2023-01-11T21:05:10.3354256Z } 2023-01-11T21:05:10.3354343Z } 2023-01-11T21:05:10.3354435Z } 2023-01-11T21:05:10.3354570Z ''') 2023-01-11T21:05:10.3354579Z 2023-01-11T21:05:10.3354584Z 2023-01-11T21:05:10.3354715Z async_compile.wait(globals()) 2023-01-11T21:05:10.3354829Z del async_compile 2023-01-11T21:05:10.3354836Z 2023-01-11T21:05:10.3354939Z def call(args): 2023-01-11T21:05:10.3355019Z arg0_1, = args 2023-01-11T21:05:10.3355119Z args.clear() 2023-01-11T21:05:10.3355454Z buf0 = empty_strided((1, 1, 4, 4), (16, 16, 4, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.3355641Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:05:10.3355739Z del arg0_1 2023-01-11T21:05:10.3355845Z return (buf0, ) 2023-01-11T21:05:10.3355852Z 2023-01-11T21:05:10.3355860Z 2023-01-11T21:05:10.3355973Z if __name__ == "__main__": 2023-01-11T21:05:10.3356143Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.3356313Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.3356629Z arg0_1 = rand_strided((1, 1, 8, 8), (64, 64, 8, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.3356797Z print_performance(lambda: call([arg0_1])) 2023-01-11T21:05:10.3357199Z [2023-01-11 20:45:29,667] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 31 2023-01-11T21:05:10.3357206Z 2023-01-11T21:05:10.3357298Z ok (2.877s) 2023-01-11T21:05:10.3357928Z test_avg_pool2d6_cpu (__main__.CpuTests) ... inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.3358199Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.3358568Z [2023-01-11 20:45:29,715] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 32 2023-01-11T21:05:10.3358973Z [2023-01-11 20:45:32,570] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 32 2023-01-11T21:05:10.3358981Z 2023-01-11T21:05:10.3359113Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.3359206Z import torch 2023-01-11T21:05:10.3359308Z import random 2023-01-11T21:05:10.3359473Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.3359648Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.3359655Z 2023-01-11T21:05:10.3359768Z aten = torch.ops.aten 2023-01-11T21:05:10.3359959Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.3360083Z async_compile = AsyncCompile() 2023-01-11T21:05:10.3360089Z 2023-01-11T21:05:10.3360096Z 2023-01-11T21:05:10.3360348Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.3360774Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.3360949Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:05:10.3361081Z float* __restrict__ out_ptr0) 2023-01-11T21:05:10.3361162Z { 2023-01-11T21:05:10.3361305Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.3361389Z { 2023-01-11T21:05:10.3361478Z #pragma omp for 2023-01-11T21:05:10.3361588Z for(long i0=0; i0<4; i0+=1) 2023-01-11T21:05:10.3361673Z { 2023-01-11T21:05:10.3361783Z #pragma GCC ivdep 2023-01-11T21:05:10.3361890Z for(long i1=0; i1<4; i1+=1) 2023-01-11T21:05:10.3361982Z { 2023-01-11T21:05:10.3362071Z { 2023-01-11T21:05:10.3362150Z { 2023-01-11T21:05:10.3362399Z auto tmp0 = static_cast((-1) + (2*i0)); 2023-01-11T21:05:10.3362547Z auto tmp1 = static_cast(0); 2023-01-11T21:05:10.3362675Z auto tmp2 = tmp0 >= tmp1; 2023-01-11T21:05:10.3362815Z auto tmp3 = static_cast(8); 2023-01-11T21:05:10.3362950Z auto tmp4 = tmp0 < tmp3; 2023-01-11T21:05:10.3363078Z auto tmp5 = tmp2 & tmp4; 2023-01-11T21:05:10.3363312Z auto tmp6 = static_cast((-1) + (2*i1)); 2023-01-11T21:05:10.3363448Z auto tmp7 = tmp6 >= tmp1; 2023-01-11T21:05:10.3363577Z auto tmp8 = tmp6 < tmp3; 2023-01-11T21:05:10.3363710Z auto tmp9 = tmp7 & tmp8; 2023-01-11T21:05:10.3363844Z auto tmp10 = tmp5 & tmp9; 2023-01-11T21:05:10.3363978Z float tmp11 = 0.0; 2023-01-11T21:05:10.3364091Z if(tmp10) 2023-01-11T21:05:10.3364185Z { 2023-01-11T21:05:10.3364439Z auto tmp12 = in_ptr0[(-9) + (2*i1) + (16*i0)]; 2023-01-11T21:05:10.3364560Z tmp11 = tmp12; 2023-01-11T21:05:10.3364662Z } 2023-01-11T21:05:10.3364817Z auto tmp13 = static_cast(2*i1); 2023-01-11T21:05:10.3364959Z auto tmp14 = tmp13 >= tmp1; 2023-01-11T21:05:10.3365102Z auto tmp15 = tmp13 < tmp3; 2023-01-11T21:05:10.3365224Z auto tmp16 = tmp14 & tmp15; 2023-01-11T21:05:10.3365328Z auto tmp17 = tmp5 & tmp16; 2023-01-11T21:05:10.3365448Z float tmp18 = 0.0; 2023-01-11T21:05:10.3365555Z if(tmp17) 2023-01-11T21:05:10.3365778Z { 2023-01-11T21:05:10.3366036Z auto tmp19 = in_ptr0[(-8) + (2*i1) + (16*i0)]; 2023-01-11T21:05:10.3366156Z tmp18 = tmp19; 2023-01-11T21:05:10.3366266Z } 2023-01-11T21:05:10.3366385Z auto tmp20 = tmp18 + tmp11; 2023-01-11T21:05:10.3366548Z auto tmp21 = static_cast(1 + (2*i1)); 2023-01-11T21:05:10.3366677Z auto tmp22 = tmp21 >= tmp1; 2023-01-11T21:05:10.3366811Z auto tmp23 = tmp21 < tmp3; 2023-01-11T21:05:10.3366939Z auto tmp24 = tmp22 & tmp23; 2023-01-11T21:05:10.3367066Z auto tmp25 = tmp5 & tmp24; 2023-01-11T21:05:10.3367195Z float tmp26 = 0.0; 2023-01-11T21:05:10.3367294Z if(tmp25) 2023-01-11T21:05:10.3367390Z { 2023-01-11T21:05:10.3367650Z auto tmp27 = in_ptr0[(-7) + (2*i1) + (16*i0)]; 2023-01-11T21:05:10.3367776Z tmp26 = tmp27; 2023-01-11T21:05:10.3367875Z } 2023-01-11T21:05:10.3368007Z auto tmp28 = tmp26 + tmp20; 2023-01-11T21:05:10.3368250Z auto tmp29 = static_cast(2*i0); 2023-01-11T21:05:10.3368373Z auto tmp30 = tmp29 >= tmp1; 2023-01-11T21:05:10.3368513Z auto tmp31 = tmp29 < tmp3; 2023-01-11T21:05:10.3368652Z auto tmp32 = tmp30 & tmp31; 2023-01-11T21:05:10.3368785Z auto tmp33 = tmp32 & tmp9; 2023-01-11T21:05:10.3368909Z float tmp34 = 0.0; 2023-01-11T21:05:10.3369015Z if(tmp33) 2023-01-11T21:05:10.3369121Z { 2023-01-11T21:05:10.3369397Z auto tmp35 = in_ptr0[(-1) + (2*i1) + (16*i0)]; 2023-01-11T21:05:10.3369508Z tmp34 = tmp35; 2023-01-11T21:05:10.3369616Z } 2023-01-11T21:05:10.3369746Z auto tmp36 = tmp34 + tmp28; 2023-01-11T21:05:10.3369881Z auto tmp37 = tmp32 & tmp16; 2023-01-11T21:05:10.3370005Z float tmp38 = 0.0; 2023-01-11T21:05:10.3370113Z if(tmp37) 2023-01-11T21:05:10.3370209Z { 2023-01-11T21:05:10.3370357Z auto tmp39 = in_ptr0[(2*i1) + (16*i0)]; 2023-01-11T21:05:10.3370471Z tmp38 = tmp39; 2023-01-11T21:05:10.3370572Z } 2023-01-11T21:05:10.3370714Z auto tmp40 = tmp38 + tmp36; 2023-01-11T21:05:10.3370848Z auto tmp41 = tmp32 & tmp24; 2023-01-11T21:05:10.3370970Z float tmp42 = 0.0; 2023-01-11T21:05:10.3371079Z if(tmp41) 2023-01-11T21:05:10.3371166Z { 2023-01-11T21:05:10.3371325Z auto tmp43 = in_ptr0[1 + (2*i1) + (16*i0)]; 2023-01-11T21:05:10.3371447Z tmp42 = tmp43; 2023-01-11T21:05:10.3371550Z } 2023-01-11T21:05:10.3371692Z auto tmp44 = tmp42 + tmp40; 2023-01-11T21:05:10.3371853Z auto tmp45 = static_cast(1 + (2*i0)); 2023-01-11T21:05:10.3371989Z auto tmp46 = tmp45 >= tmp1; 2023-01-11T21:05:10.3372115Z auto tmp47 = tmp45 < tmp3; 2023-01-11T21:05:10.3372254Z auto tmp48 = tmp46 & tmp47; 2023-01-11T21:05:10.3372389Z auto tmp49 = tmp48 & tmp9; 2023-01-11T21:05:10.3372511Z float tmp50 = 0.0; 2023-01-11T21:05:10.3372621Z if(tmp49) 2023-01-11T21:05:10.3372720Z { 2023-01-11T21:05:10.3372881Z auto tmp51 = in_ptr0[7 + (2*i1) + (16*i0)]; 2023-01-11T21:05:10.3372983Z tmp50 = tmp51; 2023-01-11T21:05:10.3373166Z } 2023-01-11T21:05:10.3373304Z auto tmp52 = tmp50 + tmp44; 2023-01-11T21:05:10.3373435Z auto tmp53 = tmp48 & tmp16; 2023-01-11T21:05:10.3373564Z float tmp54 = 0.0; 2023-01-11T21:05:10.3373673Z if(tmp53) 2023-01-11T21:05:10.3373772Z { 2023-01-11T21:05:10.3373915Z auto tmp55 = in_ptr0[8 + (2*i1) + (16*i0)]; 2023-01-11T21:05:10.3374037Z tmp54 = tmp55; 2023-01-11T21:05:10.3374135Z } 2023-01-11T21:05:10.3374267Z auto tmp56 = tmp54 + tmp52; 2023-01-11T21:05:10.3374401Z auto tmp57 = tmp48 & tmp24; 2023-01-11T21:05:10.3374522Z float tmp58 = 0.0; 2023-01-11T21:05:10.3374636Z if(tmp57) 2023-01-11T21:05:10.3374734Z { 2023-01-11T21:05:10.3374896Z auto tmp59 = in_ptr0[9 + (2*i1) + (16*i0)]; 2023-01-11T21:05:10.3375021Z tmp58 = tmp59; 2023-01-11T21:05:10.3375125Z } 2023-01-11T21:05:10.3375354Z auto tmp60 = tmp58 + tmp56; 2023-01-11T21:05:10.3375522Z auto tmp61 = static_cast(0.3333333333333333); 2023-01-11T21:05:10.3375659Z auto tmp62 = tmp60 * tmp61; 2023-01-11T21:05:10.3375797Z out_ptr0[i1 + (4*i0)] = tmp62; 2023-01-11T21:05:10.3375879Z } 2023-01-11T21:05:10.3375980Z } 2023-01-11T21:05:10.3376074Z } 2023-01-11T21:05:10.3376159Z } 2023-01-11T21:05:10.3376255Z } 2023-01-11T21:05:10.3376339Z } 2023-01-11T21:05:10.3376462Z ''') 2023-01-11T21:05:10.3376472Z 2023-01-11T21:05:10.3376493Z 2023-01-11T21:05:10.3376616Z async_compile.wait(globals()) 2023-01-11T21:05:10.3376732Z del async_compile 2023-01-11T21:05:10.3376743Z 2023-01-11T21:05:10.3376844Z def call(args): 2023-01-11T21:05:10.3376942Z arg0_1, = args 2023-01-11T21:05:10.3377051Z args.clear() 2023-01-11T21:05:10.3377380Z buf0 = empty_strided((1, 1, 4, 4), (16, 16, 4, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.3377573Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:05:10.3377656Z del arg0_1 2023-01-11T21:05:10.3377759Z return (buf0, ) 2023-01-11T21:05:10.3377766Z 2023-01-11T21:05:10.3377773Z 2023-01-11T21:05:10.3377889Z if __name__ == "__main__": 2023-01-11T21:05:10.3378057Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.3378256Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.3378676Z arg0_1 = rand_strided((1, 1, 8, 8), (64, 64, 8, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.3378842Z print_performance(lambda: call([arg0_1])) 2023-01-11T21:05:10.3378849Z 2023-01-11T21:05:10.3378944Z ok (2.903s) 2023-01-11T21:05:10.3379611Z test_avg_pool2d7_cpu (__main__.CpuTests) ... inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.3379797Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.3380203Z [2023-01-11 20:45:32,618] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 33 2023-01-11T21:05:10.3380553Z [2023-01-11 20:45:32,631] torch._inductor.ir: [WARNING] Using FallbackKernel: aten.avg_pool2d 2023-01-11T21:05:10.3380947Z [2023-01-11 20:45:32,636] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 33 2023-01-11T21:05:10.3380955Z 2023-01-11T21:05:10.3381090Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.3381282Z import torch 2023-01-11T21:05:10.3381388Z import random 2023-01-11T21:05:10.3381556Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.3381729Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.3381739Z 2023-01-11T21:05:10.3381843Z aten = torch.ops.aten 2023-01-11T21:05:10.3382024Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.3382169Z async_compile = AsyncCompile() 2023-01-11T21:05:10.3382175Z 2023-01-11T21:05:10.3382182Z 2023-01-11T21:05:10.3382315Z async_compile.wait(globals()) 2023-01-11T21:05:10.3382422Z del async_compile 2023-01-11T21:05:10.3382430Z 2023-01-11T21:05:10.3382528Z def call(args): 2023-01-11T21:05:10.3382633Z arg0_1, = args 2023-01-11T21:05:10.3382726Z args.clear() 2023-01-11T21:05:10.3382906Z buf0 = aten.avg_pool2d(arg0_1, [13, 13], [1, 1], [0, 0], False, True, None) 2023-01-11T21:05:10.3383010Z del arg0_1 2023-01-11T21:05:10.3383108Z buf1 = buf0 2023-01-11T21:05:10.3383266Z assert_size_stride(buf1, (1, 1, 12, 12), (144, 144, 12, 1)) 2023-01-11T21:05:10.3383367Z del buf0 2023-01-11T21:05:10.3383466Z return (buf1, ) 2023-01-11T21:05:10.3383474Z 2023-01-11T21:05:10.3383479Z 2023-01-11T21:05:10.3383638Z if __name__ == "__main__": 2023-01-11T21:05:10.3383803Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.3383972Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.3384309Z arg0_1 = rand_strided((1, 1, 24, 24), (576, 576, 24, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.3384464Z print_performance(lambda: call([arg0_1])) 2023-01-11T21:05:10.3384472Z 2023-01-11T21:05:10.3384568Z ok (0.064s) 2023-01-11T21:05:10.3385241Z test_avg_pool2d_backward2_cpu (__main__.CpuTests) ... inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.3385433Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.3385837Z [2023-01-11 20:45:32,685] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 34 2023-01-11T21:05:10.3385845Z 2023-01-11T21:05:10.3385973Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.3386079Z import torch 2023-01-11T21:05:10.3386174Z import random 2023-01-11T21:05:10.3386354Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.3386524Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.3386532Z 2023-01-11T21:05:10.3386635Z aten = torch.ops.aten 2023-01-11T21:05:10.3386820Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.3386953Z async_compile = AsyncCompile() 2023-01-11T21:05:10.3386959Z 2023-01-11T21:05:10.3386965Z 2023-01-11T21:05:10.3387144Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.3387432Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.3387602Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:05:10.3387749Z float* __restrict__ out_ptr0) 2023-01-11T21:05:10.3387838Z { 2023-01-11T21:05:10.3387977Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.3388061Z { 2023-01-11T21:05:10.3388155Z #pragma omp for 2023-01-11T21:05:10.3388268Z for(long i0=0; i0<20; i0+=1) 2023-01-11T21:05:10.3388365Z { 2023-01-11T21:05:10.3388477Z #pragma GCC ivdep 2023-01-11T21:05:10.3388605Z for(long i1=0; i1<15; i1+=1) 2023-01-11T21:05:10.3388696Z { 2023-01-11T21:05:10.3388790Z { 2023-01-11T21:05:10.3388873Z { 2023-01-11T21:05:10.3389120Z auto tmp0 = static_cast((-1) + i0); 2023-01-11T21:05:10.3389362Z auto tmp1 = static_cast((-1) + i1); 2023-01-11T21:05:10.3389623Z auto tmp2 = static_cast(2 + i0); 2023-01-11T21:05:10.3389777Z auto tmp3 = static_cast(2 + i1); 2023-01-11T21:05:10.3389929Z auto tmp4 = static_cast(0); 2023-01-11T21:05:10.3390128Z auto tmp5 = (tmp4 != tmp4) ? tmp4 : std::max(tmp0, tmp4); 2023-01-11T21:05:10.3390315Z auto tmp6 = (tmp4 != tmp4) ? tmp4 : std::max(tmp1, tmp4); 2023-01-11T21:05:10.3390444Z auto tmp7 = static_cast(20); 2023-01-11T21:05:10.3390618Z auto tmp8 = (tmp7 != tmp7) ? tmp7 : std::min(tmp2, tmp7); 2023-01-11T21:05:10.3390766Z auto tmp9 = static_cast(15); 2023-01-11T21:05:10.3390938Z auto tmp10 = (tmp9 != tmp9) ? tmp9 : std::min(tmp3, tmp9); 2023-01-11T21:05:10.3391077Z auto tmp11 = tmp5 + tmp4; 2023-01-11T21:05:10.3391218Z auto tmp12 = tmp6 + tmp4; 2023-01-11T21:05:10.3391365Z auto tmp13 = static_cast(1); 2023-01-11T21:05:10.3391510Z auto tmp14 = static_cast(3); 2023-01-11T21:05:10.3391699Z auto tmp15 = tmp11 * tmp13; 2023-01-11T21:05:10.3391924Z auto tmp16 = tmp15 - tmp13; 2023-01-11T21:05:10.3392056Z auto tmp17 = tmp12 * tmp13; 2023-01-11T21:05:10.3392262Z auto tmp18 = tmp17 - tmp13; 2023-01-11T21:05:10.3392396Z auto tmp19 = tmp16 + tmp14; 2023-01-11T21:05:10.3392519Z auto tmp20 = tmp7 + tmp13; 2023-01-11T21:05:10.3392696Z auto tmp21 = (tmp20 != tmp20) ? tmp20 : std::min(tmp19, tmp20); 2023-01-11T21:05:10.3392810Z auto tmp22 = tmp18 + tmp14; 2023-01-11T21:05:10.3392941Z auto tmp23 = tmp9 + tmp13; 2023-01-11T21:05:10.3393130Z auto tmp24 = (tmp23 != tmp23) ? tmp23 : std::min(tmp22, tmp23); 2023-01-11T21:05:10.3393326Z auto tmp25 = (tmp4 != tmp4) ? tmp4 : std::max(tmp16, tmp4); 2023-01-11T21:05:10.3393513Z auto tmp26 = (tmp4 != tmp4) ? tmp4 : std::max(tmp18, tmp4); 2023-01-11T21:05:10.3393696Z auto tmp27 = (tmp7 != tmp7) ? tmp7 : std::min(tmp21, tmp7); 2023-01-11T21:05:10.3393873Z auto tmp28 = (tmp9 != tmp9) ? tmp9 : std::min(tmp24, tmp9); 2023-01-11T21:05:10.3394082Z auto tmp29 = tmp27 - tmp25; 2023-01-11T21:05:10.3394285Z auto tmp30 = tmp28 - tmp26; 2023-01-11T21:05:10.3394402Z auto tmp31 = tmp29 * tmp30; 2023-01-11T21:05:10.3394604Z auto tmp32 = tmp8 - tmp13; 2023-01-11T21:05:10.3394782Z auto tmp33 = (tmp32 != tmp32) ? tmp32 : std::min(tmp11, tmp32); 2023-01-11T21:05:10.3394998Z auto tmp34 = tmp10 - tmp13; 2023-01-11T21:05:10.3395186Z auto tmp35 = (tmp34 != tmp34) ? tmp34 : std::min(tmp12, tmp34); 2023-01-11T21:05:10.3395340Z auto tmp36 = in_ptr0[tmp35 + (15*tmp33)]; 2023-01-11T21:05:10.3395464Z auto tmp37 = tmp36 / tmp31; 2023-01-11T21:05:10.3395595Z auto tmp38 = tmp11 < tmp8; 2023-01-11T21:05:10.3395711Z auto tmp39 = tmp12 < tmp10; 2023-01-11T21:05:10.3395847Z auto tmp40 = tmp38 & tmp39; 2023-01-11T21:05:10.3396003Z auto tmp41 = static_cast(0.0); 2023-01-11T21:05:10.3396147Z auto tmp42 = tmp40 ? tmp37 : tmp41; 2023-01-11T21:05:10.3396282Z auto tmp43 = tmp6 + tmp13; 2023-01-11T21:05:10.3396417Z auto tmp44 = tmp43 * tmp13; 2023-01-11T21:05:10.3396624Z auto tmp45 = tmp44 - tmp13; 2023-01-11T21:05:10.3396740Z auto tmp46 = tmp45 + tmp14; 2023-01-11T21:05:10.3397026Z auto tmp47 = (tmp23 != tmp23) ? tmp23 : std::min(tmp46, tmp23); 2023-01-11T21:05:10.3397212Z auto tmp48 = (tmp4 != tmp4) ? tmp4 : std::max(tmp45, tmp4); 2023-01-11T21:05:10.3397382Z auto tmp49 = (tmp9 != tmp9) ? tmp9 : std::min(tmp47, tmp9); 2023-01-11T21:05:10.3397601Z auto tmp50 = tmp49 - tmp48; 2023-01-11T21:05:10.3397725Z auto tmp51 = tmp29 * tmp50; 2023-01-11T21:05:10.3397912Z auto tmp52 = (tmp34 != tmp34) ? tmp34 : std::min(tmp43, tmp34); 2023-01-11T21:05:10.3398071Z auto tmp53 = in_ptr0[tmp52 + (15*tmp33)]; 2023-01-11T21:05:10.3398195Z auto tmp54 = tmp53 / tmp51; 2023-01-11T21:05:10.3398318Z auto tmp55 = tmp43 < tmp10; 2023-01-11T21:05:10.3398449Z auto tmp56 = tmp38 & tmp55; 2023-01-11T21:05:10.3398574Z auto tmp57 = tmp42 + tmp54; 2023-01-11T21:05:10.3398718Z auto tmp58 = tmp56 ? tmp57 : tmp42; 2023-01-11T21:05:10.3398871Z auto tmp59 = static_cast(2); 2023-01-11T21:05:10.3399063Z auto tmp60 = tmp6 + tmp59; 2023-01-11T21:05:10.3399200Z auto tmp61 = tmp60 * tmp13; 2023-01-11T21:05:10.3399400Z auto tmp62 = tmp61 - tmp13; 2023-01-11T21:05:10.3399532Z auto tmp63 = tmp62 + tmp14; 2023-01-11T21:05:10.3399722Z auto tmp64 = (tmp23 != tmp23) ? tmp23 : std::min(tmp63, tmp23); 2023-01-11T21:05:10.3399909Z auto tmp65 = (tmp4 != tmp4) ? tmp4 : std::max(tmp62, tmp4); 2023-01-11T21:05:10.3400083Z auto tmp66 = (tmp9 != tmp9) ? tmp9 : std::min(tmp64, tmp9); 2023-01-11T21:05:10.3400283Z auto tmp67 = tmp66 - tmp65; 2023-01-11T21:05:10.3400408Z auto tmp68 = tmp29 * tmp67; 2023-01-11T21:05:10.3400749Z auto tmp69 = (tmp34 != tmp34) ? tmp34 : std::min(tmp60, tmp34); 2023-01-11T21:05:10.3400895Z auto tmp70 = in_ptr0[tmp69 + (15*tmp33)]; 2023-01-11T21:05:10.3401036Z auto tmp71 = tmp70 / tmp68; 2023-01-11T21:05:10.3401172Z auto tmp72 = tmp60 < tmp10; 2023-01-11T21:05:10.3401299Z auto tmp73 = tmp38 & tmp72; 2023-01-11T21:05:10.3401415Z auto tmp74 = tmp58 + tmp71; 2023-01-11T21:05:10.3401558Z auto tmp75 = tmp73 ? tmp74 : tmp58; 2023-01-11T21:05:10.3401688Z auto tmp76 = tmp5 + tmp13; 2023-01-11T21:05:10.3401812Z auto tmp77 = tmp76 * tmp13; 2023-01-11T21:05:10.3402008Z auto tmp78 = tmp77 - tmp13; 2023-01-11T21:05:10.3402127Z auto tmp79 = tmp78 + tmp14; 2023-01-11T21:05:10.3402320Z auto tmp80 = (tmp20 != tmp20) ? tmp20 : std::min(tmp79, tmp20); 2023-01-11T21:05:10.3402503Z auto tmp81 = (tmp4 != tmp4) ? tmp4 : std::max(tmp78, tmp4); 2023-01-11T21:05:10.3402695Z auto tmp82 = (tmp7 != tmp7) ? tmp7 : std::min(tmp80, tmp7); 2023-01-11T21:05:10.3402904Z auto tmp83 = tmp82 - tmp81; 2023-01-11T21:05:10.3403024Z auto tmp84 = tmp83 * tmp30; 2023-01-11T21:05:10.3403194Z auto tmp85 = (tmp32 != tmp32) ? tmp32 : std::min(tmp76, tmp32); 2023-01-11T21:05:10.3403326Z auto tmp86 = in_ptr0[tmp35 + (15*tmp85)]; 2023-01-11T21:05:10.3403462Z auto tmp87 = tmp86 / tmp84; 2023-01-11T21:05:10.3403604Z auto tmp88 = tmp76 < tmp8; 2023-01-11T21:05:10.3403736Z auto tmp89 = tmp88 & tmp39; 2023-01-11T21:05:10.3403870Z auto tmp90 = tmp75 + tmp87; 2023-01-11T21:05:10.3404143Z auto tmp91 = tmp89 ? tmp90 : tmp75; 2023-01-11T21:05:10.3404278Z auto tmp92 = tmp83 * tmp50; 2023-01-11T21:05:10.3404412Z auto tmp93 = in_ptr0[tmp52 + (15*tmp85)]; 2023-01-11T21:05:10.3404542Z auto tmp94 = tmp93 / tmp92; 2023-01-11T21:05:10.3404684Z auto tmp95 = tmp88 & tmp55; 2023-01-11T21:05:10.3404810Z auto tmp96 = tmp91 + tmp94; 2023-01-11T21:05:10.3404960Z auto tmp97 = tmp95 ? tmp96 : tmp91; 2023-01-11T21:05:10.3405098Z auto tmp98 = tmp83 * tmp67; 2023-01-11T21:05:10.3405243Z auto tmp99 = in_ptr0[tmp69 + (15*tmp85)]; 2023-01-11T21:05:10.3405368Z auto tmp100 = tmp99 / tmp98; 2023-01-11T21:05:10.3405498Z auto tmp101 = tmp88 & tmp72; 2023-01-11T21:05:10.3405638Z auto tmp102 = tmp97 + tmp100; 2023-01-11T21:05:10.3405781Z auto tmp103 = tmp101 ? tmp102 : tmp97; 2023-01-11T21:05:10.3405921Z auto tmp104 = tmp5 + tmp59; 2023-01-11T21:05:10.3406055Z auto tmp105 = tmp104 * tmp13; 2023-01-11T21:05:10.3406367Z auto tmp106 = tmp105 - tmp13; 2023-01-11T21:05:10.3406507Z auto tmp107 = tmp106 + tmp14; 2023-01-11T21:05:10.3406678Z auto tmp108 = (tmp20 != tmp20) ? tmp20 : std::min(tmp107, tmp20); 2023-01-11T21:05:10.3406869Z auto tmp109 = (tmp4 != tmp4) ? tmp4 : std::max(tmp106, tmp4); 2023-01-11T21:05:10.3407049Z auto tmp110 = (tmp7 != tmp7) ? tmp7 : std::min(tmp108, tmp7); 2023-01-11T21:05:10.3407265Z auto tmp111 = tmp110 - tmp109; 2023-01-11T21:05:10.3407406Z auto tmp112 = tmp111 * tmp30; 2023-01-11T21:05:10.3407589Z auto tmp113 = (tmp32 != tmp32) ? tmp32 : std::min(tmp104, tmp32); 2023-01-11T21:05:10.3407754Z auto tmp114 = in_ptr0[tmp35 + (15*tmp113)]; 2023-01-11T21:05:10.3407889Z auto tmp115 = tmp114 / tmp112; 2023-01-11T21:05:10.3408007Z auto tmp116 = tmp104 < tmp8; 2023-01-11T21:05:10.3408139Z auto tmp117 = tmp116 & tmp39; 2023-01-11T21:05:10.3408281Z auto tmp118 = tmp103 + tmp115; 2023-01-11T21:05:10.3408425Z auto tmp119 = tmp117 ? tmp118 : tmp103; 2023-01-11T21:05:10.3408573Z auto tmp120 = tmp111 * tmp50; 2023-01-11T21:05:10.3408725Z auto tmp121 = in_ptr0[tmp52 + (15*tmp113)]; 2023-01-11T21:05:10.3408854Z auto tmp122 = tmp121 / tmp120; 2023-01-11T21:05:10.3408986Z auto tmp123 = tmp116 & tmp55; 2023-01-11T21:05:10.3409110Z auto tmp124 = tmp119 + tmp122; 2023-01-11T21:05:10.3409260Z auto tmp125 = tmp123 ? tmp124 : tmp119; 2023-01-11T21:05:10.3409404Z auto tmp126 = tmp111 * tmp67; 2023-01-11T21:05:10.3409551Z auto tmp127 = in_ptr0[tmp69 + (15*tmp113)]; 2023-01-11T21:05:10.3409682Z auto tmp128 = tmp127 / tmp126; 2023-01-11T21:05:10.3409816Z auto tmp129 = tmp116 & tmp72; 2023-01-11T21:05:10.3409945Z auto tmp130 = tmp125 + tmp128; 2023-01-11T21:05:10.3410077Z auto tmp131 = tmp129 ? tmp130 : tmp125; 2023-01-11T21:05:10.3410201Z out_ptr0[i1 + (15*i0)] = tmp131; 2023-01-11T21:05:10.3410289Z } 2023-01-11T21:05:10.3410378Z } 2023-01-11T21:05:10.3410469Z } 2023-01-11T21:05:10.3410562Z } 2023-01-11T21:05:10.3410652Z } 2023-01-11T21:05:10.3410714Z } 2023-01-11T21:05:10.3410841Z ''') 2023-01-11T21:05:10.3410851Z 2023-01-11T21:05:10.3410855Z 2023-01-11T21:05:10.3410987Z async_compile.wait(globals()) 2023-01-11T21:05:10.3411167Z del async_compile 2023-01-11T21:05:10.3411174Z 2023-01-11T21:05:10.3411274Z def call(args): 2023-01-11T21:05:10.3411378Z arg0_1, arg1_1 = args 2023-01-11T21:05:10.3411485Z args.clear() 2023-01-11T21:05:10.3411804Z buf0 = empty_strided((1, 1, 20, 15), (300, 300, 15, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.3411998Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:05:10.3412091Z del arg0_1 2023-01-11T21:05:10.3412188Z return (buf0, ) 2023-01-11T21:05:10.3412194Z 2023-01-11T21:05:10.3412199Z 2023-01-11T21:05:10.3412299Z if __name__ == "__main__": 2023-01-11T21:05:10.3412466Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.3412636Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.3412948Z arg0_1 = rand_strided((1, 1, 20, 15), (300, 300, 15, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.3413235Z arg1_1 = rand_strided((1, 1, 20, 15), (300, 300, 15, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.3413396Z print_performance(lambda: call([arg0_1, arg1_1])) 2023-01-11T21:05:10.3413882Z [2023-01-11 20:45:35,519] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 34 2023-01-11T21:05:10.3413893Z 2023-01-11T21:05:10.3413993Z ok (2.887s) 2023-01-11T21:05:10.3414648Z test_avg_pool2d_backward3_cpu (__main__.CpuTests) ... inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.3414832Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.3415223Z [2023-01-11 20:45:35,630] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 35 2023-01-11T21:05:10.3415607Z [2023-01-11 20:45:38,419] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 35 2023-01-11T21:05:10.3415614Z 2023-01-11T21:05:10.3415759Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.3415868Z import torch 2023-01-11T21:05:10.3415956Z import random 2023-01-11T21:05:10.3416127Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.3416308Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.3416315Z 2023-01-11T21:05:10.3416426Z aten = torch.ops.aten 2023-01-11T21:05:10.3416637Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.3416778Z async_compile = AsyncCompile() 2023-01-11T21:05:10.3416784Z 2023-01-11T21:05:10.3416790Z 2023-01-11T21:05:10.3416982Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.3417290Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.3417440Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:05:10.3417579Z float* __restrict__ out_ptr0) 2023-01-11T21:05:10.3417669Z { 2023-01-11T21:05:10.3417815Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.3417908Z { 2023-01-11T21:05:10.3418019Z #pragma omp for 2023-01-11T21:05:10.3418134Z for(long i0=0; i0<2016; i0+=1) 2023-01-11T21:05:10.3418218Z { 2023-01-11T21:05:10.3418324Z #pragma GCC ivdep 2023-01-11T21:05:10.3418437Z for(long i1=0; i1<21; i1+=1) 2023-01-11T21:05:10.3418622Z { 2023-01-11T21:05:10.3418745Z #pragma GCC ivdep 2023-01-11T21:05:10.3418878Z for(long i2=0; i2<21; i2+=1) 2023-01-11T21:05:10.3418952Z { 2023-01-11T21:05:10.3419043Z { 2023-01-11T21:05:10.3419137Z { 2023-01-11T21:05:10.3419306Z auto tmp0 = static_cast(((1 + i1) / 2)); 2023-01-11T21:05:10.3419476Z auto tmp1 = static_cast(((1 + i2) / 2)); 2023-01-11T21:05:10.3419736Z auto tmp2 = static_cast(1 + (i1 / 2)); 2023-01-11T21:05:10.3419895Z auto tmp3 = static_cast(1 + (i2 / 2)); 2023-01-11T21:05:10.3420059Z auto tmp4 = static_cast(0); 2023-01-11T21:05:10.3420241Z auto tmp5 = (tmp4 != tmp4) ? tmp4 : std::max(tmp0, tmp4); 2023-01-11T21:05:10.3420424Z auto tmp6 = (tmp4 != tmp4) ? tmp4 : std::max(tmp1, tmp4); 2023-01-11T21:05:10.3420578Z auto tmp7 = static_cast(11); 2023-01-11T21:05:10.3420756Z auto tmp8 = (tmp7 != tmp7) ? tmp7 : std::min(tmp2, tmp7); 2023-01-11T21:05:10.3420935Z auto tmp9 = (tmp7 != tmp7) ? tmp7 : std::min(tmp3, tmp7); 2023-01-11T21:05:10.3421071Z auto tmp10 = tmp5 + tmp4; 2023-01-11T21:05:10.3421209Z auto tmp11 = tmp6 + tmp4; 2023-01-11T21:05:10.3421366Z auto tmp12 = static_cast(1); 2023-01-11T21:05:10.3421590Z auto tmp13 = tmp8 - tmp12; 2023-01-11T21:05:10.3421847Z auto tmp14 = (tmp13 != tmp13) ? tmp13 : std::min(tmp10, tmp13); 2023-01-11T21:05:10.3422072Z auto tmp15 = tmp9 - tmp12; 2023-01-11T21:05:10.3422257Z auto tmp16 = (tmp15 != tmp15) ? tmp15 : std::min(tmp11, tmp15); 2023-01-11T21:05:10.3422429Z auto tmp17 = in_ptr0[tmp16 + (11*tmp14) + (121*i0)]; 2023-01-11T21:05:10.3422566Z auto tmp18 = tmp17 / 1; 2023-01-11T21:05:10.3422699Z auto tmp19 = tmp10 < tmp8; 2023-01-11T21:05:10.3422835Z auto tmp20 = tmp11 < tmp9; 2023-01-11T21:05:10.3422959Z auto tmp21 = tmp19 & tmp20; 2023-01-11T21:05:10.3423122Z auto tmp22 = static_cast(0.0); 2023-01-11T21:05:10.3423275Z auto tmp23 = tmp21 ? tmp18 : tmp22; 2023-01-11T21:05:10.3423425Z out_ptr0[i2 + (21*i1) + (441*i0)] = tmp23; 2023-01-11T21:05:10.3423527Z } 2023-01-11T21:05:10.3423624Z } 2023-01-11T21:05:10.3423721Z } 2023-01-11T21:05:10.3423798Z } 2023-01-11T21:05:10.3423886Z } 2023-01-11T21:05:10.3423981Z } 2023-01-11T21:05:10.3424065Z } 2023-01-11T21:05:10.3424182Z ''') 2023-01-11T21:05:10.3424191Z 2023-01-11T21:05:10.3424197Z 2023-01-11T21:05:10.3424332Z async_compile.wait(globals()) 2023-01-11T21:05:10.3424428Z del async_compile 2023-01-11T21:05:10.3424434Z 2023-01-11T21:05:10.3424530Z def call(args): 2023-01-11T21:05:10.3424629Z arg0_1, arg1_1 = args 2023-01-11T21:05:10.3424731Z args.clear() 2023-01-11T21:05:10.3425065Z buf0 = empty_strided((1, 2016, 21, 21), (889056, 441, 21, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.3425265Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:05:10.3425359Z del arg0_1 2023-01-11T21:05:10.3425455Z return (buf0, ) 2023-01-11T21:05:10.3425462Z 2023-01-11T21:05:10.3425471Z 2023-01-11T21:05:10.3425582Z if __name__ == "__main__": 2023-01-11T21:05:10.3425736Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.3425902Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.3426241Z arg0_1 = rand_strided((1, 2016, 11, 11), (243936, 121, 11, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.3426561Z arg1_1 = rand_strided((1, 2016, 21, 21), (889056, 441, 21, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.3426722Z print_performance(lambda: call([arg0_1, arg1_1])) 2023-01-11T21:05:10.3426729Z 2023-01-11T21:05:10.3426835Z ok (3.386s) 2023-01-11T21:05:10.3427520Z test_avg_pool2d_backward4_cpu (__main__.CpuTests) ... inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.3427802Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.3428213Z [2023-01-11 20:45:38,958] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 36 2023-01-11T21:05:10.3428537Z [2023-01-11 20:45:38,977] torch._inductor.ir: [WARNING] Using FallbackKernel: aten.avg_pool2d_backward 2023-01-11T21:05:10.3428909Z [2023-01-11 20:45:38,981] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 36 2023-01-11T21:05:10.3428917Z 2023-01-11T21:05:10.3429061Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.3429172Z import torch 2023-01-11T21:05:10.3429273Z import random 2023-01-11T21:05:10.3429453Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.3429640Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.3429648Z 2023-01-11T21:05:10.3429759Z aten = torch.ops.aten 2023-01-11T21:05:10.3430036Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.3430188Z async_compile = AsyncCompile() 2023-01-11T21:05:10.3430195Z 2023-01-11T21:05:10.3430202Z 2023-01-11T21:05:10.3430343Z async_compile.wait(globals()) 2023-01-11T21:05:10.3430446Z del async_compile 2023-01-11T21:05:10.3430452Z 2023-01-11T21:05:10.3430556Z def call(args): 2023-01-11T21:05:10.3430676Z arg0_1, arg1_1 = args 2023-01-11T21:05:10.3430791Z args.clear() 2023-01-11T21:05:10.3431007Z buf0 = aten.avg_pool2d_backward(arg0_1, arg1_1, [13, 13], [1, 1], [0, 0], True, False, None) 2023-01-11T21:05:10.3431104Z del arg0_1 2023-01-11T21:05:10.3431206Z del arg1_1 2023-01-11T21:05:10.3431300Z buf1 = buf0 2023-01-11T21:05:10.3431470Z assert_size_stride(buf1, (1, 16, 24, 24), (9216, 576, 24, 1)) 2023-01-11T21:05:10.3431569Z del buf0 2023-01-11T21:05:10.3431668Z return (buf1, ) 2023-01-11T21:05:10.3431676Z 2023-01-11T21:05:10.3431682Z 2023-01-11T21:05:10.3431791Z if __name__ == "__main__": 2023-01-11T21:05:10.3431943Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.3432120Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.3432440Z arg0_1 = rand_strided((1, 16, 12, 12), (2304, 144, 12, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.3432763Z arg1_1 = rand_strided((1, 16, 24, 24), (9216, 576, 24, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.3432939Z print_performance(lambda: call([arg0_1, arg1_1])) 2023-01-11T21:05:10.3432947Z 2023-01-11T21:05:10.3433047Z ok (0.086s) 2023-01-11T21:05:10.3433750Z test_avg_pool2d_backward_cpu (__main__.CpuTests) ... inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.3433942Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.3434352Z [2023-01-11 20:45:39,033] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 37 2023-01-11T21:05:10.3434744Z [2023-01-11 20:45:41,782] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 37 2023-01-11T21:05:10.3434751Z 2023-01-11T21:05:10.3434880Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.3434983Z import torch 2023-01-11T21:05:10.3435089Z import random 2023-01-11T21:05:10.3435259Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.3435439Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.3435446Z 2023-01-11T21:05:10.3435559Z aten = torch.ops.aten 2023-01-11T21:05:10.3435880Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.3435999Z async_compile = AsyncCompile() 2023-01-11T21:05:10.3436019Z 2023-01-11T21:05:10.3436025Z 2023-01-11T21:05:10.3436212Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.3436521Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.3436704Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:05:10.3436852Z float* __restrict__ out_ptr0) 2023-01-11T21:05:10.3436944Z { 2023-01-11T21:05:10.3437090Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.3437186Z { 2023-01-11T21:05:10.3437292Z #pragma omp for 2023-01-11T21:05:10.3437414Z for(long i0=0; i0<8; i0+=1) 2023-01-11T21:05:10.3437506Z { 2023-01-11T21:05:10.3437630Z #pragma GCC ivdep 2023-01-11T21:05:10.3437754Z for(long i1=0; i1<14; i1+=1) 2023-01-11T21:05:10.3437853Z { 2023-01-11T21:05:10.3437983Z #pragma GCC ivdep 2023-01-11T21:05:10.3438099Z for(long i2=0; i2<14; i2+=1) 2023-01-11T21:05:10.3438193Z { 2023-01-11T21:05:10.3438294Z { 2023-01-11T21:05:10.3438543Z { 2023-01-11T21:05:10.3438759Z auto tmp0 = static_cast((i1 / 2)); 2023-01-11T21:05:10.3438964Z auto tmp1 = static_cast((i2 / 2)); 2023-01-11T21:05:10.3439121Z auto tmp2 = static_cast(1 + (i1 / 2)); 2023-01-11T21:05:10.3439501Z auto tmp3 = static_cast(1 + (i2 / 2)); 2023-01-11T21:05:10.3439697Z auto tmp4 = static_cast(0); 2023-01-11T21:05:10.3439961Z auto tmp5 = (tmp4 != tmp4) ? tmp4 : std::max(tmp0, tmp4); 2023-01-11T21:05:10.3440183Z auto tmp6 = (tmp4 != tmp4) ? tmp4 : std::max(tmp1, tmp4); 2023-01-11T21:05:10.3440380Z auto tmp7 = static_cast(7); 2023-01-11T21:05:10.3440745Z auto tmp8 = (tmp7 != tmp7) ? tmp7 : std::min(tmp2, tmp7); 2023-01-11T21:05:10.3440924Z auto tmp9 = (tmp7 != tmp7) ? tmp7 : std::min(tmp3, tmp7); 2023-01-11T21:05:10.3441099Z auto tmp10 = tmp5 + tmp4; 2023-01-11T21:05:10.3441280Z auto tmp11 = tmp6 + tmp4; 2023-01-11T21:05:10.3441538Z auto tmp12 = static_cast(1); 2023-01-11T21:05:10.3441839Z auto tmp13 = tmp8 - tmp12; 2023-01-11T21:05:10.3442070Z auto tmp14 = (tmp13 != tmp13) ? tmp13 : std::min(tmp10, tmp13); 2023-01-11T21:05:10.3442374Z auto tmp15 = tmp9 - tmp12; 2023-01-11T21:05:10.3442603Z auto tmp16 = (tmp15 != tmp15) ? tmp15 : std::min(tmp11, tmp15); 2023-01-11T21:05:10.3442763Z auto tmp17 = in_ptr0[tmp16 + (7*tmp14) + (49*i0)]; 2023-01-11T21:05:10.3442942Z auto tmp18 = tmp17 / 4; 2023-01-11T21:05:10.3443127Z auto tmp19 = tmp10 < tmp8; 2023-01-11T21:05:10.3443307Z auto tmp20 = tmp11 < tmp9; 2023-01-11T21:05:10.3443550Z auto tmp21 = tmp19 & tmp20; 2023-01-11T21:05:10.3443744Z auto tmp22 = static_cast(0.0); 2023-01-11T21:05:10.3443918Z auto tmp23 = tmp21 ? tmp18 : tmp22; 2023-01-11T21:05:10.3444105Z out_ptr0[i2 + (14*i1) + (196*i0)] = tmp23; 2023-01-11T21:05:10.3444192Z } 2023-01-11T21:05:10.3444329Z } 2023-01-11T21:05:10.3444461Z } 2023-01-11T21:05:10.3444590Z } 2023-01-11T21:05:10.3444730Z } 2023-01-11T21:05:10.3444904Z } 2023-01-11T21:05:10.3444987Z } 2023-01-11T21:05:10.3445163Z ''') 2023-01-11T21:05:10.3445275Z 2023-01-11T21:05:10.3445281Z 2023-01-11T21:05:10.3445512Z async_compile.wait(globals()) 2023-01-11T21:05:10.3445663Z del async_compile 2023-01-11T21:05:10.3445672Z 2023-01-11T21:05:10.3445817Z def call(args): 2023-01-11T21:05:10.3445972Z arg0_1, arg1_1 = args 2023-01-11T21:05:10.3446126Z args.clear() 2023-01-11T21:05:10.3446493Z buf0 = empty_strided((2, 4, 14, 14), (784, 196, 14, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.3446670Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:05:10.3446848Z del arg0_1 2023-01-11T21:05:10.3446996Z return (buf0, ) 2023-01-11T21:05:10.3447002Z 2023-01-11T21:05:10.3447008Z 2023-01-11T21:05:10.3447154Z if __name__ == "__main__": 2023-01-11T21:05:10.3447352Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.3447565Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.3447927Z arg0_1 = rand_strided((2, 4, 7, 7), (196, 49, 7, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.3448271Z arg1_1 = rand_strided((2, 4, 14, 14), (784, 196, 14, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.3448416Z print_performance(lambda: call([arg0_1, arg1_1])) 2023-01-11T21:05:10.3448424Z 2023-01-11T21:05:10.3448641Z ok (2.793s) 2023-01-11T21:05:10.3449379Z test_baddbmm_cpu (__main__.CpuTests) ... inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.3449647Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.3450072Z [2023-01-11 20:45:41,855] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 38 2023-01-11T21:05:10.3450514Z [2023-01-11 20:45:44,573] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 38 2023-01-11T21:05:10.3450528Z 2023-01-11T21:05:10.3450702Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.3450844Z import torch 2023-01-11T21:05:10.3450985Z import random 2023-01-11T21:05:10.3451139Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.3451356Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.3451363Z 2023-01-11T21:05:10.3451560Z aten = torch.ops.aten 2023-01-11T21:05:10.3451791Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.3451982Z async_compile = AsyncCompile() 2023-01-11T21:05:10.3451989Z 2023-01-11T21:05:10.3451996Z 2023-01-11T21:05:10.3452237Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.3452567Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.3452776Z extern "C" void kernel(float* __restrict__ in_out_ptr0, 2023-01-11T21:05:10.3452911Z const float* __restrict__ in_ptr0) 2023-01-11T21:05:10.3453038Z { 2023-01-11T21:05:10.3453217Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.3453402Z { 2023-01-11T21:05:10.3453625Z #pragma omp for collapse(2) 2023-01-11T21:05:10.3453786Z for(long i0=0; i0<6; i0+=1) 2023-01-11T21:05:10.3453906Z { 2023-01-11T21:05:10.3454013Z for(long i1=0; i1<128; i1+=1) 2023-01-11T21:05:10.3454134Z { 2023-01-11T21:05:10.3454310Z for(long i2=0; i2<6; i2+=1) 2023-01-11T21:05:10.3454439Z { 2023-01-11T21:05:10.3454686Z auto tmp0 = at::vec::Vectorized::loadu(in_ptr0 + (16*i2) + (100*i0)); 2023-01-11T21:05:10.3454997Z auto tmp1 = at::vec::Vectorized::loadu(in_out_ptr0 + (16*i2) + (100*i1) + (12800*i0)); 2023-01-11T21:05:10.3455163Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:05:10.3455310Z tmp2.store(in_out_ptr0 + (16*i2) + (100*i1) + (12800*i0)); 2023-01-11T21:05:10.3455520Z } 2023-01-11T21:05:10.3455699Z #pragma omp simd simdlen(8) 2023-01-11T21:05:10.3455862Z for(long i2=96; i2<100; i2+=1) 2023-01-11T21:05:10.3455994Z { 2023-01-11T21:05:10.3456175Z auto tmp0 = in_ptr0[i2 + (100*i0)]; 2023-01-11T21:05:10.3456389Z auto tmp1 = in_out_ptr0[i2 + (100*i1) + (12800*i0)]; 2023-01-11T21:05:10.3456648Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:05:10.3456784Z in_out_ptr0[i2 + (100*i1) + (12800*i0)] = tmp2; 2023-01-11T21:05:10.3456916Z } 2023-01-11T21:05:10.3457041Z } 2023-01-11T21:05:10.3457172Z } 2023-01-11T21:05:10.3457295Z } 2023-01-11T21:05:10.3457416Z } 2023-01-11T21:05:10.3457533Z ''') 2023-01-11T21:05:10.3457541Z 2023-01-11T21:05:10.3457611Z 2023-01-11T21:05:10.3457724Z async_compile.wait(globals()) 2023-01-11T21:05:10.3457866Z del async_compile 2023-01-11T21:05:10.3457873Z 2023-01-11T21:05:10.3458068Z def call(args): 2023-01-11T21:05:10.3458220Z arg0_1, arg1_1, arg2_1 = args 2023-01-11T21:05:10.3458363Z args.clear() 2023-01-11T21:05:10.3458899Z buf0 = empty_strided((6, 128, 100), (12800, 100, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.3459093Z aten.bmm.out(arg1_1, arg2_1, out=buf0) 2023-01-11T21:05:10.3459171Z del arg1_1 2023-01-11T21:05:10.3459300Z del arg2_1 2023-01-11T21:05:10.3459456Z buf1 = buf0; del buf0 # reuse 2023-01-11T21:05:10.3459729Z kernel_cpp_0(c_void_p(buf1.data_ptr()), c_void_p(arg0_1.data_ptr())) 2023-01-11T21:05:10.3459936Z del arg0_1 2023-01-11T21:05:10.3460071Z return (buf1, ) 2023-01-11T21:05:10.3460078Z 2023-01-11T21:05:10.3460084Z 2023-01-11T21:05:10.3460224Z if __name__ == "__main__": 2023-01-11T21:05:10.3460373Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.3460604Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.3460962Z arg0_1 = rand_strided((6, 1, 100), (100, 100, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.3461310Z arg1_1 = rand_strided((6, 128, 64), (8192, 64, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.3461668Z arg2_1 = rand_strided((6, 64, 100), (6400, 100, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.3461891Z print_performance(lambda: call([arg0_1, arg1_1, arg2_1])) 2023-01-11T21:05:10.3461898Z 2023-01-11T21:05:10.3462086Z ok (2.872s) 2023-01-11T21:05:10.3462756Z test_batch_norm_2d_cpu (__main__.CpuTests) ... inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.3462986Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.3463366Z [2023-01-11 20:45:45,245] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 39 2023-01-11T21:05:10.3463804Z [2023-01-11 20:45:48,212] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 39 2023-01-11T21:05:10.3464433Z inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.3464652Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.3465111Z [2023-01-11 20:45:48,794] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 40 2023-01-11T21:05:10.3465119Z 2023-01-11T21:05:10.3465300Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.3465498Z import torch 2023-01-11T21:05:10.3465641Z import random 2023-01-11T21:05:10.3465840Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.3466078Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.3466137Z 2023-01-11T21:05:10.3466237Z aten = torch.ops.aten 2023-01-11T21:05:10.3466471Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.3466639Z async_compile = AsyncCompile() 2023-01-11T21:05:10.3466646Z 2023-01-11T21:05:10.3466652Z 2023-01-11T21:05:10.3466901Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.3467198Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.3467454Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:05:10.3467641Z const float* __restrict__ in_ptr1, 2023-01-11T21:05:10.3467823Z const float* __restrict__ in_ptr2, 2023-01-11T21:05:10.3467954Z const float* __restrict__ in_ptr3, 2023-01-11T21:05:10.3468137Z const float* __restrict__ in_ptr4, 2023-01-11T21:05:10.3468317Z float* __restrict__ out_ptr0, 2023-01-11T21:05:10.3468538Z float* __restrict__ out_ptr1, 2023-01-11T21:05:10.3468773Z float* __restrict__ out_ptr2, 2023-01-11T21:05:10.3468961Z bool* __restrict__ out_ptr3) 2023-01-11T21:05:10.3469131Z { 2023-01-11T21:05:10.3469262Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.3469386Z { 2023-01-11T21:05:10.3469534Z #pragma omp for 2023-01-11T21:05:10.3469691Z for(long i0=0; i0<10; i0+=1) 2023-01-11T21:05:10.3469820Z { 2023-01-11T21:05:10.3469963Z { 2023-01-11T21:05:10.3470045Z { 2023-01-11T21:05:10.3470209Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:05:10.3470368Z out_ptr0[i0] = tmp0; 2023-01-11T21:05:10.3470536Z } 2023-01-11T21:05:10.3470672Z } 2023-01-11T21:05:10.3470795Z } 2023-01-11T21:05:10.3470956Z #pragma omp for 2023-01-11T21:05:10.3471062Z for(long i0=0; i0<10; i0+=1) 2023-01-11T21:05:10.3471241Z { 2023-01-11T21:05:10.3471371Z { 2023-01-11T21:05:10.3471501Z { 2023-01-11T21:05:10.3471675Z auto tmp0 = in_ptr1[i0]; 2023-01-11T21:05:10.3471863Z out_ptr1[i0] = tmp0; 2023-01-11T21:05:10.3471991Z } 2023-01-11T21:05:10.3472070Z } 2023-01-11T21:05:10.3472201Z } 2023-01-11T21:05:10.3472392Z #pragma omp for collapse(2) 2023-01-11T21:05:10.3472553Z for(long i0=0; i0<2; i0+=1) 2023-01-11T21:05:10.3472678Z { 2023-01-11T21:05:10.3472839Z for(long i1=0; i1<10; i1+=1) 2023-01-11T21:05:10.3472924Z { 2023-01-11T21:05:10.3473093Z for(long i2=0; i2<4; i2+=1) 2023-01-11T21:05:10.3473254Z { 2023-01-11T21:05:10.3473526Z auto tmp0 = at::vec::Vectorized::loadu(in_ptr2 + (16*i2) + (64*i1) + (640*i0)); 2023-01-11T21:05:10.3473772Z auto tmp1 = at::vec::Vectorized(out_ptr0[i1]); 2023-01-11T21:05:10.3473999Z auto tmp3 = at::vec::Vectorized(out_ptr1[i1]); 2023-01-11T21:05:10.3474269Z auto tmp11 = at::vec::Vectorized(in_ptr3[i1]); 2023-01-11T21:05:10.3474492Z auto tmp13 = at::vec::Vectorized(in_ptr4[i1]); 2023-01-11T21:05:10.3474757Z auto tmp2 = tmp0 - tmp1; 2023-01-11T21:05:10.3475067Z auto tmp4 = at::vec::Vectorized(static_cast(1e-05)); 2023-01-11T21:05:10.3475235Z auto tmp5 = tmp3 + tmp4; 2023-01-11T21:05:10.3475441Z auto tmp6 = tmp5.sqrt(); 2023-01-11T21:05:10.3475644Z auto tmp7 = tmp6.reciprocal(); 2023-01-11T21:05:10.3475879Z auto tmp8 = at::vec::Vectorized(static_cast(1)); 2023-01-11T21:05:10.3476040Z auto tmp9 = tmp7 * tmp8; 2023-01-11T21:05:10.3476282Z auto tmp10 = tmp2 * tmp9; 2023-01-11T21:05:10.3476405Z auto tmp12 = tmp10 * tmp11; 2023-01-11T21:05:10.3476569Z auto tmp14 = tmp12 + tmp13; 2023-01-11T21:05:10.3476814Z auto tmp15 = at::vec::clamp_min(tmp14, decltype(tmp14)(0)); 2023-01-11T21:05:10.3477018Z tmp15.store(out_ptr2 + (16*i2) + (64*i1) + (640*i0)); 2023-01-11T21:05:10.3477201Z } 2023-01-11T21:05:10.3477370Z #pragma omp simd simdlen(8) 2023-01-11T21:05:10.3477533Z for(long i2=64; i2<64; i2+=1) 2023-01-11T21:05:10.3477701Z { 2023-01-11T21:05:10.3477844Z auto tmp0 = in_ptr2[i2 + (64*i1) + (640*i0)]; 2023-01-11T21:05:10.3478014Z auto tmp1 = out_ptr0[i1]; 2023-01-11T21:05:10.3478179Z auto tmp3 = out_ptr1[i1]; 2023-01-11T21:05:10.3478340Z auto tmp11 = in_ptr3[i1]; 2023-01-11T21:05:10.3478516Z auto tmp13 = in_ptr4[i1]; 2023-01-11T21:05:10.3478813Z auto tmp2 = tmp0 - tmp1; 2023-01-11T21:05:10.3479083Z auto tmp4 = static_cast(1e-05); 2023-01-11T21:05:10.3479250Z auto tmp5 = tmp3 + tmp4; 2023-01-11T21:05:10.3479416Z auto tmp6 = std::sqrt(tmp5); 2023-01-11T21:05:10.3479558Z auto tmp7 = 1 / tmp6; 2023-01-11T21:05:10.3479727Z auto tmp8 = static_cast(1); 2023-01-11T21:05:10.3479891Z auto tmp9 = tmp7 * tmp8; 2023-01-11T21:05:10.3480045Z auto tmp10 = tmp2 * tmp9; 2023-01-11T21:05:10.3480218Z auto tmp12 = tmp10 * tmp11; 2023-01-11T21:05:10.3480340Z auto tmp14 = tmp12 + tmp13; 2023-01-11T21:05:10.3480545Z auto tmp15 = tmp14 * (tmp14>0); 2023-01-11T21:05:10.3481132Z out_ptr2[i2 + (64*i1) + (640*i0)] = tmp15; 2023-01-11T21:05:10.3481393Z } 2023-01-11T21:05:10.3481488Z } 2023-01-11T21:05:10.3481584Z } 2023-01-11T21:05:10.3481730Z #pragma omp for 2023-01-11T21:05:10.3481804Z for(long i0=0; i0<1280; i0+=1) 2023-01-11T21:05:10.3481898Z { 2023-01-11T21:05:10.3481990Z { 2023-01-11T21:05:10.3482170Z { 2023-01-11T21:05:10.3482310Z auto tmp0 = out_ptr2[i0]; 2023-01-11T21:05:10.3482447Z auto tmp1 = static_cast(0); 2023-01-11T21:05:10.3482568Z auto tmp2 = tmp0 <= tmp1; 2023-01-11T21:05:10.3482640Z out_ptr3[i0] = tmp2; 2023-01-11T21:05:10.3482736Z } 2023-01-11T21:05:10.3482824Z } 2023-01-11T21:05:10.3482917Z } 2023-01-11T21:05:10.3483006Z } 2023-01-11T21:05:10.3483126Z } 2023-01-11T21:05:10.3483225Z ''') 2023-01-11T21:05:10.3483275Z 2023-01-11T21:05:10.3483279Z 2023-01-11T21:05:10.3483358Z async_compile.wait(globals()) 2023-01-11T21:05:10.3483465Z del async_compile 2023-01-11T21:05:10.3483471Z 2023-01-11T21:05:10.3483568Z def call(args): 2023-01-11T21:05:10.3483759Z primals_1, primals_2, primals_3, primals_4, primals_5, primals_6 = args 2023-01-11T21:05:10.3483860Z args.clear() 2023-01-11T21:05:10.3484088Z buf0 = empty_strided((10, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.3484318Z buf1 = empty_strided((10, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.3484519Z buf2 = empty_strided((2, 10, 8, 8), (640, 64, 8, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.3484777Z buf3 = empty_strided((2, 10, 8, 8), (640, 64, 8, 1), device='cpu', dtype=torch.bool) 2023-01-11T21:05:10.3485136Z kernel_cpp_0(c_void_p(primals_3.data_ptr()), c_void_p(primals_4.data_ptr()), c_void_p(primals_6.data_ptr()), c_void_p(primals_1.data_ptr()), c_void_p(primals_2.data_ptr()), c_void_p(buf0.data_ptr()), c_void_p(buf1.data_ptr()), c_void_p(buf2.data_ptr()), c_void_p(buf3.data_ptr())) 2023-01-11T21:05:10.3485355Z del primals_1 2023-01-11T21:05:10.3485454Z del primals_2 2023-01-11T21:05:10.3485550Z del primals_3 2023-01-11T21:05:10.3485656Z del primals_4 2023-01-11T21:05:10.3485803Z return (buf0, buf1, buf2, primals_6, buf0, buf1, buf3, ) 2023-01-11T21:05:10.3485809Z 2023-01-11T21:05:10.3485814Z 2023-01-11T21:05:10.3485917Z if __name__ == "__main__": 2023-01-11T21:05:10.3486019Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.3486196Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.3486434Z primals_1 = rand_strided((10, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.3486663Z primals_2 = rand_strided((10, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.3486914Z primals_3 = rand_strided((10, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.3487142Z primals_4 = rand_strided((10, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.3487360Z primals_5 = rand_strided((), (), device='cpu', dtype=torch.int64) 2023-01-11T21:05:10.3487608Z primals_6 = rand_strided((2, 10, 8, 8), (640, 64, 8, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.3487815Z print_performance(lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6])) 2023-01-11T21:05:10.3487822Z 2023-01-11T21:05:10.3487872Z 2023-01-11T21:05:10.3487956Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.3488073Z import torch 2023-01-11T21:05:10.3488171Z import random 2023-01-11T21:05:10.3488312Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.3488470Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.3488475Z 2023-01-11T21:05:10.3488579Z aten = torch.ops.aten 2023-01-11T21:05:10.3488743Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.3488822Z async_compile = AsyncCompile() 2023-01-11T21:05:10.3488827Z 2023-01-11T21:05:10.3488831Z 2023-01-11T21:05:10.3488994Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.3489232Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.3489405Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:05:10.3489540Z const float* __restrict__ in_ptr1, 2023-01-11T21:05:10.3489706Z const float* __restrict__ in_ptr2, 2023-01-11T21:05:10.3489839Z const float* __restrict__ in_ptr3, 2023-01-11T21:05:10.3489969Z const float* __restrict__ in_ptr4, 2023-01-11T21:05:10.3490054Z float* __restrict__ out_ptr0, 2023-01-11T21:05:10.3490178Z float* __restrict__ out_ptr1, 2023-01-11T21:05:10.3490305Z float* __restrict__ out_ptr2, 2023-01-11T21:05:10.3490432Z bool* __restrict__ out_ptr3) 2023-01-11T21:05:10.3490541Z { 2023-01-11T21:05:10.3490679Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.3490771Z { 2023-01-11T21:05:10.3490835Z #pragma omp for 2023-01-11T21:05:10.3490947Z for(long i0=0; i0<10; i0+=1) 2023-01-11T21:05:10.3491038Z { 2023-01-11T21:05:10.3491131Z { 2023-01-11T21:05:10.3491226Z { 2023-01-11T21:05:10.3491346Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:05:10.3491421Z out_ptr0[i0] = tmp0; 2023-01-11T21:05:10.3491544Z } 2023-01-11T21:05:10.3491632Z } 2023-01-11T21:05:10.3491748Z } 2023-01-11T21:05:10.3491853Z #pragma omp for 2023-01-11T21:05:10.3491963Z for(long i0=0; i0<10; i0+=1) 2023-01-11T21:05:10.3492053Z { 2023-01-11T21:05:10.3492102Z { 2023-01-11T21:05:10.3492196Z { 2023-01-11T21:05:10.3492324Z auto tmp0 = in_ptr1[i0]; 2023-01-11T21:05:10.3492454Z out_ptr1[i0] = tmp0; 2023-01-11T21:05:10.3492547Z } 2023-01-11T21:05:10.3492636Z } 2023-01-11T21:05:10.3492760Z } 2023-01-11T21:05:10.3492835Z #pragma omp for collapse(2) 2023-01-11T21:05:10.3492941Z for(long i0=0; i0<3; i0+=1) 2023-01-11T21:05:10.3493038Z { 2023-01-11T21:05:10.3493152Z for(long i1=0; i1<10; i1+=1) 2023-01-11T21:05:10.3493245Z { 2023-01-11T21:05:10.3493381Z for(long i2=0; i2<16; i2+=1) 2023-01-11T21:05:10.3493431Z { 2023-01-11T21:05:10.3493657Z auto tmp0 = at::vec::Vectorized::loadu(in_ptr2 + (16*i2) + (256*i1) + (2560*i0)); 2023-01-11T21:05:10.3493819Z auto tmp1 = at::vec::Vectorized(out_ptr0[i1]); 2023-01-11T21:05:10.3493971Z auto tmp3 = at::vec::Vectorized(out_ptr1[i1]); 2023-01-11T21:05:10.3494132Z auto tmp11 = at::vec::Vectorized(in_ptr3[i1]); 2023-01-11T21:05:10.3494282Z auto tmp13 = at::vec::Vectorized(in_ptr4[i1]); 2023-01-11T21:05:10.3494456Z auto tmp2 = tmp0 - tmp1; 2023-01-11T21:05:10.3494694Z auto tmp4 = at::vec::Vectorized(static_cast(1e-05)); 2023-01-11T21:05:10.3494833Z auto tmp5 = tmp3 + tmp4; 2023-01-11T21:05:10.3494942Z auto tmp6 = tmp5.sqrt(); 2023-01-11T21:05:10.3495072Z auto tmp7 = tmp6.reciprocal(); 2023-01-11T21:05:10.3495239Z auto tmp8 = at::vec::Vectorized(static_cast(1)); 2023-01-11T21:05:10.3495364Z auto tmp9 = tmp7 * tmp8; 2023-01-11T21:05:10.3495485Z auto tmp10 = tmp2 * tmp9; 2023-01-11T21:05:10.3495605Z auto tmp12 = tmp10 * tmp11; 2023-01-11T21:05:10.3495732Z auto tmp14 = tmp12 + tmp13; 2023-01-11T21:05:10.3495892Z auto tmp15 = at::vec::clamp_min(tmp14, decltype(tmp14)(0)); 2023-01-11T21:05:10.3495994Z tmp15.store(out_ptr2 + (16*i2) + (256*i1) + (2560*i0)); 2023-01-11T21:05:10.3496137Z } 2023-01-11T21:05:10.3496263Z #pragma omp simd simdlen(8) 2023-01-11T21:05:10.3496396Z for(long i2=256; i2<256; i2+=1) 2023-01-11T21:05:10.3496486Z { 2023-01-11T21:05:10.3496621Z auto tmp0 = in_ptr2[i2 + (256*i1) + (2560*i0)]; 2023-01-11T21:05:10.3496741Z auto tmp1 = out_ptr0[i1]; 2023-01-11T21:05:10.3496820Z auto tmp3 = out_ptr1[i1]; 2023-01-11T21:05:10.3496938Z auto tmp11 = in_ptr3[i1]; 2023-01-11T21:05:10.3497059Z auto tmp13 = in_ptr4[i1]; 2023-01-11T21:05:10.3497249Z auto tmp2 = tmp0 - tmp1; 2023-01-11T21:05:10.3497451Z auto tmp4 = static_cast(1e-05); 2023-01-11T21:05:10.3497569Z auto tmp5 = tmp3 + tmp4; 2023-01-11T21:05:10.3497697Z auto tmp6 = std::sqrt(tmp5); 2023-01-11T21:05:10.3497769Z auto tmp7 = 1 / tmp6; 2023-01-11T21:05:10.3497901Z auto tmp8 = static_cast(1); 2023-01-11T21:05:10.3498017Z auto tmp9 = tmp7 * tmp8; 2023-01-11T21:05:10.3498135Z auto tmp10 = tmp2 * tmp9; 2023-01-11T21:05:10.3498296Z auto tmp12 = tmp10 * tmp11; 2023-01-11T21:05:10.3498444Z auto tmp14 = tmp12 + tmp13; 2023-01-11T21:05:10.3498676Z auto tmp15 = tmp14 * (tmp14>0); 2023-01-11T21:05:10.3498769Z out_ptr2[i2 + (256*i1) + (2560*i0)] = tmp15; 2023-01-11T21:05:10.3498864Z } 2023-01-11T21:05:10.3498955Z } 2023-01-11T21:05:10.3499044Z } 2023-01-11T21:05:10.3499148Z #pragma omp for 2023-01-11T21:05:10.3499259Z for(long i0=0; i0<7680; i0+=1) 2023-01-11T21:05:10.3499356Z { 2023-01-11T21:05:10.3499406Z { 2023-01-11T21:05:10.3499521Z { 2023-01-11T21:05:10.3499642Z auto tmp0 = out_ptr2[i0]; 2023-01-11T21:05:10.3499816Z auto tmp1 = static_cast(0); 2023-01-11T21:05:10.3499934Z auto tmp2 = tmp0 <= tmp1; 2023-01-11T21:05:10.3500046Z out_ptr3[i0] = tmp2; 2023-01-11T21:05:10.3500150Z } 2023-01-11T21:05:10.3500199Z } 2023-01-11T21:05:10.3500322Z } 2023-01-11T21:05:10.3500413Z } 2023-01-11T21:05:10.3500518Z } 2023-01-11T21:05:10.3500631Z ''') 2023-01-11T21:05:10.3500639Z 2023-01-11T21:05:10.3500643Z 2023-01-11T21:05:10.3500762Z async_compile.wait(globals()) 2023-01-11T21:05:10.3500862Z del async_compile 2023-01-11T21:05:10.3500868Z 2023-01-11T21:05:10.3500924Z def call(args): 2023-01-11T21:05:10.3501099Z primals_1, primals_2, primals_3, primals_4, primals_5, primals_6 = args 2023-01-11T21:05:10.3501200Z args.clear() 2023-01-11T21:05:10.3501422Z buf0 = empty_strided((10, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.3501644Z buf1 = empty_strided((10, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.3501915Z buf2 = empty_strided((3, 10, 16, 16), (2560, 256, 16, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.3502188Z buf3 = empty_strided((3, 10, 16, 16), (2560, 256, 16, 1), device='cpu', dtype=torch.bool) 2023-01-11T21:05:10.3502543Z kernel_cpp_0(c_void_p(primals_3.data_ptr()), c_void_p(primals_4.data_ptr()), c_void_p(primals_6.data_ptr()), c_void_p(primals_1.data_ptr()), c_void_p(primals_2.data_ptr()), c_void_p(buf0.data_ptr()), c_void_p(buf1.data_ptr()), c_void_p(buf2.data_ptr()), c_void_p(buf3.data_ptr())) 2023-01-11T21:05:10.3502603Z del primals_1 2023-01-11T21:05:10.3502710Z del primals_2 2023-01-11T21:05:10.3502805Z del primals_3 2023-01-11T21:05:10.3502933Z del primals_4 2023-01-11T21:05:10.3503078Z return (buf0, buf1, buf2, primals_6, buf0, buf1, buf3, ) 2023-01-11T21:05:10.3503084Z 2023-01-11T21:05:10.3503088Z 2023-01-11T21:05:10.3503192Z if __name__ == "__main__": 2023-01-11T21:05:10.3503351Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.3503503Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.3503692Z primals_1 = rand_strided((10, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.3503927Z primals_2 = rand_strided((10, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.3504150Z primals_3 = rand_strided((10, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.3504373Z primals_4 = rand_strided((10, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.3504586Z primals_5 = rand_strided((), (), device='cpu', dtype=torch.int64) 2023-01-11T21:05:10.3504842Z primals_6 = rand_strided((3, 10, 16, 16), (2560, 256, 16, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.3505042Z print_performance(lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6])) 2023-01-11T21:05:10.3505361Z [2023-01-11 20:45:51,622] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 40 2023-01-11T21:05:10.3505370Z 2023-01-11T21:05:10.3505475Z ok (6.977s) 2023-01-11T21:05:10.3505909Z test_bernoulli1_cpu (__main__.CpuTests) ... inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.3506063Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.3506346Z [2023-01-11 20:45:51,735] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 41 2023-01-11T21:05:10.3506636Z [2023-01-11 20:45:54,458] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 41 2023-01-11T21:05:10.3506641Z 2023-01-11T21:05:10.3506790Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.3506887Z import torch 2023-01-11T21:05:10.3507029Z import random 2023-01-11T21:05:10.3507195Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.3507303Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.3507353Z 2023-01-11T21:05:10.3507421Z aten = torch.ops.aten 2023-01-11T21:05:10.3507583Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.3507705Z async_compile = AsyncCompile() 2023-01-11T21:05:10.3507710Z 2023-01-11T21:05:10.3507714Z 2023-01-11T21:05:10.3507875Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.3508106Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.3508259Z extern "C" void kernel(float* __restrict__ out_ptr0) 2023-01-11T21:05:10.3508351Z { 2023-01-11T21:05:10.3508436Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.3518541Z { 2023-01-11T21:05:10.3518699Z #pragma omp for 2023-01-11T21:05:10.3518787Z for(long i0=0; i0<6; i0+=1) 2023-01-11T21:05:10.3518862Z { 2023-01-11T21:05:10.3519014Z auto tmp0 = at::vec::Vectorized(static_cast(0)); 2023-01-11T21:05:10.3519110Z tmp0.store(out_ptr0 + 16*i0); 2023-01-11T21:05:10.3519275Z } 2023-01-11T21:05:10.3519373Z #pragma omp for simd simdlen(8) 2023-01-11T21:05:10.3519443Z for(long i0=96; i0<100; i0+=1) 2023-01-11T21:05:10.3519507Z { 2023-01-11T21:05:10.3519607Z auto tmp0 = static_cast(0); 2023-01-11T21:05:10.3519689Z out_ptr0[i0] = tmp0; 2023-01-11T21:05:10.3519753Z } 2023-01-11T21:05:10.3519814Z } 2023-01-11T21:05:10.3519875Z } 2023-01-11T21:05:10.3519968Z ''') 2023-01-11T21:05:10.3519975Z 2023-01-11T21:05:10.3519979Z 2023-01-11T21:05:10.3520067Z async_compile.wait(globals()) 2023-01-11T21:05:10.3520143Z del async_compile 2023-01-11T21:05:10.3520148Z 2023-01-11T21:05:10.3520220Z def call(args): 2023-01-11T21:05:10.3520291Z arg0_1, = args 2023-01-11T21:05:10.3520366Z args.clear() 2023-01-11T21:05:10.3520571Z buf0 = empty_strided((100, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.3520888Z kernel_cpp_0(c_void_p(buf0.data_ptr())) 2023-01-11T21:05:10.3520976Z aten.bernoulli_(buf0, ) 2023-01-11T21:05:10.3521055Z return (buf0, buf0, ) 2023-01-11T21:05:10.3521060Z 2023-01-11T21:05:10.3521065Z 2023-01-11T21:05:10.3521140Z if __name__ == "__main__": 2023-01-11T21:05:10.3521255Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.3521378Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.3521581Z arg0_1 = rand_strided((100, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.3521689Z print_performance(lambda: call([arg0_1])) 2023-01-11T21:05:10.3521694Z 2023-01-11T21:05:10.3521747Z ok (2.823s) 2023-01-11T21:05:10.3522188Z test_bernoulli2_cpu (__main__.CpuTests) ... inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.3522321Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.3522584Z [2023-01-11 20:45:54,510] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 42 2023-01-11T21:05:10.3522840Z [2023-01-11 20:45:54,511] torch._inductor.lowering: [WARNING] using triton random, expect difference from eager 2023-01-11T21:05:10.3523102Z [2023-01-11 20:45:57,232] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 42 2023-01-11T21:05:10.3523107Z 2023-01-11T21:05:10.3523202Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.3523270Z import torch 2023-01-11T21:05:10.3523337Z import random 2023-01-11T21:05:10.3523439Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.3523631Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.3523636Z 2023-01-11T21:05:10.3523712Z aten = torch.ops.aten 2023-01-11T21:05:10.3523847Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.3523942Z async_compile = AsyncCompile() 2023-01-11T21:05:10.3524102Z seed_cpu_None = None # 9130db9322feaa41c28986790b86d7dd047e77339ff46fce775dbaa5929b26ce 2023-01-11T21:05:10.3524108Z 2023-01-11T21:05:10.3524112Z 2023-01-11T21:05:10.3524245Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.3524449Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.3524562Z extern "C" void kernel(const long* __restrict__ seed0, 2023-01-11T21:05:10.3524653Z const float* __restrict__ in_ptr1, 2023-01-11T21:05:10.3524747Z bool* __restrict__ out_ptr0) 2023-01-11T21:05:10.3524809Z { 2023-01-11T21:05:10.3524905Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.3524969Z { 2023-01-11T21:05:10.3525045Z #pragma omp for 2023-01-11T21:05:10.3525126Z for(long i0=0; i0<8; i0+=1) 2023-01-11T21:05:10.3525175Z { 2023-01-11T21:05:10.3525236Z { 2023-01-11T21:05:10.3525342Z { 2023-01-11T21:05:10.3525428Z auto tmp0 = seed0[0]; 2023-01-11T21:05:10.3525517Z auto tmp5 = in_ptr1[i0]; 2023-01-11T21:05:10.3525617Z auto tmp1 = static_cast(65535); 2023-01-11T21:05:10.3525695Z auto tmp2 = tmp0 ^ tmp1; 2023-01-11T21:05:10.3525794Z auto tmp3 = static_cast(i0); 2023-01-11T21:05:10.3525927Z auto tmp4 = static_cast(normalized_rand_cpu(tmp2, tmp3));; 2023-01-11T21:05:10.3526014Z auto tmp6 = tmp4 < tmp5; 2023-01-11T21:05:10.3526096Z out_ptr0[i0] = tmp6; 2023-01-11T21:05:10.3526157Z } 2023-01-11T21:05:10.3526219Z } 2023-01-11T21:05:10.3526270Z } 2023-01-11T21:05:10.3526329Z } 2023-01-11T21:05:10.3526388Z } 2023-01-11T21:05:10.3526465Z ''') 2023-01-11T21:05:10.3526470Z 2023-01-11T21:05:10.3526475Z 2023-01-11T21:05:10.3526568Z async_compile.wait(globals()) 2023-01-11T21:05:10.3526639Z del async_compile 2023-01-11T21:05:10.3526644Z 2023-01-11T21:05:10.3526712Z def call(args): 2023-01-11T21:05:10.3526778Z arg0_1, = args 2023-01-11T21:05:10.3526835Z args.clear() 2023-01-11T21:05:10.3526965Z torch.randint(2**31, size=(), dtype=torch.int64, out=seed_cpu_None) 2023-01-11T21:05:10.3527150Z buf0 = empty_strided((8, ), (1, ), device='cpu', dtype=torch.bool) 2023-01-11T21:05:10.3527321Z kernel_cpp_0(c_void_p(seed_cpu_None.data_ptr()), c_void_p(arg0_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:05:10.3527388Z del arg0_1 2023-01-11T21:05:10.3527456Z return (buf0, ) 2023-01-11T21:05:10.3527461Z 2023-01-11T21:05:10.3527466Z 2023-01-11T21:05:10.3527540Z if __name__ == "__main__": 2023-01-11T21:05:10.3527641Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.3527760Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.3527954Z seed_cpu_None = rand_strided((), (), device='cpu', dtype=torch.int64) 2023-01-11T21:05:10.3528144Z arg0_1 = rand_strided((8, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.3528251Z print_performance(lambda: call([arg0_1])) 2023-01-11T21:05:10.3528255Z 2023-01-11T21:05:10.3528320Z ok (2.774s) 2023-01-11T21:05:10.3528757Z test_bitwise2_cpu (__main__.CpuTests) ... inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.3528883Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.3529167Z [2023-01-11 20:45:57,307] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 43 2023-01-11T21:05:10.3529429Z [2023-01-11 20:46:00,066] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 43 2023-01-11T21:05:10.3529434Z 2023-01-11T21:05:10.3529516Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.3529583Z import torch 2023-01-11T21:05:10.3529652Z import random 2023-01-11T21:05:10.3529764Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.3529885Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.3529889Z 2023-01-11T21:05:10.3529965Z aten = torch.ops.aten 2023-01-11T21:05:10.3530097Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.3530175Z async_compile = AsyncCompile() 2023-01-11T21:05:10.3530195Z 2023-01-11T21:05:10.3530199Z 2023-01-11T21:05:10.3530321Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.3530523Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.3530639Z extern "C" void kernel(const bool* __restrict__ in_ptr0, 2023-01-11T21:05:10.3530740Z const bool* __restrict__ in_ptr1, 2023-01-11T21:05:10.3530864Z bool* __restrict__ out_ptr0, 2023-01-11T21:05:10.3530963Z bool* __restrict__ out_ptr1, 2023-01-11T21:05:10.3531052Z bool* __restrict__ out_ptr2, 2023-01-11T21:05:10.3531129Z bool* __restrict__ out_ptr3) 2023-01-11T21:05:10.3531187Z { 2023-01-11T21:05:10.3531283Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.3531342Z { 2023-01-11T21:05:10.3531417Z #pragma omp for 2023-01-11T21:05:10.3531497Z for(long i0=0; i0<40; i0+=1) 2023-01-11T21:05:10.3531558Z { 2023-01-11T21:05:10.3531607Z { 2023-01-11T21:05:10.3531668Z { 2023-01-11T21:05:10.3531758Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:05:10.3531850Z auto tmp2 = in_ptr1[i0]; 2023-01-11T21:05:10.3531937Z auto tmp1 = tmp0 == 0; 2023-01-11T21:05:10.3532023Z auto tmp3 = tmp0 | tmp2; 2023-01-11T21:05:10.3532112Z auto tmp4 = tmp0 ^ tmp2; 2023-01-11T21:05:10.3532184Z auto tmp5 = tmp0 & tmp2; 2023-01-11T21:05:10.3532267Z out_ptr0[i0] = tmp1; 2023-01-11T21:05:10.3532347Z out_ptr1[i0] = tmp3; 2023-01-11T21:05:10.3532428Z out_ptr2[i0] = tmp4; 2023-01-11T21:05:10.3532506Z out_ptr3[i0] = tmp5; 2023-01-11T21:05:10.3532568Z } 2023-01-11T21:05:10.3532630Z } 2023-01-11T21:05:10.3532679Z } 2023-01-11T21:05:10.3532737Z } 2023-01-11T21:05:10.3532795Z } 2023-01-11T21:05:10.3532872Z ''') 2023-01-11T21:05:10.3532877Z 2023-01-11T21:05:10.3532881Z 2023-01-11T21:05:10.3532969Z async_compile.wait(globals()) 2023-01-11T21:05:10.3533041Z del async_compile 2023-01-11T21:05:10.3533046Z 2023-01-11T21:05:10.3533114Z def call(args): 2023-01-11T21:05:10.3533176Z arg0_1, arg1_1 = args 2023-01-11T21:05:10.3533245Z args.clear() 2023-01-11T21:05:10.3533440Z buf0 = empty_strided((2, 20), (20, 1), device='cpu', dtype=torch.bool) 2023-01-11T21:05:10.3533628Z buf1 = empty_strided((2, 20), (20, 1), device='cpu', dtype=torch.bool) 2023-01-11T21:05:10.3533813Z buf2 = empty_strided((2, 20), (20, 1), device='cpu', dtype=torch.bool) 2023-01-11T21:05:10.3533995Z buf3 = empty_strided((2, 20), (20, 1), device='cpu', dtype=torch.bool) 2023-01-11T21:05:10.3534229Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(arg1_1.data_ptr()), c_void_p(buf0.data_ptr()), c_void_p(buf1.data_ptr()), c_void_p(buf2.data_ptr()), c_void_p(buf3.data_ptr())) 2023-01-11T21:05:10.3534296Z del arg0_1 2023-01-11T21:05:10.3534348Z del arg1_1 2023-01-11T21:05:10.3534433Z return (buf0, buf1, buf2, buf3, ) 2023-01-11T21:05:10.3534439Z 2023-01-11T21:05:10.3534472Z 2023-01-11T21:05:10.3534546Z if __name__ == "__main__": 2023-01-11T21:05:10.3534659Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.3534779Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.3534970Z arg0_1 = rand_strided((2, 20), (20, 1), device='cpu', dtype=torch.bool) 2023-01-11T21:05:10.3535157Z arg1_1 = rand_strided((2, 20), (20, 1), device='cpu', dtype=torch.bool) 2023-01-11T21:05:10.3535257Z print_performance(lambda: call([arg0_1, arg1_1])) 2023-01-11T21:05:10.3535273Z 2023-01-11T21:05:10.3535326Z ok (2.833s) 2023-01-11T21:05:10.3535761Z test_bitwise_cpu (__main__.CpuTests) ... inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.3535887Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.3536144Z [2023-01-11 20:46:00,127] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 44 2023-01-11T21:05:10.3536484Z [2023-01-11 20:46:02,877] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 44 2023-01-11T21:05:10.3536490Z 2023-01-11T21:05:10.3536583Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.3536652Z import torch 2023-01-11T21:05:10.3536720Z import random 2023-01-11T21:05:10.3536833Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.3536938Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.3536945Z 2023-01-11T21:05:10.3537019Z aten = torch.ops.aten 2023-01-11T21:05:10.3537151Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.3537242Z async_compile = AsyncCompile() 2023-01-11T21:05:10.3537247Z 2023-01-11T21:05:10.3537251Z 2023-01-11T21:05:10.3537382Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.3537584Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.3537697Z extern "C" void kernel(const int* __restrict__ in_ptr0, 2023-01-11T21:05:10.3537799Z const int* __restrict__ in_ptr1, 2023-01-11T21:05:10.3537882Z int* __restrict__ out_ptr0, 2023-01-11T21:05:10.3537971Z int* __restrict__ out_ptr1, 2023-01-11T21:05:10.3538060Z int* __restrict__ out_ptr2, 2023-01-11T21:05:10.3538148Z int* __restrict__ out_ptr3) 2023-01-11T21:05:10.3538206Z { 2023-01-11T21:05:10.3538302Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.3538363Z { 2023-01-11T21:05:10.3538426Z #pragma omp for 2023-01-11T21:05:10.3538607Z for(long i0=0; i0<64; i0+=1) 2023-01-11T21:05:10.3538675Z { 2023-01-11T21:05:10.3538740Z { 2023-01-11T21:05:10.3538804Z { 2023-01-11T21:05:10.3538897Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:05:10.3538973Z auto tmp2 = in_ptr1[i0]; 2023-01-11T21:05:10.3539054Z auto tmp1 = ~tmp0; 2023-01-11T21:05:10.3539146Z auto tmp3 = tmp0 | tmp2; 2023-01-11T21:05:10.3539232Z auto tmp4 = tmp0 ^ tmp2; 2023-01-11T21:05:10.3539322Z auto tmp5 = tmp0 & tmp2; 2023-01-11T21:05:10.3539404Z out_ptr0[i0] = tmp1; 2023-01-11T21:05:10.3539483Z out_ptr1[i0] = tmp3; 2023-01-11T21:05:10.3539553Z out_ptr2[i0] = tmp4; 2023-01-11T21:05:10.3539634Z out_ptr3[i0] = tmp5; 2023-01-11T21:05:10.3539699Z } 2023-01-11T21:05:10.3539763Z } 2023-01-11T21:05:10.3539822Z } 2023-01-11T21:05:10.3539880Z } 2023-01-11T21:05:10.3539938Z } 2023-01-11T21:05:10.3540002Z ''') 2023-01-11T21:05:10.3540008Z 2023-01-11T21:05:10.3540012Z 2023-01-11T21:05:10.3540137Z async_compile.wait(globals()) 2023-01-11T21:05:10.3540206Z del async_compile 2023-01-11T21:05:10.3540211Z 2023-01-11T21:05:10.3540278Z def call(args): 2023-01-11T21:05:10.3540350Z arg0_1, arg1_1 = args 2023-01-11T21:05:10.3540422Z args.clear() 2023-01-11T21:05:10.3540614Z buf0 = empty_strided((64, ), (1, ), device='cpu', dtype=torch.int32) 2023-01-11T21:05:10.3540795Z buf1 = empty_strided((64, ), (1, ), device='cpu', dtype=torch.int32) 2023-01-11T21:05:10.3540969Z buf2 = empty_strided((64, ), (1, ), device='cpu', dtype=torch.int32) 2023-01-11T21:05:10.3541152Z buf3 = empty_strided((64, ), (1, ), device='cpu', dtype=torch.int32) 2023-01-11T21:05:10.3541383Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(arg1_1.data_ptr()), c_void_p(buf0.data_ptr()), c_void_p(buf1.data_ptr()), c_void_p(buf2.data_ptr()), c_void_p(buf3.data_ptr())) 2023-01-11T21:05:10.3541452Z del arg0_1 2023-01-11T21:05:10.3541517Z del arg1_1 2023-01-11T21:05:10.3541603Z return (buf0, buf1, buf2, buf3, ) 2023-01-11T21:05:10.3541610Z 2023-01-11T21:05:10.3541615Z 2023-01-11T21:05:10.3541689Z if __name__ == "__main__": 2023-01-11T21:05:10.3541800Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.3541938Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.3542129Z arg0_1 = rand_strided((64, ), (1, ), device='cpu', dtype=torch.int32) 2023-01-11T21:05:10.3542312Z arg1_1 = rand_strided((64, ), (1, ), device='cpu', dtype=torch.int32) 2023-01-11T21:05:10.3542427Z print_performance(lambda: call([arg0_1, arg1_1])) 2023-01-11T21:05:10.3542432Z 2023-01-11T21:05:10.3542496Z ok (2.814s) 2023-01-11T21:05:10.3542931Z test_bmm1_cpu (__main__.CpuTests) ... inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.3543057Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.3543311Z [2023-01-11 20:46:02,954] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 45 2023-01-11T21:05:10.3543575Z [2023-01-11 20:46:05,767] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 45 2023-01-11T21:05:10.3543959Z inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.3544085Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.3544336Z [2023-01-11 20:46:05,828] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 46 2023-01-11T21:05:10.3544597Z [2023-01-11 20:46:08,701] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 46 2023-01-11T21:05:10.3544602Z 2023-01-11T21:05:10.3544694Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.3544763Z import torch 2023-01-11T21:05:10.3544830Z import random 2023-01-11T21:05:10.3544944Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.3545061Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.3545066Z 2023-01-11T21:05:10.3545130Z aten = torch.ops.aten 2023-01-11T21:05:10.3545261Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.3545353Z async_compile = AsyncCompile() 2023-01-11T21:05:10.3545358Z 2023-01-11T21:05:10.3545362Z 2023-01-11T21:05:10.3545494Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.3545699Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.3545816Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:05:10.3545970Z const float* __restrict__ in_ptr1, 2023-01-11T21:05:10.3546070Z float* __restrict__ out_ptr0, 2023-01-11T21:05:10.3546154Z float* __restrict__ out_ptr1) 2023-01-11T21:05:10.3546216Z { 2023-01-11T21:05:10.3546310Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.3546368Z { 2023-01-11T21:05:10.3546443Z #pragma omp for 2023-01-11T21:05:10.3546524Z for(long i0=0; i0<8; i0+=1) 2023-01-11T21:05:10.3546584Z { 2023-01-11T21:05:10.3546710Z auto tmp0 = at::vec::Vectorized::loadu(in_ptr0 + 16*i0); 2023-01-11T21:05:10.3546841Z auto tmp1 = at::vec::Vectorized(static_cast(1)); 2023-01-11T21:05:10.3546924Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:05:10.3547014Z tmp2.store(out_ptr0 + 16*i0); 2023-01-11T21:05:10.3547079Z } 2023-01-11T21:05:10.3547172Z #pragma omp for simd simdlen(8) 2023-01-11T21:05:10.3547254Z for(long i0=128; i0<128; i0+=1) 2023-01-11T21:05:10.3547303Z { 2023-01-11T21:05:10.3547386Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:05:10.3547483Z auto tmp1 = static_cast(1); 2023-01-11T21:05:10.3547592Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:05:10.3547673Z out_ptr0[i0] = tmp2; 2023-01-11T21:05:10.3547733Z } 2023-01-11T21:05:10.3547806Z #pragma omp for 2023-01-11T21:05:10.3547872Z for(long i0=0; i0<8; i0+=1) 2023-01-11T21:05:10.3547931Z { 2023-01-11T21:05:10.3548059Z auto tmp0 = at::vec::Vectorized::loadu(in_ptr1 + 16*i0); 2023-01-11T21:05:10.3548188Z auto tmp1 = at::vec::Vectorized(static_cast(2)); 2023-01-11T21:05:10.3548269Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:05:10.3548358Z tmp2.store(out_ptr1 + 16*i0); 2023-01-11T21:05:10.3548418Z } 2023-01-11T21:05:10.3548498Z #pragma omp for simd simdlen(8) 2023-01-11T21:05:10.3548580Z for(long i0=128; i0<128; i0+=1) 2023-01-11T21:05:10.3548639Z { 2023-01-11T21:05:10.3548719Z auto tmp0 = in_ptr1[i0]; 2023-01-11T21:05:10.3548815Z auto tmp1 = static_cast(2); 2023-01-11T21:05:10.3548899Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:05:10.3548976Z out_ptr1[i0] = tmp2; 2023-01-11T21:05:10.3549023Z } 2023-01-11T21:05:10.3549082Z } 2023-01-11T21:05:10.3549140Z } 2023-01-11T21:05:10.3549217Z ''') 2023-01-11T21:05:10.3549221Z 2023-01-11T21:05:10.3549225Z 2023-01-11T21:05:10.3549362Z kernel_cpp_1 = async_compile.cpp(''' 2023-01-11T21:05:10.3549567Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.3549683Z extern "C" void kernel(float* __restrict__ in_out_ptr0) 2023-01-11T21:05:10.3549729Z { 2023-01-11T21:05:10.3549825Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.3549886Z { 2023-01-11T21:05:10.3549963Z #pragma omp for 2023-01-11T21:05:10.3550046Z for(long i0=0; i0<8; i0+=1) 2023-01-11T21:05:10.3550108Z { 2023-01-11T21:05:10.3550245Z auto tmp0 = at::vec::Vectorized::loadu(in_out_ptr0 + 16*i0); 2023-01-11T21:05:10.3550365Z auto tmp1 = at::vec::Vectorized(static_cast(3)); 2023-01-11T21:05:10.3550449Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:05:10.3550545Z tmp2.store(in_out_ptr0 + 16*i0); 2023-01-11T21:05:10.3550608Z } 2023-01-11T21:05:10.3550703Z #pragma omp for simd simdlen(8) 2023-01-11T21:05:10.3550785Z for(long i0=128; i0<128; i0+=1) 2023-01-11T21:05:10.3550846Z { 2023-01-11T21:05:10.3550923Z auto tmp0 = in_out_ptr0[i0]; 2023-01-11T21:05:10.3551021Z auto tmp1 = static_cast(3); 2023-01-11T21:05:10.3551103Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:05:10.3551185Z in_out_ptr0[i0] = tmp2; 2023-01-11T21:05:10.3551246Z } 2023-01-11T21:05:10.3551339Z } 2023-01-11T21:05:10.3551397Z } 2023-01-11T21:05:10.3551461Z ''') 2023-01-11T21:05:10.3551467Z 2023-01-11T21:05:10.3551471Z 2023-01-11T21:05:10.3551560Z async_compile.wait(globals()) 2023-01-11T21:05:10.3551633Z del async_compile 2023-01-11T21:05:10.3551640Z 2023-01-11T21:05:10.3551711Z def call(args): 2023-01-11T21:05:10.3551790Z arg0_1, arg1_1 = args 2023-01-11T21:05:10.3551860Z args.clear() 2023-01-11T21:05:10.3552064Z buf0 = empty_strided((2, 8, 8), (64, 8, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.3552147Z aten.bmm.out(arg0_1, arg1_1, out=buf0) 2023-01-11T21:05:10.3552351Z buf1 = empty_strided((2, 8, 8), (64, 8, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.3552546Z buf2 = empty_strided((2, 8, 8), (64, 8, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.3552736Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(arg1_1.data_ptr()), c_void_p(buf1.data_ptr()), c_void_p(buf2.data_ptr())) 2023-01-11T21:05:10.3552806Z del arg0_1 2023-01-11T21:05:10.3552875Z del arg1_1 2023-01-11T21:05:10.3553071Z buf3 = empty_strided((2, 8, 8), (64, 8, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.3553163Z aten.bmm.out(buf1, buf2, out=buf3) 2023-01-11T21:05:10.3553244Z del buf1 2023-01-11T21:05:10.3553312Z del buf2 2023-01-11T21:05:10.3553397Z buf4 = buf3; del buf3 # reuse 2023-01-11T21:05:10.3553499Z kernel_cpp_1(c_void_p(buf4.data_ptr())) 2023-01-11T21:05:10.3553576Z return (buf0, buf4, ) 2023-01-11T21:05:10.3553582Z 2023-01-11T21:05:10.3553586Z 2023-01-11T21:05:10.3553662Z if __name__ == "__main__": 2023-01-11T21:05:10.3553774Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.3553884Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.3554087Z arg0_1 = rand_strided((2, 8, 8), (64, 8, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.3554286Z arg1_1 = rand_strided((2, 8, 8), (64, 8, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.3554403Z print_performance(lambda: call([arg0_1, arg1_1])) 2023-01-11T21:05:10.3554408Z 2023-01-11T21:05:10.3554413Z 2023-01-11T21:05:10.3554505Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.3554576Z import torch 2023-01-11T21:05:10.3554647Z import random 2023-01-11T21:05:10.3554761Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.3554870Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.3554886Z 2023-01-11T21:05:10.3554950Z aten = torch.ops.aten 2023-01-11T21:05:10.3555083Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.3555171Z async_compile = AsyncCompile() 2023-01-11T21:05:10.3555176Z 2023-01-11T21:05:10.3555180Z 2023-01-11T21:05:10.3555310Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.3555514Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.3555632Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:05:10.3555737Z const float* __restrict__ in_ptr1, 2023-01-11T21:05:10.3555823Z float* __restrict__ out_ptr0, 2023-01-11T21:05:10.3555915Z float* __restrict__ out_ptr1) 2023-01-11T21:05:10.3555974Z { 2023-01-11T21:05:10.3556068Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.3556127Z { 2023-01-11T21:05:10.3556201Z #pragma omp for 2023-01-11T21:05:10.3556281Z for(long i0=0; i0<8; i0+=1) 2023-01-11T21:05:10.3556329Z { 2023-01-11T21:05:10.3556460Z auto tmp0 = at::vec::Vectorized::loadu(in_ptr0 + 16*i0); 2023-01-11T21:05:10.3556590Z auto tmp1 = at::vec::Vectorized(static_cast(1)); 2023-01-11T21:05:10.3556673Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:05:10.3556763Z tmp2.store(out_ptr0 + 16*i0); 2023-01-11T21:05:10.3556826Z } 2023-01-11T21:05:10.3556918Z #pragma omp for simd simdlen(8) 2023-01-11T21:05:10.3557001Z for(long i0=128; i0<128; i0+=1) 2023-01-11T21:05:10.3557077Z { 2023-01-11T21:05:10.3557159Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:05:10.3557255Z auto tmp1 = static_cast(1); 2023-01-11T21:05:10.3557339Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:05:10.3557416Z out_ptr0[i0] = tmp2; 2023-01-11T21:05:10.3557476Z } 2023-01-11T21:05:10.3557537Z #pragma omp for 2023-01-11T21:05:10.3557615Z for(long i0=0; i0<5; i0+=1) 2023-01-11T21:05:10.3557673Z { 2023-01-11T21:05:10.3557799Z auto tmp0 = at::vec::Vectorized::loadu(in_ptr1 + 16*i0); 2023-01-11T21:05:10.3557927Z auto tmp1 = at::vec::Vectorized(static_cast(2)); 2023-01-11T21:05:10.3558007Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:05:10.3558097Z tmp2.store(out_ptr1 + 16*i0); 2023-01-11T21:05:10.3558157Z } 2023-01-11T21:05:10.3558238Z #pragma omp for simd simdlen(8) 2023-01-11T21:05:10.3558322Z for(long i0=80; i0<80; i0+=1) 2023-01-11T21:05:10.3558381Z { 2023-01-11T21:05:10.3558461Z auto tmp0 = in_ptr1[i0]; 2023-01-11T21:05:10.3558557Z auto tmp1 = static_cast(2); 2023-01-11T21:05:10.3558673Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:05:10.3558741Z out_ptr1[i0] = tmp2; 2023-01-11T21:05:10.3558799Z } 2023-01-11T21:05:10.3558860Z } 2023-01-11T21:05:10.3558918Z } 2023-01-11T21:05:10.3558996Z ''') 2023-01-11T21:05:10.3559001Z 2023-01-11T21:05:10.3559005Z 2023-01-11T21:05:10.3559137Z kernel_cpp_1 = async_compile.cpp(''' 2023-01-11T21:05:10.3559339Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.3559452Z extern "C" void kernel(float* __restrict__ in_out_ptr0) 2023-01-11T21:05:10.3559499Z { 2023-01-11T21:05:10.3559593Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.3559652Z { 2023-01-11T21:05:10.3559726Z #pragma omp for 2023-01-11T21:05:10.3559805Z for(long i0=0; i0<10; i0+=1) 2023-01-11T21:05:10.3559864Z { 2023-01-11T21:05:10.3560001Z auto tmp0 = at::vec::Vectorized::loadu(in_out_ptr0 + 16*i0); 2023-01-11T21:05:10.3560123Z auto tmp1 = at::vec::Vectorized(static_cast(3)); 2023-01-11T21:05:10.3560203Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:05:10.3560296Z tmp2.store(in_out_ptr0 + 16*i0); 2023-01-11T21:05:10.3560357Z } 2023-01-11T21:05:10.3560450Z #pragma omp for simd simdlen(8) 2023-01-11T21:05:10.3560528Z for(long i0=160; i0<160; i0+=1) 2023-01-11T21:05:10.3560588Z { 2023-01-11T21:05:10.3560825Z auto tmp0 = in_out_ptr0[i0]; 2023-01-11T21:05:10.3560925Z auto tmp1 = static_cast(3); 2023-01-11T21:05:10.3561007Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:05:10.3561092Z in_out_ptr0[i0] = tmp2; 2023-01-11T21:05:10.3561154Z } 2023-01-11T21:05:10.3561213Z } 2023-01-11T21:05:10.3561261Z } 2023-01-11T21:05:10.3561343Z ''') 2023-01-11T21:05:10.3561348Z 2023-01-11T21:05:10.3561353Z 2023-01-11T21:05:10.3561441Z async_compile.wait(globals()) 2023-01-11T21:05:10.3561514Z del async_compile 2023-01-11T21:05:10.3561520Z 2023-01-11T21:05:10.3561591Z def call(args): 2023-01-11T21:05:10.3561666Z arg0_1, arg1_1 = args 2023-01-11T21:05:10.3561736Z args.clear() 2023-01-11T21:05:10.3561944Z buf0 = empty_strided((1, 16, 10), (160, 10, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.3562096Z aten.mm.out(as_strided(arg0_1, (16, 8), (8, 1)), as_strided(arg1_1, (8, 10), (10, 1)), out=as_strided(buf0, (16, 10), (10, 1))) 2023-01-11T21:05:10.3562298Z buf1 = empty_strided((1, 16, 8), (128, 8, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.3562494Z buf2 = empty_strided((1, 8, 10), (80, 10, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.3562681Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(arg1_1.data_ptr()), c_void_p(buf1.data_ptr()), c_void_p(buf2.data_ptr())) 2023-01-11T21:05:10.3562815Z del arg0_1 2023-01-11T21:05:10.3562881Z del arg1_1 2023-01-11T21:05:10.3563087Z buf3 = empty_strided((1, 16, 10), (160, 10, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.3563251Z aten.mm.out(as_strided(buf1, (16, 8), (8, 1)), as_strided(buf2, (8, 10), (10, 1)), out=as_strided(buf3, (16, 10), (10, 1))) 2023-01-11T21:05:10.3563304Z del buf1 2023-01-11T21:05:10.3563367Z del buf2 2023-01-11T21:05:10.3563450Z buf4 = buf3; del buf3 # reuse 2023-01-11T21:05:10.3563553Z kernel_cpp_1(c_void_p(buf4.data_ptr())) 2023-01-11T21:05:10.3563629Z return (buf0, buf4, ) 2023-01-11T21:05:10.3563634Z 2023-01-11T21:05:10.3563638Z 2023-01-11T21:05:10.3563713Z if __name__ == "__main__": 2023-01-11T21:05:10.3563826Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.3563950Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.3564142Z arg0_1 = rand_strided((1, 16, 8), (128, 8, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.3564340Z arg1_1 = rand_strided((1, 8, 10), (80, 10, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.3564456Z print_performance(lambda: call([arg0_1, arg1_1])) 2023-01-11T21:05:10.3564503Z 2023-01-11T21:05:10.3564573Z ok (5.822s) 2023-01-11T21:05:10.3565009Z test_bmm2_cpu (__main__.CpuTests) ... inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.3565133Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.3565392Z [2023-01-11 20:46:08,742] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 47 2023-01-11T21:05:10.3565655Z [2023-01-11 20:46:08,748] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 47 2023-01-11T21:05:10.3565664Z 2023-01-11T21:05:10.3565755Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.3565812Z import torch 2023-01-11T21:05:10.3565880Z import random 2023-01-11T21:05:10.3565995Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.3566113Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.3566118Z 2023-01-11T21:05:10.3566193Z aten = torch.ops.aten 2023-01-11T21:05:10.3566325Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.3566414Z async_compile = AsyncCompile() 2023-01-11T21:05:10.3566419Z 2023-01-11T21:05:10.3566423Z 2023-01-11T21:05:10.3566509Z async_compile.wait(globals()) 2023-01-11T21:05:10.3566568Z del async_compile 2023-01-11T21:05:10.3566573Z 2023-01-11T21:05:10.3566641Z def call(args): 2023-01-11T21:05:10.3566718Z arg0_1, arg1_1 = args 2023-01-11T21:05:10.3566786Z args.clear() 2023-01-11T21:05:10.3566987Z buf0 = empty_strided((1, 8, 8), (64, 8, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.3567150Z aten.mm.out(as_strided(arg0_1, (8, 8), (1, 8)), as_strided(arg1_1, (8, 8), (8, 1)), out=as_strided(buf0, (8, 8), (8, 1))) 2023-01-11T21:05:10.3567217Z del arg0_1 2023-01-11T21:05:10.3567270Z del arg1_1 2023-01-11T21:05:10.3567338Z return (buf0, ) 2023-01-11T21:05:10.3567343Z 2023-01-11T21:05:10.3567348Z 2023-01-11T21:05:10.3567419Z if __name__ == "__main__": 2023-01-11T21:05:10.3567530Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.3567649Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.3567852Z arg0_1 = rand_strided((1, 8, 8), (64, 8, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.3568049Z arg1_1 = rand_strided((1, 8, 8), (64, 8, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.3568162Z print_performance(lambda: call([arg0_1, arg1_1])) 2023-01-11T21:05:10.3568167Z 2023-01-11T21:05:10.3568220Z ok (0.043s) 2023-01-11T21:05:10.3568689Z test_bool_cpu (__main__.CpuTests) ... inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.3568817Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.3569072Z [2023-01-11 20:46:08,842] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 48 2023-01-11T21:05:10.3569330Z [2023-01-11 20:46:11,671] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 48 2023-01-11T21:05:10.3569335Z 2023-01-11T21:05:10.3569427Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.3569495Z import torch 2023-01-11T21:05:10.3569566Z import random 2023-01-11T21:05:10.3569678Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.3569787Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.3569803Z 2023-01-11T21:05:10.3569867Z aten = torch.ops.aten 2023-01-11T21:05:10.3570026Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.3570116Z async_compile = AsyncCompile() 2023-01-11T21:05:10.3570121Z 2023-01-11T21:05:10.3570126Z 2023-01-11T21:05:10.3570260Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.3570462Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.3570578Z extern "C" void kernel(const bool* __restrict__ in_ptr0, 2023-01-11T21:05:10.3570680Z const bool* __restrict__ in_ptr1, 2023-01-11T21:05:10.3570763Z bool* __restrict__ out_ptr0, 2023-01-11T21:05:10.3570855Z bool* __restrict__ out_ptr1, 2023-01-11T21:05:10.3570945Z bool* __restrict__ out_ptr2, 2023-01-11T21:05:10.3571036Z bool* __restrict__ out_ptr3, 2023-01-11T21:05:10.3571129Z bool* __restrict__ out_ptr4, 2023-01-11T21:05:10.3571218Z bool* __restrict__ out_ptr5, 2023-01-11T21:05:10.3571310Z bool* __restrict__ out_ptr6, 2023-01-11T21:05:10.3571398Z bool* __restrict__ out_ptr7, 2023-01-11T21:05:10.3571474Z bool* __restrict__ out_ptr8) 2023-01-11T21:05:10.3571532Z { 2023-01-11T21:05:10.3571627Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.3571686Z { 2023-01-11T21:05:10.3571760Z #pragma omp for 2023-01-11T21:05:10.3571839Z for(long i0=0; i0<4; i0+=1) 2023-01-11T21:05:10.3571887Z { 2023-01-11T21:05:10.3571948Z { 2023-01-11T21:05:10.3572010Z { 2023-01-11T21:05:10.3572100Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:05:10.3572194Z auto tmp1 = in_ptr1[i0]; 2023-01-11T21:05:10.3572284Z auto tmp2 = tmp0 || tmp1; 2023-01-11T21:05:10.3572375Z auto tmp3 = tmp0 && tmp1; 2023-01-11T21:05:10.3572449Z auto tmp4 = tmp0 & tmp1; 2023-01-11T21:05:10.3572538Z auto tmp5 = tmp0 | tmp1; 2023-01-11T21:05:10.3572623Z auto tmp6 = tmp0 ^ tmp1; 2023-01-11T21:05:10.3572709Z auto tmp7 = tmp0 == 0; 2023-01-11T21:05:10.3572793Z out_ptr0[i0] = tmp2; 2023-01-11T21:05:10.3572872Z out_ptr1[i0] = tmp3; 2023-01-11T21:05:10.3572951Z out_ptr2[i0] = tmp4; 2023-01-11T21:05:10.3573020Z out_ptr3[i0] = tmp5; 2023-01-11T21:05:10.3573099Z out_ptr4[i0] = tmp6; 2023-01-11T21:05:10.3573177Z out_ptr5[i0] = tmp3; 2023-01-11T21:05:10.3573254Z out_ptr6[i0] = tmp2; 2023-01-11T21:05:10.3573333Z out_ptr7[i0] = tmp7; 2023-01-11T21:05:10.3573410Z out_ptr8[i0] = tmp1; 2023-01-11T21:05:10.3573505Z } 2023-01-11T21:05:10.3573555Z } 2023-01-11T21:05:10.3573616Z } 2023-01-11T21:05:10.3573675Z } 2023-01-11T21:05:10.3573732Z } 2023-01-11T21:05:10.3573808Z ''') 2023-01-11T21:05:10.3573815Z 2023-01-11T21:05:10.3573820Z 2023-01-11T21:05:10.3573906Z async_compile.wait(globals()) 2023-01-11T21:05:10.3573976Z del async_compile 2023-01-11T21:05:10.3573981Z 2023-01-11T21:05:10.3574036Z def call(args): 2023-01-11T21:05:10.3574110Z arg0_1, arg1_1 = args 2023-01-11T21:05:10.3574178Z args.clear() 2023-01-11T21:05:10.3574368Z buf0 = empty_strided((4, ), (1, ), device='cpu', dtype=torch.bool) 2023-01-11T21:05:10.3574551Z buf1 = empty_strided((4, ), (1, ), device='cpu', dtype=torch.bool) 2023-01-11T21:05:10.3574726Z buf2 = empty_strided((4, ), (1, ), device='cpu', dtype=torch.bool) 2023-01-11T21:05:10.3574902Z buf3 = empty_strided((4, ), (1, ), device='cpu', dtype=torch.bool) 2023-01-11T21:05:10.3575077Z buf4 = empty_strided((4, ), (1, ), device='cpu', dtype=torch.bool) 2023-01-11T21:05:10.3575245Z buf5 = empty_strided((4, ), (1, ), device='cpu', dtype=torch.bool) 2023-01-11T21:05:10.3575451Z buf6 = empty_strided((4, ), (1, ), device='cpu', dtype=torch.bool) 2023-01-11T21:05:10.3575624Z buf7 = empty_strided((4, ), (1, ), device='cpu', dtype=torch.bool) 2023-01-11T21:05:10.3575800Z buf8 = empty_strided((4, ), (1, ), device='cpu', dtype=torch.bool) 2023-01-11T21:05:10.3576151Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(arg1_1.data_ptr()), c_void_p(buf0.data_ptr()), c_void_p(buf1.data_ptr()), c_void_p(buf2.data_ptr()), c_void_p(buf3.data_ptr()), c_void_p(buf4.data_ptr()), c_void_p(buf5.data_ptr()), c_void_p(buf6.data_ptr()), c_void_p(buf7.data_ptr()), c_void_p(buf8.data_ptr())) 2023-01-11T21:05:10.3576218Z del arg0_1 2023-01-11T21:05:10.3576282Z del arg1_1 2023-01-11T21:05:10.3576399Z return (buf0, buf1, buf2, buf3, buf4, buf5, buf6, buf7, buf8, ) 2023-01-11T21:05:10.3576404Z 2023-01-11T21:05:10.3576410Z 2023-01-11T21:05:10.3576484Z if __name__ == "__main__": 2023-01-11T21:05:10.3576585Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.3576706Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.3576892Z arg0_1 = rand_strided((4, ), (1, ), device='cpu', dtype=torch.bool) 2023-01-11T21:05:10.3577075Z arg1_1 = rand_strided((4, ), (1, ), device='cpu', dtype=torch.bool) 2023-01-11T21:05:10.3577188Z print_performance(lambda: call([arg0_1, arg1_1])) 2023-01-11T21:05:10.3577193Z 2023-01-11T21:05:10.3577257Z ok (2.927s) 2023-01-11T21:05:10.3577587Z test_both_scalars_cpu (__main__.CpuTests) ... [2023-01-11 20:46:11,824] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 49 2023-01-11T21:05:10.3577847Z [2023-01-11 20:46:14,623] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 49 2023-01-11T21:05:10.3577852Z 2023-01-11T21:05:10.3577932Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.3578002Z import torch 2023-01-11T21:05:10.3578070Z import random 2023-01-11T21:05:10.3578183Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.3578302Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.3578309Z 2023-01-11T21:05:10.3578385Z aten = torch.ops.aten 2023-01-11T21:05:10.3578612Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.3578693Z async_compile = AsyncCompile() 2023-01-11T21:05:10.3578711Z 2023-01-11T21:05:10.3578716Z 2023-01-11T21:05:10.3578837Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.3579037Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.3579150Z extern "C" void kernel(float* __restrict__ out_ptr0, 2023-01-11T21:05:10.3579249Z float* __restrict__ out_ptr1, 2023-01-11T21:05:10.3579342Z float* __restrict__ out_ptr2, 2023-01-11T21:05:10.3579435Z float* __restrict__ out_ptr3, 2023-01-11T21:05:10.3579564Z float* __restrict__ out_ptr4, 2023-01-11T21:05:10.3579645Z float* __restrict__ out_ptr5) 2023-01-11T21:05:10.3579706Z { 2023-01-11T21:05:10.3579768Z { 2023-01-11T21:05:10.3579832Z { 2023-01-11T21:05:10.3579930Z auto tmp0 = static_cast(4); 2023-01-11T21:05:10.3580030Z auto tmp1 = static_cast(3.3); 2023-01-11T21:05:10.3580112Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:05:10.3580178Z out_ptr0[0] = tmp2; 2023-01-11T21:05:10.3580237Z } 2023-01-11T21:05:10.3580297Z } 2023-01-11T21:05:10.3580357Z { 2023-01-11T21:05:10.3580417Z { 2023-01-11T21:05:10.3580516Z auto tmp0 = static_cast(3.3); 2023-01-11T21:05:10.3580613Z auto tmp1 = static_cast(4); 2023-01-11T21:05:10.3580682Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:05:10.3580757Z out_ptr1[0] = tmp2; 2023-01-11T21:05:10.3580821Z } 2023-01-11T21:05:10.3580883Z } 2023-01-11T21:05:10.3580943Z { 2023-01-11T21:05:10.3581004Z { 2023-01-11T21:05:10.3581089Z auto tmp0 = static_cast(4); 2023-01-11T21:05:10.3581219Z auto tmp1 = static_cast(3.3); 2023-01-11T21:05:10.3581350Z auto tmp2 = tmp0 - tmp1; 2023-01-11T21:05:10.3581425Z out_ptr2[0] = tmp2; 2023-01-11T21:05:10.3581487Z } 2023-01-11T21:05:10.3581546Z } 2023-01-11T21:05:10.3581608Z { 2023-01-11T21:05:10.3581655Z { 2023-01-11T21:05:10.3581756Z auto tmp0 = static_cast(3.3); 2023-01-11T21:05:10.3581854Z auto tmp1 = static_cast(4); 2023-01-11T21:05:10.3581980Z auto tmp2 = tmp0 - tmp1; 2023-01-11T21:05:10.3582059Z out_ptr3[0] = tmp2; 2023-01-11T21:05:10.3582124Z } 2023-01-11T21:05:10.3582183Z } 2023-01-11T21:05:10.3582232Z { 2023-01-11T21:05:10.3582293Z { 2023-01-11T21:05:10.3582388Z auto tmp0 = static_cast(4); 2023-01-11T21:05:10.3582488Z auto tmp1 = static_cast(3.3); 2023-01-11T21:05:10.3582570Z auto tmp2 = tmp0 * tmp1; 2023-01-11T21:05:10.3582646Z out_ptr4[0] = tmp2; 2023-01-11T21:05:10.3582694Z } 2023-01-11T21:05:10.3582755Z } 2023-01-11T21:05:10.3582815Z { 2023-01-11T21:05:10.3582878Z { 2023-01-11T21:05:10.3582978Z auto tmp0 = static_cast(3.3); 2023-01-11T21:05:10.3583074Z auto tmp1 = static_cast(4); 2023-01-11T21:05:10.3583157Z auto tmp2 = tmp0 * tmp1; 2023-01-11T21:05:10.3583220Z out_ptr5[0] = tmp2; 2023-01-11T21:05:10.3583281Z } 2023-01-11T21:05:10.3583342Z } 2023-01-11T21:05:10.3583401Z } 2023-01-11T21:05:10.3583486Z ''') 2023-01-11T21:05:10.3583490Z 2023-01-11T21:05:10.3583494Z 2023-01-11T21:05:10.3583584Z async_compile.wait(globals()) 2023-01-11T21:05:10.3583656Z del async_compile 2023-01-11T21:05:10.3583661Z 2023-01-11T21:05:10.3583719Z def call(args): 2023-01-11T21:05:10.3583905Z buf0 = empty_strided((), (), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.3584083Z buf1 = empty_strided((), (), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.3584264Z buf2 = empty_strided((), (), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.3584440Z buf3 = empty_strided((), (), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.3584613Z buf4 = empty_strided((), (), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.3584785Z buf5 = empty_strided((), (), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.3585018Z kernel_cpp_0(c_void_p(buf0.data_ptr()), c_void_p(buf1.data_ptr()), c_void_p(buf2.data_ptr()), c_void_p(buf3.data_ptr()), c_void_p(buf4.data_ptr()), c_void_p(buf5.data_ptr())) 2023-01-11T21:05:10.3585109Z return (buf0, buf1, buf2, buf3, buf4, buf5, ) 2023-01-11T21:05:10.3585128Z 2023-01-11T21:05:10.3585133Z 2023-01-11T21:05:10.3585196Z if __name__ == "__main__": 2023-01-11T21:05:10.3585361Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.3585483Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.3585586Z print_performance(lambda: call([])) 2023-01-11T21:05:10.3585593Z 2023-01-11T21:05:10.3585659Z ok (2.957s) 2023-01-11T21:05:10.3586095Z test_cat_cpu (__main__.CpuTests) ... inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.3586223Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.3586485Z [2023-01-11 20:46:14,740] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 50 2023-01-11T21:05:10.3586746Z [2023-01-11 20:46:17,627] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 50 2023-01-11T21:05:10.3587187Z inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.3587316Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.3587568Z [2023-01-11 20:46:17,776] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 51 2023-01-11T21:05:10.3587573Z 2023-01-11T21:05:10.3587664Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.3587735Z import torch 2023-01-11T21:05:10.3587803Z import random 2023-01-11T21:05:10.3587918Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.3588037Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.3588042Z 2023-01-11T21:05:10.3588120Z aten = torch.ops.aten 2023-01-11T21:05:10.3588239Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.3588329Z async_compile = AsyncCompile() 2023-01-11T21:05:10.3588333Z 2023-01-11T21:05:10.3588340Z 2023-01-11T21:05:10.3588475Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.3588677Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.3588794Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:05:10.3588892Z float* __restrict__ out_ptr0, 2023-01-11T21:05:10.3588988Z float* __restrict__ out_ptr1, 2023-01-11T21:05:10.3589080Z float* __restrict__ out_ptr2, 2023-01-11T21:05:10.3589162Z float* __restrict__ out_ptr3, 2023-01-11T21:05:10.3589255Z float* __restrict__ out_ptr4, 2023-01-11T21:05:10.3589352Z double* __restrict__ out_ptr5, 2023-01-11T21:05:10.3589451Z double* __restrict__ out_ptr6) 2023-01-11T21:05:10.3589511Z { 2023-01-11T21:05:10.3589608Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.3589669Z { 2023-01-11T21:05:10.3589735Z #pragma omp for 2023-01-11T21:05:10.3589814Z for(long i0=0; i0<8; i0+=1) 2023-01-11T21:05:10.3589878Z { 2023-01-11T21:05:10.3589957Z for(long i1=0; i1<1; i1+=1) 2023-01-11T21:05:10.3590017Z { 2023-01-11T21:05:10.3590163Z auto tmp0 = at::vec::Vectorized::loadu(in_ptr0 + (16*i0) + (16*i1)); 2023-01-11T21:05:10.3590296Z auto tmp1 = at::vec::Vectorized(static_cast(2)); 2023-01-11T21:05:10.3590371Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:05:10.3590470Z tmp0.store(out_ptr0 + (16*i1) + (36*i0)); 2023-01-11T21:05:10.3590570Z tmp2.store(out_ptr1 + (16*i1) + (36*i0)); 2023-01-11T21:05:10.3590633Z } 2023-01-11T21:05:10.3590759Z #pragma omp simd simdlen(8) 2023-01-11T21:05:10.3590842Z for(long i1=16; i1<16; i1+=1) 2023-01-11T21:05:10.3590906Z { 2023-01-11T21:05:10.3590989Z auto tmp0 = in_ptr0[i1 + (16*i0)]; 2023-01-11T21:05:10.3591086Z auto tmp1 = static_cast(2); 2023-01-11T21:05:10.3591171Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:05:10.3591261Z out_ptr0[i1 + (36*i0)] = tmp0; 2023-01-11T21:05:10.3591349Z out_ptr1[i1 + (36*i0)] = tmp2; 2023-01-11T21:05:10.3591410Z } 2023-01-11T21:05:10.3591471Z } 2023-01-11T21:05:10.3591534Z #pragma omp for 2023-01-11T21:05:10.3591614Z for(long i0=0; i0<8; i0+=1) 2023-01-11T21:05:10.3591673Z { 2023-01-11T21:05:10.3591751Z #pragma GCC ivdep 2023-01-11T21:05:10.3591831Z for(long i1=0; i1<4; i1+=1) 2023-01-11T21:05:10.3591891Z { 2023-01-11T21:05:10.3591953Z { 2023-01-11T21:05:10.3592008Z { 2023-01-11T21:05:10.3592108Z auto tmp0 = in_ptr0[i1 + (16*i0)]; 2023-01-11T21:05:10.3592212Z auto tmp1 = static_cast(1); 2023-01-11T21:05:10.3592332Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:05:10.3592426Z out_ptr2[i1 + (36*i0)] = tmp2; 2023-01-11T21:05:10.3592488Z } 2023-01-11T21:05:10.3592549Z } 2023-01-11T21:05:10.3592598Z } 2023-01-11T21:05:10.3592656Z } 2023-01-11T21:05:10.3592731Z #pragma omp for 2023-01-11T21:05:10.3592809Z for(long i0=0; i0<128; i0+=1) 2023-01-11T21:05:10.3592869Z { 2023-01-11T21:05:10.3592928Z { 2023-01-11T21:05:10.3592977Z { 2023-01-11T21:05:10.3593065Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:05:10.3593164Z auto tmp1 = static_cast(2); 2023-01-11T21:05:10.3593253Z auto tmp2 = tmp0 * tmp1; 2023-01-11T21:05:10.3593361Z auto tmp3 = static_cast(tmp2); 2023-01-11T21:05:10.3593442Z out_ptr3[i0] = tmp2; 2023-01-11T21:05:10.3593526Z out_ptr4[i0] = tmp2; 2023-01-11T21:05:10.3593597Z out_ptr5[i0] = tmp3; 2023-01-11T21:05:10.3593677Z out_ptr6[i0] = tmp3; 2023-01-11T21:05:10.3593743Z } 2023-01-11T21:05:10.3593803Z } 2023-01-11T21:05:10.3593865Z } 2023-01-11T21:05:10.3593924Z } 2023-01-11T21:05:10.3593980Z } 2023-01-11T21:05:10.3594047Z ''') 2023-01-11T21:05:10.3594052Z 2023-01-11T21:05:10.3594056Z 2023-01-11T21:05:10.3594144Z async_compile.wait(globals()) 2023-01-11T21:05:10.3594214Z del async_compile 2023-01-11T21:05:10.3594218Z 2023-01-11T21:05:10.3594287Z def call(args): 2023-01-11T21:05:10.3594355Z arg0_1, = args 2023-01-11T21:05:10.3594426Z args.clear() 2023-01-11T21:05:10.3594625Z buf3 = empty_strided((8, 36), (36, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.3594715Z buf0 = as_strided(buf3, (8, 16), (36, 1)) # alias 2023-01-11T21:05:10.3594814Z buf2 = as_strided(buf3, (8, 16), (36, 1), 20) # alias 2023-01-11T21:05:10.3594913Z buf1 = as_strided(buf3, (8, 4), (36, 1), 16) # alias 2023-01-11T21:05:10.3595108Z buf6 = empty_strided((16, 16), (16, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.3595206Z buf4 = as_strided(buf6, (8, 16), (16, 1)) # alias 2023-01-11T21:05:10.3595307Z buf5 = as_strided(buf6, (8, 16), (16, 1), 128) # alias 2023-01-11T21:05:10.3595499Z buf9 = empty_strided((16, 16), (16, 1), device='cpu', dtype=torch.float64) 2023-01-11T21:05:10.3595596Z buf7 = as_strided(buf9, (8, 16), (16, 1)) # alias 2023-01-11T21:05:10.3595683Z buf8 = as_strided(buf9, (8, 16), (16, 1), 128) # alias 2023-01-11T21:05:10.3595959Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(buf0.data_ptr()), c_void_p(buf2.data_ptr()), c_void_p(buf1.data_ptr()), c_void_p(buf4.data_ptr()), c_void_p(buf5.data_ptr()), c_void_p(buf7.data_ptr()), c_void_p(buf8.data_ptr())) 2023-01-11T21:05:10.3596066Z del arg0_1 2023-01-11T21:05:10.3596146Z return (buf3, buf6, buf9, ) 2023-01-11T21:05:10.3596152Z 2023-01-11T21:05:10.3596158Z 2023-01-11T21:05:10.3596231Z if __name__ == "__main__": 2023-01-11T21:05:10.3596344Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.3596466Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.3596662Z arg0_1 = rand_strided((8, 16), (16, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.3596756Z print_performance(lambda: call([arg0_1])) 2023-01-11T21:05:10.3596772Z 2023-01-11T21:05:10.3596776Z 2023-01-11T21:05:10.3596856Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.3596922Z import torch 2023-01-11T21:05:10.3596991Z import random 2023-01-11T21:05:10.3597102Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.3597220Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.3597227Z 2023-01-11T21:05:10.3597303Z aten = torch.ops.aten 2023-01-11T21:05:10.3597436Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.3597514Z async_compile = AsyncCompile() 2023-01-11T21:05:10.3597566Z 2023-01-11T21:05:10.3597571Z 2023-01-11T21:05:10.3597691Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.3597891Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.3598006Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:05:10.3598108Z const float* __restrict__ in_ptr1, 2023-01-11T21:05:10.3598208Z const float* __restrict__ in_ptr2, 2023-01-11T21:05:10.3598312Z const double* __restrict__ in_ptr3, 2023-01-11T21:05:10.3598409Z float* __restrict__ out_ptr0, 2023-01-11T21:05:10.3598490Z float* __restrict__ out_ptr1, 2023-01-11T21:05:10.3598583Z float* __restrict__ out_ptr2, 2023-01-11T21:05:10.3598675Z float* __restrict__ out_ptr3, 2023-01-11T21:05:10.3598766Z float* __restrict__ out_ptr4, 2023-01-11T21:05:10.3598857Z float* __restrict__ out_ptr5, 2023-01-11T21:05:10.3598952Z double* __restrict__ out_ptr6, 2023-01-11T21:05:10.3599047Z double* __restrict__ out_ptr7, 2023-01-11T21:05:10.3599139Z float* __restrict__ out_ptr8, 2023-01-11T21:05:10.3599222Z double* __restrict__ out_ptr9) 2023-01-11T21:05:10.3599280Z { 2023-01-11T21:05:10.3599375Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.3599434Z { 2023-01-11T21:05:10.3599523Z #pragma omp for collapse(2) 2023-01-11T21:05:10.3599601Z for(long i0=0; i0<3; i0+=1) 2023-01-11T21:05:10.3599650Z { 2023-01-11T21:05:10.3599729Z for(long i1=0; i1<3; i1+=1) 2023-01-11T21:05:10.3599793Z { 2023-01-11T21:05:10.3599873Z #pragma GCC ivdep 2023-01-11T21:05:10.3599960Z for(long i2=0; i2<16; i2+=1) 2023-01-11T21:05:10.3600024Z { 2023-01-11T21:05:10.3600091Z { 2023-01-11T21:05:10.3600146Z { 2023-01-11T21:05:10.3600254Z auto tmp0 = in_ptr0[i0 + (3*i2) + (48*i1)]; 2023-01-11T21:05:10.3600362Z auto tmp1 = static_cast(1); 2023-01-11T21:05:10.3600454Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:05:10.3600557Z auto tmp3 = static_cast(2); 2023-01-11T21:05:10.3600802Z auto tmp4 = tmp0 + tmp3; 2023-01-11T21:05:10.3600946Z out_ptr0[i2 + (48*i1) + (144*i0)] = tmp0; 2023-01-11T21:05:10.3601052Z out_ptr1[i2 + (48*i1) + (144*i0)] = tmp2; 2023-01-11T21:05:10.3601138Z out_ptr2[i2 + (48*i1) + (144*i0)] = tmp4; 2023-01-11T21:05:10.3601274Z } 2023-01-11T21:05:10.3601340Z } 2023-01-11T21:05:10.3601403Z } 2023-01-11T21:05:10.3601465Z } 2023-01-11T21:05:10.3601527Z } 2023-01-11T21:05:10.3601605Z #pragma omp for collapse(2) 2023-01-11T21:05:10.3601683Z for(long i0=0; i0<3; i0+=1) 2023-01-11T21:05:10.3601745Z { 2023-01-11T21:05:10.3601832Z for(long i1=0; i1<144; i1+=1) 2023-01-11T21:05:10.3601897Z { 2023-01-11T21:05:10.3601961Z { 2023-01-11T21:05:10.3602026Z { 2023-01-11T21:05:10.3602114Z auto tmp0 = in_ptr1[i1 + (144*i0)]; 2023-01-11T21:05:10.3602210Z out_ptr3[i0 + (3*i1)] = tmp0; 2023-01-11T21:05:10.3602274Z } 2023-01-11T21:05:10.3602340Z } 2023-01-11T21:05:10.3602405Z } 2023-01-11T21:05:10.3602464Z } 2023-01-11T21:05:10.3602556Z #pragma omp for collapse(2) 2023-01-11T21:05:10.3602623Z for(long i0=0; i0<3; i0+=1) 2023-01-11T21:05:10.3602682Z { 2023-01-11T21:05:10.3602764Z for(long i1=0; i1<48; i1+=1) 2023-01-11T21:05:10.3602868Z { 2023-01-11T21:05:10.3602931Z { 2023-01-11T21:05:10.3602996Z { 2023-01-11T21:05:10.3603093Z auto tmp0 = in_ptr0[i0 + (3*i1)]; 2023-01-11T21:05:10.3603186Z auto tmp1 = static_cast(2); 2023-01-11T21:05:10.3603280Z auto tmp2 = tmp0 * tmp1; 2023-01-11T21:05:10.3603374Z out_ptr4[i1 + (48*i0)] = tmp2; 2023-01-11T21:05:10.3603437Z } 2023-01-11T21:05:10.3603499Z } 2023-01-11T21:05:10.3603559Z } 2023-01-11T21:05:10.3603606Z } 2023-01-11T21:05:10.3603686Z #pragma omp for 2023-01-11T21:05:10.3603765Z for(long i0=0; i0<144; i0+=1) 2023-01-11T21:05:10.3603828Z { 2023-01-11T21:05:10.3603889Z { 2023-01-11T21:05:10.3603950Z { 2023-01-11T21:05:10.3604041Z auto tmp0 = out_ptr4[i0]; 2023-01-11T21:05:10.3604136Z auto tmp1 = static_cast(tmp0); 2023-01-11T21:05:10.3604219Z out_ptr5[i0] = tmp0; 2023-01-11T21:05:10.3604303Z out_ptr6[i0] = tmp1; 2023-01-11T21:05:10.3604384Z out_ptr7[i0] = tmp1; 2023-01-11T21:05:10.3604447Z } 2023-01-11T21:05:10.3604508Z } 2023-01-11T21:05:10.3604568Z } 2023-01-11T21:05:10.3604644Z #pragma omp for collapse(3) 2023-01-11T21:05:10.3604728Z for(long i0=0; i0<2; i0+=1) 2023-01-11T21:05:10.3604787Z { 2023-01-11T21:05:10.3604869Z for(long i1=0; i1<3; i1+=1) 2023-01-11T21:05:10.3604930Z { 2023-01-11T21:05:10.3605016Z for(long i2=0; i2<48; i2+=1) 2023-01-11T21:05:10.3605077Z { 2023-01-11T21:05:10.3605133Z { 2023-01-11T21:05:10.3605198Z { 2023-01-11T21:05:10.3605305Z auto tmp0 = in_ptr2[i2 + (48*i1) + (144*i0)]; 2023-01-11T21:05:10.3605411Z out_ptr8[i1 + (3*i2) + (144*i0)] = tmp0; 2023-01-11T21:05:10.3605478Z } 2023-01-11T21:05:10.3605540Z } 2023-01-11T21:05:10.3605602Z } 2023-01-11T21:05:10.3605649Z } 2023-01-11T21:05:10.3605709Z } 2023-01-11T21:05:10.3605796Z #pragma omp for collapse(3) 2023-01-11T21:05:10.3605873Z for(long i0=0; i0<2; i0+=1) 2023-01-11T21:05:10.3605932Z { 2023-01-11T21:05:10.3606012Z for(long i1=0; i1<3; i1+=1) 2023-01-11T21:05:10.3606060Z { 2023-01-11T21:05:10.3606145Z for(long i2=0; i2<48; i2+=1) 2023-01-11T21:05:10.3606207Z { 2023-01-11T21:05:10.3606273Z { 2023-01-11T21:05:10.3606336Z { 2023-01-11T21:05:10.3606484Z auto tmp0 = in_ptr3[i2 + (48*i1) + (144*i0)]; 2023-01-11T21:05:10.3606584Z out_ptr9[i1 + (3*i2) + (144*i0)] = tmp0; 2023-01-11T21:05:10.3606641Z } 2023-01-11T21:05:10.3606704Z } 2023-01-11T21:05:10.3606764Z } 2023-01-11T21:05:10.3606824Z } 2023-01-11T21:05:10.3606882Z } 2023-01-11T21:05:10.3606942Z } 2023-01-11T21:05:10.3607000Z } 2023-01-11T21:05:10.3607086Z ''') 2023-01-11T21:05:10.3607092Z 2023-01-11T21:05:10.3607096Z 2023-01-11T21:05:10.3607186Z async_compile.wait(globals()) 2023-01-11T21:05:10.3607257Z del async_compile 2023-01-11T21:05:10.3607262Z 2023-01-11T21:05:10.3607335Z def call(args): 2023-01-11T21:05:10.3607401Z arg0_1, = args 2023-01-11T21:05:10.3607470Z args.clear() 2023-01-11T21:05:10.3607691Z buf3 = empty_strided((1, 3, 3, 48), (432, 144, 48, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.3607822Z buf0 = as_strided(buf3, (1, 3, 3, 16), (432, 144, 48, 1)) # alias 2023-01-11T21:05:10.3607973Z buf1 = as_strided(buf3, (1, 3, 3, 16), (432, 144, 48, 1), 16) # alias 2023-01-11T21:05:10.3608219Z buf2 = as_strided(buf3, (1, 3, 3, 16), (432, 144, 48, 1), 32) # alias 2023-01-11T21:05:10.3608854Z buf4 = empty_strided((1, 3, 3, 48), (432, 1, 144, 3), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.3609237Z buf7 = empty_strided((2, 3, 3, 16), (144, 48, 16, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.3609486Z buf5 = as_strided(buf7, (1, 3, 3, 16), (144, 48, 16, 1)) # alias 2023-01-11T21:05:10.3609730Z buf6 = as_strided(buf7, (1, 3, 3, 16), (144, 48, 16, 1), 144) # alias 2023-01-11T21:05:10.3610079Z buf11 = empty_strided((2, 3, 3, 16), (144, 48, 16, 1), device='cpu', dtype=torch.float64) 2023-01-11T21:05:10.3610347Z buf9 = as_strided(buf11, (1, 3, 3, 16), (144, 48, 16, 1)) # alias 2023-01-11T21:05:10.3610575Z buf10 = as_strided(buf11, (1, 3, 3, 16), (144, 48, 16, 1), 144) # alias 2023-01-11T21:05:10.3610922Z buf8 = empty_strided((2, 3, 3, 16), (144, 1, 48, 3), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.3611290Z buf12 = empty_strided((2, 3, 3, 16), (144, 1, 48, 3), device='cpu', dtype=torch.float64) 2023-01-11T21:05:10.3611867Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(buf3.data_ptr()), c_void_p(buf7.data_ptr()), c_void_p(buf11.data_ptr()), c_void_p(buf0.data_ptr()), c_void_p(buf1.data_ptr()), c_void_p(buf2.data_ptr()), c_void_p(buf4.data_ptr()), c_void_p(buf5.data_ptr()), c_void_p(buf6.data_ptr()), c_void_p(buf9.data_ptr()), c_void_p(buf10.data_ptr()), c_void_p(buf8.data_ptr()), c_void_p(buf12.data_ptr())) 2023-01-11T21:05:10.3612343Z del arg0_1 2023-01-11T21:05:10.3612508Z del buf0 2023-01-11T21:05:10.3612669Z del buf1 2023-01-11T21:05:10.3612813Z del buf10 2023-01-11T21:05:10.3612970Z del buf11 2023-01-11T21:05:10.3613129Z del buf2 2023-01-11T21:05:10.3613271Z del buf3 2023-01-11T21:05:10.3613432Z del buf5 2023-01-11T21:05:10.3613584Z del buf6 2023-01-11T21:05:10.3613724Z del buf7 2023-01-11T21:05:10.3613882Z del buf9 2023-01-11T21:05:10.3614057Z return (buf4, buf8, buf12, ) 2023-01-11T21:05:10.3614179Z 2023-01-11T21:05:10.3614184Z 2023-01-11T21:05:10.3614245Z if __name__ == "__main__": 2023-01-11T21:05:10.3614462Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.3614722Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.3615089Z arg0_1 = rand_strided((1, 3, 3, 16), (144, 1, 48, 3), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.3615345Z print_performance(lambda: call([arg0_1])) 2023-01-11T21:05:10.3615745Z [2023-01-11 20:46:20,793] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 51 2023-01-11T21:05:10.3615948Z 2023-01-11T21:05:10.3616013Z ok (6.165s) 2023-01-11T21:05:10.3616547Z test_cat_extern_kernel_cpu (__main__.CpuTests) ... inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.3617165Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.3617577Z [2023-01-11 20:46:20,958] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 52 2023-01-11T21:05:10.3618030Z [2023-01-11 20:46:23,782] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 52 2023-01-11T21:05:10.3618226Z 2023-01-11T21:05:10.3618318Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.3618565Z import torch 2023-01-11T21:05:10.3618735Z import random 2023-01-11T21:05:10.3618945Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.3619192Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.3619344Z 2023-01-11T21:05:10.3619420Z aten = torch.ops.aten 2023-01-11T21:05:10.3619663Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.3619951Z async_compile = AsyncCompile() 2023-01-11T21:05:10.3621627Z 2023-01-11T21:05:10.3621632Z 2023-01-11T21:05:10.3621799Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.3622133Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.3622479Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:05:10.3622703Z float* __restrict__ out_ptr0) 2023-01-11T21:05:10.3622888Z { 2023-01-11T21:05:10.3623073Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.3623248Z { 2023-01-11T21:05:10.3623410Z #pragma omp for 2023-01-11T21:05:10.3623601Z for(long i0=0; i0<256; i0+=1) 2023-01-11T21:05:10.3623761Z { 2023-01-11T21:05:10.3623941Z for(long i1=0; i1<16; i1+=1) 2023-01-11T21:05:10.3624133Z { 2023-01-11T21:05:10.3624383Z auto tmp0 = at::vec::Vectorized::loadu(in_ptr0 + (16*i1) + (256*i0)); 2023-01-11T21:05:10.3624637Z tmp0.store(out_ptr0 + (16*i1) + (512*i0)); 2023-01-11T21:05:10.3624838Z } 2023-01-11T21:05:10.3625020Z #pragma omp simd simdlen(8) 2023-01-11T21:05:10.3625227Z for(long i1=256; i1<256; i1+=1) 2023-01-11T21:05:10.3625392Z { 2023-01-11T21:05:10.3625580Z auto tmp0 = in_ptr0[i1 + (256*i0)]; 2023-01-11T21:05:10.3625791Z out_ptr0[i1 + (512*i0)] = tmp0; 2023-01-11T21:05:10.3625957Z } 2023-01-11T21:05:10.3626109Z } 2023-01-11T21:05:10.3626258Z } 2023-01-11T21:05:10.3626391Z } 2023-01-11T21:05:10.3626554Z ''') 2023-01-11T21:05:10.3626644Z 2023-01-11T21:05:10.3626648Z 2023-01-11T21:05:10.3626735Z async_compile.wait(globals()) 2023-01-11T21:05:10.3626910Z del async_compile 2023-01-11T21:05:10.3627016Z 2023-01-11T21:05:10.3627088Z def call(args): 2023-01-11T21:05:10.3627278Z arg0_1, arg1_1, arg2_1, arg3_1 = args 2023-01-11T21:05:10.3627452Z args.clear() 2023-01-11T21:05:10.3627765Z buf0 = empty_strided((256, 1600), (1600, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.3628018Z aten.mm.out(arg1_1, arg2_1, out=buf0) 2023-01-11T21:05:10.3628195Z del arg1_1 2023-01-11T21:05:10.3628358Z del arg2_1 2023-01-11T21:05:10.3628654Z buf3 = empty_strided((256, 512), (512, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.3628913Z buf1 = as_strided(buf3, (256, 256), (512, 1)) # alias 2023-01-11T21:05:10.3629145Z aten.mm.out(as_strided(buf0, (256, 100), (1600, 1)), arg3_1, out=buf1) 2023-01-11T21:05:10.3629356Z del arg3_1 2023-01-11T21:05:10.3629516Z del buf0 2023-01-11T21:05:10.3629702Z buf2 = as_strided(buf3, (256, 256), (512, 1), 256) # alias 2023-01-11T21:05:10.3629964Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(buf2.data_ptr())) 2023-01-11T21:05:10.3630297Z del arg0_1 2023-01-11T21:05:10.3630450Z return (buf3, ) 2023-01-11T21:05:10.3630556Z 2023-01-11T21:05:10.3630561Z 2023-01-11T21:05:10.3630634Z if __name__ == "__main__": 2023-01-11T21:05:10.3630855Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.3631102Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.3631454Z arg0_1 = rand_strided((256, 256), (256, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.3631816Z arg1_1 = rand_strided((256, 1024), (1024, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.3632178Z arg2_1 = rand_strided((1024, 1600), (1600, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.3632532Z arg3_1 = rand_strided((100, 256), (256, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.3632816Z print_performance(lambda: call([arg0_1, arg1_1, arg2_1, arg3_1])) 2023-01-11T21:05:10.3632970Z 2023-01-11T21:05:10.3633037Z ok (3.559s) 2023-01-11T21:05:10.3633618Z test_cat_upcasting_cpu (__main__.CpuTests) ... inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.3634192Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.3634605Z [2023-01-11 20:46:24,397] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 53 2023-01-11T21:05:10.3635064Z [2023-01-11 20:46:27,258] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 53 2023-01-11T21:05:10.3635266Z 2023-01-11T21:05:10.3635360Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.3635543Z import torch 2023-01-11T21:05:10.3635734Z import random 2023-01-11T21:05:10.3635949Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.3636203Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.3636353Z 2023-01-11T21:05:10.3636429Z aten = torch.ops.aten 2023-01-11T21:05:10.3636672Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.3636905Z async_compile = AsyncCompile() 2023-01-11T21:05:10.3637030Z 2023-01-11T21:05:10.3637035Z 2023-01-11T21:05:10.3637169Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.3637498Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.3637837Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:05:10.3638076Z const half* __restrict__ in_ptr1, 2023-01-11T21:05:10.3638311Z float* __restrict__ out_ptr0, 2023-01-11T21:05:10.3638535Z float* __restrict__ out_ptr1) 2023-01-11T21:05:10.3638725Z { 2023-01-11T21:05:10.3638902Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.3639091Z { 2023-01-11T21:05:10.3639253Z #pragma omp for 2023-01-11T21:05:10.3639431Z for(long i0=0; i0<8; i0+=1) 2023-01-11T21:05:10.3639602Z { 2023-01-11T21:05:10.3639770Z for(long i1=0; i1<1; i1+=1) 2023-01-11T21:05:10.3639932Z { 2023-01-11T21:05:10.3640172Z auto tmp0 = at::vec::Vectorized::loadu(in_ptr0 + (16*i0) + (16*i1)); 2023-01-11T21:05:10.3640434Z tmp0.store(out_ptr0 + (16*i1) + (36*i0)); 2023-01-11T21:05:10.3640799Z } 2023-01-11T21:05:10.3640992Z #pragma omp simd simdlen(8) 2023-01-11T21:05:10.3641197Z for(long i1=16; i1<16; i1+=1) 2023-01-11T21:05:10.3641373Z { 2023-01-11T21:05:10.3641546Z auto tmp0 = in_ptr0[i1 + (16*i0)]; 2023-01-11T21:05:10.3641756Z out_ptr0[i1 + (36*i0)] = tmp0; 2023-01-11T21:05:10.3641934Z } 2023-01-11T21:05:10.3642073Z } 2023-01-11T21:05:10.3642239Z #pragma omp for 2023-01-11T21:05:10.3642424Z for(long i0=0; i0<8; i0+=1) 2023-01-11T21:05:10.3642658Z { 2023-01-11T21:05:10.3642828Z #pragma GCC ivdep 2023-01-11T21:05:10.3643021Z for(long i1=0; i1<20; i1+=1) 2023-01-11T21:05:10.3643181Z { 2023-01-11T21:05:10.3643337Z { 2023-01-11T21:05:10.3643496Z { 2023-01-11T21:05:10.3643702Z auto tmp0 = static_cast(in_ptr1[i1 + (20*i0)]); 2023-01-11T21:05:10.3643957Z auto tmp1 = static_cast(tmp0); 2023-01-11T21:05:10.3644181Z out_ptr1[i1 + (36*i0)] = tmp1; 2023-01-11T21:05:10.3644351Z } 2023-01-11T21:05:10.3644509Z } 2023-01-11T21:05:10.3644664Z } 2023-01-11T21:05:10.3644803Z } 2023-01-11T21:05:10.3644951Z } 2023-01-11T21:05:10.3645095Z } 2023-01-11T21:05:10.3645250Z ''') 2023-01-11T21:05:10.3645340Z 2023-01-11T21:05:10.3645345Z 2023-01-11T21:05:10.3645430Z async_compile.wait(globals()) 2023-01-11T21:05:10.3645623Z del async_compile 2023-01-11T21:05:10.3645729Z 2023-01-11T21:05:10.3645785Z def call(args): 2023-01-11T21:05:10.3645960Z arg0_1, arg1_1 = args 2023-01-11T21:05:10.3646133Z args.clear() 2023-01-11T21:05:10.3646476Z buf2 = empty_strided((8, 36), (36, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.3646717Z buf0 = as_strided(buf2, (8, 16), (36, 1)) # alias 2023-01-11T21:05:10.3646940Z buf1 = as_strided(buf2, (8, 20), (36, 1), 16) # alias 2023-01-11T21:05:10.3647251Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(arg1_1.data_ptr()), c_void_p(buf0.data_ptr()), c_void_p(buf1.data_ptr())) 2023-01-11T21:05:10.3647503Z del arg0_1 2023-01-11T21:05:10.3647665Z del arg1_1 2023-01-11T21:05:10.3647830Z return (buf2, ) 2023-01-11T21:05:10.3647936Z 2023-01-11T21:05:10.3647940Z 2023-01-11T21:05:10.3648003Z if __name__ == "__main__": 2023-01-11T21:05:10.3648238Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.3648514Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.3648878Z arg0_1 = rand_strided((8, 16), (16, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.3649235Z arg1_1 = rand_strided((8, 20), (20, 1), device='cpu', dtype=torch.float16) 2023-01-11T21:05:10.3649488Z print_performance(lambda: call([arg0_1, arg1_1])) 2023-01-11T21:05:10.3649628Z 2023-01-11T21:05:10.3649692Z ok (2.905s) 2023-01-11T21:05:10.3650222Z test_cauchy_cpu (__main__.CpuTests) ... inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.3650781Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.3651175Z [2023-01-11 20:46:27,313] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 54 2023-01-11T21:05:10.3651627Z [2023-01-11 20:46:30,098] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 54 2023-01-11T21:05:10.3651827Z 2023-01-11T21:05:10.3651924Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.3652112Z import torch 2023-01-11T21:05:10.3652268Z import random 2023-01-11T21:05:10.3652479Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.3652737Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.3652877Z 2023-01-11T21:05:10.3652953Z aten = torch.ops.aten 2023-01-11T21:05:10.3653191Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.3653435Z async_compile = AsyncCompile() 2023-01-11T21:05:10.3653561Z 2023-01-11T21:05:10.3653566Z 2023-01-11T21:05:10.3653687Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.3654015Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.3654388Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:05:10.3654627Z const float* __restrict__ in_ptr1, 2023-01-11T21:05:10.3654838Z float* __restrict__ out_ptr0) 2023-01-11T21:05:10.3655019Z { 2023-01-11T21:05:10.3655162Z { 2023-01-11T21:05:10.3655297Z { 2023-01-11T21:05:10.3655459Z float tmp6 = 0; 2023-01-11T21:05:10.3655668Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.3655847Z { 2023-01-11T21:05:10.3656043Z #pragma omp for reduction(+:tmp6) 2023-01-11T21:05:10.3656259Z for(long i0=0; i0<32; i0+=1) 2023-01-11T21:05:10.3656424Z { 2023-01-11T21:05:10.3656605Z for(long i1=0; i1<32; i1+=1) 2023-01-11T21:05:10.3656785Z { 2023-01-11T21:05:10.3656935Z { 2023-01-11T21:05:10.3657128Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:05:10.3657338Z auto tmp1 = in_ptr1[i1]; 2023-01-11T21:05:10.3657749Z auto tmp2 = tmp0 - tmp1; 2023-01-11T21:05:10.3657955Z auto tmp3 = 1 / tmp2; 2023-01-11T21:05:10.3658239Z auto tmp4 = static_cast(1); 2023-01-11T21:05:10.3658532Z auto tmp5 = tmp3 * tmp4; 2023-01-11T21:05:10.3658734Z tmp6 += tmp5; 2023-01-11T21:05:10.3658912Z } 2023-01-11T21:05:10.3659077Z } 2023-01-11T21:05:10.3659223Z } 2023-01-11T21:05:10.3659379Z } 2023-01-11T21:05:10.3659557Z out_ptr0[0] = tmp6; 2023-01-11T21:05:10.3659741Z } 2023-01-11T21:05:10.3659876Z } 2023-01-11T21:05:10.3660075Z } 2023-01-11T21:05:10.3660290Z ''') 2023-01-11T21:05:10.3660370Z 2023-01-11T21:05:10.3660375Z 2023-01-11T21:05:10.3660461Z async_compile.wait(globals()) 2023-01-11T21:05:10.3660650Z del async_compile 2023-01-11T21:05:10.3660760Z 2023-01-11T21:05:10.3660829Z def call(args): 2023-01-11T21:05:10.3660991Z arg0_1, arg1_1 = args 2023-01-11T21:05:10.3661163Z args.clear() 2023-01-11T21:05:10.3661449Z buf0 = empty_strided((), (), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.3661781Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(arg1_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:05:10.3662016Z del arg0_1 2023-01-11T21:05:10.3662177Z del arg1_1 2023-01-11T21:05:10.3662344Z return (buf0, ) 2023-01-11T21:05:10.3662439Z 2023-01-11T21:05:10.3662444Z 2023-01-11T21:05:10.3662520Z if __name__ == "__main__": 2023-01-11T21:05:10.3662738Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.3662994Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.3663317Z arg0_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.3663662Z arg1_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.3663935Z print_performance(lambda: call([arg0_1, arg1_1])) 2023-01-11T21:05:10.3664078Z 2023-01-11T21:05:10.3664141Z ok (2.837s) 2023-01-11T21:05:10.3664702Z test_clamp_cpu (__main__.CpuTests) ... inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.3665475Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.3666181Z [2023-01-11 20:46:30,169] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 55 2023-01-11T21:05:10.3666777Z [2023-01-11 20:46:32,988] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 55 2023-01-11T21:05:10.3666975Z 2023-01-11T21:05:10.3667057Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.3667318Z import torch 2023-01-11T21:05:10.3667485Z import random 2023-01-11T21:05:10.3667683Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.3667942Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.3668096Z 2023-01-11T21:05:10.3668172Z aten = torch.ops.aten 2023-01-11T21:05:10.3668400Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.3668646Z async_compile = AsyncCompile() 2023-01-11T21:05:10.3668771Z 2023-01-11T21:05:10.3668775Z 2023-01-11T21:05:10.3668910Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.3669243Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.3669569Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:05:10.3669810Z const float* __restrict__ in_ptr1, 2023-01-11T21:05:10.3670031Z float* __restrict__ out_ptr0, 2023-01-11T21:05:10.3670238Z float* __restrict__ out_ptr1, 2023-01-11T21:05:10.3670455Z float* __restrict__ out_ptr2) 2023-01-11T21:05:10.3670641Z { 2023-01-11T21:05:10.3670808Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.3671029Z { 2023-01-11T21:05:10.3671195Z #pragma omp for 2023-01-11T21:05:10.3671371Z for(long i0=0; i0<4; i0+=1) 2023-01-11T21:05:10.3671545Z { 2023-01-11T21:05:10.3671773Z auto tmp0 = at::vec::Vectorized::loadu(in_ptr0 + 16*i0); 2023-01-11T21:05:10.3672053Z auto tmp5 = at::vec::Vectorized::loadu(in_ptr1 + 16*i0); 2023-01-11T21:05:10.3672416Z auto tmp1 = at::vec::Vectorized(static_cast(-0.10000000149011612)); 2023-01-11T21:05:10.3672680Z auto tmp2 = at::vec::maximum(tmp0, tmp1); 2023-01-11T21:05:10.3672946Z auto tmp3 = at::vec::Vectorized(static_cast(0.10000000149011612)); 2023-01-11T21:05:10.3673205Z auto tmp4 = at::vec::minimum(tmp2, tmp3); 2023-01-11T21:05:10.3673453Z auto tmp6 = at::vec::Vectorized(static_cast(0.0)); 2023-01-11T21:05:10.3673709Z auto tmp7 = at::vec::maximum(tmp5, tmp6); 2023-01-11T21:05:10.3673922Z auto tmp8 = tmp0 + tmp5; 2023-01-11T21:05:10.3674131Z auto tmp9 = at::vec::minimum(tmp8, tmp6); 2023-01-11T21:05:10.3674346Z tmp4.store(out_ptr0 + 16*i0); 2023-01-11T21:05:10.3674554Z tmp7.store(out_ptr1 + 16*i0); 2023-01-11T21:05:10.3674748Z tmp9.store(out_ptr2 + 16*i0); 2023-01-11T21:05:10.3674924Z } 2023-01-11T21:05:10.3675108Z #pragma omp for simd simdlen(8) 2023-01-11T21:05:10.3675299Z for(long i0=64; i0<64; i0+=1) 2023-01-11T21:05:10.3675472Z { 2023-01-11T21:05:10.3675646Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:05:10.3675833Z auto tmp5 = in_ptr1[i0]; 2023-01-11T21:05:10.3676115Z auto tmp1 = static_cast(-0.10000000149011612); 2023-01-11T21:05:10.3676372Z auto tmp2 = (tmp1 != tmp1) ? tmp1 : std::max(tmp0, tmp1); 2023-01-11T21:05:10.3676622Z auto tmp3 = static_cast(0.10000000149011612); 2023-01-11T21:05:10.3676863Z auto tmp4 = (tmp3 != tmp3) ? tmp3 : std::min(tmp2, tmp3); 2023-01-11T21:05:10.3677105Z auto tmp6 = static_cast(0.0); 2023-01-11T21:05:10.3677349Z auto tmp7 = (tmp6 != tmp6) ? tmp6 : std::max(tmp5, tmp6); 2023-01-11T21:05:10.3677558Z auto tmp8 = tmp0 + tmp5; 2023-01-11T21:05:10.3677787Z auto tmp9 = (tmp6 != tmp6) ? tmp6 : std::min(tmp8, tmp6); 2023-01-11T21:05:10.3677999Z out_ptr0[i0] = tmp4; 2023-01-11T21:05:10.3678173Z out_ptr1[i0] = tmp7; 2023-01-11T21:05:10.3678356Z out_ptr2[i0] = tmp9; 2023-01-11T21:05:10.3678525Z } 2023-01-11T21:05:10.3678660Z } 2023-01-11T21:05:10.3693366Z } 2023-01-11T21:05:10.3693579Z ''') 2023-01-11T21:05:10.3693680Z 2023-01-11T21:05:10.3693687Z 2023-01-11T21:05:10.3693957Z async_compile.wait(globals()) 2023-01-11T21:05:10.3694287Z del async_compile 2023-01-11T21:05:10.3694487Z 2023-01-11T21:05:10.3694614Z def call(args): 2023-01-11T21:05:10.3694879Z arg0_1, arg1_1 = args 2023-01-11T21:05:10.3695046Z args.clear() 2023-01-11T21:05:10.3695357Z buf0 = empty_strided((8, 8), (8, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.3695705Z buf1 = empty_strided((8, 8), (8, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.3696027Z buf2 = empty_strided((8, 8), (8, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.3696391Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(arg1_1.data_ptr()), c_void_p(buf0.data_ptr()), c_void_p(buf1.data_ptr()), c_void_p(buf2.data_ptr())) 2023-01-11T21:05:10.3696680Z del arg0_1 2023-01-11T21:05:10.3696845Z del arg1_1 2023-01-11T21:05:10.3697009Z return (buf0, buf1, buf2, ) 2023-01-11T21:05:10.3697127Z 2023-01-11T21:05:10.3697131Z 2023-01-11T21:05:10.3697205Z if __name__ == "__main__": 2023-01-11T21:05:10.3697425Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.3697673Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.3698084Z arg0_1 = rand_strided((8, 8), (8, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.3698432Z arg1_1 = rand_strided((8, 8), (8, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.3698782Z print_performance(lambda: call([arg0_1, arg1_1])) 2023-01-11T21:05:10.3698928Z 2023-01-11T21:05:10.3698992Z ok (2.894s) 2023-01-11T21:05:10.3699521Z test_clone_cpu (__main__.CpuTests) ... inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.3700080Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.3700491Z [2023-01-11 20:46:33,109] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 56 2023-01-11T21:05:10.3700932Z [2023-01-11 20:46:35,871] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 56 2023-01-11T21:05:10.3701130Z 2023-01-11T21:05:10.3701223Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.3701412Z import torch 2023-01-11T21:05:10.3701567Z import random 2023-01-11T21:05:10.3701779Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.3702036Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.3702185Z 2023-01-11T21:05:10.3702248Z aten = torch.ops.aten 2023-01-11T21:05:10.3702491Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.3702733Z async_compile = AsyncCompile() 2023-01-11T21:05:10.3702859Z 2023-01-11T21:05:10.3702864Z 2023-01-11T21:05:10.3702996Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.3703310Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.3703649Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:05:10.3703887Z float* __restrict__ out_ptr0, 2023-01-11T21:05:10.3704095Z float* __restrict__ out_ptr1) 2023-01-11T21:05:10.3704277Z { 2023-01-11T21:05:10.3704452Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.3704625Z { 2023-01-11T21:05:10.3704785Z #pragma omp for 2023-01-11T21:05:10.3704971Z for(long i0=0; i0<16; i0+=1) 2023-01-11T21:05:10.3705130Z { 2023-01-11T21:05:10.3705353Z auto tmp0 = at::vec::Vectorized::loadu(in_ptr0 + 16*i0); 2023-01-11T21:05:10.3705635Z auto tmp1 = at::vec::Vectorized(static_cast(2)); 2023-01-11T21:05:10.3705868Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:05:10.3706096Z auto tmp3 = at::vec::Vectorized(static_cast(1)); 2023-01-11T21:05:10.3706373Z auto tmp4 = tmp0 + tmp3; 2023-01-11T21:05:10.3706575Z tmp2.store(out_ptr0 + 16*i0); 2023-01-11T21:05:10.3706770Z tmp4.store(out_ptr1 + 16*i0); 2023-01-11T21:05:10.3706948Z } 2023-01-11T21:05:10.3707132Z #pragma omp for simd simdlen(8) 2023-01-11T21:05:10.3707323Z for(long i0=256; i0<256; i0+=1) 2023-01-11T21:05:10.3707497Z { 2023-01-11T21:05:10.3707667Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:05:10.3707863Z auto tmp1 = static_cast(2); 2023-01-11T21:05:10.3708068Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:05:10.3708278Z auto tmp3 = static_cast(1); 2023-01-11T21:05:10.3708469Z auto tmp4 = tmp0 + tmp3; 2023-01-11T21:05:10.3708658Z out_ptr0[i0] = tmp2; 2023-01-11T21:05:10.3708844Z out_ptr1[i0] = tmp4; 2023-01-11T21:05:10.3708998Z } 2023-01-11T21:05:10.3709147Z } 2023-01-11T21:05:10.3709291Z } 2023-01-11T21:05:10.3709437Z ''') 2023-01-11T21:05:10.3709531Z 2023-01-11T21:05:10.3709535Z 2023-01-11T21:05:10.3709621Z async_compile.wait(globals()) 2023-01-11T21:05:10.3709809Z del async_compile 2023-01-11T21:05:10.3709914Z 2023-01-11T21:05:10.3709982Z def call(args): 2023-01-11T21:05:10.3710169Z arg0_1, = args 2023-01-11T21:05:10.3710341Z args.clear() 2023-01-11T21:05:10.3710639Z buf0 = empty_strided((16, 16), (16, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.3710972Z buf1 = empty_strided((16, 16), (16, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.3711279Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(buf0.data_ptr()), c_void_p(buf1.data_ptr())) 2023-01-11T21:05:10.3711521Z del arg0_1 2023-01-11T21:05:10.3711680Z return (buf0, buf1, ) 2023-01-11T21:05:10.3711795Z 2023-01-11T21:05:10.3711800Z 2023-01-11T21:05:10.3711873Z if __name__ == "__main__": 2023-01-11T21:05:10.3712090Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.3712347Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.3712677Z arg0_1 = rand_strided((16, 16), (16, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.3712935Z print_performance(lambda: call([arg0_1])) 2023-01-11T21:05:10.3713070Z 2023-01-11T21:05:10.3713135Z ok (2.880s) 2023-01-11T21:05:10.3713664Z test_constant_pad_1d_cpu (__main__.CpuTests) ... inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.3714226Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.3714630Z [2023-01-11 20:46:35,932] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 57 2023-01-11T21:05:10.3715080Z [2023-01-11 20:46:38,736] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 57 2023-01-11T21:05:10.3715278Z 2023-01-11T21:05:10.3715357Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.3715547Z import torch 2023-01-11T21:05:10.3715720Z import random 2023-01-11T21:05:10.3715922Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.3716178Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.3716329Z 2023-01-11T21:05:10.3716403Z aten = torch.ops.aten 2023-01-11T21:05:10.3716641Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.3716973Z async_compile = AsyncCompile() 2023-01-11T21:05:10.3717203Z 2023-01-11T21:05:10.3717210Z 2023-01-11T21:05:10.3717465Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.3717939Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.3718266Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:05:10.3718507Z float* __restrict__ out_ptr0, 2023-01-11T21:05:10.3718768Z float* __restrict__ out_ptr1) 2023-01-11T21:05:10.3718950Z { 2023-01-11T21:05:10.3719116Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.3719305Z { 2023-01-11T21:05:10.3719465Z #pragma omp for 2023-01-11T21:05:10.3719639Z for(long i0=0; i0<32; i0+=1) 2023-01-11T21:05:10.3719812Z { 2023-01-11T21:05:10.3719978Z #pragma GCC ivdep 2023-01-11T21:05:10.3720155Z for(long i1=0; i1<32; i1+=1) 2023-01-11T21:05:10.3720333Z { 2023-01-11T21:05:10.3720487Z { 2023-01-11T21:05:10.3720766Z { 2023-01-11T21:05:10.3720972Z auto tmp0 = static_cast(i1); 2023-01-11T21:05:10.3721203Z auto tmp1 = static_cast(31); 2023-01-11T21:05:10.3721411Z auto tmp2 = tmp0 < tmp1; 2023-01-11T21:05:10.3721612Z float tmp3 = 6.0; 2023-01-11T21:05:10.3721801Z if(tmp2) 2023-01-11T21:05:10.3721961Z { 2023-01-11T21:05:10.3722164Z auto tmp4 = in_ptr0[i1 + (31*i0)]; 2023-01-11T21:05:10.3722373Z tmp3 = tmp4; 2023-01-11T21:05:10.3722629Z } 2023-01-11T21:05:10.3722826Z out_ptr0[i1 + (32*i0)] = tmp3; 2023-01-11T21:05:10.3723010Z } 2023-01-11T21:05:10.3723155Z } 2023-01-11T21:05:10.3723313Z } 2023-01-11T21:05:10.3723465Z } 2023-01-11T21:05:10.3723616Z #pragma omp for 2023-01-11T21:05:10.3723803Z for(long i0=0; i0<32; i0+=1) 2023-01-11T21:05:10.3723974Z { 2023-01-11T21:05:10.3724129Z #pragma GCC ivdep 2023-01-11T21:05:10.3724320Z for(long i1=0; i1<36; i1+=1) 2023-01-11T21:05:10.3724494Z { 2023-01-11T21:05:10.3724635Z { 2023-01-11T21:05:10.3724792Z { 2023-01-11T21:05:10.3725068Z auto tmp0 = static_cast((-2) + i1); 2023-01-11T21:05:10.3725305Z auto tmp1 = static_cast(0); 2023-01-11T21:05:10.3725511Z auto tmp2 = tmp0 >= tmp1; 2023-01-11T21:05:10.3725737Z auto tmp3 = static_cast(31); 2023-01-11T21:05:10.3725956Z auto tmp4 = tmp0 < tmp3; 2023-01-11T21:05:10.3726150Z auto tmp5 = tmp2 & tmp4; 2023-01-11T21:05:10.3726350Z float tmp6 = 99.0; 2023-01-11T21:05:10.3726536Z if(tmp5) 2023-01-11T21:05:10.3726694Z { 2023-01-11T21:05:10.3726959Z auto tmp7 = in_ptr0[(-2) + i1 + (31*i0)]; 2023-01-11T21:05:10.3727170Z tmp6 = tmp7; 2023-01-11T21:05:10.3727331Z } 2023-01-11T21:05:10.3727525Z out_ptr1[i1 + (36*i0)] = tmp6; 2023-01-11T21:05:10.3727714Z } 2023-01-11T21:05:10.3727862Z } 2023-01-11T21:05:10.3728019Z } 2023-01-11T21:05:10.3728173Z } 2023-01-11T21:05:10.3728309Z } 2023-01-11T21:05:10.3728457Z } 2023-01-11T21:05:10.3728615Z ''') 2023-01-11T21:05:10.3728709Z 2023-01-11T21:05:10.3728714Z 2023-01-11T21:05:10.3728803Z async_compile.wait(globals()) 2023-01-11T21:05:10.3728980Z del async_compile 2023-01-11T21:05:10.3729086Z 2023-01-11T21:05:10.3729155Z def call(args): 2023-01-11T21:05:10.3729322Z arg0_1, = args 2023-01-11T21:05:10.3729476Z args.clear() 2023-01-11T21:05:10.3729783Z buf0 = empty_strided((2, 16, 32), (512, 32, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.3730144Z buf1 = empty_strided((2, 16, 36), (576, 36, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.3730447Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(buf0.data_ptr()), c_void_p(buf1.data_ptr())) 2023-01-11T21:05:10.3730691Z del arg0_1 2023-01-11T21:05:10.3730863Z return (buf0, buf1, ) 2023-01-11T21:05:10.3731026Z 2023-01-11T21:05:10.3731031Z 2023-01-11T21:05:10.3731104Z if __name__ == "__main__": 2023-01-11T21:05:10.3731307Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.3731573Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.3731923Z arg0_1 = rand_strided((2, 16, 31), (496, 31, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.3732174Z print_performance(lambda: call([arg0_1])) 2023-01-11T21:05:10.3732308Z 2023-01-11T21:05:10.3732373Z ok (2.869s) 2023-01-11T21:05:10.3732912Z test_constant_pad_2d_cpu (__main__.CpuTests) ... inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.3733487Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.3733887Z [2023-01-11 20:46:38,816] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 58 2023-01-11T21:05:10.3734366Z [2023-01-11 20:46:41,678] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 58 2023-01-11T21:05:10.3734565Z 2023-01-11T21:05:10.3734659Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.3734851Z import torch 2023-01-11T21:05:10.3735005Z import random 2023-01-11T21:05:10.3735220Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.3735476Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.3735615Z 2023-01-11T21:05:10.3735690Z aten = torch.ops.aten 2023-01-11T21:05:10.3735930Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.3736173Z async_compile = AsyncCompile() 2023-01-11T21:05:10.3736300Z 2023-01-11T21:05:10.3736305Z 2023-01-11T21:05:10.3736426Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.3736752Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.3737092Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:05:10.3737331Z float* __restrict__ out_ptr0, 2023-01-11T21:05:10.3737539Z float* __restrict__ out_ptr1) 2023-01-11T21:05:10.3737721Z { 2023-01-11T21:05:10.3737897Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.3738070Z { 2023-01-11T21:05:10.3738236Z #pragma omp for 2023-01-11T21:05:10.3738421Z for(long i0=0; i0<10; i0+=1) 2023-01-11T21:05:10.3738676Z { 2023-01-11T21:05:10.3738843Z #pragma GCC ivdep 2023-01-11T21:05:10.3739035Z for(long i1=0; i1<10; i1+=1) 2023-01-11T21:05:10.3739196Z { 2023-01-11T21:05:10.3739350Z { 2023-01-11T21:05:10.3739508Z { 2023-01-11T21:05:10.3739761Z auto tmp0 = static_cast((-1) + i0); 2023-01-11T21:05:10.3739998Z auto tmp1 = static_cast(0); 2023-01-11T21:05:10.3740216Z auto tmp2 = tmp0 >= tmp1; 2023-01-11T21:05:10.3740422Z auto tmp3 = static_cast(8); 2023-01-11T21:05:10.3740641Z auto tmp4 = tmp0 < tmp3; 2023-01-11T21:05:10.3740923Z auto tmp5 = static_cast((-1) + i1); 2023-01-11T21:05:10.3741132Z auto tmp6 = tmp5 >= tmp1; 2023-01-11T21:05:10.3741345Z auto tmp7 = tmp5 < tmp3; 2023-01-11T21:05:10.3741552Z auto tmp8 = tmp2 & tmp4; 2023-01-11T21:05:10.3741761Z auto tmp9 = tmp8 & tmp6; 2023-01-11T21:05:10.3741955Z auto tmp10 = tmp9 & tmp7; 2023-01-11T21:05:10.3742160Z float tmp11 = 6.0; 2023-01-11T21:05:10.3742345Z if(tmp10) 2023-01-11T21:05:10.3742504Z { 2023-01-11T21:05:10.3742808Z auto tmp12 = in_ptr0[(-9) + i1 + (8*i0)]; 2023-01-11T21:05:10.3743020Z tmp11 = tmp12; 2023-01-11T21:05:10.3743188Z } 2023-01-11T21:05:10.3743382Z out_ptr0[i1 + (10*i0)] = tmp11; 2023-01-11T21:05:10.3743566Z } 2023-01-11T21:05:10.3743712Z } 2023-01-11T21:05:10.3743773Z } 2023-01-11T21:05:10.3743841Z } 2023-01-11T21:05:10.3743916Z #pragma omp for 2023-01-11T21:05:10.3743996Z for(long i0=0; i0<15; i0+=1) 2023-01-11T21:05:10.3744057Z { 2023-01-11T21:05:10.3744123Z #pragma GCC ivdep 2023-01-11T21:05:10.3744208Z for(long i1=0; i1<11; i1+=1) 2023-01-11T21:05:10.3744269Z { 2023-01-11T21:05:10.3744331Z { 2023-01-11T21:05:10.3744395Z { 2023-01-11T21:05:10.3744560Z auto tmp0 = static_cast((-3) + i0); 2023-01-11T21:05:10.3744662Z auto tmp1 = static_cast(0); 2023-01-11T21:05:10.3744744Z auto tmp2 = tmp0 >= tmp1; 2023-01-11T21:05:10.3744844Z auto tmp3 = static_cast(8); 2023-01-11T21:05:10.3744969Z auto tmp4 = tmp0 < tmp3; 2023-01-11T21:05:10.3745132Z auto tmp5 = static_cast((-1) + i1); 2023-01-11T21:05:10.3745223Z auto tmp6 = tmp5 >= tmp1; 2023-01-11T21:05:10.3745313Z auto tmp7 = tmp5 < tmp3; 2023-01-11T21:05:10.3745403Z auto tmp8 = tmp2 & tmp4; 2023-01-11T21:05:10.3745480Z auto tmp9 = tmp8 & tmp6; 2023-01-11T21:05:10.3745570Z auto tmp10 = tmp9 & tmp7; 2023-01-11T21:05:10.3745657Z float tmp11 = 99.0; 2023-01-11T21:05:10.3745734Z if(tmp10) 2023-01-11T21:05:10.3745801Z { 2023-01-11T21:05:10.3745968Z auto tmp12 = in_ptr0[(-25) + i1 + (8*i0)]; 2023-01-11T21:05:10.3746053Z tmp11 = tmp12; 2023-01-11T21:05:10.3746120Z } 2023-01-11T21:05:10.3746204Z out_ptr1[i1 + (11*i0)] = tmp11; 2023-01-11T21:05:10.3746267Z } 2023-01-11T21:05:10.3746330Z } 2023-01-11T21:05:10.3746391Z } 2023-01-11T21:05:10.3746450Z } 2023-01-11T21:05:10.3746512Z } 2023-01-11T21:05:10.3746560Z } 2023-01-11T21:05:10.3746637Z ''') 2023-01-11T21:05:10.3746641Z 2023-01-11T21:05:10.3746646Z 2023-01-11T21:05:10.3746734Z async_compile.wait(globals()) 2023-01-11T21:05:10.3746806Z del async_compile 2023-01-11T21:05:10.3746811Z 2023-01-11T21:05:10.3746879Z def call(args): 2023-01-11T21:05:10.3746946Z arg0_1, = args 2023-01-11T21:05:10.3747014Z args.clear() 2023-01-11T21:05:10.3747229Z buf0 = empty_strided((1, 1, 10, 10), (100, 100, 10, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.3747434Z buf1 = empty_strided((1, 1, 15, 11), (165, 165, 11, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.3747595Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(buf0.data_ptr()), c_void_p(buf1.data_ptr())) 2023-01-11T21:05:10.3747667Z del arg0_1 2023-01-11T21:05:10.3747744Z return (buf0, buf1, ) 2023-01-11T21:05:10.3747749Z 2023-01-11T21:05:10.3747753Z 2023-01-11T21:05:10.3747828Z if __name__ == "__main__": 2023-01-11T21:05:10.3747942Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.3748065Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.3748275Z arg0_1 = rand_strided((1, 1, 8, 8), (64, 64, 8, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.3748370Z print_performance(lambda: call([arg0_1])) 2023-01-11T21:05:10.3748375Z 2023-01-11T21:05:10.3748440Z ok (2.939s) 2023-01-11T21:05:10.3748895Z test_constant_pad_3d_cpu (__main__.CpuTests) ... inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.3749065Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.3749323Z [2023-01-11 20:46:41,755] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 59 2023-01-11T21:05:10.3749585Z [2023-01-11 20:46:44,611] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 59 2023-01-11T21:05:10.3749590Z 2023-01-11T21:05:10.3749686Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.3749754Z import torch 2023-01-11T21:05:10.3749822Z import random 2023-01-11T21:05:10.3749924Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.3750044Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.3750049Z 2023-01-11T21:05:10.3750128Z aten = torch.ops.aten 2023-01-11T21:05:10.3750261Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.3750352Z async_compile = AsyncCompile() 2023-01-11T21:05:10.3750357Z 2023-01-11T21:05:10.3750361Z 2023-01-11T21:05:10.3750522Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.3750726Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.3750844Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:05:10.3750931Z float* __restrict__ out_ptr0, 2023-01-11T21:05:10.3751029Z float* __restrict__ out_ptr1) 2023-01-11T21:05:10.3751089Z { 2023-01-11T21:05:10.3751187Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.3751246Z { 2023-01-11T21:05:10.3751336Z #pragma omp for collapse(2) 2023-01-11T21:05:10.3751416Z for(long i0=0; i0<2; i0+=1) 2023-01-11T21:05:10.3751465Z { 2023-01-11T21:05:10.3751551Z for(long i1=0; i1<15; i1+=1) 2023-01-11T21:05:10.3751614Z { 2023-01-11T21:05:10.3751695Z #pragma GCC ivdep 2023-01-11T21:05:10.3751784Z for(long i2=0; i2<11; i2+=1) 2023-01-11T21:05:10.3751849Z { 2023-01-11T21:05:10.3751931Z #pragma GCC ivdep 2023-01-11T21:05:10.3752009Z for(long i3=0; i3<7; i3+=1) 2023-01-11T21:05:10.3752072Z { 2023-01-11T21:05:10.3752139Z { 2023-01-11T21:05:10.3752208Z { 2023-01-11T21:05:10.3752383Z auto tmp0 = static_cast((-5) + i1); 2023-01-11T21:05:10.3752492Z auto tmp1 = static_cast(0); 2023-01-11T21:05:10.3752589Z auto tmp2 = tmp0 >= tmp1; 2023-01-11T21:05:10.3752683Z auto tmp3 = static_cast(4); 2023-01-11T21:05:10.3752781Z auto tmp4 = tmp0 < tmp3; 2023-01-11T21:05:10.3752956Z auto tmp5 = static_cast((-3) + i2); 2023-01-11T21:05:10.3753053Z auto tmp6 = tmp5 >= tmp1; 2023-01-11T21:05:10.3753151Z auto tmp7 = tmp5 < tmp3; 2023-01-11T21:05:10.3753324Z auto tmp8 = static_cast((-1) + i3); 2023-01-11T21:05:10.3753419Z auto tmp9 = tmp8 >= tmp1; 2023-01-11T21:05:10.3753501Z auto tmp10 = tmp8 < tmp3; 2023-01-11T21:05:10.3753598Z auto tmp11 = tmp2 & tmp4; 2023-01-11T21:05:10.3753694Z auto tmp12 = tmp11 & tmp6; 2023-01-11T21:05:10.3753793Z auto tmp13 = tmp12 & tmp7; 2023-01-11T21:05:10.3753887Z auto tmp14 = tmp13 & tmp9; 2023-01-11T21:05:10.3753987Z auto tmp15 = tmp14 & tmp10; 2023-01-11T21:05:10.3754109Z float tmp16 = 6.0; 2023-01-11T21:05:10.3754188Z if(tmp15) 2023-01-11T21:05:10.3754247Z { 2023-01-11T21:05:10.3754454Z auto tmp17 = in_ptr0[(-93) + i3 + (4*i2) + (16*i1) + (64*i0)]; 2023-01-11T21:05:10.3754542Z tmp16 = tmp17; 2023-01-11T21:05:10.3754612Z } 2023-01-11T21:05:10.3754724Z out_ptr0[i3 + (7*i2) + (77*i1) + (1155*i0)] = tmp16; 2023-01-11T21:05:10.3754795Z } 2023-01-11T21:05:10.3754862Z } 2023-01-11T21:05:10.3754914Z } 2023-01-11T21:05:10.3754977Z } 2023-01-11T21:05:10.3755038Z } 2023-01-11T21:05:10.3755102Z } 2023-01-11T21:05:10.3755177Z #pragma omp for 2023-01-11T21:05:10.3755257Z for(long i0=0; i0<8; i0+=1) 2023-01-11T21:05:10.3755320Z { 2023-01-11T21:05:10.3755386Z #pragma GCC ivdep 2023-01-11T21:05:10.3755472Z for(long i1=0; i1<11; i1+=1) 2023-01-11T21:05:10.3755534Z { 2023-01-11T21:05:10.3755646Z #pragma GCC ivdep 2023-01-11T21:05:10.3755737Z for(long i2=0; i2<4; i2+=1) 2023-01-11T21:05:10.3755800Z { 2023-01-11T21:05:10.3755851Z { 2023-01-11T21:05:10.3755917Z { 2023-01-11T21:05:10.3756088Z auto tmp0 = static_cast((-3) + i1); 2023-01-11T21:05:10.3756194Z auto tmp1 = static_cast(0); 2023-01-11T21:05:10.3756289Z auto tmp2 = tmp0 >= tmp1; 2023-01-11T21:05:10.3756394Z auto tmp3 = static_cast(4); 2023-01-11T21:05:10.3756489Z auto tmp4 = tmp0 < tmp3; 2023-01-11T21:05:10.3756582Z auto tmp5 = tmp2 & tmp4; 2023-01-11T21:05:10.3756659Z float tmp6 = 6.0; 2023-01-11T21:05:10.3756734Z if(tmp5) 2023-01-11T21:05:10.3756801Z { 2023-01-11T21:05:10.3756987Z auto tmp7 = in_ptr0[(-12) + i2 + (4*i1) + (16*i0)]; 2023-01-11T21:05:10.3757071Z tmp6 = tmp7; 2023-01-11T21:05:10.3757138Z } 2023-01-11T21:05:10.3757242Z out_ptr1[i2 + (4*i1) + (44*i0)] = tmp6; 2023-01-11T21:05:10.3757295Z } 2023-01-11T21:05:10.3757359Z } 2023-01-11T21:05:10.3757421Z } 2023-01-11T21:05:10.3757484Z } 2023-01-11T21:05:10.3757544Z } 2023-01-11T21:05:10.3757605Z } 2023-01-11T21:05:10.3757663Z } 2023-01-11T21:05:10.3757727Z ''') 2023-01-11T21:05:10.3757732Z 2023-01-11T21:05:10.3757736Z 2023-01-11T21:05:10.3757825Z async_compile.wait(globals()) 2023-01-11T21:05:10.3757897Z del async_compile 2023-01-11T21:05:10.3757904Z 2023-01-11T21:05:10.3757974Z def call(args): 2023-01-11T21:05:10.3758045Z arg0_1, = args 2023-01-11T21:05:10.3758116Z args.clear() 2023-01-11T21:05:10.3758338Z buf0 = empty_strided((2, 15, 11, 7), (1155, 77, 7, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.3758539Z buf1 = empty_strided((2, 4, 11, 4), (176, 44, 4, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.3758703Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(buf0.data_ptr()), c_void_p(buf1.data_ptr())) 2023-01-11T21:05:10.3758771Z del arg0_1 2023-01-11T21:05:10.3758849Z return (buf0, buf1, ) 2023-01-11T21:05:10.3758854Z 2023-01-11T21:05:10.3758858Z 2023-01-11T21:05:10.3758932Z if __name__ == "__main__": 2023-01-11T21:05:10.3759048Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.3759171Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.3759385Z arg0_1 = rand_strided((2, 4, 4, 4), (64, 16, 4, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.3759514Z print_performance(lambda: call([arg0_1])) 2023-01-11T21:05:10.3759532Z 2023-01-11T21:05:10.3759586Z ok (2.935s) 2023-01-11T21:05:10.3760060Z test_conv2d_backward_channels_last_cpu (__main__.CpuTests) ... inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.3760188Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.3760446Z [2023-01-11 20:46:44,797] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 60 2023-01-11T21:05:10.3760890Z [2023-01-11 20:46:44,835] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 60 2023-01-11T21:05:10.3760897Z 2023-01-11T21:05:10.3760995Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.3761064Z import torch 2023-01-11T21:05:10.3761134Z import random 2023-01-11T21:05:10.3761235Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.3761431Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.3761437Z 2023-01-11T21:05:10.3761515Z aten = torch.ops.aten 2023-01-11T21:05:10.3761648Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.3761739Z async_compile = AsyncCompile() 2023-01-11T21:05:10.3761744Z 2023-01-11T21:05:10.3761747Z 2023-01-11T21:05:10.3761834Z async_compile.wait(globals()) 2023-01-11T21:05:10.3761905Z del async_compile 2023-01-11T21:05:10.3761910Z 2023-01-11T21:05:10.3761978Z def call(args): 2023-01-11T21:05:10.3762045Z arg0_1, arg1_1, arg2_1 = args 2023-01-11T21:05:10.3762115Z args.clear() 2023-01-11T21:05:10.3762279Z buf0 = aten.convolution_backward(arg0_1, arg1_1, arg2_1, [320], [1, 1], [0, 0], [1, 1], False, [0, 0], 1, [True, True, True]) 2023-01-11T21:05:10.3762351Z del arg0_1 2023-01-11T21:05:10.3762418Z del arg1_1 2023-01-11T21:05:10.3762482Z del arg2_1 2023-01-11T21:05:10.3762549Z buf1 = buf0[0] 2023-01-11T21:05:10.3762651Z assert_size_stride(buf1, (2, 2048, 8, 8), (131072, 1, 16384, 2048)) 2023-01-11T21:05:10.3762719Z buf2 = buf0[1] 2023-01-11T21:05:10.3762828Z assert_size_stride(buf2, (320, 2048, 1, 1), (2048, 1, 2048, 2048)) 2023-01-11T21:05:10.3762894Z buf3 = buf0[2] 2023-01-11T21:05:10.3762989Z assert_size_stride(buf3, (320, ), (1, )) 2023-01-11T21:05:10.3763052Z del buf0 2023-01-11T21:05:10.3763132Z return (buf1, buf2, buf3, ) 2023-01-11T21:05:10.3763137Z 2023-01-11T21:05:10.3763141Z 2023-01-11T21:05:10.3763215Z if __name__ == "__main__": 2023-01-11T21:05:10.3763314Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.3763434Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.3763656Z arg0_1 = rand_strided((2, 320, 8, 8), (20480, 64, 8, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.3763877Z arg1_1 = rand_strided((2, 2048, 8, 8), (131072, 64, 8, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.3764102Z arg2_1 = rand_strided((320, 2048, 1, 1), (2048, 1, 2048, 2048), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.3764222Z print_performance(lambda: call([arg0_1, arg1_1, arg2_1])) 2023-01-11T21:05:10.3764226Z 2023-01-11T21:05:10.3764291Z ok (0.704s) 2023-01-11T21:05:10.3764477Z test_conv2d_binary_cpu (__main__.CpuTests) ... skip: test is slow; run with PYTORCH_TEST_WITH_SLOW to enable test (0.002s) 2023-01-11T21:05:10.3764928Z test_conv2d_channels_last_cpu (__main__.CpuTests) ... inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.3765081Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.3765338Z [2023-01-11 20:46:45,469] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 61 2023-01-11T21:05:10.3765600Z [2023-01-11 20:46:48,196] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 61 2023-01-11T21:05:10.3766000Z inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.3766125Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.3766378Z [2023-01-11 20:46:48,390] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 62 2023-01-11T21:05:10.3766638Z [2023-01-11 20:46:48,436] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 62 2023-01-11T21:05:10.3767064Z inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.3767190Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.3767441Z [2023-01-11 20:46:48,576] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 63 2023-01-11T21:05:10.3767695Z [2023-01-11 20:46:48,618] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 63 2023-01-11T21:05:10.3767702Z 2023-01-11T21:05:10.3767781Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.3767850Z import torch 2023-01-11T21:05:10.3767919Z import random 2023-01-11T21:05:10.3768033Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.3768152Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.3768157Z 2023-01-11T21:05:10.3768232Z aten = torch.ops.aten 2023-01-11T21:05:10.3768365Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.3768442Z async_compile = AsyncCompile() 2023-01-11T21:05:10.3768459Z 2023-01-11T21:05:10.3768463Z 2023-01-11T21:05:10.3768583Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.3768783Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.3768901Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:05:10.3769001Z float* __restrict__ out_ptr0) 2023-01-11T21:05:10.3769060Z { 2023-01-11T21:05:10.3769155Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.3769217Z { 2023-01-11T21:05:10.3769294Z #pragma omp for collapse(3) 2023-01-11T21:05:10.3769376Z for(long i0=0; i0<2; i0+=1) 2023-01-11T21:05:10.3769438Z { 2023-01-11T21:05:10.3769517Z for(long i1=0; i1<3; i1+=1) 2023-01-11T21:05:10.3769579Z { 2023-01-11T21:05:10.3769670Z for(long i2=0; i2<256; i2+=1) 2023-01-11T21:05:10.3769732Z { 2023-01-11T21:05:10.3769786Z { 2023-01-11T21:05:10.3769853Z { 2023-01-11T21:05:10.3769961Z auto tmp0 = in_ptr0[i2 + (256*i1) + (768*i0)]; 2023-01-11T21:05:10.3770066Z out_ptr0[i1 + (3*i2) + (768*i0)] = tmp0; 2023-01-11T21:05:10.3770131Z } 2023-01-11T21:05:10.3770195Z } 2023-01-11T21:05:10.3770255Z } 2023-01-11T21:05:10.3770304Z } 2023-01-11T21:05:10.3770363Z } 2023-01-11T21:05:10.3770423Z } 2023-01-11T21:05:10.3770482Z } 2023-01-11T21:05:10.3770558Z ''') 2023-01-11T21:05:10.3770563Z 2023-01-11T21:05:10.3770567Z 2023-01-11T21:05:10.3770700Z async_compile.wait(globals()) 2023-01-11T21:05:10.3770770Z del async_compile 2023-01-11T21:05:10.3770778Z 2023-01-11T21:05:10.3770834Z def call(args): 2023-01-11T21:05:10.3770934Z primals_1, primals_2, primals_3 = args 2023-01-11T21:05:10.3771006Z args.clear() 2023-01-11T21:05:10.3771223Z buf0 = empty_strided((2, 3, 16, 16), (768, 1, 48, 3), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.3771363Z kernel_cpp_0(c_void_p(primals_3.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:05:10.3771505Z buf1 = aten.convolution(buf0, primals_1, primals_2, (1, 1), (0, 0), (1, 1), False, (0, 0), 1) 2023-01-11T21:05:10.3771610Z assert_size_stride(buf1, (2, 3, 16, 16), (768, 1, 48, 3)) 2023-01-11T21:05:10.3771662Z del buf0 2023-01-11T21:05:10.3771735Z del primals_2 2023-01-11T21:05:10.3771831Z return (buf1, primals_1, primals_3, ) 2023-01-11T21:05:10.3771836Z 2023-01-11T21:05:10.3771840Z 2023-01-11T21:05:10.3771914Z if __name__ == "__main__": 2023-01-11T21:05:10.3772028Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.3772147Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.3772389Z primals_1 = rand_strided((3, 3, 1, 1), (3, 1, 3, 3), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.3772587Z primals_2 = rand_strided((3, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.3772795Z primals_3 = rand_strided((2, 3, 16, 16), (768, 256, 16, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.3772932Z print_performance(lambda: call([primals_1, primals_2, primals_3])) 2023-01-11T21:05:10.3772937Z 2023-01-11T21:05:10.3772942Z 2023-01-11T21:05:10.3773034Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.3773101Z import torch 2023-01-11T21:05:10.3773170Z import random 2023-01-11T21:05:10.3773284Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.3773404Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.3773409Z 2023-01-11T21:05:10.3773487Z aten = torch.ops.aten 2023-01-11T21:05:10.3773606Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.3773695Z async_compile = AsyncCompile() 2023-01-11T21:05:10.3773700Z 2023-01-11T21:05:10.3773704Z 2023-01-11T21:05:10.3773792Z async_compile.wait(globals()) 2023-01-11T21:05:10.3773862Z del async_compile 2023-01-11T21:05:10.3773867Z 2023-01-11T21:05:10.3773936Z def call(args): 2023-01-11T21:05:10.3774034Z primals_1, primals_2, primals_3 = args 2023-01-11T21:05:10.3774103Z args.clear() 2023-01-11T21:05:10.3774255Z buf0 = aten.convolution(primals_3, primals_1, primals_2, (1, 1), (0, 0), (1, 1), False, (0, 0), 1) 2023-01-11T21:05:10.3774351Z assert_size_stride(buf0, (2, 3, 16, 16), (768, 1, 48, 3)) 2023-01-11T21:05:10.3774422Z del primals_2 2023-01-11T21:05:10.3774518Z return (buf0, primals_1, primals_3, ) 2023-01-11T21:05:10.3774523Z 2023-01-11T21:05:10.3774526Z 2023-01-11T21:05:10.3774599Z if __name__ == "__main__": 2023-01-11T21:05:10.3774713Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.3774832Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.3775047Z primals_1 = rand_strided((3, 3, 1, 1), (3, 1, 3, 3), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.3775243Z primals_2 = rand_strided((3, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.3775450Z primals_3 = rand_strided((2, 3, 16, 16), (768, 1, 48, 3), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.3775586Z print_performance(lambda: call([primals_1, primals_2, primals_3])) 2023-01-11T21:05:10.3775591Z 2023-01-11T21:05:10.3775595Z 2023-01-11T21:05:10.3775688Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.3775755Z import torch 2023-01-11T21:05:10.3775823Z import random 2023-01-11T21:05:10.3775935Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.3776053Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.3776058Z 2023-01-11T21:05:10.3776168Z aten = torch.ops.aten 2023-01-11T21:05:10.3776287Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.3776378Z async_compile = AsyncCompile() 2023-01-11T21:05:10.3776383Z 2023-01-11T21:05:10.3776388Z 2023-01-11T21:05:10.3776474Z async_compile.wait(globals()) 2023-01-11T21:05:10.3776546Z del async_compile 2023-01-11T21:05:10.3776551Z 2023-01-11T21:05:10.3776619Z def call(args): 2023-01-11T21:05:10.3776718Z primals_1, primals_2, primals_3 = args 2023-01-11T21:05:10.3776788Z args.clear() 2023-01-11T21:05:10.3776939Z buf0 = aten.convolution(primals_3, primals_1, primals_2, (1, 1), (0, 0), (1, 1), False, (0, 0), 1) 2023-01-11T21:05:10.3777032Z assert_size_stride(buf0, (2, 3, 16, 16), (768, 1, 48, 3)) 2023-01-11T21:05:10.3777101Z del primals_2 2023-01-11T21:05:10.3777198Z return (buf0, primals_1, primals_3, ) 2023-01-11T21:05:10.3777203Z 2023-01-11T21:05:10.3777207Z 2023-01-11T21:05:10.3777283Z if __name__ == "__main__": 2023-01-11T21:05:10.3777396Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.3777514Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.3777756Z primals_1 = rand_strided((3, 3, 1, 1), (3, 1, 3, 3), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.3777953Z primals_2 = rand_strided((3, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.3778159Z primals_3 = rand_strided((2, 3, 16, 16), (768, 1, 48, 3), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.3778293Z print_performance(lambda: call([primals_1, primals_2, primals_3])) 2023-01-11T21:05:10.3778298Z 2023-01-11T21:05:10.3778363Z ok (3.296s) 2023-01-11T21:05:10.3778892Z test_conv2d_packed_cpu (__main__.CpuTests) ... inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.3779021Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.3779283Z [2023-01-11 20:46:48,711] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 64 2023-01-11T21:05:10.3779546Z [2023-01-11 20:46:48,753] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 64 2023-01-11T21:05:10.3779551Z 2023-01-11T21:05:10.3779645Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.3779715Z import torch 2023-01-11T21:05:10.3779771Z import random 2023-01-11T21:05:10.3779884Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.3780001Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.3780006Z 2023-01-11T21:05:10.3780081Z aten = torch.ops.aten 2023-01-11T21:05:10.3780214Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.3780305Z async_compile = AsyncCompile() 2023-01-11T21:05:10.3780312Z 2023-01-11T21:05:10.3780316Z 2023-01-11T21:05:10.3780402Z async_compile.wait(globals()) 2023-01-11T21:05:10.3780473Z del async_compile 2023-01-11T21:05:10.3780478Z 2023-01-11T21:05:10.3780534Z def call(args): 2023-01-11T21:05:10.3780617Z arg0_1, arg1_1, arg2_1 = args 2023-01-11T21:05:10.3780687Z args.clear() 2023-01-11T21:05:10.3780825Z buf0 = aten.convolution(arg2_1, arg0_1, arg1_1, (3, 3), (0, 0), (1, 1), False, (0, 0), 1) 2023-01-11T21:05:10.3780934Z assert_size_stride(buf0, (1, 64, 18, 18), (20736, 324, 18, 1)) 2023-01-11T21:05:10.3781000Z del arg0_1 2023-01-11T21:05:10.3781065Z del arg1_1 2023-01-11T21:05:10.3781117Z del arg2_1 2023-01-11T21:05:10.3781185Z return (buf0, ) 2023-01-11T21:05:10.3781191Z 2023-01-11T21:05:10.3781195Z 2023-01-11T21:05:10.3781268Z if __name__ == "__main__": 2023-01-11T21:05:10.3781380Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.3781499Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.3781748Z arg0_1 = rand_strided((64, 3, 3, 3), (27, 9, 3, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.3781941Z arg1_1 = rand_strided((64, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.3782164Z arg2_1 = rand_strided((1, 3, 56, 56), (9408, 3136, 56, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.3782282Z print_performance(lambda: call([arg0_1, arg1_1, arg2_1])) 2023-01-11T21:05:10.3782287Z 2023-01-11T21:05:10.3782340Z ok (0.146s) 2023-01-11T21:05:10.3782524Z test_conv2d_unary_cpu (__main__.CpuTests) ... skip: test is slow; run with PYTORCH_TEST_WITH_SLOW to enable test (0.002s) 2023-01-11T21:05:10.3782973Z test_conv3d_channels_last_cpu (__main__.CpuTests) ... inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.3783102Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.3783389Z [2023-01-11 20:46:48,908] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 65 2023-01-11T21:05:10.3783650Z [2023-01-11 20:46:51,614] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 65 2023-01-11T21:05:10.3784048Z inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.3784171Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.3784424Z [2023-01-11 20:46:51,835] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 66 2023-01-11T21:05:10.3784684Z [2023-01-11 20:46:54,598] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 66 2023-01-11T21:05:10.3785081Z inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.3785191Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.3785441Z [2023-01-11 20:46:54,845] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 67 2023-01-11T21:05:10.3785698Z [2023-01-11 20:46:54,904] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 67 2023-01-11T21:05:10.3785704Z 2023-01-11T21:05:10.3785796Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.3785863Z import torch 2023-01-11T21:05:10.3785934Z import random 2023-01-11T21:05:10.3786096Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.3786292Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.3786300Z 2023-01-11T21:05:10.3786431Z aten = torch.ops.aten 2023-01-11T21:05:10.3786683Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.3786854Z async_compile = AsyncCompile() 2023-01-11T21:05:10.3786862Z 2023-01-11T21:05:10.3786869Z 2023-01-11T21:05:10.3787055Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.3787259Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.3787380Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:05:10.3787479Z float* __restrict__ out_ptr0) 2023-01-11T21:05:10.3787540Z { 2023-01-11T21:05:10.3787624Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.3787684Z { 2023-01-11T21:05:10.3787760Z #pragma omp for 2023-01-11T21:05:10.3787879Z for(long i0=0; i0<9; i0+=1) 2023-01-11T21:05:10.3787940Z { 2023-01-11T21:05:10.3788003Z { 2023-01-11T21:05:10.3788065Z { 2023-01-11T21:05:10.3788149Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:05:10.3788233Z out_ptr0[i0] = tmp0; 2023-01-11T21:05:10.3788295Z } 2023-01-11T21:05:10.3788356Z } 2023-01-11T21:05:10.3788415Z } 2023-01-11T21:05:10.3788474Z } 2023-01-11T21:05:10.3788520Z } 2023-01-11T21:05:10.3788600Z ''') 2023-01-11T21:05:10.3788605Z 2023-01-11T21:05:10.3788609Z 2023-01-11T21:05:10.3788697Z async_compile.wait(globals()) 2023-01-11T21:05:10.3788768Z del async_compile 2023-01-11T21:05:10.3788772Z 2023-01-11T21:05:10.3788841Z def call(args): 2023-01-11T21:05:10.3788941Z primals_1, primals_2, primals_3 = args 2023-01-11T21:05:10.3789010Z args.clear() 2023-01-11T21:05:10.3789222Z buf0 = empty_strided((3, 3, 1, 1, 1), (3, 1, 1, 1, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.3789349Z kernel_cpp_0(c_void_p(primals_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:05:10.3789527Z buf1 = aten.convolution(primals_3, buf0, primals_2, (1, 1, 1), (0, 0, 0), (1, 1, 1), False, (0, 0, 0), 1) 2023-01-11T21:05:10.3789639Z assert_size_stride(buf1, (2, 3, 16, 16, 16), (12288, 4096, 256, 16, 1)) 2023-01-11T21:05:10.3789703Z del buf0 2023-01-11T21:05:10.3789773Z del primals_2 2023-01-11T21:05:10.3789870Z return (buf1, primals_1, primals_3, ) 2023-01-11T21:05:10.3789875Z 2023-01-11T21:05:10.3789879Z 2023-01-11T21:05:10.3789953Z if __name__ == "__main__": 2023-01-11T21:05:10.3790065Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.3790173Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.3790392Z primals_1 = rand_strided((3, 3, 1, 1, 1), (3, 1, 3, 3, 3), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.3790590Z primals_2 = rand_strided((3, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.3790826Z primals_3 = rand_strided((2, 3, 16, 16, 16), (12288, 4096, 256, 16, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.3790967Z print_performance(lambda: call([primals_1, primals_2, primals_3])) 2023-01-11T21:05:10.3790972Z 2023-01-11T21:05:10.3790976Z 2023-01-11T21:05:10.3791071Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.3791140Z import torch 2023-01-11T21:05:10.3791208Z import random 2023-01-11T21:05:10.3791308Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.3791428Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.3791433Z 2023-01-11T21:05:10.3791508Z aten = torch.ops.aten 2023-01-11T21:05:10.3791639Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.3791730Z async_compile = AsyncCompile() 2023-01-11T21:05:10.3791735Z 2023-01-11T21:05:10.3791739Z 2023-01-11T21:05:10.3791870Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.3792073Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.3792193Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:05:10.3792285Z const float* __restrict__ in_ptr1, 2023-01-11T21:05:10.3792385Z float* __restrict__ out_ptr0, 2023-01-11T21:05:10.3792480Z float* __restrict__ out_ptr1) 2023-01-11T21:05:10.3792542Z { 2023-01-11T21:05:10.3792636Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.3792696Z { 2023-01-11T21:05:10.3792771Z #pragma omp for 2023-01-11T21:05:10.3792837Z for(long i0=0; i0<9; i0+=1) 2023-01-11T21:05:10.3792897Z { 2023-01-11T21:05:10.3792958Z { 2023-01-11T21:05:10.3793020Z { 2023-01-11T21:05:10.3793110Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:05:10.3793193Z out_ptr0[i0] = tmp0; 2023-01-11T21:05:10.3793255Z } 2023-01-11T21:05:10.3793336Z } 2023-01-11T21:05:10.3793396Z } 2023-01-11T21:05:10.3793487Z #pragma omp for collapse(3) 2023-01-11T21:05:10.3793566Z for(long i0=0; i0<2; i0+=1) 2023-01-11T21:05:10.3793626Z { 2023-01-11T21:05:10.3793709Z for(long i1=0; i1<3; i1+=1) 2023-01-11T21:05:10.3793758Z { 2023-01-11T21:05:10.3793846Z for(long i2=0; i2<4096; i2+=1) 2023-01-11T21:05:10.3793908Z { 2023-01-11T21:05:10.3793975Z { 2023-01-11T21:05:10.3794042Z { 2023-01-11T21:05:10.3794152Z auto tmp0 = in_ptr1[i1 + (3*i2) + (12288*i0)]; 2023-01-11T21:05:10.3794258Z out_ptr1[i2 + (4096*i1) + (12288*i0)] = tmp0; 2023-01-11T21:05:10.3794312Z } 2023-01-11T21:05:10.3794376Z } 2023-01-11T21:05:10.3794439Z } 2023-01-11T21:05:10.3794502Z } 2023-01-11T21:05:10.3794563Z } 2023-01-11T21:05:10.3794627Z } 2023-01-11T21:05:10.3794685Z } 2023-01-11T21:05:10.3794751Z ''') 2023-01-11T21:05:10.3794756Z 2023-01-11T21:05:10.3794760Z 2023-01-11T21:05:10.3794849Z async_compile.wait(globals()) 2023-01-11T21:05:10.3794949Z del async_compile 2023-01-11T21:05:10.3794954Z 2023-01-11T21:05:10.3795027Z def call(args): 2023-01-11T21:05:10.3795126Z primals_1, primals_2, primals_3 = args 2023-01-11T21:05:10.3795196Z args.clear() 2023-01-11T21:05:10.3795412Z buf0 = empty_strided((3, 3, 1, 1, 1), (3, 1, 1, 1, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.3795642Z buf1 = empty_strided((2, 3, 16, 16, 16), (12288, 4096, 256, 16, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.3795824Z kernel_cpp_0(c_void_p(primals_1.data_ptr()), c_void_p(primals_3.data_ptr()), c_void_p(buf0.data_ptr()), c_void_p(buf1.data_ptr())) 2023-01-11T21:05:10.3795970Z buf2 = aten.convolution(buf1, buf0, primals_2, (1, 1, 1), (0, 0, 0), (1, 1, 1), False, (0, 0, 0), 1) 2023-01-11T21:05:10.3796085Z assert_size_stride(buf2, (2, 3, 16, 16, 16), (12288, 4096, 256, 16, 1)) 2023-01-11T21:05:10.3796148Z del buf0 2023-01-11T21:05:10.3796212Z del buf1 2023-01-11T21:05:10.3796281Z del primals_2 2023-01-11T21:05:10.3796381Z return (buf2, primals_1, primals_3, ) 2023-01-11T21:05:10.3796386Z 2023-01-11T21:05:10.3796390Z 2023-01-11T21:05:10.3796464Z if __name__ == "__main__": 2023-01-11T21:05:10.3796565Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.3796684Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.3796904Z primals_1 = rand_strided((3, 3, 1, 1, 1), (3, 1, 3, 3, 3), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.3797101Z primals_2 = rand_strided((3, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.3797333Z primals_3 = rand_strided((2, 3, 16, 16, 16), (12288, 1, 768, 48, 3), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.3797470Z print_performance(lambda: call([primals_1, primals_2, primals_3])) 2023-01-11T21:05:10.3797478Z 2023-01-11T21:05:10.3797482Z 2023-01-11T21:05:10.3797575Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.3797642Z import torch 2023-01-11T21:05:10.3797698Z import random 2023-01-11T21:05:10.3797814Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.3797934Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.3797938Z 2023-01-11T21:05:10.3798017Z aten = torch.ops.aten 2023-01-11T21:05:10.3798149Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.3798239Z async_compile = AsyncCompile() 2023-01-11T21:05:10.3798245Z 2023-01-11T21:05:10.3798249Z 2023-01-11T21:05:10.3798382Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.3798583Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.3798689Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:05:10.3798789Z const float* __restrict__ in_ptr1, 2023-01-11T21:05:10.3798921Z float* __restrict__ out_ptr0, 2023-01-11T21:05:10.3799016Z float* __restrict__ out_ptr1) 2023-01-11T21:05:10.3799075Z { 2023-01-11T21:05:10.3799172Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.3799233Z { 2023-01-11T21:05:10.3799296Z #pragma omp for 2023-01-11T21:05:10.3799376Z for(long i0=0; i0<9; i0+=1) 2023-01-11T21:05:10.3799436Z { 2023-01-11T21:05:10.3799498Z { 2023-01-11T21:05:10.3799560Z { 2023-01-11T21:05:10.3799650Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:05:10.3799733Z out_ptr0[i0] = tmp0; 2023-01-11T21:05:10.3799785Z } 2023-01-11T21:05:10.3799846Z } 2023-01-11T21:05:10.3799908Z } 2023-01-11T21:05:10.3799996Z #pragma omp for collapse(3) 2023-01-11T21:05:10.3800074Z for(long i0=0; i0<2; i0+=1) 2023-01-11T21:05:10.3800134Z { 2023-01-11T21:05:10.3800204Z for(long i1=0; i1<3; i1+=1) 2023-01-11T21:05:10.3800265Z { 2023-01-11T21:05:10.3800352Z for(long i2=0; i2<4096; i2+=1) 2023-01-11T21:05:10.3800416Z { 2023-01-11T21:05:10.3800522Z { 2023-01-11T21:05:10.3800734Z { 2023-01-11T21:05:10.3800848Z auto tmp0 = in_ptr1[i1 + (3*i2) + (12288*i0)]; 2023-01-11T21:05:10.3800941Z out_ptr1[i2 + (4096*i1) + (12288*i0)] = tmp0; 2023-01-11T21:05:10.3801008Z } 2023-01-11T21:05:10.3801071Z } 2023-01-11T21:05:10.3801135Z } 2023-01-11T21:05:10.3801196Z } 2023-01-11T21:05:10.3801254Z } 2023-01-11T21:05:10.3801314Z } 2023-01-11T21:05:10.3801360Z } 2023-01-11T21:05:10.3801441Z ''') 2023-01-11T21:05:10.3801446Z 2023-01-11T21:05:10.3801450Z 2023-01-11T21:05:10.3801539Z async_compile.wait(globals()) 2023-01-11T21:05:10.3801614Z del async_compile 2023-01-11T21:05:10.3801619Z 2023-01-11T21:05:10.3801688Z def call(args): 2023-01-11T21:05:10.3801788Z primals_1, primals_2, primals_3 = args 2023-01-11T21:05:10.3801857Z args.clear() 2023-01-11T21:05:10.3802059Z buf0 = empty_strided((3, 3, 1, 1, 1), (3, 1, 1, 1, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.3802289Z buf1 = empty_strided((2, 3, 16, 16, 16), (12288, 4096, 256, 16, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.3802489Z kernel_cpp_0(c_void_p(primals_1.data_ptr()), c_void_p(primals_3.data_ptr()), c_void_p(buf0.data_ptr()), c_void_p(buf1.data_ptr())) 2023-01-11T21:05:10.3802633Z buf2 = aten.convolution(buf1, buf0, primals_2, (1, 1, 1), (0, 0, 0), (1, 1, 1), False, (0, 0, 0), 1) 2023-01-11T21:05:10.3802744Z assert_size_stride(buf2, (2, 3, 16, 16, 16), (12288, 4096, 256, 16, 1)) 2023-01-11T21:05:10.3802809Z del buf0 2023-01-11T21:05:10.3802872Z del buf1 2023-01-11T21:05:10.3802942Z del primals_2 2023-01-11T21:05:10.3803029Z return (buf2, primals_1, primals_3, ) 2023-01-11T21:05:10.3803047Z 2023-01-11T21:05:10.3803051Z 2023-01-11T21:05:10.3803112Z if __name__ == "__main__": 2023-01-11T21:05:10.3803225Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.3803349Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.3803565Z primals_1 = rand_strided((3, 3, 1, 1, 1), (3, 1, 3, 3, 3), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.3803759Z primals_2 = rand_strided((3, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.3803992Z primals_3 = rand_strided((2, 3, 16, 16, 16), (12288, 1, 768, 48, 3), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.3804128Z print_performance(lambda: call([primals_1, primals_2, primals_3])) 2023-01-11T21:05:10.3804134Z 2023-01-11T21:05:10.3804200Z ok (6.176s) 2023-01-11T21:05:10.3804326Z test_conv_autotune_cpu (__main__.CpuTests) ... skip: requires cuda (0.002s) 2023-01-11T21:05:10.3804656Z test_conv_backward_cpu (__main__.CpuTests) ... [2023-01-11 20:46:55,131] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 68 2023-01-11T21:05:10.3804988Z [2023-01-11 20:46:55,266] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 68 2023-01-11T21:05:10.3804994Z 2023-01-11T21:05:10.3805089Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.3805157Z import torch 2023-01-11T21:05:10.3805225Z import random 2023-01-11T21:05:10.3805338Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.3805458Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.3805463Z 2023-01-11T21:05:10.3805527Z aten = torch.ops.aten 2023-01-11T21:05:10.3805658Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.3805749Z async_compile = AsyncCompile() 2023-01-11T21:05:10.3805754Z 2023-01-11T21:05:10.3805759Z 2023-01-11T21:05:10.3805844Z async_compile.wait(globals()) 2023-01-11T21:05:10.3805914Z del async_compile 2023-01-11T21:05:10.3805922Z 2023-01-11T21:05:10.3805994Z def call(args): 2023-01-11T21:05:10.3806120Z arg0_1, arg1_1, arg2_1, arg3_1, arg4_1, arg5_1, arg6_1, arg7_1, arg8_1 = args 2023-01-11T21:05:10.3806189Z args.clear() 2023-01-11T21:05:10.3806376Z buf0 = aten.convolution_backward(arg0_1, arg1_1, arg2_1, [4], [1, 1], [0, 0], [1, 1], False, [0, 0], 1, [True, True, True]) 2023-01-11T21:05:10.3806447Z buf1 = buf0[0] 2023-01-11T21:05:10.3806552Z assert_size_stride(buf1, (3, 4, 5, 5), (100, 25, 5, 1)) 2023-01-11T21:05:10.3806619Z buf2 = buf0[1] 2023-01-11T21:05:10.3806726Z assert_size_stride(buf2, (4, 4, 3, 3), (36, 9, 3, 1)) 2023-01-11T21:05:10.3806793Z buf3 = buf0[2] 2023-01-11T21:05:10.3806885Z assert_size_stride(buf3, (4, ), (1, )) 2023-01-11T21:05:10.3806937Z del buf0 2023-01-11T21:05:10.3807105Z buf4 = aten.convolution_backward(arg0_1, arg1_1, arg2_1, [4], [1, 1], [0, 0], [1, 1], False, [0, 0], 1, [True, False, False]) 2023-01-11T21:05:10.3807171Z del arg0_1 2023-01-11T21:05:10.3807240Z del arg1_1 2023-01-11T21:05:10.3807304Z del arg2_1 2023-01-11T21:05:10.3807369Z buf5 = buf4[0] 2023-01-11T21:05:10.3807474Z assert_size_stride(buf5, (3, 4, 5, 5), (100, 25, 5, 1)) 2023-01-11T21:05:10.3807526Z del buf4 2023-01-11T21:05:10.3807683Z buf6 = aten.convolution_backward(arg3_1, arg4_1, arg5_1, [4], [1], [0], [1], False, [0], 1, [True, True, True]) 2023-01-11T21:05:10.3807748Z del arg3_1 2023-01-11T21:05:10.3807810Z del arg4_1 2023-01-11T21:05:10.3807873Z del arg5_1 2023-01-11T21:05:10.3807938Z buf7 = buf6[0] 2023-01-11T21:05:10.3808041Z assert_size_stride(buf7, (3, 4, 5, 5), (100, 25, 5, 1)) 2023-01-11T21:05:10.3808094Z buf8 = buf6[1] 2023-01-11T21:05:10.3808193Z assert_size_stride(buf8, (4, 4, 3, 3), (36, 9, 3, 1)) 2023-01-11T21:05:10.3808261Z buf9 = buf6[2] 2023-01-11T21:05:10.3808353Z assert_size_stride(buf9, (4, ), (1, )) 2023-01-11T21:05:10.3808416Z del buf6 2023-01-11T21:05:10.3808584Z buf10 = aten.convolution_backward(arg6_1, arg7_1, arg8_1, [4], [1, 1, 1], [0, 0, 0], [1, 1, 1], False, [0, 0, 0], 1, [True, True, True]) 2023-01-11T21:05:10.3808652Z del arg6_1 2023-01-11T21:05:10.3808704Z del arg7_1 2023-01-11T21:05:10.3808770Z del arg8_1 2023-01-11T21:05:10.3808837Z buf11 = buf10[0] 2023-01-11T21:05:10.3808949Z assert_size_stride(buf11, (3, 4, 5, 5, 5), (500, 125, 25, 5, 1)) 2023-01-11T21:05:10.3809017Z buf12 = buf10[1] 2023-01-11T21:05:10.3809124Z assert_size_stride(buf12, (4, 4, 3, 3, 3), (108, 27, 9, 3, 1)) 2023-01-11T21:05:10.3809190Z buf13 = buf10[2] 2023-01-11T21:05:10.3809271Z assert_size_stride(buf13, (4, ), (1, )) 2023-01-11T21:05:10.3809339Z del buf10 2023-01-11T21:05:10.3809465Z return (buf1, buf2, buf3, buf5, buf7, buf8, buf9, buf11, buf12, buf13, ) 2023-01-11T21:05:10.3809471Z 2023-01-11T21:05:10.3809475Z 2023-01-11T21:05:10.3809552Z if __name__ == "__main__": 2023-01-11T21:05:10.3809663Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.3809817Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.3810159Z arg0_1 = rand_strided((3, 4, 3, 3), (36, 9, 3, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.3810377Z arg1_1 = rand_strided((3, 4, 5, 5), (100, 25, 5, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.3810570Z arg2_1 = rand_strided((4, 4, 3, 3), (36, 9, 3, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.3810773Z arg3_1 = rand_strided((3, 4, 3, 3), (36, 9, 3, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.3810983Z arg4_1 = rand_strided((3, 4, 5, 5), (100, 25, 5, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.3811184Z arg5_1 = rand_strided((4, 4, 3, 3), (36, 9, 3, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.3811397Z arg6_1 = rand_strided((3, 4, 3, 3, 3), (108, 27, 9, 3, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.3811618Z arg7_1 = rand_strided((3, 4, 5, 5, 5), (500, 125, 25, 5, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.3811838Z arg8_1 = rand_strided((4, 4, 3, 3, 3), (108, 27, 9, 3, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.3812031Z print_performance(lambda: call([arg0_1, arg1_1, arg2_1, arg3_1, arg4_1, arg5_1, arg6_1, arg7_1, arg8_1])) 2023-01-11T21:05:10.3812037Z 2023-01-11T21:05:10.3812103Z ok (0.334s) 2023-01-11T21:05:10.3812535Z test_conv_bn_fuse_cpu (__main__.CpuTests) ... inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.3812661Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.3812921Z [2023-01-11 20:46:55,484] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 69 2023-01-11T21:05:10.3813183Z [2023-01-11 20:46:55,527] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 69 2023-01-11T21:05:10.3813584Z inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.3813707Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.3813959Z [2023-01-11 20:46:55,726] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 70 2023-01-11T21:05:10.3814219Z [2023-01-11 20:46:55,770] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 70 2023-01-11T21:05:10.3814615Z inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.3814743Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.3814993Z [2023-01-11 20:46:55,992] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 71 2023-01-11T21:05:10.3815248Z [2023-01-11 20:46:56,033] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 71 2023-01-11T21:05:10.3815630Z inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.3815760Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.3816039Z [2023-01-11 20:46:56,232] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 72 2023-01-11T21:05:10.3816296Z [2023-01-11 20:46:56,275] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 72 2023-01-11T21:05:10.3816689Z inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.3816808Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.3817061Z [2023-01-11 20:46:56,480] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 73 2023-01-11T21:05:10.3817317Z [2023-01-11 20:46:56,522] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 73 2023-01-11T21:05:10.3817740Z inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.3817863Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.3818111Z [2023-01-11 20:46:56,722] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 74 2023-01-11T21:05:10.3818117Z 2023-01-11T21:05:10.3818209Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.3818264Z import torch 2023-01-11T21:05:10.3818332Z import random 2023-01-11T21:05:10.3818447Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.3818661Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.3818667Z 2023-01-11T21:05:10.3818744Z aten = torch.ops.aten 2023-01-11T21:05:10.3818882Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.3818970Z async_compile = AsyncCompile() 2023-01-11T21:05:10.3818975Z 2023-01-11T21:05:10.3818980Z 2023-01-11T21:05:10.3819069Z async_compile.wait(globals()) 2023-01-11T21:05:10.3819127Z del async_compile 2023-01-11T21:05:10.3819131Z 2023-01-11T21:05:10.3819201Z def call(args): 2023-01-11T21:05:10.3819322Z arg0_1, arg1_1, arg2_1, arg3_1, arg4_1, arg5_1, arg6_1, arg7_1 = args 2023-01-11T21:05:10.3819392Z args.clear() 2023-01-11T21:05:10.3819524Z buf0 = aten.convolution(arg7_1, arg0_1, arg1_1, (1,), (0,), (1,), False, (0,), 1) 2023-01-11T21:05:10.3819628Z assert_size_stride(buf0, (1, 32, 112), (3584, 112, 1)) 2023-01-11T21:05:10.3819695Z del arg0_1 2023-01-11T21:05:10.3819746Z del arg1_1 2023-01-11T21:05:10.3819811Z del arg7_1 2023-01-11T21:05:10.3819887Z return (buf0, ) 2023-01-11T21:05:10.3819892Z 2023-01-11T21:05:10.3819896Z 2023-01-11T21:05:10.3819969Z if __name__ == "__main__": 2023-01-11T21:05:10.3820084Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.3820205Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.3820414Z arg0_1 = rand_strided((32, 3, 1), (3, 1, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.3820592Z arg1_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.3820782Z arg2_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.3820981Z arg3_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.3821265Z arg4_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.3821466Z arg5_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.3821647Z arg6_1 = rand_strided((), (), device='cpu', dtype=torch.int64) 2023-01-11T21:05:10.3821854Z arg7_1 = rand_strided((1, 3, 112), (336, 112, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.3822088Z print_performance(lambda: call([arg0_1, arg1_1, arg2_1, arg3_1, arg4_1, arg5_1, arg6_1, arg7_1])) 2023-01-11T21:05:10.3822093Z 2023-01-11T21:05:10.3822098Z 2023-01-11T21:05:10.3822194Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.3822249Z import torch 2023-01-11T21:05:10.3822319Z import random 2023-01-11T21:05:10.3822433Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.3822556Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.3822561Z 2023-01-11T21:05:10.3822637Z aten = torch.ops.aten 2023-01-11T21:05:10.3862656Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.3862954Z async_compile = AsyncCompile() 2023-01-11T21:05:10.3862963Z 2023-01-11T21:05:10.3862983Z 2023-01-11T21:05:10.3863084Z async_compile.wait(globals()) 2023-01-11T21:05:10.3863162Z del async_compile 2023-01-11T21:05:10.3863167Z 2023-01-11T21:05:10.3863240Z def call(args): 2023-01-11T21:05:10.3863382Z arg0_1, arg1_1, arg2_1, arg3_1, arg4_1, arg5_1, arg6_1, arg7_1 = args 2023-01-11T21:05:10.3863470Z args.clear() 2023-01-11T21:05:10.3863620Z buf0 = aten.convolution(arg7_1, arg0_1, arg1_1, (1,), (0,), (1,), False, (0,), 4) 2023-01-11T21:05:10.3863898Z assert_size_stride(buf0, (1, 128, 112), (14336, 112, 1)) 2023-01-11T21:05:10.3863956Z del arg0_1 2023-01-11T21:05:10.3864023Z del arg1_1 2023-01-11T21:05:10.3864090Z del arg7_1 2023-01-11T21:05:10.3864163Z return (buf0, ) 2023-01-11T21:05:10.3864169Z 2023-01-11T21:05:10.3864173Z 2023-01-11T21:05:10.3864252Z if __name__ == "__main__": 2023-01-11T21:05:10.3864369Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.3864496Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.3864751Z arg0_1 = rand_strided((128, 3, 1), (3, 1, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.3864955Z arg1_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.3865153Z arg2_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.3865347Z arg3_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.3865540Z arg4_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.3865731Z arg5_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.3865911Z arg6_1 = rand_strided((), (), device='cpu', dtype=torch.int64) 2023-01-11T21:05:10.3866122Z arg7_1 = rand_strided((1, 12, 112), (1344, 112, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.3866267Z print_performance(lambda: call([arg0_1, arg1_1, arg2_1, arg3_1, arg4_1, arg5_1, arg6_1, arg7_1])) 2023-01-11T21:05:10.3866284Z 2023-01-11T21:05:10.3866289Z 2023-01-11T21:05:10.3866370Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.3866441Z import torch 2023-01-11T21:05:10.3866513Z import random 2023-01-11T21:05:10.3866631Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.3866760Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.3866766Z 2023-01-11T21:05:10.3866844Z aten = torch.ops.aten 2023-01-11T21:05:10.3866980Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.3867059Z async_compile = AsyncCompile() 2023-01-11T21:05:10.3867064Z 2023-01-11T21:05:10.3867081Z 2023-01-11T21:05:10.3867157Z async_compile.wait(globals()) 2023-01-11T21:05:10.3867229Z del async_compile 2023-01-11T21:05:10.3867234Z 2023-01-11T21:05:10.3867303Z def call(args): 2023-01-11T21:05:10.3867422Z arg0_1, arg1_1, arg2_1, arg3_1, arg4_1, arg5_1, arg6_1, arg7_1 = args 2023-01-11T21:05:10.3867497Z args.clear() 2023-01-11T21:05:10.3867628Z buf0 = aten.convolution(arg7_1, arg0_1, arg1_1, (1,), (0,), (2,), False, (0,), 1) 2023-01-11T21:05:10.3867732Z assert_size_stride(buf0, (1, 32, 112), (3584, 112, 1)) 2023-01-11T21:05:10.3867786Z del arg0_1 2023-01-11T21:05:10.3867851Z del arg1_1 2023-01-11T21:05:10.3867973Z del arg7_1 2023-01-11T21:05:10.3868044Z return (buf0, ) 2023-01-11T21:05:10.3868049Z 2023-01-11T21:05:10.3868053Z 2023-01-11T21:05:10.3868128Z if __name__ == "__main__": 2023-01-11T21:05:10.3868243Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.3868366Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.3868561Z arg0_1 = rand_strided((32, 3, 1), (3, 1, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.3868752Z arg1_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.3868945Z arg2_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.3869130Z arg3_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.3869320Z arg4_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.3869511Z arg5_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.3869697Z arg6_1 = rand_strided((), (), device='cpu', dtype=torch.int64) 2023-01-11T21:05:10.3869903Z arg7_1 = rand_strided((1, 3, 112), (336, 112, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.3870109Z print_performance(lambda: call([arg0_1, arg1_1, arg2_1, arg3_1, arg4_1, arg5_1, arg6_1, arg7_1])) 2023-01-11T21:05:10.3870115Z 2023-01-11T21:05:10.3870119Z 2023-01-11T21:05:10.3870202Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.3870270Z import torch 2023-01-11T21:05:10.3870341Z import random 2023-01-11T21:05:10.3870460Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.3870580Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.3870585Z 2023-01-11T21:05:10.3870664Z aten = torch.ops.aten 2023-01-11T21:05:10.3870798Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.3870876Z async_compile = AsyncCompile() 2023-01-11T21:05:10.3870898Z 2023-01-11T21:05:10.3870902Z 2023-01-11T21:05:10.3870977Z async_compile.wait(globals()) 2023-01-11T21:05:10.3871052Z del async_compile 2023-01-11T21:05:10.3871057Z 2023-01-11T21:05:10.3871128Z def call(args): 2023-01-11T21:05:10.3871250Z arg0_1, arg1_1, arg2_1, arg3_1, arg4_1, arg5_1, arg6_1, arg7_1 = args 2023-01-11T21:05:10.3871324Z args.clear() 2023-01-11T21:05:10.3871456Z buf0 = aten.convolution(arg7_1, arg0_1, arg1_1, (1,), (0,), (2,), False, (0,), 4) 2023-01-11T21:05:10.3871564Z assert_size_stride(buf0, (1, 128, 112), (14336, 112, 1)) 2023-01-11T21:05:10.3871618Z del arg0_1 2023-01-11T21:05:10.3871701Z del arg1_1 2023-01-11T21:05:10.3871765Z del arg7_1 2023-01-11T21:05:10.3871835Z return (buf0, ) 2023-01-11T21:05:10.3871840Z 2023-01-11T21:05:10.3871844Z 2023-01-11T21:05:10.3871920Z if __name__ == "__main__": 2023-01-11T21:05:10.3872051Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.3872175Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.3872387Z arg0_1 = rand_strided((128, 3, 1), (3, 1, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.3872573Z arg1_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.3872765Z arg2_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.3872958Z arg3_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.3873149Z arg4_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.3873334Z arg5_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.3873532Z arg6_1 = rand_strided((), (), device='cpu', dtype=torch.int64) 2023-01-11T21:05:10.3873745Z arg7_1 = rand_strided((1, 12, 112), (1344, 112, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.3873900Z print_performance(lambda: call([arg0_1, arg1_1, arg2_1, arg3_1, arg4_1, arg5_1, arg6_1, arg7_1])) 2023-01-11T21:05:10.3873905Z 2023-01-11T21:05:10.3873909Z 2023-01-11T21:05:10.3874002Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.3874090Z import torch 2023-01-11T21:05:10.3874160Z import random 2023-01-11T21:05:10.3874274Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.3874398Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.3874403Z 2023-01-11T21:05:10.3874481Z aten = torch.ops.aten 2023-01-11T21:05:10.3874613Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.3874703Z async_compile = AsyncCompile() 2023-01-11T21:05:10.3874708Z 2023-01-11T21:05:10.3874712Z 2023-01-11T21:05:10.3874788Z async_compile.wait(globals()) 2023-01-11T21:05:10.3874858Z del async_compile 2023-01-11T21:05:10.3874863Z 2023-01-11T21:05:10.3874931Z def call(args): 2023-01-11T21:05:10.3875049Z arg0_1, arg1_1, arg2_1, arg3_1, arg4_1, arg5_1, arg6_1, arg7_1 = args 2023-01-11T21:05:10.3875123Z args.clear() 2023-01-11T21:05:10.3875255Z buf0 = aten.convolution(arg7_1, arg0_1, arg1_1, (1,), (0,), (1,), False, (0,), 1) 2023-01-11T21:05:10.3875379Z assert_size_stride(buf0, (1, 32, 110), (3520, 110, 1)) 2023-01-11T21:05:10.3875445Z del arg0_1 2023-01-11T21:05:10.3875500Z del arg1_1 2023-01-11T21:05:10.3875568Z del arg7_1 2023-01-11T21:05:10.3875638Z return (buf0, ) 2023-01-11T21:05:10.3875671Z 2023-01-11T21:05:10.3875675Z 2023-01-11T21:05:10.3875767Z if __name__ == "__main__": 2023-01-11T21:05:10.3875897Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.3876022Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.3876236Z arg0_1 = rand_strided((32, 3, 3), (9, 3, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.3876415Z arg1_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.3876608Z arg2_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.3876794Z arg3_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.3876982Z arg4_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.3877172Z arg5_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.3877351Z arg6_1 = rand_strided((), (), device='cpu', dtype=torch.int64) 2023-01-11T21:05:10.3877560Z arg7_1 = rand_strided((1, 3, 112), (336, 112, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.3877716Z print_performance(lambda: call([arg0_1, arg1_1, arg2_1, arg3_1, arg4_1, arg5_1, arg6_1, arg7_1])) 2023-01-11T21:05:10.3877721Z 2023-01-11T21:05:10.3877725Z 2023-01-11T21:05:10.3877821Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.3877879Z import torch 2023-01-11T21:05:10.3877947Z import random 2023-01-11T21:05:10.3878062Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.3878181Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.3878187Z 2023-01-11T21:05:10.3878263Z aten = torch.ops.aten 2023-01-11T21:05:10.3878397Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.3878491Z async_compile = AsyncCompile() 2023-01-11T21:05:10.3878496Z 2023-01-11T21:05:10.3878500Z 2023-01-11T21:05:10.3878592Z async_compile.wait(globals()) 2023-01-11T21:05:10.3878651Z del async_compile 2023-01-11T21:05:10.3878658Z 2023-01-11T21:05:10.3878731Z def call(args): 2023-01-11T21:05:10.3878848Z arg0_1, arg1_1, arg2_1, arg3_1, arg4_1, arg5_1, arg6_1, arg7_1 = args 2023-01-11T21:05:10.3878917Z args.clear() 2023-01-11T21:05:10.3879047Z buf0 = aten.convolution(arg7_1, arg0_1, arg1_1, (1,), (0,), (1,), False, (0,), 4) 2023-01-11T21:05:10.3879155Z assert_size_stride(buf0, (1, 128, 110), (14080, 110, 1)) 2023-01-11T21:05:10.3879221Z del arg0_1 2023-01-11T21:05:10.3879276Z del arg1_1 2023-01-11T21:05:10.3879342Z del arg7_1 2023-01-11T21:05:10.3879416Z return (buf0, ) 2023-01-11T21:05:10.3879421Z 2023-01-11T21:05:10.3879425Z 2023-01-11T21:05:10.3879500Z if __name__ == "__main__": 2023-01-11T21:05:10.3879615Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.3879765Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.3879975Z arg0_1 = rand_strided((128, 3, 3), (9, 3, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.3880170Z arg1_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.3880350Z arg2_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.3880535Z arg3_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.3880927Z arg4_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.3881117Z arg5_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.3881294Z arg6_1 = rand_strided((), (), device='cpu', dtype=torch.int64) 2023-01-11T21:05:10.3881504Z arg7_1 = rand_strided((1, 12, 112), (1344, 112, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.3881659Z print_performance(lambda: call([arg0_1, arg1_1, arg2_1, arg3_1, arg4_1, arg5_1, arg6_1, arg7_1])) 2023-01-11T21:05:10.3881933Z [2023-01-11 20:46:56,764] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 74 2023-01-11T21:05:10.3882388Z inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.3882506Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.3882765Z [2023-01-11 20:46:56,970] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 75 2023-01-11T21:05:10.3883031Z [2023-01-11 20:46:57,012] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 75 2023-01-11T21:05:10.3883436Z inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.3883565Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.3883822Z [2023-01-11 20:46:57,212] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 76 2023-01-11T21:05:10.3884083Z [2023-01-11 20:46:57,255] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 76 2023-01-11T21:05:10.3884478Z inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.3884607Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.3884861Z [2023-01-11 20:46:57,456] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 77 2023-01-11T21:05:10.3885127Z [2023-01-11 20:46:57,497] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 77 2023-01-11T21:05:10.3885517Z inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.3885643Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.3885895Z [2023-01-11 20:46:57,697] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 78 2023-01-11T21:05:10.3886155Z [2023-01-11 20:46:57,739] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 78 2023-01-11T21:05:10.3886592Z inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.3886718Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.3886972Z [2023-01-11 20:46:57,940] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 79 2023-01-11T21:05:10.3887232Z [2023-01-11 20:46:57,981] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 79 2023-01-11T21:05:10.3887626Z inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.3887754Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.3888043Z [2023-01-11 20:46:58,174] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 80 2023-01-11T21:05:10.3888050Z 2023-01-11T21:05:10.3888055Z 2023-01-11T21:05:10.3888149Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.3888207Z import torch 2023-01-11T21:05:10.3888276Z import random 2023-01-11T21:05:10.3888390Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.3888511Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.3888517Z 2023-01-11T21:05:10.3888596Z aten = torch.ops.aten 2023-01-11T21:05:10.3888732Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.3888824Z async_compile = AsyncCompile() 2023-01-11T21:05:10.3888829Z 2023-01-11T21:05:10.3888835Z 2023-01-11T21:05:10.3888922Z async_compile.wait(globals()) 2023-01-11T21:05:10.3888981Z del async_compile 2023-01-11T21:05:10.3888987Z 2023-01-11T21:05:10.3889060Z def call(args): 2023-01-11T21:05:10.3889183Z arg0_1, arg1_1, arg2_1, arg3_1, arg4_1, arg5_1, arg6_1, arg7_1 = args 2023-01-11T21:05:10.3889255Z args.clear() 2023-01-11T21:05:10.3889387Z buf0 = aten.convolution(arg7_1, arg0_1, arg1_1, (1,), (0,), (2,), False, (0,), 1) 2023-01-11T21:05:10.3889498Z assert_size_stride(buf0, (1, 32, 108), (3456, 108, 1)) 2023-01-11T21:05:10.3889569Z del arg0_1 2023-01-11T21:05:10.3889623Z del arg1_1 2023-01-11T21:05:10.3889692Z del arg7_1 2023-01-11T21:05:10.3889763Z return (buf0, ) 2023-01-11T21:05:10.3889768Z 2023-01-11T21:05:10.3889772Z 2023-01-11T21:05:10.3889850Z if __name__ == "__main__": 2023-01-11T21:05:10.3889963Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.3890086Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.3890295Z arg0_1 = rand_strided((32, 3, 3), (9, 3, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.3890490Z arg1_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.3890672Z arg2_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.3890860Z arg3_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.3891068Z arg4_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.3891256Z arg5_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.3891437Z arg6_1 = rand_strided((), (), device='cpu', dtype=torch.int64) 2023-01-11T21:05:10.3891643Z arg7_1 = rand_strided((1, 3, 112), (336, 112, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.3891799Z print_performance(lambda: call([arg0_1, arg1_1, arg2_1, arg3_1, arg4_1, arg5_1, arg6_1, arg7_1])) 2023-01-11T21:05:10.3891804Z 2023-01-11T21:05:10.3891841Z 2023-01-11T21:05:10.3891935Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.3891992Z import torch 2023-01-11T21:05:10.3892062Z import random 2023-01-11T21:05:10.3892177Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.3892301Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.3892306Z 2023-01-11T21:05:10.3892384Z aten = torch.ops.aten 2023-01-11T21:05:10.3892520Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.3892610Z async_compile = AsyncCompile() 2023-01-11T21:05:10.3892615Z 2023-01-11T21:05:10.3892619Z 2023-01-11T21:05:10.3892706Z async_compile.wait(globals()) 2023-01-11T21:05:10.3892765Z del async_compile 2023-01-11T21:05:10.3892769Z 2023-01-11T21:05:10.3892838Z def call(args): 2023-01-11T21:05:10.3892959Z arg0_1, arg1_1, arg2_1, arg3_1, arg4_1, arg5_1, arg6_1, arg7_1 = args 2023-01-11T21:05:10.3893029Z args.clear() 2023-01-11T21:05:10.3893159Z buf0 = aten.convolution(arg7_1, arg0_1, arg1_1, (1,), (0,), (2,), False, (0,), 4) 2023-01-11T21:05:10.3893268Z assert_size_stride(buf0, (1, 128, 108), (13824, 108, 1)) 2023-01-11T21:05:10.3893336Z del arg0_1 2023-01-11T21:05:10.3893389Z del arg1_1 2023-01-11T21:05:10.3893482Z del arg7_1 2023-01-11T21:05:10.3893555Z return (buf0, ) 2023-01-11T21:05:10.3893559Z 2023-01-11T21:05:10.3893563Z 2023-01-11T21:05:10.3893639Z if __name__ == "__main__": 2023-01-11T21:05:10.3893752Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.3893872Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.3894079Z arg0_1 = rand_strided((128, 3, 3), (9, 3, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.3894273Z arg1_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.3894470Z arg2_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.3894674Z arg3_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.3894865Z arg4_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.3895081Z arg5_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.3895264Z arg6_1 = rand_strided((), (), device='cpu', dtype=torch.int64) 2023-01-11T21:05:10.3895479Z arg7_1 = rand_strided((1, 12, 112), (1344, 112, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.3895634Z print_performance(lambda: call([arg0_1, arg1_1, arg2_1, arg3_1, arg4_1, arg5_1, arg6_1, arg7_1])) 2023-01-11T21:05:10.3895640Z 2023-01-11T21:05:10.3895644Z 2023-01-11T21:05:10.3895741Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.3895798Z import torch 2023-01-11T21:05:10.3895869Z import random 2023-01-11T21:05:10.3895983Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.3896106Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.3896111Z 2023-01-11T21:05:10.3896191Z aten = torch.ops.aten 2023-01-11T21:05:10.3896328Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.3896423Z async_compile = AsyncCompile() 2023-01-11T21:05:10.3896428Z 2023-01-11T21:05:10.3896431Z 2023-01-11T21:05:10.3896525Z async_compile.wait(globals()) 2023-01-11T21:05:10.3896587Z del async_compile 2023-01-11T21:05:10.3896607Z 2023-01-11T21:05:10.3896666Z def call(args): 2023-01-11T21:05:10.3896784Z arg0_1, arg1_1, arg2_1, arg3_1, arg4_1, arg5_1, arg6_1, arg7_1 = args 2023-01-11T21:05:10.3896860Z args.clear() 2023-01-11T21:05:10.3897010Z buf0 = aten.convolution(arg7_1, arg0_1, arg1_1, (1,), (0,), (1,), False, (0,), 1) 2023-01-11T21:05:10.3897118Z assert_size_stride(buf0, (1, 32, 112), (3584, 112, 1)) 2023-01-11T21:05:10.3897188Z del arg0_1 2023-01-11T21:05:10.3897257Z del arg1_1 2023-01-11T21:05:10.3897310Z del arg7_1 2023-01-11T21:05:10.3897383Z return (buf0, ) 2023-01-11T21:05:10.3897388Z 2023-01-11T21:05:10.3897392Z 2023-01-11T21:05:10.3897470Z if __name__ == "__main__": 2023-01-11T21:05:10.3897621Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.3897747Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.3897974Z arg0_1 = rand_strided((32, 3, 1), (3, 1, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.3898168Z arg1_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.3898346Z arg2_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.3898640Z arg3_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.3898834Z arg4_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.3899026Z arg5_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.3899206Z arg6_1 = rand_strided((), (), device='cpu', dtype=torch.int64) 2023-01-11T21:05:10.3899414Z arg7_1 = rand_strided((1, 3, 112), (336, 112, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.3899574Z print_performance(lambda: call([arg0_1, arg1_1, arg2_1, arg3_1, arg4_1, arg5_1, arg6_1, arg7_1])) 2023-01-11T21:05:10.3899580Z 2023-01-11T21:05:10.3899584Z 2023-01-11T21:05:10.3899750Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.3899822Z import torch 2023-01-11T21:05:10.3899880Z import random 2023-01-11T21:05:10.3899996Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.3900121Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.3900125Z 2023-01-11T21:05:10.3900209Z aten = torch.ops.aten 2023-01-11T21:05:10.3900345Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.3900438Z async_compile = AsyncCompile() 2023-01-11T21:05:10.3900443Z 2023-01-11T21:05:10.3900447Z 2023-01-11T21:05:10.3900536Z async_compile.wait(globals()) 2023-01-11T21:05:10.3900609Z del async_compile 2023-01-11T21:05:10.3900614Z 2023-01-11T21:05:10.3900671Z def call(args): 2023-01-11T21:05:10.3900789Z arg0_1, arg1_1, arg2_1, arg3_1, arg4_1, arg5_1, arg6_1, arg7_1 = args 2023-01-11T21:05:10.3900864Z args.clear() 2023-01-11T21:05:10.3900999Z buf0 = aten.convolution(arg7_1, arg0_1, arg1_1, (1,), (0,), (1,), False, (0,), 4) 2023-01-11T21:05:10.3901111Z assert_size_stride(buf0, (1, 128, 112), (14336, 112, 1)) 2023-01-11T21:05:10.3901181Z del arg0_1 2023-01-11T21:05:10.3901254Z del arg1_1 2023-01-11T21:05:10.3901307Z del arg7_1 2023-01-11T21:05:10.3901379Z return (buf0, ) 2023-01-11T21:05:10.3901384Z 2023-01-11T21:05:10.3901388Z 2023-01-11T21:05:10.3901463Z if __name__ == "__main__": 2023-01-11T21:05:10.3901581Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.3901707Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.3901918Z arg0_1 = rand_strided((128, 3, 1), (3, 1, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.3902113Z arg1_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.3902305Z arg2_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.3902511Z arg3_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.3902706Z arg4_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.3902937Z arg5_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.3903131Z arg6_1 = rand_strided((), (), device='cpu', dtype=torch.int64) 2023-01-11T21:05:10.3910328Z arg7_1 = rand_strided((1, 12, 112), (1344, 112, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.3910540Z print_performance(lambda: call([arg0_1, arg1_1, arg2_1, arg3_1, arg4_1, arg5_1, arg6_1, arg7_1])) 2023-01-11T21:05:10.3910547Z 2023-01-11T21:05:10.3910551Z 2023-01-11T21:05:10.3910650Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.3910722Z import torch 2023-01-11T21:05:10.3910778Z import random 2023-01-11T21:05:10.3910896Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.3911069Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.3911074Z 2023-01-11T21:05:10.3911150Z aten = torch.ops.aten 2023-01-11T21:05:10.3911288Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.3911378Z async_compile = AsyncCompile() 2023-01-11T21:05:10.3911383Z 2023-01-11T21:05:10.3911387Z 2023-01-11T21:05:10.3911473Z async_compile.wait(globals()) 2023-01-11T21:05:10.3911544Z del async_compile 2023-01-11T21:05:10.3911550Z 2023-01-11T21:05:10.3911605Z def call(args): 2023-01-11T21:05:10.3911723Z arg0_1, arg1_1, arg2_1, arg3_1, arg4_1, arg5_1, arg6_1, arg7_1 = args 2023-01-11T21:05:10.3911793Z args.clear() 2023-01-11T21:05:10.3911924Z buf0 = aten.convolution(arg7_1, arg0_1, arg1_1, (1,), (0,), (2,), False, (0,), 1) 2023-01-11T21:05:10.3912031Z assert_size_stride(buf0, (1, 32, 112), (3584, 112, 1)) 2023-01-11T21:05:10.3912098Z del arg0_1 2023-01-11T21:05:10.3912163Z del arg1_1 2023-01-11T21:05:10.3912218Z del arg7_1 2023-01-11T21:05:10.3912289Z return (buf0, ) 2023-01-11T21:05:10.3912294Z 2023-01-11T21:05:10.3912298Z 2023-01-11T21:05:10.3912372Z if __name__ == "__main__": 2023-01-11T21:05:10.3912522Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.3912648Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.3912869Z arg0_1 = rand_strided((32, 3, 1), (3, 1, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.3913059Z arg1_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.3913249Z arg2_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.3913420Z arg3_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.3913606Z arg4_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.3913794Z arg5_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.3913970Z arg6_1 = rand_strided((), (), device='cpu', dtype=torch.int64) 2023-01-11T21:05:10.3914177Z arg7_1 = rand_strided((1, 3, 112), (336, 112, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.3914332Z print_performance(lambda: call([arg0_1, arg1_1, arg2_1, arg3_1, arg4_1, arg5_1, arg6_1, arg7_1])) 2023-01-11T21:05:10.3914338Z 2023-01-11T21:05:10.3914342Z 2023-01-11T21:05:10.3914434Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.3914506Z import torch 2023-01-11T21:05:10.3914561Z import random 2023-01-11T21:05:10.3914675Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.3914793Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.3914798Z 2023-01-11T21:05:10.3914875Z aten = torch.ops.aten 2023-01-11T21:05:10.3915005Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.3915093Z async_compile = AsyncCompile() 2023-01-11T21:05:10.3915098Z 2023-01-11T21:05:10.3915102Z 2023-01-11T21:05:10.3915187Z async_compile.wait(globals()) 2023-01-11T21:05:10.3915259Z del async_compile 2023-01-11T21:05:10.3915264Z 2023-01-11T21:05:10.3915322Z def call(args): 2023-01-11T21:05:10.3915440Z arg0_1, arg1_1, arg2_1, arg3_1, arg4_1, arg5_1, arg6_1, arg7_1 = args 2023-01-11T21:05:10.3915515Z args.clear() 2023-01-11T21:05:10.3915649Z buf0 = aten.convolution(arg7_1, arg0_1, arg1_1, (1,), (0,), (2,), False, (0,), 4) 2023-01-11T21:05:10.3915756Z assert_size_stride(buf0, (1, 128, 112), (14336, 112, 1)) 2023-01-11T21:05:10.3915823Z del arg0_1 2023-01-11T21:05:10.3915889Z del arg1_1 2023-01-11T21:05:10.3915942Z del arg7_1 2023-01-11T21:05:10.3916011Z return (buf0, ) 2023-01-11T21:05:10.3916016Z 2023-01-11T21:05:10.3916020Z 2023-01-11T21:05:10.3916092Z if __name__ == "__main__": 2023-01-11T21:05:10.3916206Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.3916325Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.3916527Z arg0_1 = rand_strided((128, 3, 1), (3, 1, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.3916762Z arg1_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.3916954Z arg2_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.3917133Z arg3_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.3917322Z arg4_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.3917508Z arg5_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.3917685Z arg6_1 = rand_strided((), (), device='cpu', dtype=torch.int64) 2023-01-11T21:05:10.3917891Z arg7_1 = rand_strided((1, 12, 112), (1344, 112, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.3918043Z print_performance(lambda: call([arg0_1, arg1_1, arg2_1, arg3_1, arg4_1, arg5_1, arg6_1, arg7_1])) 2023-01-11T21:05:10.3918309Z [2023-01-11 20:46:58,215] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 80 2023-01-11T21:05:10.3918758Z inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.3918885Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.3919140Z [2023-01-11 20:46:58,419] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 81 2023-01-11T21:05:10.3919388Z [2023-01-11 20:46:58,460] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 81 2023-01-11T21:05:10.3919785Z inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.3919913Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.3920167Z [2023-01-11 20:46:58,655] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 82 2023-01-11T21:05:10.3920433Z [2023-01-11 20:46:58,696] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 82 2023-01-11T21:05:10.3921007Z inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.3921133Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.3921387Z [2023-01-11 20:46:58,894] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 83 2023-01-11T21:05:10.3921649Z [2023-01-11 20:46:58,934] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 83 2023-01-11T21:05:10.3922046Z inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.3922169Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.3922407Z [2023-01-11 20:46:59,132] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 84 2023-01-11T21:05:10.3922664Z [2023-01-11 20:46:59,177] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 84 2023-01-11T21:05:10.3923103Z inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.3923368Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.3923758Z [2023-01-11 20:46:59,391] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 85 2023-01-11T21:05:10.3924214Z [2023-01-11 20:46:59,435] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 85 2023-01-11T21:05:10.3924888Z inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.3925099Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.3925556Z [2023-01-11 20:46:59,754] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 86 2023-01-11T21:05:10.3925565Z 2023-01-11T21:05:10.3925648Z 2023-01-11T21:05:10.3925816Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.3925925Z import torch 2023-01-11T21:05:10.3926040Z import random 2023-01-11T21:05:10.3926222Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.3926416Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.3926425Z 2023-01-11T21:05:10.3926551Z aten = torch.ops.aten 2023-01-11T21:05:10.3926782Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.3926926Z async_compile = AsyncCompile() 2023-01-11T21:05:10.3926934Z 2023-01-11T21:05:10.3926941Z 2023-01-11T21:05:10.3927092Z async_compile.wait(globals()) 2023-01-11T21:05:10.3927209Z del async_compile 2023-01-11T21:05:10.3927217Z 2023-01-11T21:05:10.3927336Z def call(args): 2023-01-11T21:05:10.3927532Z arg0_1, arg1_1, arg2_1, arg3_1, arg4_1, arg5_1, arg6_1, arg7_1 = args 2023-01-11T21:05:10.3927640Z args.clear() 2023-01-11T21:05:10.3927879Z buf0 = aten.convolution(arg7_1, arg0_1, arg1_1, (1,), (0,), (1,), False, (0,), 1) 2023-01-11T21:05:10.3928058Z assert_size_stride(buf0, (1, 32, 110), (3520, 110, 1)) 2023-01-11T21:05:10.3928151Z del arg0_1 2023-01-11T21:05:10.3928253Z del arg1_1 2023-01-11T21:05:10.3928357Z del arg7_1 2023-01-11T21:05:10.3928474Z return (buf0, ) 2023-01-11T21:05:10.3928483Z 2023-01-11T21:05:10.3928490Z 2023-01-11T21:05:10.3928614Z if __name__ == "__main__": 2023-01-11T21:05:10.3928795Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.3929012Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.3929378Z arg0_1 = rand_strided((32, 3, 3), (9, 3, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.3929712Z arg1_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.3930056Z arg2_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.3930383Z arg3_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.3930731Z arg4_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.3931056Z arg5_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.3931383Z arg6_1 = rand_strided((), (), device='cpu', dtype=torch.int64) 2023-01-11T21:05:10.3931736Z arg7_1 = rand_strided((1, 3, 112), (336, 112, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.3932004Z print_performance(lambda: call([arg0_1, arg1_1, arg2_1, arg3_1, arg4_1, arg5_1, arg6_1, arg7_1])) 2023-01-11T21:05:10.3932013Z 2023-01-11T21:05:10.3932028Z 2023-01-11T21:05:10.3932182Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.3932297Z import torch 2023-01-11T21:05:10.3932404Z import random 2023-01-11T21:05:10.3932684Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.3932894Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.3932902Z 2023-01-11T21:05:10.3933033Z aten = torch.ops.aten 2023-01-11T21:05:10.3933262Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.3933405Z async_compile = AsyncCompile() 2023-01-11T21:05:10.3933414Z 2023-01-11T21:05:10.3933422Z 2023-01-11T21:05:10.3933579Z async_compile.wait(globals()) 2023-01-11T21:05:10.3933698Z del async_compile 2023-01-11T21:05:10.3933707Z 2023-01-11T21:05:10.3954550Z def call(args): 2023-01-11T21:05:10.3954822Z arg0_1, arg1_1, arg2_1, arg3_1, arg4_1, arg5_1, arg6_1, arg7_1 = args 2023-01-11T21:05:10.3954943Z args.clear() 2023-01-11T21:05:10.3955176Z buf0 = aten.convolution(arg7_1, arg0_1, arg1_1, (1,), (0,), (1,), False, (0,), 4) 2023-01-11T21:05:10.3955352Z assert_size_stride(buf0, (1, 128, 110), (14080, 110, 1)) 2023-01-11T21:05:10.3955459Z del arg0_1 2023-01-11T21:05:10.3955578Z del arg1_1 2023-01-11T21:05:10.3955677Z del arg7_1 2023-01-11T21:05:10.3955791Z return (buf0, ) 2023-01-11T21:05:10.3955802Z 2023-01-11T21:05:10.3955810Z 2023-01-11T21:05:10.3955934Z if __name__ == "__main__": 2023-01-11T21:05:10.3956243Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.3956452Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.3956874Z arg0_1 = rand_strided((128, 3, 3), (9, 3, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.3957231Z arg1_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.3957569Z arg2_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.3957916Z arg3_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.3958245Z arg4_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.3958577Z arg5_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.3958900Z arg6_1 = rand_strided((), (), device='cpu', dtype=torch.int64) 2023-01-11T21:05:10.3959271Z arg7_1 = rand_strided((1, 12, 112), (1344, 112, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.3959529Z print_performance(lambda: call([arg0_1, arg1_1, arg2_1, arg3_1, arg4_1, arg5_1, arg6_1, arg7_1])) 2023-01-11T21:05:10.3959539Z 2023-01-11T21:05:10.3959557Z 2023-01-11T21:05:10.3959708Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.3959831Z import torch 2023-01-11T21:05:10.3959947Z import random 2023-01-11T21:05:10.3960146Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.3960343Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.3960352Z 2023-01-11T21:05:10.3960478Z aten = torch.ops.aten 2023-01-11T21:05:10.3960932Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.3961094Z async_compile = AsyncCompile() 2023-01-11T21:05:10.3961103Z 2023-01-11T21:05:10.3961115Z 2023-01-11T21:05:10.3961258Z async_compile.wait(globals()) 2023-01-11T21:05:10.3961376Z del async_compile 2023-01-11T21:05:10.3961384Z 2023-01-11T21:05:10.3961486Z def call(args): 2023-01-11T21:05:10.3961694Z arg0_1, arg1_1, arg2_1, arg3_1, arg4_1, arg5_1, arg6_1, arg7_1 = args 2023-01-11T21:05:10.3961814Z args.clear() 2023-01-11T21:05:10.3962039Z buf0 = aten.convolution(arg7_1, arg0_1, arg1_1, (1,), (0,), (2,), False, (0,), 1) 2023-01-11T21:05:10.3962205Z assert_size_stride(buf0, (1, 32, 108), (3456, 108, 1)) 2023-01-11T21:05:10.3962309Z del arg0_1 2023-01-11T21:05:10.3962430Z del arg1_1 2023-01-11T21:05:10.3962538Z del arg7_1 2023-01-11T21:05:10.3962650Z return (buf0, ) 2023-01-11T21:05:10.3962658Z 2023-01-11T21:05:10.3962665Z 2023-01-11T21:05:10.3962786Z if __name__ == "__main__": 2023-01-11T21:05:10.3962969Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.3963178Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.3963686Z arg0_1 = rand_strided((32, 3, 3), (9, 3, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.3964022Z arg1_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.3964374Z arg2_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.3964707Z arg3_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.3965036Z arg4_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.3965382Z arg5_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.3965698Z arg6_1 = rand_strided((), (), device='cpu', dtype=torch.int64) 2023-01-11T21:05:10.3966067Z arg7_1 = rand_strided((1, 3, 112), (336, 112, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.3966341Z print_performance(lambda: call([arg0_1, arg1_1, arg2_1, arg3_1, arg4_1, arg5_1, arg6_1, arg7_1])) 2023-01-11T21:05:10.3966350Z 2023-01-11T21:05:10.3966361Z 2023-01-11T21:05:10.3966513Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.3966625Z import torch 2023-01-11T21:05:10.3966747Z import random 2023-01-11T21:05:10.3966937Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.3967223Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.3967233Z 2023-01-11T21:05:10.3967361Z aten = torch.ops.aten 2023-01-11T21:05:10.3967597Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.3967753Z async_compile = AsyncCompile() 2023-01-11T21:05:10.3967761Z 2023-01-11T21:05:10.3967768Z 2023-01-11T21:05:10.3967906Z async_compile.wait(globals()) 2023-01-11T21:05:10.3968015Z del async_compile 2023-01-11T21:05:10.3968021Z 2023-01-11T21:05:10.3968121Z def call(args): 2023-01-11T21:05:10.3968308Z arg0_1, arg1_1, arg2_1, arg3_1, arg4_1, arg5_1, arg6_1, arg7_1 = args 2023-01-11T21:05:10.3968434Z args.clear() 2023-01-11T21:05:10.3968657Z buf0 = aten.convolution(arg7_1, arg0_1, arg1_1, (1,), (0,), (2,), False, (0,), 4) 2023-01-11T21:05:10.3968838Z assert_size_stride(buf0, (1, 128, 108), (13824, 108, 1)) 2023-01-11T21:05:10.3968943Z del arg0_1 2023-01-11T21:05:10.3969051Z del arg1_1 2023-01-11T21:05:10.3969168Z del arg7_1 2023-01-11T21:05:10.3969275Z return (buf0, ) 2023-01-11T21:05:10.3969283Z 2023-01-11T21:05:10.3969300Z 2023-01-11T21:05:10.3969416Z if __name__ == "__main__": 2023-01-11T21:05:10.3969609Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.3969817Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.3970201Z arg0_1 = rand_strided((128, 3, 3), (9, 3, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.3970534Z arg1_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.3970884Z arg2_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.3971209Z arg3_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.3971550Z arg4_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.3971890Z arg5_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.3972184Z arg6_1 = rand_strided((), (), device='cpu', dtype=torch.int64) 2023-01-11T21:05:10.3972475Z arg7_1 = rand_strided((1, 12, 112), (1344, 112, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.3972701Z print_performance(lambda: call([arg0_1, arg1_1, arg2_1, arg3_1, arg4_1, arg5_1, arg6_1, arg7_1])) 2023-01-11T21:05:10.3972708Z 2023-01-11T21:05:10.3972716Z 2023-01-11T21:05:10.3972848Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.3972968Z import torch 2023-01-11T21:05:10.3973090Z import random 2023-01-11T21:05:10.3973272Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.3973490Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.3973499Z 2023-01-11T21:05:10.3973623Z aten = torch.ops.aten 2023-01-11T21:05:10.3973914Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.3974053Z async_compile = AsyncCompile() 2023-01-11T21:05:10.3974060Z 2023-01-11T21:05:10.3974066Z 2023-01-11T21:05:10.3974199Z async_compile.wait(globals()) 2023-01-11T21:05:10.3974330Z del async_compile 2023-01-11T21:05:10.3974338Z 2023-01-11T21:05:10.3974459Z def call(args): 2023-01-11T21:05:10.3974667Z arg0_1, arg1_1, arg2_1, arg3_1, arg4_1, arg5_1, arg6_1, arg7_1 = args 2023-01-11T21:05:10.3974772Z args.clear() 2023-01-11T21:05:10.3975003Z buf0 = aten.convolution(arg7_1, arg0_1, arg1_1, (1, 1), (0, 0), (1, 1), False, (0, 0), 1) 2023-01-11T21:05:10.3975188Z assert_size_stride(buf0, (1, 32, 112, 112), (401408, 12544, 112, 1)) 2023-01-11T21:05:10.3975302Z del arg0_1 2023-01-11T21:05:10.3975415Z del arg1_1 2023-01-11T21:05:10.3975527Z del arg7_1 2023-01-11T21:05:10.3975642Z return (buf0, ) 2023-01-11T21:05:10.3975652Z 2023-01-11T21:05:10.3975660Z 2023-01-11T21:05:10.3975769Z if __name__ == "__main__": 2023-01-11T21:05:10.3975960Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.3976174Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.3976630Z arg0_1 = rand_strided((32, 3, 1, 1), (3, 1, 1, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.3976959Z arg1_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.3977291Z arg2_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.3977639Z arg3_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.3977979Z arg4_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.3978299Z arg5_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.3978725Z arg6_1 = rand_strided((), (), device='cpu', dtype=torch.int64) 2023-01-11T21:05:10.3979116Z arg7_1 = rand_strided((1, 3, 112, 112), (37632, 12544, 112, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.3979399Z print_performance(lambda: call([arg0_1, arg1_1, arg2_1, arg3_1, arg4_1, arg5_1, arg6_1, arg7_1])) 2023-01-11T21:05:10.3979409Z 2023-01-11T21:05:10.3979417Z 2023-01-11T21:05:10.3979582Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.3979699Z import torch 2023-01-11T21:05:10.3979811Z import random 2023-01-11T21:05:10.3980018Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.3980221Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.3980230Z 2023-01-11T21:05:10.3980358Z aten = torch.ops.aten 2023-01-11T21:05:10.3980587Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.3980747Z async_compile = AsyncCompile() 2023-01-11T21:05:10.3980755Z 2023-01-11T21:05:10.3980763Z 2023-01-11T21:05:10.3980919Z async_compile.wait(globals()) 2023-01-11T21:05:10.3981040Z del async_compile 2023-01-11T21:05:10.3981047Z 2023-01-11T21:05:10.3981160Z def call(args): 2023-01-11T21:05:10.3981368Z arg0_1, arg1_1, arg2_1, arg3_1, arg4_1, arg5_1, arg6_1, arg7_1 = args 2023-01-11T21:05:10.3981476Z args.clear() 2023-01-11T21:05:10.3981713Z buf0 = aten.convolution(arg7_1, arg0_1, arg1_1, (1, 1), (0, 0), (1, 1), False, (0, 0), 1) 2023-01-11T21:05:10.3981893Z assert_size_stride(buf0, (1, 32, 112, 112), (401408, 1, 3584, 32)) 2023-01-11T21:05:10.3982008Z del arg0_1 2023-01-11T21:05:10.3982119Z del arg1_1 2023-01-11T21:05:10.3982229Z del arg7_1 2023-01-11T21:05:10.3982348Z return (buf0, ) 2023-01-11T21:05:10.3982357Z 2023-01-11T21:05:10.3982364Z 2023-01-11T21:05:10.3982489Z if __name__ == "__main__": 2023-01-11T21:05:10.3982665Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.3982878Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.3983261Z arg0_1 = rand_strided((32, 3, 1, 1), (3, 1, 1, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.3983607Z arg1_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.3984007Z arg2_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.3984356Z arg3_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.3984689Z arg4_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.3985014Z arg5_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.3985347Z arg6_1 = rand_strided((), (), device='cpu', dtype=torch.int64) 2023-01-11T21:05:10.3985713Z arg7_1 = rand_strided((1, 3, 112, 112), (37632, 1, 336, 3), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.3985987Z print_performance(lambda: call([arg0_1, arg1_1, arg2_1, arg3_1, arg4_1, arg5_1, arg6_1, arg7_1])) 2023-01-11T21:05:10.3986465Z [2023-01-11 20:46:59,797] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 86 2023-01-11T21:05:10.3987275Z inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.3987502Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.3987980Z [2023-01-11 20:47:00,135] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 87 2023-01-11T21:05:10.3988464Z [2023-01-11 20:47:00,177] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 87 2023-01-11T21:05:10.3989188Z inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.3989409Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.3989853Z [2023-01-11 20:47:00,818] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 88 2023-01-11T21:05:10.3990350Z [2023-01-11 20:47:00,860] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 88 2023-01-11T21:05:10.3991060Z inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.3991280Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.3991734Z [2023-01-11 20:47:01,467] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 89 2023-01-11T21:05:10.3992216Z [2023-01-11 20:47:01,508] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 89 2023-01-11T21:05:10.3992958Z inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.3993183Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.3993637Z [2023-01-11 20:47:01,835] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 90 2023-01-11T21:05:10.3994119Z [2023-01-11 20:47:01,877] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 90 2023-01-11T21:05:10.3994855Z inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.3995131Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.3995605Z [2023-01-11 20:47:02,220] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 91 2023-01-11T21:05:10.3996093Z [2023-01-11 20:47:02,261] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 91 2023-01-11T21:05:10.3996824Z inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.3997049Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.3997505Z [2023-01-11 20:47:02,966] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 92 2023-01-11T21:05:10.3997519Z 2023-01-11T21:05:10.3997528Z 2023-01-11T21:05:10.3997702Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.3997879Z import torch 2023-01-11T21:05:10.3998007Z import random 2023-01-11T21:05:10.3998212Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.3998422Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.3998431Z 2023-01-11T21:05:10.3998565Z aten = torch.ops.aten 2023-01-11T21:05:10.3998793Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.3998962Z async_compile = AsyncCompile() 2023-01-11T21:05:10.3998971Z 2023-01-11T21:05:10.3998978Z 2023-01-11T21:05:10.3999134Z async_compile.wait(globals()) 2023-01-11T21:05:10.3999254Z del async_compile 2023-01-11T21:05:10.3999263Z 2023-01-11T21:05:10.3999385Z def call(args): 2023-01-11T21:05:10.3999584Z arg0_1, arg1_1, arg2_1, arg3_1, arg4_1, arg5_1, arg6_1, arg7_1 = args 2023-01-11T21:05:10.3999712Z args.clear() 2023-01-11T21:05:10.3999936Z buf0 = aten.convolution(arg7_1, arg0_1, arg1_1, (1, 1), (0, 0), (1, 1), False, (0, 0), 4) 2023-01-11T21:05:10.4000136Z assert_size_stride(buf0, (1, 128, 112, 112), (1605632, 12544, 112, 1)) 2023-01-11T21:05:10.4000253Z del arg0_1 2023-01-11T21:05:10.4000361Z del arg1_1 2023-01-11T21:05:10.4000475Z del arg7_1 2023-01-11T21:05:10.4000738Z return (buf0, ) 2023-01-11T21:05:10.4000746Z 2023-01-11T21:05:10.4000753Z 2023-01-11T21:05:10.4000873Z if __name__ == "__main__": 2023-01-11T21:05:10.4001073Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.4001267Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.4001666Z arg0_1 = rand_strided((128, 3, 1, 1), (3, 1, 1, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4002021Z arg1_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4002354Z arg2_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4002706Z arg3_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4003046Z arg4_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4003388Z arg5_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4003714Z arg6_1 = rand_strided((), (), device='cpu', dtype=torch.int64) 2023-01-11T21:05:10.4004085Z arg7_1 = rand_strided((1, 12, 112, 112), (150528, 12544, 112, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4004372Z print_performance(lambda: call([arg0_1, arg1_1, arg2_1, arg3_1, arg4_1, arg5_1, arg6_1, arg7_1])) 2023-01-11T21:05:10.4004382Z 2023-01-11T21:05:10.4004390Z 2023-01-11T21:05:10.4004557Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.4004677Z import torch 2023-01-11T21:05:10.4004793Z import random 2023-01-11T21:05:10.4004989Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.4005309Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.4005319Z 2023-01-11T21:05:10.4005452Z aten = torch.ops.aten 2023-01-11T21:05:10.4005668Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.4005823Z async_compile = AsyncCompile() 2023-01-11T21:05:10.4005831Z 2023-01-11T21:05:10.4005838Z 2023-01-11T21:05:10.4005994Z async_compile.wait(globals()) 2023-01-11T21:05:10.4006121Z del async_compile 2023-01-11T21:05:10.4006129Z 2023-01-11T21:05:10.4006249Z def call(args): 2023-01-11T21:05:10.4006446Z arg0_1, arg1_1, arg2_1, arg3_1, arg4_1, arg5_1, arg6_1, arg7_1 = args 2023-01-11T21:05:10.4006566Z args.clear() 2023-01-11T21:05:10.4006806Z buf0 = aten.convolution(arg7_1, arg0_1, arg1_1, (1, 1), (0, 0), (1, 1), False, (0, 0), 4) 2023-01-11T21:05:10.4006986Z assert_size_stride(buf0, (1, 128, 112, 112), (1605632, 1, 14336, 128)) 2023-01-11T21:05:10.4007101Z del arg0_1 2023-01-11T21:05:10.4007210Z del arg1_1 2023-01-11T21:05:10.4007319Z del arg7_1 2023-01-11T21:05:10.4007439Z return (buf0, ) 2023-01-11T21:05:10.4007448Z 2023-01-11T21:05:10.4007456Z 2023-01-11T21:05:10.4007581Z if __name__ == "__main__": 2023-01-11T21:05:10.4007871Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.4008088Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.4008454Z arg0_1 = rand_strided((128, 3, 1, 1), (3, 1, 1, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4008814Z arg1_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4009162Z arg2_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4009497Z arg3_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4009841Z arg4_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4010183Z arg5_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4010502Z arg6_1 = rand_strided((), (), device='cpu', dtype=torch.int64) 2023-01-11T21:05:10.4010902Z arg7_1 = rand_strided((1, 12, 112, 112), (150528, 1, 1344, 12), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4011171Z print_performance(lambda: call([arg0_1, arg1_1, arg2_1, arg3_1, arg4_1, arg5_1, arg6_1, arg7_1])) 2023-01-11T21:05:10.4011181Z 2023-01-11T21:05:10.4011202Z 2023-01-11T21:05:10.4011354Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.4011465Z import torch 2023-01-11T21:05:10.4011580Z import random 2023-01-11T21:05:10.4011776Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.4011980Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.4011989Z 2023-01-11T21:05:10.4012124Z aten = torch.ops.aten 2023-01-11T21:05:10.4012365Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.4012504Z async_compile = AsyncCompile() 2023-01-11T21:05:10.4012512Z 2023-01-11T21:05:10.4012534Z 2023-01-11T21:05:10.4012672Z async_compile.wait(globals()) 2023-01-11T21:05:10.4012801Z del async_compile 2023-01-11T21:05:10.4012810Z 2023-01-11T21:05:10.4012923Z def call(args): 2023-01-11T21:05:10.4013133Z arg0_1, arg1_1, arg2_1, arg3_1, arg4_1, arg5_1, arg6_1, arg7_1 = args 2023-01-11T21:05:10.4013254Z args.clear() 2023-01-11T21:05:10.4013493Z buf0 = aten.convolution(arg7_1, arg0_1, arg1_1, (1, 1), (0, 0), (2, 2), False, (0, 0), 1) 2023-01-11T21:05:10.4013682Z assert_size_stride(buf0, (1, 32, 112, 112), (401408, 12544, 112, 1)) 2023-01-11T21:05:10.4013780Z del arg0_1 2023-01-11T21:05:10.4013889Z del arg1_1 2023-01-11T21:05:10.4014002Z del arg7_1 2023-01-11T21:05:10.4014123Z return (buf0, ) 2023-01-11T21:05:10.4014132Z 2023-01-11T21:05:10.4014139Z 2023-01-11T21:05:10.4014268Z if __name__ == "__main__": 2023-01-11T21:05:10.4014470Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.4014682Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.4015126Z arg0_1 = rand_strided((32, 3, 1, 1), (3, 1, 1, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4015483Z arg1_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4015821Z arg2_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4016167Z arg3_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4016512Z arg4_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4016842Z arg5_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4017171Z arg6_1 = rand_strided((), (), device='cpu', dtype=torch.int64) 2023-01-11T21:05:10.4017570Z arg7_1 = rand_strided((1, 3, 112, 112), (37632, 12544, 112, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4017835Z print_performance(lambda: call([arg0_1, arg1_1, arg2_1, arg3_1, arg4_1, arg5_1, arg6_1, arg7_1])) 2023-01-11T21:05:10.4017845Z 2023-01-11T21:05:10.4017857Z 2023-01-11T21:05:10.4018008Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.4018125Z import torch 2023-01-11T21:05:10.4018243Z import random 2023-01-11T21:05:10.4018596Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.4018824Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.4018833Z 2023-01-11T21:05:10.4018967Z aten = torch.ops.aten 2023-01-11T21:05:10.4019202Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.4019357Z async_compile = AsyncCompile() 2023-01-11T21:05:10.4019366Z 2023-01-11T21:05:10.4019371Z 2023-01-11T21:05:10.4019510Z async_compile.wait(globals()) 2023-01-11T21:05:10.4019634Z del async_compile 2023-01-11T21:05:10.4019643Z 2023-01-11T21:05:10.4019764Z def call(args): 2023-01-11T21:05:10.4019963Z arg0_1, arg1_1, arg2_1, arg3_1, arg4_1, arg5_1, arg6_1, arg7_1 = args 2023-01-11T21:05:10.4020083Z args.clear() 2023-01-11T21:05:10.4020320Z buf0 = aten.convolution(arg7_1, arg0_1, arg1_1, (1, 1), (0, 0), (2, 2), False, (0, 0), 1) 2023-01-11T21:05:10.4020517Z assert_size_stride(buf0, (1, 32, 112, 112), (401408, 1, 3584, 32)) 2023-01-11T21:05:10.4020624Z del arg0_1 2023-01-11T21:05:10.4020717Z del arg1_1 2023-01-11T21:05:10.4020836Z del arg7_1 2023-01-11T21:05:10.4020961Z return (buf0, ) 2023-01-11T21:05:10.4020969Z 2023-01-11T21:05:10.4020977Z 2023-01-11T21:05:10.4021105Z if __name__ == "__main__": 2023-01-11T21:05:10.4021296Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.4021510Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.4021899Z arg0_1 = rand_strided((32, 3, 1, 1), (3, 1, 1, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4022229Z arg1_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4022573Z arg2_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4022915Z arg3_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4023270Z arg4_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4023608Z arg5_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4023944Z arg6_1 = rand_strided((), (), device='cpu', dtype=torch.int64) 2023-01-11T21:05:10.4024332Z arg7_1 = rand_strided((1, 3, 112, 112), (37632, 1, 336, 3), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4024609Z print_performance(lambda: call([arg0_1, arg1_1, arg2_1, arg3_1, arg4_1, arg5_1, arg6_1, arg7_1])) 2023-01-11T21:05:10.4024618Z 2023-01-11T21:05:10.4024626Z 2023-01-11T21:05:10.4024793Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.4024897Z import torch 2023-01-11T21:05:10.4025021Z import random 2023-01-11T21:05:10.4025220Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.4025437Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.4025446Z 2023-01-11T21:05:10.4025652Z aten = torch.ops.aten 2023-01-11T21:05:10.4025877Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.4026034Z async_compile = AsyncCompile() 2023-01-11T21:05:10.4026043Z 2023-01-11T21:05:10.4026050Z 2023-01-11T21:05:10.4026207Z async_compile.wait(globals()) 2023-01-11T21:05:10.4026321Z del async_compile 2023-01-11T21:05:10.4026330Z 2023-01-11T21:05:10.4026448Z def call(args): 2023-01-11T21:05:10.4026647Z arg0_1, arg1_1, arg2_1, arg3_1, arg4_1, arg5_1, arg6_1, arg7_1 = args 2023-01-11T21:05:10.4026766Z args.clear() 2023-01-11T21:05:10.4026998Z buf0 = aten.convolution(arg7_1, arg0_1, arg1_1, (1, 1), (0, 0), (2, 2), False, (0, 0), 4) 2023-01-11T21:05:10.4027191Z assert_size_stride(buf0, (1, 128, 112, 112), (1605632, 12544, 112, 1)) 2023-01-11T21:05:10.4027311Z del arg0_1 2023-01-11T21:05:10.4027408Z del arg1_1 2023-01-11T21:05:10.4027511Z del arg7_1 2023-01-11T21:05:10.4027627Z return (buf0, ) 2023-01-11T21:05:10.4027635Z 2023-01-11T21:05:10.4027646Z 2023-01-11T21:05:10.4027785Z if __name__ == "__main__": 2023-01-11T21:05:10.4027986Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.4028205Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.4028638Z arg0_1 = rand_strided((128, 3, 1, 1), (3, 1, 1, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4029001Z arg1_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4029335Z arg2_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4029678Z arg3_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4030029Z arg4_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4030374Z arg5_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4030692Z arg6_1 = rand_strided((), (), device='cpu', dtype=torch.int64) 2023-01-11T21:05:10.4031102Z arg7_1 = rand_strided((1, 12, 112, 112), (150528, 12544, 112, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4031372Z print_performance(lambda: call([arg0_1, arg1_1, arg2_1, arg3_1, arg4_1, arg5_1, arg6_1, arg7_1])) 2023-01-11T21:05:10.4031382Z 2023-01-11T21:05:10.4031394Z 2023-01-11T21:05:10.4031564Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.4031682Z import torch 2023-01-11T21:05:10.4031791Z import random 2023-01-11T21:05:10.4031996Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.4032199Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.4032208Z 2023-01-11T21:05:10.4032337Z aten = torch.ops.aten 2023-01-11T21:05:10.4032575Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.4032736Z async_compile = AsyncCompile() 2023-01-11T21:05:10.4032745Z 2023-01-11T21:05:10.4032753Z 2023-01-11T21:05:10.4032907Z async_compile.wait(globals()) 2023-01-11T21:05:10.4033011Z del async_compile 2023-01-11T21:05:10.4033035Z 2023-01-11T21:05:10.4033141Z def call(args): 2023-01-11T21:05:10.4033324Z arg0_1, arg1_1, arg2_1, arg3_1, arg4_1, arg5_1, arg6_1, arg7_1 = args 2023-01-11T21:05:10.4033450Z args.clear() 2023-01-11T21:05:10.4033695Z buf0 = aten.convolution(arg7_1, arg0_1, arg1_1, (1, 1), (0, 0), (2, 2), False, (0, 0), 4) 2023-01-11T21:05:10.4033883Z assert_size_stride(buf0, (1, 128, 112, 112), (1605632, 1, 14336, 128)) 2023-01-11T21:05:10.4033995Z del arg0_1 2023-01-11T21:05:10.4034108Z del arg1_1 2023-01-11T21:05:10.4034209Z del arg7_1 2023-01-11T21:05:10.4034327Z return (buf0, ) 2023-01-11T21:05:10.4034336Z 2023-01-11T21:05:10.4034343Z 2023-01-11T21:05:10.4034475Z if __name__ == "__main__": 2023-01-11T21:05:10.4034668Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.4034878Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.4035270Z arg0_1 = rand_strided((128, 3, 1, 1), (3, 1, 1, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4035679Z arg1_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4036028Z arg2_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4036370Z arg3_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4036703Z arg4_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4037047Z arg5_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4037372Z arg6_1 = rand_strided((), (), device='cpu', dtype=torch.int64) 2023-01-11T21:05:10.4037764Z arg7_1 = rand_strided((1, 12, 112, 112), (150528, 1, 1344, 12), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4038046Z print_performance(lambda: call([arg0_1, arg1_1, arg2_1, arg3_1, arg4_1, arg5_1, arg6_1, arg7_1])) 2023-01-11T21:05:10.4038522Z [2023-01-11 20:47:03,008] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 92 2023-01-11T21:05:10.4039321Z inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.4039550Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.4040020Z [2023-01-11 20:47:03,658] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 93 2023-01-11T21:05:10.4040480Z [2023-01-11 20:47:03,700] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 93 2023-01-11T21:05:10.4041350Z inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.4041579Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.4042070Z [2023-01-11 20:47:04,039] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 94 2023-01-11T21:05:10.4042540Z [2023-01-11 20:47:06,805] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 94 2023-01-11T21:05:10.4043273Z inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.4043497Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.4043959Z [2023-01-11 20:47:07,222] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 95 2023-01-11T21:05:10.4044447Z [2023-01-11 20:47:07,265] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 95 2023-01-11T21:05:10.4045179Z inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.4045401Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.4045849Z [2023-01-11 20:47:07,942] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 96 2023-01-11T21:05:10.4045860Z 2023-01-11T21:05:10.4045886Z 2023-01-11T21:05:10.4046036Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.4046158Z import torch 2023-01-11T21:05:10.4046276Z import random 2023-01-11T21:05:10.4046478Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.4046800Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.4046809Z 2023-01-11T21:05:10.4046946Z aten = torch.ops.aten 2023-01-11T21:05:10.4047191Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.4047336Z async_compile = AsyncCompile() 2023-01-11T21:05:10.4047344Z 2023-01-11T21:05:10.4047365Z 2023-01-11T21:05:10.4047498Z async_compile.wait(globals()) 2023-01-11T21:05:10.4047622Z del async_compile 2023-01-11T21:05:10.4047630Z 2023-01-11T21:05:10.4047751Z def call(args): 2023-01-11T21:05:10.4047960Z arg0_1, arg1_1, arg2_1, arg3_1, arg4_1, arg5_1, arg6_1, arg7_1 = args 2023-01-11T21:05:10.4048081Z args.clear() 2023-01-11T21:05:10.4048304Z buf0 = aten.convolution(arg7_1, arg0_1, arg1_1, (1, 1), (0, 0), (1, 1), False, (0, 0), 1) 2023-01-11T21:05:10.4048491Z assert_size_stride(buf0, (1, 32, 110, 110), (387200, 12100, 110, 1)) 2023-01-11T21:05:10.4048593Z del arg0_1 2023-01-11T21:05:10.4048706Z del arg1_1 2023-01-11T21:05:10.4048821Z del arg7_1 2023-01-11T21:05:10.4048944Z return (buf0, ) 2023-01-11T21:05:10.4048953Z 2023-01-11T21:05:10.4048961Z 2023-01-11T21:05:10.4049092Z if __name__ == "__main__": 2023-01-11T21:05:10.4049364Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.4049579Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.4049963Z arg0_1 = rand_strided((32, 3, 3, 3), (27, 9, 3, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4050294Z arg1_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4050638Z arg2_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4050990Z arg3_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4051324Z arg4_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4051664Z arg5_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4051995Z arg6_1 = rand_strided((), (), device='cpu', dtype=torch.int64) 2023-01-11T21:05:10.4052397Z arg7_1 = rand_strided((1, 3, 112, 112), (37632, 12544, 112, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4052678Z print_performance(lambda: call([arg0_1, arg1_1, arg2_1, arg3_1, arg4_1, arg5_1, arg6_1, arg7_1])) 2023-01-11T21:05:10.4052687Z 2023-01-11T21:05:10.4052695Z 2023-01-11T21:05:10.4052839Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.4052959Z import torch 2023-01-11T21:05:10.4053078Z import random 2023-01-11T21:05:10.4053278Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.4053493Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.4053501Z 2023-01-11T21:05:10.4053629Z aten = torch.ops.aten 2023-01-11T21:05:10.4053852Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.4053998Z async_compile = AsyncCompile() 2023-01-11T21:05:10.4054020Z 2023-01-11T21:05:10.4054027Z 2023-01-11T21:05:10.4054265Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.4054622Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.4054833Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:05:10.4055009Z float* __restrict__ out_ptr0) 2023-01-11T21:05:10.4055112Z { 2023-01-11T21:05:10.4055277Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.4055376Z { 2023-01-11T21:05:10.4055492Z #pragma omp for 2023-01-11T21:05:10.4055633Z for(long i0=0; i0<32; i0+=1) 2023-01-11T21:05:10.4055743Z { 2023-01-11T21:05:10.4055879Z #pragma GCC ivdep 2023-01-11T21:05:10.4056015Z for(long i1=0; i1<3; i1+=1) 2023-01-11T21:05:10.4056122Z { 2023-01-11T21:05:10.4056264Z #pragma GCC ivdep 2023-01-11T21:05:10.4056400Z for(long i2=0; i2<9; i2+=1) 2023-01-11T21:05:10.4056508Z { 2023-01-11T21:05:10.4056688Z { 2023-01-11T21:05:10.4056795Z { 2023-01-11T21:05:10.4056984Z auto tmp0 = in_ptr0[i2 + (9*i1) + (27*i0)]; 2023-01-11T21:05:10.4057166Z out_ptr0[i1 + (3*i2) + (27*i0)] = tmp0; 2023-01-11T21:05:10.4057281Z } 2023-01-11T21:05:10.4057379Z } 2023-01-11T21:05:10.4057486Z } 2023-01-11T21:05:10.4057590Z } 2023-01-11T21:05:10.4057689Z } 2023-01-11T21:05:10.4057787Z } 2023-01-11T21:05:10.4057888Z } 2023-01-11T21:05:10.4058023Z ''') 2023-01-11T21:05:10.4058050Z 2023-01-11T21:05:10.4058057Z 2023-01-11T21:05:10.4058203Z async_compile.wait(globals()) 2023-01-11T21:05:10.4058328Z del async_compile 2023-01-11T21:05:10.4058337Z 2023-01-11T21:05:10.4058455Z def call(args): 2023-01-11T21:05:10.4058743Z arg0_1, arg1_1, arg2_1, arg3_1, arg4_1, arg5_1, arg6_1, arg7_1 = args 2023-01-11T21:05:10.4058857Z args.clear() 2023-01-11T21:05:10.4059255Z buf0 = empty_strided((32, 3, 3, 3), (27, 1, 9, 3), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4059489Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:05:10.4059585Z del arg0_1 2023-01-11T21:05:10.4059872Z buf1 = aten.convolution(arg7_1, buf0, arg1_1, (1, 1), (0, 0), (1, 1), False, (0, 0), 1) 2023-01-11T21:05:10.4060073Z assert_size_stride(buf1, (1, 32, 110, 110), (387200, 1, 3520, 32)) 2023-01-11T21:05:10.4060186Z del arg1_1 2023-01-11T21:05:10.4060298Z del arg7_1 2023-01-11T21:05:10.4060417Z return (buf1, ) 2023-01-11T21:05:10.4060427Z 2023-01-11T21:05:10.4060434Z 2023-01-11T21:05:10.4060562Z if __name__ == "__main__": 2023-01-11T21:05:10.4060755Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.4060966Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.4061355Z arg0_1 = rand_strided((32, 3, 3, 3), (27, 9, 3, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4061693Z arg1_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4062047Z arg2_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4062387Z arg3_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4062730Z arg4_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4063073Z arg5_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4063391Z arg6_1 = rand_strided((), (), device='cpu', dtype=torch.int64) 2023-01-11T21:05:10.4063781Z arg7_1 = rand_strided((1, 3, 112, 112), (37632, 1, 336, 3), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4064054Z print_performance(lambda: call([arg0_1, arg1_1, arg2_1, arg3_1, arg4_1, arg5_1, arg6_1, arg7_1])) 2023-01-11T21:05:10.4064063Z 2023-01-11T21:05:10.4064069Z 2023-01-11T21:05:10.4064230Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.4064350Z import torch 2023-01-11T21:05:10.4064470Z import random 2023-01-11T21:05:10.4064673Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.4064888Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.4064896Z 2023-01-11T21:05:10.4065033Z aten = torch.ops.aten 2023-01-11T21:05:10.4065243Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.4065402Z async_compile = AsyncCompile() 2023-01-11T21:05:10.4065411Z 2023-01-11T21:05:10.4065419Z 2023-01-11T21:05:10.4065572Z async_compile.wait(globals()) 2023-01-11T21:05:10.4065699Z del async_compile 2023-01-11T21:05:10.4065707Z 2023-01-11T21:05:10.4065827Z def call(args): 2023-01-11T21:05:10.4066028Z arg0_1, arg1_1, arg2_1, arg3_1, arg4_1, arg5_1, arg6_1, arg7_1 = args 2023-01-11T21:05:10.4066146Z args.clear() 2023-01-11T21:05:10.4066380Z buf0 = aten.convolution(arg7_1, arg0_1, arg1_1, (1, 1), (0, 0), (1, 1), False, (0, 0), 4) 2023-01-11T21:05:10.4066561Z assert_size_stride(buf0, (1, 128, 110, 110), (1548800, 12100, 110, 1)) 2023-01-11T21:05:10.4066747Z del arg0_1 2023-01-11T21:05:10.4066855Z del arg1_1 2023-01-11T21:05:10.4066970Z del arg7_1 2023-01-11T21:05:10.4067089Z return (buf0, ) 2023-01-11T21:05:10.4067097Z 2023-01-11T21:05:10.4067109Z 2023-01-11T21:05:10.4067239Z if __name__ == "__main__": 2023-01-11T21:05:10.4067441Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.4067636Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.4068027Z arg0_1 = rand_strided((128, 3, 3, 3), (27, 9, 3, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4068380Z arg1_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4068721Z arg2_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4069073Z arg3_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4069427Z arg4_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4069777Z arg5_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4070088Z arg6_1 = rand_strided((), (), device='cpu', dtype=torch.int64) 2023-01-11T21:05:10.4070538Z arg7_1 = rand_strided((1, 12, 112, 112), (150528, 12544, 112, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4070817Z print_performance(lambda: call([arg0_1, arg1_1, arg2_1, arg3_1, arg4_1, arg5_1, arg6_1, arg7_1])) 2023-01-11T21:05:10.4070825Z 2023-01-11T21:05:10.4070832Z 2023-01-11T21:05:10.4070984Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.4071107Z import torch 2023-01-11T21:05:10.4071226Z import random 2023-01-11T21:05:10.4071433Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.4071649Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.4071658Z 2023-01-11T21:05:10.4071788Z aten = torch.ops.aten 2023-01-11T21:05:10.4072011Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.4072164Z async_compile = AsyncCompile() 2023-01-11T21:05:10.4072173Z 2023-01-11T21:05:10.4072180Z 2023-01-11T21:05:10.4072427Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.4072793Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.4073003Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:05:10.4073177Z float* __restrict__ out_ptr0) 2023-01-11T21:05:10.4073280Z { 2023-01-11T21:05:10.4073449Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.4073535Z { 2023-01-11T21:05:10.4073667Z #pragma omp for 2023-01-11T21:05:10.4073810Z for(long i0=0; i0<128; i0+=1) 2023-01-11T21:05:10.4073920Z { 2023-01-11T21:05:10.4074056Z #pragma GCC ivdep 2023-01-11T21:05:10.4074200Z for(long i1=0; i1<3; i1+=1) 2023-01-11T21:05:10.4074303Z { 2023-01-11T21:05:10.4074424Z #pragma GCC ivdep 2023-01-11T21:05:10.4074579Z for(long i2=0; i2<9; i2+=1) 2023-01-11T21:05:10.4074688Z { 2023-01-11T21:05:10.4074802Z { 2023-01-11T21:05:10.4074918Z { 2023-01-11T21:05:10.4075105Z auto tmp0 = in_ptr0[i2 + (9*i1) + (27*i0)]; 2023-01-11T21:05:10.4075275Z out_ptr0[i1 + (3*i2) + (27*i0)] = tmp0; 2023-01-11T21:05:10.4075378Z } 2023-01-11T21:05:10.4075491Z } 2023-01-11T21:05:10.4075603Z } 2023-01-11T21:05:10.4075710Z } 2023-01-11T21:05:10.4075817Z } 2023-01-11T21:05:10.4075920Z } 2023-01-11T21:05:10.4076019Z } 2023-01-11T21:05:10.4076144Z ''') 2023-01-11T21:05:10.4076154Z 2023-01-11T21:05:10.4076160Z 2023-01-11T21:05:10.4076314Z async_compile.wait(globals()) 2023-01-11T21:05:10.4076439Z del async_compile 2023-01-11T21:05:10.4076447Z 2023-01-11T21:05:10.4076569Z def call(args): 2023-01-11T21:05:10.4076780Z arg0_1, arg1_1, arg2_1, arg3_1, arg4_1, arg5_1, arg6_1, arg7_1 = args 2023-01-11T21:05:10.4077014Z args.clear() 2023-01-11T21:05:10.4077394Z buf0 = empty_strided((128, 3, 3, 3), (27, 1, 9, 3), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4077621Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:05:10.4077737Z del arg0_1 2023-01-11T21:05:10.4077960Z buf1 = aten.convolution(arg7_1, buf0, arg1_1, (1, 1), (0, 0), (1, 1), False, (0, 0), 4) 2023-01-11T21:05:10.4078152Z assert_size_stride(buf1, (1, 128, 110, 110), (1548800, 1, 14080, 128)) 2023-01-11T21:05:10.4078268Z del arg1_1 2023-01-11T21:05:10.4078381Z del arg7_1 2023-01-11T21:05:10.4078502Z return (buf1, ) 2023-01-11T21:05:10.4078511Z 2023-01-11T21:05:10.4078518Z 2023-01-11T21:05:10.4078643Z if __name__ == "__main__": 2023-01-11T21:05:10.4078827Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.4079050Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.4079439Z arg0_1 = rand_strided((128, 3, 3, 3), (27, 9, 3, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4079763Z arg1_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4080190Z arg2_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4080533Z arg3_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4081059Z arg4_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4081405Z arg5_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4081705Z arg6_1 = rand_strided((), (), device='cpu', dtype=torch.int64) 2023-01-11T21:05:10.4082111Z arg7_1 = rand_strided((1, 12, 112, 112), (150528, 1, 1344, 12), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4082380Z print_performance(lambda: call([arg0_1, arg1_1, arg2_1, arg3_1, arg4_1, arg5_1, arg6_1, arg7_1])) 2023-01-11T21:05:10.4082879Z [2023-01-11 20:47:10,749] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 96 2023-01-11T21:05:10.4083630Z inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.4083846Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.4084261Z [2023-01-11 20:47:11,446] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 97 2023-01-11T21:05:10.4084681Z [2023-01-11 20:47:11,489] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 97 2023-01-11T21:05:10.4085443Z inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.4085673Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.4086145Z [2023-01-11 20:47:11,810] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 98 2023-01-11T21:05:10.4086617Z [2023-01-11 20:47:11,863] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 98 2023-01-11T21:05:10.4087366Z inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.4087586Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.4088175Z [2023-01-11 20:47:12,253] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 99 2023-01-11T21:05:10.4088662Z [2023-01-11 20:47:12,297] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 99 2023-01-11T21:05:10.4089414Z inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.4089636Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.4090119Z [2023-01-11 20:47:12,976] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 100 2023-01-11T21:05:10.4090129Z 2023-01-11T21:05:10.4090136Z 2023-01-11T21:05:10.4090306Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.4090428Z import torch 2023-01-11T21:05:10.4090535Z import random 2023-01-11T21:05:10.4090744Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.4090964Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.4091035Z 2023-01-11T21:05:10.4091175Z aten = torch.ops.aten 2023-01-11T21:05:10.4091415Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.4091576Z async_compile = AsyncCompile() 2023-01-11T21:05:10.4091583Z 2023-01-11T21:05:10.4091593Z 2023-01-11T21:05:10.4091753Z async_compile.wait(globals()) 2023-01-11T21:05:10.4091876Z del async_compile 2023-01-11T21:05:10.4091885Z 2023-01-11T21:05:10.4091995Z def call(args): 2023-01-11T21:05:10.4092207Z arg0_1, arg1_1, arg2_1, arg3_1, arg4_1, arg5_1, arg6_1, arg7_1 = args 2023-01-11T21:05:10.4092331Z args.clear() 2023-01-11T21:05:10.4092574Z buf0 = aten.convolution(arg7_1, arg0_1, arg1_1, (1, 1), (0, 0), (2, 2), False, (0, 0), 1) 2023-01-11T21:05:10.4092775Z assert_size_stride(buf0, (1, 32, 108, 108), (373248, 11664, 108, 1)) 2023-01-11T21:05:10.4092895Z del arg0_1 2023-01-11T21:05:10.4093013Z del arg1_1 2023-01-11T21:05:10.4093114Z del arg7_1 2023-01-11T21:05:10.4093236Z return (buf0, ) 2023-01-11T21:05:10.4093249Z 2023-01-11T21:05:10.4093257Z 2023-01-11T21:05:10.4093384Z if __name__ == "__main__": 2023-01-11T21:05:10.4093590Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.4093809Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.4094199Z arg0_1 = rand_strided((32, 3, 3, 3), (27, 9, 3, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4094560Z arg1_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4094909Z arg2_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4095238Z arg3_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4095582Z arg4_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4095930Z arg5_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4096263Z arg6_1 = rand_strided((), (), device='cpu', dtype=torch.int64) 2023-01-11T21:05:10.4096670Z arg7_1 = rand_strided((1, 3, 112, 112), (37632, 12544, 112, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4096949Z print_performance(lambda: call([arg0_1, arg1_1, arg2_1, arg3_1, arg4_1, arg5_1, arg6_1, arg7_1])) 2023-01-11T21:05:10.4096959Z 2023-01-11T21:05:10.4096966Z 2023-01-11T21:05:10.4097132Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.4097255Z import torch 2023-01-11T21:05:10.4097380Z import random 2023-01-11T21:05:10.4097572Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.4097787Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.4097796Z 2023-01-11T21:05:10.4097932Z aten = torch.ops.aten 2023-01-11T21:05:10.4098171Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.4098373Z async_compile = AsyncCompile() 2023-01-11T21:05:10.4098381Z 2023-01-11T21:05:10.4098387Z 2023-01-11T21:05:10.4098735Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.4099116Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.4099326Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:05:10.4099488Z float* __restrict__ out_ptr0) 2023-01-11T21:05:10.4099589Z { 2023-01-11T21:05:10.4099764Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.4099871Z { 2023-01-11T21:05:10.4100005Z #pragma omp for 2023-01-11T21:05:10.4100149Z for(long i0=0; i0<32; i0+=1) 2023-01-11T21:05:10.4100257Z { 2023-01-11T21:05:10.4100382Z #pragma GCC ivdep 2023-01-11T21:05:10.4100525Z for(long i1=0; i1<3; i1+=1) 2023-01-11T21:05:10.4100633Z { 2023-01-11T21:05:10.4100773Z #pragma GCC ivdep 2023-01-11T21:05:10.4100930Z for(long i2=0; i2<9; i2+=1) 2023-01-11T21:05:10.4101043Z { 2023-01-11T21:05:10.4101143Z { 2023-01-11T21:05:10.4101257Z { 2023-01-11T21:05:10.4101492Z auto tmp0 = in_ptr0[i2 + (9*i1) + (27*i0)]; 2023-01-11T21:05:10.4101670Z out_ptr0[i1 + (3*i2) + (27*i0)] = tmp0; 2023-01-11T21:05:10.4101787Z } 2023-01-11T21:05:10.4101903Z } 2023-01-11T21:05:10.4102009Z } 2023-01-11T21:05:10.4102101Z } 2023-01-11T21:05:10.4102208Z } 2023-01-11T21:05:10.4102313Z } 2023-01-11T21:05:10.4102417Z } 2023-01-11T21:05:10.4102555Z ''') 2023-01-11T21:05:10.4102564Z 2023-01-11T21:05:10.4102571Z 2023-01-11T21:05:10.4102729Z async_compile.wait(globals()) 2023-01-11T21:05:10.4102856Z del async_compile 2023-01-11T21:05:10.4102864Z 2023-01-11T21:05:10.4102985Z def call(args): 2023-01-11T21:05:10.4103184Z arg0_1, arg1_1, arg2_1, arg3_1, arg4_1, arg5_1, arg6_1, arg7_1 = args 2023-01-11T21:05:10.4103308Z args.clear() 2023-01-11T21:05:10.4103689Z buf0 = empty_strided((32, 3, 3, 3), (27, 1, 9, 3), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4103924Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:05:10.4104041Z del arg0_1 2023-01-11T21:05:10.4104278Z buf1 = aten.convolution(arg7_1, buf0, arg1_1, (1, 1), (0, 0), (2, 2), False, (0, 0), 1) 2023-01-11T21:05:10.4104469Z assert_size_stride(buf1, (1, 32, 108, 108), (373248, 1, 3456, 32)) 2023-01-11T21:05:10.4104569Z del arg1_1 2023-01-11T21:05:10.4104683Z del arg7_1 2023-01-11T21:05:10.4104807Z return (buf1, ) 2023-01-11T21:05:10.4104815Z 2023-01-11T21:05:10.4104823Z 2023-01-11T21:05:10.4104954Z if __name__ == "__main__": 2023-01-11T21:05:10.4105148Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.4105318Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.4105688Z arg0_1 = rand_strided((32, 3, 3, 3), (27, 9, 3, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4106013Z arg1_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4106269Z arg2_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4106523Z arg3_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4106789Z arg4_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4107072Z arg5_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4107376Z arg6_1 = rand_strided((), (), device='cpu', dtype=torch.int64) 2023-01-11T21:05:10.4107761Z arg7_1 = rand_strided((1, 3, 112, 112), (37632, 1, 336, 3), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4108028Z print_performance(lambda: call([arg0_1, arg1_1, arg2_1, arg3_1, arg4_1, arg5_1, arg6_1, arg7_1])) 2023-01-11T21:05:10.4108112Z 2023-01-11T21:05:10.4108120Z 2023-01-11T21:05:10.4108282Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.4108383Z import torch 2023-01-11T21:05:10.4108501Z import random 2023-01-11T21:05:10.4108707Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.4108921Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.4108929Z 2023-01-11T21:05:10.4109061Z aten = torch.ops.aten 2023-01-11T21:05:10.4109296Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.4109453Z async_compile = AsyncCompile() 2023-01-11T21:05:10.4109461Z 2023-01-11T21:05:10.4109468Z 2023-01-11T21:05:10.4109614Z async_compile.wait(globals()) 2023-01-11T21:05:10.4109723Z del async_compile 2023-01-11T21:05:10.4109731Z 2023-01-11T21:05:10.4109847Z def call(args): 2023-01-11T21:05:10.4110050Z arg0_1, arg1_1, arg2_1, arg3_1, arg4_1, arg5_1, arg6_1, arg7_1 = args 2023-01-11T21:05:10.4110169Z args.clear() 2023-01-11T21:05:10.4110401Z buf0 = aten.convolution(arg7_1, arg0_1, arg1_1, (1, 1), (0, 0), (2, 2), False, (0, 0), 4) 2023-01-11T21:05:10.4110593Z assert_size_stride(buf0, (1, 128, 108, 108), (1492992, 11664, 108, 1)) 2023-01-11T21:05:10.4110710Z del arg0_1 2023-01-11T21:05:10.4110851Z del arg1_1 2023-01-11T21:05:10.4110964Z del arg7_1 2023-01-11T21:05:10.4111085Z return (buf0, ) 2023-01-11T21:05:10.4111093Z 2023-01-11T21:05:10.4111101Z 2023-01-11T21:05:10.4111223Z if __name__ == "__main__": 2023-01-11T21:05:10.4111422Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.4111635Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.4111992Z arg0_1 = rand_strided((128, 3, 3, 3), (27, 9, 3, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4112281Z arg1_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4112547Z arg2_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4112874Z arg3_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4113198Z arg4_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4113531Z arg5_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4113834Z arg6_1 = rand_strided((), (), device='cpu', dtype=torch.int64) 2023-01-11T21:05:10.4114233Z arg7_1 = rand_strided((1, 12, 112, 112), (150528, 12544, 112, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4114450Z print_performance(lambda: call([arg0_1, arg1_1, arg2_1, arg3_1, arg4_1, arg5_1, arg6_1, arg7_1])) 2023-01-11T21:05:10.4114459Z 2023-01-11T21:05:10.4114467Z 2023-01-11T21:05:10.4114611Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.4114721Z import torch 2023-01-11T21:05:10.4114813Z import random 2023-01-11T21:05:10.4114989Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.4115146Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.4115157Z 2023-01-11T21:05:10.4115264Z aten = torch.ops.aten 2023-01-11T21:05:10.4115439Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.4115558Z async_compile = AsyncCompile() 2023-01-11T21:05:10.4115564Z 2023-01-11T21:05:10.4115573Z 2023-01-11T21:05:10.4115772Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.4116055Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.4116199Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:05:10.4116342Z float* __restrict__ out_ptr0) 2023-01-11T21:05:10.4116438Z { 2023-01-11T21:05:10.4116567Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.4116656Z { 2023-01-11T21:05:10.4116771Z #pragma omp for 2023-01-11T21:05:10.4116889Z for(long i0=0; i0<128; i0+=1) 2023-01-11T21:05:10.4116961Z { 2023-01-11T21:05:10.4117062Z #pragma GCC ivdep 2023-01-11T21:05:10.4117174Z for(long i1=0; i1<3; i1+=1) 2023-01-11T21:05:10.4117372Z { 2023-01-11T21:05:10.4117493Z #pragma GCC ivdep 2023-01-11T21:05:10.4117615Z for(long i2=0; i2<9; i2+=1) 2023-01-11T21:05:10.4117714Z { 2023-01-11T21:05:10.4117837Z { 2023-01-11T21:05:10.4117965Z { 2023-01-11T21:05:10.4118168Z auto tmp0 = in_ptr0[i2 + (9*i1) + (27*i0)]; 2023-01-11T21:05:10.4118352Z out_ptr0[i1 + (3*i2) + (27*i0)] = tmp0; 2023-01-11T21:05:10.4118449Z } 2023-01-11T21:05:10.4118513Z } 2023-01-11T21:05:10.4118563Z } 2023-01-11T21:05:10.4118623Z } 2023-01-11T21:05:10.4118682Z } 2023-01-11T21:05:10.4118741Z } 2023-01-11T21:05:10.4118800Z } 2023-01-11T21:05:10.4118895Z ''') 2023-01-11T21:05:10.4118901Z 2023-01-11T21:05:10.4118905Z 2023-01-11T21:05:10.4118993Z async_compile.wait(globals()) 2023-01-11T21:05:10.4119054Z del async_compile 2023-01-11T21:05:10.4119071Z 2023-01-11T21:05:10.4119127Z def call(args): 2023-01-11T21:05:10.4119245Z arg0_1, arg1_1, arg2_1, arg3_1, arg4_1, arg5_1, arg6_1, arg7_1 = args 2023-01-11T21:05:10.4119367Z args.clear() 2023-01-11T21:05:10.4119585Z buf0 = empty_strided((128, 3, 3, 3), (27, 1, 9, 3), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4119717Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:05:10.4119784Z del arg0_1 2023-01-11T21:05:10.4119917Z buf1 = aten.convolution(arg7_1, buf0, arg1_1, (1, 1), (0, 0), (2, 2), False, (0, 0), 4) 2023-01-11T21:05:10.4120016Z assert_size_stride(buf1, (1, 128, 108, 108), (1492992, 1, 13824, 128)) 2023-01-11T21:05:10.4120081Z del arg1_1 2023-01-11T21:05:10.4120145Z del arg7_1 2023-01-11T21:05:10.4120214Z return (buf1, ) 2023-01-11T21:05:10.4120220Z 2023-01-11T21:05:10.4120224Z 2023-01-11T21:05:10.4120298Z if __name__ == "__main__": 2023-01-11T21:05:10.4120413Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.4120534Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.4120957Z arg0_1 = rand_strided((128, 3, 3, 3), (27, 9, 3, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4121142Z arg1_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4121333Z arg2_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4121520Z arg3_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4121705Z arg4_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4121897Z arg5_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4122074Z arg6_1 = rand_strided((), (), device='cpu', dtype=torch.int64) 2023-01-11T21:05:10.4122298Z arg7_1 = rand_strided((1, 12, 112, 112), (150528, 1, 1344, 12), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4122458Z print_performance(lambda: call([arg0_1, arg1_1, arg2_1, arg3_1, arg4_1, arg5_1, arg6_1, arg7_1])) 2023-01-11T21:05:10.4122725Z [2023-01-11 20:47:13,030] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 100 2023-01-11T21:05:10.4123127Z inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.4123252Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.4123509Z [2023-01-11 20:47:13,698] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 101 2023-01-11T21:05:10.4123770Z [2023-01-11 20:47:13,762] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 101 2023-01-11T21:05:10.4124248Z inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.4124373Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.4124629Z [2023-01-11 20:47:14,105] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 102 2023-01-11T21:05:10.4124892Z [2023-01-11 20:47:14,147] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 102 2023-01-11T21:05:10.4125286Z inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.4125411Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.4125691Z [2023-01-11 20:47:14,485] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 103 2023-01-11T21:05:10.4125955Z [2023-01-11 20:47:14,528] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 103 2023-01-11T21:05:10.4126348Z inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.4126472Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.4126721Z [2023-01-11 20:47:15,197] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 104 2023-01-11T21:05:10.4126982Z [2023-01-11 20:47:15,240] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 104 2023-01-11T21:05:10.4127376Z inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.4127499Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.4127752Z [2023-01-11 20:47:15,911] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 105 2023-01-11T21:05:10.4128009Z [2023-01-11 20:47:15,951] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 105 2023-01-11T21:05:10.4128398Z inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.4128525Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.4128764Z [2023-01-11 20:47:16,251] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 106 2023-01-11T21:05:10.4128783Z 2023-01-11T21:05:10.4128787Z 2023-01-11T21:05:10.4128868Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.4128937Z import torch 2023-01-11T21:05:10.4129005Z import random 2023-01-11T21:05:10.4129124Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.4129241Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.4129246Z 2023-01-11T21:05:10.4129323Z aten = torch.ops.aten 2023-01-11T21:05:10.4129457Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.4129566Z async_compile = AsyncCompile() 2023-01-11T21:05:10.4129571Z 2023-01-11T21:05:10.4129587Z 2023-01-11T21:05:10.4129662Z async_compile.wait(globals()) 2023-01-11T21:05:10.4129732Z del async_compile 2023-01-11T21:05:10.4129737Z 2023-01-11T21:05:10.4129806Z def call(args): 2023-01-11T21:05:10.4129926Z arg0_1, arg1_1, arg2_1, arg3_1, arg4_1, arg5_1, arg6_1, arg7_1 = args 2023-01-11T21:05:10.4129998Z args.clear() 2023-01-11T21:05:10.4130132Z buf0 = aten.convolution(arg7_1, arg0_1, arg1_1, (1, 1), (0, 0), (1, 1), False, (0, 0), 1) 2023-01-11T21:05:10.4130243Z assert_size_stride(buf0, (1, 32, 112, 112), (401408, 12544, 112, 1)) 2023-01-11T21:05:10.4130297Z del arg0_1 2023-01-11T21:05:10.4130362Z del arg1_1 2023-01-11T21:05:10.4130425Z del arg7_1 2023-01-11T21:05:10.4130493Z return (buf0, ) 2023-01-11T21:05:10.4130498Z 2023-01-11T21:05:10.4130502Z 2023-01-11T21:05:10.4130575Z if __name__ == "__main__": 2023-01-11T21:05:10.4130686Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.4130811Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.4131012Z arg0_1 = rand_strided((32, 3, 1, 1), (3, 1, 1, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4131231Z arg1_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4131422Z arg2_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4131609Z arg3_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4131797Z arg4_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4131981Z arg5_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4132158Z arg6_1 = rand_strided((), (), device='cpu', dtype=torch.int64) 2023-01-11T21:05:10.4132384Z arg7_1 = rand_strided((1, 3, 112, 112), (37632, 12544, 112, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4132538Z print_performance(lambda: call([arg0_1, arg1_1, arg2_1, arg3_1, arg4_1, arg5_1, arg6_1, arg7_1])) 2023-01-11T21:05:10.4132546Z 2023-01-11T21:05:10.4132551Z 2023-01-11T21:05:10.4132633Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.4132702Z import torch 2023-01-11T21:05:10.4132771Z import random 2023-01-11T21:05:10.4132886Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.4133006Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.4133011Z 2023-01-11T21:05:10.4133086Z aten = torch.ops.aten 2023-01-11T21:05:10.4133218Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.4133295Z async_compile = AsyncCompile() 2023-01-11T21:05:10.4133312Z 2023-01-11T21:05:10.4133317Z 2023-01-11T21:05:10.4133391Z async_compile.wait(globals()) 2023-01-11T21:05:10.4133461Z del async_compile 2023-01-11T21:05:10.4133466Z 2023-01-11T21:05:10.4133533Z def call(args): 2023-01-11T21:05:10.4133650Z arg0_1, arg1_1, arg2_1, arg3_1, arg4_1, arg5_1, arg6_1, arg7_1 = args 2023-01-11T21:05:10.4133721Z args.clear() 2023-01-11T21:05:10.4133855Z buf0 = aten.convolution(arg7_1, arg0_1, arg1_1, (1, 1), (0, 0), (1, 1), False, (0, 0), 1) 2023-01-11T21:05:10.4133967Z assert_size_stride(buf0, (1, 32, 112, 112), (401408, 1, 3584, 32)) 2023-01-11T21:05:10.4134021Z del arg0_1 2023-01-11T21:05:10.4134086Z del arg1_1 2023-01-11T21:05:10.4134148Z del arg7_1 2023-01-11T21:05:10.4134217Z return (buf0, ) 2023-01-11T21:05:10.4134223Z 2023-01-11T21:05:10.4134227Z 2023-01-11T21:05:10.4134299Z if __name__ == "__main__": 2023-01-11T21:05:10.4134411Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.4134531Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.4134740Z arg0_1 = rand_strided((32, 3, 1, 1), (3, 1, 1, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4134918Z arg1_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4135106Z arg2_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4135321Z arg3_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4135504Z arg4_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4135688Z arg5_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4135866Z arg6_1 = rand_strided((), (), device='cpu', dtype=torch.int64) 2023-01-11T21:05:10.4136085Z arg7_1 = rand_strided((1, 3, 112, 112), (37632, 1, 336, 3), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4136239Z print_performance(lambda: call([arg0_1, arg1_1, arg2_1, arg3_1, arg4_1, arg5_1, arg6_1, arg7_1])) 2023-01-11T21:05:10.4136244Z 2023-01-11T21:05:10.4136249Z 2023-01-11T21:05:10.4136342Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.4136398Z import torch 2023-01-11T21:05:10.4136465Z import random 2023-01-11T21:05:10.4136579Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.4136697Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.4136704Z 2023-01-11T21:05:10.4136779Z aten = torch.ops.aten 2023-01-11T21:05:10.4136910Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.4137045Z async_compile = AsyncCompile() 2023-01-11T21:05:10.4137051Z 2023-01-11T21:05:10.4137055Z 2023-01-11T21:05:10.4137130Z async_compile.wait(globals()) 2023-01-11T21:05:10.4137200Z del async_compile 2023-01-11T21:05:10.4137205Z 2023-01-11T21:05:10.4137272Z def call(args): 2023-01-11T21:05:10.4137387Z arg0_1, arg1_1, arg2_1, arg3_1, arg4_1, arg5_1, arg6_1, arg7_1 = args 2023-01-11T21:05:10.4137459Z args.clear() 2023-01-11T21:05:10.4137590Z buf0 = aten.convolution(arg7_1, arg0_1, arg1_1, (1, 1), (0, 0), (1, 1), False, (0, 0), 4) 2023-01-11T21:05:10.4137701Z assert_size_stride(buf0, (1, 128, 112, 112), (1605632, 12544, 112, 1)) 2023-01-11T21:05:10.4137767Z del arg0_1 2023-01-11T21:05:10.4137818Z del arg1_1 2023-01-11T21:05:10.4137881Z del arg7_1 2023-01-11T21:05:10.4137951Z return (buf0, ) 2023-01-11T21:05:10.4137956Z 2023-01-11T21:05:10.4137960Z 2023-01-11T21:05:10.4138034Z if __name__ == "__main__": 2023-01-11T21:05:10.4138144Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.4138267Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.4138569Z arg0_1 = rand_strided((128, 3, 1, 1), (3, 1, 1, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4138753Z arg1_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4138945Z arg2_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4139135Z arg3_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4139323Z arg4_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4139509Z arg5_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4139687Z arg6_1 = rand_strided((), (), device='cpu', dtype=torch.int64) 2023-01-11T21:05:10.4139912Z arg7_1 = rand_strided((1, 12, 112, 112), (150528, 12544, 112, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4140067Z print_performance(lambda: call([arg0_1, arg1_1, arg2_1, arg3_1, arg4_1, arg5_1, arg6_1, arg7_1])) 2023-01-11T21:05:10.4140072Z 2023-01-11T21:05:10.4140076Z 2023-01-11T21:05:10.4140168Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.4140224Z import torch 2023-01-11T21:05:10.4140293Z import random 2023-01-11T21:05:10.4140405Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.4140523Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.4140528Z 2023-01-11T21:05:10.4140602Z aten = torch.ops.aten 2023-01-11T21:05:10.4140733Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.4140822Z async_compile = AsyncCompile() 2023-01-11T21:05:10.4140827Z 2023-01-11T21:05:10.4140830Z 2023-01-11T21:05:10.4140916Z async_compile.wait(globals()) 2023-01-11T21:05:10.4141010Z del async_compile 2023-01-11T21:05:10.4141015Z 2023-01-11T21:05:10.4141084Z def call(args): 2023-01-11T21:05:10.4141200Z arg0_1, arg1_1, arg2_1, arg3_1, arg4_1, arg5_1, arg6_1, arg7_1 = args 2023-01-11T21:05:10.4141272Z args.clear() 2023-01-11T21:05:10.4141404Z buf0 = aten.convolution(arg7_1, arg0_1, arg1_1, (1, 1), (0, 0), (1, 1), False, (0, 0), 4) 2023-01-11T21:05:10.4141514Z assert_size_stride(buf0, (1, 128, 112, 112), (1605632, 1, 14336, 128)) 2023-01-11T21:05:10.4141579Z del arg0_1 2023-01-11T21:05:10.4141633Z del arg1_1 2023-01-11T21:05:10.4141696Z del arg7_1 2023-01-11T21:05:10.4141765Z return (buf0, ) 2023-01-11T21:05:10.4141770Z 2023-01-11T21:05:10.4141774Z 2023-01-11T21:05:10.4141846Z if __name__ == "__main__": 2023-01-11T21:05:10.4141957Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.4142076Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.4142285Z arg0_1 = rand_strided((128, 3, 1, 1), (3, 1, 1, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4142478Z arg1_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4142685Z arg2_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4142874Z arg3_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4143062Z arg4_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4143250Z arg5_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4143427Z arg6_1 = rand_strided((), (), device='cpu', dtype=torch.int64) 2023-01-11T21:05:10.4143647Z arg7_1 = rand_strided((1, 12, 112, 112), (150528, 1, 1344, 12), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4143801Z print_performance(lambda: call([arg0_1, arg1_1, arg2_1, arg3_1, arg4_1, arg5_1, arg6_1, arg7_1])) 2023-01-11T21:05:10.4143806Z 2023-01-11T21:05:10.4143810Z 2023-01-11T21:05:10.4143905Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.4143973Z import torch 2023-01-11T21:05:10.4144028Z import random 2023-01-11T21:05:10.4144141Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.4144262Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.4144267Z 2023-01-11T21:05:10.4144342Z aten = torch.ops.aten 2023-01-11T21:05:10.4144473Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.4144562Z async_compile = AsyncCompile() 2023-01-11T21:05:10.4144567Z 2023-01-11T21:05:10.4144571Z 2023-01-11T21:05:10.4144656Z async_compile.wait(globals()) 2023-01-11T21:05:10.4144713Z del async_compile 2023-01-11T21:05:10.4144730Z 2023-01-11T21:05:10.4144787Z def call(args): 2023-01-11T21:05:10.4144902Z arg0_1, arg1_1, arg2_1, arg3_1, arg4_1, arg5_1, arg6_1, arg7_1 = args 2023-01-11T21:05:10.4144972Z args.clear() 2023-01-11T21:05:10.4145107Z buf0 = aten.convolution(arg7_1, arg0_1, arg1_1, (1, 1), (0, 0), (2, 2), False, (0, 0), 1) 2023-01-11T21:05:10.4145220Z assert_size_stride(buf0, (1, 32, 112, 112), (401408, 12544, 112, 1)) 2023-01-11T21:05:10.4145285Z del arg0_1 2023-01-11T21:05:10.4145349Z del arg1_1 2023-01-11T21:05:10.4145402Z del arg7_1 2023-01-11T21:05:10.4145471Z return (buf0, ) 2023-01-11T21:05:10.4145476Z 2023-01-11T21:05:10.4145480Z 2023-01-11T21:05:10.4145553Z if __name__ == "__main__": 2023-01-11T21:05:10.4145665Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.4145783Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.4145994Z arg0_1 = rand_strided((32, 3, 1, 1), (3, 1, 1, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4146183Z arg1_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4146368Z arg2_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4146539Z arg3_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4146757Z arg4_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4146939Z arg5_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4147117Z arg6_1 = rand_strided((), (), device='cpu', dtype=torch.int64) 2023-01-11T21:05:10.4147339Z arg7_1 = rand_strided((1, 3, 112, 112), (37632, 12544, 112, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4147492Z print_performance(lambda: call([arg0_1, arg1_1, arg2_1, arg3_1, arg4_1, arg5_1, arg6_1, arg7_1])) 2023-01-11T21:05:10.4147497Z 2023-01-11T21:05:10.4147501Z 2023-01-11T21:05:10.4147593Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.4147661Z import torch 2023-01-11T21:05:10.4147716Z import random 2023-01-11T21:05:10.4147829Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.4147948Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.4147952Z 2023-01-11T21:05:10.4148028Z aten = torch.ops.aten 2023-01-11T21:05:10.4148161Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.4148250Z async_compile = AsyncCompile() 2023-01-11T21:05:10.4148255Z 2023-01-11T21:05:10.4148259Z 2023-01-11T21:05:10.4148375Z async_compile.wait(globals()) 2023-01-11T21:05:10.4148447Z del async_compile 2023-01-11T21:05:10.4148452Z 2023-01-11T21:05:10.4148507Z def call(args): 2023-01-11T21:05:10.4148624Z arg0_1, arg1_1, arg2_1, arg3_1, arg4_1, arg5_1, arg6_1, arg7_1 = args 2023-01-11T21:05:10.4148692Z args.clear() 2023-01-11T21:05:10.4148825Z buf0 = aten.convolution(arg7_1, arg0_1, arg1_1, (1, 1), (0, 0), (2, 2), False, (0, 0), 1) 2023-01-11T21:05:10.4148935Z assert_size_stride(buf0, (1, 32, 112, 112), (401408, 1, 3584, 32)) 2023-01-11T21:05:10.4148999Z del arg0_1 2023-01-11T21:05:10.4149064Z del arg1_1 2023-01-11T21:05:10.4149115Z del arg7_1 2023-01-11T21:05:10.4149183Z return (buf0, ) 2023-01-11T21:05:10.4149188Z 2023-01-11T21:05:10.4149192Z 2023-01-11T21:05:10.4149269Z if __name__ == "__main__": 2023-01-11T21:05:10.4149383Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.4149504Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.4149713Z arg0_1 = rand_strided((32, 3, 1, 1), (3, 1, 1, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4149902Z arg1_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4150087Z arg2_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4150260Z arg3_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4150448Z arg4_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4150632Z arg5_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4150808Z arg6_1 = rand_strided((), (), device='cpu', dtype=torch.int64) 2023-01-11T21:05:10.4151025Z arg7_1 = rand_strided((1, 3, 112, 112), (37632, 1, 336, 3), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4151179Z print_performance(lambda: call([arg0_1, arg1_1, arg2_1, arg3_1, arg4_1, arg5_1, arg6_1, arg7_1])) 2023-01-11T21:05:10.4151450Z [2023-01-11 20:47:16,293] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 106 2023-01-11T21:05:10.4151851Z inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.4151976Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.4152218Z [2023-01-11 20:47:16,625] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 107 2023-01-11T21:05:10.4152474Z [2023-01-11 20:47:16,665] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 107 2023-01-11T21:05:10.4152898Z inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.4153023Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.4153277Z [2023-01-11 20:47:17,342] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 108 2023-01-11T21:05:10.4153536Z [2023-01-11 20:47:17,383] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 108 2023-01-11T21:05:10.4153929Z inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.4154054Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.4154333Z [2023-01-11 20:47:18,001] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 109 2023-01-11T21:05:10.4154590Z [2023-01-11 20:47:18,042] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 109 2023-01-11T21:05:10.4154981Z inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.4155102Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.4155342Z [2023-01-11 20:47:18,379] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 110 2023-01-11T21:05:10.4155601Z [2023-01-11 20:47:18,428] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 110 2023-01-11T21:05:10.4155993Z inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.4156115Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.4156370Z [2023-01-11 20:47:18,773] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 111 2023-01-11T21:05:10.4156375Z 2023-01-11T21:05:10.4156379Z 2023-01-11T21:05:10.4156472Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.4156539Z import torch 2023-01-11T21:05:10.4156606Z import random 2023-01-11T21:05:10.4156721Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.4156827Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.4156844Z 2023-01-11T21:05:10.4156908Z aten = torch.ops.aten 2023-01-11T21:05:10.4157041Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.4157131Z async_compile = AsyncCompile() 2023-01-11T21:05:10.4157136Z 2023-01-11T21:05:10.4157141Z 2023-01-11T21:05:10.4157226Z async_compile.wait(globals()) 2023-01-11T21:05:10.4157295Z del async_compile 2023-01-11T21:05:10.4157300Z 2023-01-11T21:05:10.4157368Z def call(args): 2023-01-11T21:05:10.4157484Z arg0_1, arg1_1, arg2_1, arg3_1, arg4_1, arg5_1, arg6_1, arg7_1 = args 2023-01-11T21:05:10.4157542Z args.clear() 2023-01-11T21:05:10.4157674Z buf0 = aten.convolution(arg7_1, arg0_1, arg1_1, (1, 1), (0, 0), (2, 2), False, (0, 0), 4) 2023-01-11T21:05:10.4157786Z assert_size_stride(buf0, (1, 128, 112, 112), (1605632, 12544, 112, 1)) 2023-01-11T21:05:10.4157887Z del arg0_1 2023-01-11T21:05:10.4157951Z del arg1_1 2023-01-11T21:05:10.4158014Z del arg7_1 2023-01-11T21:05:10.4158082Z return (buf0, ) 2023-01-11T21:05:10.4158088Z 2023-01-11T21:05:10.4158092Z 2023-01-11T21:05:10.4158166Z if __name__ == "__main__": 2023-01-11T21:05:10.4158265Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.4158385Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.4158595Z arg0_1 = rand_strided((128, 3, 1, 1), (3, 1, 1, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4158788Z arg1_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4158979Z arg2_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4159169Z arg3_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4159357Z arg4_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4159544Z arg5_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4159710Z arg6_1 = rand_strided((), (), device='cpu', dtype=torch.int64) 2023-01-11T21:05:10.4159965Z arg7_1 = rand_strided((1, 12, 112, 112), (150528, 12544, 112, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4160120Z print_performance(lambda: call([arg0_1, arg1_1, arg2_1, arg3_1, arg4_1, arg5_1, arg6_1, arg7_1])) 2023-01-11T21:05:10.4160126Z 2023-01-11T21:05:10.4160130Z 2023-01-11T21:05:10.4160223Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.4160290Z import torch 2023-01-11T21:05:10.4160358Z import random 2023-01-11T21:05:10.4160471Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.4160723Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.4160731Z 2023-01-11T21:05:10.4160825Z aten = torch.ops.aten 2023-01-11T21:05:10.4160961Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.4161049Z async_compile = AsyncCompile() 2023-01-11T21:05:10.4161057Z 2023-01-11T21:05:10.4161061Z 2023-01-11T21:05:10.4161148Z async_compile.wait(globals()) 2023-01-11T21:05:10.4161218Z del async_compile 2023-01-11T21:05:10.4161223Z 2023-01-11T21:05:10.4161291Z def call(args): 2023-01-11T21:05:10.4161410Z arg0_1, arg1_1, arg2_1, arg3_1, arg4_1, arg5_1, arg6_1, arg7_1 = args 2023-01-11T21:05:10.4161483Z args.clear() 2023-01-11T21:05:10.4161604Z buf0 = aten.convolution(arg7_1, arg0_1, arg1_1, (1, 1), (0, 0), (2, 2), False, (0, 0), 4) 2023-01-11T21:05:10.4161715Z assert_size_stride(buf0, (1, 128, 112, 112), (1605632, 1, 14336, 128)) 2023-01-11T21:05:10.4161781Z del arg0_1 2023-01-11T21:05:10.4161845Z del arg1_1 2023-01-11T21:05:10.4161908Z del arg7_1 2023-01-11T21:05:10.4161976Z return (buf0, ) 2023-01-11T21:05:10.4161981Z 2023-01-11T21:05:10.4161985Z 2023-01-11T21:05:10.4162059Z if __name__ == "__main__": 2023-01-11T21:05:10.4162157Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.4162279Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.4162494Z arg0_1 = rand_strided((128, 3, 1, 1), (3, 1, 1, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4162686Z arg1_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4162875Z arg2_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4163060Z arg3_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4163251Z arg4_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4163439Z arg5_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4163603Z arg6_1 = rand_strided((), (), device='cpu', dtype=torch.int64) 2023-01-11T21:05:10.4163826Z arg7_1 = rand_strided((1, 12, 112, 112), (150528, 1, 1344, 12), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4163981Z print_performance(lambda: call([arg0_1, arg1_1, arg2_1, arg3_1, arg4_1, arg5_1, arg6_1, arg7_1])) 2023-01-11T21:05:10.4164045Z 2023-01-11T21:05:10.4164049Z 2023-01-11T21:05:10.4164144Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.4164212Z import torch 2023-01-11T21:05:10.4164279Z import random 2023-01-11T21:05:10.4164395Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.4164515Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.4164520Z 2023-01-11T21:05:10.4164583Z aten = torch.ops.aten 2023-01-11T21:05:10.4164714Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.4164803Z async_compile = AsyncCompile() 2023-01-11T21:05:10.4164808Z 2023-01-11T21:05:10.4164812Z 2023-01-11T21:05:10.4164899Z async_compile.wait(globals()) 2023-01-11T21:05:10.4164969Z del async_compile 2023-01-11T21:05:10.4164974Z 2023-01-11T21:05:10.4165042Z def call(args): 2023-01-11T21:05:10.4165156Z arg0_1, arg1_1, arg2_1, arg3_1, arg4_1, arg5_1, arg6_1, arg7_1 = args 2023-01-11T21:05:10.4165224Z args.clear() 2023-01-11T21:05:10.4165348Z buf0 = aten.convolution(arg7_1, arg0_1, arg1_1, (1, 1), (0, 0), (1, 1), False, (0, 0), 1) 2023-01-11T21:05:10.4165459Z assert_size_stride(buf0, (1, 32, 110, 110), (387200, 12100, 110, 1)) 2023-01-11T21:05:10.4165562Z del arg0_1 2023-01-11T21:05:10.4165628Z del arg1_1 2023-01-11T21:05:10.4165692Z del arg7_1 2023-01-11T21:05:10.4165761Z return (buf0, ) 2023-01-11T21:05:10.4165766Z 2023-01-11T21:05:10.4165770Z 2023-01-11T21:05:10.4165843Z if __name__ == "__main__": 2023-01-11T21:05:10.4165955Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.4166063Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.4166273Z arg0_1 = rand_strided((32, 3, 3, 3), (27, 9, 3, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4166461Z arg1_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4166650Z arg2_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4166837Z arg3_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4167019Z arg4_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4167204Z arg5_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4167381Z arg6_1 = rand_strided((), (), device='cpu', dtype=torch.int64) 2023-01-11T21:05:10.4167589Z arg7_1 = rand_strided((1, 3, 112, 112), (37632, 12544, 112, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4167743Z print_performance(lambda: call([arg0_1, arg1_1, arg2_1, arg3_1, arg4_1, arg5_1, arg6_1, arg7_1])) 2023-01-11T21:05:10.4167748Z 2023-01-11T21:05:10.4167752Z 2023-01-11T21:05:10.4167844Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.4167912Z import torch 2023-01-11T21:05:10.4167980Z import random 2023-01-11T21:05:10.4168092Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.4168211Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.4168218Z 2023-01-11T21:05:10.4168293Z aten = torch.ops.aten 2023-01-11T21:05:10.4168413Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.4168504Z async_compile = AsyncCompile() 2023-01-11T21:05:10.4168509Z 2023-01-11T21:05:10.4168513Z 2023-01-11T21:05:10.4168645Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.4168845Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.4168962Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:05:10.4169061Z float* __restrict__ out_ptr0) 2023-01-11T21:05:10.4169120Z { 2023-01-11T21:05:10.4169214Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.4169263Z { 2023-01-11T21:05:10.4169337Z #pragma omp for 2023-01-11T21:05:10.4169417Z for(long i0=0; i0<32; i0+=1) 2023-01-11T21:05:10.4169479Z { 2023-01-11T21:05:10.4169557Z #pragma GCC ivdep 2023-01-11T21:05:10.4169667Z for(long i1=0; i1<3; i1+=1) 2023-01-11T21:05:10.4169717Z { 2023-01-11T21:05:10.4169796Z #pragma GCC ivdep 2023-01-11T21:05:10.4169887Z for(long i2=0; i2<9; i2+=1) 2023-01-11T21:05:10.4169949Z { 2023-01-11T21:05:10.4170013Z { 2023-01-11T21:05:10.4170078Z { 2023-01-11T21:05:10.4170188Z auto tmp0 = in_ptr0[i2 + (9*i1) + (27*i0)]; 2023-01-11T21:05:10.4170279Z out_ptr0[i1 + (3*i2) + (27*i0)] = tmp0; 2023-01-11T21:05:10.4170344Z } 2023-01-11T21:05:10.4170407Z } 2023-01-11T21:05:10.4170469Z } 2023-01-11T21:05:10.4170529Z } 2023-01-11T21:05:10.4170588Z } 2023-01-11T21:05:10.4170647Z } 2023-01-11T21:05:10.4170693Z } 2023-01-11T21:05:10.4170772Z ''') 2023-01-11T21:05:10.4170777Z 2023-01-11T21:05:10.4170781Z 2023-01-11T21:05:10.4170872Z async_compile.wait(globals()) 2023-01-11T21:05:10.4170941Z del async_compile 2023-01-11T21:05:10.4170946Z 2023-01-11T21:05:10.4171014Z def call(args): 2023-01-11T21:05:10.4171159Z arg0_1, arg1_1, arg2_1, arg3_1, arg4_1, arg5_1, arg6_1, arg7_1 = args 2023-01-11T21:05:10.4171229Z args.clear() 2023-01-11T21:05:10.4171427Z buf0 = empty_strided((32, 3, 3, 3), (27, 1, 9, 3), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4171558Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:05:10.4171623Z del arg0_1 2023-01-11T21:05:10.4171755Z buf1 = aten.convolution(arg7_1, buf0, arg1_1, (1, 1), (0, 0), (1, 1), False, (0, 0), 1) 2023-01-11T21:05:10.4171865Z assert_size_stride(buf1, (1, 32, 110, 110), (387200, 1, 3520, 32)) 2023-01-11T21:05:10.4171930Z del arg1_1 2023-01-11T21:05:10.4171995Z del arg7_1 2023-01-11T21:05:10.4172063Z return (buf1, ) 2023-01-11T21:05:10.4172068Z 2023-01-11T21:05:10.4172072Z 2023-01-11T21:05:10.4172133Z if __name__ == "__main__": 2023-01-11T21:05:10.4172246Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.4172367Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.4172578Z arg0_1 = rand_strided((32, 3, 3, 3), (27, 9, 3, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4172817Z arg1_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4173086Z arg2_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4173273Z arg3_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4173461Z arg4_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4173637Z arg5_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4173813Z arg6_1 = rand_strided((), (), device='cpu', dtype=torch.int64) 2023-01-11T21:05:10.4174030Z arg7_1 = rand_strided((1, 3, 112, 112), (37632, 1, 336, 3), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4174186Z print_performance(lambda: call([arg0_1, arg1_1, arg2_1, arg3_1, arg4_1, arg5_1, arg6_1, arg7_1])) 2023-01-11T21:05:10.4174191Z 2023-01-11T21:05:10.4174195Z 2023-01-11T21:05:10.4174291Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.4174358Z import torch 2023-01-11T21:05:10.4174425Z import random 2023-01-11T21:05:10.4174539Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.4174646Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.4174651Z 2023-01-11T21:05:10.4174727Z aten = torch.ops.aten 2023-01-11T21:05:10.4174857Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.4174948Z async_compile = AsyncCompile() 2023-01-11T21:05:10.4174953Z 2023-01-11T21:05:10.4174957Z 2023-01-11T21:05:10.4175043Z async_compile.wait(globals()) 2023-01-11T21:05:10.4175112Z del async_compile 2023-01-11T21:05:10.4175117Z 2023-01-11T21:05:10.4175189Z def call(args): 2023-01-11T21:05:10.4175345Z arg0_1, arg1_1, arg2_1, arg3_1, arg4_1, arg5_1, arg6_1, arg7_1 = args 2023-01-11T21:05:10.4175402Z args.clear() 2023-01-11T21:05:10.4175537Z buf0 = aten.convolution(arg7_1, arg0_1, arg1_1, (1, 1), (0, 0), (1, 1), False, (0, 0), 4) 2023-01-11T21:05:10.4175648Z assert_size_stride(buf0, (1, 128, 110, 110), (1548800, 12100, 110, 1)) 2023-01-11T21:05:10.4175715Z del arg0_1 2023-01-11T21:05:10.4175781Z del arg1_1 2023-01-11T21:05:10.4175844Z del arg7_1 2023-01-11T21:05:10.4175914Z return (buf0, ) 2023-01-11T21:05:10.4175919Z 2023-01-11T21:05:10.4175923Z 2023-01-11T21:05:10.4175996Z if __name__ == "__main__": 2023-01-11T21:05:10.4176095Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.4176215Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.4176426Z arg0_1 = rand_strided((128, 3, 3, 3), (27, 9, 3, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4176619Z arg1_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4176811Z arg2_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4176999Z arg3_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4177244Z arg4_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4177419Z arg5_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4177595Z arg6_1 = rand_strided((), (), device='cpu', dtype=torch.int64) 2023-01-11T21:05:10.4177817Z arg7_1 = rand_strided((1, 12, 112, 112), (150528, 12544, 112, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4177971Z print_performance(lambda: call([arg0_1, arg1_1, arg2_1, arg3_1, arg4_1, arg5_1, arg6_1, arg7_1])) 2023-01-11T21:05:10.4178240Z [2023-01-11 20:47:18,815] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 111 2023-01-11T21:05:10.4178729Z inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.4178859Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.4179117Z [2023-01-11 20:47:19,497] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 112 2023-01-11T21:05:10.4179379Z [2023-01-11 20:47:19,547] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 112 2023-01-11T21:05:10.4179777Z inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.4179904Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.4180148Z [2023-01-11 20:47:20,159] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 113 2023-01-11T21:05:10.4180410Z [2023-01-11 20:47:20,199] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 113 2023-01-11T21:05:10.4180804Z inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.4180930Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.4181185Z [2023-01-11 20:47:20,521] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 114 2023-01-11T21:05:10.4181445Z [2023-01-11 20:47:20,576] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 114 2023-01-11T21:05:10.4181871Z inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.4181994Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.4182247Z [2023-01-11 20:47:20,926] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 115 2023-01-11T21:05:10.4182252Z 2023-01-11T21:05:10.4182256Z 2023-01-11T21:05:10.4182348Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.4182416Z import torch 2023-01-11T21:05:10.4182471Z import random 2023-01-11T21:05:10.4182585Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.4182706Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.4182713Z 2023-01-11T21:05:10.4182793Z aten = torch.ops.aten 2023-01-11T21:05:10.4182925Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.4183081Z async_compile = AsyncCompile() 2023-01-11T21:05:10.4183086Z 2023-01-11T21:05:10.4183091Z 2023-01-11T21:05:10.4183226Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.4183429Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.4183536Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:05:10.4183634Z float* __restrict__ out_ptr0) 2023-01-11T21:05:10.4183694Z { 2023-01-11T21:05:10.4183821Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.4183916Z { 2023-01-11T21:05:10.4184025Z #pragma omp for 2023-01-11T21:05:10.4184106Z for(long i0=0; i0<128; i0+=1) 2023-01-11T21:05:10.4184155Z { 2023-01-11T21:05:10.4184232Z #pragma GCC ivdep 2023-01-11T21:05:10.4184316Z for(long i1=0; i1<3; i1+=1) 2023-01-11T21:05:10.4184376Z { 2023-01-11T21:05:10.4184457Z #pragma GCC ivdep 2023-01-11T21:05:10.4184546Z for(long i2=0; i2<9; i2+=1) 2023-01-11T21:05:10.4184596Z { 2023-01-11T21:05:10.4184661Z { 2023-01-11T21:05:10.4184726Z { 2023-01-11T21:05:10.4184837Z auto tmp0 = in_ptr0[i2 + (9*i1) + (27*i0)]; 2023-01-11T21:05:10.4184938Z out_ptr0[i1 + (3*i2) + (27*i0)] = tmp0; 2023-01-11T21:05:10.4185004Z } 2023-01-11T21:05:10.4185068Z } 2023-01-11T21:05:10.4185117Z } 2023-01-11T21:05:10.4185177Z } 2023-01-11T21:05:10.4185235Z } 2023-01-11T21:05:10.4185295Z } 2023-01-11T21:05:10.4185353Z } 2023-01-11T21:05:10.4185430Z ''') 2023-01-11T21:05:10.4185435Z 2023-01-11T21:05:10.4185439Z 2023-01-11T21:05:10.4185529Z async_compile.wait(globals()) 2023-01-11T21:05:10.4185587Z del async_compile 2023-01-11T21:05:10.4185604Z 2023-01-11T21:05:10.4185659Z def call(args): 2023-01-11T21:05:10.4185780Z arg0_1, arg1_1, arg2_1, arg3_1, arg4_1, arg5_1, arg6_1, arg7_1 = args 2023-01-11T21:05:10.4185851Z args.clear() 2023-01-11T21:05:10.4186063Z buf0 = empty_strided((128, 3, 3, 3), (27, 1, 9, 3), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4186195Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:05:10.4186259Z del arg0_1 2023-01-11T21:05:10.4186391Z buf1 = aten.convolution(arg7_1, buf0, arg1_1, (1, 1), (0, 0), (1, 1), False, (0, 0), 4) 2023-01-11T21:05:10.4186488Z assert_size_stride(buf1, (1, 128, 110, 110), (1548800, 1, 14080, 128)) 2023-01-11T21:05:10.4186555Z del arg1_1 2023-01-11T21:05:10.4186621Z del arg7_1 2023-01-11T21:05:10.4186690Z return (buf1, ) 2023-01-11T21:05:10.4186696Z 2023-01-11T21:05:10.4186700Z 2023-01-11T21:05:10.4186812Z if __name__ == "__main__": 2023-01-11T21:05:10.4186924Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.4187044Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.4187257Z arg0_1 = rand_strided((128, 3, 3, 3), (27, 9, 3, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4187437Z arg1_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4187628Z arg2_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4187816Z arg3_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4188006Z arg4_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4188195Z arg5_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4188373Z arg6_1 = rand_strided((), (), device='cpu', dtype=torch.int64) 2023-01-11T21:05:10.4188596Z arg7_1 = rand_strided((1, 12, 112, 112), (150528, 1, 1344, 12), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4188752Z print_performance(lambda: call([arg0_1, arg1_1, arg2_1, arg3_1, arg4_1, arg5_1, arg6_1, arg7_1])) 2023-01-11T21:05:10.4188758Z 2023-01-11T21:05:10.4188763Z 2023-01-11T21:05:10.4188872Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.4188942Z import torch 2023-01-11T21:05:10.4189009Z import random 2023-01-11T21:05:10.4189121Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.4189240Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.4189245Z 2023-01-11T21:05:10.4189320Z aten = torch.ops.aten 2023-01-11T21:05:10.4189453Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.4189542Z async_compile = AsyncCompile() 2023-01-11T21:05:10.4189547Z 2023-01-11T21:05:10.4189551Z 2023-01-11T21:05:10.4189624Z async_compile.wait(globals()) 2023-01-11T21:05:10.4189695Z del async_compile 2023-01-11T21:05:10.4189700Z 2023-01-11T21:05:10.4189769Z def call(args): 2023-01-11T21:05:10.4189888Z arg0_1, arg1_1, arg2_1, arg3_1, arg4_1, arg5_1, arg6_1, arg7_1 = args 2023-01-11T21:05:10.4189957Z args.clear() 2023-01-11T21:05:10.4190091Z buf0 = aten.convolution(arg7_1, arg0_1, arg1_1, (1, 1), (0, 0), (2, 2), False, (0, 0), 1) 2023-01-11T21:05:10.4190200Z assert_size_stride(buf0, (1, 32, 108, 108), (373248, 11664, 108, 1)) 2023-01-11T21:05:10.4190268Z del arg0_1 2023-01-11T21:05:10.4190320Z del arg1_1 2023-01-11T21:05:10.4190384Z del arg7_1 2023-01-11T21:05:10.4190452Z return (buf0, ) 2023-01-11T21:05:10.4190457Z 2023-01-11T21:05:10.4190462Z 2023-01-11T21:05:10.4190535Z if __name__ == "__main__": 2023-01-11T21:05:10.4190649Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.4190769Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.4190978Z arg0_1 = rand_strided((32, 3, 3, 3), (27, 9, 3, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4191156Z arg1_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4191349Z arg2_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4191534Z arg3_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4191716Z arg4_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4191896Z arg5_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4192072Z arg6_1 = rand_strided((), (), device='cpu', dtype=torch.int64) 2023-01-11T21:05:10.4192293Z arg7_1 = rand_strided((1, 3, 112, 112), (37632, 12544, 112, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4192446Z print_performance(lambda: call([arg0_1, arg1_1, arg2_1, arg3_1, arg4_1, arg5_1, arg6_1, arg7_1])) 2023-01-11T21:05:10.4192451Z 2023-01-11T21:05:10.4192457Z 2023-01-11T21:05:10.4192549Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.4192604Z import torch 2023-01-11T21:05:10.4192706Z import random 2023-01-11T21:05:10.4192818Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.4192938Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.4192943Z 2023-01-11T21:05:10.4193021Z aten = torch.ops.aten 2023-01-11T21:05:10.4193152Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.4193241Z async_compile = AsyncCompile() 2023-01-11T21:05:10.4193246Z 2023-01-11T21:05:10.4193251Z 2023-01-11T21:05:10.4193383Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.4193572Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.4193690Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:05:10.4193788Z float* __restrict__ out_ptr0) 2023-01-11T21:05:10.4193849Z { 2023-01-11T21:05:10.4193945Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.4194004Z { 2023-01-11T21:05:10.4194078Z #pragma omp for 2023-01-11T21:05:10.4194149Z for(long i0=0; i0<32; i0+=1) 2023-01-11T21:05:10.4194210Z { 2023-01-11T21:05:10.4194289Z #pragma GCC ivdep 2023-01-11T21:05:10.4194371Z for(long i1=0; i1<3; i1+=1) 2023-01-11T21:05:10.4194470Z { 2023-01-11T21:05:10.4194553Z #pragma GCC ivdep 2023-01-11T21:05:10.4194630Z for(long i2=0; i2<9; i2+=1) 2023-01-11T21:05:10.4194693Z { 2023-01-11T21:05:10.4194757Z { 2023-01-11T21:05:10.4194823Z { 2023-01-11T21:05:10.4194932Z auto tmp0 = in_ptr0[i2 + (9*i1) + (27*i0)]; 2023-01-11T21:05:10.4195033Z out_ptr0[i1 + (3*i2) + (27*i0)] = tmp0; 2023-01-11T21:05:10.4195099Z } 2023-01-11T21:05:10.4195151Z } 2023-01-11T21:05:10.4195212Z } 2023-01-11T21:05:10.4195272Z } 2023-01-11T21:05:10.4195335Z } 2023-01-11T21:05:10.4195395Z } 2023-01-11T21:05:10.4195456Z } 2023-01-11T21:05:10.4195531Z ''') 2023-01-11T21:05:10.4195536Z 2023-01-11T21:05:10.4195540Z 2023-01-11T21:05:10.4195615Z async_compile.wait(globals()) 2023-01-11T21:05:10.4195684Z del async_compile 2023-01-11T21:05:10.4195691Z 2023-01-11T21:05:10.4195759Z def call(args): 2023-01-11T21:05:10.4195876Z arg0_1, arg1_1, arg2_1, arg3_1, arg4_1, arg5_1, arg6_1, arg7_1 = args 2023-01-11T21:05:10.4195946Z args.clear() 2023-01-11T21:05:10.4196154Z buf0 = empty_strided((32, 3, 3, 3), (27, 1, 9, 3), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4196285Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:05:10.4196350Z del arg0_1 2023-01-11T21:05:10.4196470Z buf1 = aten.convolution(arg7_1, buf0, arg1_1, (1, 1), (0, 0), (2, 2), False, (0, 0), 1) 2023-01-11T21:05:10.4196578Z assert_size_stride(buf1, (1, 32, 108, 108), (373248, 1, 3456, 32)) 2023-01-11T21:05:10.4196644Z del arg1_1 2023-01-11T21:05:10.4196708Z del arg7_1 2023-01-11T21:05:10.4196778Z return (buf1, ) 2023-01-11T21:05:10.4196783Z 2023-01-11T21:05:10.4196788Z 2023-01-11T21:05:10.4196860Z if __name__ == "__main__": 2023-01-11T21:05:10.4196973Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.4197081Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.4197288Z arg0_1 = rand_strided((32, 3, 3, 3), (27, 9, 3, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4197477Z arg1_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4197664Z arg2_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4197849Z arg3_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4198032Z arg4_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4198219Z arg5_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4198395Z arg6_1 = rand_strided((), (), device='cpu', dtype=torch.int64) 2023-01-11T21:05:10.4198633Z arg7_1 = rand_strided((1, 3, 112, 112), (37632, 1, 336, 3), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4198787Z print_performance(lambda: call([arg0_1, arg1_1, arg2_1, arg3_1, arg4_1, arg5_1, arg6_1, arg7_1])) 2023-01-11T21:05:10.4198792Z 2023-01-11T21:05:10.4198796Z 2023-01-11T21:05:10.4198889Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.4198957Z import torch 2023-01-11T21:05:10.4199026Z import random 2023-01-11T21:05:10.4199137Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.4199255Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.4199259Z 2023-01-11T21:05:10.4199334Z aten = torch.ops.aten 2023-01-11T21:05:10.4199452Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.4199542Z async_compile = AsyncCompile() 2023-01-11T21:05:10.4199547Z 2023-01-11T21:05:10.4199551Z 2023-01-11T21:05:10.4199637Z async_compile.wait(globals()) 2023-01-11T21:05:10.4199709Z del async_compile 2023-01-11T21:05:10.4199714Z 2023-01-11T21:05:10.4199782Z def call(args): 2023-01-11T21:05:10.4199897Z arg0_1, arg1_1, arg2_1, arg3_1, arg4_1, arg5_1, arg6_1, arg7_1 = args 2023-01-11T21:05:10.4199998Z args.clear() 2023-01-11T21:05:10.4200133Z buf0 = aten.convolution(arg7_1, arg0_1, arg1_1, (1, 1), (0, 0), (2, 2), False, (0, 0), 4) 2023-01-11T21:05:10.4200231Z assert_size_stride(buf0, (1, 128, 108, 108), (1492992, 11664, 108, 1)) 2023-01-11T21:05:10.4200299Z del arg0_1 2023-01-11T21:05:10.4200363Z del arg1_1 2023-01-11T21:05:10.4200426Z del arg7_1 2023-01-11T21:05:10.4200495Z return (buf0, ) 2023-01-11T21:05:10.4200500Z 2023-01-11T21:05:10.4200504Z 2023-01-11T21:05:10.4200578Z if __name__ == "__main__": 2023-01-11T21:05:10.4200855Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.4200975Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.4201179Z arg0_1 = rand_strided((128, 3, 3, 3), (27, 9, 3, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4201373Z arg1_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4201567Z arg2_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4201753Z arg3_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4201941Z arg4_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4202125Z arg5_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4202301Z arg6_1 = rand_strided((), (), device='cpu', dtype=torch.int64) 2023-01-11T21:05:10.4202524Z arg7_1 = rand_strided((1, 12, 112, 112), (150528, 12544, 112, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4202666Z print_performance(lambda: call([arg0_1, arg1_1, arg2_1, arg3_1, arg4_1, arg5_1, arg6_1, arg7_1])) 2023-01-11T21:05:10.4202934Z [2023-01-11 20:47:20,966] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 115 2023-01-11T21:05:10.4203339Z inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.4203465Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.4203722Z [2023-01-11 20:47:21,607] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 116 2023-01-11T21:05:10.4203986Z [2023-01-11 20:47:21,665] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 116 2023-01-11T21:05:10.4204382Z inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.4204570Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.4204829Z [2023-01-11 20:47:22,370] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 117 2023-01-11T21:05:10.4205087Z [2023-01-11 20:47:22,414] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 117 2023-01-11T21:05:10.4205533Z inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.4205655Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.4205898Z [2023-01-11 20:47:23,986] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 118 2023-01-11T21:05:10.4206161Z [2023-01-11 20:47:26,775] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 118 2023-01-11T21:05:10.4206593Z inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.4206716Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.4206969Z [2023-01-11 20:47:28,536] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 119 2023-01-11T21:05:10.4207227Z [2023-01-11 20:47:28,580] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 119 2023-01-11T21:05:10.4207622Z inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.4207744Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.4207993Z [2023-01-11 20:47:33,630] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 120 2023-01-11T21:05:10.4207999Z 2023-01-11T21:05:10.4208004Z 2023-01-11T21:05:10.4208096Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.4208152Z import torch 2023-01-11T21:05:10.4208219Z import random 2023-01-11T21:05:10.4208333Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.4208451Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.4208457Z 2023-01-11T21:05:10.4208533Z aten = torch.ops.aten 2023-01-11T21:05:10.4208668Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.4208756Z async_compile = AsyncCompile() 2023-01-11T21:05:10.4208761Z 2023-01-11T21:05:10.4208766Z 2023-01-11T21:05:10.4208900Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.4209091Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.4209209Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:05:10.4209308Z float* __restrict__ out_ptr0) 2023-01-11T21:05:10.4209367Z { 2023-01-11T21:05:10.4209461Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.4209521Z { 2023-01-11T21:05:10.4209596Z #pragma omp for 2023-01-11T21:05:10.4209665Z for(long i0=0; i0<128; i0+=1) 2023-01-11T21:05:10.4209726Z { 2023-01-11T21:05:10.4209803Z #pragma GCC ivdep 2023-01-11T21:05:10.4209884Z for(long i1=0; i1<3; i1+=1) 2023-01-11T21:05:10.4209945Z { 2023-01-11T21:05:10.4210057Z #pragma GCC ivdep 2023-01-11T21:05:10.4210145Z for(long i2=0; i2<9; i2+=1) 2023-01-11T21:05:10.4210196Z { 2023-01-11T21:05:10.4210260Z { 2023-01-11T21:05:10.4210327Z { 2023-01-11T21:05:10.4210435Z auto tmp0 = in_ptr0[i2 + (9*i1) + (27*i0)]; 2023-01-11T21:05:10.4210537Z out_ptr0[i1 + (3*i2) + (27*i0)] = tmp0; 2023-01-11T21:05:10.4210603Z } 2023-01-11T21:05:10.4210668Z } 2023-01-11T21:05:10.4210717Z } 2023-01-11T21:05:10.4210777Z } 2023-01-11T21:05:10.4210838Z } 2023-01-11T21:05:10.4210896Z } 2023-01-11T21:05:10.4210955Z } 2023-01-11T21:05:10.4211031Z ''') 2023-01-11T21:05:10.4211036Z 2023-01-11T21:05:10.4211039Z 2023-01-11T21:05:10.4211127Z async_compile.wait(globals()) 2023-01-11T21:05:10.4211186Z del async_compile 2023-01-11T21:05:10.4211191Z 2023-01-11T21:05:10.4211261Z def call(args): 2023-01-11T21:05:10.4211379Z arg0_1, arg1_1, arg2_1, arg3_1, arg4_1, arg5_1, arg6_1, arg7_1 = args 2023-01-11T21:05:10.4211448Z args.clear() 2023-01-11T21:05:10.4211687Z buf0 = empty_strided((128, 3, 3, 3), (27, 1, 9, 3), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4211820Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:05:10.4211886Z del arg0_1 2023-01-11T21:05:10.4212006Z buf1 = aten.convolution(arg7_1, buf0, arg1_1, (1, 1), (0, 0), (2, 2), False, (0, 0), 4) 2023-01-11T21:05:10.4212116Z assert_size_stride(buf1, (1, 128, 108, 108), (1492992, 1, 13824, 128)) 2023-01-11T21:05:10.4212182Z del arg1_1 2023-01-11T21:05:10.4212247Z del arg7_1 2023-01-11T21:05:10.4212315Z return (buf1, ) 2023-01-11T21:05:10.4212320Z 2023-01-11T21:05:10.4212324Z 2023-01-11T21:05:10.4212397Z if __name__ == "__main__": 2023-01-11T21:05:10.4212508Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.4212632Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.4212831Z arg0_1 = rand_strided((128, 3, 3, 3), (27, 9, 3, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4213028Z arg1_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4213217Z arg2_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4213403Z arg3_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4213587Z arg4_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4213776Z arg5_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4213954Z arg6_1 = rand_strided((), (), device='cpu', dtype=torch.int64) 2023-01-11T21:05:10.4214177Z arg7_1 = rand_strided((1, 12, 112, 112), (150528, 1, 1344, 12), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4214318Z print_performance(lambda: call([arg0_1, arg1_1, arg2_1, arg3_1, arg4_1, arg5_1, arg6_1, arg7_1])) 2023-01-11T21:05:10.4214339Z 2023-01-11T21:05:10.4214343Z 2023-01-11T21:05:10.4214425Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.4214492Z import torch 2023-01-11T21:05:10.4214563Z import random 2023-01-11T21:05:10.4214676Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.4214794Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.4214799Z 2023-01-11T21:05:10.4214875Z aten = torch.ops.aten 2023-01-11T21:05:10.4215007Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.4215084Z async_compile = AsyncCompile() 2023-01-11T21:05:10.4215102Z 2023-01-11T21:05:10.4215106Z 2023-01-11T21:05:10.4215179Z async_compile.wait(globals()) 2023-01-11T21:05:10.4215250Z del async_compile 2023-01-11T21:05:10.4215254Z 2023-01-11T21:05:10.4215322Z def call(args): 2023-01-11T21:05:10.4215437Z arg0_1, arg1_1, arg2_1, arg3_1, arg4_1, arg5_1, arg6_1, arg7_1 = args 2023-01-11T21:05:10.4215539Z args.clear() 2023-01-11T21:05:10.4215681Z buf0 = aten.convolution(arg7_1, arg0_1, arg1_1, (1, 1, 1), (0, 0, 0), (1, 1, 1), False, (0, 0, 0), 1) 2023-01-11T21:05:10.4215798Z assert_size_stride(buf0, (1, 32, 55, 55, 55), (5324000, 166375, 3025, 55, 1)) 2023-01-11T21:05:10.4215852Z del arg0_1 2023-01-11T21:05:10.4215916Z del arg1_1 2023-01-11T21:05:10.4215979Z del arg7_1 2023-01-11T21:05:10.4216047Z return (buf0, ) 2023-01-11T21:05:10.4216052Z 2023-01-11T21:05:10.4216058Z 2023-01-11T21:05:10.4216131Z if __name__ == "__main__": 2023-01-11T21:05:10.4216242Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.4216362Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.4216578Z arg0_1 = rand_strided((32, 3, 1, 1, 1), (3, 1, 1, 1, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4216759Z arg1_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4216947Z arg2_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4217131Z arg3_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4217360Z arg4_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4217544Z arg5_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4217721Z arg6_1 = rand_strided((), (), device='cpu', dtype=torch.int64) 2023-01-11T21:05:10.4217951Z arg7_1 = rand_strided((1, 3, 55, 55, 55), (499125, 166375, 3025, 55, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4218105Z print_performance(lambda: call([arg0_1, arg1_1, arg2_1, arg3_1, arg4_1, arg5_1, arg6_1, arg7_1])) 2023-01-11T21:05:10.4218111Z 2023-01-11T21:05:10.4218115Z 2023-01-11T21:05:10.4218208Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.4218263Z import torch 2023-01-11T21:05:10.4218330Z import random 2023-01-11T21:05:10.4218444Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.4218651Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.4218657Z 2023-01-11T21:05:10.4218732Z aten = torch.ops.aten 2023-01-11T21:05:10.4218865Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.4218959Z async_compile = AsyncCompile() 2023-01-11T21:05:10.4218963Z 2023-01-11T21:05:10.4218967Z 2023-01-11T21:05:10.4219088Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.4219288Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.4219408Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:05:10.4219507Z float* __restrict__ out_ptr0) 2023-01-11T21:05:10.4219566Z { 2023-01-11T21:05:10.4219663Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.4219722Z { 2023-01-11T21:05:10.4219799Z #pragma omp for collapse(2) 2023-01-11T21:05:10.4219878Z for(long i0=0; i0<3; i0+=1) 2023-01-11T21:05:10.4219939Z { 2023-01-11T21:05:10.4220028Z for(long i1=0; i1<166375; i1+=1) 2023-01-11T21:05:10.4220090Z { 2023-01-11T21:05:10.4220153Z { 2023-01-11T21:05:10.4220218Z { 2023-01-11T21:05:10.4220307Z auto tmp0 = in_ptr0[i0 + (3*i1)]; 2023-01-11T21:05:10.4220404Z out_ptr0[i1 + (166375*i0)] = tmp0; 2023-01-11T21:05:10.4220469Z } 2023-01-11T21:05:10.4220530Z } 2023-01-11T21:05:10.4220590Z } 2023-01-11T21:05:10.4220650Z } 2023-01-11T21:05:10.4220709Z } 2023-01-11T21:05:10.4220755Z } 2023-01-11T21:05:10.4220831Z ''') 2023-01-11T21:05:10.4220835Z 2023-01-11T21:05:10.4220840Z 2023-01-11T21:05:10.4220927Z async_compile.wait(globals()) 2023-01-11T21:05:10.4220997Z del async_compile 2023-01-11T21:05:10.4221002Z 2023-01-11T21:05:10.4221070Z def call(args): 2023-01-11T21:05:10.4221185Z arg0_1, arg1_1, arg2_1, arg3_1, arg4_1, arg5_1, arg6_1, arg7_1 = args 2023-01-11T21:05:10.4221295Z args.clear() 2023-01-11T21:05:10.4221516Z buf0 = empty_strided((1, 3, 55, 55, 55), (499125, 166375, 3025, 55, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4221651Z kernel_cpp_0(c_void_p(arg7_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:05:10.4221717Z del arg7_1 2023-01-11T21:05:10.4221860Z buf1 = aten.convolution(buf0, arg0_1, arg1_1, (1, 1, 1), (0, 0, 0), (1, 1, 1), False, (0, 0, 0), 1) 2023-01-11T21:05:10.4221974Z assert_size_stride(buf1, (1, 32, 55, 55, 55), (5324000, 166375, 3025, 55, 1)) 2023-01-11T21:05:10.4222040Z del arg0_1 2023-01-11T21:05:10.4222105Z del arg1_1 2023-01-11T21:05:10.4222173Z return (buf1, ) 2023-01-11T21:05:10.4222178Z 2023-01-11T21:05:10.4222182Z 2023-01-11T21:05:10.4222244Z if __name__ == "__main__": 2023-01-11T21:05:10.4222355Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.4222475Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.4222689Z arg0_1 = rand_strided((32, 3, 1, 1, 1), (3, 1, 1, 1, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4222881Z arg1_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4223096Z arg2_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4223283Z arg3_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4223467Z arg4_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4223636Z arg5_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4223812Z arg6_1 = rand_strided((), (), device='cpu', dtype=torch.int64) 2023-01-11T21:05:10.4224038Z arg7_1 = rand_strided((1, 3, 55, 55, 55), (499125, 1, 9075, 165, 3), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4224191Z print_performance(lambda: call([arg0_1, arg1_1, arg2_1, arg3_1, arg4_1, arg5_1, arg6_1, arg7_1])) 2023-01-11T21:05:10.4224197Z 2023-01-11T21:05:10.4224204Z 2023-01-11T21:05:10.4224296Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.4224362Z import torch 2023-01-11T21:05:10.4224430Z import random 2023-01-11T21:05:10.4224542Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.4224652Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.4224657Z 2023-01-11T21:05:10.4224734Z aten = torch.ops.aten 2023-01-11T21:05:10.4224864Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.4224953Z async_compile = AsyncCompile() 2023-01-11T21:05:10.4224958Z 2023-01-11T21:05:10.4224962Z 2023-01-11T21:05:10.4225047Z async_compile.wait(globals()) 2023-01-11T21:05:10.4225117Z del async_compile 2023-01-11T21:05:10.4225122Z 2023-01-11T21:05:10.4225189Z def call(args): 2023-01-11T21:05:10.4225303Z arg0_1, arg1_1, arg2_1, arg3_1, arg4_1, arg5_1, arg6_1, arg7_1 = args 2023-01-11T21:05:10.4225361Z args.clear() 2023-01-11T21:05:10.4225498Z buf0 = aten.convolution(arg7_1, arg0_1, arg1_1, (1, 1, 1), (0, 0, 0), (1, 1, 1), False, (0, 0, 0), 4) 2023-01-11T21:05:10.4225618Z assert_size_stride(buf0, (1, 128, 55, 55, 55), (21296000, 166375, 3025, 55, 1)) 2023-01-11T21:05:10.4225684Z del arg0_1 2023-01-11T21:05:10.4225751Z del arg1_1 2023-01-11T21:05:10.4225814Z del arg7_1 2023-01-11T21:05:10.4225882Z return (buf0, ) 2023-01-11T21:05:10.4225887Z 2023-01-11T21:05:10.4225891Z 2023-01-11T21:05:10.4225964Z if __name__ == "__main__": 2023-01-11T21:05:10.4226063Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.4226182Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.4226400Z arg0_1 = rand_strided((128, 3, 1, 1, 1), (3, 1, 1, 1, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4226594Z arg1_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4226785Z arg2_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4226976Z arg3_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4227198Z arg4_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4227385Z arg5_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4227550Z arg6_1 = rand_strided((), (), device='cpu', dtype=torch.int64) 2023-01-11T21:05:10.4227780Z arg7_1 = rand_strided((1, 12, 55, 55, 55), (1996500, 166375, 3025, 55, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4227933Z print_performance(lambda: call([arg0_1, arg1_1, arg2_1, arg3_1, arg4_1, arg5_1, arg6_1, arg7_1])) 2023-01-11T21:05:10.4227938Z 2023-01-11T21:05:10.4227942Z 2023-01-11T21:05:10.4228034Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.4228105Z import torch 2023-01-11T21:05:10.4228173Z import random 2023-01-11T21:05:10.4228285Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.4228404Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.4228410Z 2023-01-11T21:05:10.4228473Z aten = torch.ops.aten 2023-01-11T21:05:10.4228604Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.4228693Z async_compile = AsyncCompile() 2023-01-11T21:05:10.4228729Z 2023-01-11T21:05:10.4228734Z 2023-01-11T21:05:10.4228867Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.4229069Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.4229185Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:05:10.4229283Z float* __restrict__ out_ptr0) 2023-01-11T21:05:10.4229342Z { 2023-01-11T21:05:10.4229426Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.4229487Z { 2023-01-11T21:05:10.4229562Z #pragma omp for 2023-01-11T21:05:10.4229642Z for(long i0=0; i0<12; i0+=1) 2023-01-11T21:05:10.4229704Z { 2023-01-11T21:05:10.4229781Z #pragma GCC ivdep 2023-01-11T21:05:10.4229860Z for(long i1=0; i1<166375; i1+=1) 2023-01-11T21:05:10.4229920Z { 2023-01-11T21:05:10.4229983Z { 2023-01-11T21:05:10.4230047Z { 2023-01-11T21:05:10.4230150Z auto tmp0 = in_ptr0[i0 + (12*i1)]; 2023-01-11T21:05:10.4230246Z out_ptr0[i1 + (166375*i0)] = tmp0; 2023-01-11T21:05:10.4230310Z } 2023-01-11T21:05:10.4230358Z } 2023-01-11T21:05:10.4230418Z } 2023-01-11T21:05:10.4230478Z } 2023-01-11T21:05:10.4230537Z } 2023-01-11T21:05:10.4230595Z } 2023-01-11T21:05:10.4230671Z ''') 2023-01-11T21:05:10.4230676Z 2023-01-11T21:05:10.4230680Z 2023-01-11T21:05:10.4230768Z async_compile.wait(globals()) 2023-01-11T21:05:10.4230826Z del async_compile 2023-01-11T21:05:10.4230843Z 2023-01-11T21:05:10.4230898Z def call(args): 2023-01-11T21:05:10.4231015Z arg0_1, arg1_1, arg2_1, arg3_1, arg4_1, arg5_1, arg6_1, arg7_1 = args 2023-01-11T21:05:10.4231084Z args.clear() 2023-01-11T21:05:10.4231323Z buf0 = empty_strided((1, 12, 55, 55, 55), (1996500, 166375, 3025, 55, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4231455Z kernel_cpp_0(c_void_p(arg7_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:05:10.4231521Z del arg7_1 2023-01-11T21:05:10.4231660Z buf1 = aten.convolution(buf0, arg0_1, arg1_1, (1, 1, 1), (0, 0, 0), (1, 1, 1), False, (0, 0, 0), 4) 2023-01-11T21:05:10.4231763Z assert_size_stride(buf1, (1, 128, 55, 55, 55), (21296000, 166375, 3025, 55, 1)) 2023-01-11T21:05:10.4231828Z del arg0_1 2023-01-11T21:05:10.4231893Z del arg1_1 2023-01-11T21:05:10.4231963Z return (buf1, ) 2023-01-11T21:05:10.4231968Z 2023-01-11T21:05:10.4231972Z 2023-01-11T21:05:10.4232044Z if __name__ == "__main__": 2023-01-11T21:05:10.4232157Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.4232277Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.4232493Z arg0_1 = rand_strided((128, 3, 1, 1, 1), (3, 1, 1, 1, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4232714Z arg1_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4232909Z arg2_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4233097Z arg3_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4233284Z arg4_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4233468Z arg5_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4233644Z arg6_1 = rand_strided((), (), device='cpu', dtype=torch.int64) 2023-01-11T21:05:10.4233873Z arg7_1 = rand_strided((1, 12, 55, 55, 55), (1996500, 1, 36300, 660, 12), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4234026Z print_performance(lambda: call([arg0_1, arg1_1, arg2_1, arg3_1, arg4_1, arg5_1, arg6_1, arg7_1])) 2023-01-11T21:05:10.4234282Z [2023-01-11 20:47:36,390] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 120 2023-01-11T21:05:10.4234712Z inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.4234840Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.4235098Z [2023-01-11 20:47:41,346] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 121 2023-01-11T21:05:10.4235356Z [2023-01-11 20:47:41,389] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 121 2023-01-11T21:05:10.4235751Z inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.4235876Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.4236131Z [2023-01-11 20:47:42,951] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 122 2023-01-11T21:05:10.4236391Z [2023-01-11 20:47:43,003] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 122 2023-01-11T21:05:10.4236783Z inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.4236907Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.4237149Z [2023-01-11 20:47:44,842] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 123 2023-01-11T21:05:10.4237408Z [2023-01-11 20:47:44,884] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 123 2023-01-11T21:05:10.4237804Z inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.4237926Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.4238177Z [2023-01-11 20:47:50,125] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 124 2023-01-11T21:05:10.4238436Z [2023-01-11 20:47:50,175] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 124 2023-01-11T21:05:10.4238831Z inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.4238991Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.4239243Z [2023-01-11 20:47:55,237] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 125 2023-01-11T21:05:10.4239248Z 2023-01-11T21:05:10.4239254Z 2023-01-11T21:05:10.4239346Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.4239415Z import torch 2023-01-11T21:05:10.4239471Z import random 2023-01-11T21:05:10.4239584Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.4239702Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.4239708Z 2023-01-11T21:05:10.4239785Z aten = torch.ops.aten 2023-01-11T21:05:10.4239920Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.4240010Z async_compile = AsyncCompile() 2023-01-11T21:05:10.4240015Z 2023-01-11T21:05:10.4240019Z 2023-01-11T21:05:10.4240105Z async_compile.wait(globals()) 2023-01-11T21:05:10.4240207Z del async_compile 2023-01-11T21:05:10.4240212Z 2023-01-11T21:05:10.4240270Z def call(args): 2023-01-11T21:05:10.4240388Z arg0_1, arg1_1, arg2_1, arg3_1, arg4_1, arg5_1, arg6_1, arg7_1 = args 2023-01-11T21:05:10.4240458Z args.clear() 2023-01-11T21:05:10.4240725Z buf0 = aten.convolution(arg7_1, arg0_1, arg1_1, (1, 1, 1), (0, 0, 0), (2, 2, 2), False, (0, 0, 0), 1) 2023-01-11T21:05:10.4240859Z assert_size_stride(buf0, (1, 32, 55, 55, 55), (5324000, 166375, 3025, 55, 1)) 2023-01-11T21:05:10.4240927Z del arg0_1 2023-01-11T21:05:10.4240991Z del arg1_1 2023-01-11T21:05:10.4241043Z del arg7_1 2023-01-11T21:05:10.4241112Z return (buf0, ) 2023-01-11T21:05:10.4241117Z 2023-01-11T21:05:10.4241122Z 2023-01-11T21:05:10.4241198Z if __name__ == "__main__": 2023-01-11T21:05:10.4241312Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.4241433Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.4241658Z arg0_1 = rand_strided((32, 3, 1, 1, 1), (3, 1, 1, 1, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4241851Z arg1_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4242102Z arg2_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4242359Z arg3_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4242603Z arg4_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4242869Z arg5_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4243103Z arg6_1 = rand_strided((), (), device='cpu', dtype=torch.int64) 2023-01-11T21:05:10.4243409Z arg7_1 = rand_strided((1, 3, 55, 55, 55), (499125, 166375, 3025, 55, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4243644Z print_performance(lambda: call([arg0_1, arg1_1, arg2_1, arg3_1, arg4_1, arg5_1, arg6_1, arg7_1])) 2023-01-11T21:05:10.4243652Z 2023-01-11T21:05:10.4243661Z 2023-01-11T21:05:10.4243786Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.4243880Z import torch 2023-01-11T21:05:10.4243972Z import random 2023-01-11T21:05:10.4244116Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.4244323Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.4244331Z 2023-01-11T21:05:10.4244481Z aten = torch.ops.aten 2023-01-11T21:05:10.4244717Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.4244878Z async_compile = AsyncCompile() 2023-01-11T21:05:10.4244887Z 2023-01-11T21:05:10.4244894Z 2023-01-11T21:05:10.4245115Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.4245383Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.4245765Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:05:10.4245943Z float* __restrict__ out_ptr0) 2023-01-11T21:05:10.4246038Z { 2023-01-11T21:05:10.4246185Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.4246246Z { 2023-01-11T21:05:10.4246335Z #pragma omp for collapse(2) 2023-01-11T21:05:10.4246414Z for(long i0=0; i0<3; i0+=1) 2023-01-11T21:05:10.4246475Z { 2023-01-11T21:05:10.4246564Z for(long i1=0; i1<166375; i1+=1) 2023-01-11T21:05:10.4246613Z { 2023-01-11T21:05:10.4246675Z { 2023-01-11T21:05:10.4246739Z { 2023-01-11T21:05:10.4246839Z auto tmp0 = in_ptr0[i0 + (3*i1)]; 2023-01-11T21:05:10.4246935Z out_ptr0[i1 + (166375*i0)] = tmp0; 2023-01-11T21:05:10.4246998Z } 2023-01-11T21:05:10.4247047Z } 2023-01-11T21:05:10.4247108Z } 2023-01-11T21:05:10.4247171Z } 2023-01-11T21:05:10.4247229Z } 2023-01-11T21:05:10.4247287Z } 2023-01-11T21:05:10.4247371Z ''') 2023-01-11T21:05:10.4247377Z 2023-01-11T21:05:10.4247381Z 2023-01-11T21:05:10.4247521Z async_compile.wait(globals()) 2023-01-11T21:05:10.4247581Z del async_compile 2023-01-11T21:05:10.4247598Z 2023-01-11T21:05:10.4247654Z def call(args): 2023-01-11T21:05:10.4247773Z arg0_1, arg1_1, arg2_1, arg3_1, arg4_1, arg5_1, arg6_1, arg7_1 = args 2023-01-11T21:05:10.4247842Z args.clear() 2023-01-11T21:05:10.4248080Z buf0 = empty_strided((1, 3, 55, 55, 55), (499125, 166375, 3025, 55, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4248211Z kernel_cpp_0(c_void_p(arg7_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:05:10.4248276Z del arg7_1 2023-01-11T21:05:10.4248416Z buf1 = aten.convolution(buf0, arg0_1, arg1_1, (1, 1, 1), (0, 0, 0), (2, 2, 2), False, (0, 0, 0), 1) 2023-01-11T21:05:10.4248517Z assert_size_stride(buf1, (1, 32, 55, 55, 55), (5324000, 166375, 3025, 55, 1)) 2023-01-11T21:05:10.4248585Z del arg0_1 2023-01-11T21:05:10.4248650Z del arg1_1 2023-01-11T21:05:10.4248718Z return (buf1, ) 2023-01-11T21:05:10.4248723Z 2023-01-11T21:05:10.4248727Z 2023-01-11T21:05:10.4248802Z if __name__ == "__main__": 2023-01-11T21:05:10.4248915Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.4249035Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.4249250Z arg0_1 = rand_strided((32, 3, 1, 1, 1), (3, 1, 1, 1, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4249431Z arg1_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4249621Z arg2_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4249809Z arg3_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4249994Z arg4_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4250183Z arg5_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4250359Z arg6_1 = rand_strided((), (), device='cpu', dtype=torch.int64) 2023-01-11T21:05:10.4250586Z arg7_1 = rand_strided((1, 3, 55, 55, 55), (499125, 1, 9075, 165, 3), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4250739Z print_performance(lambda: call([arg0_1, arg1_1, arg2_1, arg3_1, arg4_1, arg5_1, arg6_1, arg7_1])) 2023-01-11T21:05:10.4250745Z 2023-01-11T21:05:10.4250749Z 2023-01-11T21:05:10.4250842Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.4250898Z import torch 2023-01-11T21:05:10.4250966Z import random 2023-01-11T21:05:10.4251079Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.4251197Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.4251202Z 2023-01-11T21:05:10.4251277Z aten = torch.ops.aten 2023-01-11T21:05:10.4251408Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.4251535Z async_compile = AsyncCompile() 2023-01-11T21:05:10.4251540Z 2023-01-11T21:05:10.4251544Z 2023-01-11T21:05:10.4251618Z async_compile.wait(globals()) 2023-01-11T21:05:10.4251687Z del async_compile 2023-01-11T21:05:10.4251692Z 2023-01-11T21:05:10.4251762Z def call(args): 2023-01-11T21:05:10.4251878Z arg0_1, arg1_1, arg2_1, arg3_1, arg4_1, arg5_1, arg6_1, arg7_1 = args 2023-01-11T21:05:10.4251951Z args.clear() 2023-01-11T21:05:10.4252089Z buf0 = aten.convolution(arg7_1, arg0_1, arg1_1, (1, 1, 1), (0, 0, 0), (2, 2, 2), False, (0, 0, 0), 4) 2023-01-11T21:05:10.4252204Z assert_size_stride(buf0, (1, 128, 55, 55, 55), (21296000, 166375, 3025, 55, 1)) 2023-01-11T21:05:10.4252269Z del arg0_1 2023-01-11T21:05:10.4252322Z del arg1_1 2023-01-11T21:05:10.4252386Z del arg7_1 2023-01-11T21:05:10.4252455Z return (buf0, ) 2023-01-11T21:05:10.4252460Z 2023-01-11T21:05:10.4252464Z 2023-01-11T21:05:10.4252537Z if __name__ == "__main__": 2023-01-11T21:05:10.4252649Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.4252772Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.4252993Z arg0_1 = rand_strided((128, 3, 1, 1, 1), (3, 1, 1, 1, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4253204Z arg1_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4253397Z arg2_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4253585Z arg3_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4253773Z arg4_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4253961Z arg5_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4254138Z arg6_1 = rand_strided((), (), device='cpu', dtype=torch.int64) 2023-01-11T21:05:10.4254370Z arg7_1 = rand_strided((1, 12, 55, 55, 55), (1996500, 166375, 3025, 55, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4254526Z print_performance(lambda: call([arg0_1, arg1_1, arg2_1, arg3_1, arg4_1, arg5_1, arg6_1, arg7_1])) 2023-01-11T21:05:10.4254531Z 2023-01-11T21:05:10.4254535Z 2023-01-11T21:05:10.4254628Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.4254685Z import torch 2023-01-11T21:05:10.4254753Z import random 2023-01-11T21:05:10.4254867Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.4254985Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.4254991Z 2023-01-11T21:05:10.4255066Z aten = torch.ops.aten 2023-01-11T21:05:10.4255198Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.4255290Z async_compile = AsyncCompile() 2023-01-11T21:05:10.4255294Z 2023-01-11T21:05:10.4255298Z 2023-01-11T21:05:10.4255430Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.4255622Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.4255739Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:05:10.4255838Z float* __restrict__ out_ptr0) 2023-01-11T21:05:10.4255899Z { 2023-01-11T21:05:10.4255994Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.4256053Z { 2023-01-11T21:05:10.4256130Z #pragma omp for 2023-01-11T21:05:10.4256198Z for(long i0=0; i0<12; i0+=1) 2023-01-11T21:05:10.4256259Z { 2023-01-11T21:05:10.4256336Z #pragma GCC ivdep 2023-01-11T21:05:10.4256424Z for(long i1=0; i1<166375; i1+=1) 2023-01-11T21:05:10.4256486Z { 2023-01-11T21:05:10.4256550Z { 2023-01-11T21:05:10.4256613Z { 2023-01-11T21:05:10.4256702Z auto tmp0 = in_ptr0[i0 + (12*i1)]; 2023-01-11T21:05:10.4256798Z out_ptr0[i1 + (166375*i0)] = tmp0; 2023-01-11T21:05:10.4256862Z } 2023-01-11T21:05:10.4256922Z } 2023-01-11T21:05:10.4256983Z } 2023-01-11T21:05:10.4257076Z } 2023-01-11T21:05:10.4257124Z } 2023-01-11T21:05:10.4257181Z } 2023-01-11T21:05:10.4257258Z ''') 2023-01-11T21:05:10.4257264Z 2023-01-11T21:05:10.4257268Z 2023-01-11T21:05:10.4257354Z async_compile.wait(globals()) 2023-01-11T21:05:10.4257425Z del async_compile 2023-01-11T21:05:10.4257431Z 2023-01-11T21:05:10.4257499Z def call(args): 2023-01-11T21:05:10.4257616Z arg0_1, arg1_1, arg2_1, arg3_1, arg4_1, arg5_1, arg6_1, arg7_1 = args 2023-01-11T21:05:10.4257685Z args.clear() 2023-01-11T21:05:10.4257908Z buf0 = empty_strided((1, 12, 55, 55, 55), (1996500, 166375, 3025, 55, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4258039Z kernel_cpp_0(c_void_p(arg7_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:05:10.4258104Z del arg7_1 2023-01-11T21:05:10.4258245Z buf1 = aten.convolution(buf0, arg0_1, arg1_1, (1, 1, 1), (0, 0, 0), (2, 2, 2), False, (0, 0, 0), 4) 2023-01-11T21:05:10.4258360Z assert_size_stride(buf1, (1, 128, 55, 55, 55), (21296000, 166375, 3025, 55, 1)) 2023-01-11T21:05:10.4258428Z del arg0_1 2023-01-11T21:05:10.4258590Z del arg1_1 2023-01-11T21:05:10.4258649Z return (buf1, ) 2023-01-11T21:05:10.4258665Z 2023-01-11T21:05:10.4258669Z 2023-01-11T21:05:10.4258781Z if __name__ == "__main__": 2023-01-11T21:05:10.4258896Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.4259017Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.4259235Z arg0_1 = rand_strided((128, 3, 1, 1, 1), (3, 1, 1, 1, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4259427Z arg1_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4259617Z arg2_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4259806Z arg3_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4259980Z arg4_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4260168Z arg5_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4260345Z arg6_1 = rand_strided((), (), device='cpu', dtype=torch.int64) 2023-01-11T21:05:10.4260578Z arg7_1 = rand_strided((1, 12, 55, 55, 55), (1996500, 1, 36300, 660, 12), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4260730Z print_performance(lambda: call([arg0_1, arg1_1, arg2_1, arg3_1, arg4_1, arg5_1, arg6_1, arg7_1])) 2023-01-11T21:05:10.4260735Z 2023-01-11T21:05:10.4260739Z 2023-01-11T21:05:10.4260831Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.4260898Z import torch 2023-01-11T21:05:10.4260967Z import random 2023-01-11T21:05:10.4261079Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.4261187Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.4261192Z 2023-01-11T21:05:10.4261267Z aten = torch.ops.aten 2023-01-11T21:05:10.4261396Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.4261486Z async_compile = AsyncCompile() 2023-01-11T21:05:10.4261493Z 2023-01-11T21:05:10.4261497Z 2023-01-11T21:05:10.4261584Z async_compile.wait(globals()) 2023-01-11T21:05:10.4261654Z del async_compile 2023-01-11T21:05:10.4261659Z 2023-01-11T21:05:10.4261728Z def call(args): 2023-01-11T21:05:10.4261846Z arg0_1, arg1_1, arg2_1, arg3_1, arg4_1, arg5_1, arg6_1, arg7_1 = args 2023-01-11T21:05:10.4261903Z args.clear() 2023-01-11T21:05:10.4262042Z buf0 = aten.convolution(arg7_1, arg0_1, arg1_1, (1, 1, 1), (0, 0, 0), (1, 1, 1), False, (0, 0, 0), 1) 2023-01-11T21:05:10.4262156Z assert_size_stride(buf0, (1, 32, 53, 53, 53), (4764064, 148877, 2809, 53, 1)) 2023-01-11T21:05:10.4262222Z del arg0_1 2023-01-11T21:05:10.4262287Z del arg1_1 2023-01-11T21:05:10.4262351Z del arg7_1 2023-01-11T21:05:10.4262419Z return (buf0, ) 2023-01-11T21:05:10.4262425Z 2023-01-11T21:05:10.4262429Z 2023-01-11T21:05:10.4262490Z if __name__ == "__main__": 2023-01-11T21:05:10.4262603Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.4262753Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.4262969Z arg0_1 = rand_strided((32, 3, 3, 3, 3), (81, 27, 9, 3, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4263161Z arg1_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4263348Z arg2_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4263533Z arg3_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4263715Z arg4_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4263887Z arg5_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4264063Z arg6_1 = rand_strided((), (), device='cpu', dtype=torch.int64) 2023-01-11T21:05:10.4264294Z arg7_1 = rand_strided((1, 3, 55, 55, 55), (499125, 166375, 3025, 55, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4264446Z print_performance(lambda: call([arg0_1, arg1_1, arg2_1, arg3_1, arg4_1, arg5_1, arg6_1, arg7_1])) 2023-01-11T21:05:10.4264721Z [2023-01-11 20:47:55,280] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 125 2023-01-11T21:05:10.4265152Z inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.4265279Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.4265535Z [2023-01-11 20:47:56,695] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 126 2023-01-11T21:05:10.4265796Z [2023-01-11 20:47:56,746] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 126 2023-01-11T21:05:10.4266195Z inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.4266321Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.4266561Z [2023-01-11 20:47:58,432] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 127 2023-01-11T21:05:10.4266820Z [2023-01-11 20:47:58,475] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 127 2023-01-11T21:05:10.4267212Z inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.4267337Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.4267592Z [2023-01-11 20:48:03,314] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 128 2023-01-11T21:05:10.4267855Z [2023-01-11 20:48:03,366] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 128 2023-01-11T21:05:10.4268249Z inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.4268369Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.4268621Z [2023-01-11 20:48:08,168] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 129 2023-01-11T21:05:10.4268879Z [2023-01-11 20:48:08,211] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 129 2023-01-11T21:05:10.4269307Z inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.4269416Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.4269666Z [2023-01-11 20:48:09,815] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 130 2023-01-11T21:05:10.4269671Z 2023-01-11T21:05:10.4269675Z 2023-01-11T21:05:10.4269767Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.4269836Z import torch 2023-01-11T21:05:10.4269903Z import random 2023-01-11T21:05:10.4270017Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.4270139Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.4270147Z 2023-01-11T21:05:10.4270222Z aten = torch.ops.aten 2023-01-11T21:05:10.4270342Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.4270461Z async_compile = AsyncCompile() 2023-01-11T21:05:10.4270467Z 2023-01-11T21:05:10.4270472Z 2023-01-11T21:05:10.4270606Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.4270808Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.4270932Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:05:10.4271031Z float* __restrict__ out_ptr0) 2023-01-11T21:05:10.4271089Z { 2023-01-11T21:05:10.4271186Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.4271233Z { 2023-01-11T21:05:10.4271322Z #pragma omp for collapse(2) 2023-01-11T21:05:10.4271401Z for(long i0=0; i0<3; i0+=1) 2023-01-11T21:05:10.4271462Z { 2023-01-11T21:05:10.4271552Z for(long i1=0; i1<166375; i1+=1) 2023-01-11T21:05:10.4271614Z { 2023-01-11T21:05:10.4271676Z { 2023-01-11T21:05:10.4271728Z { 2023-01-11T21:05:10.4271831Z auto tmp0 = in_ptr0[i0 + (3*i1)]; 2023-01-11T21:05:10.4271928Z out_ptr0[i1 + (166375*i0)] = tmp0; 2023-01-11T21:05:10.4271992Z } 2023-01-11T21:05:10.4272053Z } 2023-01-11T21:05:10.4272113Z } 2023-01-11T21:05:10.4272173Z } 2023-01-11T21:05:10.4272219Z } 2023-01-11T21:05:10.4272276Z } 2023-01-11T21:05:10.4272354Z ''') 2023-01-11T21:05:10.4272358Z 2023-01-11T21:05:10.4272362Z 2023-01-11T21:05:10.4272449Z async_compile.wait(globals()) 2023-01-11T21:05:10.4272519Z del async_compile 2023-01-11T21:05:10.4272524Z 2023-01-11T21:05:10.4272590Z def call(args): 2023-01-11T21:05:10.4272710Z arg0_1, arg1_1, arg2_1, arg3_1, arg4_1, arg5_1, arg6_1, arg7_1 = args 2023-01-11T21:05:10.4272768Z args.clear() 2023-01-11T21:05:10.4273006Z buf0 = empty_strided((1, 3, 55, 55, 55), (499125, 166375, 3025, 55, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4273138Z kernel_cpp_0(c_void_p(arg7_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:05:10.4273204Z del arg7_1 2023-01-11T21:05:10.4273342Z buf1 = aten.convolution(buf0, arg0_1, arg1_1, (1, 1, 1), (0, 0, 0), (1, 1, 1), False, (0, 0, 0), 1) 2023-01-11T21:05:10.4273456Z assert_size_stride(buf1, (1, 32, 53, 53, 53), (4764064, 148877, 2809, 53, 1)) 2023-01-11T21:05:10.4273521Z del arg0_1 2023-01-11T21:05:10.4273573Z del arg1_1 2023-01-11T21:05:10.4273642Z return (buf1, ) 2023-01-11T21:05:10.4273648Z 2023-01-11T21:05:10.4273652Z 2023-01-11T21:05:10.4273726Z if __name__ == "__main__": 2023-01-11T21:05:10.4273837Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.4273958Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.4274175Z arg0_1 = rand_strided((32, 3, 3, 3, 3), (81, 27, 9, 3, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4274443Z arg1_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4274635Z arg2_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4274811Z arg3_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4274995Z arg4_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4275177Z arg5_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4275354Z arg6_1 = rand_strided((), (), device='cpu', dtype=torch.int64) 2023-01-11T21:05:10.4275582Z arg7_1 = rand_strided((1, 3, 55, 55, 55), (499125, 1, 9075, 165, 3), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4275736Z print_performance(lambda: call([arg0_1, arg1_1, arg2_1, arg3_1, arg4_1, arg5_1, arg6_1, arg7_1])) 2023-01-11T21:05:10.4275741Z 2023-01-11T21:05:10.4275745Z 2023-01-11T21:05:10.4275844Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.4275914Z import torch 2023-01-11T21:05:10.4275982Z import random 2023-01-11T21:05:10.4276084Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.4276233Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.4276238Z 2023-01-11T21:05:10.4276316Z aten = torch.ops.aten 2023-01-11T21:05:10.4276448Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.4276537Z async_compile = AsyncCompile() 2023-01-11T21:05:10.4276542Z 2023-01-11T21:05:10.4276546Z 2023-01-11T21:05:10.4276631Z async_compile.wait(globals()) 2023-01-11T21:05:10.4276701Z del async_compile 2023-01-11T21:05:10.4276705Z 2023-01-11T21:05:10.4276773Z def call(args): 2023-01-11T21:05:10.4276877Z arg0_1, arg1_1, arg2_1, arg3_1, arg4_1, arg5_1, arg6_1, arg7_1 = args 2023-01-11T21:05:10.4276946Z args.clear() 2023-01-11T21:05:10.4277086Z buf0 = aten.convolution(arg7_1, arg0_1, arg1_1, (1, 1, 1), (0, 0, 0), (1, 1, 1), False, (0, 0, 0), 4) 2023-01-11T21:05:10.4277204Z assert_size_stride(buf0, (1, 128, 53, 53, 53), (19056256, 148877, 2809, 53, 1)) 2023-01-11T21:05:10.4277270Z del arg0_1 2023-01-11T21:05:10.4277335Z del arg1_1 2023-01-11T21:05:10.4277399Z del arg7_1 2023-01-11T21:05:10.4277457Z return (buf0, ) 2023-01-11T21:05:10.4277462Z 2023-01-11T21:05:10.4277478Z 2023-01-11T21:05:10.4277539Z if __name__ == "__main__": 2023-01-11T21:05:10.4277651Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.4277771Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.4277991Z arg0_1 = rand_strided((128, 3, 3, 3, 3), (81, 27, 9, 3, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4278184Z arg1_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4278375Z arg2_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4278563Z arg3_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4278738Z arg4_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4278924Z arg5_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4279102Z arg6_1 = rand_strided((), (), device='cpu', dtype=torch.int64) 2023-01-11T21:05:10.4279336Z arg7_1 = rand_strided((1, 12, 55, 55, 55), (1996500, 166375, 3025, 55, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4350904Z print_performance(lambda: call([arg0_1, arg1_1, arg2_1, arg3_1, arg4_1, arg5_1, arg6_1, arg7_1])) 2023-01-11T21:05:10.4350928Z 2023-01-11T21:05:10.4350933Z 2023-01-11T21:05:10.4351132Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.4351197Z import torch 2023-01-11T21:05:10.4351261Z import random 2023-01-11T21:05:10.4351371Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.4351489Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.4351494Z 2023-01-11T21:05:10.4351774Z aten = torch.ops.aten 2023-01-11T21:05:10.4351904Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.4351988Z async_compile = AsyncCompile() 2023-01-11T21:05:10.4351994Z 2023-01-11T21:05:10.4352004Z 2023-01-11T21:05:10.4352201Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.4352398Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.4352511Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:05:10.4352600Z float* __restrict__ out_ptr0) 2023-01-11T21:05:10.4352652Z { 2023-01-11T21:05:10.4352744Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.4352797Z { 2023-01-11T21:05:10.4352866Z #pragma omp for 2023-01-11T21:05:10.4352940Z for(long i0=0; i0<12; i0+=1) 2023-01-11T21:05:10.4352995Z { 2023-01-11T21:05:10.4353061Z #pragma GCC ivdep 2023-01-11T21:05:10.4353142Z for(long i1=0; i1<166375; i1+=1) 2023-01-11T21:05:10.4353201Z { 2023-01-11T21:05:10.4353258Z { 2023-01-11T21:05:10.4353314Z { 2023-01-11T21:05:10.4353410Z auto tmp0 = in_ptr0[i0 + (12*i1)]; 2023-01-11T21:05:10.4353556Z out_ptr0[i1 + (166375*i0)] = tmp0; 2023-01-11T21:05:10.4353610Z } 2023-01-11T21:05:10.4353664Z } 2023-01-11T21:05:10.4353719Z } 2023-01-11T21:05:10.4353774Z } 2023-01-11T21:05:10.4353829Z } 2023-01-11T21:05:10.4353879Z } 2023-01-11T21:05:10.4353947Z ''') 2023-01-11T21:05:10.4353952Z 2023-01-11T21:05:10.4353962Z 2023-01-11T21:05:10.4354039Z async_compile.wait(globals()) 2023-01-11T21:05:10.4354103Z del async_compile 2023-01-11T21:05:10.4354108Z 2023-01-11T21:05:10.4354169Z def call(args): 2023-01-11T21:05:10.4354280Z arg0_1, arg1_1, arg2_1, arg3_1, arg4_1, arg5_1, arg6_1, arg7_1 = args 2023-01-11T21:05:10.4354344Z args.clear() 2023-01-11T21:05:10.4354581Z buf0 = empty_strided((1, 12, 55, 55, 55), (1996500, 166375, 3025, 55, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4354707Z kernel_cpp_0(c_void_p(arg7_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:05:10.4354762Z del arg7_1 2023-01-11T21:05:10.4354902Z buf1 = aten.convolution(buf0, arg0_1, arg1_1, (1, 1, 1), (0, 0, 0), (1, 1, 1), False, (0, 0, 0), 4) 2023-01-11T21:05:10.4355010Z assert_size_stride(buf1, (1, 128, 53, 53, 53), (19056256, 148877, 2809, 53, 1)) 2023-01-11T21:05:10.4355070Z del arg0_1 2023-01-11T21:05:10.4355128Z del arg1_1 2023-01-11T21:05:10.4355185Z return (buf1, ) 2023-01-11T21:05:10.4355196Z 2023-01-11T21:05:10.4355200Z 2023-01-11T21:05:10.4355261Z if __name__ == "__main__": 2023-01-11T21:05:10.4355366Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.4355480Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.4355694Z arg0_1 = rand_strided((128, 3, 3, 3, 3), (81, 27, 9, 3, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4355886Z arg1_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4356073Z arg2_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4356254Z arg3_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4356434Z arg4_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4356605Z arg5_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4356776Z arg6_1 = rand_strided((), (), device='cpu', dtype=torch.int64) 2023-01-11T21:05:10.4357001Z arg7_1 = rand_strided((1, 12, 55, 55, 55), (1996500, 1, 36300, 660, 12), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4357148Z print_performance(lambda: call([arg0_1, arg1_1, arg2_1, arg3_1, arg4_1, arg5_1, arg6_1, arg7_1])) 2023-01-11T21:05:10.4357154Z 2023-01-11T21:05:10.4357158Z 2023-01-11T21:05:10.4357275Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.4357336Z import torch 2023-01-11T21:05:10.4357398Z import random 2023-01-11T21:05:10.4357505Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.4357614Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.4357619Z 2023-01-11T21:05:10.4357688Z aten = torch.ops.aten 2023-01-11T21:05:10.4357814Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.4357897Z async_compile = AsyncCompile() 2023-01-11T21:05:10.4357903Z 2023-01-11T21:05:10.4357907Z 2023-01-11T21:05:10.4357985Z async_compile.wait(globals()) 2023-01-11T21:05:10.4358049Z del async_compile 2023-01-11T21:05:10.4358054Z 2023-01-11T21:05:10.4358115Z def call(args): 2023-01-11T21:05:10.4358222Z arg0_1, arg1_1, arg2_1, arg3_1, arg4_1, arg5_1, arg6_1, arg7_1 = args 2023-01-11T21:05:10.4358278Z args.clear() 2023-01-11T21:05:10.4358413Z buf0 = aten.convolution(arg7_1, arg0_1, arg1_1, (1, 1, 1), (0, 0, 0), (2, 2, 2), False, (0, 0, 0), 1) 2023-01-11T21:05:10.4358523Z assert_size_stride(buf0, (1, 32, 51, 51, 51), (4244832, 132651, 2601, 51, 1)) 2023-01-11T21:05:10.4358582Z del arg0_1 2023-01-11T21:05:10.4358642Z del arg1_1 2023-01-11T21:05:10.4358737Z del arg7_1 2023-01-11T21:05:10.4358803Z return (buf0, ) 2023-01-11T21:05:10.4358808Z 2023-01-11T21:05:10.4358812Z 2023-01-11T21:05:10.4358873Z if __name__ == "__main__": 2023-01-11T21:05:10.4358978Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.4359091Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.4359303Z arg0_1 = rand_strided((32, 3, 3, 3, 3), (81, 27, 9, 3, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4359491Z arg1_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4359672Z arg2_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4359850Z arg3_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4360027Z arg4_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4360196Z arg5_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4360370Z arg6_1 = rand_strided((), (), device='cpu', dtype=torch.int64) 2023-01-11T21:05:10.4360749Z arg7_1 = rand_strided((1, 3, 55, 55, 55), (499125, 166375, 3025, 55, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4360913Z print_performance(lambda: call([arg0_1, arg1_1, arg2_1, arg3_1, arg4_1, arg5_1, arg6_1, arg7_1])) 2023-01-11T21:05:10.4360919Z 2023-01-11T21:05:10.4360923Z 2023-01-11T21:05:10.4361010Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.4361072Z import torch 2023-01-11T21:05:10.4361134Z import random 2023-01-11T21:05:10.4361244Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.4361350Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.4361362Z 2023-01-11T21:05:10.4361425Z aten = torch.ops.aten 2023-01-11T21:05:10.4361555Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.4361639Z async_compile = AsyncCompile() 2023-01-11T21:05:10.4361644Z 2023-01-11T21:05:10.4361649Z 2023-01-11T21:05:10.4361781Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.4361978Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.4362093Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:05:10.4362184Z float* __restrict__ out_ptr0) 2023-01-11T21:05:10.4362232Z { 2023-01-11T21:05:10.4362325Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.4362379Z { 2023-01-11T21:05:10.4362462Z #pragma omp for collapse(2) 2023-01-11T21:05:10.4362534Z for(long i0=0; i0<3; i0+=1) 2023-01-11T21:05:10.4362589Z { 2023-01-11T21:05:10.4362672Z for(long i1=0; i1<166375; i1+=1) 2023-01-11T21:05:10.4362722Z { 2023-01-11T21:05:10.4362831Z { 2023-01-11T21:05:10.4362890Z { 2023-01-11T21:05:10.4362984Z auto tmp0 = in_ptr0[i0 + (3*i1)]; 2023-01-11T21:05:10.4363078Z out_ptr0[i1 + (166375*i0)] = tmp0; 2023-01-11T21:05:10.4363138Z } 2023-01-11T21:05:10.4363197Z } 2023-01-11T21:05:10.4363245Z } 2023-01-11T21:05:10.4363299Z } 2023-01-11T21:05:10.4363352Z } 2023-01-11T21:05:10.4363404Z } 2023-01-11T21:05:10.4363476Z ''') 2023-01-11T21:05:10.4363482Z 2023-01-11T21:05:10.4363486Z 2023-01-11T21:05:10.4363570Z async_compile.wait(globals()) 2023-01-11T21:05:10.4363634Z del async_compile 2023-01-11T21:05:10.4363639Z 2023-01-11T21:05:10.4363695Z def call(args): 2023-01-11T21:05:10.4363804Z arg0_1, arg1_1, arg2_1, arg3_1, arg4_1, arg5_1, arg6_1, arg7_1 = args 2023-01-11T21:05:10.4363866Z args.clear() 2023-01-11T21:05:10.4364095Z buf0 = empty_strided((1, 3, 55, 55, 55), (499125, 166375, 3025, 55, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4364225Z kernel_cpp_0(c_void_p(arg7_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:05:10.4364287Z del arg7_1 2023-01-11T21:05:10.4364456Z buf1 = aten.convolution(buf0, arg0_1, arg1_1, (1, 1, 1), (0, 0, 0), (2, 2, 2), False, (0, 0, 0), 1) 2023-01-11T21:05:10.4364566Z assert_size_stride(buf1, (1, 32, 51, 51, 51), (4244832, 132651, 2601, 51, 1)) 2023-01-11T21:05:10.4364620Z del arg0_1 2023-01-11T21:05:10.4364678Z del arg1_1 2023-01-11T21:05:10.4364740Z return (buf1, ) 2023-01-11T21:05:10.4364745Z 2023-01-11T21:05:10.4364749Z 2023-01-11T21:05:10.4364816Z if __name__ == "__main__": 2023-01-11T21:05:10.4364923Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.4365038Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.4365249Z arg0_1 = rand_strided((32, 3, 3, 3, 3), (81, 27, 9, 3, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4365436Z arg1_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4365614Z arg2_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4365793Z arg3_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4365971Z arg4_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4366148Z arg5_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4366319Z arg6_1 = rand_strided((), (), device='cpu', dtype=torch.int64) 2023-01-11T21:05:10.4366541Z arg7_1 = rand_strided((1, 3, 55, 55, 55), (499125, 1, 9075, 165, 3), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4366688Z print_performance(lambda: call([arg0_1, arg1_1, arg2_1, arg3_1, arg4_1, arg5_1, arg6_1, arg7_1])) 2023-01-11T21:05:10.4366952Z [2023-01-11 20:48:09,868] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 130 2023-01-11T21:05:10.4367344Z inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.4367464Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.4367712Z [2023-01-11 20:48:12,070] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 131 2023-01-11T21:05:10.4367969Z [2023-01-11 20:48:12,112] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 131 2023-01-11T21:05:10.4368359Z inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.4368510Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.4368761Z [2023-01-11 20:48:17,628] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 132 2023-01-11T21:05:10.4369018Z [2023-01-11 20:48:17,680] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 132 2023-01-11T21:05:10.4369406Z inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.4369522Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.4369767Z [2023-01-11 20:48:22,115] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 133 2023-01-11T21:05:10.4370019Z [2023-01-11 20:48:22,156] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 133 2023-01-11T21:05:10.4370456Z inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.4370577Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.4370825Z [2023-01-11 20:48:23,720] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 134 2023-01-11T21:05:10.4371077Z [2023-01-11 20:48:23,769] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 134 2023-01-11T21:05:10.4371465Z inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.4371585Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.4371829Z [2023-01-11 20:48:25,490] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 135 2023-01-11T21:05:10.4371834Z 2023-01-11T21:05:10.4371839Z 2023-01-11T21:05:10.4371924Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.4371985Z import torch 2023-01-11T21:05:10.4372046Z import random 2023-01-11T21:05:10.4372149Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.4372261Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.4372266Z 2023-01-11T21:05:10.4372336Z aten = torch.ops.aten 2023-01-11T21:05:10.4372461Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.4372547Z async_compile = AsyncCompile() 2023-01-11T21:05:10.4372554Z 2023-01-11T21:05:10.4372558Z 2023-01-11T21:05:10.4372639Z async_compile.wait(globals()) 2023-01-11T21:05:10.4372701Z del async_compile 2023-01-11T21:05:10.4372706Z 2023-01-11T21:05:10.4372770Z def call(args): 2023-01-11T21:05:10.4372874Z arg0_1, arg1_1, arg2_1, arg3_1, arg4_1, arg5_1, arg6_1, arg7_1 = args 2023-01-11T21:05:10.4372937Z args.clear() 2023-01-11T21:05:10.4373068Z buf0 = aten.convolution(arg7_1, arg0_1, arg1_1, (1, 1, 1), (0, 0, 0), (2, 2, 2), False, (0, 0, 0), 4) 2023-01-11T21:05:10.4373177Z assert_size_stride(buf0, (1, 128, 51, 51, 51), (16979328, 132651, 2601, 51, 1)) 2023-01-11T21:05:10.4373238Z del arg0_1 2023-01-11T21:05:10.4373295Z del arg1_1 2023-01-11T21:05:10.4373351Z del arg7_1 2023-01-11T21:05:10.4373407Z return (buf0, ) 2023-01-11T21:05:10.4373412Z 2023-01-11T21:05:10.4373425Z 2023-01-11T21:05:10.4373486Z if __name__ == "__main__": 2023-01-11T21:05:10.4373592Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.4373738Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.4373956Z arg0_1 = rand_strided((128, 3, 3, 3, 3), (81, 27, 9, 3, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4374148Z arg1_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4374334Z arg2_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4374513Z arg3_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4374688Z arg4_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4374865Z arg5_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4375035Z arg6_1 = rand_strided((), (), device='cpu', dtype=torch.int64) 2023-01-11T21:05:10.4375265Z arg7_1 = rand_strided((1, 12, 55, 55, 55), (1996500, 166375, 3025, 55, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4375411Z print_performance(lambda: call([arg0_1, arg1_1, arg2_1, arg3_1, arg4_1, arg5_1, arg6_1, arg7_1])) 2023-01-11T21:05:10.4375418Z 2023-01-11T21:05:10.4375423Z 2023-01-11T21:05:10.4375507Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.4375599Z import torch 2023-01-11T21:05:10.4375662Z import random 2023-01-11T21:05:10.4375764Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.4375876Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.4375881Z 2023-01-11T21:05:10.4375950Z aten = torch.ops.aten 2023-01-11T21:05:10.4376075Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.4376159Z async_compile = AsyncCompile() 2023-01-11T21:05:10.4376164Z 2023-01-11T21:05:10.4376167Z 2023-01-11T21:05:10.4376295Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.4376490Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.4376601Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:05:10.4376695Z float* __restrict__ out_ptr0) 2023-01-11T21:05:10.4376743Z { 2023-01-11T21:05:10.4376830Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.4376884Z { 2023-01-11T21:05:10.4376954Z #pragma omp for 2023-01-11T21:05:10.4377030Z for(long i0=0; i0<12; i0+=1) 2023-01-11T21:05:10.4377085Z { 2023-01-11T21:05:10.4377151Z #pragma GCC ivdep 2023-01-11T21:05:10.4377234Z for(long i1=0; i1<166375; i1+=1) 2023-01-11T21:05:10.4377289Z { 2023-01-11T21:05:10.4377345Z { 2023-01-11T21:05:10.4377402Z { 2023-01-11T21:05:10.4377497Z auto tmp0 = in_ptr0[i0 + (12*i1)]; 2023-01-11T21:05:10.4377587Z out_ptr0[i1 + (166375*i0)] = tmp0; 2023-01-11T21:05:10.4377640Z } 2023-01-11T21:05:10.4377695Z } 2023-01-11T21:05:10.4377749Z } 2023-01-11T21:05:10.4377801Z } 2023-01-11T21:05:10.4377857Z } 2023-01-11T21:05:10.4377910Z } 2023-01-11T21:05:10.4377980Z ''') 2023-01-11T21:05:10.4377985Z 2023-01-11T21:05:10.4377989Z 2023-01-11T21:05:10.4378065Z async_compile.wait(globals()) 2023-01-11T21:05:10.4378129Z del async_compile 2023-01-11T21:05:10.4378134Z 2023-01-11T21:05:10.4378197Z def call(args): 2023-01-11T21:05:10.4378305Z arg0_1, arg1_1, arg2_1, arg3_1, arg4_1, arg5_1, arg6_1, arg7_1 = args 2023-01-11T21:05:10.4378368Z args.clear() 2023-01-11T21:05:10.4378689Z buf0 = empty_strided((1, 12, 55, 55, 55), (1996500, 166375, 3025, 55, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4378817Z kernel_cpp_0(c_void_p(arg7_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:05:10.4378877Z del arg7_1 2023-01-11T21:05:10.4379003Z buf1 = aten.convolution(buf0, arg0_1, arg1_1, (1, 1, 1), (0, 0, 0), (2, 2, 2), False, (0, 0, 0), 4) 2023-01-11T21:05:10.4379111Z assert_size_stride(buf1, (1, 128, 51, 51, 51), (16979328, 132651, 2601, 51, 1)) 2023-01-11T21:05:10.4379207Z del arg0_1 2023-01-11T21:05:10.4379265Z del arg1_1 2023-01-11T21:05:10.4379328Z return (buf1, ) 2023-01-11T21:05:10.4379333Z 2023-01-11T21:05:10.4379337Z 2023-01-11T21:05:10.4379406Z if __name__ == "__main__": 2023-01-11T21:05:10.4379513Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.4379621Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.4379836Z arg0_1 = rand_strided((128, 3, 3, 3, 3), (81, 27, 9, 3, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4380022Z arg1_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4380205Z arg2_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4380385Z arg3_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4380563Z arg4_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4380741Z arg5_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4380912Z arg6_1 = rand_strided((), (), device='cpu', dtype=torch.int64) 2023-01-11T21:05:10.4381158Z arg7_1 = rand_strided((1, 12, 55, 55, 55), (1996500, 1, 36300, 660, 12), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4381307Z print_performance(lambda: call([arg0_1, arg1_1, arg2_1, arg3_1, arg4_1, arg5_1, arg6_1, arg7_1])) 2023-01-11T21:05:10.4381314Z 2023-01-11T21:05:10.4381318Z 2023-01-11T21:05:10.4381406Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.4381468Z import torch 2023-01-11T21:05:10.4381529Z import random 2023-01-11T21:05:10.4381636Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.4381748Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.4381753Z 2023-01-11T21:05:10.4381823Z aten = torch.ops.aten 2023-01-11T21:05:10.4381942Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.4382024Z async_compile = AsyncCompile() 2023-01-11T21:05:10.4382031Z 2023-01-11T21:05:10.4382035Z 2023-01-11T21:05:10.4382115Z async_compile.wait(globals()) 2023-01-11T21:05:10.4382178Z del async_compile 2023-01-11T21:05:10.4382183Z 2023-01-11T21:05:10.4382244Z def call(args): 2023-01-11T21:05:10.4382355Z arg0_1, arg1_1, arg2_1, arg3_1, arg4_1, arg5_1, arg6_1, arg7_1 = args 2023-01-11T21:05:10.4382418Z args.clear() 2023-01-11T21:05:10.4382550Z buf0 = aten.convolution(arg7_1, arg0_1, arg1_1, (1, 1, 1), (0, 0, 0), (1, 1, 1), False, (0, 0, 0), 1) 2023-01-11T21:05:10.4382658Z assert_size_stride(buf0, (1, 32, 55, 55, 55), (5324000, 166375, 3025, 55, 1)) 2023-01-11T21:05:10.4382711Z del arg0_1 2023-01-11T21:05:10.4382769Z del arg1_1 2023-01-11T21:05:10.4382825Z del arg7_1 2023-01-11T21:05:10.4382887Z return (buf0, ) 2023-01-11T21:05:10.4382892Z 2023-01-11T21:05:10.4382897Z 2023-01-11T21:05:10.4382964Z if __name__ == "__main__": 2023-01-11T21:05:10.4383068Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.4383183Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.4383387Z arg0_1 = rand_strided((32, 3, 1, 1, 1), (3, 1, 1, 1, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4383572Z arg1_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4383755Z arg2_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4383935Z arg3_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4384111Z arg4_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4384287Z arg5_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4384457Z arg6_1 = rand_strided((), (), device='cpu', dtype=torch.int64) 2023-01-11T21:05:10.4384680Z arg7_1 = rand_strided((1, 3, 55, 55, 55), (499125, 166375, 3025, 55, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4384821Z print_performance(lambda: call([arg0_1, arg1_1, arg2_1, arg3_1, arg4_1, arg5_1, arg6_1, arg7_1])) 2023-01-11T21:05:10.4384861Z 2023-01-11T21:05:10.4384865Z 2023-01-11T21:05:10.4384947Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.4385009Z import torch 2023-01-11T21:05:10.4385073Z import random 2023-01-11T21:05:10.4385179Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.4385292Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.4385297Z 2023-01-11T21:05:10.4385366Z aten = torch.ops.aten 2023-01-11T21:05:10.4385489Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.4385566Z async_compile = AsyncCompile() 2023-01-11T21:05:10.4385571Z 2023-01-11T21:05:10.4385583Z 2023-01-11T21:05:10.4385702Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.4385899Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.4386008Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:05:10.4386103Z float* __restrict__ out_ptr0) 2023-01-11T21:05:10.4386158Z { 2023-01-11T21:05:10.4386247Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.4386299Z { 2023-01-11T21:05:10.4386404Z #pragma omp for collapse(2) 2023-01-11T21:05:10.4386478Z for(long i0=0; i0<3; i0+=1) 2023-01-11T21:05:10.4386533Z { 2023-01-11T21:05:10.4386615Z for(long i1=0; i1<166375; i1+=1) 2023-01-11T21:05:10.4386670Z { 2023-01-11T21:05:10.4386726Z { 2023-01-11T21:05:10.4386778Z { 2023-01-11T21:05:10.4386871Z auto tmp0 = in_ptr0[i0 + (3*i1)]; 2023-01-11T21:05:10.4386961Z out_ptr0[i1 + (166375*i0)] = tmp0; 2023-01-11T21:05:10.4387019Z } 2023-01-11T21:05:10.4387074Z } 2023-01-11T21:05:10.4387129Z } 2023-01-11T21:05:10.4387183Z } 2023-01-11T21:05:10.4387230Z } 2023-01-11T21:05:10.4387282Z } 2023-01-11T21:05:10.4387356Z ''') 2023-01-11T21:05:10.4387360Z 2023-01-11T21:05:10.4387365Z 2023-01-11T21:05:10.4387447Z async_compile.wait(globals()) 2023-01-11T21:05:10.4387509Z del async_compile 2023-01-11T21:05:10.4387514Z 2023-01-11T21:05:10.4387577Z def call(args): 2023-01-11T21:05:10.4387688Z arg0_1, arg1_1, arg2_1, arg3_1, arg4_1, arg5_1, arg6_1, arg7_1 = args 2023-01-11T21:05:10.4387751Z args.clear() 2023-01-11T21:05:10.4387973Z buf0 = empty_strided((1, 3, 55, 55, 55), (499125, 166375, 3025, 55, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4388096Z kernel_cpp_0(c_void_p(arg7_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:05:10.4388156Z del arg7_1 2023-01-11T21:05:10.4388288Z buf1 = aten.convolution(buf0, arg0_1, arg1_1, (1, 1, 1), (0, 0, 0), (1, 1, 1), False, (0, 0, 0), 1) 2023-01-11T21:05:10.4388396Z assert_size_stride(buf1, (1, 32, 55, 55, 55), (5324000, 166375, 3025, 55, 1)) 2023-01-11T21:05:10.4388456Z del arg0_1 2023-01-11T21:05:10.4388512Z del arg1_1 2023-01-11T21:05:10.4388572Z return (buf1, ) 2023-01-11T21:05:10.4388577Z 2023-01-11T21:05:10.4388586Z 2023-01-11T21:05:10.4388647Z if __name__ == "__main__": 2023-01-11T21:05:10.4388755Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.4388870Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.4389080Z arg0_1 = rand_strided((32, 3, 1, 1, 1), (3, 1, 1, 1, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4389265Z arg1_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4389448Z arg2_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4389627Z arg3_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4389801Z arg4_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4389977Z arg5_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4390149Z arg6_1 = rand_strided((), (), device='cpu', dtype=torch.int64) 2023-01-11T21:05:10.4390401Z arg7_1 = rand_strided((1, 3, 55, 55, 55), (499125, 1, 9075, 165, 3), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4390550Z print_performance(lambda: call([arg0_1, arg1_1, arg2_1, arg3_1, arg4_1, arg5_1, arg6_1, arg7_1])) 2023-01-11T21:05:10.4390556Z 2023-01-11T21:05:10.4390560Z 2023-01-11T21:05:10.4390647Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.4390709Z import torch 2023-01-11T21:05:10.4390771Z import random 2023-01-11T21:05:10.4390874Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.4390987Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.4390993Z 2023-01-11T21:05:10.4391063Z aten = torch.ops.aten 2023-01-11T21:05:10.4391190Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.4391273Z async_compile = AsyncCompile() 2023-01-11T21:05:10.4391278Z 2023-01-11T21:05:10.4391282Z 2023-01-11T21:05:10.4391362Z async_compile.wait(globals()) 2023-01-11T21:05:10.4391428Z del async_compile 2023-01-11T21:05:10.4391432Z 2023-01-11T21:05:10.4391494Z def call(args): 2023-01-11T21:05:10.4391604Z arg0_1, arg1_1, arg2_1, arg3_1, arg4_1, arg5_1, arg6_1, arg7_1 = args 2023-01-11T21:05:10.4391688Z args.clear() 2023-01-11T21:05:10.4391826Z buf0 = aten.convolution(arg7_1, arg0_1, arg1_1, (1, 1, 1), (0, 0, 0), (1, 1, 1), False, (0, 0, 0), 4) 2023-01-11T21:05:10.4391936Z assert_size_stride(buf0, (1, 128, 55, 55, 55), (21296000, 166375, 3025, 55, 1)) 2023-01-11T21:05:10.4391996Z del arg0_1 2023-01-11T21:05:10.4392052Z del arg1_1 2023-01-11T21:05:10.4392109Z del arg7_1 2023-01-11T21:05:10.4392171Z return (buf0, ) 2023-01-11T21:05:10.4392175Z 2023-01-11T21:05:10.4392179Z 2023-01-11T21:05:10.4392240Z if __name__ == "__main__": 2023-01-11T21:05:10.4392346Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.4392461Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.4392677Z arg0_1 = rand_strided((128, 3, 1, 1, 1), (3, 1, 1, 1, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4392866Z arg1_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4393052Z arg2_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4393235Z arg3_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4393415Z arg4_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4393588Z arg5_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4393761Z arg6_1 = rand_strided((), (), device='cpu', dtype=torch.int64) 2023-01-11T21:05:10.4393985Z arg7_1 = rand_strided((1, 12, 55, 55, 55), (1996500, 166375, 3025, 55, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4394134Z print_performance(lambda: call([arg0_1, arg1_1, arg2_1, arg3_1, arg4_1, arg5_1, arg6_1, arg7_1])) 2023-01-11T21:05:10.4394401Z [2023-01-11 20:48:25,532] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 135 2023-01-11T21:05:10.4394809Z inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.4394929Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.4395179Z [2023-01-11 20:48:30,546] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 136 2023-01-11T21:05:10.4395435Z [2023-01-11 20:48:30,595] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 136 2023-01-11T21:05:10.4395834Z inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.4395981Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.4396230Z [2023-01-11 20:48:35,369] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 137 2023-01-11T21:05:10.4396486Z [2023-01-11 20:48:35,410] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 137 2023-01-11T21:05:10.4396886Z inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.4397005Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.4397254Z [2023-01-11 20:48:37,024] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 138 2023-01-11T21:05:10.4397535Z [2023-01-11 20:48:37,073] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 138 2023-01-11T21:05:10.4397925Z inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.4398042Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.4398287Z [2023-01-11 20:48:38,925] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 139 2023-01-11T21:05:10.4398539Z [2023-01-11 20:48:38,966] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 139 2023-01-11T21:05:10.4398930Z inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.4399042Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.4399284Z [2023-01-11 20:48:44,203] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 140 2023-01-11T21:05:10.4399289Z 2023-01-11T21:05:10.4399294Z 2023-01-11T21:05:10.4399379Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.4399441Z import torch 2023-01-11T21:05:10.4399502Z import random 2023-01-11T21:05:10.4399609Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.4399719Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.4399724Z 2023-01-11T21:05:10.4399796Z aten = torch.ops.aten 2023-01-11T21:05:10.4399916Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.4400000Z async_compile = AsyncCompile() 2023-01-11T21:05:10.4400005Z 2023-01-11T21:05:10.4400009Z 2023-01-11T21:05:10.4400135Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.4400332Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.4400443Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:05:10.4400534Z float* __restrict__ out_ptr0) 2023-01-11T21:05:10.4400727Z { 2023-01-11T21:05:10.4400852Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.4400900Z { 2023-01-11T21:05:10.4400968Z #pragma omp for 2023-01-11T21:05:10.4401040Z for(long i0=0; i0<12; i0+=1) 2023-01-11T21:05:10.4401096Z { 2023-01-11T21:05:10.4401168Z #pragma GCC ivdep 2023-01-11T21:05:10.4401250Z for(long i1=0; i1<166375; i1+=1) 2023-01-11T21:05:10.4401373Z { 2023-01-11T21:05:10.4401423Z { 2023-01-11T21:05:10.4401482Z { 2023-01-11T21:05:10.4401580Z auto tmp0 = in_ptr0[i0 + (12*i1)]; 2023-01-11T21:05:10.4401673Z out_ptr0[i1 + (166375*i0)] = tmp0; 2023-01-11T21:05:10.4401734Z } 2023-01-11T21:05:10.4401790Z } 2023-01-11T21:05:10.4401837Z } 2023-01-11T21:05:10.4401892Z } 2023-01-11T21:05:10.4401944Z } 2023-01-11T21:05:10.4401996Z } 2023-01-11T21:05:10.4402072Z ''') 2023-01-11T21:05:10.4402077Z 2023-01-11T21:05:10.4402081Z 2023-01-11T21:05:10.4402162Z async_compile.wait(globals()) 2023-01-11T21:05:10.4402226Z del async_compile 2023-01-11T21:05:10.4402231Z 2023-01-11T21:05:10.4402293Z def call(args): 2023-01-11T21:05:10.4402398Z arg0_1, arg1_1, arg2_1, arg3_1, arg4_1, arg5_1, arg6_1, arg7_1 = args 2023-01-11T21:05:10.4402465Z args.clear() 2023-01-11T21:05:10.4402696Z buf0 = empty_strided((1, 12, 55, 55, 55), (1996500, 166375, 3025, 55, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4402824Z kernel_cpp_0(c_void_p(arg7_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:05:10.4402884Z del arg7_1 2023-01-11T21:05:10.4403067Z buf1 = aten.convolution(buf0, arg0_1, arg1_1, (1, 1, 1), (0, 0, 0), (1, 1, 1), False, (0, 0, 0), 4) 2023-01-11T21:05:10.4403180Z assert_size_stride(buf1, (1, 128, 55, 55, 55), (21296000, 166375, 3025, 55, 1)) 2023-01-11T21:05:10.4403235Z del arg0_1 2023-01-11T21:05:10.4403295Z del arg1_1 2023-01-11T21:05:10.4403358Z return (buf1, ) 2023-01-11T21:05:10.4403363Z 2023-01-11T21:05:10.4403367Z 2023-01-11T21:05:10.4403434Z if __name__ == "__main__": 2023-01-11T21:05:10.4403539Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.4403652Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.4403867Z arg0_1 = rand_strided((128, 3, 1, 1, 1), (3, 1, 1, 1, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4404057Z arg1_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4404238Z arg2_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4404422Z arg3_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4404604Z arg4_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4404781Z arg5_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4404949Z arg6_1 = rand_strided((), (), device='cpu', dtype=torch.int64) 2023-01-11T21:05:10.4405173Z arg7_1 = rand_strided((1, 12, 55, 55, 55), (1996500, 1, 36300, 660, 12), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4405323Z print_performance(lambda: call([arg0_1, arg1_1, arg2_1, arg3_1, arg4_1, arg5_1, arg6_1, arg7_1])) 2023-01-11T21:05:10.4405328Z 2023-01-11T21:05:10.4405332Z 2023-01-11T21:05:10.4405419Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.4405482Z import torch 2023-01-11T21:05:10.4405538Z import random 2023-01-11T21:05:10.4405644Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.4405762Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.4405767Z 2023-01-11T21:05:10.4405837Z aten = torch.ops.aten 2023-01-11T21:05:10.4405964Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.4406048Z async_compile = AsyncCompile() 2023-01-11T21:05:10.4406053Z 2023-01-11T21:05:10.4406057Z 2023-01-11T21:05:10.4406138Z async_compile.wait(globals()) 2023-01-11T21:05:10.4406194Z del async_compile 2023-01-11T21:05:10.4406207Z 2023-01-11T21:05:10.4406262Z def call(args): 2023-01-11T21:05:10.4406373Z arg0_1, arg1_1, arg2_1, arg3_1, arg4_1, arg5_1, arg6_1, arg7_1 = args 2023-01-11T21:05:10.4406439Z args.clear() 2023-01-11T21:05:10.4406578Z buf0 = aten.convolution(arg7_1, arg0_1, arg1_1, (1, 1, 1), (0, 0, 0), (2, 2, 2), False, (0, 0, 0), 1) 2023-01-11T21:05:10.4406717Z assert_size_stride(buf0, (1, 32, 55, 55, 55), (5324000, 166375, 3025, 55, 1)) 2023-01-11T21:05:10.4406778Z del arg0_1 2023-01-11T21:05:10.4406838Z del arg1_1 2023-01-11T21:05:10.4406888Z del arg7_1 2023-01-11T21:05:10.4406958Z return (buf0, ) 2023-01-11T21:05:10.4406963Z 2023-01-11T21:05:10.4406967Z 2023-01-11T21:05:10.4407041Z if __name__ == "__main__": 2023-01-11T21:05:10.4407155Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.4407272Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.4407486Z arg0_1 = rand_strided((32, 3, 1, 1, 1), (3, 1, 1, 1, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4407675Z arg1_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4407860Z arg2_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4408033Z arg3_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4408221Z arg4_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4408405Z arg5_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4408627Z arg6_1 = rand_strided((), (), device='cpu', dtype=torch.int64) 2023-01-11T21:05:10.4408862Z arg7_1 = rand_strided((1, 3, 55, 55, 55), (499125, 166375, 3025, 55, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4409016Z print_performance(lambda: call([arg0_1, arg1_1, arg2_1, arg3_1, arg4_1, arg5_1, arg6_1, arg7_1])) 2023-01-11T21:05:10.4409021Z 2023-01-11T21:05:10.4409025Z 2023-01-11T21:05:10.4409119Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.4409189Z import torch 2023-01-11T21:05:10.4409245Z import random 2023-01-11T21:05:10.4409359Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.4409479Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.4409484Z 2023-01-11T21:05:10.4409561Z aten = torch.ops.aten 2023-01-11T21:05:10.4409696Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.4409786Z async_compile = AsyncCompile() 2023-01-11T21:05:10.4409791Z 2023-01-11T21:05:10.4409795Z 2023-01-11T21:05:10.4409929Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.4410135Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.4410239Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:05:10.4410338Z float* __restrict__ out_ptr0) 2023-01-11T21:05:10.4410399Z { 2023-01-11T21:05:10.4410496Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.4410557Z { 2023-01-11T21:05:10.4410645Z #pragma omp for collapse(2) 2023-01-11T21:05:10.4410725Z for(long i0=0; i0<3; i0+=1) 2023-01-11T21:05:10.4410773Z { 2023-01-11T21:05:10.4410862Z for(long i1=0; i1<166375; i1+=1) 2023-01-11T21:05:10.4410923Z { 2023-01-11T21:05:10.4410986Z { 2023-01-11T21:05:10.4411053Z { 2023-01-11T21:05:10.4411157Z auto tmp0 = in_ptr0[i0 + (3*i1)]; 2023-01-11T21:05:10.4411254Z out_ptr0[i1 + (166375*i0)] = tmp0; 2023-01-11T21:05:10.4411309Z } 2023-01-11T21:05:10.4411371Z } 2023-01-11T21:05:10.4411432Z } 2023-01-11T21:05:10.4411494Z } 2023-01-11T21:05:10.4411553Z } 2023-01-11T21:05:10.4411611Z } 2023-01-11T21:05:10.4411676Z ''') 2023-01-11T21:05:10.4411693Z 2023-01-11T21:05:10.4411697Z 2023-01-11T21:05:10.4411773Z async_compile.wait(globals()) 2023-01-11T21:05:10.4411844Z del async_compile 2023-01-11T21:05:10.4411849Z 2023-01-11T21:05:10.4411917Z def call(args): 2023-01-11T21:05:10.4412033Z arg0_1, arg1_1, arg2_1, arg3_1, arg4_1, arg5_1, arg6_1, arg7_1 = args 2023-01-11T21:05:10.4412103Z args.clear() 2023-01-11T21:05:10.4412338Z buf0 = empty_strided((1, 3, 55, 55, 55), (499125, 166375, 3025, 55, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4412500Z kernel_cpp_0(c_void_p(arg7_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:05:10.4412553Z del arg7_1 2023-01-11T21:05:10.4412693Z buf1 = aten.convolution(buf0, arg0_1, arg1_1, (1, 1, 1), (0, 0, 0), (2, 2, 2), False, (0, 0, 0), 1) 2023-01-11T21:05:10.4412806Z assert_size_stride(buf1, (1, 32, 55, 55, 55), (5324000, 166375, 3025, 55, 1)) 2023-01-11T21:05:10.4412872Z del arg0_1 2023-01-11T21:05:10.4412936Z del arg1_1 2023-01-11T21:05:10.4413006Z return (buf1, ) 2023-01-11T21:05:10.4413011Z 2023-01-11T21:05:10.4413015Z 2023-01-11T21:05:10.4413091Z if __name__ == "__main__": 2023-01-11T21:05:10.4413204Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.4413315Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.4413532Z arg0_1 = rand_strided((32, 3, 1, 1, 1), (3, 1, 1, 1, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4413725Z arg1_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4413916Z arg2_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4414102Z arg3_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4414322Z arg4_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4414507Z arg5_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4414685Z arg6_1 = rand_strided((), (), device='cpu', dtype=torch.int64) 2023-01-11T21:05:10.4414899Z arg7_1 = rand_strided((1, 3, 55, 55, 55), (499125, 1, 9075, 165, 3), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4415053Z print_performance(lambda: call([arg0_1, arg1_1, arg2_1, arg3_1, arg4_1, arg5_1, arg6_1, arg7_1])) 2023-01-11T21:05:10.4415059Z 2023-01-11T21:05:10.4415063Z 2023-01-11T21:05:10.4415156Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.4415225Z import torch 2023-01-11T21:05:10.4415292Z import random 2023-01-11T21:05:10.4415409Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.4415529Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.4415534Z 2023-01-11T21:05:10.4415610Z aten = torch.ops.aten 2023-01-11T21:05:10.4415733Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.4415824Z async_compile = AsyncCompile() 2023-01-11T21:05:10.4415829Z 2023-01-11T21:05:10.4415833Z 2023-01-11T21:05:10.4415920Z async_compile.wait(globals()) 2023-01-11T21:05:10.4415989Z del async_compile 2023-01-11T21:05:10.4415994Z 2023-01-11T21:05:10.4416063Z def call(args): 2023-01-11T21:05:10.4416179Z arg0_1, arg1_1, arg2_1, arg3_1, arg4_1, arg5_1, arg6_1, arg7_1 = args 2023-01-11T21:05:10.4416247Z args.clear() 2023-01-11T21:05:10.4416389Z buf0 = aten.convolution(arg7_1, arg0_1, arg1_1, (1, 1, 1), (0, 0, 0), (2, 2, 2), False, (0, 0, 0), 4) 2023-01-11T21:05:10.4416493Z assert_size_stride(buf0, (1, 128, 55, 55, 55), (21296000, 166375, 3025, 55, 1)) 2023-01-11T21:05:10.4416562Z del arg0_1 2023-01-11T21:05:10.4416628Z del arg1_1 2023-01-11T21:05:10.4416693Z del arg7_1 2023-01-11T21:05:10.4416762Z return (buf0, ) 2023-01-11T21:05:10.4416767Z 2023-01-11T21:05:10.4416774Z 2023-01-11T21:05:10.4416847Z if __name__ == "__main__": 2023-01-11T21:05:10.4416960Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.4417082Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.4417288Z arg0_1 = rand_strided((128, 3, 1, 1, 1), (3, 1, 1, 1, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4417481Z arg1_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4417671Z arg2_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4417860Z arg3_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4418049Z arg4_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4418266Z arg5_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4418443Z arg6_1 = rand_strided((), (), device='cpu', dtype=torch.int64) 2023-01-11T21:05:10.4418803Z arg7_1 = rand_strided((1, 12, 55, 55, 55), (1996500, 166375, 3025, 55, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4418947Z print_performance(lambda: call([arg0_1, arg1_1, arg2_1, arg3_1, arg4_1, arg5_1, arg6_1, arg7_1])) 2023-01-11T21:05:10.4418952Z 2023-01-11T21:05:10.4418971Z 2023-01-11T21:05:10.4419052Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.4419121Z import torch 2023-01-11T21:05:10.4419191Z import random 2023-01-11T21:05:10.4419307Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.4419430Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.4419434Z 2023-01-11T21:05:10.4419514Z aten = torch.ops.aten 2023-01-11T21:05:10.4419650Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.4419731Z async_compile = AsyncCompile() 2023-01-11T21:05:10.4419736Z 2023-01-11T21:05:10.4419740Z 2023-01-11T21:05:10.4419873Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.4420114Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.4420236Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:05:10.4420336Z float* __restrict__ out_ptr0) 2023-01-11T21:05:10.4420396Z { 2023-01-11T21:05:10.4420495Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.4420542Z { 2023-01-11T21:05:10.4420617Z #pragma omp for 2023-01-11T21:05:10.4420699Z for(long i0=0; i0<12; i0+=1) 2023-01-11T21:05:10.4420760Z { 2023-01-11T21:05:10.4420839Z #pragma GCC ivdep 2023-01-11T21:05:10.4420929Z for(long i1=0; i1<166375; i1+=1) 2023-01-11T21:05:10.4420993Z { 2023-01-11T21:05:10.4421042Z { 2023-01-11T21:05:10.4421109Z { 2023-01-11T21:05:10.4421212Z auto tmp0 = in_ptr0[i0 + (12*i1)]; 2023-01-11T21:05:10.4421308Z out_ptr0[i1 + (166375*i0)] = tmp0; 2023-01-11T21:05:10.4421373Z } 2023-01-11T21:05:10.4421438Z } 2023-01-11T21:05:10.4421500Z } 2023-01-11T21:05:10.4421547Z } 2023-01-11T21:05:10.4421607Z } 2023-01-11T21:05:10.4421667Z } 2023-01-11T21:05:10.4421747Z ''') 2023-01-11T21:05:10.4421752Z 2023-01-11T21:05:10.4421756Z 2023-01-11T21:05:10.4421846Z async_compile.wait(globals()) 2023-01-11T21:05:10.4421916Z del async_compile 2023-01-11T21:05:10.4421922Z 2023-01-11T21:05:10.4421990Z def call(args): 2023-01-11T21:05:10.4422095Z arg0_1, arg1_1, arg2_1, arg3_1, arg4_1, arg5_1, arg6_1, arg7_1 = args 2023-01-11T21:05:10.4422165Z args.clear() 2023-01-11T21:05:10.4422404Z buf0 = empty_strided((1, 12, 55, 55, 55), (1996500, 166375, 3025, 55, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4422540Z kernel_cpp_0(c_void_p(arg7_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:05:10.4422607Z del arg7_1 2023-01-11T21:05:10.4422748Z buf1 = aten.convolution(buf0, arg0_1, arg1_1, (1, 1, 1), (0, 0, 0), (2, 2, 2), False, (0, 0, 0), 4) 2023-01-11T21:05:10.4422866Z assert_size_stride(buf1, (1, 128, 55, 55, 55), (21296000, 166375, 3025, 55, 1)) 2023-01-11T21:05:10.4422932Z del arg0_1 2023-01-11T21:05:10.4422983Z del arg1_1 2023-01-11T21:05:10.4423053Z return (buf1, ) 2023-01-11T21:05:10.4423059Z 2023-01-11T21:05:10.4423063Z 2023-01-11T21:05:10.4423137Z if __name__ == "__main__": 2023-01-11T21:05:10.4423251Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.4423373Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.4423592Z arg0_1 = rand_strided((128, 3, 1, 1, 1), (3, 1, 1, 1, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4423787Z arg1_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4424014Z arg2_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4424192Z arg3_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4424383Z arg4_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4424570Z arg5_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4424749Z arg6_1 = rand_strided((), (), device='cpu', dtype=torch.int64) 2023-01-11T21:05:10.4424981Z arg7_1 = rand_strided((1, 12, 55, 55, 55), (1996500, 1, 36300, 660, 12), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4425138Z print_performance(lambda: call([arg0_1, arg1_1, arg2_1, arg3_1, arg4_1, arg5_1, arg6_1, arg7_1])) 2023-01-11T21:05:10.4425411Z [2023-01-11 20:48:44,254] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 140 2023-01-11T21:05:10.4425852Z inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.4425984Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.4426231Z [2023-01-11 20:48:49,225] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 141 2023-01-11T21:05:10.4426496Z [2023-01-11 20:48:49,267] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 141 2023-01-11T21:05:10.4426902Z inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.4427031Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.4427285Z [2023-01-11 20:48:50,842] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 142 2023-01-11T21:05:10.4427550Z [2023-01-11 20:48:50,892] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 142 2023-01-11T21:05:10.4427957Z inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.4428085Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.4428339Z [2023-01-11 20:48:52,654] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 143 2023-01-11T21:05:10.4428602Z [2023-01-11 20:48:52,696] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 143 2023-01-11T21:05:10.4429010Z inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.4429138Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.4429379Z [2023-01-11 20:48:57,588] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 144 2023-01-11T21:05:10.4429639Z [2023-01-11 20:48:57,637] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 144 2023-01-11T21:05:10.4430044Z inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.4430203Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.4430460Z [2023-01-11 20:49:02,375] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 145 2023-01-11T21:05:10.4430465Z 2023-01-11T21:05:10.4430469Z 2023-01-11T21:05:10.4430564Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.4430632Z import torch 2023-01-11T21:05:10.4430702Z import random 2023-01-11T21:05:10.4430817Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.4430926Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.4430931Z 2023-01-11T21:05:10.4431008Z aten = torch.ops.aten 2023-01-11T21:05:10.4431145Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.4431237Z async_compile = AsyncCompile() 2023-01-11T21:05:10.4431242Z 2023-01-11T21:05:10.4431248Z 2023-01-11T21:05:10.4431336Z async_compile.wait(globals()) 2023-01-11T21:05:10.4431408Z del async_compile 2023-01-11T21:05:10.4431413Z 2023-01-11T21:05:10.4431482Z def call(args): 2023-01-11T21:05:10.4431665Z arg0_1, arg1_1, arg2_1, arg3_1, arg4_1, arg5_1, arg6_1, arg7_1 = args 2023-01-11T21:05:10.4431725Z args.clear() 2023-01-11T21:05:10.4431867Z buf0 = aten.convolution(arg7_1, arg0_1, arg1_1, (1, 1, 1), (0, 0, 0), (1, 1, 1), False, (0, 0, 0), 1) 2023-01-11T21:05:10.4431983Z assert_size_stride(buf0, (1, 32, 53, 53, 53), (4764064, 148877, 2809, 53, 1)) 2023-01-11T21:05:10.4432050Z del arg0_1 2023-01-11T21:05:10.4432115Z del arg1_1 2023-01-11T21:05:10.4432179Z del arg7_1 2023-01-11T21:05:10.4432249Z return (buf0, ) 2023-01-11T21:05:10.4432253Z 2023-01-11T21:05:10.4432258Z 2023-01-11T21:05:10.4432332Z if __name__ == "__main__": 2023-01-11T21:05:10.4432433Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.4432556Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.4432784Z arg0_1 = rand_strided((32, 3, 3, 3, 3), (81, 27, 9, 3, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4432983Z arg1_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4433174Z arg2_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4433363Z arg3_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4433552Z arg4_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4433724Z arg5_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4433905Z arg6_1 = rand_strided((), (), device='cpu', dtype=torch.int64) 2023-01-11T21:05:10.4434138Z arg7_1 = rand_strided((1, 3, 55, 55, 55), (499125, 166375, 3025, 55, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4434295Z print_performance(lambda: call([arg0_1, arg1_1, arg2_1, arg3_1, arg4_1, arg5_1, arg6_1, arg7_1])) 2023-01-11T21:05:10.4434303Z 2023-01-11T21:05:10.4434307Z 2023-01-11T21:05:10.4434402Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.4434472Z import torch 2023-01-11T21:05:10.4434541Z import random 2023-01-11T21:05:10.4434659Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.4434768Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.4434785Z 2023-01-11T21:05:10.4434849Z aten = torch.ops.aten 2023-01-11T21:05:10.4434985Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.4435076Z async_compile = AsyncCompile() 2023-01-11T21:05:10.4435081Z 2023-01-11T21:05:10.4435085Z 2023-01-11T21:05:10.4435218Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.4435423Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.4435541Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:05:10.4435640Z float* __restrict__ out_ptr0) 2023-01-11T21:05:10.4435727Z { 2023-01-11T21:05:10.4435812Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.4435871Z { 2023-01-11T21:05:10.4435960Z #pragma omp for collapse(2) 2023-01-11T21:05:10.4436043Z for(long i0=0; i0<3; i0+=1) 2023-01-11T21:05:10.4436105Z { 2023-01-11T21:05:10.4436194Z for(long i1=0; i1<166375; i1+=1) 2023-01-11T21:05:10.4436243Z { 2023-01-11T21:05:10.4436306Z { 2023-01-11T21:05:10.4436373Z { 2023-01-11T21:05:10.4436474Z auto tmp0 = in_ptr0[i0 + (3*i1)]; 2023-01-11T21:05:10.4436573Z out_ptr0[i1 + (166375*i0)] = tmp0; 2023-01-11T21:05:10.4436638Z } 2023-01-11T21:05:10.4436702Z } 2023-01-11T21:05:10.4436750Z } 2023-01-11T21:05:10.4436810Z } 2023-01-11T21:05:10.4436870Z } 2023-01-11T21:05:10.4436929Z } 2023-01-11T21:05:10.4437007Z ''') 2023-01-11T21:05:10.4437015Z 2023-01-11T21:05:10.4437019Z 2023-01-11T21:05:10.4437107Z async_compile.wait(globals()) 2023-01-11T21:05:10.4437177Z del async_compile 2023-01-11T21:05:10.4437182Z 2023-01-11T21:05:10.4437238Z def call(args): 2023-01-11T21:05:10.4437389Z arg0_1, arg1_1, arg2_1, arg3_1, arg4_1, arg5_1, arg6_1, arg7_1 = args 2023-01-11T21:05:10.4437461Z args.clear() 2023-01-11T21:05:10.4437699Z buf0 = empty_strided((1, 3, 55, 55, 55), (499125, 166375, 3025, 55, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4437833Z kernel_cpp_0(c_void_p(arg7_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:05:10.4437903Z del arg7_1 2023-01-11T21:05:10.4438042Z buf1 = aten.convolution(buf0, arg0_1, arg1_1, (1, 1, 1), (0, 0, 0), (1, 1, 1), False, (0, 0, 0), 1) 2023-01-11T21:05:10.4438157Z assert_size_stride(buf1, (1, 32, 53, 53, 53), (4764064, 148877, 2809, 53, 1)) 2023-01-11T21:05:10.4438210Z del arg0_1 2023-01-11T21:05:10.4438274Z del arg1_1 2023-01-11T21:05:10.4438347Z return (buf1, ) 2023-01-11T21:05:10.4438352Z 2023-01-11T21:05:10.4438356Z 2023-01-11T21:05:10.4438430Z if __name__ == "__main__": 2023-01-11T21:05:10.4438547Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.4438670Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.4438892Z arg0_1 = rand_strided((32, 3, 3, 3, 3), (81, 27, 9, 3, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4439086Z arg1_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4439264Z arg2_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4439449Z arg3_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4439635Z arg4_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4439819Z arg5_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4439997Z arg6_1 = rand_strided((), (), device='cpu', dtype=torch.int64) 2023-01-11T21:05:10.4440227Z arg7_1 = rand_strided((1, 3, 55, 55, 55), (499125, 1, 9075, 165, 3), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4440385Z print_performance(lambda: call([arg0_1, arg1_1, arg2_1, arg3_1, arg4_1, arg5_1, arg6_1, arg7_1])) 2023-01-11T21:05:10.4440391Z 2023-01-11T21:05:10.4440395Z 2023-01-11T21:05:10.4440489Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.4440545Z import torch 2023-01-11T21:05:10.4440762Z import random 2023-01-11T21:05:10.4440881Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.4441002Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.4441007Z 2023-01-11T21:05:10.4441085Z aten = torch.ops.aten 2023-01-11T21:05:10.4441222Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.4441314Z async_compile = AsyncCompile() 2023-01-11T21:05:10.4441319Z 2023-01-11T21:05:10.4441323Z 2023-01-11T21:05:10.4441411Z async_compile.wait(globals()) 2023-01-11T21:05:10.4441529Z del async_compile 2023-01-11T21:05:10.4441534Z 2023-01-11T21:05:10.4441605Z def call(args): 2023-01-11T21:05:10.4441722Z arg0_1, arg1_1, arg2_1, arg3_1, arg4_1, arg5_1, arg6_1, arg7_1 = args 2023-01-11T21:05:10.4441796Z args.clear() 2023-01-11T21:05:10.4441937Z buf0 = aten.convolution(arg7_1, arg0_1, arg1_1, (1, 1, 1), (0, 0, 0), (1, 1, 1), False, (0, 0, 0), 4) 2023-01-11T21:05:10.4442057Z assert_size_stride(buf0, (1, 128, 53, 53, 53), (19056256, 148877, 2809, 53, 1)) 2023-01-11T21:05:10.4442124Z del arg0_1 2023-01-11T21:05:10.4442176Z del arg1_1 2023-01-11T21:05:10.4442241Z del arg7_1 2023-01-11T21:05:10.4442315Z return (buf0, ) 2023-01-11T21:05:10.4442320Z 2023-01-11T21:05:10.4442324Z 2023-01-11T21:05:10.4442398Z if __name__ == "__main__": 2023-01-11T21:05:10.4442513Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.4442636Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.4442863Z arg0_1 = rand_strided((128, 3, 3, 3, 3), (81, 27, 9, 3, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4443060Z arg1_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4443277Z arg2_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4443470Z arg3_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4443656Z arg4_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4443842Z arg5_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4444019Z arg6_1 = rand_strided((), (), device='cpu', dtype=torch.int64) 2023-01-11T21:05:10.4444252Z arg7_1 = rand_strided((1, 12, 55, 55, 55), (1996500, 166375, 3025, 55, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4444407Z print_performance(lambda: call([arg0_1, arg1_1, arg2_1, arg3_1, arg4_1, arg5_1, arg6_1, arg7_1])) 2023-01-11T21:05:10.4444413Z 2023-01-11T21:05:10.4444420Z 2023-01-11T21:05:10.4444512Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.4444581Z import torch 2023-01-11T21:05:10.4444636Z import random 2023-01-11T21:05:10.4444753Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.4444876Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.4444881Z 2023-01-11T21:05:10.4444959Z aten = torch.ops.aten 2023-01-11T21:05:10.4445091Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.4445182Z async_compile = AsyncCompile() 2023-01-11T21:05:10.4445187Z 2023-01-11T21:05:10.4445191Z 2023-01-11T21:05:10.4445325Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.4445531Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.4445637Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:05:10.4445739Z float* __restrict__ out_ptr0) 2023-01-11T21:05:10.4445800Z { 2023-01-11T21:05:10.4445902Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.4445962Z { 2023-01-11T21:05:10.4446040Z #pragma omp for 2023-01-11T21:05:10.4446123Z for(long i0=0; i0<12; i0+=1) 2023-01-11T21:05:10.4446172Z { 2023-01-11T21:05:10.4446254Z #pragma GCC ivdep 2023-01-11T21:05:10.4446346Z for(long i1=0; i1<166375; i1+=1) 2023-01-11T21:05:10.4446409Z { 2023-01-11T21:05:10.4446472Z { 2023-01-11T21:05:10.4446537Z { 2023-01-11T21:05:10.4446628Z auto tmp0 = in_ptr0[i0 + (12*i1)]; 2023-01-11T21:05:10.4446726Z out_ptr0[i1 + (166375*i0)] = tmp0; 2023-01-11T21:05:10.4446791Z } 2023-01-11T21:05:10.4446854Z } 2023-01-11T21:05:10.4446915Z } 2023-01-11T21:05:10.4446974Z } 2023-01-11T21:05:10.4447035Z } 2023-01-11T21:05:10.4447082Z } 2023-01-11T21:05:10.4447158Z ''') 2023-01-11T21:05:10.4447164Z 2023-01-11T21:05:10.4447195Z 2023-01-11T21:05:10.4447285Z async_compile.wait(globals()) 2023-01-11T21:05:10.4447357Z del async_compile 2023-01-11T21:05:10.4447362Z 2023-01-11T21:05:10.4447430Z def call(args): 2023-01-11T21:05:10.4447550Z arg0_1, arg1_1, arg2_1, arg3_1, arg4_1, arg5_1, arg6_1, arg7_1 = args 2023-01-11T21:05:10.4447620Z args.clear() 2023-01-11T21:05:10.4447859Z buf0 = empty_strided((1, 12, 55, 55, 55), (1996500, 166375, 3025, 55, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4447982Z kernel_cpp_0(c_void_p(arg7_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:05:10.4448051Z del arg7_1 2023-01-11T21:05:10.4448192Z buf1 = aten.convolution(buf0, arg0_1, arg1_1, (1, 1, 1), (0, 0, 0), (1, 1, 1), False, (0, 0, 0), 4) 2023-01-11T21:05:10.4448310Z assert_size_stride(buf1, (1, 128, 53, 53, 53), (19056256, 148877, 2809, 53, 1)) 2023-01-11T21:05:10.4448377Z del arg0_1 2023-01-11T21:05:10.4448441Z del arg1_1 2023-01-11T21:05:10.4448513Z return (buf1, ) 2023-01-11T21:05:10.4448520Z 2023-01-11T21:05:10.4448524Z 2023-01-11T21:05:10.4448599Z if __name__ == "__main__": 2023-01-11T21:05:10.4448699Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.4448869Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.4449095Z arg0_1 = rand_strided((128, 3, 3, 3, 3), (81, 27, 9, 3, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4449290Z arg1_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4449482Z arg2_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4449669Z arg3_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4449859Z arg4_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4450032Z arg5_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4450214Z arg6_1 = rand_strided((), (), device='cpu', dtype=torch.int64) 2023-01-11T21:05:10.4450448Z arg7_1 = rand_strided((1, 12, 55, 55, 55), (1996500, 1, 36300, 660, 12), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4450606Z print_performance(lambda: call([arg0_1, arg1_1, arg2_1, arg3_1, arg4_1, arg5_1, arg6_1, arg7_1])) 2023-01-11T21:05:10.4450611Z 2023-01-11T21:05:10.4450615Z 2023-01-11T21:05:10.4450710Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.4450778Z import torch 2023-01-11T21:05:10.4450847Z import random 2023-01-11T21:05:10.4450962Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.4451071Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.4451088Z 2023-01-11T21:05:10.4451151Z aten = torch.ops.aten 2023-01-11T21:05:10.4451286Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.4451378Z async_compile = AsyncCompile() 2023-01-11T21:05:10.4451383Z 2023-01-11T21:05:10.4451387Z 2023-01-11T21:05:10.4451474Z async_compile.wait(globals()) 2023-01-11T21:05:10.4451548Z del async_compile 2023-01-11T21:05:10.4451553Z 2023-01-11T21:05:10.4451624Z def call(args): 2023-01-11T21:05:10.4451743Z arg0_1, arg1_1, arg2_1, arg3_1, arg4_1, arg5_1, arg6_1, arg7_1 = args 2023-01-11T21:05:10.4451812Z args.clear() 2023-01-11T21:05:10.4451942Z buf0 = aten.convolution(arg7_1, arg0_1, arg1_1, (1, 1, 1), (0, 0, 0), (2, 2, 2), False, (0, 0, 0), 1) 2023-01-11T21:05:10.4452058Z assert_size_stride(buf0, (1, 32, 51, 51, 51), (4244832, 132651, 2601, 51, 1)) 2023-01-11T21:05:10.4452123Z del arg0_1 2023-01-11T21:05:10.4452188Z del arg1_1 2023-01-11T21:05:10.4452251Z del arg7_1 2023-01-11T21:05:10.4452320Z return (buf0, ) 2023-01-11T21:05:10.4452325Z 2023-01-11T21:05:10.4452329Z 2023-01-11T21:05:10.4452406Z if __name__ == "__main__": 2023-01-11T21:05:10.4452506Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.4452627Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.4452846Z arg0_1 = rand_strided((32, 3, 3, 3, 3), (81, 27, 9, 3, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4453069Z arg1_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4453262Z arg2_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4453448Z arg3_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4453634Z arg4_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4453819Z arg5_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4453985Z arg6_1 = rand_strided((), (), device='cpu', dtype=torch.int64) 2023-01-11T21:05:10.4454219Z arg7_1 = rand_strided((1, 3, 55, 55, 55), (499125, 166375, 3025, 55, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4454374Z print_performance(lambda: call([arg0_1, arg1_1, arg2_1, arg3_1, arg4_1, arg5_1, arg6_1, arg7_1])) 2023-01-11T21:05:10.4454643Z [2023-01-11 20:49:02,416] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 145 2023-01-11T21:05:10.4455084Z inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.4455213Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.4455470Z [2023-01-11 20:49:04,059] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 146 2023-01-11T21:05:10.4455734Z [2023-01-11 20:49:04,108] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 146 2023-01-11T21:05:10.4456141Z inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.4456268Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.4456527Z [2023-01-11 20:49:06,305] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 147 2023-01-11T21:05:10.4456777Z [2023-01-11 20:49:06,347] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 147 2023-01-11T21:05:10.4457183Z inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.4457309Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.4457564Z [2023-01-11 20:49:11,734] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 148 2023-01-11T21:05:10.4457828Z [2023-01-11 20:49:11,789] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 148 2023-01-11T21:05:10.4457836Z 2023-01-11T21:05:10.4457840Z 2023-01-11T21:05:10.4457935Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.4458004Z import torch 2023-01-11T21:05:10.4458072Z import random 2023-01-11T21:05:10.4458188Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.4458295Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.4458300Z 2023-01-11T21:05:10.4458376Z aten = torch.ops.aten 2023-01-11T21:05:10.4458601Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.4458696Z async_compile = AsyncCompile() 2023-01-11T21:05:10.4458701Z 2023-01-11T21:05:10.4458706Z 2023-01-11T21:05:10.4458842Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.4459049Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.4459210Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:05:10.4459312Z float* __restrict__ out_ptr0) 2023-01-11T21:05:10.4459360Z { 2023-01-11T21:05:10.4459460Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.4459523Z { 2023-01-11T21:05:10.4459614Z #pragma omp for collapse(2) 2023-01-11T21:05:10.4459697Z for(long i0=0; i0<3; i0+=1) 2023-01-11T21:05:10.4459760Z { 2023-01-11T21:05:10.4459852Z for(long i1=0; i1<166375; i1+=1) 2023-01-11T21:05:10.4459902Z { 2023-01-11T21:05:10.4459967Z { 2023-01-11T21:05:10.4460034Z { 2023-01-11T21:05:10.4460137Z auto tmp0 = in_ptr0[i0 + (3*i1)]; 2023-01-11T21:05:10.4460237Z out_ptr0[i1 + (166375*i0)] = tmp0; 2023-01-11T21:05:10.4460303Z } 2023-01-11T21:05:10.4460369Z } 2023-01-11T21:05:10.4460421Z } 2023-01-11T21:05:10.4460483Z } 2023-01-11T21:05:10.4460544Z } 2023-01-11T21:05:10.4460604Z } 2023-01-11T21:05:10.4460682Z ''') 2023-01-11T21:05:10.4460687Z 2023-01-11T21:05:10.4460691Z 2023-01-11T21:05:10.4460812Z async_compile.wait(globals()) 2023-01-11T21:05:10.4460886Z del async_compile 2023-01-11T21:05:10.4460890Z 2023-01-11T21:05:10.4460946Z def call(args): 2023-01-11T21:05:10.4461065Z arg0_1, arg1_1, arg2_1, arg3_1, arg4_1, arg5_1, arg6_1, arg7_1 = args 2023-01-11T21:05:10.4461135Z args.clear() 2023-01-11T21:05:10.4461374Z buf0 = empty_strided((1, 3, 55, 55, 55), (499125, 166375, 3025, 55, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4461507Z kernel_cpp_0(c_void_p(arg7_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:05:10.4461574Z del arg7_1 2023-01-11T21:05:10.4461715Z buf1 = aten.convolution(buf0, arg0_1, arg1_1, (1, 1, 1), (0, 0, 0), (2, 2, 2), False, (0, 0, 0), 1) 2023-01-11T21:05:10.4461820Z assert_size_stride(buf1, (1, 32, 51, 51, 51), (4244832, 132651, 2601, 51, 1)) 2023-01-11T21:05:10.4461887Z del arg0_1 2023-01-11T21:05:10.4461952Z del arg1_1 2023-01-11T21:05:10.4462022Z return (buf1, ) 2023-01-11T21:05:10.4462027Z 2023-01-11T21:05:10.4462033Z 2023-01-11T21:05:10.4462107Z if __name__ == "__main__": 2023-01-11T21:05:10.4462220Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.4462343Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.4462562Z arg0_1 = rand_strided((32, 3, 3, 3, 3), (81, 27, 9, 3, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4462742Z arg1_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4462932Z arg2_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4463120Z arg3_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4463307Z arg4_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4463493Z arg5_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4463672Z arg6_1 = rand_strided((), (), device='cpu', dtype=torch.int64) 2023-01-11T21:05:10.4463902Z arg7_1 = rand_strided((1, 3, 55, 55, 55), (499125, 1, 9075, 165, 3), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4464058Z print_performance(lambda: call([arg0_1, arg1_1, arg2_1, arg3_1, arg4_1, arg5_1, arg6_1, arg7_1])) 2023-01-11T21:05:10.4464064Z 2023-01-11T21:05:10.4464068Z 2023-01-11T21:05:10.4464162Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.4464217Z import torch 2023-01-11T21:05:10.4464288Z import random 2023-01-11T21:05:10.4464403Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.4464523Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.4464528Z 2023-01-11T21:05:10.4464606Z aten = torch.ops.aten 2023-01-11T21:05:10.4464740Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.4464876Z async_compile = AsyncCompile() 2023-01-11T21:05:10.4464881Z 2023-01-11T21:05:10.4464885Z 2023-01-11T21:05:10.4464971Z async_compile.wait(globals()) 2023-01-11T21:05:10.4465029Z del async_compile 2023-01-11T21:05:10.4465036Z 2023-01-11T21:05:10.4465105Z def call(args): 2023-01-11T21:05:10.4465221Z arg0_1, arg1_1, arg2_1, arg3_1, arg4_1, arg5_1, arg6_1, arg7_1 = args 2023-01-11T21:05:10.4465291Z args.clear() 2023-01-11T21:05:10.4465431Z buf0 = aten.convolution(arg7_1, arg0_1, arg1_1, (1, 1, 1), (0, 0, 0), (2, 2, 2), False, (0, 0, 0), 4) 2023-01-11T21:05:10.4465549Z assert_size_stride(buf0, (1, 128, 51, 51, 51), (16979328, 132651, 2601, 51, 1)) 2023-01-11T21:05:10.4465615Z del arg0_1 2023-01-11T21:05:10.4465668Z del arg1_1 2023-01-11T21:05:10.4465732Z del arg7_1 2023-01-11T21:05:10.4465804Z return (buf0, ) 2023-01-11T21:05:10.4465809Z 2023-01-11T21:05:10.4465813Z 2023-01-11T21:05:10.4465888Z if __name__ == "__main__": 2023-01-11T21:05:10.4466007Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.4466130Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.4466383Z arg0_1 = rand_strided((128, 3, 3, 3, 3), (81, 27, 9, 3, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4466581Z arg1_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4466763Z arg2_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4466952Z arg3_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4467140Z arg4_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4467324Z arg5_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4467551Z arg6_1 = rand_strided((), (), device='cpu', dtype=torch.int64) 2023-01-11T21:05:10.4467856Z arg7_1 = rand_strided((1, 12, 55, 55, 55), (1996500, 166375, 3025, 55, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4468013Z print_performance(lambda: call([arg0_1, arg1_1, arg2_1, arg3_1, arg4_1, arg5_1, arg6_1, arg7_1])) 2023-01-11T21:05:10.4468018Z 2023-01-11T21:05:10.4468022Z 2023-01-11T21:05:10.4468117Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.4468172Z import torch 2023-01-11T21:05:10.4468240Z import random 2023-01-11T21:05:10.4468354Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.4468471Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.4468475Z 2023-01-11T21:05:10.4468550Z aten = torch.ops.aten 2023-01-11T21:05:10.4468683Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.4468772Z async_compile = AsyncCompile() 2023-01-11T21:05:10.4468776Z 2023-01-11T21:05:10.4468780Z 2023-01-11T21:05:10.4468913Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.4469103Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.4469224Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:05:10.4469322Z float* __restrict__ out_ptr0) 2023-01-11T21:05:10.4469382Z { 2023-01-11T21:05:10.4469481Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.4469541Z { 2023-01-11T21:05:10.4469616Z #pragma omp for 2023-01-11T21:05:10.4469685Z for(long i0=0; i0<12; i0+=1) 2023-01-11T21:05:10.4469746Z { 2023-01-11T21:05:10.4469825Z #pragma GCC ivdep 2023-01-11T21:05:10.4469914Z for(long i1=0; i1<166375; i1+=1) 2023-01-11T21:05:10.4469977Z { 2023-01-11T21:05:10.4470040Z { 2023-01-11T21:05:10.4470105Z { 2023-01-11T21:05:10.4470195Z auto tmp0 = in_ptr0[i0 + (12*i1)]; 2023-01-11T21:05:10.4470291Z out_ptr0[i1 + (166375*i0)] = tmp0; 2023-01-11T21:05:10.4470357Z } 2023-01-11T21:05:10.4470420Z } 2023-01-11T21:05:10.4470520Z } 2023-01-11T21:05:10.4470580Z } 2023-01-11T21:05:10.4470640Z } 2023-01-11T21:05:10.4470686Z } 2023-01-11T21:05:10.4470764Z ''') 2023-01-11T21:05:10.4470769Z 2023-01-11T21:05:10.4470773Z 2023-01-11T21:05:10.4470865Z async_compile.wait(globals()) 2023-01-11T21:05:10.4470936Z del async_compile 2023-01-11T21:05:10.4470940Z 2023-01-11T21:05:10.4471009Z def call(args): 2023-01-11T21:05:10.4471124Z arg0_1, arg1_1, arg2_1, arg3_1, arg4_1, arg5_1, arg6_1, arg7_1 = args 2023-01-11T21:05:10.4471194Z args.clear() 2023-01-11T21:05:10.4471419Z buf0 = empty_strided((1, 12, 55, 55, 55), (1996500, 166375, 3025, 55, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4471552Z kernel_cpp_0(c_void_p(arg7_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:05:10.4471618Z del arg7_1 2023-01-11T21:05:10.4471758Z buf1 = aten.convolution(buf0, arg0_1, arg1_1, (1, 1, 1), (0, 0, 0), (2, 2, 2), False, (0, 0, 0), 4) 2023-01-11T21:05:10.4471873Z assert_size_stride(buf1, (1, 128, 51, 51, 51), (16979328, 132651, 2601, 51, 1)) 2023-01-11T21:05:10.4471941Z del arg0_1 2023-01-11T21:05:10.4472007Z del arg1_1 2023-01-11T21:05:10.4472063Z return (buf1, ) 2023-01-11T21:05:10.4472080Z 2023-01-11T21:05:10.4472114Z 2023-01-11T21:05:10.4472176Z if __name__ == "__main__": 2023-01-11T21:05:10.4472288Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.4472407Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.4472628Z arg0_1 = rand_strided((128, 3, 3, 3, 3), (81, 27, 9, 3, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4472820Z arg1_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4473011Z arg2_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4473201Z arg3_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4473387Z arg4_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4473563Z arg5_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4473739Z arg6_1 = rand_strided((), (), device='cpu', dtype=torch.int64) 2023-01-11T21:05:10.4473973Z arg7_1 = rand_strided((1, 12, 55, 55, 55), (1996500, 1, 36300, 660, 12), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4474126Z print_performance(lambda: call([arg0_1, arg1_1, arg2_1, arg3_1, arg4_1, arg5_1, arg6_1, arg7_1])) 2023-01-11T21:05:10.4474131Z 2023-01-11T21:05:10.4474196Z ok (141.108s) 2023-01-11T21:05:10.4474649Z test_conv_functional_bn_fuse_cpu (__main__.CpuTests) ... inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.4474774Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.4475032Z [2023-01-11 20:49:16,611] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 149 2023-01-11T21:05:10.4475295Z [2023-01-11 20:49:16,654] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 149 2023-01-11T21:05:10.4475301Z 2023-01-11T21:05:10.4475394Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.4475449Z import torch 2023-01-11T21:05:10.4475517Z import random 2023-01-11T21:05:10.4475631Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.4475749Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.4475754Z 2023-01-11T21:05:10.4475833Z aten = torch.ops.aten 2023-01-11T21:05:10.4475964Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.4476053Z async_compile = AsyncCompile() 2023-01-11T21:05:10.4476058Z 2023-01-11T21:05:10.4476062Z 2023-01-11T21:05:10.4476148Z async_compile.wait(globals()) 2023-01-11T21:05:10.4476241Z del async_compile 2023-01-11T21:05:10.4476246Z 2023-01-11T21:05:10.4476314Z def call(args): 2023-01-11T21:05:10.4476425Z arg0_1, arg1_1, arg2_1, arg3_1, arg4_1, arg5_1, arg6_1 = args 2023-01-11T21:05:10.4476497Z args.clear() 2023-01-11T21:05:10.4476632Z buf0 = aten.convolution(arg6_1, arg2_1, arg3_1, (1, 1), (0, 0), (1, 1), False, (0, 0), 1) 2023-01-11T21:05:10.4476746Z assert_size_stride(buf0, (1, 64, 554, 54), (1914624, 29916, 54, 1)) 2023-01-11T21:05:10.4476814Z del arg2_1 2023-01-11T21:05:10.4476866Z del arg3_1 2023-01-11T21:05:10.4476930Z del arg6_1 2023-01-11T21:05:10.4476999Z return (buf0, ) 2023-01-11T21:05:10.4477004Z 2023-01-11T21:05:10.4477009Z 2023-01-11T21:05:10.4477085Z if __name__ == "__main__": 2023-01-11T21:05:10.4477200Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.4477322Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.4477518Z arg0_1 = rand_strided((64, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4477700Z arg1_1 = rand_strided((64, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4477908Z arg2_1 = rand_strided((64, 3, 3, 3), (27, 9, 3, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4478129Z arg3_1 = rand_strided((64, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4478413Z arg4_1 = rand_strided((64, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4478673Z arg5_1 = rand_strided((64, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4478899Z arg6_1 = rand_strided((1, 3, 556, 56), (93408, 31136, 56, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4479051Z print_performance(lambda: call([arg0_1, arg1_1, arg2_1, arg3_1, arg4_1, arg5_1, arg6_1])) 2023-01-11T21:05:10.4479056Z 2023-01-11T21:05:10.4479123Z ok (0.758s) 2023-01-11T21:05:10.4479579Z test_convolution1_cpu (__main__.CpuTests) ... inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.4479710Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.4479961Z [2023-01-11 20:49:17,317] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 150 2023-01-11T21:05:10.4480227Z [2023-01-11 20:49:20,062] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 150 2023-01-11T21:05:10.4480233Z 2023-01-11T21:05:10.4480328Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.4480397Z import torch 2023-01-11T21:05:10.4480467Z import random 2023-01-11T21:05:10.4480691Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.4480816Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.4480821Z 2023-01-11T21:05:10.4480903Z aten = torch.ops.aten 2023-01-11T21:05:10.4481026Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.4481119Z async_compile = AsyncCompile() 2023-01-11T21:05:10.4481124Z 2023-01-11T21:05:10.4481130Z 2023-01-11T21:05:10.4481265Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.4481472Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.4481595Z extern "C" void kernel(float* __restrict__ in_out_ptr0, 2023-01-11T21:05:10.4481693Z bool* __restrict__ out_ptr0) 2023-01-11T21:05:10.4481756Z { 2023-01-11T21:05:10.4481855Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.4481903Z { 2023-01-11T21:05:10.4481983Z #pragma omp for 2023-01-11T21:05:10.4482067Z for(long i0=0; i0<2352; i0+=1) 2023-01-11T21:05:10.4482129Z { 2023-01-11T21:05:10.4482194Z { 2023-01-11T21:05:10.4482257Z { 2023-01-11T21:05:10.4482416Z auto tmp0 = in_out_ptr0[i0]; 2023-01-11T21:05:10.4482511Z auto tmp1 = tmp0 * (tmp0>0); 2023-01-11T21:05:10.4482617Z auto tmp2 = static_cast(0); 2023-01-11T21:05:10.4482714Z auto tmp3 = tmp1 <= tmp2; 2023-01-11T21:05:10.4482805Z in_out_ptr0[i0] = tmp1; 2023-01-11T21:05:10.4482892Z out_ptr0[i0] = tmp3; 2023-01-11T21:05:10.4482957Z } 2023-01-11T21:05:10.4483006Z } 2023-01-11T21:05:10.4483067Z } 2023-01-11T21:05:10.4483128Z } 2023-01-11T21:05:10.4483189Z } 2023-01-11T21:05:10.4483270Z ''') 2023-01-11T21:05:10.4483276Z 2023-01-11T21:05:10.4483280Z 2023-01-11T21:05:10.4483371Z async_compile.wait(globals()) 2023-01-11T21:05:10.4483443Z del async_compile 2023-01-11T21:05:10.4483448Z 2023-01-11T21:05:10.4483504Z def call(args): 2023-01-11T21:05:10.4483608Z primals_1, primals_2, primals_3 = args 2023-01-11T21:05:10.4483680Z args.clear() 2023-01-11T21:05:10.4483836Z buf0 = aten.convolution(primals_3, primals_1, primals_2, (1, 1), (0, 0), (1, 1), False, (0, 0), 1) 2023-01-11T21:05:10.4483948Z assert_size_stride(buf0, (2, 6, 14, 14), (1176, 196, 14, 1)) 2023-01-11T21:05:10.4484063Z del primals_2 2023-01-11T21:05:10.4484189Z buf1 = as_strided(buf0, (2, 6, 14, 14), (1176, 196, 14, 1)); del buf0 # reuse 2023-01-11T21:05:10.4484405Z buf2 = empty_strided((2, 6, 14, 14), (1176, 196, 14, 1), device='cpu', dtype=torch.bool) 2023-01-11T21:05:10.4484526Z kernel_cpp_0(c_void_p(buf1.data_ptr()), c_void_p(buf2.data_ptr())) 2023-01-11T21:05:10.4484630Z return (buf1, primals_1, primals_3, buf2, ) 2023-01-11T21:05:10.4484635Z 2023-01-11T21:05:10.4484640Z 2023-01-11T21:05:10.4484714Z if __name__ == "__main__": 2023-01-11T21:05:10.4484827Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.4484950Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.4485170Z primals_1 = rand_strided((6, 5, 3, 3), (45, 9, 3, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4485370Z primals_2 = rand_strided((6, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4485595Z primals_3 = rand_strided((2, 5, 16, 16), (1280, 256, 16, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4485720Z print_performance(lambda: call([primals_1, primals_2, primals_3])) 2023-01-11T21:05:10.4485738Z 2023-01-11T21:05:10.4485792Z ok (2.936s) 2023-01-11T21:05:10.4486249Z test_convolution2_cpu (__main__.CpuTests) ... inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.4486377Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.4486637Z [2023-01-11 20:49:20,206] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 151 2023-01-11T21:05:10.4486906Z [2023-01-11 20:49:20,266] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 151 2023-01-11T21:05:10.4486914Z 2023-01-11T21:05:10.4487010Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.4487081Z import torch 2023-01-11T21:05:10.4487152Z import random 2023-01-11T21:05:10.4487255Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.4487376Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.4487381Z 2023-01-11T21:05:10.4487462Z aten = torch.ops.aten 2023-01-11T21:05:10.4487594Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.4487686Z async_compile = AsyncCompile() 2023-01-11T21:05:10.4487691Z 2023-01-11T21:05:10.4487695Z 2023-01-11T21:05:10.4487782Z async_compile.wait(globals()) 2023-01-11T21:05:10.4487853Z del async_compile 2023-01-11T21:05:10.4487858Z 2023-01-11T21:05:10.4487960Z def call(args): 2023-01-11T21:05:10.4488028Z arg0_1, arg1_1, arg2_1 = args 2023-01-11T21:05:10.4488097Z args.clear() 2023-01-11T21:05:10.4488230Z buf0 = aten.convolution(arg0_1, arg1_1, arg2_1, (4,), (0,), (1,), True, (0,), 1) 2023-01-11T21:05:10.4488337Z assert_size_stride(buf0, (2, 16, 364), (5824, 364, 1)) 2023-01-11T21:05:10.4488403Z del arg0_1 2023-01-11T21:05:10.4488471Z del arg1_1 2023-01-11T21:05:10.4488534Z del arg2_1 2023-01-11T21:05:10.4488591Z return (buf0, ) 2023-01-11T21:05:10.4488608Z 2023-01-11T21:05:10.4488612Z 2023-01-11T21:05:10.4488674Z if __name__ == "__main__": 2023-01-11T21:05:10.4488787Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.4488909Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.4489121Z arg0_1 = rand_strided((2, 32, 90), (2880, 90, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4489329Z arg1_1 = rand_strided((32, 16, 8), (128, 8, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4489528Z arg2_1 = rand_strided((16, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4489649Z print_performance(lambda: call([arg0_1, arg1_1, arg2_1])) 2023-01-11T21:05:10.4489655Z 2023-01-11T21:05:10.4489769Z ok (0.200s) 2023-01-11T21:05:10.4490203Z test_cos_cpu (__main__.CpuTests) ... inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.4490333Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.4490594Z [2023-01-11 20:49:20,341] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 152 2023-01-11T21:05:10.4490858Z [2023-01-11 20:49:23,075] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 152 2023-01-11T21:05:10.4490866Z 2023-01-11T21:05:10.4490959Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.4491029Z import torch 2023-01-11T21:05:10.4491098Z import random 2023-01-11T21:05:10.4491217Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.4491325Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.4491345Z 2023-01-11T21:05:10.4491409Z aten = torch.ops.aten 2023-01-11T21:05:10.4491543Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.4491635Z async_compile = AsyncCompile() 2023-01-11T21:05:10.4491640Z 2023-01-11T21:05:10.4491644Z 2023-01-11T21:05:10.4491777Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.4491984Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.4492105Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:05:10.4492207Z float* __restrict__ out_ptr0, 2023-01-11T21:05:10.4492307Z float* __restrict__ out_ptr1) 2023-01-11T21:05:10.4492355Z { 2023-01-11T21:05:10.4492453Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.4492516Z { 2023-01-11T21:05:10.4492594Z #pragma omp for 2023-01-11T21:05:10.4492675Z for(long i0=0; i0<16; i0+=1) 2023-01-11T21:05:10.4492737Z { 2023-01-11T21:05:10.4492880Z auto tmp0 = at::vec::Vectorized::loadu(in_ptr0 + 16*i0); 2023-01-11T21:05:10.4492963Z auto tmp1 = tmp0.cos(); 2023-01-11T21:05:10.4493098Z auto tmp2 = at::vec::Vectorized(static_cast(2)); 2023-01-11T21:05:10.4493182Z auto tmp3 = tmp1 + tmp2; 2023-01-11T21:05:10.4493314Z auto tmp4 = at::vec::Vectorized(static_cast(1)); 2023-01-11T21:05:10.4493398Z auto tmp5 = tmp0 + tmp4; 2023-01-11T21:05:10.4493480Z auto tmp6 = tmp5.cos(); 2023-01-11T21:05:10.4493573Z tmp3.store(out_ptr0 + 16*i0); 2023-01-11T21:05:10.4493685Z tmp6.store(out_ptr1 + 16*i0); 2023-01-11T21:05:10.4493746Z } 2023-01-11T21:05:10.4493841Z #pragma omp for simd simdlen(8) 2023-01-11T21:05:10.4493923Z for(long i0=256; i0<256; i0+=1) 2023-01-11T21:05:10.4493986Z { 2023-01-11T21:05:10.4494068Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:05:10.4494157Z auto tmp1 = std::cos(tmp0); 2023-01-11T21:05:10.4494244Z auto tmp2 = static_cast(2); 2023-01-11T21:05:10.4494325Z auto tmp3 = tmp1 + tmp2; 2023-01-11T21:05:10.4494422Z auto tmp4 = static_cast(1); 2023-01-11T21:05:10.4494504Z auto tmp5 = tmp0 + tmp4; 2023-01-11T21:05:10.4494591Z auto tmp6 = std::cos(tmp5); 2023-01-11T21:05:10.4494669Z out_ptr0[i0] = tmp3; 2023-01-11T21:05:10.4494745Z out_ptr1[i0] = tmp6; 2023-01-11T21:05:10.4494792Z } 2023-01-11T21:05:10.4494851Z } 2023-01-11T21:05:10.4494911Z } 2023-01-11T21:05:10.4494994Z ''') 2023-01-11T21:05:10.4494998Z 2023-01-11T21:05:10.4495003Z 2023-01-11T21:05:10.4495090Z async_compile.wait(globals()) 2023-01-11T21:05:10.4495162Z del async_compile 2023-01-11T21:05:10.4495167Z 2023-01-11T21:05:10.4495236Z def call(args): 2023-01-11T21:05:10.4495323Z arg0_1, = args 2023-01-11T21:05:10.4495395Z args.clear() 2023-01-11T21:05:10.4495598Z buf0 = empty_strided((16, 16), (16, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4495797Z buf1 = empty_strided((16, 16), (16, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4495962Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(buf0.data_ptr()), c_void_p(buf1.data_ptr())) 2023-01-11T21:05:10.4496031Z del arg0_1 2023-01-11T21:05:10.4496106Z return (buf0, buf1, ) 2023-01-11T21:05:10.4496111Z 2023-01-11T21:05:10.4496116Z 2023-01-11T21:05:10.4496191Z if __name__ == "__main__": 2023-01-11T21:05:10.4496292Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.4496414Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.4496615Z arg0_1 = rand_strided((16, 16), (16, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4496722Z print_performance(lambda: call([arg0_1])) 2023-01-11T21:05:10.4496729Z 2023-01-11T21:05:10.4496793Z ok (2.799s) 2023-01-11T21:05:10.4496985Z test_cpp_wrapper_cpu (__main__.CpuTests) ... skip: test is slow; run with PYTORCH_TEST_WITH_SLOW to enable test (0.002s) 2023-01-11T21:05:10.4497120Z test_cudnn_rnn_cpu (__main__.CpuTests) ... skip: requires CUDA (0.006s) 2023-01-11T21:05:10.4497332Z test_dense_mask_index_cpu (__main__.CpuTests) ... skip: https://github.com/pytorch/torchdynamo/issues/1697 (0.002s) 2023-01-11T21:05:10.4497775Z test_div1_cpu (__main__.CpuTests) ... inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.4497893Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.4498157Z [2023-01-11 20:49:23,220] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 153 2023-01-11T21:05:10.4498419Z [2023-01-11 20:49:25,981] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 153 2023-01-11T21:05:10.4498425Z 2023-01-11T21:05:10.4498619Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.4498693Z import torch 2023-01-11T21:05:10.4498765Z import random 2023-01-11T21:05:10.4498884Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.4499005Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.4499010Z 2023-01-11T21:05:10.4499074Z aten = torch.ops.aten 2023-01-11T21:05:10.4499211Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.4499304Z async_compile = AsyncCompile() 2023-01-11T21:05:10.4499344Z 2023-01-11T21:05:10.4499348Z 2023-01-11T21:05:10.4499488Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.4499696Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.4499815Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:05:10.4499919Z const float* __restrict__ in_ptr1, 2023-01-11T21:05:10.4500018Z float* __restrict__ out_ptr0, 2023-01-11T21:05:10.4500102Z float* __restrict__ out_ptr1, 2023-01-11T21:05:10.4500195Z float* __restrict__ out_ptr2, 2023-01-11T21:05:10.4500288Z float* __restrict__ out_ptr3, 2023-01-11T21:05:10.4500381Z float* __restrict__ out_ptr4) 2023-01-11T21:05:10.4500441Z { 2023-01-11T21:05:10.4500539Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.4500599Z { 2023-01-11T21:05:10.4500661Z #pragma omp for 2023-01-11T21:05:10.4500744Z for(long i0=0; i0<4; i0+=1) 2023-01-11T21:05:10.4500805Z { 2023-01-11T21:05:10.4500940Z auto tmp0 = at::vec::Vectorized::loadu(in_ptr0 + 16*i0); 2023-01-11T21:05:10.4501104Z auto tmp1 = at::vec::Vectorized::loadu(in_ptr1 + 16*i0); 2023-01-11T21:05:10.4501191Z auto tmp2 = tmp0 / tmp1; 2023-01-11T21:05:10.4501280Z auto tmp3 = tmp2.floor(); 2023-01-11T21:05:10.4501351Z auto tmp4 = tmp2.trunc(); 2023-01-11T21:05:10.4501442Z tmp2.store(out_ptr0 + 16*i0); 2023-01-11T21:05:10.4501532Z tmp3.store(out_ptr1 + 16*i0); 2023-01-11T21:05:10.4501621Z tmp4.store(out_ptr2 + 16*i0); 2023-01-11T21:05:10.4501708Z tmp2.store(out_ptr3 + 16*i0); 2023-01-11T21:05:10.4501794Z tmp3.store(out_ptr4 + 16*i0); 2023-01-11T21:05:10.4501855Z } 2023-01-11T21:05:10.4501938Z #pragma omp for simd simdlen(8) 2023-01-11T21:05:10.4502021Z for(long i0=64; i0<64; i0+=1) 2023-01-11T21:05:10.4502084Z { 2023-01-11T21:05:10.4502168Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:05:10.4502249Z auto tmp1 = in_ptr1[i0]; 2023-01-11T21:05:10.4502333Z auto tmp2 = tmp0 / tmp1; 2023-01-11T21:05:10.4502425Z auto tmp3 = std::floor(tmp2); 2023-01-11T21:05:10.4502503Z auto tmp4 = std::trunc(tmp2); 2023-01-11T21:05:10.4502583Z out_ptr0[i0] = tmp2; 2023-01-11T21:05:10.4502660Z out_ptr1[i0] = tmp3; 2023-01-11T21:05:10.4502736Z out_ptr2[i0] = tmp4; 2023-01-11T21:05:10.4502812Z out_ptr3[i0] = tmp2; 2023-01-11T21:05:10.4502888Z out_ptr4[i0] = tmp3; 2023-01-11T21:05:10.4502947Z } 2023-01-11T21:05:10.4502994Z } 2023-01-11T21:05:10.4503053Z } 2023-01-11T21:05:10.4503132Z ''') 2023-01-11T21:05:10.4503137Z 2023-01-11T21:05:10.4503142Z 2023-01-11T21:05:10.4503230Z async_compile.wait(globals()) 2023-01-11T21:05:10.4503301Z del async_compile 2023-01-11T21:05:10.4503308Z 2023-01-11T21:05:10.4503378Z def call(args): 2023-01-11T21:05:10.4503453Z arg0_1, arg1_1 = args 2023-01-11T21:05:10.4503509Z args.clear() 2023-01-11T21:05:10.4503708Z buf0 = empty_strided((8, 8), (8, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4503900Z buf1 = empty_strided((8, 8), (8, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4504088Z buf2 = empty_strided((8, 8), (8, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4504276Z buf3 = empty_strided((8, 8), (8, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4504462Z buf4 = empty_strided((8, 8), (8, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4504728Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(arg1_1.data_ptr()), c_void_p(buf0.data_ptr()), c_void_p(buf1.data_ptr()), c_void_p(buf2.data_ptr()), c_void_p(buf3.data_ptr()), c_void_p(buf4.data_ptr())) 2023-01-11T21:05:10.4504797Z del arg0_1 2023-01-11T21:05:10.4504849Z del arg1_1 2023-01-11T21:05:10.4504978Z return (buf0, buf1, buf2, buf3, buf4, ) 2023-01-11T21:05:10.4504983Z 2023-01-11T21:05:10.4504987Z 2023-01-11T21:05:10.4505062Z if __name__ == "__main__": 2023-01-11T21:05:10.4505179Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.4505302Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.4505498Z arg0_1 = rand_strided((8, 8), (8, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4505694Z arg1_1 = rand_strided((8, 8), (8, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4505810Z print_performance(lambda: call([arg0_1, arg1_1])) 2023-01-11T21:05:10.4505815Z 2023-01-11T21:05:10.4505879Z ok (2.895s) 2023-01-11T21:05:10.4506310Z test_div2_cpu (__main__.CpuTests) ... inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.4506441Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.4506730Z [2023-01-11 20:49:26,115] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 154 2023-01-11T21:05:10.4507000Z [2023-01-11 20:49:28,782] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 154 2023-01-11T21:05:10.4507005Z 2023-01-11T21:05:10.4507099Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.4507167Z import torch 2023-01-11T21:05:10.4507236Z import random 2023-01-11T21:05:10.4507353Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.4507460Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.4507477Z 2023-01-11T21:05:10.4507541Z aten = torch.ops.aten 2023-01-11T21:05:10.4507674Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.4507765Z async_compile = AsyncCompile() 2023-01-11T21:05:10.4507773Z 2023-01-11T21:05:10.4507777Z 2023-01-11T21:05:10.4507912Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.4508123Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.4508242Z extern "C" void kernel(const long* __restrict__ in_ptr0, 2023-01-11T21:05:10.4508346Z const float* __restrict__ in_ptr1, 2023-01-11T21:05:10.4508444Z float* __restrict__ out_ptr0, 2023-01-11T21:05:10.4508528Z float* __restrict__ out_ptr1, 2023-01-11T21:05:10.4508621Z float* __restrict__ out_ptr2, 2023-01-11T21:05:10.4508714Z float* __restrict__ out_ptr3, 2023-01-11T21:05:10.4508805Z float* __restrict__ out_ptr4) 2023-01-11T21:05:10.4508865Z { 2023-01-11T21:05:10.4508962Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.4509023Z { 2023-01-11T21:05:10.4509086Z #pragma omp for 2023-01-11T21:05:10.4509172Z for(long i0=0; i0<64; i0+=1) 2023-01-11T21:05:10.4509233Z { 2023-01-11T21:05:10.4509297Z { 2023-01-11T21:05:10.4509364Z { 2023-01-11T21:05:10.4509458Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:05:10.4509536Z auto tmp2 = in_ptr1[i0]; 2023-01-11T21:05:10.4509644Z auto tmp1 = static_cast(tmp0); 2023-01-11T21:05:10.4509735Z auto tmp3 = tmp1 / tmp2; 2023-01-11T21:05:10.4509836Z auto tmp4 = std::floor(tmp3); 2023-01-11T21:05:10.4509935Z auto tmp5 = std::trunc(tmp3); 2023-01-11T21:05:10.4510019Z out_ptr0[i0] = tmp3; 2023-01-11T21:05:10.4510102Z out_ptr1[i0] = tmp4; 2023-01-11T21:05:10.4510183Z out_ptr2[i0] = tmp5; 2023-01-11T21:05:10.4510253Z out_ptr3[i0] = tmp3; 2023-01-11T21:05:10.4510333Z out_ptr4[i0] = tmp4; 2023-01-11T21:05:10.4510434Z } 2023-01-11T21:05:10.4510499Z } 2023-01-11T21:05:10.4510560Z } 2023-01-11T21:05:10.4510621Z } 2023-01-11T21:05:10.4510667Z } 2023-01-11T21:05:10.4510745Z ''') 2023-01-11T21:05:10.4510753Z 2023-01-11T21:05:10.4510757Z 2023-01-11T21:05:10.4510847Z async_compile.wait(globals()) 2023-01-11T21:05:10.4510919Z del async_compile 2023-01-11T21:05:10.4510924Z 2023-01-11T21:05:10.4510994Z def call(args): 2023-01-11T21:05:10.4511069Z arg0_1, arg1_1 = args 2023-01-11T21:05:10.4511140Z args.clear() 2023-01-11T21:05:10.4511338Z buf0 = empty_strided((8, 8), (8, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4511518Z buf1 = empty_strided((8, 8), (8, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4511705Z buf2 = empty_strided((8, 8), (8, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4511891Z buf3 = empty_strided((8, 8), (8, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4512076Z buf4 = empty_strided((8, 8), (8, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4512366Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(arg1_1.data_ptr()), c_void_p(buf0.data_ptr()), c_void_p(buf1.data_ptr()), c_void_p(buf2.data_ptr()), c_void_p(buf3.data_ptr()), c_void_p(buf4.data_ptr())) 2023-01-11T21:05:10.4512438Z del arg0_1 2023-01-11T21:05:10.4512506Z del arg1_1 2023-01-11T21:05:10.4512603Z return (buf0, buf1, buf2, buf3, buf4, ) 2023-01-11T21:05:10.4512609Z 2023-01-11T21:05:10.4512613Z 2023-01-11T21:05:10.4512675Z if __name__ == "__main__": 2023-01-11T21:05:10.4512790Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.4512913Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.4513108Z arg0_1 = rand_strided((8, 8), (8, 1), device='cpu', dtype=torch.int64) 2023-01-11T21:05:10.4513303Z arg1_1 = rand_strided((8, 8), (8, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4513420Z print_performance(lambda: call([arg0_1, arg1_1])) 2023-01-11T21:05:10.4513427Z 2023-01-11T21:05:10.4513494Z ok (2.800s) 2023-01-11T21:05:10.4513940Z test_div3_cpu (__main__.CpuTests) ... inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.4514069Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.4514317Z [2023-01-11 20:49:28,884] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 155 2023-01-11T21:05:10.4514582Z [2023-01-11 20:49:31,615] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 155 2023-01-11T21:05:10.4514588Z 2023-01-11T21:05:10.4514683Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.4514753Z import torch 2023-01-11T21:05:10.4514824Z import random 2023-01-11T21:05:10.4514940Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.4515061Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.4515067Z 2023-01-11T21:05:10.4515146Z aten = torch.ops.aten 2023-01-11T21:05:10.4515267Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.4515358Z async_compile = AsyncCompile() 2023-01-11T21:05:10.4515362Z 2023-01-11T21:05:10.4515366Z 2023-01-11T21:05:10.4515501Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.4515705Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.4515823Z extern "C" void kernel(const long* __restrict__ in_ptr0, 2023-01-11T21:05:10.4515928Z const long* __restrict__ in_ptr1, 2023-01-11T21:05:10.4516025Z float* __restrict__ out_ptr0, 2023-01-11T21:05:10.4516122Z long* __restrict__ out_ptr1, 2023-01-11T21:05:10.4516233Z long* __restrict__ out_ptr2, 2023-01-11T21:05:10.4516328Z float* __restrict__ out_ptr3, 2023-01-11T21:05:10.4516422Z long* __restrict__ out_ptr4) 2023-01-11T21:05:10.4516485Z { 2023-01-11T21:05:10.4516584Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.4516645Z { 2023-01-11T21:05:10.4516722Z #pragma omp for 2023-01-11T21:05:10.4516792Z for(long i0=0; i0<64; i0+=1) 2023-01-11T21:05:10.4516853Z { 2023-01-11T21:05:10.4516915Z { 2023-01-11T21:05:10.4516980Z { 2023-01-11T21:05:10.4517073Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:05:10.4517165Z auto tmp2 = in_ptr1[i0]; 2023-01-11T21:05:10.4517274Z auto tmp1 = static_cast(tmp0); 2023-01-11T21:05:10.4517367Z auto tmp3 = static_cast(tmp2); 2023-01-11T21:05:10.4517455Z auto tmp4 = tmp1 / tmp3; 2023-01-11T21:05:10.4517713Z auto tmp5 = ((tmp0 < 0) != (tmp2 < 0) ? (tmp0 % tmp2 != 0 ? tmp0 / tmp2 - 1 : tmp0 / tmp2) : tmp0 / tmp2); 2023-01-11T21:05:10.4517805Z auto tmp6 = tmp0 / tmp2; 2023-01-11T21:05:10.4517917Z out_ptr0[i0] = tmp4; 2023-01-11T21:05:10.4518005Z out_ptr1[i0] = tmp5; 2023-01-11T21:05:10.4518086Z out_ptr2[i0] = tmp6; 2023-01-11T21:05:10.4518156Z out_ptr3[i0] = tmp4; 2023-01-11T21:05:10.4518237Z out_ptr4[i0] = tmp5; 2023-01-11T21:05:10.4518300Z } 2023-01-11T21:05:10.4518363Z } 2023-01-11T21:05:10.4518425Z } 2023-01-11T21:05:10.4518486Z } 2023-01-11T21:05:10.4518544Z } 2023-01-11T21:05:10.4518608Z ''') 2023-01-11T21:05:10.4518613Z 2023-01-11T21:05:10.4518617Z 2023-01-11T21:05:10.4518708Z async_compile.wait(globals()) 2023-01-11T21:05:10.4518780Z del async_compile 2023-01-11T21:05:10.4518784Z 2023-01-11T21:05:10.4518856Z def call(args): 2023-01-11T21:05:10.4518931Z arg0_1, arg1_1 = args 2023-01-11T21:05:10.4519000Z args.clear() 2023-01-11T21:05:10.4519193Z buf0 = empty_strided((8, 8), (8, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4519373Z buf1 = empty_strided((8, 8), (8, 1), device='cpu', dtype=torch.int64) 2023-01-11T21:05:10.4519563Z buf2 = empty_strided((8, 8), (8, 1), device='cpu', dtype=torch.int64) 2023-01-11T21:05:10.4519751Z buf3 = empty_strided((8, 8), (8, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4519935Z buf4 = empty_strided((8, 8), (8, 1), device='cpu', dtype=torch.int64) 2023-01-11T21:05:10.4520197Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(arg1_1.data_ptr()), c_void_p(buf0.data_ptr()), c_void_p(buf1.data_ptr()), c_void_p(buf2.data_ptr()), c_void_p(buf3.data_ptr()), c_void_p(buf4.data_ptr())) 2023-01-11T21:05:10.4520266Z del arg0_1 2023-01-11T21:05:10.4520330Z del arg1_1 2023-01-11T21:05:10.4520427Z return (buf0, buf1, buf2, buf3, buf4, ) 2023-01-11T21:05:10.4520434Z 2023-01-11T21:05:10.4520438Z 2023-01-11T21:05:10.4520512Z if __name__ == "__main__": 2023-01-11T21:05:10.4520752Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.4520880Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.4521077Z arg0_1 = rand_strided((8, 8), (8, 1), device='cpu', dtype=torch.int64) 2023-01-11T21:05:10.4521271Z arg1_1 = rand_strided((8, 8), (8, 1), device='cpu', dtype=torch.int64) 2023-01-11T21:05:10.4521387Z print_performance(lambda: call([arg0_1, arg1_1])) 2023-01-11T21:05:10.4521392Z 2023-01-11T21:05:10.4521459Z ok (2.831s) 2023-01-11T21:05:10.4521903Z test_div4_cpu (__main__.CpuTests) ... inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.4522130Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.4522383Z [2023-01-11 20:49:31,718] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 156 2023-01-11T21:05:10.4522652Z [2023-01-11 20:49:31,748] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 156 2023-01-11T21:05:10.4522657Z 2023-01-11T21:05:10.4522752Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.4522821Z import torch 2023-01-11T21:05:10.4522894Z import random 2023-01-11T21:05:10.4523011Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.4523132Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.4523138Z 2023-01-11T21:05:10.4523216Z aten = torch.ops.aten 2023-01-11T21:05:10.4523336Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.4523427Z async_compile = AsyncCompile() 2023-01-11T21:05:10.4523432Z 2023-01-11T21:05:10.4523438Z 2023-01-11T21:05:10.4523573Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.4523777Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.4523934Z extern "C" void kernel(const long* __restrict__ in_ptr0, 2023-01-11T21:05:10.4524040Z const long* __restrict__ in_ptr1, 2023-01-11T21:05:10.4524139Z float* __restrict__ out_ptr0, 2023-01-11T21:05:10.4524234Z long* __restrict__ out_ptr1, 2023-01-11T21:05:10.4524314Z long* __restrict__ out_ptr2, 2023-01-11T21:05:10.4524409Z float* __restrict__ out_ptr3, 2023-01-11T21:05:10.4524501Z long* __restrict__ out_ptr4) 2023-01-11T21:05:10.4524560Z { 2023-01-11T21:05:10.4524659Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.4524719Z { 2023-01-11T21:05:10.4524793Z #pragma omp for 2023-01-11T21:05:10.4524862Z for(long i0=0; i0<64; i0+=1) 2023-01-11T21:05:10.4524926Z { 2023-01-11T21:05:10.4524991Z { 2023-01-11T21:05:10.4525054Z { 2023-01-11T21:05:10.4525146Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:05:10.4525238Z auto tmp2 = in_ptr1[i0]; 2023-01-11T21:05:10.4525347Z auto tmp1 = static_cast(tmp0); 2023-01-11T21:05:10.4525441Z auto tmp3 = static_cast(tmp2); 2023-01-11T21:05:10.4525529Z auto tmp4 = tmp1 / tmp3; 2023-01-11T21:05:10.4525782Z auto tmp5 = ((tmp0 < 0) != (tmp2 < 0) ? (tmp0 % tmp2 != 0 ? tmp0 / tmp2 - 1 : tmp0 / tmp2) : tmp0 / tmp2); 2023-01-11T21:05:10.4525872Z auto tmp6 = tmp0 / tmp2; 2023-01-11T21:05:10.4525955Z out_ptr0[i0] = tmp4; 2023-01-11T21:05:10.4526041Z out_ptr1[i0] = tmp5; 2023-01-11T21:05:10.4526124Z out_ptr2[i0] = tmp6; 2023-01-11T21:05:10.4526193Z out_ptr3[i0] = tmp4; 2023-01-11T21:05:10.4526276Z out_ptr4[i0] = tmp5; 2023-01-11T21:05:10.4526339Z } 2023-01-11T21:05:10.4526401Z } 2023-01-11T21:05:10.4526462Z } 2023-01-11T21:05:10.4526524Z } 2023-01-11T21:05:10.4526583Z } 2023-01-11T21:05:10.4526647Z ''') 2023-01-11T21:05:10.4526652Z 2023-01-11T21:05:10.4526656Z 2023-01-11T21:05:10.4526746Z async_compile.wait(globals()) 2023-01-11T21:05:10.4526817Z del async_compile 2023-01-11T21:05:10.4526822Z 2023-01-11T21:05:10.4526891Z def call(args): 2023-01-11T21:05:10.4526965Z arg0_1, arg1_1 = args 2023-01-11T21:05:10.4527034Z args.clear() 2023-01-11T21:05:10.4527231Z buf0 = empty_strided((8, 8), (8, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4527409Z buf1 = empty_strided((8, 8), (8, 1), device='cpu', dtype=torch.int64) 2023-01-11T21:05:10.4527596Z buf2 = empty_strided((8, 8), (8, 1), device='cpu', dtype=torch.int64) 2023-01-11T21:05:10.4527784Z buf3 = empty_strided((8, 8), (8, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4527997Z buf4 = empty_strided((8, 8), (8, 1), device='cpu', dtype=torch.int64) 2023-01-11T21:05:10.4528261Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(arg1_1.data_ptr()), c_void_p(buf0.data_ptr()), c_void_p(buf1.data_ptr()), c_void_p(buf2.data_ptr()), c_void_p(buf3.data_ptr()), c_void_p(buf4.data_ptr())) 2023-01-11T21:05:10.4528329Z del arg0_1 2023-01-11T21:05:10.4528395Z del arg1_1 2023-01-11T21:05:10.4528492Z return (buf0, buf1, buf2, buf3, buf4, ) 2023-01-11T21:05:10.4528497Z 2023-01-11T21:05:10.4528501Z 2023-01-11T21:05:10.4528576Z if __name__ == "__main__": 2023-01-11T21:05:10.4528678Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.4528801Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.4528991Z arg0_1 = rand_strided((8, 8), (8, 1), device='cpu', dtype=torch.int64) 2023-01-11T21:05:10.4529180Z arg1_1 = rand_strided((8, 8), (8, 1), device='cpu', dtype=torch.int64) 2023-01-11T21:05:10.4529297Z print_performance(lambda: call([arg0_1, arg1_1])) 2023-01-11T21:05:10.4529302Z 2023-01-11T21:05:10.4529367Z ok (0.130s) 2023-01-11T21:05:10.4529857Z test_div5_cpu (__main__.CpuTests) ... inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.4529987Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.4530251Z [2023-01-11 20:49:31,860] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 157 2023-01-11T21:05:10.4530506Z [2023-01-11 20:49:34,574] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 157 2023-01-11T21:05:10.4530512Z 2023-01-11T21:05:10.4530606Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.4530675Z import torch 2023-01-11T21:05:10.4530743Z import random 2023-01-11T21:05:10.4530859Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.4530982Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.4530987Z 2023-01-11T21:05:10.4531063Z aten = torch.ops.aten 2023-01-11T21:05:10.4531200Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.4531277Z async_compile = AsyncCompile() 2023-01-11T21:05:10.4531282Z 2023-01-11T21:05:10.4531287Z 2023-01-11T21:05:10.4531418Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.4531626Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.4531747Z extern "C" void kernel(const long* __restrict__ in_ptr0, 2023-01-11T21:05:10.4531847Z float* __restrict__ out_ptr0, 2023-01-11T21:05:10.4531944Z long* __restrict__ out_ptr1, 2023-01-11T21:05:10.4532041Z long* __restrict__ out_ptr2, 2023-01-11T21:05:10.4532139Z float* __restrict__ out_ptr3, 2023-01-11T21:05:10.4532218Z long* __restrict__ out_ptr4) 2023-01-11T21:05:10.4532280Z { 2023-01-11T21:05:10.4532378Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.4532438Z { 2023-01-11T21:05:10.4532514Z #pragma omp for 2023-01-11T21:05:10.4532597Z for(long i0=0; i0<64; i0+=1) 2023-01-11T21:05:10.4532645Z { 2023-01-11T21:05:10.4532707Z { 2023-01-11T21:05:10.4532769Z { 2023-01-11T21:05:10.4532862Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:05:10.4532971Z auto tmp1 = static_cast(tmp0); 2023-01-11T21:05:10.4533075Z auto tmp2 = static_cast(16); 2023-01-11T21:05:10.4533164Z auto tmp3 = tmp1 / tmp2; 2023-01-11T21:05:10.4533256Z auto tmp4 = static_cast(16); 2023-01-11T21:05:10.4533540Z auto tmp5 = ((tmp0 < 0) != (tmp4 < 0) ? (tmp0 % tmp4 != 0 ? tmp0 / tmp4 - 1 : tmp0 / tmp4) : tmp0 / tmp4); 2023-01-11T21:05:10.4533631Z auto tmp6 = tmp0 / tmp4; 2023-01-11T21:05:10.4533716Z out_ptr0[i0] = tmp3; 2023-01-11T21:05:10.4533799Z out_ptr1[i0] = tmp5; 2023-01-11T21:05:10.4533880Z out_ptr2[i0] = tmp6; 2023-01-11T21:05:10.4533961Z out_ptr3[i0] = tmp3; 2023-01-11T21:05:10.4534042Z out_ptr4[i0] = tmp5; 2023-01-11T21:05:10.4534093Z } 2023-01-11T21:05:10.4534155Z } 2023-01-11T21:05:10.4534215Z } 2023-01-11T21:05:10.4534275Z } 2023-01-11T21:05:10.4534333Z } 2023-01-11T21:05:10.4534409Z ''') 2023-01-11T21:05:10.4534414Z 2023-01-11T21:05:10.4534419Z 2023-01-11T21:05:10.4534509Z async_compile.wait(globals()) 2023-01-11T21:05:10.4534567Z del async_compile 2023-01-11T21:05:10.4534572Z 2023-01-11T21:05:10.4534644Z def call(args): 2023-01-11T21:05:10.4534712Z arg0_1, = args 2023-01-11T21:05:10.4534781Z args.clear() 2023-01-11T21:05:10.4534977Z buf0 = empty_strided((8, 8), (8, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4535195Z buf1 = empty_strided((8, 8), (8, 1), device='cpu', dtype=torch.int64) 2023-01-11T21:05:10.4535384Z buf2 = empty_strided((8, 8), (8, 1), device='cpu', dtype=torch.int64) 2023-01-11T21:05:10.4535562Z buf3 = empty_strided((8, 8), (8, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4535746Z buf4 = empty_strided((8, 8), (8, 1), device='cpu', dtype=torch.int64) 2023-01-11T21:05:10.4535984Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(buf0.data_ptr()), c_void_p(buf1.data_ptr()), c_void_p(buf2.data_ptr()), c_void_p(buf3.data_ptr()), c_void_p(buf4.data_ptr())) 2023-01-11T21:05:10.4536053Z del arg0_1 2023-01-11T21:05:10.4536149Z return (buf0, buf1, buf2, buf3, buf4, ) 2023-01-11T21:05:10.4536154Z 2023-01-11T21:05:10.4536161Z 2023-01-11T21:05:10.4536238Z if __name__ == "__main__": 2023-01-11T21:05:10.4536352Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.4536475Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.4536654Z arg0_1 = rand_strided((8, 8), (8, 1), device='cpu', dtype=torch.int64) 2023-01-11T21:05:10.4536763Z print_performance(lambda: call([arg0_1])) 2023-01-11T21:05:10.4536768Z 2023-01-11T21:05:10.4536834Z ok (2.830s) 2023-01-11T21:05:10.4537276Z test_div6_cpu (__main__.CpuTests) ... inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.4537403Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.4537664Z [2023-01-11 20:49:34,709] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 158 2023-01-11T21:05:10.4537931Z [2023-01-11 20:49:37,471] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 158 2023-01-11T21:05:10.4537939Z 2023-01-11T21:05:10.4538032Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.4538102Z import torch 2023-01-11T21:05:10.4538157Z import random 2023-01-11T21:05:10.4538272Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.4538391Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.4538396Z 2023-01-11T21:05:10.4538542Z aten = torch.ops.aten 2023-01-11T21:05:10.4538681Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.4538776Z async_compile = AsyncCompile() 2023-01-11T21:05:10.4538782Z 2023-01-11T21:05:10.4538786Z 2023-01-11T21:05:10.4538924Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.4539131Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.4539278Z extern "C" void kernel(const bool* __restrict__ in_ptr0, 2023-01-11T21:05:10.4539384Z const long* __restrict__ in_ptr1, 2023-01-11T21:05:10.4539486Z float* __restrict__ out_ptr0, 2023-01-11T21:05:10.4539584Z long* __restrict__ out_ptr1, 2023-01-11T21:05:10.4539682Z long* __restrict__ out_ptr2, 2023-01-11T21:05:10.4539778Z float* __restrict__ out_ptr3, 2023-01-11T21:05:10.4539871Z long* __restrict__ out_ptr4) 2023-01-11T21:05:10.4539932Z { 2023-01-11T21:05:10.4540016Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.4540077Z { 2023-01-11T21:05:10.4540155Z #pragma omp for 2023-01-11T21:05:10.4540238Z for(long i0=0; i0<64; i0+=1) 2023-01-11T21:05:10.4540300Z { 2023-01-11T21:05:10.4540362Z { 2023-01-11T21:05:10.4540412Z { 2023-01-11T21:05:10.4540504Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:05:10.4540600Z auto tmp3 = in_ptr1[i0]; 2023-01-11T21:05:10.4540705Z auto tmp1 = static_cast(tmp0); 2023-01-11T21:05:10.4540854Z auto tmp2 = static_cast(tmp1); 2023-01-11T21:05:10.4540961Z auto tmp4 = static_cast(tmp3); 2023-01-11T21:05:10.4541054Z auto tmp5 = tmp2 / tmp4; 2023-01-11T21:05:10.4541307Z auto tmp6 = ((tmp1 < 0) != (tmp3 < 0) ? (tmp1 % tmp3 != 0 ? tmp1 / tmp3 - 1 : tmp1 / tmp3) : tmp1 / tmp3); 2023-01-11T21:05:10.4541384Z auto tmp7 = tmp1 / tmp3; 2023-01-11T21:05:10.4541488Z auto tmp8 = static_cast(tmp0); 2023-01-11T21:05:10.4541577Z auto tmp9 = tmp8 / tmp4; 2023-01-11T21:05:10.4541661Z out_ptr0[i0] = tmp5; 2023-01-11T21:05:10.4541743Z out_ptr1[i0] = tmp6; 2023-01-11T21:05:10.4541825Z out_ptr2[i0] = tmp7; 2023-01-11T21:05:10.4541909Z out_ptr3[i0] = tmp9; 2023-01-11T21:05:10.4541977Z out_ptr4[i0] = tmp6; 2023-01-11T21:05:10.4542040Z } 2023-01-11T21:05:10.4542104Z } 2023-01-11T21:05:10.4542166Z } 2023-01-11T21:05:10.4542226Z } 2023-01-11T21:05:10.4542286Z } 2023-01-11T21:05:10.4542350Z ''') 2023-01-11T21:05:10.4542368Z 2023-01-11T21:05:10.4542372Z 2023-01-11T21:05:10.4542448Z async_compile.wait(globals()) 2023-01-11T21:05:10.4542523Z del async_compile 2023-01-11T21:05:10.4542527Z 2023-01-11T21:05:10.4542599Z def call(args): 2023-01-11T21:05:10.4542675Z arg0_1, arg1_1 = args 2023-01-11T21:05:10.4542747Z args.clear() 2023-01-11T21:05:10.4542943Z buf0 = empty_strided((8, 8), (8, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4543132Z buf1 = empty_strided((8, 8), (8, 1), device='cpu', dtype=torch.int64) 2023-01-11T21:05:10.4543308Z buf2 = empty_strided((8, 8), (8, 1), device='cpu', dtype=torch.int64) 2023-01-11T21:05:10.4543500Z buf3 = empty_strided((8, 8), (8, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4543683Z buf4 = empty_strided((8, 8), (8, 1), device='cpu', dtype=torch.int64) 2023-01-11T21:05:10.4543949Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(arg1_1.data_ptr()), c_void_p(buf0.data_ptr()), c_void_p(buf1.data_ptr()), c_void_p(buf2.data_ptr()), c_void_p(buf3.data_ptr()), c_void_p(buf4.data_ptr())) 2023-01-11T21:05:10.4544019Z del arg0_1 2023-01-11T21:05:10.4544084Z del arg1_1 2023-01-11T21:05:10.4544180Z return (buf0, buf1, buf2, buf3, buf4, ) 2023-01-11T21:05:10.4544185Z 2023-01-11T21:05:10.4544189Z 2023-01-11T21:05:10.4544264Z if __name__ == "__main__": 2023-01-11T21:05:10.4544366Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.4544489Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.4544677Z arg0_1 = rand_strided((8, 8), (8, 1), device='cpu', dtype=torch.bool) 2023-01-11T21:05:10.4544903Z arg1_1 = rand_strided((8, 8), (8, 1), device='cpu', dtype=torch.int64) 2023-01-11T21:05:10.4545018Z print_performance(lambda: call([arg0_1, arg1_1])) 2023-01-11T21:05:10.4545023Z 2023-01-11T21:05:10.4545088Z ok (2.896s) 2023-01-11T21:05:10.4545530Z test_div7_cpu (__main__.CpuTests) ... inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.4545658Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.4545920Z [2023-01-11 20:49:37,608] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 159 2023-01-11T21:05:10.4546188Z [2023-01-11 20:49:40,340] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 159 2023-01-11T21:05:10.4546195Z 2023-01-11T21:05:10.4546276Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.4546345Z import torch 2023-01-11T21:05:10.4546415Z import random 2023-01-11T21:05:10.4546559Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.4546680Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.4546685Z 2023-01-11T21:05:10.4546762Z aten = torch.ops.aten 2023-01-11T21:05:10.4546900Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.4546977Z async_compile = AsyncCompile() 2023-01-11T21:05:10.4546996Z 2023-01-11T21:05:10.4547000Z 2023-01-11T21:05:10.4547121Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.4547325Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.4547445Z extern "C" void kernel(const long* __restrict__ in_ptr0, 2023-01-11T21:05:10.4547547Z const long* __restrict__ in_ptr1, 2023-01-11T21:05:10.4547649Z float* __restrict__ out_ptr0, 2023-01-11T21:05:10.4547746Z long* __restrict__ out_ptr1, 2023-01-11T21:05:10.4547840Z long* __restrict__ out_ptr2, 2023-01-11T21:05:10.4547924Z float* __restrict__ out_ptr3, 2023-01-11T21:05:10.4548017Z long* __restrict__ out_ptr4) 2023-01-11T21:05:10.4548077Z { 2023-01-11T21:05:10.4548175Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.4548236Z { 2023-01-11T21:05:10.4548312Z #pragma omp for 2023-01-11T21:05:10.4548396Z for(long i0=0; i0<10000; i0+=1) 2023-01-11T21:05:10.4548444Z { 2023-01-11T21:05:10.4548506Z { 2023-01-11T21:05:10.4548571Z { 2023-01-11T21:05:10.4548664Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:05:10.4548757Z auto tmp2 = in_ptr1[i0]; 2023-01-11T21:05:10.4548866Z auto tmp1 = static_cast(tmp0); 2023-01-11T21:05:10.4548974Z auto tmp3 = static_cast(tmp2); 2023-01-11T21:05:10.4549051Z auto tmp4 = tmp1 / tmp3; 2023-01-11T21:05:10.4549303Z auto tmp5 = ((tmp0 < 0) != (tmp2 < 0) ? (tmp0 % tmp2 != 0 ? tmp0 / tmp2 - 1 : tmp0 / tmp2) : tmp0 / tmp2); 2023-01-11T21:05:10.4549394Z auto tmp6 = tmp0 / tmp2; 2023-01-11T21:05:10.4549480Z out_ptr0[i0] = tmp4; 2023-01-11T21:05:10.4549565Z out_ptr1[i0] = tmp5; 2023-01-11T21:05:10.4549648Z out_ptr2[i0] = tmp6; 2023-01-11T21:05:10.4549730Z out_ptr3[i0] = tmp4; 2023-01-11T21:05:10.4549798Z out_ptr4[i0] = tmp5; 2023-01-11T21:05:10.4549863Z } 2023-01-11T21:05:10.4549925Z } 2023-01-11T21:05:10.4549988Z } 2023-01-11T21:05:10.4550052Z } 2023-01-11T21:05:10.4550112Z } 2023-01-11T21:05:10.4550189Z ''') 2023-01-11T21:05:10.4550194Z 2023-01-11T21:05:10.4550198Z 2023-01-11T21:05:10.4550303Z async_compile.wait(globals()) 2023-01-11T21:05:10.4550377Z del async_compile 2023-01-11T21:05:10.4550382Z 2023-01-11T21:05:10.4550452Z def call(args): 2023-01-11T21:05:10.4550526Z arg0_1, arg1_1 = args 2023-01-11T21:05:10.4550598Z args.clear() 2023-01-11T21:05:10.4550806Z buf0 = empty_strided((100, 100), (100, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4551006Z buf1 = empty_strided((100, 100), (100, 1), device='cpu', dtype=torch.int64) 2023-01-11T21:05:10.4551204Z buf2 = empty_strided((100, 100), (100, 1), device='cpu', dtype=torch.int64) 2023-01-11T21:05:10.4551392Z buf3 = empty_strided((100, 100), (100, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4551588Z buf4 = empty_strided((100, 100), (100, 1), device='cpu', dtype=torch.int64) 2023-01-11T21:05:10.4551851Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(arg1_1.data_ptr()), c_void_p(buf0.data_ptr()), c_void_p(buf1.data_ptr()), c_void_p(buf2.data_ptr()), c_void_p(buf3.data_ptr()), c_void_p(buf4.data_ptr())) 2023-01-11T21:05:10.4551922Z del arg0_1 2023-01-11T21:05:10.4551987Z del arg1_1 2023-01-11T21:05:10.4552083Z return (buf0, buf1, buf2, buf3, buf4, ) 2023-01-11T21:05:10.4552089Z 2023-01-11T21:05:10.4552122Z 2023-01-11T21:05:10.4552200Z if __name__ == "__main__": 2023-01-11T21:05:10.4552313Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.4552425Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.4552623Z arg0_1 = rand_strided((100, 100), (100, 1), device='cpu', dtype=torch.int64) 2023-01-11T21:05:10.4552824Z arg1_1 = rand_strided((100, 100), (100, 1), device='cpu', dtype=torch.int64) 2023-01-11T21:05:10.4552939Z print_performance(lambda: call([arg0_1, arg1_1])) 2023-01-11T21:05:10.4552944Z 2023-01-11T21:05:10.4553010Z ok (2.881s) 2023-01-11T21:05:10.4553329Z test_div8_cpu (__main__.CpuTests) ... [2023-01-11 20:49:40,433] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 160 2023-01-11T21:05:10.4553599Z [2023-01-11 20:49:43,164] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 160 2023-01-11T21:05:10.4553604Z 2023-01-11T21:05:10.4553699Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.4553757Z import torch 2023-01-11T21:05:10.4553824Z import random 2023-01-11T21:05:10.4553940Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.4554060Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.4554064Z 2023-01-11T21:05:10.4554141Z aten = torch.ops.aten 2023-01-11T21:05:10.4554275Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.4554366Z async_compile = AsyncCompile() 2023-01-11T21:05:10.4554370Z 2023-01-11T21:05:10.4554374Z 2023-01-11T21:05:10.4554511Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.4554704Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.4554816Z extern "C" void kernel(long* __restrict__ out_ptr0, 2023-01-11T21:05:10.4554911Z long* __restrict__ out_ptr1, 2023-01-11T21:05:10.4555004Z long* __restrict__ out_ptr2) 2023-01-11T21:05:10.4555063Z { 2023-01-11T21:05:10.4555126Z { 2023-01-11T21:05:10.4555188Z { 2023-01-11T21:05:10.4555276Z auto tmp0 = static_cast(1024); 2023-01-11T21:05:10.4555375Z auto tmp1 = static_cast(100); 2023-01-11T21:05:10.4555459Z auto tmp2 = tmp0 / tmp1; 2023-01-11T21:05:10.4555538Z out_ptr0[0] = tmp2; 2023-01-11T21:05:10.4555600Z } 2023-01-11T21:05:10.4555659Z } 2023-01-11T21:05:10.4555717Z { 2023-01-11T21:05:10.4555765Z { 2023-01-11T21:05:10.4555865Z auto tmp0 = static_cast(1024); 2023-01-11T21:05:10.4555963Z auto tmp1 = static_cast(100); 2023-01-11T21:05:10.4556209Z auto tmp2 = ((tmp0 < 0) != (tmp1 < 0) ? (tmp0 % tmp1 != 0 ? tmp0 / tmp1 - 1 : tmp0 / tmp1) : tmp0 / tmp1); 2023-01-11T21:05:10.4556319Z out_ptr1[0] = tmp2; 2023-01-11T21:05:10.4556381Z } 2023-01-11T21:05:10.4556440Z } 2023-01-11T21:05:10.4556488Z { 2023-01-11T21:05:10.4556547Z { 2023-01-11T21:05:10.4556648Z auto tmp0 = static_cast(1024); 2023-01-11T21:05:10.4556745Z auto tmp1 = static_cast(100); 2023-01-11T21:05:10.4556828Z auto tmp2 = tmp0 / tmp1; 2023-01-11T21:05:10.4556904Z out_ptr2[0] = tmp2; 2023-01-11T21:05:10.4556964Z } 2023-01-11T21:05:10.4557012Z } 2023-01-11T21:05:10.4557072Z } 2023-01-11T21:05:10.4557149Z ''') 2023-01-11T21:05:10.4557154Z 2023-01-11T21:05:10.4557158Z 2023-01-11T21:05:10.4557247Z async_compile.wait(globals()) 2023-01-11T21:05:10.4557319Z del async_compile 2023-01-11T21:05:10.4557325Z 2023-01-11T21:05:10.4557393Z def call(args): 2023-01-11T21:05:10.4557574Z buf0 = empty_strided((), (), device='cpu', dtype=torch.int64) 2023-01-11T21:05:10.4557739Z buf1 = empty_strided((), (), device='cpu', dtype=torch.int64) 2023-01-11T21:05:10.4557917Z buf2 = empty_strided((), (), device='cpu', dtype=torch.int64) 2023-01-11T21:05:10.4558105Z kernel_cpp_0(c_void_p(buf0.data_ptr()), c_void_p(buf1.data_ptr()), c_void_p(buf2.data_ptr())) 2023-01-11T21:05:10.4558190Z return (buf0, buf1, buf2, ) 2023-01-11T21:05:10.4558195Z 2023-01-11T21:05:10.4558199Z 2023-01-11T21:05:10.4558274Z if __name__ == "__main__": 2023-01-11T21:05:10.4558387Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.4558510Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.4558608Z print_performance(lambda: call([])) 2023-01-11T21:05:10.4558613Z 2023-01-11T21:05:10.4558665Z ok (2.809s) 2023-01-11T21:05:10.4559114Z test_div_prim_cpu (__main__.CpuTests) ... inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.4559243Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.4559507Z [2023-01-11 20:49:43,237] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 161 2023-01-11T21:05:10.4559772Z [2023-01-11 20:49:45,947] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 161 2023-01-11T21:05:10.4560180Z inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.4560306Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.4560564Z [2023-01-11 20:49:46,019] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 162 2023-01-11T21:05:10.4560953Z [2023-01-11 20:49:48,685] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 162 2023-01-11T21:05:10.4560960Z 2023-01-11T21:05:10.4561055Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.4561126Z import torch 2023-01-11T21:05:10.4561183Z import random 2023-01-11T21:05:10.4561298Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.4561420Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.4561425Z 2023-01-11T21:05:10.4561503Z aten = torch.ops.aten 2023-01-11T21:05:10.4561643Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.4561734Z async_compile = AsyncCompile() 2023-01-11T21:05:10.4561739Z 2023-01-11T21:05:10.4561743Z 2023-01-11T21:05:10.4561878Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.4562084Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.4562251Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:05:10.4562357Z const float* __restrict__ in_ptr1, 2023-01-11T21:05:10.4562460Z float* __restrict__ out_ptr0) 2023-01-11T21:05:10.4562522Z { 2023-01-11T21:05:10.4562620Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.4562681Z { 2023-01-11T21:05:10.4562759Z #pragma omp for 2023-01-11T21:05:10.4562828Z for(long i0=0; i0<6; i0+=1) 2023-01-11T21:05:10.4562891Z { 2023-01-11T21:05:10.4563041Z auto tmp0 = at::vec::Vectorized::loadu(in_ptr0 + 16*i0); 2023-01-11T21:05:10.4563176Z auto tmp1 = at::vec::Vectorized::loadu(in_ptr1 + 16*i0); 2023-01-11T21:05:10.4563264Z auto tmp2 = tmp0 / tmp1; 2023-01-11T21:05:10.4563359Z tmp2.store(out_ptr0 + 16*i0); 2023-01-11T21:05:10.4563423Z } 2023-01-11T21:05:10.4563504Z #pragma omp for simd simdlen(8) 2023-01-11T21:05:10.4563592Z for(long i0=96; i0<100; i0+=1) 2023-01-11T21:05:10.4563654Z { 2023-01-11T21:05:10.4563740Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:05:10.4563822Z auto tmp1 = in_ptr1[i0]; 2023-01-11T21:05:10.4563939Z auto tmp2 = tmp0 / tmp1; 2023-01-11T21:05:10.4564020Z out_ptr0[i0] = tmp2; 2023-01-11T21:05:10.4564068Z } 2023-01-11T21:05:10.4564129Z } 2023-01-11T21:05:10.4564189Z } 2023-01-11T21:05:10.4564267Z ''') 2023-01-11T21:05:10.4564272Z 2023-01-11T21:05:10.4564276Z 2023-01-11T21:05:10.4564365Z async_compile.wait(globals()) 2023-01-11T21:05:10.4564436Z del async_compile 2023-01-11T21:05:10.4564441Z 2023-01-11T21:05:10.4564511Z def call(args): 2023-01-11T21:05:10.4564572Z arg0_1, arg1_1 = args 2023-01-11T21:05:10.4564641Z args.clear() 2023-01-11T21:05:10.4564836Z buf0 = empty_strided((100, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4565000Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(arg1_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:05:10.4565070Z del arg0_1 2023-01-11T21:05:10.4565135Z del arg1_1 2023-01-11T21:05:10.4565204Z return (buf0, ) 2023-01-11T21:05:10.4565210Z 2023-01-11T21:05:10.4565216Z 2023-01-11T21:05:10.4565291Z if __name__ == "__main__": 2023-01-11T21:05:10.4565393Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.4565515Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.4565712Z arg0_1 = rand_strided((100, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4565906Z arg1_1 = rand_strided((100, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4566022Z print_performance(lambda: call([arg0_1, arg1_1])) 2023-01-11T21:05:10.4566027Z 2023-01-11T21:05:10.4566031Z 2023-01-11T21:05:10.4566124Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.4566192Z import torch 2023-01-11T21:05:10.4566248Z import random 2023-01-11T21:05:10.4566363Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.4566488Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.4566493Z 2023-01-11T21:05:10.4566570Z aten = torch.ops.aten 2023-01-11T21:05:10.4566706Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.4566796Z async_compile = AsyncCompile() 2023-01-11T21:05:10.4566801Z 2023-01-11T21:05:10.4566805Z 2023-01-11T21:05:10.4566936Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.4567139Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.4567246Z extern "C" void kernel(const long* __restrict__ in_ptr0, 2023-01-11T21:05:10.4567350Z const long* __restrict__ in_ptr1, 2023-01-11T21:05:10.4567446Z long* __restrict__ out_ptr0) 2023-01-11T21:05:10.4567506Z { 2023-01-11T21:05:10.4567603Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.4567663Z { 2023-01-11T21:05:10.4567771Z #pragma omp for 2023-01-11T21:05:10.4567841Z for(long i0=0; i0<100; i0+=1) 2023-01-11T21:05:10.4567902Z { 2023-01-11T21:05:10.4567965Z { 2023-01-11T21:05:10.4568031Z { 2023-01-11T21:05:10.4568126Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:05:10.4568216Z auto tmp1 = in_ptr1[i0]; 2023-01-11T21:05:10.4568305Z auto tmp2 = tmp0 / tmp1; 2023-01-11T21:05:10.4568376Z out_ptr0[i0] = tmp2; 2023-01-11T21:05:10.4568439Z } 2023-01-11T21:05:10.4568503Z } 2023-01-11T21:05:10.4568566Z } 2023-01-11T21:05:10.4568627Z } 2023-01-11T21:05:10.4568686Z } 2023-01-11T21:05:10.4568763Z ''') 2023-01-11T21:05:10.4568768Z 2023-01-11T21:05:10.4568772Z 2023-01-11T21:05:10.4568849Z async_compile.wait(globals()) 2023-01-11T21:05:10.4568920Z del async_compile 2023-01-11T21:05:10.4568924Z 2023-01-11T21:05:10.4568993Z def call(args): 2023-01-11T21:05:10.4569067Z arg0_1, arg1_1 = args 2023-01-11T21:05:10.4569139Z args.clear() 2023-01-11T21:05:10.4569329Z buf0 = empty_strided((100, ), (1, ), device='cpu', dtype=torch.int64) 2023-01-11T21:05:10.4569537Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(arg1_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:05:10.4569593Z del arg0_1 2023-01-11T21:05:10.4569658Z del arg1_1 2023-01-11T21:05:10.4569728Z return (buf0, ) 2023-01-11T21:05:10.4569733Z 2023-01-11T21:05:10.4569737Z 2023-01-11T21:05:10.4569811Z if __name__ == "__main__": 2023-01-11T21:05:10.4569926Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.4570048Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.4570239Z arg0_1 = rand_strided((100, ), (1, ), device='cpu', dtype=torch.int64) 2023-01-11T21:05:10.4570430Z arg1_1 = rand_strided((100, ), (1, ), device='cpu', dtype=torch.int64) 2023-01-11T21:05:10.4570532Z print_performance(lambda: call([arg0_1, arg1_1])) 2023-01-11T21:05:10.4570539Z 2023-01-11T21:05:10.4570604Z ok (5.521s) 2023-01-11T21:05:10.4571058Z test_div_zero_dim_cpu (__main__.CpuTests) ... inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.4571186Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.4571450Z [2023-01-11 20:49:48,839] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 163 2023-01-11T21:05:10.4571715Z [2023-01-11 20:49:51,587] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 163 2023-01-11T21:05:10.4572123Z inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.4572254Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.4572513Z [2023-01-11 20:49:51,750] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 164 2023-01-11T21:05:10.4572775Z [2023-01-11 20:49:54,442] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 164 2023-01-11T21:05:10.4573183Z inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.4573311Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.4573584Z [2023-01-11 20:49:54,572] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 165 2023-01-11T21:05:10.4573851Z [2023-01-11 20:49:57,317] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 165 2023-01-11T21:05:10.4574256Z inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.4574382Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.4574637Z [2023-01-11 20:49:57,476] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 166 2023-01-11T21:05:10.4574642Z 2023-01-11T21:05:10.4574739Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.4574807Z import torch 2023-01-11T21:05:10.4574879Z import random 2023-01-11T21:05:10.4574997Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.4575105Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.4575110Z 2023-01-11T21:05:10.4575214Z aten = torch.ops.aten 2023-01-11T21:05:10.4575350Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.4575442Z async_compile = AsyncCompile() 2023-01-11T21:05:10.4575447Z 2023-01-11T21:05:10.4575451Z 2023-01-11T21:05:10.4575586Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.4575791Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.4575911Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:05:10.4576015Z const float* __restrict__ in_ptr1, 2023-01-11T21:05:10.4576102Z float* __restrict__ out_ptr0, 2023-01-11T21:05:10.4576198Z float* __restrict__ out_ptr1, 2023-01-11T21:05:10.4576293Z float* __restrict__ out_ptr2, 2023-01-11T21:05:10.4576387Z float* __restrict__ out_ptr3, 2023-01-11T21:05:10.4576479Z float* __restrict__ out_ptr4) 2023-01-11T21:05:10.4576540Z { 2023-01-11T21:05:10.4576640Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.4576687Z { 2023-01-11T21:05:10.4576762Z #pragma omp for 2023-01-11T21:05:10.4576845Z for(long i0=0; i0<10; i0+=1) 2023-01-11T21:05:10.4576907Z { 2023-01-11T21:05:10.4576970Z { 2023-01-11T21:05:10.4577032Z { 2023-01-11T21:05:10.4577112Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:05:10.4577202Z auto tmp1 = in_ptr1[0]; 2023-01-11T21:05:10.4577291Z auto tmp2 = tmp0 / tmp1; 2023-01-11T21:05:10.4577393Z auto tmp3 = std::floor(tmp2); 2023-01-11T21:05:10.4577492Z auto tmp4 = std::trunc(tmp2); 2023-01-11T21:05:10.4577576Z out_ptr0[i0] = tmp2; 2023-01-11T21:05:10.4577662Z out_ptr1[i0] = tmp3; 2023-01-11T21:05:10.4577743Z out_ptr2[i0] = tmp4; 2023-01-11T21:05:10.4577812Z out_ptr3[i0] = tmp2; 2023-01-11T21:05:10.4577894Z out_ptr4[i0] = tmp3; 2023-01-11T21:05:10.4577957Z } 2023-01-11T21:05:10.4578023Z } 2023-01-11T21:05:10.4578084Z } 2023-01-11T21:05:10.4578144Z } 2023-01-11T21:05:10.4578190Z } 2023-01-11T21:05:10.4578267Z ''') 2023-01-11T21:05:10.4578271Z 2023-01-11T21:05:10.4578276Z 2023-01-11T21:05:10.4578365Z async_compile.wait(globals()) 2023-01-11T21:05:10.4578437Z del async_compile 2023-01-11T21:05:10.4578442Z 2023-01-11T21:05:10.4578599Z def call(args): 2023-01-11T21:05:10.4578676Z arg0_1, arg1_1 = args 2023-01-11T21:05:10.4578747Z args.clear() 2023-01-11T21:05:10.4578946Z buf0 = empty_strided((10, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4579124Z buf1 = empty_strided((10, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4579351Z buf2 = empty_strided((10, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4579541Z buf3 = empty_strided((10, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4579726Z buf4 = empty_strided((10, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4579990Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(arg1_1.data_ptr()), c_void_p(buf0.data_ptr()), c_void_p(buf1.data_ptr()), c_void_p(buf2.data_ptr()), c_void_p(buf3.data_ptr()), c_void_p(buf4.data_ptr())) 2023-01-11T21:05:10.4580060Z del arg0_1 2023-01-11T21:05:10.4580127Z del arg1_1 2023-01-11T21:05:10.4580225Z return (buf0, buf1, buf2, buf3, buf4, ) 2023-01-11T21:05:10.4580230Z 2023-01-11T21:05:10.4580234Z 2023-01-11T21:05:10.4580296Z if __name__ == "__main__": 2023-01-11T21:05:10.4580411Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.4580535Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.4580732Z arg0_1 = rand_strided((10, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4580918Z arg1_1 = rand_strided((), (), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4581068Z print_performance(lambda: call([arg0_1, arg1_1])) 2023-01-11T21:05:10.4581074Z 2023-01-11T21:05:10.4581078Z 2023-01-11T21:05:10.4581174Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.4581244Z import torch 2023-01-11T21:05:10.4581300Z import random 2023-01-11T21:05:10.4581415Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.4581540Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.4581545Z 2023-01-11T21:05:10.4581623Z aten = torch.ops.aten 2023-01-11T21:05:10.4581759Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.4581851Z async_compile = AsyncCompile() 2023-01-11T21:05:10.4581856Z 2023-01-11T21:05:10.4581860Z 2023-01-11T21:05:10.4581993Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.4582202Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.4582309Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:05:10.4582416Z const float* __restrict__ in_ptr1, 2023-01-11T21:05:10.4582516Z float* __restrict__ out_ptr0, 2023-01-11T21:05:10.4582614Z float* __restrict__ out_ptr1, 2023-01-11T21:05:10.4582709Z float* __restrict__ out_ptr2, 2023-01-11T21:05:10.4582804Z float* __restrict__ out_ptr3, 2023-01-11T21:05:10.4582897Z float* __restrict__ out_ptr4) 2023-01-11T21:05:10.4582944Z { 2023-01-11T21:05:10.4583041Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.4583102Z { 2023-01-11T21:05:10.4583180Z #pragma omp for 2023-01-11T21:05:10.4583263Z for(long i0=0; i0<10; i0+=1) 2023-01-11T21:05:10.4583325Z { 2023-01-11T21:05:10.4583392Z { 2023-01-11T21:05:10.4583442Z { 2023-01-11T21:05:10.4583532Z auto tmp0 = in_ptr0[0]; 2023-01-11T21:05:10.4583624Z auto tmp1 = in_ptr1[i0]; 2023-01-11T21:05:10.4583717Z auto tmp2 = tmp0 / tmp1; 2023-01-11T21:05:10.4583821Z auto tmp3 = std::floor(tmp2); 2023-01-11T21:05:10.4583919Z auto tmp4 = std::trunc(tmp2); 2023-01-11T21:05:10.4584004Z out_ptr0[i0] = tmp2; 2023-01-11T21:05:10.4584074Z out_ptr1[i0] = tmp3; 2023-01-11T21:05:10.4584156Z out_ptr2[i0] = tmp4; 2023-01-11T21:05:10.4584237Z out_ptr3[i0] = tmp2; 2023-01-11T21:05:10.4584318Z out_ptr4[i0] = tmp3; 2023-01-11T21:05:10.4584381Z } 2023-01-11T21:05:10.4584443Z } 2023-01-11T21:05:10.4584504Z } 2023-01-11T21:05:10.4584551Z } 2023-01-11T21:05:10.4584609Z } 2023-01-11T21:05:10.4584717Z ''') 2023-01-11T21:05:10.4584722Z 2023-01-11T21:05:10.4584726Z 2023-01-11T21:05:10.4584816Z async_compile.wait(globals()) 2023-01-11T21:05:10.4584888Z del async_compile 2023-01-11T21:05:10.4584893Z 2023-01-11T21:05:10.4584964Z def call(args): 2023-01-11T21:05:10.4585039Z arg0_1, arg1_1 = args 2023-01-11T21:05:10.4585096Z args.clear() 2023-01-11T21:05:10.4585292Z buf0 = empty_strided((10, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4585481Z buf1 = empty_strided((10, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4585671Z buf2 = empty_strided((10, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4585857Z buf3 = empty_strided((10, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4586040Z buf4 = empty_strided((10, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4586302Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(arg1_1.data_ptr()), c_void_p(buf0.data_ptr()), c_void_p(buf1.data_ptr()), c_void_p(buf2.data_ptr()), c_void_p(buf3.data_ptr()), c_void_p(buf4.data_ptr())) 2023-01-11T21:05:10.4586373Z del arg0_1 2023-01-11T21:05:10.4586427Z del arg1_1 2023-01-11T21:05:10.4586550Z return (buf0, buf1, buf2, buf3, buf4, ) 2023-01-11T21:05:10.4586555Z 2023-01-11T21:05:10.4586559Z 2023-01-11T21:05:10.4586637Z if __name__ == "__main__": 2023-01-11T21:05:10.4586754Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.4586877Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.4587061Z arg0_1 = rand_strided((), (), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4587254Z arg1_1 = rand_strided((10, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4587369Z print_performance(lambda: call([arg0_1, arg1_1])) 2023-01-11T21:05:10.4587374Z 2023-01-11T21:05:10.4587378Z 2023-01-11T21:05:10.4587471Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.4587527Z import torch 2023-01-11T21:05:10.4587597Z import random 2023-01-11T21:05:10.4587712Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.4587830Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.4587835Z 2023-01-11T21:05:10.4587916Z aten = torch.ops.aten 2023-01-11T21:05:10.4588049Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.4588140Z async_compile = AsyncCompile() 2023-01-11T21:05:10.4588145Z 2023-01-11T21:05:10.4588149Z 2023-01-11T21:05:10.4588268Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.4588472Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.4588590Z extern "C" void kernel(const long* __restrict__ in_ptr0, 2023-01-11T21:05:10.4588692Z const long* __restrict__ in_ptr1, 2023-01-11T21:05:10.4588791Z float* __restrict__ out_ptr0, 2023-01-11T21:05:10.4588885Z long* __restrict__ out_ptr1, 2023-01-11T21:05:10.4588979Z long* __restrict__ out_ptr2, 2023-01-11T21:05:10.4589075Z float* __restrict__ out_ptr3, 2023-01-11T21:05:10.4589155Z long* __restrict__ out_ptr4) 2023-01-11T21:05:10.4589213Z { 2023-01-11T21:05:10.4589310Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.4589371Z { 2023-01-11T21:05:10.4589447Z #pragma omp for 2023-01-11T21:05:10.4589529Z for(long i0=0; i0<10; i0+=1) 2023-01-11T21:05:10.4589590Z { 2023-01-11T21:05:10.4589639Z { 2023-01-11T21:05:10.4589701Z { 2023-01-11T21:05:10.4589793Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:05:10.4589883Z auto tmp2 = in_ptr1[0]; 2023-01-11T21:05:10.4589990Z auto tmp1 = static_cast(tmp0); 2023-01-11T21:05:10.4590096Z auto tmp3 = static_cast(tmp2); 2023-01-11T21:05:10.4590186Z auto tmp4 = tmp1 / tmp3; 2023-01-11T21:05:10.4590455Z auto tmp5 = ((tmp0 < 0) != (tmp2 < 0) ? (tmp0 % tmp2 != 0 ? tmp0 / tmp2 - 1 : tmp0 / tmp2) : tmp0 / tmp2); 2023-01-11T21:05:10.4590545Z auto tmp6 = tmp0 / tmp2; 2023-01-11T21:05:10.4590631Z out_ptr0[i0] = tmp4; 2023-01-11T21:05:10.4590714Z out_ptr1[i0] = tmp5; 2023-01-11T21:05:10.4590795Z out_ptr2[i0] = tmp6; 2023-01-11T21:05:10.4590876Z out_ptr3[i0] = tmp4; 2023-01-11T21:05:10.4590956Z out_ptr4[i0] = tmp5; 2023-01-11T21:05:10.4591006Z } 2023-01-11T21:05:10.4591068Z } 2023-01-11T21:05:10.4591128Z } 2023-01-11T21:05:10.4591189Z } 2023-01-11T21:05:10.4591248Z } 2023-01-11T21:05:10.4591324Z ''') 2023-01-11T21:05:10.4591329Z 2023-01-11T21:05:10.4591333Z 2023-01-11T21:05:10.4591421Z async_compile.wait(globals()) 2023-01-11T21:05:10.4591480Z del async_compile 2023-01-11T21:05:10.4591484Z 2023-01-11T21:05:10.4591554Z def call(args): 2023-01-11T21:05:10.4591631Z arg0_1, arg1_1 = args 2023-01-11T21:05:10.4591700Z args.clear() 2023-01-11T21:05:10.4591895Z buf0 = empty_strided((10, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4592110Z buf1 = empty_strided((10, ), (1, ), device='cpu', dtype=torch.int64) 2023-01-11T21:05:10.4592298Z buf2 = empty_strided((10, ), (1, ), device='cpu', dtype=torch.int64) 2023-01-11T21:05:10.4592474Z buf3 = empty_strided((10, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4592658Z buf4 = empty_strided((10, ), (1, ), device='cpu', dtype=torch.int64) 2023-01-11T21:05:10.4592920Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(arg1_1.data_ptr()), c_void_p(buf0.data_ptr()), c_void_p(buf1.data_ptr()), c_void_p(buf2.data_ptr()), c_void_p(buf3.data_ptr()), c_void_p(buf4.data_ptr())) 2023-01-11T21:05:10.4592989Z del arg0_1 2023-01-11T21:05:10.4593053Z del arg1_1 2023-01-11T21:05:10.4593149Z return (buf0, buf1, buf2, buf3, buf4, ) 2023-01-11T21:05:10.4593156Z 2023-01-11T21:05:10.4593160Z 2023-01-11T21:05:10.4593235Z if __name__ == "__main__": 2023-01-11T21:05:10.4593351Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.4593476Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.4593653Z arg0_1 = rand_strided((10, ), (1, ), device='cpu', dtype=torch.int64) 2023-01-11T21:05:10.4593834Z arg1_1 = rand_strided((), (), device='cpu', dtype=torch.int64) 2023-01-11T21:05:10.4593949Z print_performance(lambda: call([arg0_1, arg1_1])) 2023-01-11T21:05:10.4593955Z 2023-01-11T21:05:10.4593959Z 2023-01-11T21:05:10.4594052Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.4594121Z import torch 2023-01-11T21:05:10.4594189Z import random 2023-01-11T21:05:10.4594302Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.4594408Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.4594425Z 2023-01-11T21:05:10.4594489Z aten = torch.ops.aten 2023-01-11T21:05:10.4594625Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.4594714Z async_compile = AsyncCompile() 2023-01-11T21:05:10.4594719Z 2023-01-11T21:05:10.4594723Z 2023-01-11T21:05:10.4594861Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.4595066Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.4595185Z extern "C" void kernel(const long* __restrict__ in_ptr0, 2023-01-11T21:05:10.4595289Z const long* __restrict__ in_ptr1, 2023-01-11T21:05:10.4595374Z float* __restrict__ out_ptr0, 2023-01-11T21:05:10.4595470Z long* __restrict__ out_ptr1, 2023-01-11T21:05:10.4595562Z long* __restrict__ out_ptr2, 2023-01-11T21:05:10.4595658Z float* __restrict__ out_ptr3, 2023-01-11T21:05:10.4595750Z long* __restrict__ out_ptr4) 2023-01-11T21:05:10.4595811Z { 2023-01-11T21:05:10.4595940Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.4595988Z { 2023-01-11T21:05:10.4596063Z #pragma omp for 2023-01-11T21:05:10.4596145Z for(long i0=0; i0<10; i0+=1) 2023-01-11T21:05:10.4596207Z { 2023-01-11T21:05:10.4596274Z { 2023-01-11T21:05:10.4596338Z { 2023-01-11T21:05:10.4596428Z auto tmp0 = in_ptr0[0]; 2023-01-11T21:05:10.4596507Z auto tmp2 = in_ptr1[i0]; 2023-01-11T21:05:10.4596613Z auto tmp1 = static_cast(tmp0); 2023-01-11T21:05:10.4596718Z auto tmp3 = static_cast(tmp2); 2023-01-11T21:05:10.4596811Z auto tmp4 = tmp1 / tmp3; 2023-01-11T21:05:10.4597063Z auto tmp5 = ((tmp0 < 0) != (tmp2 < 0) ? (tmp0 % tmp2 != 0 ? tmp0 / tmp2 - 1 : tmp0 / tmp2) : tmp0 / tmp2); 2023-01-11T21:05:10.4597152Z auto tmp6 = tmp0 / tmp2; 2023-01-11T21:05:10.4597236Z out_ptr0[i0] = tmp4; 2023-01-11T21:05:10.4597320Z out_ptr1[i0] = tmp5; 2023-01-11T21:05:10.4597389Z out_ptr2[i0] = tmp6; 2023-01-11T21:05:10.4597471Z out_ptr3[i0] = tmp4; 2023-01-11T21:05:10.4597579Z out_ptr4[i0] = tmp5; 2023-01-11T21:05:10.4597644Z } 2023-01-11T21:05:10.4597708Z } 2023-01-11T21:05:10.4597769Z } 2023-01-11T21:05:10.4597818Z } 2023-01-11T21:05:10.4597876Z } 2023-01-11T21:05:10.4597951Z ''') 2023-01-11T21:05:10.4597957Z 2023-01-11T21:05:10.4597961Z 2023-01-11T21:05:10.4598054Z async_compile.wait(globals()) 2023-01-11T21:05:10.4598125Z del async_compile 2023-01-11T21:05:10.4598130Z 2023-01-11T21:05:10.4598200Z def call(args): 2023-01-11T21:05:10.4598274Z arg0_1, arg1_1 = args 2023-01-11T21:05:10.4598343Z args.clear() 2023-01-11T21:05:10.4598524Z buf0 = empty_strided((10, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4598711Z buf1 = empty_strided((10, ), (1, ), device='cpu', dtype=torch.int64) 2023-01-11T21:05:10.4598900Z buf2 = empty_strided((10, ), (1, ), device='cpu', dtype=torch.int64) 2023-01-11T21:05:10.4599089Z buf3 = empty_strided((10, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4599273Z buf4 = empty_strided((10, ), (1, ), device='cpu', dtype=torch.int64) 2023-01-11T21:05:10.4599535Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(arg1_1.data_ptr()), c_void_p(buf0.data_ptr()), c_void_p(buf1.data_ptr()), c_void_p(buf2.data_ptr()), c_void_p(buf3.data_ptr()), c_void_p(buf4.data_ptr())) 2023-01-11T21:05:10.4599604Z del arg0_1 2023-01-11T21:05:10.4599669Z del arg1_1 2023-01-11T21:05:10.4599752Z return (buf0, buf1, buf2, buf3, buf4, ) 2023-01-11T21:05:10.4599757Z 2023-01-11T21:05:10.4599762Z 2023-01-11T21:05:10.4599837Z if __name__ == "__main__": 2023-01-11T21:05:10.4599953Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.4600075Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.4600257Z arg0_1 = rand_strided((), (), device='cpu', dtype=torch.int64) 2023-01-11T21:05:10.4600446Z arg1_1 = rand_strided((10, ), (1, ), device='cpu', dtype=torch.int64) 2023-01-11T21:05:10.4600563Z print_performance(lambda: call([arg0_1, arg1_1])) 2023-01-11T21:05:10.4600971Z [2023-01-11 20:50:00,149] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 166 2023-01-11T21:05:10.4600977Z 2023-01-11T21:05:10.4601029Z ok (11.467s) 2023-01-11T21:05:10.4601354Z test_dropout_cpu (__main__.CpuTests) ... [2023-01-11 20:50:00,336] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 167 2023-01-11T21:05:10.4601609Z [2023-01-11 20:50:00,337] torch._inductor.lowering: [WARNING] using triton random, expect difference from eager 2023-01-11T21:05:10.4601876Z [2023-01-11 20:50:03,067] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 167 2023-01-11T21:05:10.4602132Z [2023-01-11 20:50:03,229] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 168 2023-01-11T21:05:10.4602452Z [2023-01-11 20:50:03,230] torch._inductor.lowering: [WARNING] using triton random, expect difference from eager 2023-01-11T21:05:10.4602717Z [2023-01-11 20:50:03,249] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 168 2023-01-11T21:05:10.4602722Z 2023-01-11T21:05:10.4602817Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.4602886Z import torch 2023-01-11T21:05:10.4602942Z import random 2023-01-11T21:05:10.4603060Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.4603183Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.4603188Z 2023-01-11T21:05:10.4603269Z aten = torch.ops.aten 2023-01-11T21:05:10.4603405Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.4603499Z async_compile = AsyncCompile() 2023-01-11T21:05:10.4603665Z seed_cpu_None = None # 9130db9322feaa41c28986790b86d7dd047e77339ff46fce775dbaa5929b26ce 2023-01-11T21:05:10.4603673Z 2023-01-11T21:05:10.4603677Z 2023-01-11T21:05:10.4603811Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.4604039Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.4604158Z extern "C" void kernel(const long* __restrict__ seed0, 2023-01-11T21:05:10.4604264Z const float* __restrict__ in_ptr1, 2023-01-11T21:05:10.4604364Z float* __restrict__ out_ptr0) 2023-01-11T21:05:10.4604427Z { 2023-01-11T21:05:10.4604524Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.4604585Z { 2023-01-11T21:05:10.4604647Z #pragma omp for 2023-01-11T21:05:10.4604730Z for(long i0=0; i0<1000; i0+=1) 2023-01-11T21:05:10.4604791Z { 2023-01-11T21:05:10.4604855Z { 2023-01-11T21:05:10.4604919Z { 2023-01-11T21:05:10.4605006Z auto tmp0 = seed0[0]; 2023-01-11T21:05:10.4605100Z auto tmp6 = in_ptr1[i0]; 2023-01-11T21:05:10.4605188Z auto tmp1 = static_cast(i0); 2023-01-11T21:05:10.4605328Z auto tmp2 = static_cast(normalized_rand_cpu(tmp0, tmp1));; 2023-01-11T21:05:10.4605437Z auto tmp3 = static_cast(0.5); 2023-01-11T21:05:10.4605527Z auto tmp4 = tmp2 > tmp3; 2023-01-11T21:05:10.4605633Z auto tmp5 = static_cast(tmp4); 2023-01-11T21:05:10.4605722Z auto tmp7 = tmp5 * tmp6; 2023-01-11T21:05:10.4605826Z auto tmp8 = static_cast(2.0); 2023-01-11T21:05:10.4605903Z auto tmp9 = tmp7 * tmp8; 2023-01-11T21:05:10.4605987Z out_ptr0[i0] = tmp9; 2023-01-11T21:05:10.4606050Z } 2023-01-11T21:05:10.4606113Z } 2023-01-11T21:05:10.4606177Z } 2023-01-11T21:05:10.4606236Z } 2023-01-11T21:05:10.4606294Z } 2023-01-11T21:05:10.4606360Z ''') 2023-01-11T21:05:10.4606366Z 2023-01-11T21:05:10.4606371Z 2023-01-11T21:05:10.4606458Z async_compile.wait(globals()) 2023-01-11T21:05:10.4606528Z del async_compile 2023-01-11T21:05:10.4606533Z 2023-01-11T21:05:10.4606603Z def call(args): 2023-01-11T21:05:10.4606673Z arg0_1, = args 2023-01-11T21:05:10.4606742Z args.clear() 2023-01-11T21:05:10.4606875Z torch.randint(2**31, size=(), dtype=torch.int64, out=seed_cpu_None) 2023-01-11T21:05:10.4607060Z buf0 = empty_strided((1000, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4607234Z kernel_cpp_0(c_void_p(seed_cpu_None.data_ptr()), c_void_p(arg0_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:05:10.4607302Z del arg0_1 2023-01-11T21:05:10.4607373Z return (buf0, ) 2023-01-11T21:05:10.4607378Z 2023-01-11T21:05:10.4607382Z 2023-01-11T21:05:10.4607456Z if __name__ == "__main__": 2023-01-11T21:05:10.4607569Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.4607691Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.4607918Z seed_cpu_None = rand_strided((), (), device='cpu', dtype=torch.int64) 2023-01-11T21:05:10.4608102Z arg0_1 = rand_strided((1000, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4608211Z print_performance(lambda: call([arg0_1])) 2023-01-11T21:05:10.4608216Z 2023-01-11T21:05:10.4608220Z 2023-01-11T21:05:10.4608312Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.4608379Z import torch 2023-01-11T21:05:10.4608447Z import random 2023-01-11T21:05:10.4608563Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.4608682Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.4608687Z 2023-01-11T21:05:10.4608763Z aten = torch.ops.aten 2023-01-11T21:05:10.4608883Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.4608972Z async_compile = AsyncCompile() 2023-01-11T21:05:10.4609132Z seed_cpu_None = None # 9130db9322feaa41c28986790b86d7dd047e77339ff46fce775dbaa5929b26ce 2023-01-11T21:05:10.4609139Z 2023-01-11T21:05:10.4609143Z 2023-01-11T21:05:10.4609274Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.4609560Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.4609679Z extern "C" void kernel(const long* __restrict__ seed0, 2023-01-11T21:05:10.4609785Z const float* __restrict__ in_ptr1, 2023-01-11T21:05:10.4609889Z float* __restrict__ out_ptr0) 2023-01-11T21:05:10.4609936Z { 2023-01-11T21:05:10.4610034Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.4610098Z { 2023-01-11T21:05:10.4610175Z #pragma omp for 2023-01-11T21:05:10.4610260Z for(long i0=0; i0<1000; i0+=1) 2023-01-11T21:05:10.4610325Z { 2023-01-11T21:05:10.4610389Z { 2023-01-11T21:05:10.4610438Z { 2023-01-11T21:05:10.4610526Z auto tmp0 = seed0[0]; 2023-01-11T21:05:10.4610619Z auto tmp6 = in_ptr1[i0]; 2023-01-11T21:05:10.4610726Z auto tmp1 = static_cast(i0); 2023-01-11T21:05:10.4610866Z auto tmp2 = static_cast(normalized_rand_cpu(tmp0, tmp1));; 2023-01-11T21:05:10.4610974Z auto tmp3 = static_cast(0.5); 2023-01-11T21:05:10.4611066Z auto tmp4 = tmp2 > tmp3; 2023-01-11T21:05:10.4611159Z auto tmp5 = static_cast(tmp4); 2023-01-11T21:05:10.4611250Z auto tmp7 = tmp5 * tmp6; 2023-01-11T21:05:10.4611355Z auto tmp8 = static_cast(2.0); 2023-01-11T21:05:10.4611446Z auto tmp9 = tmp7 * tmp8; 2023-01-11T21:05:10.4611530Z out_ptr0[i0] = tmp9; 2023-01-11T21:05:10.4611593Z } 2023-01-11T21:05:10.4611655Z } 2023-01-11T21:05:10.4611702Z } 2023-01-11T21:05:10.4611760Z } 2023-01-11T21:05:10.4611819Z } 2023-01-11T21:05:10.4611898Z ''') 2023-01-11T21:05:10.4611906Z 2023-01-11T21:05:10.4611910Z 2023-01-11T21:05:10.4612000Z async_compile.wait(globals()) 2023-01-11T21:05:10.4612071Z del async_compile 2023-01-11T21:05:10.4612076Z 2023-01-11T21:05:10.4612146Z def call(args): 2023-01-11T21:05:10.4612203Z arg0_1, = args 2023-01-11T21:05:10.4612273Z args.clear() 2023-01-11T21:05:10.4612406Z torch.randint(2**31, size=(), dtype=torch.int64, out=seed_cpu_None) 2023-01-11T21:05:10.4612603Z buf0 = empty_strided((1000, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4612777Z kernel_cpp_0(c_void_p(seed_cpu_None.data_ptr()), c_void_p(arg0_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:05:10.4612845Z del arg0_1 2023-01-11T21:05:10.4612916Z return (buf0, ) 2023-01-11T21:05:10.4612921Z 2023-01-11T21:05:10.4612925Z 2023-01-11T21:05:10.4613001Z if __name__ == "__main__": 2023-01-11T21:05:10.4613102Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.4613225Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.4613450Z seed_cpu_None = rand_strided((), (), device='cpu', dtype=torch.int64) 2023-01-11T21:05:10.4613644Z arg0_1 = rand_strided((1000, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4613755Z print_performance(lambda: call([arg0_1])) 2023-01-11T21:05:10.4613761Z 2023-01-11T21:05:10.4613828Z ok (3.093s) 2023-01-11T21:05:10.4614182Z test_dropout_deterministic_cpu (__main__.CpuTests) ... [2023-01-11 20:50:03,394] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 169 2023-01-11T21:05:10.4614439Z [2023-01-11 20:50:03,395] torch._inductor.lowering: [WARNING] using triton random, expect difference from eager 2023-01-11T21:05:10.4614691Z [2023-01-11 20:50:06,105] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 169 2023-01-11T21:05:10.4614945Z [2023-01-11 20:50:06,232] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 170 2023-01-11T21:05:10.4615199Z [2023-01-11 20:50:06,233] torch._inductor.lowering: [WARNING] using triton random, expect difference from eager 2023-01-11T21:05:10.4615499Z [2023-01-11 20:50:06,247] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 170 2023-01-11T21:05:10.4615504Z 2023-01-11T21:05:10.4615600Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.4615669Z import torch 2023-01-11T21:05:10.4615740Z import random 2023-01-11T21:05:10.4615855Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.4615962Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.4615980Z 2023-01-11T21:05:10.4616045Z aten = torch.ops.aten 2023-01-11T21:05:10.4616179Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.4616272Z async_compile = AsyncCompile() 2023-01-11T21:05:10.4616433Z seed_cpu_None = None # 9130db9322feaa41c28986790b86d7dd047e77339ff46fce775dbaa5929b26ce 2023-01-11T21:05:10.4616439Z 2023-01-11T21:05:10.4616444Z 2023-01-11T21:05:10.4616581Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.4616786Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.4616904Z extern "C" void kernel(const long* __restrict__ seed0, 2023-01-11T21:05:10.4617011Z const float* __restrict__ in_ptr1, 2023-01-11T21:05:10.4617099Z float* __restrict__ out_ptr0) 2023-01-11T21:05:10.4617160Z { 2023-01-11T21:05:10.4617261Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.4617323Z { 2023-01-11T21:05:10.4617402Z #pragma omp for 2023-01-11T21:05:10.4617487Z for(long i0=0; i0<1024; i0+=1) 2023-01-11T21:05:10.4617535Z { 2023-01-11T21:05:10.4617600Z { 2023-01-11T21:05:10.4617667Z { 2023-01-11T21:05:10.4617754Z auto tmp0 = seed0[0]; 2023-01-11T21:05:10.4617846Z auto tmp6 = in_ptr1[i0]; 2023-01-11T21:05:10.4617951Z auto tmp1 = static_cast(i0); 2023-01-11T21:05:10.4618092Z auto tmp2 = static_cast(normalized_rand_cpu(tmp0, tmp1));; 2023-01-11T21:05:10.4618185Z auto tmp3 = static_cast(0.55); 2023-01-11T21:05:10.4618279Z auto tmp4 = tmp2 > tmp3; 2023-01-11T21:05:10.4618386Z auto tmp5 = static_cast(tmp4); 2023-01-11T21:05:10.4618566Z auto tmp7 = tmp5 * tmp6; 2023-01-11T21:05:10.4618683Z auto tmp8 = static_cast(2.2222222222222223); 2023-01-11T21:05:10.4618775Z auto tmp9 = tmp7 * tmp8; 2023-01-11T21:05:10.4618863Z out_ptr0[i0] = tmp9; 2023-01-11T21:05:10.4618929Z } 2023-01-11T21:05:10.4618978Z } 2023-01-11T21:05:10.4619042Z } 2023-01-11T21:05:10.4619103Z } 2023-01-11T21:05:10.4619164Z } 2023-01-11T21:05:10.4619244Z ''') 2023-01-11T21:05:10.4619250Z 2023-01-11T21:05:10.4619254Z 2023-01-11T21:05:10.4619343Z async_compile.wait(globals()) 2023-01-11T21:05:10.4619454Z del async_compile 2023-01-11T21:05:10.4619458Z 2023-01-11T21:05:10.4619515Z def call(args): 2023-01-11T21:05:10.4619584Z arg0_1, = args 2023-01-11T21:05:10.4619656Z args.clear() 2023-01-11T21:05:10.4619789Z torch.randint(2**31, size=(), dtype=torch.int64, out=seed_cpu_None) 2023-01-11T21:05:10.4619988Z buf0 = empty_strided((1024, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4620163Z kernel_cpp_0(c_void_p(seed_cpu_None.data_ptr()), c_void_p(arg0_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:05:10.4620230Z del arg0_1 2023-01-11T21:05:10.4620288Z return (buf0, ) 2023-01-11T21:05:10.4620293Z 2023-01-11T21:05:10.4620310Z 2023-01-11T21:05:10.4620373Z if __name__ == "__main__": 2023-01-11T21:05:10.4620487Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.4620610Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.4620807Z seed_cpu_None = rand_strided((), (), device='cpu', dtype=torch.int64) 2023-01-11T21:05:10.4621004Z arg0_1 = rand_strided((1024, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4621110Z print_performance(lambda: call([arg0_1])) 2023-01-11T21:05:10.4621145Z 2023-01-11T21:05:10.4621149Z 2023-01-11T21:05:10.4621243Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.4621297Z import torch 2023-01-11T21:05:10.4621366Z import random 2023-01-11T21:05:10.4621482Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.4621600Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.4621605Z 2023-01-11T21:05:10.4621685Z aten = torch.ops.aten 2023-01-11T21:05:10.4621819Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.4621909Z async_compile = AsyncCompile() 2023-01-11T21:05:10.4622072Z seed_cpu_None = None # 9130db9322feaa41c28986790b86d7dd047e77339ff46fce775dbaa5929b26ce 2023-01-11T21:05:10.4622077Z 2023-01-11T21:05:10.4622081Z 2023-01-11T21:05:10.4622204Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.4622410Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.4622528Z extern "C" void kernel(const long* __restrict__ seed0, 2023-01-11T21:05:10.4622633Z const float* __restrict__ in_ptr1, 2023-01-11T21:05:10.4622731Z float* __restrict__ out_ptr0) 2023-01-11T21:05:10.4622791Z { 2023-01-11T21:05:10.4622887Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.4622936Z { 2023-01-11T21:05:10.4623010Z #pragma omp for 2023-01-11T21:05:10.4623092Z for(long i0=0; i0<1024; i0+=1) 2023-01-11T21:05:10.4623154Z { 2023-01-11T21:05:10.4623216Z { 2023-01-11T21:05:10.4623279Z { 2023-01-11T21:05:10.4623365Z auto tmp0 = seed0[0]; 2023-01-11T21:05:10.4623442Z auto tmp6 = in_ptr1[i0]; 2023-01-11T21:05:10.4623543Z auto tmp1 = static_cast(i0); 2023-01-11T21:05:10.4623684Z auto tmp2 = static_cast(normalized_rand_cpu(tmp0, tmp1));; 2023-01-11T21:05:10.4623789Z auto tmp3 = static_cast(0.55); 2023-01-11T21:05:10.4623881Z auto tmp4 = tmp2 > tmp3; 2023-01-11T21:05:10.4623986Z auto tmp5 = static_cast(tmp4); 2023-01-11T21:05:10.4624077Z auto tmp7 = tmp5 * tmp6; 2023-01-11T21:05:10.4624189Z auto tmp8 = static_cast(2.2222222222222223); 2023-01-11T21:05:10.4624266Z auto tmp9 = tmp7 * tmp8; 2023-01-11T21:05:10.4624350Z out_ptr0[i0] = tmp9; 2023-01-11T21:05:10.4624412Z } 2023-01-11T21:05:10.4624474Z } 2023-01-11T21:05:10.4624536Z } 2023-01-11T21:05:10.4624596Z } 2023-01-11T21:05:10.4624642Z } 2023-01-11T21:05:10.4624718Z ''') 2023-01-11T21:05:10.4624723Z 2023-01-11T21:05:10.4624727Z 2023-01-11T21:05:10.4624815Z async_compile.wait(globals()) 2023-01-11T21:05:10.4624914Z del async_compile 2023-01-11T21:05:10.4624919Z 2023-01-11T21:05:10.4624988Z def call(args): 2023-01-11T21:05:10.4625056Z arg0_1, = args 2023-01-11T21:05:10.4625125Z args.clear() 2023-01-11T21:05:10.4625258Z torch.randint(2**31, size=(), dtype=torch.int64, out=seed_cpu_None) 2023-01-11T21:05:10.4625443Z buf0 = empty_strided((1024, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4625616Z kernel_cpp_0(c_void_p(seed_cpu_None.data_ptr()), c_void_p(arg0_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:05:10.4625685Z del arg0_1 2023-01-11T21:05:10.4625755Z return (buf0, ) 2023-01-11T21:05:10.4625760Z 2023-01-11T21:05:10.4625764Z 2023-01-11T21:05:10.4625838Z if __name__ == "__main__": 2023-01-11T21:05:10.4625953Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.4626075Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.4626267Z seed_cpu_None = rand_strided((), (), device='cpu', dtype=torch.int64) 2023-01-11T21:05:10.4626454Z arg0_1 = rand_strided((1024, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4626559Z print_performance(lambda: call([arg0_1])) 2023-01-11T21:05:10.4626564Z 2023-01-11T21:05:10.4626659Z ok (3.001s) 2023-01-11T21:05:10.4627007Z test_dtype_mismatch_issue_cpu (__main__.CpuTests) ... [2023-01-11 20:50:06,310] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 171 2023-01-11T21:05:10.4627273Z [2023-01-11 20:50:09,081] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 171 2023-01-11T21:05:10.4627278Z 2023-01-11T21:05:10.4627371Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.4627438Z import torch 2023-01-11T21:05:10.4627506Z import random 2023-01-11T21:05:10.4627608Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.4627728Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.4627733Z 2023-01-11T21:05:10.4627812Z aten = torch.ops.aten 2023-01-11T21:05:10.4627944Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.4628036Z async_compile = AsyncCompile() 2023-01-11T21:05:10.4628041Z 2023-01-11T21:05:10.4628045Z 2023-01-11T21:05:10.4628179Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.4628382Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.4628500Z extern "C" void kernel(float* __restrict__ in_out_ptr0, 2023-01-11T21:05:10.4628592Z const float* __restrict__ in_ptr0, 2023-01-11T21:05:10.4628690Z float* __restrict__ out_ptr0, 2023-01-11T21:05:10.4628789Z float* __restrict__ out_ptr2) 2023-01-11T21:05:10.4628849Z { 2023-01-11T21:05:10.4628934Z auto out_ptr1 = in_out_ptr0; 2023-01-11T21:05:10.4629029Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.4629090Z { 2023-01-11T21:05:10.4629153Z #pragma omp for 2023-01-11T21:05:10.4629238Z for(long i0=0; i0<4096; i0+=1) 2023-01-11T21:05:10.4629300Z { 2023-01-11T21:05:10.4629362Z { 2023-01-11T21:05:10.4629425Z { 2023-01-11T21:05:10.4629685Z float tmp5 = -std::numeric_limits::infinity(); 2023-01-11T21:05:10.4629777Z for(long i1=0; i1<64; i1+=1) 2023-01-11T21:05:10.4629832Z { 2023-01-11T21:05:10.4629899Z { 2023-01-11T21:05:10.4630007Z auto tmp0 = static_cast(i1); 2023-01-11T21:05:10.4630115Z auto tmp1 = static_cast(63); 2023-01-11T21:05:10.4630210Z auto tmp2 = tmp0 < tmp1; 2023-01-11T21:05:10.4630298Z float tmp3 = 0.0; 2023-01-11T21:05:10.4630373Z if(tmp2) 2023-01-11T21:05:10.4630429Z { 2023-01-11T21:05:10.4630534Z auto tmp4 = in_ptr0[i1 + (63*i0)]; 2023-01-11T21:05:10.4630653Z tmp3 = tmp4; 2023-01-11T21:05:10.4630722Z } 2023-01-11T21:05:10.4630827Z tmp5 = std::max(tmp5, tmp3); 2023-01-11T21:05:10.4630897Z } 2023-01-11T21:05:10.4630965Z } 2023-01-11T21:05:10.4631036Z out_ptr0[i0] = tmp5; 2023-01-11T21:05:10.4631100Z } 2023-01-11T21:05:10.4631163Z } 2023-01-11T21:05:10.4631225Z } 2023-01-11T21:05:10.4631301Z #pragma omp for 2023-01-11T21:05:10.4631383Z for(long i0=0; i0<4096; i0+=1) 2023-01-11T21:05:10.4631443Z { 2023-01-11T21:05:10.4631493Z { 2023-01-11T21:05:10.4631554Z { 2023-01-11T21:05:10.4631632Z float tmp8 = 0; 2023-01-11T21:05:10.4631724Z for(long i1=0; i1<64; i1+=1) 2023-01-11T21:05:10.4631789Z { 2023-01-11T21:05:10.4631856Z { 2023-01-11T21:05:10.4631943Z auto tmp5 = out_ptr0[i0]; 2023-01-11T21:05:10.4632049Z auto tmp0 = static_cast(i1); 2023-01-11T21:05:10.4632189Z auto tmp1 = static_cast(63); 2023-01-11T21:05:10.4632286Z auto tmp2 = tmp0 < tmp1; 2023-01-11T21:05:10.4632373Z float tmp3 = 0.0; 2023-01-11T21:05:10.4632451Z if(tmp2) 2023-01-11T21:05:10.4632520Z { 2023-01-11T21:05:10.4632624Z auto tmp4 = in_ptr0[i1 + (63*i0)]; 2023-01-11T21:05:10.4632696Z tmp3 = tmp4; 2023-01-11T21:05:10.4632768Z } 2023-01-11T21:05:10.4632911Z auto tmp6 = tmp3 - tmp5; 2023-01-11T21:05:10.4633014Z auto tmp7 = std::exp(tmp6); 2023-01-11T21:05:10.4633112Z out_ptr1[i1 + (64*i0)] = tmp7; 2023-01-11T21:05:10.4633196Z tmp8 += tmp7; 2023-01-11T21:05:10.4633262Z } 2023-01-11T21:05:10.4633315Z } 2023-01-11T21:05:10.4633400Z out_ptr2[i0] = tmp8; 2023-01-11T21:05:10.4633463Z } 2023-01-11T21:05:10.4633525Z } 2023-01-11T21:05:10.4633586Z } 2023-01-11T21:05:10.4633661Z #pragma omp for 2023-01-11T21:05:10.4633742Z for(long i0=0; i0<4096; i0+=1) 2023-01-11T21:05:10.4633790Z { 2023-01-11T21:05:10.4633871Z for(long i1=0; i1<4; i1+=1) 2023-01-11T21:05:10.4633933Z { 2023-01-11T21:05:10.4634077Z auto tmp0 = at::vec::Vectorized::loadu(out_ptr1 + (16*i1) + (64*i0)); 2023-01-11T21:05:10.4634204Z auto tmp1 = at::vec::Vectorized(out_ptr2[i0]); 2023-01-11T21:05:10.4634290Z auto tmp2 = tmp0 / tmp1; 2023-01-11T21:05:10.4634399Z tmp2.store(in_out_ptr0 + (16*i1) + (64*i0)); 2023-01-11T21:05:10.4634450Z } 2023-01-11T21:05:10.4634540Z #pragma omp simd simdlen(8) 2023-01-11T21:05:10.4634625Z for(long i1=64; i1<64; i1+=1) 2023-01-11T21:05:10.4634690Z { 2023-01-11T21:05:10.4634786Z auto tmp0 = out_ptr1[i1 + (64*i0)]; 2023-01-11T21:05:10.4634873Z auto tmp1 = out_ptr2[i0]; 2023-01-11T21:05:10.4634960Z auto tmp2 = tmp0 / tmp1; 2023-01-11T21:05:10.4635041Z in_out_ptr0[i1 + (64*i0)] = tmp2; 2023-01-11T21:05:10.4635103Z } 2023-01-11T21:05:10.4635164Z } 2023-01-11T21:05:10.4635224Z } 2023-01-11T21:05:10.4635284Z } 2023-01-11T21:05:10.4635360Z ''') 2023-01-11T21:05:10.4635365Z 2023-01-11T21:05:10.4635369Z 2023-01-11T21:05:10.4635458Z async_compile.wait(globals()) 2023-01-11T21:05:10.4635516Z del async_compile 2023-01-11T21:05:10.4635521Z 2023-01-11T21:05:10.4635590Z def call(args): 2023-01-11T21:05:10.4635656Z arg0_1, = args 2023-01-11T21:05:10.4635758Z args.clear() 2023-01-11T21:05:10.4635973Z buf0 = empty_strided((128, 32, 1), (32, 1, 4096), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4636188Z buf1 = empty_strided((128, 32, 64), (2048, 64, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4636397Z buf2 = empty_strided((128, 32, 1), (32, 1, 4096), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4636469Z buf3 = buf1; del buf1 # reuse 2023-01-11T21:05:10.4636658Z kernel_cpp_0(c_void_p(buf3.data_ptr()), c_void_p(arg0_1.data_ptr()), c_void_p(buf0.data_ptr()), c_void_p(buf2.data_ptr())) 2023-01-11T21:05:10.4636725Z del arg0_1 2023-01-11T21:05:10.4636796Z return (buf3, ) 2023-01-11T21:05:10.4636801Z 2023-01-11T21:05:10.4636805Z 2023-01-11T21:05:10.4636879Z if __name__ == "__main__": 2023-01-11T21:05:10.4636992Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.4637115Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.4637329Z arg0_1 = rand_strided((128, 32, 63), (2016, 63, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4637424Z print_performance(lambda: call([arg0_1])) 2023-01-11T21:05:10.4637442Z 2023-01-11T21:05:10.4637496Z ok (2.930s) 2023-01-11T21:05:10.4637977Z test_elu_cpu (__main__.CpuTests) ... inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.4638104Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.4638363Z [2023-01-11 20:50:09,281] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 172 2023-01-11T21:05:10.4638629Z [2023-01-11 20:50:12,042] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 172 2023-01-11T21:05:10.4638637Z 2023-01-11T21:05:10.4638730Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.4638800Z import torch 2023-01-11T21:05:10.4638869Z import random 2023-01-11T21:05:10.4638973Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.4639093Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.4639098Z 2023-01-11T21:05:10.4639175Z aten = torch.ops.aten 2023-01-11T21:05:10.4639307Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.4639398Z async_compile = AsyncCompile() 2023-01-11T21:05:10.4639403Z 2023-01-11T21:05:10.4639407Z 2023-01-11T21:05:10.4639540Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.4639743Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.4639863Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:05:10.4639962Z float* __restrict__ out_ptr0, 2023-01-11T21:05:10.4640045Z float* __restrict__ out_ptr1) 2023-01-11T21:05:10.4640108Z { 2023-01-11T21:05:10.4640205Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.4640267Z { 2023-01-11T21:05:10.4640343Z #pragma omp for 2023-01-11T21:05:10.4640427Z for(long i0=0; i0<256; i0+=1) 2023-01-11T21:05:10.4640475Z { 2023-01-11T21:05:10.4640537Z { 2023-01-11T21:05:10.4640715Z { 2023-01-11T21:05:10.4640810Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:05:10.4640916Z auto tmp1 = static_cast(0); 2023-01-11T21:05:10.4641008Z auto tmp2 = tmp0 > tmp1; 2023-01-11T21:05:10.4641122Z auto tmp3 = static_cast(1.0507009873554805); 2023-01-11T21:05:10.4641200Z auto tmp4 = tmp0 * tmp3; 2023-01-11T21:05:10.4641307Z auto tmp5 = static_cast(1.0); 2023-01-11T21:05:10.4641398Z auto tmp6 = tmp0 * tmp5; 2023-01-11T21:05:10.4641565Z auto tmp7 = std::expm1(tmp6); 2023-01-11T21:05:10.4641679Z auto tmp8 = static_cast(1.7580993408473766); 2023-01-11T21:05:10.4641769Z auto tmp9 = tmp7 * tmp8; 2023-01-11T21:05:10.4641871Z auto tmp10 = tmp2 ? tmp4 : tmp9; 2023-01-11T21:05:10.4641978Z auto tmp11 = static_cast(2); 2023-01-11T21:05:10.4642058Z auto tmp12 = tmp10 + tmp11; 2023-01-11T21:05:10.4642160Z auto tmp13 = static_cast(1); 2023-01-11T21:05:10.4642254Z auto tmp14 = tmp0 + tmp13; 2023-01-11T21:05:10.4642347Z auto tmp15 = tmp14 > tmp1; 2023-01-11T21:05:10.4642451Z auto tmp16 = static_cast(3); 2023-01-11T21:05:10.4642543Z auto tmp17 = tmp14 * tmp16; 2023-01-11T21:05:10.4642648Z auto tmp18 = static_cast(4); 2023-01-11T21:05:10.4642725Z auto tmp19 = tmp14 * tmp18; 2023-01-11T21:05:10.4642829Z auto tmp20 = std::expm1(tmp19); 2023-01-11T21:05:10.4642929Z auto tmp21 = static_cast(6); 2023-01-11T21:05:10.4643062Z auto tmp22 = tmp20 * tmp21; 2023-01-11T21:05:10.4643161Z auto tmp23 = tmp15 ? tmp17 : tmp22; 2023-01-11T21:05:10.4643246Z out_ptr0[i0] = tmp12; 2023-01-11T21:05:10.4643329Z out_ptr1[i0] = tmp23; 2023-01-11T21:05:10.4643380Z } 2023-01-11T21:05:10.4643443Z } 2023-01-11T21:05:10.4643504Z } 2023-01-11T21:05:10.4643565Z } 2023-01-11T21:05:10.4643627Z } 2023-01-11T21:05:10.4643708Z ''') 2023-01-11T21:05:10.4643716Z 2023-01-11T21:05:10.4643720Z 2023-01-11T21:05:10.4643809Z async_compile.wait(globals()) 2023-01-11T21:05:10.4643867Z del async_compile 2023-01-11T21:05:10.4643885Z 2023-01-11T21:05:10.4643942Z def call(args): 2023-01-11T21:05:10.4644012Z arg0_1, = args 2023-01-11T21:05:10.4644084Z args.clear() 2023-01-11T21:05:10.4644285Z buf0 = empty_strided((16, 16), (16, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4644484Z buf1 = empty_strided((16, 16), (16, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4644651Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(buf0.data_ptr()), c_void_p(buf1.data_ptr())) 2023-01-11T21:05:10.4644720Z del arg0_1 2023-01-11T21:05:10.4644783Z return (buf0, buf1, ) 2023-01-11T21:05:10.4644788Z 2023-01-11T21:05:10.4644793Z 2023-01-11T21:05:10.4644868Z if __name__ == "__main__": 2023-01-11T21:05:10.4644982Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.4645105Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.4645304Z arg0_1 = rand_strided((16, 16), (16, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4645413Z print_performance(lambda: call([arg0_1])) 2023-01-11T21:05:10.4645417Z 2023-01-11T21:05:10.4645484Z ok (2.867s) 2023-01-11T21:05:10.4645943Z test_embedding_bag_cpu (__main__.CpuTests) ... inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.4646073Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.4646320Z [2023-01-11 20:50:12,124] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 173 2023-01-11T21:05:10.4646552Z [2023-01-11 20:50:12,159] torch._inductor.ir: [WARNING] Using FallbackKernel: aten._embedding_bag 2023-01-11T21:05:10.4646815Z [2023-01-11 20:50:12,165] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 173 2023-01-11T21:05:10.4646821Z 2023-01-11T21:05:10.4646915Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.4646984Z import torch 2023-01-11T21:05:10.4647085Z import random 2023-01-11T21:05:10.4647203Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.4647324Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.4647329Z 2023-01-11T21:05:10.4647395Z aten = torch.ops.aten 2023-01-11T21:05:10.4647529Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.4647620Z async_compile = AsyncCompile() 2023-01-11T21:05:10.4647625Z 2023-01-11T21:05:10.4647630Z 2023-01-11T21:05:10.4647717Z async_compile.wait(globals()) 2023-01-11T21:05:10.4647789Z del async_compile 2023-01-11T21:05:10.4647794Z 2023-01-11T21:05:10.4647864Z def call(args): 2023-01-11T21:05:10.4647945Z arg0_1, arg1_1, arg2_1 = args 2023-01-11T21:05:10.4648016Z args.clear() 2023-01-11T21:05:10.4648112Z buf0 = aten._embedding_bag(arg0_1, arg1_1, arg2_1) 2023-01-11T21:05:10.4648179Z del arg0_1 2023-01-11T21:05:10.4648246Z del arg1_1 2023-01-11T21:05:10.4648311Z del arg2_1 2023-01-11T21:05:10.4648381Z buf1 = buf0[0] 2023-01-11T21:05:10.4648480Z assert_size_stride(buf1, (3, 4), (4, 1)) 2023-01-11T21:05:10.4648535Z buf2 = buf0[1] 2023-01-11T21:05:10.4648627Z assert_size_stride(buf2, (0, ), (1, )) 2023-01-11T21:05:10.4648739Z buf3 = buf0[2] 2023-01-11T21:05:10.4648836Z assert_size_stride(buf3, (3, ), (1, )) 2023-01-11T21:05:10.4648901Z buf4 = buf0[3] 2023-01-11T21:05:10.4648991Z assert_size_stride(buf4, (3, ), (1, )) 2023-01-11T21:05:10.4649054Z del buf0 2023-01-11T21:05:10.4649127Z return (buf1, buf2, buf3, buf4, ) 2023-01-11T21:05:10.4649132Z 2023-01-11T21:05:10.4649148Z 2023-01-11T21:05:10.4649209Z if __name__ == "__main__": 2023-01-11T21:05:10.4649321Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.4649444Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.4649645Z arg0_1 = rand_strided((10, 4), (4, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4649834Z arg1_1 = rand_strided((8, ), (1, ), device='cpu', dtype=torch.int64) 2023-01-11T21:05:10.4650025Z arg2_1 = rand_strided((3, ), (1, ), device='cpu', dtype=torch.int64) 2023-01-11T21:05:10.4650148Z print_performance(lambda: call([arg0_1, arg1_1, arg2_1])) 2023-01-11T21:05:10.4650156Z 2023-01-11T21:05:10.4650208Z ok (0.120s) 2023-01-11T21:05:10.4650656Z test_embedding_cpu (__main__.CpuTests) ... inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.4650784Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.4651042Z [2023-01-11 20:50:12,386] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 174 2023-01-11T21:05:10.4651306Z [2023-01-11 20:50:15,118] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 174 2023-01-11T21:05:10.4651313Z 2023-01-11T21:05:10.4651407Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.4651477Z import torch 2023-01-11T21:05:10.4651546Z import random 2023-01-11T21:05:10.4651665Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.4651773Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.4651792Z 2023-01-11T21:05:10.4651857Z aten = torch.ops.aten 2023-01-11T21:05:10.4651992Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.4652082Z async_compile = AsyncCompile() 2023-01-11T21:05:10.4652087Z 2023-01-11T21:05:10.4652091Z 2023-01-11T21:05:10.4652225Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.4652429Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.4652549Z extern "C" void kernel(const long* __restrict__ in_ptr0, 2023-01-11T21:05:10.4652654Z const float* __restrict__ in_ptr1, 2023-01-11T21:05:10.4652784Z float* __restrict__ out_ptr0, 2023-01-11T21:05:10.4652867Z bool* __restrict__ out_ptr1, 2023-01-11T21:05:10.4652963Z long* __restrict__ out_ptr2) 2023-01-11T21:05:10.4653022Z { 2023-01-11T21:05:10.4653121Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.4653180Z { 2023-01-11T21:05:10.4653256Z #pragma omp for 2023-01-11T21:05:10.4653325Z for(long i0=0; i0<16; i0+=1) 2023-01-11T21:05:10.4653386Z { 2023-01-11T21:05:10.4653464Z #pragma GCC ivdep 2023-01-11T21:05:10.4653546Z for(long i1=0; i1<4; i1+=1) 2023-01-11T21:05:10.4653608Z { 2023-01-11T21:05:10.4653671Z { 2023-01-11T21:05:10.4653735Z { 2023-01-11T21:05:10.4653819Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:05:10.4653922Z auto tmp1 = in_ptr1[i1 + (4*tmp0)]; 2023-01-11T21:05:10.4654021Z auto tmp2 = tmp1 * (tmp1>0); 2023-01-11T21:05:10.4654116Z out_ptr0[i1 + (4*i0)] = tmp2; 2023-01-11T21:05:10.4654181Z } 2023-01-11T21:05:10.4654270Z } 2023-01-11T21:05:10.4654333Z } 2023-01-11T21:05:10.4654381Z } 2023-01-11T21:05:10.4654456Z #pragma omp for 2023-01-11T21:05:10.4654536Z for(long i0=0; i0<64; i0+=1) 2023-01-11T21:05:10.4654597Z { 2023-01-11T21:05:10.4654659Z { 2023-01-11T21:05:10.4654721Z { 2023-01-11T21:05:10.4654813Z auto tmp0 = out_ptr0[i0]; 2023-01-11T21:05:10.4654904Z auto tmp1 = static_cast(0); 2023-01-11T21:05:10.4654994Z auto tmp2 = tmp0 <= tmp1; 2023-01-11T21:05:10.4655078Z out_ptr1[i0] = tmp2; 2023-01-11T21:05:10.4655140Z } 2023-01-11T21:05:10.4655205Z } 2023-01-11T21:05:10.4655265Z } 2023-01-11T21:05:10.4655328Z #pragma omp for 2023-01-11T21:05:10.4655408Z for(long i0=0; i0<16; i0+=1) 2023-01-11T21:05:10.4655469Z { 2023-01-11T21:05:10.4655530Z { 2023-01-11T21:05:10.4655592Z { 2023-01-11T21:05:10.4655685Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:05:10.4655792Z auto tmp1 = static_cast(tmp0); 2023-01-11T21:05:10.4655885Z auto tmp2 = static_cast(tmp1); 2023-01-11T21:05:10.4655968Z out_ptr2[i0] = tmp2; 2023-01-11T21:05:10.4656029Z } 2023-01-11T21:05:10.4656091Z } 2023-01-11T21:05:10.4656151Z } 2023-01-11T21:05:10.4656211Z } 2023-01-11T21:05:10.4656267Z } 2023-01-11T21:05:10.4662130Z ''') 2023-01-11T21:05:10.4662144Z 2023-01-11T21:05:10.4662148Z 2023-01-11T21:05:10.4662304Z async_compile.wait(globals()) 2023-01-11T21:05:10.4662367Z del async_compile 2023-01-11T21:05:10.4662372Z 2023-01-11T21:05:10.4662444Z def call(args): 2023-01-11T21:05:10.4662541Z primals_1, primals_2 = args 2023-01-11T21:05:10.4662612Z args.clear() 2023-01-11T21:05:10.4662852Z buf0 = empty_strided((2, 8, 4), (32, 4, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4663054Z buf1 = empty_strided((2, 8, 4), (32, 4, 1), device='cpu', dtype=torch.bool) 2023-01-11T21:05:10.4663245Z buf2 = empty_strided((2, 8), (8, 1), device='cpu', dtype=torch.int64) 2023-01-11T21:05:10.4663475Z kernel_cpp_0(c_void_p(primals_2.data_ptr()), c_void_p(primals_1.data_ptr()), c_void_p(buf0.data_ptr()), c_void_p(buf1.data_ptr()), c_void_p(buf2.data_ptr())) 2023-01-11T21:05:10.4663535Z del primals_1 2023-01-11T21:05:10.4663604Z del primals_2 2023-01-11T21:05:10.4663685Z return (buf0, buf1, buf2, ) 2023-01-11T21:05:10.4663690Z 2023-01-11T21:05:10.4663695Z 2023-01-11T21:05:10.4663770Z if __name__ == "__main__": 2023-01-11T21:05:10.4663885Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.4664009Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.4664322Z primals_1 = rand_strided((10, 4), (4, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4664524Z primals_2 = rand_strided((2, 8), (8, 1), device='cpu', dtype=torch.int64) 2023-01-11T21:05:10.4664639Z print_performance(lambda: call([primals_1, primals_2])) 2023-01-11T21:05:10.4664646Z 2023-01-11T21:05:10.4664711Z ok (2.953s) 2023-01-11T21:05:10.4665158Z test_exp_cpu (__main__.CpuTests) ... inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.4665286Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.4665553Z [2023-01-11 20:50:15,159] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 175 2023-01-11T21:05:10.4665822Z [2023-01-11 20:50:17,902] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 175 2023-01-11T21:05:10.4665828Z 2023-01-11T21:05:10.4665965Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.4666036Z import torch 2023-01-11T21:05:10.4666103Z import random 2023-01-11T21:05:10.4666207Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.4666327Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.4666332Z 2023-01-11T21:05:10.4666407Z aten = torch.ops.aten 2023-01-11T21:05:10.4666542Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.4666635Z async_compile = AsyncCompile() 2023-01-11T21:05:10.4666639Z 2023-01-11T21:05:10.4666643Z 2023-01-11T21:05:10.4666777Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.4666980Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.4667100Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:05:10.4667192Z const float* __restrict__ in_ptr1, 2023-01-11T21:05:10.4667291Z float* __restrict__ out_ptr0, 2023-01-11T21:05:10.4667390Z float* __restrict__ out_ptr1) 2023-01-11T21:05:10.4667450Z { 2023-01-11T21:05:10.4667541Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.4667591Z { 2023-01-11T21:05:10.4667671Z #pragma omp for 2023-01-11T21:05:10.4667756Z for(long i0=0; i0<4; i0+=1) 2023-01-11T21:05:10.4667817Z { 2023-01-11T21:05:10.4667963Z auto tmp0 = at::vec::Vectorized::loadu(in_ptr0 + 16*i0); 2023-01-11T21:05:10.4668096Z auto tmp2 = at::vec::Vectorized::loadu(in_ptr1 + 16*i0); 2023-01-11T21:05:10.4668179Z auto tmp1 = tmp0.exp(); 2023-01-11T21:05:10.4668249Z auto tmp3 = tmp0 + tmp2; 2023-01-11T21:05:10.4668330Z auto tmp4 = tmp3.exp(); 2023-01-11T21:05:10.4668425Z tmp1.store(out_ptr0 + 16*i0); 2023-01-11T21:05:10.4668516Z tmp4.store(out_ptr1 + 16*i0); 2023-01-11T21:05:10.4668577Z } 2023-01-11T21:05:10.4668672Z #pragma omp for simd simdlen(8) 2023-01-11T21:05:10.4668755Z for(long i0=64; i0<64; i0+=1) 2023-01-11T21:05:10.4668804Z { 2023-01-11T21:05:10.4668887Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:05:10.4668967Z auto tmp2 = in_ptr1[i0]; 2023-01-11T21:05:10.4669056Z auto tmp1 = std::exp(tmp0); 2023-01-11T21:05:10.4669139Z auto tmp3 = tmp0 + tmp2; 2023-01-11T21:05:10.4669226Z auto tmp4 = std::exp(tmp3); 2023-01-11T21:05:10.4669304Z out_ptr0[i0] = tmp1; 2023-01-11T21:05:10.4669367Z out_ptr1[i0] = tmp4; 2023-01-11T21:05:10.4669427Z } 2023-01-11T21:05:10.4669487Z } 2023-01-11T21:05:10.4669547Z } 2023-01-11T21:05:10.4669624Z ''') 2023-01-11T21:05:10.4669631Z 2023-01-11T21:05:10.4669635Z 2023-01-11T21:05:10.4669754Z async_compile.wait(globals()) 2023-01-11T21:05:10.4669825Z del async_compile 2023-01-11T21:05:10.4669830Z 2023-01-11T21:05:10.4669886Z def call(args): 2023-01-11T21:05:10.4669960Z arg0_1, arg1_1 = args 2023-01-11T21:05:10.4670030Z args.clear() 2023-01-11T21:05:10.4670225Z buf0 = empty_strided((8, 8), (8, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4670414Z buf1 = empty_strided((8, 8), (8, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4670604Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(arg1_1.data_ptr()), c_void_p(buf0.data_ptr()), c_void_p(buf1.data_ptr())) 2023-01-11T21:05:10.4670671Z del arg0_1 2023-01-11T21:05:10.4670735Z del arg1_1 2023-01-11T21:05:10.4670798Z return (buf0, buf1, ) 2023-01-11T21:05:10.4670803Z 2023-01-11T21:05:10.4670807Z 2023-01-11T21:05:10.4670880Z if __name__ == "__main__": 2023-01-11T21:05:10.4670994Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.4671118Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.4671316Z arg0_1 = rand_strided((8, 8), (8, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4671509Z arg1_1 = rand_strided((8, 8), (8, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4671651Z print_performance(lambda: call([arg0_1, arg1_1])) 2023-01-11T21:05:10.4671657Z 2023-01-11T21:05:10.4671722Z ok (2.786s) 2023-01-11T21:05:10.4672149Z test_expand_as_cpu (__main__.CpuTests) ... inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.4672276Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.4672535Z [2023-01-11 20:50:17,986] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 176 2023-01-11T21:05:10.4672802Z [2023-01-11 20:50:20,719] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 176 2023-01-11T21:05:10.4672808Z 2023-01-11T21:05:10.4672900Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.4672972Z import torch 2023-01-11T21:05:10.4673042Z import random 2023-01-11T21:05:10.4673156Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.4673276Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.4673281Z 2023-01-11T21:05:10.4673345Z aten = torch.ops.aten 2023-01-11T21:05:10.4673477Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.4673567Z async_compile = AsyncCompile() 2023-01-11T21:05:10.4673572Z 2023-01-11T21:05:10.4673576Z 2023-01-11T21:05:10.4673708Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.4673913Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.4674031Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:05:10.4674132Z float* __restrict__ out_ptr0) 2023-01-11T21:05:10.4674190Z { 2023-01-11T21:05:10.4674274Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.4674336Z { 2023-01-11T21:05:10.4674425Z #pragma omp for collapse(2) 2023-01-11T21:05:10.4674504Z for(long i0=0; i0<6; i0+=1) 2023-01-11T21:05:10.4674565Z { 2023-01-11T21:05:10.4674651Z for(long i1=0; i1<128; i1+=1) 2023-01-11T21:05:10.4674701Z { 2023-01-11T21:05:10.4674788Z for(long i2=0; i2<6; i2+=1) 2023-01-11T21:05:10.4674850Z { 2023-01-11T21:05:10.4674995Z auto tmp0 = at::vec::Vectorized::loadu(in_ptr0 + (16*i2) + (100*i0)); 2023-01-11T21:05:10.4675133Z auto tmp1 = at::vec::Vectorized(static_cast(1)); 2023-01-11T21:05:10.4675224Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:05:10.4675313Z auto tmp3 = tmp2 + tmp1; 2023-01-11T21:05:10.4675457Z tmp3.store(out_ptr0 + (16*i2) + (100*i1) + (12800*i0)); 2023-01-11T21:05:10.4675507Z } 2023-01-11T21:05:10.4675601Z #pragma omp simd simdlen(8) 2023-01-11T21:05:10.4675691Z for(long i2=96; i2<100; i2+=1) 2023-01-11T21:05:10.4675753Z { 2023-01-11T21:05:10.4675852Z auto tmp0 = in_ptr0[i2 + (100*i0)]; 2023-01-11T21:05:10.4675953Z auto tmp1 = static_cast(1); 2023-01-11T21:05:10.4676042Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:05:10.4676117Z auto tmp3 = tmp2 + tmp1; 2023-01-11T21:05:10.4676218Z out_ptr0[i2 + (100*i1) + (12800*i0)] = tmp3; 2023-01-11T21:05:10.4676281Z } 2023-01-11T21:05:10.4676343Z } 2023-01-11T21:05:10.4676404Z } 2023-01-11T21:05:10.4676464Z } 2023-01-11T21:05:10.4676526Z } 2023-01-11T21:05:10.4676591Z ''') 2023-01-11T21:05:10.4676598Z 2023-01-11T21:05:10.4676602Z 2023-01-11T21:05:10.4676690Z async_compile.wait(globals()) 2023-01-11T21:05:10.4676762Z del async_compile 2023-01-11T21:05:10.4676767Z 2023-01-11T21:05:10.4676837Z def call(args): 2023-01-11T21:05:10.4676937Z arg0_1, arg1_1 = args 2023-01-11T21:05:10.4677008Z args.clear() 2023-01-11T21:05:10.4677223Z buf0 = empty_strided((6, 128, 100), (12800, 100, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4677341Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:05:10.4677452Z return (as_strided(arg0_1, (6, 128, 100), (100, 0, 1)), buf0, ) 2023-01-11T21:05:10.4677457Z 2023-01-11T21:05:10.4677461Z 2023-01-11T21:05:10.4677535Z if __name__ == "__main__": 2023-01-11T21:05:10.4677647Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.4677770Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.4677979Z arg0_1 = rand_strided((6, 1, 100), (100, 100, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4678194Z arg1_1 = rand_strided((6, 128, 100), (12800, 100, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4678307Z print_performance(lambda: call([arg0_1, arg1_1])) 2023-01-11T21:05:10.4678315Z 2023-01-11T21:05:10.4678380Z ok (2.909s) 2023-01-11T21:05:10.4678804Z test_expand_cpu (__main__.CpuTests) ... inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.4678931Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.4679191Z [2023-01-11 20:50:20,866] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 177 2023-01-11T21:05:10.4679454Z [2023-01-11 20:50:23,601] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 177 2023-01-11T21:05:10.4679461Z 2023-01-11T21:05:10.4679556Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.4679625Z import torch 2023-01-11T21:05:10.4679694Z import random 2023-01-11T21:05:10.4679811Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.4679931Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.4679936Z 2023-01-11T21:05:10.4680000Z aten = torch.ops.aten 2023-01-11T21:05:10.4680134Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.4680227Z async_compile = AsyncCompile() 2023-01-11T21:05:10.4680231Z 2023-01-11T21:05:10.4680236Z 2023-01-11T21:05:10.4680369Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.4680574Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.4680866Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:05:10.4680966Z float* __restrict__ out_ptr0, 2023-01-11T21:05:10.4681130Z float* __restrict__ out_ptr1) 2023-01-11T21:05:10.4681177Z { 2023-01-11T21:05:10.4681275Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.4681337Z { 2023-01-11T21:05:10.4681417Z #pragma omp for 2023-01-11T21:05:10.4681500Z for(long i0=0; i0<12; i0+=1) 2023-01-11T21:05:10.4681563Z { 2023-01-11T21:05:10.4681642Z #pragma GCC ivdep 2023-01-11T21:05:10.4681709Z for(long i1=0; i1<2; i1+=1) 2023-01-11T21:05:10.4681773Z { 2023-01-11T21:05:10.4681854Z #pragma GCC ivdep 2023-01-11T21:05:10.4681945Z for(long i2=0; i2<3; i2+=1) 2023-01-11T21:05:10.4682010Z { 2023-01-11T21:05:10.4682095Z #pragma GCC ivdep 2023-01-11T21:05:10.4682171Z for(long i3=0; i3<2; i3+=1) 2023-01-11T21:05:10.4682237Z { 2023-01-11T21:05:10.4682305Z { 2023-01-11T21:05:10.4682377Z { 2023-01-11T21:05:10.4682484Z auto tmp0 = in_ptr0[i3 + (2*i1)]; 2023-01-11T21:05:10.4682596Z auto tmp1 = static_cast(1); 2023-01-11T21:05:10.4682730Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:05:10.4682841Z auto tmp3 = static_cast(2); 2023-01-11T21:05:10.4682926Z auto tmp4 = tmp2 + tmp3; 2023-01-11T21:05:10.4683035Z out_ptr0[i3 + (2*i2) + (6*i1) + (12*i0)] = tmp4; 2023-01-11T21:05:10.4683105Z } 2023-01-11T21:05:10.4683173Z } 2023-01-11T21:05:10.4683239Z } 2023-01-11T21:05:10.4683306Z } 2023-01-11T21:05:10.4683368Z } 2023-01-11T21:05:10.4683420Z } 2023-01-11T21:05:10.4683508Z #pragma omp for collapse(2) 2023-01-11T21:05:10.4683588Z for(long i0=0; i0<2; i0+=1) 2023-01-11T21:05:10.4683650Z { 2023-01-11T21:05:10.4683731Z for(long i1=0; i1<2; i1+=1) 2023-01-11T21:05:10.4683793Z { 2023-01-11T21:05:10.4683860Z #pragma GCC ivdep 2023-01-11T21:05:10.4683952Z for(long i2=0; i2<3; i2+=1) 2023-01-11T21:05:10.4684015Z { 2023-01-11T21:05:10.4684096Z #pragma GCC ivdep 2023-01-11T21:05:10.4684186Z for(long i3=0; i3<2; i3+=1) 2023-01-11T21:05:10.4684249Z { 2023-01-11T21:05:10.4684316Z { 2023-01-11T21:05:10.4684370Z { 2023-01-11T21:05:10.4684471Z auto tmp0 = in_ptr0[i3 + (2*i1)]; 2023-01-11T21:05:10.4684579Z auto tmp1 = static_cast(2); 2023-01-11T21:05:10.4684674Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:05:10.4684784Z out_ptr1[i3 + (2*i2) + (6*i1) + (12*i0)] = tmp2; 2023-01-11T21:05:10.4684853Z } 2023-01-11T21:05:10.4684920Z } 2023-01-11T21:05:10.4684971Z } 2023-01-11T21:05:10.4685033Z } 2023-01-11T21:05:10.4685099Z } 2023-01-11T21:05:10.4685159Z } 2023-01-11T21:05:10.4685220Z } 2023-01-11T21:05:10.4685279Z } 2023-01-11T21:05:10.4685362Z ''') 2023-01-11T21:05:10.4685366Z 2023-01-11T21:05:10.4685371Z 2023-01-11T21:05:10.4685444Z async_compile.wait(globals()) 2023-01-11T21:05:10.4685514Z del async_compile 2023-01-11T21:05:10.4685518Z 2023-01-11T21:05:10.4685586Z def call(args): 2023-01-11T21:05:10.4685654Z arg0_1, = args 2023-01-11T21:05:10.4685722Z args.clear() 2023-01-11T21:05:10.4685940Z buf0 = empty_strided((3, 4, 2, 3, 2), (48, 12, 6, 2, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4686155Z buf1 = empty_strided((2, 1, 2, 3, 2), (12, 12, 6, 2, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4686349Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(buf0.data_ptr()), c_void_p(buf1.data_ptr())) 2023-01-11T21:05:10.4686453Z return (buf0, buf1, as_strided(arg0_1, (2, 2, 5, 2), (0, 2, 0, 1)), ) 2023-01-11T21:05:10.4686458Z 2023-01-11T21:05:10.4686479Z 2023-01-11T21:05:10.4686540Z if __name__ == "__main__": 2023-01-11T21:05:10.4686653Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.4686775Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.4686977Z arg0_1 = rand_strided((2, 1, 2), (2, 2, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4687083Z print_performance(lambda: call([arg0_1])) 2023-01-11T21:05:10.4687088Z 2023-01-11T21:05:10.4687152Z ok (2.790s) 2023-01-11T21:05:10.4687827Z test_expanded_reduction_cpu (__main__.CpuTests) ... skip: Test is disabled because an issue exists disabling it: https://github.com/pytorch/pytorch/issues/87157 for platform(s) linux. If you're seeing this on your local machine and would like to enable this test, please make sure CI is not set and you are not using the flag --import-disabled-tests. (0.001s) 2023-01-11T21:05:10.4688294Z test_expm1_cpu (__main__.CpuTests) ... inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.4688423Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.4688672Z [2023-01-11 20:50:23,644] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 178 2023-01-11T21:05:10.4688937Z [2023-01-11 20:50:26,348] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 178 2023-01-11T21:05:10.4689332Z inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.4689461Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.4689714Z [2023-01-11 20:50:26,398] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 179 2023-01-11T21:05:10.4689973Z [2023-01-11 20:50:29,094] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 179 2023-01-11T21:05:10.4690370Z inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.4690494Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.4690750Z [2023-01-11 20:50:29,141] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 180 2023-01-11T21:05:10.4691017Z [2023-01-11 20:50:31,821] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 180 2023-01-11T21:05:10.4691416Z inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.4691539Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.4691779Z [2023-01-11 20:50:31,867] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 181 2023-01-11T21:05:10.4692039Z [2023-01-11 20:50:34,594] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 181 2023-01-11T21:05:10.4692466Z inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.4692591Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.4692842Z [2023-01-11 20:50:34,642] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 182 2023-01-11T21:05:10.4692847Z 2023-01-11T21:05:10.4692939Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.4693009Z import torch 2023-01-11T21:05:10.4693077Z import random 2023-01-11T21:05:10.4693193Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.4693300Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.4693305Z 2023-01-11T21:05:10.4693380Z aten = torch.ops.aten 2023-01-11T21:05:10.4693517Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.4693607Z async_compile = AsyncCompile() 2023-01-11T21:05:10.4693613Z 2023-01-11T21:05:10.4693617Z 2023-01-11T21:05:10.4693792Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.4693999Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.4694117Z extern "C" void kernel(const half* __restrict__ in_ptr0, 2023-01-11T21:05:10.4694213Z half* __restrict__ out_ptr0, 2023-01-11T21:05:10.4694294Z half* __restrict__ out_ptr1) 2023-01-11T21:05:10.4694353Z { 2023-01-11T21:05:10.4694449Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.4694509Z { 2023-01-11T21:05:10.4694585Z #pragma omp for 2023-01-11T21:05:10.4694666Z for(long i0=0; i0<64; i0+=1) 2023-01-11T21:05:10.4694727Z { 2023-01-11T21:05:10.4694776Z { 2023-01-11T21:05:10.4694843Z { 2023-01-11T21:05:10.4694957Z auto tmp0 = static_cast(in_ptr0[i0]); 2023-01-11T21:05:10.4695064Z auto tmp1 = std::expm1(tmp0); 2023-01-11T21:05:10.4695171Z auto tmp2 = static_cast(2); 2023-01-11T21:05:10.4695263Z auto tmp3 = tmp1 * tmp2; 2023-01-11T21:05:10.4695350Z out_ptr0[i0] = tmp1; 2023-01-11T21:05:10.4695419Z out_ptr1[i0] = tmp3; 2023-01-11T21:05:10.4695484Z } 2023-01-11T21:05:10.4695548Z } 2023-01-11T21:05:10.4695609Z } 2023-01-11T21:05:10.4695669Z } 2023-01-11T21:05:10.4695727Z } 2023-01-11T21:05:10.4695793Z ''') 2023-01-11T21:05:10.4695810Z 2023-01-11T21:05:10.4695814Z 2023-01-11T21:05:10.4695889Z async_compile.wait(globals()) 2023-01-11T21:05:10.4695959Z del async_compile 2023-01-11T21:05:10.4695964Z 2023-01-11T21:05:10.4696032Z def call(args): 2023-01-11T21:05:10.4696099Z arg0_1, = args 2023-01-11T21:05:10.4696171Z args.clear() 2023-01-11T21:05:10.4696364Z buf0 = empty_strided((64, ), (1, ), device='cpu', dtype=torch.float16) 2023-01-11T21:05:10.4696555Z buf1 = empty_strided((64, ), (1, ), device='cpu', dtype=torch.float16) 2023-01-11T21:05:10.4696706Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(buf0.data_ptr()), c_void_p(buf1.data_ptr())) 2023-01-11T21:05:10.4696774Z del arg0_1 2023-01-11T21:05:10.4696851Z return (buf0, buf1, ) 2023-01-11T21:05:10.4696856Z 2023-01-11T21:05:10.4696860Z 2023-01-11T21:05:10.4696934Z if __name__ == "__main__": 2023-01-11T21:05:10.4697046Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.4697166Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.4697357Z arg0_1 = rand_strided((64, ), (1, ), device='cpu', dtype=torch.float16) 2023-01-11T21:05:10.4697463Z print_performance(lambda: call([arg0_1])) 2023-01-11T21:05:10.4697468Z 2023-01-11T21:05:10.4697473Z 2023-01-11T21:05:10.4697563Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.4697649Z import torch 2023-01-11T21:05:10.4697717Z import random 2023-01-11T21:05:10.4697829Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.4697951Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.4697956Z 2023-01-11T21:05:10.4698033Z aten = torch.ops.aten 2023-01-11T21:05:10.4698165Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.4698255Z async_compile = AsyncCompile() 2023-01-11T21:05:10.4698260Z 2023-01-11T21:05:10.4698264Z 2023-01-11T21:05:10.4698382Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.4698685Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.4698805Z extern "C" void kernel(const half* __restrict__ in_ptr0, 2023-01-11T21:05:10.4698903Z half* __restrict__ out_ptr0, 2023-01-11T21:05:10.4698999Z half* __restrict__ out_ptr1) 2023-01-11T21:05:10.4699064Z { 2023-01-11T21:05:10.4699163Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.4699211Z { 2023-01-11T21:05:10.4699287Z #pragma omp for 2023-01-11T21:05:10.4699370Z for(long i0=0; i0<201; i0+=1) 2023-01-11T21:05:10.4699463Z { 2023-01-11T21:05:10.4699529Z { 2023-01-11T21:05:10.4699593Z { 2023-01-11T21:05:10.4699708Z auto tmp0 = static_cast(in_ptr0[i0]); 2023-01-11T21:05:10.4699797Z auto tmp1 = std::expm1(tmp0); 2023-01-11T21:05:10.4699898Z auto tmp2 = static_cast(2); 2023-01-11T21:05:10.4699988Z auto tmp3 = tmp1 * tmp2; 2023-01-11T21:05:10.4700070Z out_ptr0[i0] = tmp1; 2023-01-11T21:05:10.4700152Z out_ptr1[i0] = tmp3; 2023-01-11T21:05:10.4700217Z } 2023-01-11T21:05:10.4700278Z } 2023-01-11T21:05:10.4700325Z } 2023-01-11T21:05:10.4700385Z } 2023-01-11T21:05:10.4700445Z } 2023-01-11T21:05:10.4700525Z ''') 2023-01-11T21:05:10.4700530Z 2023-01-11T21:05:10.4700534Z 2023-01-11T21:05:10.4700621Z async_compile.wait(globals()) 2023-01-11T21:05:10.4700693Z del async_compile 2023-01-11T21:05:10.4700698Z 2023-01-11T21:05:10.4700768Z def call(args): 2023-01-11T21:05:10.4700824Z arg0_1, = args 2023-01-11T21:05:10.4700893Z args.clear() 2023-01-11T21:05:10.4701085Z buf0 = empty_strided((201, ), (1, ), device='cpu', dtype=torch.float16) 2023-01-11T21:05:10.4701276Z buf1 = empty_strided((201, ), (1, ), device='cpu', dtype=torch.float16) 2023-01-11T21:05:10.4701437Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(buf0.data_ptr()), c_void_p(buf1.data_ptr())) 2023-01-11T21:05:10.4701505Z del arg0_1 2023-01-11T21:05:10.4701582Z return (buf0, buf1, ) 2023-01-11T21:05:10.4701587Z 2023-01-11T21:05:10.4701591Z 2023-01-11T21:05:10.4701665Z if __name__ == "__main__": 2023-01-11T21:05:10.4701764Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.4701888Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.4702082Z arg0_1 = rand_strided((201, ), (1, ), device='cpu', dtype=torch.float16) 2023-01-11T21:05:10.4702190Z print_performance(lambda: call([arg0_1])) 2023-01-11T21:05:10.4702195Z 2023-01-11T21:05:10.4702199Z 2023-01-11T21:05:10.4702291Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.4702359Z import torch 2023-01-11T21:05:10.4702427Z import random 2023-01-11T21:05:10.4702542Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.4702647Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.4702652Z 2023-01-11T21:05:10.4702729Z aten = torch.ops.aten 2023-01-11T21:05:10.4702861Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.4702950Z async_compile = AsyncCompile() 2023-01-11T21:05:10.4702955Z 2023-01-11T21:05:10.4702960Z 2023-01-11T21:05:10.4703090Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.4703293Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.4703475Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:05:10.4703575Z float* __restrict__ out_ptr0, 2023-01-11T21:05:10.4703658Z float* __restrict__ out_ptr1) 2023-01-11T21:05:10.4703718Z { 2023-01-11T21:05:10.4703814Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.4703874Z { 2023-01-11T21:05:10.4703950Z #pragma omp for 2023-01-11T21:05:10.4704032Z for(long i0=0; i0<4; i0+=1) 2023-01-11T21:05:10.4704096Z { 2023-01-11T21:05:10.4704216Z auto tmp0 = at::vec::Vectorized::loadu(in_ptr0 + 16*i0); 2023-01-11T21:05:10.4704303Z auto tmp1 = tmp0.expm1(); 2023-01-11T21:05:10.4704438Z auto tmp2 = at::vec::Vectorized(static_cast(2)); 2023-01-11T21:05:10.4704522Z auto tmp3 = tmp1 * tmp2; 2023-01-11T21:05:10.4704615Z tmp1.store(out_ptr0 + 16*i0); 2023-01-11T21:05:10.4704708Z tmp3.store(out_ptr1 + 16*i0); 2023-01-11T21:05:10.4704771Z } 2023-01-11T21:05:10.4704851Z #pragma omp for simd simdlen(8) 2023-01-11T21:05:10.4704969Z for(long i0=64; i0<64; i0+=1) 2023-01-11T21:05:10.4705033Z { 2023-01-11T21:05:10.4705115Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:05:10.4705208Z auto tmp1 = std::expm1(tmp0); 2023-01-11T21:05:10.4705307Z auto tmp2 = static_cast(2); 2023-01-11T21:05:10.4705389Z auto tmp3 = tmp1 * tmp2; 2023-01-11T21:05:10.4705455Z out_ptr0[i0] = tmp1; 2023-01-11T21:05:10.4705531Z out_ptr1[i0] = tmp3; 2023-01-11T21:05:10.4705591Z } 2023-01-11T21:05:10.4705652Z } 2023-01-11T21:05:10.4705711Z } 2023-01-11T21:05:10.4705789Z ''') 2023-01-11T21:05:10.4705795Z 2023-01-11T21:05:10.4705799Z 2023-01-11T21:05:10.4705886Z async_compile.wait(globals()) 2023-01-11T21:05:10.4705944Z del async_compile 2023-01-11T21:05:10.4705951Z 2023-01-11T21:05:10.4706020Z def call(args): 2023-01-11T21:05:10.4706088Z arg0_1, = args 2023-01-11T21:05:10.4706155Z args.clear() 2023-01-11T21:05:10.4706348Z buf0 = empty_strided((64, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4706539Z buf1 = empty_strided((64, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4706702Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(buf0.data_ptr()), c_void_p(buf1.data_ptr())) 2023-01-11T21:05:10.4706756Z del arg0_1 2023-01-11T21:05:10.4706832Z return (buf0, buf1, ) 2023-01-11T21:05:10.4706837Z 2023-01-11T21:05:10.4706842Z 2023-01-11T21:05:10.4706916Z if __name__ == "__main__": 2023-01-11T21:05:10.4707029Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.4707150Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.4707341Z arg0_1 = rand_strided((64, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4707445Z print_performance(lambda: call([arg0_1])) 2023-01-11T21:05:10.4707452Z 2023-01-11T21:05:10.4707456Z 2023-01-11T21:05:10.4707551Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.4707619Z import torch 2023-01-11T21:05:10.4707675Z import random 2023-01-11T21:05:10.4707790Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.4707909Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.4707913Z 2023-01-11T21:05:10.4707989Z aten = torch.ops.aten 2023-01-11T21:05:10.4708120Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.4708211Z async_compile = AsyncCompile() 2023-01-11T21:05:10.4708215Z 2023-01-11T21:05:10.4708219Z 2023-01-11T21:05:10.4708351Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.4708550Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.4708654Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:05:10.4708752Z float* __restrict__ out_ptr0, 2023-01-11T21:05:10.4708879Z float* __restrict__ out_ptr1) 2023-01-11T21:05:10.4708940Z { 2023-01-11T21:05:10.4709035Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.4709096Z { 2023-01-11T21:05:10.4709171Z #pragma omp for 2023-01-11T21:05:10.4709240Z for(long i0=0; i0<12; i0+=1) 2023-01-11T21:05:10.4709302Z { 2023-01-11T21:05:10.4709432Z auto tmp0 = at::vec::Vectorized::loadu(in_ptr0 + 16*i0); 2023-01-11T21:05:10.4709519Z auto tmp1 = tmp0.expm1(); 2023-01-11T21:05:10.4709650Z auto tmp2 = at::vec::Vectorized(static_cast(2)); 2023-01-11T21:05:10.4709734Z auto tmp3 = tmp1 * tmp2; 2023-01-11T21:05:10.4709823Z tmp1.store(out_ptr0 + 16*i0); 2023-01-11T21:05:10.4709900Z tmp3.store(out_ptr1 + 16*i0); 2023-01-11T21:05:10.4709962Z } 2023-01-11T21:05:10.4710055Z #pragma omp for simd simdlen(8) 2023-01-11T21:05:10.4710139Z for(long i0=192; i0<201; i0+=1) 2023-01-11T21:05:10.4710199Z { 2023-01-11T21:05:10.4710281Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:05:10.4710373Z auto tmp1 = std::expm1(tmp0); 2023-01-11T21:05:10.4710486Z auto tmp2 = static_cast(2); 2023-01-11T21:05:10.4710569Z auto tmp3 = tmp1 * tmp2; 2023-01-11T21:05:10.4710647Z out_ptr0[i0] = tmp1; 2023-01-11T21:05:10.4710725Z out_ptr1[i0] = tmp3; 2023-01-11T21:05:10.4710785Z } 2023-01-11T21:05:10.4710845Z } 2023-01-11T21:05:10.4710903Z } 2023-01-11T21:05:10.4710967Z ''') 2023-01-11T21:05:10.4710971Z 2023-01-11T21:05:10.4710976Z 2023-01-11T21:05:10.4711064Z async_compile.wait(globals()) 2023-01-11T21:05:10.4711135Z del async_compile 2023-01-11T21:05:10.4711140Z 2023-01-11T21:05:10.4711209Z def call(args): 2023-01-11T21:05:10.4711278Z arg0_1, = args 2023-01-11T21:05:10.4711348Z args.clear() 2023-01-11T21:05:10.4711543Z buf0 = empty_strided((201, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4711723Z buf1 = empty_strided((201, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4711887Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(buf0.data_ptr()), c_void_p(buf1.data_ptr())) 2023-01-11T21:05:10.4711958Z del arg0_1 2023-01-11T21:05:10.4712035Z return (buf0, buf1, ) 2023-01-11T21:05:10.4712040Z 2023-01-11T21:05:10.4712044Z 2023-01-11T21:05:10.4712118Z if __name__ == "__main__": 2023-01-11T21:05:10.4712234Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.4712356Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.4712554Z arg0_1 = rand_strided((201, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4712646Z print_performance(lambda: call([arg0_1])) 2023-01-11T21:05:10.4712651Z 2023-01-11T21:05:10.4712669Z 2023-01-11T21:05:10.4712748Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.4712822Z import torch 2023-01-11T21:05:10.4712893Z import random 2023-01-11T21:05:10.4713008Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.4713126Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.4713130Z 2023-01-11T21:05:10.4713212Z aten = torch.ops.aten 2023-01-11T21:05:10.4713345Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.4713422Z async_compile = AsyncCompile() 2023-01-11T21:05:10.4713427Z 2023-01-11T21:05:10.4713431Z 2023-01-11T21:05:10.4713563Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.4713766Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.4713886Z extern "C" void kernel(const double* __restrict__ in_ptr0, 2023-01-11T21:05:10.4713988Z double* __restrict__ out_ptr0, 2023-01-11T21:05:10.4714085Z double* __restrict__ out_ptr1) 2023-01-11T21:05:10.4714145Z { 2023-01-11T21:05:10.4714241Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.4714317Z { 2023-01-11T21:05:10.4714394Z #pragma omp for 2023-01-11T21:05:10.4714477Z for(long i0=0; i0<64; i0+=1) 2023-01-11T21:05:10.4714540Z { 2023-01-11T21:05:10.4714605Z { 2023-01-11T21:05:10.4714670Z { 2023-01-11T21:05:10.4714748Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:05:10.4714848Z auto tmp1 = std::expm1(tmp0); 2023-01-11T21:05:10.4714951Z auto tmp2 = static_cast(2); 2023-01-11T21:05:10.4715042Z auto tmp3 = tmp1 * tmp2; 2023-01-11T21:05:10.4715125Z out_ptr0[i0] = tmp1; 2023-01-11T21:05:10.4715210Z out_ptr1[i0] = tmp3; 2023-01-11T21:05:10.4715273Z } 2023-01-11T21:05:10.4715322Z } 2023-01-11T21:05:10.4715384Z } 2023-01-11T21:05:10.4715445Z } 2023-01-11T21:05:10.4715505Z } 2023-01-11T21:05:10.4715586Z ''') 2023-01-11T21:05:10.4715591Z 2023-01-11T21:05:10.4715598Z 2023-01-11T21:05:10.4715687Z async_compile.wait(globals()) 2023-01-11T21:05:10.4715759Z del async_compile 2023-01-11T21:05:10.4715764Z 2023-01-11T21:05:10.4715834Z def call(args): 2023-01-11T21:05:10.4715889Z arg0_1, = args 2023-01-11T21:05:10.4715986Z args.clear() 2023-01-11T21:05:10.4716182Z buf0 = empty_strided((64, ), (1, ), device='cpu', dtype=torch.float64) 2023-01-11T21:05:10.4716374Z buf1 = empty_strided((64, ), (1, ), device='cpu', dtype=torch.float64) 2023-01-11T21:05:10.4716535Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(buf0.data_ptr()), c_void_p(buf1.data_ptr())) 2023-01-11T21:05:10.4716603Z del arg0_1 2023-01-11T21:05:10.4716679Z return (buf0, buf1, ) 2023-01-11T21:05:10.4716684Z 2023-01-11T21:05:10.4716688Z 2023-01-11T21:05:10.4716750Z if __name__ == "__main__": 2023-01-11T21:05:10.4716862Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.4716982Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.4717177Z arg0_1 = rand_strided((64, ), (1, ), device='cpu', dtype=torch.float64) 2023-01-11T21:05:10.4717283Z print_performance(lambda: call([arg0_1])) 2023-01-11T21:05:10.4717551Z [2023-01-11 20:50:37,349] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 182 2023-01-11T21:05:10.4717949Z inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.4718075Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.4718329Z [2023-01-11 20:50:37,386] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 183 2023-01-11T21:05:10.4718575Z [2023-01-11 20:50:40,074] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 183 2023-01-11T21:05:10.4718978Z inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.4719103Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.4719357Z [2023-01-11 20:50:40,131] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 184 2023-01-11T21:05:10.4719619Z [2023-01-11 20:50:42,982] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 184 2023-01-11T21:05:10.4720017Z inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.4720168Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.4720422Z [2023-01-11 20:50:43,019] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 185 2023-01-11T21:05:10.4720825Z [2023-01-11 20:50:45,687] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 185 2023-01-11T21:05:10.4721224Z inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.4721348Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.4721602Z [2023-01-11 20:50:45,732] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 186 2023-01-11T21:05:10.4721852Z [2023-01-11 20:50:48,463] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 186 2023-01-11T21:05:10.4722302Z inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.4722427Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.4722680Z [2023-01-11 20:50:48,508] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 187 2023-01-11T21:05:10.4722685Z 2023-01-11T21:05:10.4722690Z 2023-01-11T21:05:10.4722784Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.4722852Z import torch 2023-01-11T21:05:10.4722920Z import random 2023-01-11T21:05:10.4723035Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.4723157Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.4723162Z 2023-01-11T21:05:10.4723226Z aten = torch.ops.aten 2023-01-11T21:05:10.4723362Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.4723458Z async_compile = AsyncCompile() 2023-01-11T21:05:10.4723464Z 2023-01-11T21:05:10.4723468Z 2023-01-11T21:05:10.4723603Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.4723809Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.4723928Z extern "C" void kernel(const double* __restrict__ in_ptr0, 2023-01-11T21:05:10.4724031Z double* __restrict__ out_ptr0, 2023-01-11T21:05:10.4724130Z double* __restrict__ out_ptr1) 2023-01-11T21:05:10.4724175Z { 2023-01-11T21:05:10.4724274Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.4724335Z { 2023-01-11T21:05:10.4724412Z #pragma omp for 2023-01-11T21:05:10.4724498Z for(long i0=0; i0<201; i0+=1) 2023-01-11T21:05:10.4724562Z { 2023-01-11T21:05:10.4724624Z { 2023-01-11T21:05:10.4724674Z { 2023-01-11T21:05:10.4724768Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:05:10.4724869Z auto tmp1 = std::expm1(tmp0); 2023-01-11T21:05:10.4724972Z auto tmp2 = static_cast(2); 2023-01-11T21:05:10.4725061Z auto tmp3 = tmp1 * tmp2; 2023-01-11T21:05:10.4725145Z out_ptr0[i0] = tmp1; 2023-01-11T21:05:10.4725229Z out_ptr1[i0] = tmp3; 2023-01-11T21:05:10.4725279Z } 2023-01-11T21:05:10.4725341Z } 2023-01-11T21:05:10.4725402Z } 2023-01-11T21:05:10.4725462Z } 2023-01-11T21:05:10.4725521Z } 2023-01-11T21:05:10.4725598Z ''') 2023-01-11T21:05:10.4725602Z 2023-01-11T21:05:10.4725606Z 2023-01-11T21:05:10.4725694Z async_compile.wait(globals()) 2023-01-11T21:05:10.4725790Z del async_compile 2023-01-11T21:05:10.4725795Z 2023-01-11T21:05:10.4725863Z def call(args): 2023-01-11T21:05:10.4725933Z arg0_1, = args 2023-01-11T21:05:10.4726002Z args.clear() 2023-01-11T21:05:10.4726200Z buf0 = empty_strided((201, ), (1, ), device='cpu', dtype=torch.float64) 2023-01-11T21:05:10.4726391Z buf1 = empty_strided((201, ), (1, ), device='cpu', dtype=torch.float64) 2023-01-11T21:05:10.4726551Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(buf0.data_ptr()), c_void_p(buf1.data_ptr())) 2023-01-11T21:05:10.4726605Z del arg0_1 2023-01-11T21:05:10.4726683Z return (buf0, buf1, ) 2023-01-11T21:05:10.4726688Z 2023-01-11T21:05:10.4726692Z 2023-01-11T21:05:10.4726767Z if __name__ == "__main__": 2023-01-11T21:05:10.4726878Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.4726999Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.4727192Z arg0_1 = rand_strided((201, ), (1, ), device='cpu', dtype=torch.float64) 2023-01-11T21:05:10.4727300Z print_performance(lambda: call([arg0_1])) 2023-01-11T21:05:10.4727305Z 2023-01-11T21:05:10.4727310Z 2023-01-11T21:05:10.4727401Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.4727456Z import torch 2023-01-11T21:05:10.4727562Z import random 2023-01-11T21:05:10.4727678Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.4727796Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.4727801Z 2023-01-11T21:05:10.4727877Z aten = torch.ops.aten 2023-01-11T21:05:10.4728009Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.4728099Z async_compile = AsyncCompile() 2023-01-11T21:05:10.4728104Z 2023-01-11T21:05:10.4728108Z 2023-01-11T21:05:10.4728240Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.4728430Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.4728546Z extern "C" void kernel(const int* __restrict__ in_ptr0, 2023-01-11T21:05:10.4728648Z float* __restrict__ out_ptr0, 2023-01-11T21:05:10.4728744Z float* __restrict__ out_ptr1) 2023-01-11T21:05:10.4728803Z { 2023-01-11T21:05:10.4728901Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.4728961Z { 2023-01-11T21:05:10.4729024Z #pragma omp for 2023-01-11T21:05:10.4729105Z for(long i0=0; i0<64; i0+=1) 2023-01-11T21:05:10.4729167Z { 2023-01-11T21:05:10.4729228Z { 2023-01-11T21:05:10.4729293Z { 2023-01-11T21:05:10.4729386Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:05:10.4729494Z auto tmp1 = static_cast(tmp0); 2023-01-11T21:05:10.4729581Z auto tmp2 = std::expm1(tmp1); 2023-01-11T21:05:10.4729685Z auto tmp3 = static_cast(2); 2023-01-11T21:05:10.4729776Z auto tmp4 = tmp2 * tmp3; 2023-01-11T21:05:10.4729861Z out_ptr0[i0] = tmp2; 2023-01-11T21:05:10.4729949Z out_ptr1[i0] = tmp4; 2023-01-11T21:05:10.4730013Z } 2023-01-11T21:05:10.4730074Z } 2023-01-11T21:05:10.4730122Z } 2023-01-11T21:05:10.4730181Z } 2023-01-11T21:05:10.4730242Z } 2023-01-11T21:05:10.4730320Z ''') 2023-01-11T21:05:10.4730328Z 2023-01-11T21:05:10.4730332Z 2023-01-11T21:05:10.4730419Z async_compile.wait(globals()) 2023-01-11T21:05:10.4730491Z del async_compile 2023-01-11T21:05:10.4730495Z 2023-01-11T21:05:10.4730566Z def call(args): 2023-01-11T21:05:10.4730621Z arg0_1, = args 2023-01-11T21:05:10.4730693Z args.clear() 2023-01-11T21:05:10.4730886Z buf0 = empty_strided((64, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4731079Z buf1 = empty_strided((64, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4731241Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(buf0.data_ptr()), c_void_p(buf1.data_ptr())) 2023-01-11T21:05:10.4731309Z del arg0_1 2023-01-11T21:05:10.4731416Z return (buf0, buf1, ) 2023-01-11T21:05:10.4731421Z 2023-01-11T21:05:10.4731425Z 2023-01-11T21:05:10.4731500Z if __name__ == "__main__": 2023-01-11T21:05:10.4731600Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.4731724Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.4731914Z arg0_1 = rand_strided((64, ), (1, ), device='cpu', dtype=torch.int32) 2023-01-11T21:05:10.4732020Z print_performance(lambda: call([arg0_1])) 2023-01-11T21:05:10.4732025Z 2023-01-11T21:05:10.4732029Z 2023-01-11T21:05:10.4732120Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.4732189Z import torch 2023-01-11T21:05:10.4732257Z import random 2023-01-11T21:05:10.4732370Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.4732476Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.4732481Z 2023-01-11T21:05:10.4732557Z aten = torch.ops.aten 2023-01-11T21:05:10.4732688Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.4732781Z async_compile = AsyncCompile() 2023-01-11T21:05:10.4732786Z 2023-01-11T21:05:10.4732791Z 2023-01-11T21:05:10.4732922Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.4733170Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.4733286Z extern "C" void kernel(const int* __restrict__ in_ptr0, 2023-01-11T21:05:10.4733384Z float* __restrict__ out_ptr0, 2023-01-11T21:05:10.4733467Z float* __restrict__ out_ptr1) 2023-01-11T21:05:10.4733526Z { 2023-01-11T21:05:10.4733623Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.4733683Z { 2023-01-11T21:05:10.4733757Z #pragma omp for 2023-01-11T21:05:10.4733838Z for(long i0=0; i0<201; i0+=1) 2023-01-11T21:05:10.4733886Z { 2023-01-11T21:05:10.4733947Z { 2023-01-11T21:05:10.4734009Z { 2023-01-11T21:05:10.4734100Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:05:10.4734208Z auto tmp1 = static_cast(tmp0); 2023-01-11T21:05:10.4734306Z auto tmp2 = std::expm1(tmp1); 2023-01-11T21:05:10.4734412Z auto tmp3 = static_cast(2); 2023-01-11T21:05:10.4734489Z auto tmp4 = tmp2 * tmp3; 2023-01-11T21:05:10.4734572Z out_ptr0[i0] = tmp2; 2023-01-11T21:05:10.4734653Z out_ptr1[i0] = tmp4; 2023-01-11T21:05:10.4734715Z } 2023-01-11T21:05:10.4734777Z } 2023-01-11T21:05:10.4734837Z } 2023-01-11T21:05:10.4734896Z } 2023-01-11T21:05:10.4734941Z } 2023-01-11T21:05:10.4735018Z ''') 2023-01-11T21:05:10.4735022Z 2023-01-11T21:05:10.4735026Z 2023-01-11T21:05:10.4735114Z async_compile.wait(globals()) 2023-01-11T21:05:10.4735184Z del async_compile 2023-01-11T21:05:10.4735189Z 2023-01-11T21:05:10.4735258Z def call(args): 2023-01-11T21:05:10.4735326Z arg0_1, = args 2023-01-11T21:05:10.4735397Z args.clear() 2023-01-11T21:05:10.4735575Z buf0 = empty_strided((201, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4735765Z buf1 = empty_strided((201, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4735927Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(buf0.data_ptr()), c_void_p(buf1.data_ptr())) 2023-01-11T21:05:10.4735994Z del arg0_1 2023-01-11T21:05:10.4736070Z return (buf0, buf1, ) 2023-01-11T21:05:10.4736075Z 2023-01-11T21:05:10.4736079Z 2023-01-11T21:05:10.4736154Z if __name__ == "__main__": 2023-01-11T21:05:10.4736268Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.4736390Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.4736568Z arg0_1 = rand_strided((201, ), (1, ), device='cpu', dtype=torch.int32) 2023-01-11T21:05:10.4736674Z print_performance(lambda: call([arg0_1])) 2023-01-11T21:05:10.4736679Z 2023-01-11T21:05:10.4736683Z 2023-01-11T21:05:10.4736773Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.4736872Z import torch 2023-01-11T21:05:10.4736940Z import random 2023-01-11T21:05:10.4737052Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.4737173Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.4737177Z 2023-01-11T21:05:10.4737253Z aten = torch.ops.aten 2023-01-11T21:05:10.4737372Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.4737462Z async_compile = AsyncCompile() 2023-01-11T21:05:10.4737467Z 2023-01-11T21:05:10.4737471Z 2023-01-11T21:05:10.4737603Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.4737805Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.4737922Z extern "C" void kernel(const long* __restrict__ in_ptr0, 2023-01-11T21:05:10.4738020Z float* __restrict__ out_ptr0, 2023-01-11T21:05:10.4738114Z float* __restrict__ out_ptr1) 2023-01-11T21:05:10.4738175Z { 2023-01-11T21:05:10.4738260Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.4738320Z { 2023-01-11T21:05:10.4738395Z #pragma omp for 2023-01-11T21:05:10.4738577Z for(long i0=0; i0<64; i0+=1) 2023-01-11T21:05:10.4738674Z { 2023-01-11T21:05:10.4738740Z { 2023-01-11T21:05:10.4738806Z { 2023-01-11T21:05:10.4738885Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:05:10.4738993Z auto tmp1 = static_cast(tmp0); 2023-01-11T21:05:10.4739094Z auto tmp2 = std::expm1(tmp1); 2023-01-11T21:05:10.4739198Z auto tmp3 = static_cast(2); 2023-01-11T21:05:10.4739289Z auto tmp4 = tmp2 * tmp3; 2023-01-11T21:05:10.4739373Z out_ptr0[i0] = tmp2; 2023-01-11T21:05:10.4739459Z out_ptr1[i0] = tmp4; 2023-01-11T21:05:10.4739509Z } 2023-01-11T21:05:10.4739571Z } 2023-01-11T21:05:10.4739633Z } 2023-01-11T21:05:10.4739697Z } 2023-01-11T21:05:10.4739758Z } 2023-01-11T21:05:10.4739840Z ''') 2023-01-11T21:05:10.4739845Z 2023-01-11T21:05:10.4739849Z 2023-01-11T21:05:10.4739938Z async_compile.wait(globals()) 2023-01-11T21:05:10.4739998Z del async_compile 2023-01-11T21:05:10.4740003Z 2023-01-11T21:05:10.4740074Z def call(args): 2023-01-11T21:05:10.4740142Z arg0_1, = args 2023-01-11T21:05:10.4740213Z args.clear() 2023-01-11T21:05:10.4740408Z buf0 = empty_strided((64, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4740596Z buf1 = empty_strided((64, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4740756Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(buf0.data_ptr()), c_void_p(buf1.data_ptr())) 2023-01-11T21:05:10.4740810Z del arg0_1 2023-01-11T21:05:10.4740887Z return (buf0, buf1, ) 2023-01-11T21:05:10.4740891Z 2023-01-11T21:05:10.4740895Z 2023-01-11T21:05:10.4740968Z if __name__ == "__main__": 2023-01-11T21:05:10.4741082Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.4741205Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.4741395Z arg0_1 = rand_strided((64, ), (1, ), device='cpu', dtype=torch.int64) 2023-01-11T21:05:10.4741503Z print_performance(lambda: call([arg0_1])) 2023-01-11T21:05:10.4741509Z 2023-01-11T21:05:10.4741513Z 2023-01-11T21:05:10.4741603Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.4741658Z import torch 2023-01-11T21:05:10.4741726Z import random 2023-01-11T21:05:10.4741840Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.4741958Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.4741962Z 2023-01-11T21:05:10.4742038Z aten = torch.ops.aten 2023-01-11T21:05:10.4742169Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.4742259Z async_compile = AsyncCompile() 2023-01-11T21:05:10.4742263Z 2023-01-11T21:05:10.4742267Z 2023-01-11T21:05:10.4742398Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.4742618Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.4742735Z extern "C" void kernel(const long* __restrict__ in_ptr0, 2023-01-11T21:05:10.4742836Z float* __restrict__ out_ptr0, 2023-01-11T21:05:10.4742930Z float* __restrict__ out_ptr1) 2023-01-11T21:05:10.4742990Z { 2023-01-11T21:05:10.4743085Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.4743146Z { 2023-01-11T21:05:10.4743210Z #pragma omp for 2023-01-11T21:05:10.4743291Z for(long i0=0; i0<201; i0+=1) 2023-01-11T21:05:10.4743354Z { 2023-01-11T21:05:10.4743418Z { 2023-01-11T21:05:10.4743482Z { 2023-01-11T21:05:10.4743573Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:05:10.4743682Z auto tmp1 = static_cast(tmp0); 2023-01-11T21:05:10.4743769Z auto tmp2 = std::expm1(tmp1); 2023-01-11T21:05:10.4743875Z auto tmp3 = static_cast(2); 2023-01-11T21:05:10.4743965Z auto tmp4 = tmp2 * tmp3; 2023-01-11T21:05:10.4744049Z out_ptr0[i0] = tmp2; 2023-01-11T21:05:10.4744168Z out_ptr1[i0] = tmp4; 2023-01-11T21:05:10.4744233Z } 2023-01-11T21:05:10.4744299Z } 2023-01-11T21:05:10.4744347Z } 2023-01-11T21:05:10.4744409Z } 2023-01-11T21:05:10.4744469Z } 2023-01-11T21:05:10.4744550Z ''') 2023-01-11T21:05:10.4744555Z 2023-01-11T21:05:10.4744559Z 2023-01-11T21:05:10.4744647Z async_compile.wait(globals()) 2023-01-11T21:05:10.4744720Z del async_compile 2023-01-11T21:05:10.4744725Z 2023-01-11T21:05:10.4744794Z def call(args): 2023-01-11T21:05:10.4744847Z arg0_1, = args 2023-01-11T21:05:10.4744917Z args.clear() 2023-01-11T21:05:10.4745110Z buf0 = empty_strided((201, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4745302Z buf1 = empty_strided((201, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4745465Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(buf0.data_ptr()), c_void_p(buf1.data_ptr())) 2023-01-11T21:05:10.4745534Z del arg0_1 2023-01-11T21:05:10.4745612Z return (buf0, buf1, ) 2023-01-11T21:05:10.4745617Z 2023-01-11T21:05:10.4745622Z 2023-01-11T21:05:10.4745696Z if __name__ == "__main__": 2023-01-11T21:05:10.4745796Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.4745916Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.4746106Z arg0_1 = rand_strided((201, ), (1, ), device='cpu', dtype=torch.int64) 2023-01-11T21:05:10.4746212Z print_performance(lambda: call([arg0_1])) 2023-01-11T21:05:10.4746480Z [2023-01-11 20:50:51,192] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 187 2023-01-11T21:05:10.4746485Z 2023-01-11T21:05:10.4746552Z ok (27.589s) 2023-01-11T21:05:10.4746991Z test_fill1_cpu (__main__.CpuTests) ... inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.4747119Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.4747375Z [2023-01-11 20:50:51,316] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 188 2023-01-11T21:05:10.4747625Z [2023-01-11 20:50:54,053] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 188 2023-01-11T21:05:10.4747644Z 2023-01-11T21:05:10.4747724Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.4747792Z import torch 2023-01-11T21:05:10.4747861Z import random 2023-01-11T21:05:10.4747975Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.4748094Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.4748129Z 2023-01-11T21:05:10.4748208Z aten = torch.ops.aten 2023-01-11T21:05:10.4748340Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.4748418Z async_compile = AsyncCompile() 2023-01-11T21:05:10.4748425Z 2023-01-11T21:05:10.4748442Z 2023-01-11T21:05:10.4748562Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.4748765Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.4748877Z extern "C" void kernel(float* __restrict__ out_ptr0, 2023-01-11T21:05:10.4748973Z float* __restrict__ out_ptr1) 2023-01-11T21:05:10.4749033Z { 2023-01-11T21:05:10.4749131Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.4749192Z { 2023-01-11T21:05:10.4749254Z #pragma omp for 2023-01-11T21:05:10.4749336Z for(long i0=0; i0<16; i0+=1) 2023-01-11T21:05:10.4749397Z { 2023-01-11T21:05:10.4749534Z auto tmp0 = at::vec::Vectorized(static_cast(1)); 2023-01-11T21:05:10.4749628Z tmp0.store(out_ptr0 + 16*i0); 2023-01-11T21:05:10.4749691Z } 2023-01-11T21:05:10.4749784Z #pragma omp for simd simdlen(8) 2023-01-11T21:05:10.4749881Z for(long i0=256; i0<256; i0+=1) 2023-01-11T21:05:10.4749944Z { 2023-01-11T21:05:10.4750042Z auto tmp0 = static_cast(1); 2023-01-11T21:05:10.4750121Z out_ptr0[i0] = tmp0; 2023-01-11T21:05:10.4750181Z } 2023-01-11T21:05:10.4750254Z #pragma omp for 2023-01-11T21:05:10.4750321Z for(long i0=0; i0<16; i0+=1) 2023-01-11T21:05:10.4750381Z { 2023-01-11T21:05:10.4750515Z auto tmp0 = at::vec::Vectorized(static_cast(2)); 2023-01-11T21:05:10.4750605Z tmp0.store(out_ptr1 + 16*i0); 2023-01-11T21:05:10.4750665Z } 2023-01-11T21:05:10.4750759Z #pragma omp for simd simdlen(8) 2023-01-11T21:05:10.4750841Z for(long i0=256; i0<256; i0+=1) 2023-01-11T21:05:10.4750891Z { 2023-01-11T21:05:10.4750987Z auto tmp0 = static_cast(2); 2023-01-11T21:05:10.4751066Z out_ptr1[i0] = tmp0; 2023-01-11T21:05:10.4751125Z } 2023-01-11T21:05:10.4751187Z } 2023-01-11T21:05:10.4751248Z } 2023-01-11T21:05:10.4751326Z ''') 2023-01-11T21:05:10.4751332Z 2023-01-11T21:05:10.4751336Z 2023-01-11T21:05:10.4751410Z async_compile.wait(globals()) 2023-01-11T21:05:10.4751481Z del async_compile 2023-01-11T21:05:10.4751486Z 2023-01-11T21:05:10.4751554Z def call(args): 2023-01-11T21:05:10.4751621Z arg0_1, = args 2023-01-11T21:05:10.4751690Z args.clear() 2023-01-11T21:05:10.4751891Z buf0 = empty_strided((16, 16), (16, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4752087Z buf1 = empty_strided((16, 16), (16, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4752219Z kernel_cpp_0(c_void_p(buf0.data_ptr()), c_void_p(buf1.data_ptr())) 2023-01-11T21:05:10.4752282Z return (buf0, buf1, ) 2023-01-11T21:05:10.4752289Z 2023-01-11T21:05:10.4752292Z 2023-01-11T21:05:10.4752366Z if __name__ == "__main__": 2023-01-11T21:05:10.4752479Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.4752601Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.4752797Z arg0_1 = rand_strided((16, 16), (16, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4752903Z print_performance(lambda: call([arg0_1])) 2023-01-11T21:05:10.4752908Z 2023-01-11T21:05:10.4752973Z ok (2.862s) 2023-01-11T21:05:10.4753407Z test_fill2_cpu (__main__.CpuTests) ... inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.4753531Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.4753812Z [2023-01-11 20:50:54,144] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 189 2023-01-11T21:05:10.4754078Z [2023-01-11 20:50:56,886] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 189 2023-01-11T21:05:10.4754084Z 2023-01-11T21:05:10.4754176Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.4754244Z import torch 2023-01-11T21:05:10.4754312Z import random 2023-01-11T21:05:10.4754426Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.4754545Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.4754550Z 2023-01-11T21:05:10.4754626Z aten = torch.ops.aten 2023-01-11T21:05:10.4754746Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.4754835Z async_compile = AsyncCompile() 2023-01-11T21:05:10.4754840Z 2023-01-11T21:05:10.4754844Z 2023-01-11T21:05:10.4754974Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.4755178Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.4755295Z extern "C" void kernel(float* __restrict__ out_ptr0, 2023-01-11T21:05:10.4755392Z float* __restrict__ out_ptr1) 2023-01-11T21:05:10.4755480Z { 2023-01-11T21:05:10.4755577Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.4755625Z { 2023-01-11T21:05:10.4755700Z #pragma omp for 2023-01-11T21:05:10.4755780Z for(long i0=0; i0<16; i0+=1) 2023-01-11T21:05:10.4755843Z { 2023-01-11T21:05:10.4755975Z auto tmp0 = at::vec::Vectorized(static_cast(1)); 2023-01-11T21:05:10.4756066Z tmp0.store(out_ptr0 + 16*i0); 2023-01-11T21:05:10.4756128Z } 2023-01-11T21:05:10.4756210Z #pragma omp for simd simdlen(8) 2023-01-11T21:05:10.4756290Z for(long i0=256; i0<256; i0+=1) 2023-01-11T21:05:10.4756350Z { 2023-01-11T21:05:10.4756447Z auto tmp0 = static_cast(1); 2023-01-11T21:05:10.4756530Z out_ptr0[i0] = tmp0; 2023-01-11T21:05:10.4756590Z } 2023-01-11T21:05:10.4756651Z #pragma omp for 2023-01-11T21:05:10.4756731Z for(long i0=0; i0<16; i0+=1) 2023-01-11T21:05:10.4756791Z { 2023-01-11T21:05:10.4756928Z auto tmp0 = at::vec::Vectorized(static_cast(3.0)); 2023-01-11T21:05:10.4757018Z tmp0.store(out_ptr1 + 16*i0); 2023-01-11T21:05:10.4757078Z } 2023-01-11T21:05:10.4757172Z #pragma omp for simd simdlen(8) 2023-01-11T21:05:10.4757239Z for(long i0=256; i0<256; i0+=1) 2023-01-11T21:05:10.4757298Z { 2023-01-11T21:05:10.4757398Z auto tmp0 = static_cast(3.0); 2023-01-11T21:05:10.4757476Z out_ptr1[i0] = tmp0; 2023-01-11T21:05:10.4757536Z } 2023-01-11T21:05:10.4757596Z } 2023-01-11T21:05:10.4757655Z } 2023-01-11T21:05:10.4757720Z ''') 2023-01-11T21:05:10.4757724Z 2023-01-11T21:05:10.4757742Z 2023-01-11T21:05:10.4757816Z async_compile.wait(globals()) 2023-01-11T21:05:10.4757889Z del async_compile 2023-01-11T21:05:10.4757894Z 2023-01-11T21:05:10.4757962Z def call(args): 2023-01-11T21:05:10.4758029Z arg0_1, = args 2023-01-11T21:05:10.4758099Z args.clear() 2023-01-11T21:05:10.4758300Z buf0 = empty_strided((16, 16), (16, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4758495Z buf1 = empty_strided((16, 16), (16, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4758616Z kernel_cpp_0(c_void_p(buf0.data_ptr()), c_void_p(buf1.data_ptr())) 2023-01-11T21:05:10.4758693Z return (buf0, buf1, ) 2023-01-11T21:05:10.4758698Z 2023-01-11T21:05:10.4758702Z 2023-01-11T21:05:10.4758775Z if __name__ == "__main__": 2023-01-11T21:05:10.4758888Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.4759009Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.4759206Z arg0_1 = rand_strided((16, 16), (16, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4759312Z print_performance(lambda: call([arg0_1])) 2023-01-11T21:05:10.4759348Z 2023-01-11T21:05:10.4759414Z ok (2.834s) 2023-01-11T21:05:10.4759840Z test_flip_cpu (__main__.CpuTests) ... inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.4759965Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.4760222Z [2023-01-11 20:50:56,984] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 190 2023-01-11T21:05:10.4760484Z [2023-01-11 20:50:59,735] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 190 2023-01-11T21:05:10.4760489Z 2023-01-11T21:05:10.4760581Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.4760774Z import torch 2023-01-11T21:05:10.4760848Z import random 2023-01-11T21:05:10.4760965Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.4761085Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.4761091Z 2023-01-11T21:05:10.4761207Z aten = torch.ops.aten 2023-01-11T21:05:10.4761342Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.4761434Z async_compile = AsyncCompile() 2023-01-11T21:05:10.4761438Z 2023-01-11T21:05:10.4761443Z 2023-01-11T21:05:10.4761579Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.4761782Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.4761902Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:05:10.4762003Z float* __restrict__ out_ptr0, 2023-01-11T21:05:10.4762101Z float* __restrict__ out_ptr1) 2023-01-11T21:05:10.4762148Z { 2023-01-11T21:05:10.4762246Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.4762311Z { 2023-01-11T21:05:10.4762388Z #pragma omp for 2023-01-11T21:05:10.4762470Z for(long i0=0; i0<12; i0+=1) 2023-01-11T21:05:10.4762534Z { 2023-01-11T21:05:10.4762601Z #pragma GCC ivdep 2023-01-11T21:05:10.4762686Z for(long i1=0; i1<6; i1+=1) 2023-01-11T21:05:10.4762749Z { 2023-01-11T21:05:10.4762813Z { 2023-01-11T21:05:10.4762880Z { 2023-01-11T21:05:10.4763050Z auto tmp0 = in_ptr0[5 + ((-1)*i1) + (6*i0)]; 2023-01-11T21:05:10.4763145Z out_ptr0[i1 + (6*i0)] = tmp0; 2023-01-11T21:05:10.4763196Z } 2023-01-11T21:05:10.4763259Z } 2023-01-11T21:05:10.4763321Z } 2023-01-11T21:05:10.4763381Z } 2023-01-11T21:05:10.4763468Z #pragma omp for collapse(2) 2023-01-11T21:05:10.4763547Z for(long i0=0; i0<2; i0+=1) 2023-01-11T21:05:10.4763607Z { 2023-01-11T21:05:10.4763675Z for(long i1=0; i1<6; i1+=1) 2023-01-11T21:05:10.4763737Z { 2023-01-11T21:05:10.4763821Z #pragma GCC ivdep 2023-01-11T21:05:10.4763909Z for(long i2=0; i2<6; i2+=1) 2023-01-11T21:05:10.4763974Z { 2023-01-11T21:05:10.4764038Z { 2023-01-11T21:05:10.4764105Z { 2023-01-11T21:05:10.4764273Z auto tmp0 = in_ptr0[30 + i2 + ((-6)*i1) + (36*i0)]; 2023-01-11T21:05:10.4764381Z auto tmp1 = static_cast(2); 2023-01-11T21:05:10.4764526Z auto tmp2 = tmp0 - tmp1; 2023-01-11T21:05:10.4764628Z out_ptr1[i2 + (6*i1) + (36*i0)] = tmp2; 2023-01-11T21:05:10.4764695Z } 2023-01-11T21:05:10.4764758Z } 2023-01-11T21:05:10.4764821Z } 2023-01-11T21:05:10.4764869Z } 2023-01-11T21:05:10.4764929Z } 2023-01-11T21:05:10.4765029Z } 2023-01-11T21:05:10.4765089Z } 2023-01-11T21:05:10.4765167Z ''') 2023-01-11T21:05:10.4765173Z 2023-01-11T21:05:10.4765177Z 2023-01-11T21:05:10.4765265Z async_compile.wait(globals()) 2023-01-11T21:05:10.4765335Z del async_compile 2023-01-11T21:05:10.4765342Z 2023-01-11T21:05:10.4765400Z def call(args): 2023-01-11T21:05:10.4765467Z arg0_1, = args 2023-01-11T21:05:10.4765536Z args.clear() 2023-01-11T21:05:10.4765746Z buf0 = empty_strided((1, 2, 6, 6), (72, 36, 6, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4765953Z buf1 = empty_strided((1, 2, 6, 6), (72, 36, 6, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4766114Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(buf0.data_ptr()), c_void_p(buf1.data_ptr())) 2023-01-11T21:05:10.4766180Z del arg0_1 2023-01-11T21:05:10.4766243Z return (buf0, buf1, ) 2023-01-11T21:05:10.4766261Z 2023-01-11T21:05:10.4766265Z 2023-01-11T21:05:10.4766326Z if __name__ == "__main__": 2023-01-11T21:05:10.4766442Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.4766564Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.4766806Z arg0_1 = rand_strided((1, 2, 6, 6), (72, 36, 6, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4766916Z print_performance(lambda: call([arg0_1])) 2023-01-11T21:05:10.4766921Z 2023-01-11T21:05:10.4766985Z ok (2.847s) 2023-01-11T21:05:10.4767418Z test_fmod_cpu (__main__.CpuTests) ... inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.4767545Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.4767804Z [2023-01-11 20:50:59,796] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 191 2023-01-11T21:05:10.4768054Z [2023-01-11 20:51:02,556] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 191 2023-01-11T21:05:10.4768059Z 2023-01-11T21:05:10.4768152Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.4768222Z import torch 2023-01-11T21:05:10.4768290Z import random 2023-01-11T21:05:10.4768404Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.4768523Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.4768528Z 2023-01-11T21:05:10.4768604Z aten = torch.ops.aten 2023-01-11T21:05:10.4768736Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.4768814Z async_compile = AsyncCompile() 2023-01-11T21:05:10.4768818Z 2023-01-11T21:05:10.4768822Z 2023-01-11T21:05:10.4768954Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.4769156Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.4769275Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:05:10.4769381Z const float* __restrict__ in_ptr1, 2023-01-11T21:05:10.4769479Z float* __restrict__ out_ptr0, 2023-01-11T21:05:10.4769580Z float* __restrict__ out_ptr1) 2023-01-11T21:05:10.4769627Z { 2023-01-11T21:05:10.4769723Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.4769783Z { 2023-01-11T21:05:10.4769858Z #pragma omp for 2023-01-11T21:05:10.4769940Z for(long i0=0; i0<4; i0+=1) 2023-01-11T21:05:10.4770000Z { 2023-01-11T21:05:10.4770135Z auto tmp0 = at::vec::Vectorized::loadu(in_ptr0 + 16*i0); 2023-01-11T21:05:10.4770268Z auto tmp1 = at::vec::Vectorized::loadu(in_ptr1 + 16*i0); 2023-01-11T21:05:10.4770346Z auto tmp2 = tmp0.fmod(tmp1); 2023-01-11T21:05:10.4770480Z auto tmp3 = at::vec::Vectorized(static_cast(3.0)); 2023-01-11T21:05:10.4770563Z auto tmp4 = tmp0 * tmp3; 2023-01-11T21:05:10.4770681Z auto tmp5 = tmp4.fmod(tmp1); 2023-01-11T21:05:10.4770816Z auto tmp6 = at::vec::Vectorized(static_cast(2.0)); 2023-01-11T21:05:10.4770941Z auto tmp7 = tmp5 - tmp6; 2023-01-11T21:05:10.4771031Z tmp2.store(out_ptr0 + 16*i0); 2023-01-11T21:05:10.4771107Z tmp7.store(out_ptr1 + 16*i0); 2023-01-11T21:05:10.4771169Z } 2023-01-11T21:05:10.4771261Z #pragma omp for simd simdlen(8) 2023-01-11T21:05:10.4771342Z for(long i0=64; i0<72; i0+=1) 2023-01-11T21:05:10.4771403Z { 2023-01-11T21:05:10.4771484Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:05:10.4771565Z auto tmp1 = in_ptr1[i0]; 2023-01-11T21:05:10.4771652Z auto tmp2 = std::fmod(tmp0, tmp1); 2023-01-11T21:05:10.4771752Z auto tmp3 = static_cast(3.0); 2023-01-11T21:05:10.4771833Z auto tmp4 = tmp0 * tmp3; 2023-01-11T21:05:10.4771931Z auto tmp5 = std::fmod(tmp4, tmp1); 2023-01-11T21:05:10.4772033Z auto tmp6 = static_cast(2.0); 2023-01-11T21:05:10.4772154Z auto tmp7 = tmp5 - tmp6; 2023-01-11T21:05:10.4772233Z out_ptr0[i0] = tmp2; 2023-01-11T21:05:10.4772338Z out_ptr1[i0] = tmp7; 2023-01-11T21:05:10.4772402Z } 2023-01-11T21:05:10.4772462Z } 2023-01-11T21:05:10.4772521Z } 2023-01-11T21:05:10.4772599Z ''') 2023-01-11T21:05:10.4772604Z 2023-01-11T21:05:10.4772608Z 2023-01-11T21:05:10.4772696Z async_compile.wait(globals()) 2023-01-11T21:05:10.4772766Z del async_compile 2023-01-11T21:05:10.4772771Z 2023-01-11T21:05:10.4772827Z def call(args): 2023-01-11T21:05:10.4772900Z arg0_1, arg1_1 = args 2023-01-11T21:05:10.4772969Z args.clear() 2023-01-11T21:05:10.4773181Z buf0 = empty_strided((1, 2, 6, 6), (72, 36, 6, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4773389Z buf1 = empty_strided((1, 2, 6, 6), (72, 36, 6, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4773582Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(arg1_1.data_ptr()), c_void_p(buf0.data_ptr()), c_void_p(buf1.data_ptr())) 2023-01-11T21:05:10.4773648Z del arg0_1 2023-01-11T21:05:10.4773712Z del arg1_1 2023-01-11T21:05:10.4773776Z return (buf0, buf1, ) 2023-01-11T21:05:10.4773781Z 2023-01-11T21:05:10.4773785Z 2023-01-11T21:05:10.4773858Z if __name__ == "__main__": 2023-01-11T21:05:10.4773972Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.4774096Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.4774307Z arg0_1 = rand_strided((1, 2, 6, 6), (72, 36, 6, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4774518Z arg1_1 = rand_strided((1, 2, 6, 6), (72, 36, 6, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4774632Z print_performance(lambda: call([arg0_1, arg1_1])) 2023-01-11T21:05:10.4774637Z 2023-01-11T21:05:10.4774703Z ok (2.823s) 2023-01-11T21:05:10.4775135Z test_fmod_zero_dim_cpu (__main__.CpuTests) ... inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.4775264Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.4775523Z [2023-01-11 20:51:02,597] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 192 2023-01-11T21:05:10.4775784Z [2023-01-11 20:51:05,270] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 192 2023-01-11T21:05:10.4776184Z inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.4776343Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.4776597Z [2023-01-11 20:51:05,307] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 193 2023-01-11T21:05:10.4776860Z [2023-01-11 20:51:08,019] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 193 2023-01-11T21:05:10.4776865Z 2023-01-11T21:05:10.4776958Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.4777028Z import torch 2023-01-11T21:05:10.4777082Z import random 2023-01-11T21:05:10.4777199Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.4777320Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.4777325Z 2023-01-11T21:05:10.4777402Z aten = torch.ops.aten 2023-01-11T21:05:10.4777538Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.4777631Z async_compile = AsyncCompile() 2023-01-11T21:05:10.4777638Z 2023-01-11T21:05:10.4777643Z 2023-01-11T21:05:10.4777776Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.4777978Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.4778111Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:05:10.4778216Z const float* __restrict__ in_ptr1, 2023-01-11T21:05:10.4778314Z float* __restrict__ out_ptr0) 2023-01-11T21:05:10.4778377Z { 2023-01-11T21:05:10.4778562Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.4778630Z { 2023-01-11T21:05:10.4778707Z #pragma omp for 2023-01-11T21:05:10.4778776Z for(long i0=0; i0<10; i0+=1) 2023-01-11T21:05:10.4778838Z { 2023-01-11T21:05:10.4778901Z { 2023-01-11T21:05:10.4778965Z { 2023-01-11T21:05:10.4779058Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:05:10.4779153Z auto tmp1 = in_ptr1[0]; 2023-01-11T21:05:10.4779264Z auto tmp2 = std::fmod(tmp0, tmp1); 2023-01-11T21:05:10.4779335Z out_ptr0[i0] = tmp2; 2023-01-11T21:05:10.4779400Z } 2023-01-11T21:05:10.4779463Z } 2023-01-11T21:05:10.4779526Z } 2023-01-11T21:05:10.4779587Z } 2023-01-11T21:05:10.4779647Z } 2023-01-11T21:05:10.4779729Z ''') 2023-01-11T21:05:10.4779736Z 2023-01-11T21:05:10.4779740Z 2023-01-11T21:05:10.4779814Z async_compile.wait(globals()) 2023-01-11T21:05:10.4779885Z del async_compile 2023-01-11T21:05:10.4779890Z 2023-01-11T21:05:10.4779960Z def call(args): 2023-01-11T21:05:10.4780034Z arg0_1, arg1_1 = args 2023-01-11T21:05:10.4780106Z args.clear() 2023-01-11T21:05:10.4780300Z buf0 = empty_strided((10, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4780462Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(arg1_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:05:10.4780516Z del arg0_1 2023-01-11T21:05:10.4780584Z del arg1_1 2023-01-11T21:05:10.4780655Z return (buf0, ) 2023-01-11T21:05:10.4780659Z 2023-01-11T21:05:10.4780663Z 2023-01-11T21:05:10.4780738Z if __name__ == "__main__": 2023-01-11T21:05:10.4780853Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.4780975Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.4781169Z arg0_1 = rand_strided((10, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4781353Z arg1_1 = rand_strided((), (), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4781454Z print_performance(lambda: call([arg0_1, arg1_1])) 2023-01-11T21:05:10.4781471Z 2023-01-11T21:05:10.4781475Z 2023-01-11T21:05:10.4781555Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.4781624Z import torch 2023-01-11T21:05:10.4781694Z import random 2023-01-11T21:05:10.4781806Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.4781925Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.4781962Z 2023-01-11T21:05:10.4782043Z aten = torch.ops.aten 2023-01-11T21:05:10.4782174Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.4782251Z async_compile = AsyncCompile() 2023-01-11T21:05:10.4782255Z 2023-01-11T21:05:10.4782274Z 2023-01-11T21:05:10.4782395Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.4782598Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.4782713Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:05:10.4782815Z const float* __restrict__ in_ptr1, 2023-01-11T21:05:10.4782913Z float* __restrict__ out_ptr0) 2023-01-11T21:05:10.4782973Z { 2023-01-11T21:05:10.4783069Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.4783116Z { 2023-01-11T21:05:10.4783191Z #pragma omp for 2023-01-11T21:05:10.4783273Z for(long i0=0; i0<10; i0+=1) 2023-01-11T21:05:10.4783334Z { 2023-01-11T21:05:10.4783398Z { 2023-01-11T21:05:10.4783461Z { 2023-01-11T21:05:10.4783537Z auto tmp0 = in_ptr0[0]; 2023-01-11T21:05:10.4783631Z auto tmp1 = in_ptr1[i0]; 2023-01-11T21:05:10.4783767Z auto tmp2 = std::fmod(tmp0, tmp1); 2023-01-11T21:05:10.4783853Z out_ptr0[i0] = tmp2; 2023-01-11T21:05:10.4783914Z } 2023-01-11T21:05:10.4783975Z } 2023-01-11T21:05:10.4784035Z } 2023-01-11T21:05:10.4784082Z } 2023-01-11T21:05:10.4784141Z } 2023-01-11T21:05:10.4784218Z ''') 2023-01-11T21:05:10.4784223Z 2023-01-11T21:05:10.4784227Z 2023-01-11T21:05:10.4784315Z async_compile.wait(globals()) 2023-01-11T21:05:10.4784385Z del async_compile 2023-01-11T21:05:10.4784390Z 2023-01-11T21:05:10.4784458Z def call(args): 2023-01-11T21:05:10.4784531Z arg0_1, arg1_1 = args 2023-01-11T21:05:10.4784599Z args.clear() 2023-01-11T21:05:10.4784779Z buf0 = empty_strided((10, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4784940Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(arg1_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:05:10.4785007Z del arg0_1 2023-01-11T21:05:10.4785074Z del arg1_1 2023-01-11T21:05:10.4785144Z return (buf0, ) 2023-01-11T21:05:10.4785149Z 2023-01-11T21:05:10.4785153Z 2023-01-11T21:05:10.4785228Z if __name__ == "__main__": 2023-01-11T21:05:10.4785339Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.4785448Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.4785632Z arg0_1 = rand_strided((), (), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4785823Z arg1_1 = rand_strided((10, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4785937Z print_performance(lambda: call([arg0_1, arg1_1])) 2023-01-11T21:05:10.4785942Z 2023-01-11T21:05:10.4786007Z ok (5.461s) 2023-01-11T21:05:10.4786455Z test_forced_buffer_realize_cpu (__main__.CpuTests) ... inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.4786582Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.4786841Z [2023-01-11 20:51:08,116] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 194 2023-01-11T21:05:10.4787105Z [2023-01-11 20:51:10,832] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 194 2023-01-11T21:05:10.4787111Z 2023-01-11T21:05:10.4787203Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.4787259Z import torch 2023-01-11T21:05:10.4787326Z import random 2023-01-11T21:05:10.4787440Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.4787557Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.4787592Z 2023-01-11T21:05:10.4787670Z aten = torch.ops.aten 2023-01-11T21:05:10.4787802Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.4787893Z async_compile = AsyncCompile() 2023-01-11T21:05:10.4787898Z 2023-01-11T21:05:10.4787902Z 2023-01-11T21:05:10.4788035Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.4788224Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.4788341Z extern "C" void kernel(float* __restrict__ in_out_ptr0, 2023-01-11T21:05:10.4788444Z const float* __restrict__ in_ptr0) 2023-01-11T21:05:10.4788504Z { 2023-01-11T21:05:10.4788599Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.4788659Z { 2023-01-11T21:05:10.4788733Z #pragma omp for 2023-01-11T21:05:10.4788801Z for(long i0=0; i0<10; i0+=1) 2023-01-11T21:05:10.4788862Z { 2023-01-11T21:05:10.4788924Z { 2023-01-11T21:05:10.4788990Z { 2023-01-11T21:05:10.4789082Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:05:10.4789185Z auto tmp1 = static_cast(2); 2023-01-11T21:05:10.4789326Z auto tmp2 = tmp0 * tmp1; 2023-01-11T21:05:10.4789417Z auto tmp3 = tmp2 * tmp1; 2023-01-11T21:05:10.4789505Z in_out_ptr0[i0] = tmp3; 2023-01-11T21:05:10.4789569Z } 2023-01-11T21:05:10.4789631Z } 2023-01-11T21:05:10.4789691Z } 2023-01-11T21:05:10.4789753Z } 2023-01-11T21:05:10.4789799Z } 2023-01-11T21:05:10.4789877Z ''') 2023-01-11T21:05:10.4789882Z 2023-01-11T21:05:10.4789885Z 2023-01-11T21:05:10.4789973Z async_compile.wait(globals()) 2023-01-11T21:05:10.4790045Z del async_compile 2023-01-11T21:05:10.4790049Z 2023-01-11T21:05:10.4790119Z def call(args): 2023-01-11T21:05:10.4790187Z arg0_1, = args 2023-01-11T21:05:10.4790258Z args.clear() 2023-01-11T21:05:10.4790438Z buf0 = empty_strided((10, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4790525Z buf1 = buf0; del buf0 # reuse 2023-01-11T21:05:10.4790659Z kernel_cpp_0(c_void_p(buf1.data_ptr()), c_void_p(arg0_1.data_ptr())) 2023-01-11T21:05:10.4790731Z del arg0_1 2023-01-11T21:05:10.4790802Z return (buf1, ) 2023-01-11T21:05:10.4790807Z 2023-01-11T21:05:10.4790811Z 2023-01-11T21:05:10.4790887Z if __name__ == "__main__": 2023-01-11T21:05:10.4791001Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.4791126Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.4791307Z arg0_1 = rand_strided((10, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4791414Z print_performance(lambda: call([arg0_1])) 2023-01-11T21:05:10.4791419Z 2023-01-11T21:05:10.4791487Z ok (2.811s) 2023-01-11T21:05:10.4791922Z test_full_like_cpu (__main__.CpuTests) ... inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.4792053Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.4792310Z [2023-01-11 20:51:10,894] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 195 2023-01-11T21:05:10.4792570Z [2023-01-11 20:51:13,586] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 195 2023-01-11T21:05:10.4792575Z 2023-01-11T21:05:10.4792666Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.4792734Z import torch 2023-01-11T21:05:10.4792788Z import random 2023-01-11T21:05:10.4792902Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.4793020Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.4793025Z 2023-01-11T21:05:10.4793101Z aten = torch.ops.aten 2023-01-11T21:05:10.4793262Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.4793352Z async_compile = AsyncCompile() 2023-01-11T21:05:10.4793357Z 2023-01-11T21:05:10.4793361Z 2023-01-11T21:05:10.4793494Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.4793697Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.4793798Z extern "C" void kernel(float* __restrict__ out_ptr0) 2023-01-11T21:05:10.4793857Z { 2023-01-11T21:05:10.4793952Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.4794012Z { 2023-01-11T21:05:10.4794087Z #pragma omp for 2023-01-11T21:05:10.4794168Z for(long i0=0; i0<8; i0+=1) 2023-01-11T21:05:10.4794228Z { 2023-01-11T21:05:10.4794277Z { 2023-01-11T21:05:10.4794339Z { 2023-01-11T21:05:10.4794445Z auto tmp0 = static_cast(7.777); 2023-01-11T21:05:10.4794547Z auto tmp1 = static_cast(1); 2023-01-11T21:05:10.4794684Z auto tmp2 = tmp0 - tmp1; 2023-01-11T21:05:10.4794768Z out_ptr0[i0] = tmp2; 2023-01-11T21:05:10.4794831Z } 2023-01-11T21:05:10.4794906Z } 2023-01-11T21:05:10.4794969Z } 2023-01-11T21:05:10.4795029Z } 2023-01-11T21:05:10.4795089Z } 2023-01-11T21:05:10.4795166Z ''') 2023-01-11T21:05:10.4795170Z 2023-01-11T21:05:10.4795175Z 2023-01-11T21:05:10.4795262Z async_compile.wait(globals()) 2023-01-11T21:05:10.4795331Z del async_compile 2023-01-11T21:05:10.4795336Z 2023-01-11T21:05:10.4795393Z def call(args): 2023-01-11T21:05:10.4795461Z arg0_1, = args 2023-01-11T21:05:10.4795530Z args.clear() 2023-01-11T21:05:10.4795718Z buf0 = empty_strided((8, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4795818Z kernel_cpp_0(c_void_p(buf0.data_ptr())) 2023-01-11T21:05:10.4795887Z return (buf0, ) 2023-01-11T21:05:10.4795892Z 2023-01-11T21:05:10.4795898Z 2023-01-11T21:05:10.4795971Z if __name__ == "__main__": 2023-01-11T21:05:10.4796083Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.4796190Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.4796382Z arg0_1 = rand_strided((8, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4796490Z print_performance(lambda: call([arg0_1])) 2023-01-11T21:05:10.4796495Z 2023-01-11T21:05:10.4796560Z ok (2.754s) 2023-01-11T21:05:10.4796999Z test_fuse_tiled_cpu (__main__.CpuTests) ... inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.4797127Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.4797383Z [2023-01-11 20:51:13,634] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 196 2023-01-11T21:05:10.4797648Z [2023-01-11 20:51:16,393] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 196 2023-01-11T21:05:10.4797655Z 2023-01-11T21:05:10.4797748Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.4797803Z import torch 2023-01-11T21:05:10.4797871Z import random 2023-01-11T21:05:10.4797984Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.4798104Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.4798109Z 2023-01-11T21:05:10.4798186Z aten = torch.ops.aten 2023-01-11T21:05:10.4798319Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.4798409Z async_compile = AsyncCompile() 2023-01-11T21:05:10.4798414Z 2023-01-11T21:05:10.4798418Z 2023-01-11T21:05:10.4798551Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.4798742Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.4798892Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:05:10.4798995Z const float* __restrict__ in_ptr1, 2023-01-11T21:05:10.4799098Z const float* __restrict__ in_ptr2, 2023-01-11T21:05:10.4799196Z float* __restrict__ out_ptr0, 2023-01-11T21:05:10.4799293Z float* __restrict__ out_ptr1) 2023-01-11T21:05:10.4799353Z { 2023-01-11T21:05:10.4799437Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.4799498Z { 2023-01-11T21:05:10.4799573Z #pragma omp for 2023-01-11T21:05:10.4799654Z for(long i0=0; i0<128; i0+=1) 2023-01-11T21:05:10.4799715Z { 2023-01-11T21:05:10.4799796Z for(long i1=0; i1<8; i1+=1) 2023-01-11T21:05:10.4799859Z { 2023-01-11T21:05:10.4799972Z auto tmp0 = at::vec::Vectorized(in_ptr0[i0]); 2023-01-11T21:05:10.4800104Z auto tmp1 = at::vec::Vectorized::loadu(in_ptr1 + 16*i1); 2023-01-11T21:05:10.4800194Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:05:10.4800297Z tmp2.store(out_ptr0 + (16*i1) + (128*i0)); 2023-01-11T21:05:10.4800403Z } 2023-01-11T21:05:10.4800498Z #pragma omp simd simdlen(8) 2023-01-11T21:05:10.4800695Z for(long i1=128; i1<128; i1+=1) 2023-01-11T21:05:10.4800747Z { 2023-01-11T21:05:10.4800833Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:05:10.4800919Z auto tmp1 = in_ptr1[i1]; 2023-01-11T21:05:10.4801005Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:05:10.4801098Z out_ptr0[i1 + (128*i0)] = tmp2; 2023-01-11T21:05:10.4801162Z } 2023-01-11T21:05:10.4801225Z } 2023-01-11T21:05:10.4801288Z #pragma omp for 2023-01-11T21:05:10.4801370Z for(long i0=0; i0<1024; i0+=1) 2023-01-11T21:05:10.4801432Z { 2023-01-11T21:05:10.4801567Z auto tmp0 = at::vec::Vectorized::loadu(in_ptr2 + 16*i0); 2023-01-11T21:05:10.4801703Z auto tmp1 = at::vec::Vectorized(static_cast(1)); 2023-01-11T21:05:10.4801789Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:05:10.4801884Z tmp2.store(out_ptr1 + 16*i0); 2023-01-11T21:05:10.4801931Z } 2023-01-11T21:05:10.4802025Z #pragma omp for simd simdlen(8) 2023-01-11T21:05:10.4802112Z for(long i0=16384; i0<16384; i0+=1) 2023-01-11T21:05:10.4802174Z { 2023-01-11T21:05:10.4802258Z auto tmp0 = in_ptr2[i0]; 2023-01-11T21:05:10.4802357Z auto tmp1 = static_cast(1); 2023-01-11T21:05:10.4802441Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:05:10.4802507Z out_ptr1[i0] = tmp2; 2023-01-11T21:05:10.4802569Z } 2023-01-11T21:05:10.4802628Z } 2023-01-11T21:05:10.4802687Z } 2023-01-11T21:05:10.4802769Z ''') 2023-01-11T21:05:10.4802774Z 2023-01-11T21:05:10.4802779Z 2023-01-11T21:05:10.4802866Z async_compile.wait(globals()) 2023-01-11T21:05:10.4802940Z del async_compile 2023-01-11T21:05:10.4802944Z 2023-01-11T21:05:10.4803001Z def call(args): 2023-01-11T21:05:10.4803081Z arg0_1, arg1_1, arg2_1 = args 2023-01-11T21:05:10.4803150Z args.clear() 2023-01-11T21:05:10.4803356Z buf0 = empty_strided((128, 128), (128, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4803555Z buf1 = empty_strided((128, 128), (128, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4803767Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(arg1_1.data_ptr()), c_void_p(arg2_1.data_ptr()), c_void_p(buf0.data_ptr()), c_void_p(buf1.data_ptr())) 2023-01-11T21:05:10.4803833Z del arg0_1 2023-01-11T21:05:10.4803898Z del arg1_1 2023-01-11T21:05:10.4803949Z del arg2_1 2023-01-11T21:05:10.4804025Z return (buf0, buf1, ) 2023-01-11T21:05:10.4804030Z 2023-01-11T21:05:10.4804034Z 2023-01-11T21:05:10.4804109Z if __name__ == "__main__": 2023-01-11T21:05:10.4804225Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.4804403Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.4804603Z arg0_1 = rand_strided((128, 1), (1, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4804808Z arg1_1 = rand_strided((1, 128), (128, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4805010Z arg2_1 = rand_strided((128, 128), (128, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4805120Z print_performance(lambda: call([arg0_1, arg1_1, arg2_1])) 2023-01-11T21:05:10.4805124Z 2023-01-11T21:05:10.4805190Z ok (2.850s) 2023-01-11T21:05:10.4805629Z test_gather1_cpu (__main__.CpuTests) ... inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.4805754Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.4806015Z [2023-01-11 20:51:16,509] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 197 2023-01-11T21:05:10.4806312Z [2023-01-11 20:51:19,230] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 197 2023-01-11T21:05:10.4806318Z 2023-01-11T21:05:10.4806416Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.4806485Z import torch 2023-01-11T21:05:10.4806553Z import random 2023-01-11T21:05:10.4806654Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.4806772Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.4806778Z 2023-01-11T21:05:10.4806853Z aten = torch.ops.aten 2023-01-11T21:05:10.4806985Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.4807074Z async_compile = AsyncCompile() 2023-01-11T21:05:10.4807078Z 2023-01-11T21:05:10.4807082Z 2023-01-11T21:05:10.4807216Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.4807421Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.4807539Z extern "C" void kernel(const long* __restrict__ in_ptr0, 2023-01-11T21:05:10.4807632Z const float* __restrict__ in_ptr1, 2023-01-11T21:05:10.4807729Z float* __restrict__ out_ptr0, 2023-01-11T21:05:10.4807825Z float* __restrict__ out_ptr1) 2023-01-11T21:05:10.4807886Z { 2023-01-11T21:05:10.4807982Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.4808042Z { 2023-01-11T21:05:10.4808118Z #pragma omp for 2023-01-11T21:05:10.4808186Z for(long i0=0; i0<20; i0+=1) 2023-01-11T21:05:10.4808249Z { 2023-01-11T21:05:10.4808328Z #pragma GCC ivdep 2023-01-11T21:05:10.4808413Z for(long i1=0; i1<10; i1+=1) 2023-01-11T21:05:10.4808477Z { 2023-01-11T21:05:10.4808542Z { 2023-01-11T21:05:10.4808614Z { 2023-01-11T21:05:10.4808705Z auto tmp0 = in_ptr0[i1 + (10*i0)]; 2023-01-11T21:05:10.4808809Z auto tmp1 = static_cast(1); 2023-01-11T21:05:10.4808905Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:05:10.4809010Z auto tmp3 = in_ptr1[tmp2 + (6*i1)]; 2023-01-11T21:05:10.4809106Z out_ptr0[i1 + (10*i0)] = tmp3; 2023-01-11T21:05:10.4809201Z out_ptr1[i1 + (10*i0)] = tmp3; 2023-01-11T21:05:10.4809266Z } 2023-01-11T21:05:10.4809316Z } 2023-01-11T21:05:10.4809378Z } 2023-01-11T21:05:10.4809439Z } 2023-01-11T21:05:10.4809499Z } 2023-01-11T21:05:10.4809560Z } 2023-01-11T21:05:10.4809637Z ''') 2023-01-11T21:05:10.4809642Z 2023-01-11T21:05:10.4809647Z 2023-01-11T21:05:10.4809734Z async_compile.wait(globals()) 2023-01-11T21:05:10.4809791Z del async_compile 2023-01-11T21:05:10.4809796Z 2023-01-11T21:05:10.4809896Z def call(args): 2023-01-11T21:05:10.4809970Z arg0_1, arg1_1 = args 2023-01-11T21:05:10.4810039Z args.clear() 2023-01-11T21:05:10.4810255Z buf0 = empty_strided((4, 5, 10, 1), (50, 10, 1, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4810464Z buf1 = empty_strided((4, 5, 10, 1), (50, 10, 1, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4810651Z kernel_cpp_0(c_void_p(arg1_1.data_ptr()), c_void_p(arg0_1.data_ptr()), c_void_p(buf0.data_ptr()), c_void_p(buf1.data_ptr())) 2023-01-11T21:05:10.4810706Z del arg0_1 2023-01-11T21:05:10.4810772Z del arg1_1 2023-01-11T21:05:10.4810849Z return (buf0, buf1, ) 2023-01-11T21:05:10.4810854Z 2023-01-11T21:05:10.4810858Z 2023-01-11T21:05:10.4810932Z if __name__ == "__main__": 2023-01-11T21:05:10.4811047Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.4811169Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.4811381Z arg0_1 = rand_strided((1, 1, 10, 6), (60, 60, 6, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4811590Z arg1_1 = rand_strided((4, 5, 10, 1), (50, 10, 1, 1), device='cpu', dtype=torch.int64) 2023-01-11T21:05:10.4811736Z print_performance(lambda: call([arg0_1, arg1_1])) 2023-01-11T21:05:10.4811754Z 2023-01-11T21:05:10.4811807Z ok (2.798s) 2023-01-11T21:05:10.4811917Z test_gather2_cpu (__main__.CpuTests) ... ok (0.003s) 2023-01-11T21:05:10.4812363Z test_gather_scatter_cpu (__main__.CpuTests) ... inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.4812488Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.4812748Z [2023-01-11 20:51:19,493] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 198 2023-01-11T21:05:10.4813013Z [2023-01-11 20:51:22,236] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 198 2023-01-11T21:05:10.4813018Z 2023-01-11T21:05:10.4813114Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.4813182Z import torch 2023-01-11T21:05:10.4813237Z import random 2023-01-11T21:05:10.4813350Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.4813471Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.4813476Z 2023-01-11T21:05:10.4813555Z aten = torch.ops.aten 2023-01-11T21:05:10.4813688Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.4813779Z async_compile = AsyncCompile() 2023-01-11T21:05:10.4813785Z 2023-01-11T21:05:10.4813789Z 2023-01-11T21:05:10.4813921Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.4814128Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.4814249Z extern "C" void kernel(const long* __restrict__ in_ptr0, 2023-01-11T21:05:10.4814340Z const float* __restrict__ in_ptr1, 2023-01-11T21:05:10.4814439Z float* __restrict__ out_ptr0) 2023-01-11T21:05:10.4814501Z { 2023-01-11T21:05:10.4814598Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.4814658Z { 2023-01-11T21:05:10.4814736Z #pragma omp for 2023-01-11T21:05:10.4814803Z for(long i0=0; i0<32; i0+=1) 2023-01-11T21:05:10.4814864Z { 2023-01-11T21:05:10.4814998Z auto tmp0 = at::vec::Vectorized(static_cast(0)); 2023-01-11T21:05:10.4815089Z tmp0.store(out_ptr0 + 16*i0); 2023-01-11T21:05:10.4815150Z } 2023-01-11T21:05:10.4815244Z #pragma omp for simd simdlen(8) 2023-01-11T21:05:10.4815324Z for(long i0=512; i0<512; i0+=1) 2023-01-11T21:05:10.4815371Z { 2023-01-11T21:05:10.4815469Z auto tmp0 = static_cast(0); 2023-01-11T21:05:10.4815551Z out_ptr0[i0] = tmp0; 2023-01-11T21:05:10.4815643Z } 2023-01-11T21:05:10.4815717Z #pragma omp for 2023-01-11T21:05:10.4815797Z for(long i0=0; i0<80; i0+=1) 2023-01-11T21:05:10.4815859Z { 2023-01-11T21:05:10.4815926Z #pragma GCC ivdep 2023-01-11T21:05:10.4816012Z for(long i1=0; i1<32; i1+=1) 2023-01-11T21:05:10.4816075Z { 2023-01-11T21:05:10.4816139Z { 2023-01-11T21:05:10.4816203Z { 2023-01-11T21:05:10.4816302Z auto tmp0 = in_ptr0[80 + i0]; 2023-01-11T21:05:10.4816395Z auto tmp1 = in_ptr0[i0]; 2023-01-11T21:05:10.4816485Z auto tmp2 = in_ptr1[i1 + (32*tmp1)]; 2023-01-11T21:05:10.4816587Z auto tmp3 = in_ptr1[i1 + (32*tmp0)]; 2023-01-11T21:05:10.4816727Z auto tmp4 = tmp2 - tmp3; 2023-01-11T21:05:10.4816832Z auto tmp5 = static_cast(1); 2023-01-11T21:05:10.4816926Z auto tmp6 = tmp4 + tmp5; 2023-01-11T21:05:10.4817040Z atomic_add(&out_ptr0[i1 + (32*tmp0)], tmp6); 2023-01-11T21:05:10.4817105Z } 2023-01-11T21:05:10.4817194Z } 2023-01-11T21:05:10.4817258Z } 2023-01-11T21:05:10.4817319Z } 2023-01-11T21:05:10.4817380Z } 2023-01-11T21:05:10.4817438Z } 2023-01-11T21:05:10.4817515Z ''') 2023-01-11T21:05:10.4817520Z 2023-01-11T21:05:10.4817524Z 2023-01-11T21:05:10.4817612Z async_compile.wait(globals()) 2023-01-11T21:05:10.4817671Z del async_compile 2023-01-11T21:05:10.4817675Z 2023-01-11T21:05:10.4817744Z def call(args): 2023-01-11T21:05:10.4817817Z arg0_1, arg1_1 = args 2023-01-11T21:05:10.4817886Z args.clear() 2023-01-11T21:05:10.4818086Z buf0 = empty_strided((16, 32), (32, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4818247Z kernel_cpp_0(c_void_p(arg1_1.data_ptr()), c_void_p(arg0_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:05:10.4818319Z del arg0_1 2023-01-11T21:05:10.4818370Z del arg1_1 2023-01-11T21:05:10.4818440Z return (buf0, ) 2023-01-11T21:05:10.4818445Z 2023-01-11T21:05:10.4818449Z 2023-01-11T21:05:10.4818614Z if __name__ == "__main__": 2023-01-11T21:05:10.4818734Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.4818858Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.4819062Z arg0_1 = rand_strided((16, 32), (32, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4819258Z arg1_1 = rand_strided((2, 80), (80, 1), device='cpu', dtype=torch.int64) 2023-01-11T21:05:10.4819374Z print_performance(lambda: call([arg0_1, arg1_1])) 2023-01-11T21:05:10.4819379Z 2023-01-11T21:05:10.4819446Z ok (2.999s) 2023-01-11T21:05:10.4819869Z test_gelu_cpu (__main__.CpuTests) ... inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.4819998Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.4820261Z [2023-01-11 20:51:22,321] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 199 2023-01-11T21:05:10.4820529Z [2023-01-11 20:51:25,071] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 199 2023-01-11T21:05:10.4820534Z 2023-01-11T21:05:10.4820630Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.4820699Z import torch 2023-01-11T21:05:10.4820768Z import random 2023-01-11T21:05:10.4820884Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.4820990Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.4821009Z 2023-01-11T21:05:10.4821073Z aten = torch.ops.aten 2023-01-11T21:05:10.4821205Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.4821331Z async_compile = AsyncCompile() 2023-01-11T21:05:10.4821338Z 2023-01-11T21:05:10.4821342Z 2023-01-11T21:05:10.4821474Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.4821679Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.4821797Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:05:10.4821896Z float* __restrict__ out_ptr0, 2023-01-11T21:05:10.4821991Z float* __restrict__ out_ptr1) 2023-01-11T21:05:10.4822038Z { 2023-01-11T21:05:10.4822132Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.4822192Z { 2023-01-11T21:05:10.4822267Z #pragma omp for 2023-01-11T21:05:10.4822348Z for(long i0=0; i0<16; i0+=1) 2023-01-11T21:05:10.4822409Z { 2023-01-11T21:05:10.4822529Z auto tmp0 = at::vec::Vectorized::loadu(in_ptr0 + 16*i0); 2023-01-11T21:05:10.4822663Z auto tmp1 = at::vec::Vectorized(static_cast(0.5)); 2023-01-11T21:05:10.4822748Z auto tmp2 = tmp0 * tmp1; 2023-01-11T21:05:10.4822914Z auto tmp3 = at::vec::Vectorized(static_cast(0.7071067811865476)); 2023-01-11T21:05:10.4822999Z auto tmp4 = tmp0 * tmp3; 2023-01-11T21:05:10.4823083Z auto tmp5 = tmp4.erf(); 2023-01-11T21:05:10.4823215Z auto tmp6 = at::vec::Vectorized(static_cast(1)); 2023-01-11T21:05:10.4823300Z auto tmp7 = tmp5 + tmp6; 2023-01-11T21:05:10.4823367Z auto tmp8 = tmp2 * tmp7; 2023-01-11T21:05:10.4823498Z auto tmp9 = at::vec::Vectorized(static_cast(2)); 2023-01-11T21:05:10.4823581Z auto tmp10 = tmp8 + tmp9; 2023-01-11T21:05:10.4823661Z auto tmp11 = tmp0 + tmp6; 2023-01-11T21:05:10.4823743Z auto tmp12 = tmp11 * tmp1; 2023-01-11T21:05:10.4823824Z auto tmp13 = tmp11 * tmp3; 2023-01-11T21:05:10.4823909Z auto tmp14 = tmp13.erf(); 2023-01-11T21:05:10.4823978Z auto tmp15 = tmp14 + tmp6; 2023-01-11T21:05:10.4824060Z auto tmp16 = tmp12 * tmp15; 2023-01-11T21:05:10.4824153Z tmp10.store(out_ptr0 + 16*i0); 2023-01-11T21:05:10.4824246Z tmp16.store(out_ptr1 + 16*i0); 2023-01-11T21:05:10.4824308Z } 2023-01-11T21:05:10.4824402Z #pragma omp for simd simdlen(8) 2023-01-11T21:05:10.4824482Z for(long i0=256; i0<256; i0+=1) 2023-01-11T21:05:10.4824530Z { 2023-01-11T21:05:10.4824612Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:05:10.4824709Z auto tmp1 = static_cast(0.5); 2023-01-11T21:05:10.4824790Z auto tmp2 = tmp0 * tmp1; 2023-01-11T21:05:10.4824898Z auto tmp3 = static_cast(0.7071067811865476); 2023-01-11T21:05:10.4824980Z auto tmp4 = tmp0 * tmp3; 2023-01-11T21:05:10.4825067Z auto tmp5 = std::erf(tmp4); 2023-01-11T21:05:10.4825151Z auto tmp6 = static_cast(1); 2023-01-11T21:05:10.4825233Z auto tmp7 = tmp5 + tmp6; 2023-01-11T21:05:10.4825312Z auto tmp8 = tmp2 * tmp7; 2023-01-11T21:05:10.4825410Z auto tmp9 = static_cast(2); 2023-01-11T21:05:10.4825493Z auto tmp10 = tmp8 + tmp9; 2023-01-11T21:05:10.4825573Z auto tmp11 = tmp0 + tmp6; 2023-01-11T21:05:10.4825658Z auto tmp12 = tmp11 * tmp1; 2023-01-11T21:05:10.4825728Z auto tmp13 = tmp11 * tmp3; 2023-01-11T21:05:10.4825818Z auto tmp14 = std::erf(tmp13); 2023-01-11T21:05:10.4825899Z auto tmp15 = tmp14 + tmp6; 2023-01-11T21:05:10.4825981Z auto tmp16 = tmp12 * tmp15; 2023-01-11T21:05:10.4826059Z out_ptr0[i0] = tmp10; 2023-01-11T21:05:10.4826137Z out_ptr1[i0] = tmp16; 2023-01-11T21:05:10.4826196Z } 2023-01-11T21:05:10.4826243Z } 2023-01-11T21:05:10.4826301Z } 2023-01-11T21:05:10.4826380Z ''') 2023-01-11T21:05:10.4826385Z 2023-01-11T21:05:10.4826424Z 2023-01-11T21:05:10.4826512Z async_compile.wait(globals()) 2023-01-11T21:05:10.4826586Z del async_compile 2023-01-11T21:05:10.4826591Z 2023-01-11T21:05:10.4826661Z def call(args): 2023-01-11T21:05:10.4826729Z arg0_1, = args 2023-01-11T21:05:10.4826801Z args.clear() 2023-01-11T21:05:10.4826989Z buf0 = empty_strided((16, 16), (16, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4827183Z buf1 = empty_strided((16, 16), (16, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4827349Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(buf0.data_ptr()), c_void_p(buf1.data_ptr())) 2023-01-11T21:05:10.4827416Z del arg0_1 2023-01-11T21:05:10.4827493Z return (buf0, buf1, ) 2023-01-11T21:05:10.4827499Z 2023-01-11T21:05:10.4827503Z 2023-01-11T21:05:10.4827576Z if __name__ == "__main__": 2023-01-11T21:05:10.4827689Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.4827811Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.4827996Z arg0_1 = rand_strided((16, 16), (16, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4828102Z print_performance(lambda: call([arg0_1])) 2023-01-11T21:05:10.4828107Z 2023-01-11T21:05:10.4828172Z ok (2.836s) 2023-01-11T21:05:10.4828628Z test_glu_cpu (__main__.CpuTests) ... inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.4828756Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.4829015Z [2023-01-11 20:51:25,158] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 200 2023-01-11T21:05:10.4829278Z [2023-01-11 20:51:27,967] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 200 2023-01-11T21:05:10.4829285Z 2023-01-11T21:05:10.4829377Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.4829446Z import torch 2023-01-11T21:05:10.4829502Z import random 2023-01-11T21:05:10.4829618Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.4829735Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.4829740Z 2023-01-11T21:05:10.4829823Z aten = torch.ops.aten 2023-01-11T21:05:10.4830006Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.4830137Z async_compile = AsyncCompile() 2023-01-11T21:05:10.4830144Z 2023-01-11T21:05:10.4830151Z 2023-01-11T21:05:10.4830296Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.4830500Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.4830605Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:05:10.4830703Z float* __restrict__ out_ptr0, 2023-01-11T21:05:10.4830799Z float* __restrict__ out_ptr1, 2023-01-11T21:05:10.4830895Z float* __restrict__ out_ptr2) 2023-01-11T21:05:10.4830955Z { 2023-01-11T21:05:10.4831051Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.4831112Z { 2023-01-11T21:05:10.4831174Z #pragma omp for 2023-01-11T21:05:10.4831256Z for(long i0=0; i0<1024; i0+=1) 2023-01-11T21:05:10.4831316Z { 2023-01-11T21:05:10.4831395Z #pragma GCC ivdep 2023-01-11T21:05:10.4831476Z for(long i1=0; i1<4; i1+=1) 2023-01-11T21:05:10.4831538Z { 2023-01-11T21:05:10.4831601Z { 2023-01-11T21:05:10.4831653Z { 2023-01-11T21:05:10.4831753Z auto tmp0 = in_ptr0[i1 + (8*i0)]; 2023-01-11T21:05:10.4831857Z auto tmp1 = in_ptr0[4 + i1 + (8*i0)]; 2023-01-11T21:05:10.4832009Z auto tmp2 = std::exp(-tmp1); 2023-01-11T21:05:10.4832099Z auto tmp3 = 1 / (1 + tmp2); 2023-01-11T21:05:10.4832246Z auto tmp4 = tmp0 * tmp3; 2023-01-11T21:05:10.4832340Z out_ptr0[i1 + (4*i0)] = tmp4; 2023-01-11T21:05:10.4832392Z } 2023-01-11T21:05:10.4832457Z } 2023-01-11T21:05:10.4832518Z } 2023-01-11T21:05:10.4832578Z } 2023-01-11T21:05:10.4832654Z #pragma omp for 2023-01-11T21:05:10.4832734Z for(long i0=0; i0<8; i0+=1) 2023-01-11T21:05:10.4832782Z { 2023-01-11T21:05:10.4832868Z for(long i1=0; i1<32; i1+=1) 2023-01-11T21:05:10.4832933Z { 2023-01-11T21:05:10.4833078Z auto tmp0 = at::vec::Vectorized::loadu(in_ptr0 + (16*i1) + (1024*i0)); 2023-01-11T21:05:10.4833223Z auto tmp1 = at::vec::Vectorized::loadu(in_ptr0 + 512 + (16*i1) + (1024*i0)); 2023-01-11T21:05:10.4833359Z auto tmp2 = decltype(tmp1)(1)/(decltype(tmp1)(1) + tmp1.neg().exp()); 2023-01-11T21:05:10.4833447Z auto tmp3 = tmp0 * tmp2; 2023-01-11T21:05:10.4833555Z tmp3.store(out_ptr1 + (16*i1) + (512*i0)); 2023-01-11T21:05:10.4833605Z } 2023-01-11T21:05:10.4833697Z #pragma omp simd simdlen(8) 2023-01-11T21:05:10.4833818Z for(long i1=512; i1<512; i1+=1) 2023-01-11T21:05:10.4833883Z { 2023-01-11T21:05:10.4833980Z auto tmp0 = in_ptr0[i1 + (1024*i0)]; 2023-01-11T21:05:10.4834079Z auto tmp1 = in_ptr0[512 + i1 + (1024*i0)]; 2023-01-11T21:05:10.4834222Z auto tmp2 = std::exp(-tmp1); 2023-01-11T21:05:10.4834295Z auto tmp3 = 1 / (1 + tmp2); 2023-01-11T21:05:10.4834379Z auto tmp4 = tmp0 * tmp3; 2023-01-11T21:05:10.4834470Z out_ptr1[i1 + (512*i0)] = tmp4; 2023-01-11T21:05:10.4834532Z } 2023-01-11T21:05:10.4834593Z } 2023-01-11T21:05:10.4834667Z #pragma omp for 2023-01-11T21:05:10.4834747Z for(long i0=0; i0<128; i0+=1) 2023-01-11T21:05:10.4834798Z { 2023-01-11T21:05:10.4834878Z for(long i1=0; i1<2; i1+=1) 2023-01-11T21:05:10.4834939Z { 2023-01-11T21:05:10.4835079Z auto tmp0 = at::vec::Vectorized::loadu(in_ptr0 + (16*i1) + (64*i0)); 2023-01-11T21:05:10.4835220Z auto tmp1 = at::vec::Vectorized::loadu(in_ptr0 + 32 + (16*i1) + (64*i0)); 2023-01-11T21:05:10.4835355Z auto tmp2 = decltype(tmp1)(1)/(decltype(tmp1)(1) + tmp1.neg().exp()); 2023-01-11T21:05:10.4835439Z auto tmp3 = tmp0 * tmp2; 2023-01-11T21:05:10.4835540Z tmp3.store(out_ptr2 + (16*i1) + (32*i0)); 2023-01-11T21:05:10.4835588Z } 2023-01-11T21:05:10.4835679Z #pragma omp simd simdlen(8) 2023-01-11T21:05:10.4835763Z for(long i1=32; i1<32; i1+=1) 2023-01-11T21:05:10.4835825Z { 2023-01-11T21:05:10.4835919Z auto tmp0 = in_ptr0[i1 + (64*i0)]; 2023-01-11T21:05:10.4836017Z auto tmp1 = in_ptr0[32 + i1 + (64*i0)]; 2023-01-11T21:05:10.4836158Z auto tmp2 = std::exp(-tmp1); 2023-01-11T21:05:10.4836233Z auto tmp3 = 1 / (1 + tmp2); 2023-01-11T21:05:10.4836320Z auto tmp4 = tmp0 * tmp3; 2023-01-11T21:05:10.4836410Z out_ptr2[i1 + (32*i0)] = tmp4; 2023-01-11T21:05:10.4836471Z } 2023-01-11T21:05:10.4836531Z } 2023-01-11T21:05:10.4836592Z } 2023-01-11T21:05:10.4836638Z } 2023-01-11T21:05:10.4836715Z ''') 2023-01-11T21:05:10.4836720Z 2023-01-11T21:05:10.4836724Z 2023-01-11T21:05:10.4836812Z async_compile.wait(globals()) 2023-01-11T21:05:10.4836882Z del async_compile 2023-01-11T21:05:10.4836887Z 2023-01-11T21:05:10.4836956Z def call(args): 2023-01-11T21:05:10.4837025Z arg0_1, = args 2023-01-11T21:05:10.4837095Z args.clear() 2023-01-11T21:05:10.4837310Z buf0 = empty_strided((8, 16, 8, 4), (512, 32, 4, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4837508Z buf1 = empty_strided((8, 8, 8, 8), (512, 64, 8, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4837751Z buf2 = empty_strided((8, 16, 4, 8), (512, 32, 8, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4837943Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(buf0.data_ptr()), c_void_p(buf1.data_ptr()), c_void_p(buf2.data_ptr())) 2023-01-11T21:05:10.4838012Z del arg0_1 2023-01-11T21:05:10.4838095Z return (buf0, buf1, buf2, ) 2023-01-11T21:05:10.4838101Z 2023-01-11T21:05:10.4838105Z 2023-01-11T21:05:10.4838180Z if __name__ == "__main__": 2023-01-11T21:05:10.4838295Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.4838418Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.4838619Z arg0_1 = rand_strided((8, 16, 8, 8), (1024, 64, 8, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4838726Z print_performance(lambda: call([arg0_1])) 2023-01-11T21:05:10.4838730Z 2023-01-11T21:05:10.4838796Z ok (2.913s) 2023-01-11T21:05:10.4839271Z test_grid_sampler_2d_cpu (__main__.CpuTests) ... inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.4839401Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.4839661Z [2023-01-11 20:51:30,820] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 201 2023-01-11T21:05:10.4839869Z [2023-01-11 20:51:31,677] torch._inductor.scheduler: [DEBUG] remove_buffer('buf3') 2023-01-11T21:05:10.4840068Z [2023-01-11 20:51:31,677] torch._inductor.scheduler: [DEBUG] remove_buffer('buf7') 2023-01-11T21:05:10.4840265Z [2023-01-11 20:51:31,677] torch._inductor.scheduler: [DEBUG] remove_buffer('buf5') 2023-01-11T21:05:10.4840270Z 2023-01-11T21:05:10.4840362Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.4840420Z import torch 2023-01-11T21:05:10.4840489Z import random 2023-01-11T21:05:10.4840731Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.4840855Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.4840860Z 2023-01-11T21:05:10.4840940Z aten = torch.ops.aten 2023-01-11T21:05:10.4841074Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.4841164Z async_compile = AsyncCompile() 2023-01-11T21:05:10.4841170Z 2023-01-11T21:05:10.4841173Z 2023-01-11T21:05:10.4841308Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.4841500Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.4841614Z extern "C" void kernel(float* __restrict__ in_out_ptr0, 2023-01-11T21:05:10.4841716Z float* __restrict__ in_out_ptr1, 2023-01-11T21:05:10.4841820Z const float* __restrict__ in_ptr0, 2023-01-11T21:05:10.4841926Z const float* __restrict__ in_ptr1, 2023-01-11T21:05:10.4842024Z float* __restrict__ out_ptr0, 2023-01-11T21:05:10.4842121Z float* __restrict__ out_ptr1, 2023-01-11T21:05:10.4842203Z float* __restrict__ out_ptr2, 2023-01-11T21:05:10.4842297Z float* __restrict__ out_ptr3, 2023-01-11T21:05:10.4842392Z long* __restrict__ out_ptr4, 2023-01-11T21:05:10.4842486Z long* __restrict__ out_ptr5, 2023-01-11T21:05:10.4842579Z float* __restrict__ out_ptr6, 2023-01-11T21:05:10.4842672Z long* __restrict__ out_ptr7, 2023-01-11T21:05:10.4842763Z long* __restrict__ out_ptr8, 2023-01-11T21:05:10.4842841Z float* __restrict__ out_ptr9, 2023-01-11T21:05:10.4842935Z long* __restrict__ out_ptr10, 2023-01-11T21:05:10.4843028Z long* __restrict__ out_ptr11, 2023-01-11T21:05:10.4843187Z float* __restrict__ out_ptr12, 2023-01-11T21:05:10.4843279Z long* __restrict__ out_ptr13, 2023-01-11T21:05:10.4843374Z long* __restrict__ out_ptr14, 2023-01-11T21:05:10.4843471Z float* __restrict__ out_ptr15) 2023-01-11T21:05:10.4843532Z { 2023-01-11T21:05:10.4843616Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.4843676Z { 2023-01-11T21:05:10.4843752Z #pragma omp for 2023-01-11T21:05:10.4843838Z for(long i0=0; i0<495616; i0+=1) 2023-01-11T21:05:10.4843901Z { 2023-01-11T21:05:10.4843964Z { 2023-01-11T21:05:10.4844015Z { 2023-01-11T21:05:10.4844108Z auto tmp0 = in_ptr0[2*i0]; 2023-01-11T21:05:10.4844203Z auto tmp9 = in_ptr0[1 + (2*i0)]; 2023-01-11T21:05:10.4844309Z auto tmp1 = static_cast(175.5); 2023-01-11T21:05:10.4844402Z auto tmp2 = tmp0 * tmp1; 2023-01-11T21:05:10.4844496Z auto tmp3 = tmp2 + tmp1; 2023-01-11T21:05:10.4844596Z auto tmp4 = std::floor(tmp3); 2023-01-11T21:05:10.4844722Z auto tmp5 = static_cast(0); 2023-01-11T21:05:10.4844815Z auto tmp6 = tmp4 >= tmp5; 2023-01-11T21:05:10.4844918Z auto tmp7 = static_cast(352); 2023-01-11T21:05:10.4845006Z auto tmp8 = tmp4 < tmp7; 2023-01-11T21:05:10.4845094Z auto tmp10 = tmp9 * tmp1; 2023-01-11T21:05:10.4845183Z auto tmp11 = tmp10 + tmp1; 2023-01-11T21:05:10.4845281Z auto tmp12 = std::floor(tmp11); 2023-01-11T21:05:10.4845372Z auto tmp13 = tmp12 >= tmp5; 2023-01-11T21:05:10.4845451Z auto tmp14 = tmp12 < tmp7; 2023-01-11T21:05:10.4845542Z auto tmp15 = tmp13 && tmp14; 2023-01-11T21:05:10.4845633Z auto tmp16 = tmp8 && tmp15; 2023-01-11T21:05:10.4845725Z auto tmp17 = tmp6 && tmp16; 2023-01-11T21:05:10.4845826Z auto tmp18 = static_cast(1); 2023-01-11T21:05:10.4845917Z auto tmp19 = tmp4 + tmp18; 2023-01-11T21:05:10.4846058Z auto tmp20 = tmp19 - tmp3; 2023-01-11T21:05:10.4846137Z auto tmp21 = tmp12 + tmp18; 2023-01-11T21:05:10.4846274Z auto tmp22 = tmp21 - tmp11; 2023-01-11T21:05:10.4846362Z auto tmp23 = tmp20 * tmp22; 2023-01-11T21:05:10.4846460Z auto tmp24 = tmp17 ? tmp23 : tmp5; 2023-01-11T21:05:10.4846548Z auto tmp25 = tmp19 >= tmp5; 2023-01-11T21:05:10.4846636Z auto tmp26 = tmp19 < tmp7; 2023-01-11T21:05:10.4846728Z auto tmp27 = tmp26 && tmp15; 2023-01-11T21:05:10.4846805Z auto tmp28 = tmp25 && tmp27; 2023-01-11T21:05:10.4846939Z auto tmp29 = tmp3 - tmp4; 2023-01-11T21:05:10.4847032Z auto tmp30 = tmp29 * tmp22; 2023-01-11T21:05:10.4847129Z auto tmp31 = tmp28 ? tmp30 : tmp5; 2023-01-11T21:05:10.4847219Z auto tmp32 = tmp21 >= tmp5; 2023-01-11T21:05:10.4847309Z auto tmp33 = tmp21 < tmp7; 2023-01-11T21:05:10.4847400Z auto tmp34 = tmp32 && tmp33; 2023-01-11T21:05:10.4847477Z auto tmp35 = tmp8 && tmp34; 2023-01-11T21:05:10.4847565Z auto tmp36 = tmp6 && tmp35; 2023-01-11T21:05:10.4847699Z auto tmp37 = tmp11 - tmp12; 2023-01-11T21:05:10.4847787Z auto tmp38 = tmp20 * tmp37; 2023-01-11T21:05:10.4847882Z auto tmp39 = tmp36 ? tmp38 : tmp5; 2023-01-11T21:05:10.4847973Z auto tmp40 = tmp26 && tmp34; 2023-01-11T21:05:10.4848063Z auto tmp41 = tmp25 && tmp40; 2023-01-11T21:05:10.4848152Z auto tmp42 = tmp29 * tmp37; 2023-01-11T21:05:10.4848267Z auto tmp43 = tmp41 ? tmp42 : tmp5; 2023-01-11T21:05:10.4848373Z auto tmp44 = static_cast(176.0); 2023-01-11T21:05:10.4848466Z auto tmp45 = tmp0 * tmp44; 2023-01-11T21:05:10.4848555Z auto tmp46 = tmp45 + tmp1; 2023-01-11T21:05:10.4848659Z auto tmp47 = static_cast(0.0); 2023-01-11T21:05:10.4848787Z auto tmp48 = (tmp47 != tmp47) ? tmp47 : std::max(tmp46, tmp47); 2023-01-11T21:05:10.4848890Z auto tmp49 = static_cast(351.0); 2023-01-11T21:05:10.4849005Z auto tmp50 = (tmp49 != tmp49) ? tmp49 : std::min(tmp48, tmp49); 2023-01-11T21:05:10.4849103Z auto tmp51 = std::floor(tmp50); 2023-01-11T21:05:10.4849191Z auto tmp52 = tmp51 >= tmp5; 2023-01-11T21:05:10.4849280Z auto tmp53 = tmp51 < tmp7; 2023-01-11T21:05:10.4849369Z auto tmp54 = tmp9 * tmp44; 2023-01-11T21:05:10.4849462Z auto tmp55 = tmp54 + tmp1; 2023-01-11T21:05:10.4849584Z auto tmp56 = (tmp47 != tmp47) ? tmp47 : std::max(tmp55, tmp47); 2023-01-11T21:05:10.4849746Z auto tmp57 = (tmp49 != tmp49) ? tmp49 : std::min(tmp56, tmp49); 2023-01-11T21:05:10.4849835Z auto tmp58 = std::floor(tmp57); 2023-01-11T21:05:10.4849924Z auto tmp59 = tmp58 >= tmp5; 2023-01-11T21:05:10.4850012Z auto tmp60 = tmp58 < tmp7; 2023-01-11T21:05:10.4850105Z auto tmp61 = tmp59 && tmp60; 2023-01-11T21:05:10.4850195Z auto tmp62 = tmp53 && tmp61; 2023-01-11T21:05:10.4850288Z auto tmp63 = tmp52 && tmp62; 2023-01-11T21:05:10.4850392Z auto tmp64 = static_cast(tmp51); 2023-01-11T21:05:10.4850493Z auto tmp65 = static_cast(0); 2023-01-11T21:05:10.4850579Z auto tmp66 = tmp63 ? tmp64 : tmp65; 2023-01-11T21:05:10.4850686Z auto tmp67 = static_cast(tmp58); 2023-01-11T21:05:10.4850795Z auto tmp68 = tmp63 ? tmp67 : tmp65; 2023-01-11T21:05:10.4850933Z auto tmp69 = tmp51 + tmp18; 2023-01-11T21:05:10.4851121Z auto tmp70 = tmp69 - tmp50; 2023-01-11T21:05:10.4851211Z auto tmp71 = tmp58 + tmp18; 2023-01-11T21:05:10.4851348Z auto tmp72 = tmp71 - tmp57; 2023-01-11T21:05:10.4851424Z auto tmp73 = tmp70 * tmp72; 2023-01-11T21:05:10.4851521Z auto tmp74 = tmp63 ? tmp73 : tmp5; 2023-01-11T21:05:10.4851610Z auto tmp75 = tmp69 >= tmp5; 2023-01-11T21:05:10.4851700Z auto tmp76 = tmp69 < tmp7; 2023-01-11T21:05:10.4851791Z auto tmp77 = tmp76 && tmp61; 2023-01-11T21:05:10.4851882Z auto tmp78 = tmp75 && tmp77; 2023-01-11T21:05:10.4851986Z auto tmp79 = static_cast(tmp69); 2023-01-11T21:05:10.4852075Z auto tmp80 = tmp78 ? tmp79 : tmp65; 2023-01-11T21:05:10.4852171Z auto tmp81 = tmp78 ? tmp67 : tmp65; 2023-01-11T21:05:10.4852308Z auto tmp82 = tmp50 - tmp51; 2023-01-11T21:05:10.4852397Z auto tmp83 = tmp82 * tmp72; 2023-01-11T21:05:10.4852494Z auto tmp84 = tmp78 ? tmp83 : tmp5; 2023-01-11T21:05:10.4852584Z auto tmp85 = tmp71 >= tmp5; 2023-01-11T21:05:10.4852674Z auto tmp86 = tmp71 < tmp7; 2023-01-11T21:05:10.4852754Z auto tmp87 = tmp85 && tmp86; 2023-01-11T21:05:10.4852844Z auto tmp88 = tmp53 && tmp87; 2023-01-11T21:05:10.4852934Z auto tmp89 = tmp52 && tmp88; 2023-01-11T21:05:10.4853032Z auto tmp90 = tmp89 ? tmp64 : tmp65; 2023-01-11T21:05:10.4853138Z auto tmp91 = static_cast(tmp71); 2023-01-11T21:05:10.4853274Z auto tmp92 = tmp89 ? tmp91 : tmp65; 2023-01-11T21:05:10.4853411Z auto tmp93 = tmp57 - tmp58; 2023-01-11T21:05:10.4853500Z auto tmp94 = tmp70 * tmp93; 2023-01-11T21:05:10.4853587Z auto tmp95 = tmp89 ? tmp94 : tmp5; 2023-01-11T21:05:10.4853678Z auto tmp96 = tmp76 && tmp87; 2023-01-11T21:05:10.4853767Z auto tmp97 = tmp75 && tmp96; 2023-01-11T21:05:10.4853863Z auto tmp98 = tmp97 ? tmp79 : tmp65; 2023-01-11T21:05:10.4853958Z auto tmp99 = tmp97 ? tmp91 : tmp65; 2023-01-11T21:05:10.4854051Z auto tmp100 = tmp82 * tmp93; 2023-01-11T21:05:10.4854153Z auto tmp101 = tmp97 ? tmp100 : tmp5; 2023-01-11T21:05:10.4854224Z out_ptr0[i0] = tmp24; 2023-01-11T21:05:10.4854306Z out_ptr1[i0] = tmp31; 2023-01-11T21:05:10.4854388Z out_ptr2[i0] = tmp39; 2023-01-11T21:05:10.4854472Z out_ptr3[i0] = tmp43; 2023-01-11T21:05:10.4854552Z out_ptr4[i0] = tmp66; 2023-01-11T21:05:10.4854632Z out_ptr5[i0] = tmp68; 2023-01-11T21:05:10.4854740Z out_ptr6[i0] = tmp74; 2023-01-11T21:05:10.4854810Z out_ptr7[i0] = tmp80; 2023-01-11T21:05:10.4854891Z out_ptr8[i0] = tmp81; 2023-01-11T21:05:10.4854970Z out_ptr9[i0] = tmp84; 2023-01-11T21:05:10.4855054Z out_ptr10[i0] = tmp90; 2023-01-11T21:05:10.4855139Z out_ptr11[i0] = tmp92; 2023-01-11T21:05:10.4855220Z out_ptr12[i0] = tmp95; 2023-01-11T21:05:10.4855302Z out_ptr13[i0] = tmp98; 2023-01-11T21:05:10.4855369Z out_ptr14[i0] = tmp99; 2023-01-11T21:05:10.4855454Z out_ptr15[i0] = tmp101; 2023-01-11T21:05:10.4855522Z } 2023-01-11T21:05:10.4855584Z } 2023-01-11T21:05:10.4855649Z } 2023-01-11T21:05:10.4855726Z #pragma omp for 2023-01-11T21:05:10.4855806Z for(long i0=0; i0<4; i0+=1) 2023-01-11T21:05:10.4855854Z { 2023-01-11T21:05:10.4855934Z #pragma GCC ivdep 2023-01-11T21:05:10.4856016Z for(long i1=0; i1<3; i1+=1) 2023-01-11T21:05:10.4856080Z { 2023-01-11T21:05:10.4856160Z #pragma GCC ivdep 2023-01-11T21:05:10.4856252Z for(long i2=0; i2<123904; i2+=1) 2023-01-11T21:05:10.4856315Z { 2023-01-11T21:05:10.4856366Z { 2023-01-11T21:05:10.4856433Z { 2023-01-11T21:05:10.4856542Z auto tmp2 = in_ptr0[(2*i2) + (247808*i0)]; 2023-01-11T21:05:10.4856654Z auto tmp11 = in_ptr0[1 + (2*i2) + (247808*i0)]; 2023-01-11T21:05:10.4856764Z auto tmp51 = out_ptr0[i2 + (123904*i0)]; 2023-01-11T21:05:10.4856867Z auto tmp53 = out_ptr1[i2 + (123904*i0)]; 2023-01-11T21:05:10.4856970Z auto tmp56 = out_ptr2[i2 + (123904*i0)]; 2023-01-11T21:05:10.4857057Z auto tmp59 = out_ptr3[i2 + (123904*i0)]; 2023-01-11T21:05:10.4857164Z auto tmp0 = static_cast(i0); 2023-01-11T21:05:10.4857270Z auto tmp1 = static_cast(i1); 2023-01-11T21:05:10.4857380Z auto tmp3 = static_cast(175.5); 2023-01-11T21:05:10.4857474Z auto tmp4 = tmp2 * tmp3; 2023-01-11T21:05:10.4857566Z auto tmp5 = tmp4 + tmp3; 2023-01-11T21:05:10.4857672Z auto tmp6 = std::floor(tmp5); 2023-01-11T21:05:10.4857776Z auto tmp7 = static_cast(0); 2023-01-11T21:05:10.4857858Z auto tmp8 = tmp6 >= tmp7; 2023-01-11T21:05:10.4857964Z auto tmp9 = static_cast(352); 2023-01-11T21:05:10.4858091Z auto tmp10 = tmp6 < tmp9; 2023-01-11T21:05:10.4858186Z auto tmp12 = tmp11 * tmp3; 2023-01-11T21:05:10.4858281Z auto tmp13 = tmp12 + tmp3; 2023-01-11T21:05:10.4858390Z auto tmp14 = std::floor(tmp13); 2023-01-11T21:05:10.4858567Z auto tmp15 = tmp14 >= tmp7; 2023-01-11T21:05:10.4858651Z auto tmp16 = tmp14 < tmp9; 2023-01-11T21:05:10.4858749Z auto tmp17 = tmp15 && tmp16; 2023-01-11T21:05:10.4858847Z auto tmp18 = tmp10 && tmp17; 2023-01-11T21:05:10.4858943Z auto tmp19 = tmp8 && tmp18; 2023-01-11T21:05:10.4859053Z auto tmp20 = static_cast(tmp14); 2023-01-11T21:05:10.4859161Z auto tmp21 = static_cast(0); 2023-01-11T21:05:10.4859266Z auto tmp22 = tmp19 ? tmp20 : tmp21; 2023-01-11T21:05:10.4859381Z auto tmp23 = static_cast(tmp6); 2023-01-11T21:05:10.4859470Z auto tmp24 = tmp19 ? tmp23 : tmp21; 2023-01-11T21:05:10.4859636Z auto tmp25 = in_ptr1[tmp24 + (352*tmp22) + (123904*tmp1) + (371712*tmp0)]; 2023-01-11T21:05:10.4859746Z auto tmp26 = static_cast(1); 2023-01-11T21:05:10.4859843Z auto tmp27 = tmp6 + tmp26; 2023-01-11T21:05:10.4859939Z auto tmp28 = tmp27 >= tmp7; 2023-01-11T21:05:10.4860035Z auto tmp29 = tmp27 < tmp9; 2023-01-11T21:05:10.4860133Z auto tmp30 = tmp29 && tmp17; 2023-01-11T21:05:10.4860216Z auto tmp31 = tmp28 && tmp30; 2023-01-11T21:05:10.4860318Z auto tmp32 = tmp31 ? tmp20 : tmp21; 2023-01-11T21:05:10.4860427Z auto tmp33 = static_cast(tmp27); 2023-01-11T21:05:10.4860533Z auto tmp34 = tmp31 ? tmp33 : tmp21; 2023-01-11T21:05:10.4860663Z auto tmp35 = in_ptr1[tmp34 + (352*tmp32) + (123904*tmp1) + (371712*tmp0)]; 2023-01-11T21:05:10.4860760Z auto tmp36 = tmp14 + tmp26; 2023-01-11T21:05:10.4860854Z auto tmp37 = tmp36 >= tmp7; 2023-01-11T21:05:10.4860948Z auto tmp38 = tmp36 < tmp9; 2023-01-11T21:05:10.4861031Z auto tmp39 = tmp37 && tmp38; 2023-01-11T21:05:10.4861125Z auto tmp40 = tmp10 && tmp39; 2023-01-11T21:05:10.4861217Z auto tmp41 = tmp8 && tmp40; 2023-01-11T21:05:10.4861325Z auto tmp42 = static_cast(tmp36); 2023-01-11T21:05:10.4861427Z auto tmp43 = tmp41 ? tmp42 : tmp21; 2023-01-11T21:05:10.4861527Z auto tmp44 = tmp41 ? tmp23 : tmp21; 2023-01-11T21:05:10.4861658Z auto tmp45 = in_ptr1[tmp44 + (352*tmp43) + (123904*tmp1) + (371712*tmp0)]; 2023-01-11T21:05:10.4861755Z auto tmp46 = tmp29 && tmp39; 2023-01-11T21:05:10.4861840Z auto tmp47 = tmp28 && tmp46; 2023-01-11T21:05:10.4861942Z auto tmp48 = tmp47 ? tmp42 : tmp21; 2023-01-11T21:05:10.4862043Z auto tmp49 = tmp47 ? tmp33 : tmp21; 2023-01-11T21:05:10.4862171Z auto tmp50 = in_ptr1[tmp49 + (352*tmp48) + (123904*tmp1) + (371712*tmp0)]; 2023-01-11T21:05:10.4862267Z auto tmp52 = tmp25 * tmp51; 2023-01-11T21:05:10.4862360Z auto tmp54 = tmp35 * tmp53; 2023-01-11T21:05:10.4862453Z auto tmp55 = tmp52 + tmp54; 2023-01-11T21:05:10.4862534Z auto tmp57 = tmp45 * tmp56; 2023-01-11T21:05:10.4862626Z auto tmp58 = tmp55 + tmp57; 2023-01-11T21:05:10.4862747Z auto tmp60 = tmp50 * tmp59; 2023-01-11T21:05:10.4862839Z auto tmp61 = tmp58 + tmp60; 2023-01-11T21:05:10.4862951Z in_out_ptr0[i2 + (123904*i1) + (371712*i0)] = tmp61; 2023-01-11T21:05:10.4863019Z } 2023-01-11T21:05:10.4863083Z } 2023-01-11T21:05:10.4863145Z } 2023-01-11T21:05:10.4863194Z } 2023-01-11T21:05:10.4863255Z } 2023-01-11T21:05:10.4863330Z #pragma omp for 2023-01-11T21:05:10.4863411Z for(long i0=0; i0<4; i0+=1) 2023-01-11T21:05:10.4863472Z { 2023-01-11T21:05:10.4863551Z #pragma GCC ivdep 2023-01-11T21:05:10.4863620Z for(long i1=0; i1<3; i1+=1) 2023-01-11T21:05:10.4863682Z { 2023-01-11T21:05:10.4863761Z #pragma GCC ivdep 2023-01-11T21:05:10.4863852Z for(long i2=0; i2<123904; i2+=1) 2023-01-11T21:05:10.4863916Z { 2023-01-11T21:05:10.4863980Z { 2023-01-11T21:05:10.4864046Z { 2023-01-11T21:05:10.4864140Z auto tmp2 = out_ptr5[i2 + (123904*i0)]; 2023-01-11T21:05:10.4864274Z auto tmp3 = out_ptr4[i2 + (123904*i0)]; 2023-01-11T21:05:10.4864378Z auto tmp5 = out_ptr6[i2 + (123904*i0)]; 2023-01-11T21:05:10.4864478Z auto tmp7 = out_ptr8[i2 + (123904*i0)]; 2023-01-11T21:05:10.4864576Z auto tmp8 = out_ptr7[i2 + (123904*i0)]; 2023-01-11T21:05:10.4864682Z auto tmp10 = out_ptr9[i2 + (123904*i0)]; 2023-01-11T21:05:10.4864789Z auto tmp13 = out_ptr11[i2 + (123904*i0)]; 2023-01-11T21:05:10.4864892Z auto tmp14 = out_ptr10[i2 + (123904*i0)]; 2023-01-11T21:05:10.4864980Z auto tmp16 = out_ptr12[i2 + (123904*i0)]; 2023-01-11T21:05:10.4865082Z auto tmp19 = out_ptr14[i2 + (123904*i0)]; 2023-01-11T21:05:10.4865180Z auto tmp20 = out_ptr13[i2 + (123904*i0)]; 2023-01-11T21:05:10.4865280Z auto tmp22 = out_ptr15[i2 + (123904*i0)]; 2023-01-11T21:05:10.4865387Z auto tmp0 = static_cast(i0); 2023-01-11T21:05:10.4865494Z auto tmp1 = static_cast(i1); 2023-01-11T21:05:10.4865623Z auto tmp4 = in_ptr1[tmp3 + (352*tmp2) + (123904*tmp1) + (371712*tmp0)]; 2023-01-11T21:05:10.4865718Z auto tmp6 = tmp4 * tmp5; 2023-01-11T21:05:10.4865829Z auto tmp9 = in_ptr1[tmp8 + (352*tmp7) + (123904*tmp1) + (371712*tmp0)]; 2023-01-11T21:05:10.4865925Z auto tmp11 = tmp9 * tmp10; 2023-01-11T21:05:10.4866020Z auto tmp12 = tmp6 + tmp11; 2023-01-11T21:05:10.4866153Z auto tmp15 = in_ptr1[tmp14 + (352*tmp13) + (123904*tmp1) + (371712*tmp0)]; 2023-01-11T21:05:10.4866249Z auto tmp17 = tmp15 * tmp16; 2023-01-11T21:05:10.4866345Z auto tmp18 = tmp12 + tmp17; 2023-01-11T21:05:10.4866473Z auto tmp21 = in_ptr1[tmp20 + (352*tmp19) + (123904*tmp1) + (371712*tmp0)]; 2023-01-11T21:05:10.4866557Z auto tmp23 = tmp21 * tmp22; 2023-01-11T21:05:10.4866650Z auto tmp24 = tmp18 + tmp23; 2023-01-11T21:05:10.4866762Z in_out_ptr1[i2 + (123904*i1) + (371712*i0)] = tmp24; 2023-01-11T21:05:10.4866830Z } 2023-01-11T21:05:10.4866896Z } 2023-01-11T21:05:10.4866959Z } 2023-01-11T21:05:10.4867021Z } 2023-01-11T21:05:10.4867068Z } 2023-01-11T21:05:10.4867129Z } 2023-01-11T21:05:10.4867188Z } 2023-01-11T21:05:10.4867283Z ''') 2023-01-11T21:05:10.4867322Z 2023-01-11T21:05:10.4867327Z 2023-01-11T21:05:10.4867417Z async_compile.wait(globals()) 2023-01-11T21:05:10.4867489Z del async_compile 2023-01-11T21:05:10.4867494Z 2023-01-11T21:05:10.4867563Z def call(args): 2023-01-11T21:05:10.4867640Z arg0_1, arg1_1 = args 2023-01-11T21:05:10.4867697Z args.clear() 2023-01-11T21:05:10.4867917Z buf0 = empty_strided((4, 352, 352), (123904, 352, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4868134Z buf2 = empty_strided((4, 352, 352), (123904, 352, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4868342Z buf4 = empty_strided((4, 352, 352), (123904, 352, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4868551Z buf6 = empty_strided((4, 352, 352), (123904, 352, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4868760Z buf9 = empty_strided((4, 352, 352), (123904, 352, 1), device='cpu', dtype=torch.int64) 2023-01-11T21:05:10.4868970Z buf10 = empty_strided((4, 352, 352), (123904, 352, 1), device='cpu', dtype=torch.int64) 2023-01-11T21:05:10.4869188Z buf11 = empty_strided((4, 352, 352), (123904, 352, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4869415Z buf12 = empty_strided((4, 352, 352), (123904, 352, 1), device='cpu', dtype=torch.int64) 2023-01-11T21:05:10.4869623Z buf13 = empty_strided((4, 352, 352), (123904, 352, 1), device='cpu', dtype=torch.int64) 2023-01-11T21:05:10.4869834Z buf14 = empty_strided((4, 352, 352), (123904, 352, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4870038Z buf15 = empty_strided((4, 352, 352), (123904, 352, 1), device='cpu', dtype=torch.int64) 2023-01-11T21:05:10.4870242Z buf16 = empty_strided((4, 352, 352), (123904, 352, 1), device='cpu', dtype=torch.int64) 2023-01-11T21:05:10.4870451Z buf17 = empty_strided((4, 352, 352), (123904, 352, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4870653Z buf19 = empty_strided((4, 352, 352), (123904, 352, 1), device='cpu', dtype=torch.int64) 2023-01-11T21:05:10.4870858Z buf20 = empty_strided((4, 352, 352), (123904, 352, 1), device='cpu', dtype=torch.int64) 2023-01-11T21:05:10.4871053Z buf21 = empty_strided((4, 352, 352), (123904, 352, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4871281Z buf1 = empty_strided((4, 3, 352, 352), (371712, 123904, 352, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4871367Z buf8 = buf1; del buf1 # reuse 2023-01-11T21:05:10.4871592Z buf18 = empty_strided((4, 3, 352, 352), (371712, 123904, 352, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4871679Z buf22 = buf18; del buf18 # reuse 2023-01-11T21:05:10.4872236Z kernel_cpp_0(c_void_p(buf8.data_ptr()), c_void_p(buf22.data_ptr()), c_void_p(arg1_1.data_ptr()), c_void_p(arg0_1.data_ptr()), c_void_p(buf0.data_ptr()), c_void_p(buf2.data_ptr()), c_void_p(buf4.data_ptr()), c_void_p(buf6.data_ptr()), c_void_p(buf9.data_ptr()), c_void_p(buf10.data_ptr()), c_void_p(buf11.data_ptr()), c_void_p(buf12.data_ptr()), c_void_p(buf13.data_ptr()), c_void_p(buf14.data_ptr()), c_void_p(buf15.data_ptr()), c_void_p(buf16.data_ptr()), c_void_p(buf17.data_ptr()), c_void_p(buf19.data_ptr()), c_void_p(buf20.data_ptr()), c_void_p(buf21.data_ptr())) 2023-01-11T21:05:10.4872311Z del arg0_1 2023-01-11T21:05:10.4872379Z del arg1_1 2023-01-11T21:05:10.4872456Z return (buf8, buf22, ) 2023-01-11T21:05:10.4872462Z 2023-01-11T21:05:10.4872466Z 2023-01-11T21:05:10.4872541Z if __name__ == "__main__": 2023-01-11T21:05:10.4872644Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.4872768Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.4872994Z arg0_1 = rand_strided((4, 3, 352, 352), (371712, 123904, 352, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4873214Z arg1_1 = rand_strided((4, 352, 352, 2), (247808, 704, 2, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4873328Z print_performance(lambda: call([arg0_1, arg1_1])) 2023-01-11T21:05:10.4873596Z [2023-01-11 20:51:34,458] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 201 2023-01-11T21:05:10.4873670Z 2023-01-11T21:05:10.4873737Z ok (7.915s) 2023-01-11T21:05:10.4874181Z test_hardsigmoid_cpu (__main__.CpuTests) ... inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.4874308Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.4874554Z [2023-01-11 20:51:36,007] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 202 2023-01-11T21:05:10.4874819Z [2023-01-11 20:51:38,739] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 202 2023-01-11T21:05:10.4874825Z 2023-01-11T21:05:10.4874918Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.4874989Z import torch 2023-01-11T21:05:10.4875060Z import random 2023-01-11T21:05:10.4875176Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.4875326Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.4875331Z 2023-01-11T21:05:10.4875414Z aten = torch.ops.aten 2023-01-11T21:05:10.4875537Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.4875630Z async_compile = AsyncCompile() 2023-01-11T21:05:10.4875635Z 2023-01-11T21:05:10.4875639Z 2023-01-11T21:05:10.4875774Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.4875979Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.4876099Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:05:10.4876199Z float* __restrict__ out_ptr0, 2023-01-11T21:05:10.4876297Z float* __restrict__ out_ptr1, 2023-01-11T21:05:10.4876394Z float* __restrict__ out_ptr2) 2023-01-11T21:05:10.4876441Z { 2023-01-11T21:05:10.4876537Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.4876599Z { 2023-01-11T21:05:10.4876675Z #pragma omp for 2023-01-11T21:05:10.4876755Z for(long i0=0; i0<4; i0+=1) 2023-01-11T21:05:10.4876817Z { 2023-01-11T21:05:10.4876953Z auto tmp0 = at::vec::Vectorized::loadu(in_ptr0 + 16*i0); 2023-01-11T21:05:10.4877073Z auto tmp1 = at::vec::Vectorized(static_cast(3)); 2023-01-11T21:05:10.4877158Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:05:10.4877290Z auto tmp3 = at::vec::Vectorized(static_cast(0.0)); 2023-01-11T21:05:10.4877397Z auto tmp4 = at::vec::maximum(tmp2, tmp3); 2023-01-11T21:05:10.4877530Z auto tmp5 = at::vec::Vectorized(static_cast(6.0)); 2023-01-11T21:05:10.4877638Z auto tmp6 = at::vec::minimum(tmp4, tmp5); 2023-01-11T21:05:10.4877771Z auto tmp7 = at::vec::Vectorized(static_cast(6)); 2023-01-11T21:05:10.4877855Z auto tmp8 = tmp6 / tmp7; 2023-01-11T21:05:10.4877922Z auto tmp9 = tmp2 + tmp1; 2023-01-11T21:05:10.4878031Z auto tmp10 = at::vec::maximum(tmp9, tmp3); 2023-01-11T21:05:10.4878139Z auto tmp11 = at::vec::minimum(tmp10, tmp5); 2023-01-11T21:05:10.4878223Z auto tmp12 = tmp11 / tmp7; 2023-01-11T21:05:10.4878347Z auto tmp13 = tmp0 - tmp1; 2023-01-11T21:05:10.4878430Z auto tmp14 = tmp13 + tmp1; 2023-01-11T21:05:10.4878537Z auto tmp15 = at::vec::maximum(tmp14, tmp3); 2023-01-11T21:05:10.4878641Z auto tmp16 = at::vec::minimum(tmp15, tmp5); 2023-01-11T21:05:10.4878711Z auto tmp17 = tmp16 / tmp7; 2023-01-11T21:05:10.4878801Z tmp8.store(out_ptr0 + 16*i0); 2023-01-11T21:05:10.4878894Z tmp12.store(out_ptr1 + 16*i0); 2023-01-11T21:05:10.4878984Z tmp17.store(out_ptr2 + 16*i0); 2023-01-11T21:05:10.4879076Z } 2023-01-11T21:05:10.4879171Z #pragma omp for simd simdlen(8) 2023-01-11T21:05:10.4879252Z for(long i0=64; i0<64; i0+=1) 2023-01-11T21:05:10.4879300Z { 2023-01-11T21:05:10.4879385Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:05:10.4879484Z auto tmp1 = static_cast(3); 2023-01-11T21:05:10.4879566Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:05:10.4879665Z auto tmp3 = static_cast(0.0); 2023-01-11T21:05:10.4879787Z auto tmp4 = (tmp3 != tmp3) ? tmp3 : std::max(tmp2, tmp3); 2023-01-11T21:05:10.4879884Z auto tmp5 = static_cast(6.0); 2023-01-11T21:05:10.4879992Z auto tmp6 = (tmp5 != tmp5) ? tmp5 : std::min(tmp4, tmp5); 2023-01-11T21:05:10.4880089Z auto tmp7 = static_cast(6); 2023-01-11T21:05:10.4880171Z auto tmp8 = tmp6 / tmp7; 2023-01-11T21:05:10.4880253Z auto tmp9 = tmp2 + tmp1; 2023-01-11T21:05:10.4880374Z auto tmp10 = (tmp3 != tmp3) ? tmp3 : std::max(tmp9, tmp3); 2023-01-11T21:05:10.4880495Z auto tmp11 = (tmp5 != tmp5) ? tmp5 : std::min(tmp10, tmp5); 2023-01-11T21:05:10.4880741Z auto tmp12 = tmp11 / tmp7; 2023-01-11T21:05:10.4880874Z auto tmp13 = tmp0 - tmp1; 2023-01-11T21:05:10.4880943Z auto tmp14 = tmp13 + tmp1; 2023-01-11T21:05:10.4881065Z auto tmp15 = (tmp3 != tmp3) ? tmp3 : std::max(tmp14, tmp3); 2023-01-11T21:05:10.4881186Z auto tmp16 = (tmp5 != tmp5) ? tmp5 : std::min(tmp15, tmp5); 2023-01-11T21:05:10.4881269Z auto tmp17 = tmp16 / tmp7; 2023-01-11T21:05:10.4881349Z out_ptr0[i0] = tmp8; 2023-01-11T21:05:10.4881431Z out_ptr1[i0] = tmp12; 2023-01-11T21:05:10.4881508Z out_ptr2[i0] = tmp17; 2023-01-11T21:05:10.4881556Z } 2023-01-11T21:05:10.4881618Z } 2023-01-11T21:05:10.4881678Z } 2023-01-11T21:05:10.4881756Z ''') 2023-01-11T21:05:10.4881764Z 2023-01-11T21:05:10.4881768Z 2023-01-11T21:05:10.4881857Z async_compile.wait(globals()) 2023-01-11T21:05:10.4881929Z del async_compile 2023-01-11T21:05:10.4881934Z 2023-01-11T21:05:10.4882004Z def call(args): 2023-01-11T21:05:10.4882062Z arg0_1, = args 2023-01-11T21:05:10.4882134Z args.clear() 2023-01-11T21:05:10.4882330Z buf0 = empty_strided((64, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4882522Z buf1 = empty_strided((64, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4882709Z buf2 = empty_strided((64, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4882901Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(buf0.data_ptr()), c_void_p(buf1.data_ptr()), c_void_p(buf2.data_ptr())) 2023-01-11T21:05:10.4882970Z del arg0_1 2023-01-11T21:05:10.4883051Z return (buf0, buf1, buf2, ) 2023-01-11T21:05:10.4883055Z 2023-01-11T21:05:10.4883059Z 2023-01-11T21:05:10.4883121Z if __name__ == "__main__": 2023-01-11T21:05:10.4883238Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.4883358Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.4883550Z arg0_1 = rand_strided((64, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4883659Z print_performance(lambda: call([arg0_1])) 2023-01-11T21:05:10.4883663Z 2023-01-11T21:05:10.4883728Z ok (2.840s) 2023-01-11T21:05:10.4884169Z test_hardswish_cpu (__main__.CpuTests) ... inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.4884295Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.4884551Z [2023-01-11 20:51:38,859] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 203 2023-01-11T21:05:10.4884865Z [2023-01-11 20:51:41,650] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 203 2023-01-11T21:05:10.4884882Z 2023-01-11T21:05:10.4884962Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.4885036Z import torch 2023-01-11T21:05:10.4885109Z import random 2023-01-11T21:05:10.4885224Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.4885344Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.4885349Z 2023-01-11T21:05:10.4885427Z aten = torch.ops.aten 2023-01-11T21:05:10.4885561Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.4885638Z async_compile = AsyncCompile() 2023-01-11T21:05:10.4885643Z 2023-01-11T21:05:10.4885662Z 2023-01-11T21:05:10.4885780Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.4885984Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.4886102Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:05:10.4886205Z float* __restrict__ out_ptr0, 2023-01-11T21:05:10.4886302Z float* __restrict__ out_ptr1, 2023-01-11T21:05:10.4886447Z float* __restrict__ out_ptr2) 2023-01-11T21:05:10.4886509Z { 2023-01-11T21:05:10.4886593Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.4886653Z { 2023-01-11T21:05:10.4886728Z #pragma omp for 2023-01-11T21:05:10.4886809Z for(long i0=0; i0<4; i0+=1) 2023-01-11T21:05:10.4886870Z { 2023-01-11T21:05:10.4887002Z auto tmp0 = at::vec::Vectorized::loadu(in_ptr0 + 16*i0); 2023-01-11T21:05:10.4887135Z auto tmp1 = at::vec::Vectorized(static_cast(3)); 2023-01-11T21:05:10.4887205Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:05:10.4887337Z auto tmp3 = at::vec::Vectorized(static_cast(0.0)); 2023-01-11T21:05:10.4887444Z auto tmp4 = at::vec::maximum(tmp2, tmp3); 2023-01-11T21:05:10.4887580Z auto tmp5 = at::vec::Vectorized(static_cast(6.0)); 2023-01-11T21:05:10.4887686Z auto tmp6 = at::vec::minimum(tmp4, tmp5); 2023-01-11T21:05:10.4887769Z auto tmp7 = tmp0 * tmp6; 2023-01-11T21:05:10.4887899Z auto tmp8 = at::vec::Vectorized(static_cast(6)); 2023-01-11T21:05:10.4887982Z auto tmp9 = tmp7 / tmp8; 2023-01-11T21:05:10.4888050Z auto tmp10 = tmp2 + tmp1; 2023-01-11T21:05:10.4888158Z auto tmp11 = at::vec::maximum(tmp10, tmp3); 2023-01-11T21:05:10.4888266Z auto tmp12 = at::vec::minimum(tmp11, tmp5); 2023-01-11T21:05:10.4888351Z auto tmp13 = tmp2 * tmp12; 2023-01-11T21:05:10.4888434Z auto tmp14 = tmp13 / tmp8; 2023-01-11T21:05:10.4888560Z auto tmp15 = tmp0 - tmp1; 2023-01-11T21:05:10.4888643Z auto tmp16 = tmp15 + tmp1; 2023-01-11T21:05:10.4888736Z auto tmp17 = at::vec::maximum(tmp16, tmp3); 2023-01-11T21:05:10.4888844Z auto tmp18 = at::vec::minimum(tmp17, tmp5); 2023-01-11T21:05:10.4888927Z auto tmp19 = tmp15 * tmp18; 2023-01-11T21:05:10.4889008Z auto tmp20 = tmp19 / tmp8; 2023-01-11T21:05:10.4889102Z tmp9.store(out_ptr0 + 16*i0); 2023-01-11T21:05:10.4889195Z tmp14.store(out_ptr1 + 16*i0); 2023-01-11T21:05:10.4889283Z tmp20.store(out_ptr2 + 16*i0); 2023-01-11T21:05:10.4889344Z } 2023-01-11T21:05:10.4889425Z #pragma omp for simd simdlen(8) 2023-01-11T21:05:10.4889505Z for(long i0=64; i0<64; i0+=1) 2023-01-11T21:05:10.4889565Z { 2023-01-11T21:05:10.4889648Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:05:10.4889745Z auto tmp1 = static_cast(3); 2023-01-11T21:05:10.4889825Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:05:10.4889912Z auto tmp3 = static_cast(0.0); 2023-01-11T21:05:10.4890032Z auto tmp4 = (tmp3 != tmp3) ? tmp3 : std::max(tmp2, tmp3); 2023-01-11T21:05:10.4890168Z auto tmp5 = static_cast(6.0); 2023-01-11T21:05:10.4890289Z auto tmp6 = (tmp5 != tmp5) ? tmp5 : std::min(tmp4, tmp5); 2023-01-11T21:05:10.4890373Z auto tmp7 = tmp0 * tmp6; 2023-01-11T21:05:10.4890471Z auto tmp8 = static_cast(6); 2023-01-11T21:05:10.4890552Z auto tmp9 = tmp7 / tmp8; 2023-01-11T21:05:10.4890634Z auto tmp10 = tmp2 + tmp1; 2023-01-11T21:05:10.4890743Z auto tmp11 = (tmp3 != tmp3) ? tmp3 : std::max(tmp10, tmp3); 2023-01-11T21:05:10.4890861Z auto tmp12 = (tmp5 != tmp5) ? tmp5 : std::min(tmp11, tmp5); 2023-01-11T21:05:10.4890943Z auto tmp13 = tmp2 * tmp12; 2023-01-11T21:05:10.4891025Z auto tmp14 = tmp13 / tmp8; 2023-01-11T21:05:10.4891148Z auto tmp15 = tmp0 - tmp1; 2023-01-11T21:05:10.4891229Z auto tmp16 = tmp15 + tmp1; 2023-01-11T21:05:10.4891347Z auto tmp17 = (tmp3 != tmp3) ? tmp3 : std::max(tmp16, tmp3); 2023-01-11T21:05:10.4891469Z auto tmp18 = (tmp5 != tmp5) ? tmp5 : std::min(tmp17, tmp5); 2023-01-11T21:05:10.4891540Z auto tmp19 = tmp15 * tmp18; 2023-01-11T21:05:10.4891649Z auto tmp20 = tmp19 / tmp8; 2023-01-11T21:05:10.4891728Z out_ptr0[i0] = tmp9; 2023-01-11T21:05:10.4891808Z out_ptr1[i0] = tmp14; 2023-01-11T21:05:10.4891884Z out_ptr2[i0] = tmp20; 2023-01-11T21:05:10.4891945Z } 2023-01-11T21:05:10.4892005Z } 2023-01-11T21:05:10.4892052Z } 2023-01-11T21:05:10.4892129Z ''') 2023-01-11T21:05:10.4892134Z 2023-01-11T21:05:10.4892138Z 2023-01-11T21:05:10.4892226Z async_compile.wait(globals()) 2023-01-11T21:05:10.4892297Z del async_compile 2023-01-11T21:05:10.4892302Z 2023-01-11T21:05:10.4892371Z def call(args): 2023-01-11T21:05:10.4892440Z arg0_1, = args 2023-01-11T21:05:10.4892510Z args.clear() 2023-01-11T21:05:10.4892690Z buf0 = empty_strided((64, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4892882Z buf1 = empty_strided((64, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4893066Z buf2 = empty_strided((64, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4893258Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(buf0.data_ptr()), c_void_p(buf1.data_ptr()), c_void_p(buf2.data_ptr())) 2023-01-11T21:05:10.4893326Z del arg0_1 2023-01-11T21:05:10.4893408Z return (buf0, buf1, buf2, ) 2023-01-11T21:05:10.4893413Z 2023-01-11T21:05:10.4893417Z 2023-01-11T21:05:10.4893491Z if __name__ == "__main__": 2023-01-11T21:05:10.4893605Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.4893714Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.4893906Z arg0_1 = rand_strided((64, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4894013Z print_performance(lambda: call([arg0_1])) 2023-01-11T21:05:10.4894017Z 2023-01-11T21:05:10.4894081Z ok (2.911s) 2023-01-11T21:05:10.4894527Z test_hardtanh_cpu (__main__.CpuTests) ... inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.4894653Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.4894911Z [2023-01-11 20:51:41,730] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 204 2023-01-11T21:05:10.4895174Z [2023-01-11 20:51:44,465] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 204 2023-01-11T21:05:10.4895179Z 2023-01-11T21:05:10.4895273Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.4895328Z import torch 2023-01-11T21:05:10.4895397Z import random 2023-01-11T21:05:10.4895509Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.4895660Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.4895665Z 2023-01-11T21:05:10.4895741Z aten = torch.ops.aten 2023-01-11T21:05:10.4895876Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.4895965Z async_compile = AsyncCompile() 2023-01-11T21:05:10.4895970Z 2023-01-11T21:05:10.4895974Z 2023-01-11T21:05:10.4896106Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.4896296Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.4896414Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:05:10.4896513Z float* __restrict__ out_ptr0, 2023-01-11T21:05:10.4896609Z float* __restrict__ out_ptr1, 2023-01-11T21:05:10.4896703Z float* __restrict__ out_ptr2) 2023-01-11T21:05:10.4896763Z { 2023-01-11T21:05:10.4896858Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.4896907Z { 2023-01-11T21:05:10.4896983Z #pragma omp for 2023-01-11T21:05:10.4897062Z for(long i0=0; i0<4; i0+=1) 2023-01-11T21:05:10.4897124Z { 2023-01-11T21:05:10.4897285Z auto tmp0 = at::vec::Vectorized::loadu(in_ptr0 + 16*i0); 2023-01-11T21:05:10.4897487Z auto tmp1 = at::vec::Vectorized(static_cast(-1.0)); 2023-01-11T21:05:10.4897594Z auto tmp2 = at::vec::maximum(tmp0, tmp1); 2023-01-11T21:05:10.4897724Z auto tmp3 = at::vec::Vectorized(static_cast(1.0)); 2023-01-11T21:05:10.4897817Z auto tmp4 = at::vec::minimum(tmp2, tmp3); 2023-01-11T21:05:10.4897947Z auto tmp5 = at::vec::Vectorized(static_cast(1)); 2023-01-11T21:05:10.4898031Z auto tmp6 = tmp0 + tmp5; 2023-01-11T21:05:10.4898137Z auto tmp7 = at::vec::maximum(tmp6, tmp1); 2023-01-11T21:05:10.4898237Z auto tmp8 = at::vec::minimum(tmp7, tmp3); 2023-01-11T21:05:10.4898357Z auto tmp9 = tmp0 - tmp5; 2023-01-11T21:05:10.4898539Z auto tmp10 = at::vec::maximum(tmp9, tmp1); 2023-01-11T21:05:10.4898661Z auto tmp11 = at::vec::minimum(tmp10, tmp3); 2023-01-11T21:05:10.4898743Z tmp4.store(out_ptr0 + 16*i0); 2023-01-11T21:05:10.4898836Z tmp8.store(out_ptr1 + 16*i0); 2023-01-11T21:05:10.4898933Z tmp11.store(out_ptr2 + 16*i0); 2023-01-11T21:05:10.4898995Z } 2023-01-11T21:05:10.4899089Z #pragma omp for simd simdlen(8) 2023-01-11T21:05:10.4899172Z for(long i0=64; i0<64; i0+=1) 2023-01-11T21:05:10.4899235Z { 2023-01-11T21:05:10.4899305Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:05:10.4899456Z auto tmp1 = static_cast(-1.0); 2023-01-11T21:05:10.4899578Z auto tmp2 = (tmp1 != tmp1) ? tmp1 : std::max(tmp0, tmp1); 2023-01-11T21:05:10.4899680Z auto tmp3 = static_cast(1.0); 2023-01-11T21:05:10.4899801Z auto tmp4 = (tmp3 != tmp3) ? tmp3 : std::min(tmp2, tmp3); 2023-01-11T21:05:10.4899903Z auto tmp5 = static_cast(1); 2023-01-11T21:05:10.4899991Z auto tmp6 = tmp0 + tmp5; 2023-01-11T21:05:10.4900112Z auto tmp7 = (tmp1 != tmp1) ? tmp1 : std::max(tmp6, tmp1); 2023-01-11T21:05:10.4900216Z auto tmp8 = (tmp3 != tmp3) ? tmp3 : std::min(tmp7, tmp3); 2023-01-11T21:05:10.4900337Z auto tmp9 = tmp0 - tmp5; 2023-01-11T21:05:10.4900457Z auto tmp10 = (tmp1 != tmp1) ? tmp1 : std::max(tmp9, tmp1); 2023-01-11T21:05:10.4900577Z auto tmp11 = (tmp3 != tmp3) ? tmp3 : std::min(tmp10, tmp3); 2023-01-11T21:05:10.4900657Z out_ptr0[i0] = tmp4; 2023-01-11T21:05:10.4900733Z out_ptr1[i0] = tmp8; 2023-01-11T21:05:10.4900810Z out_ptr2[i0] = tmp11; 2023-01-11T21:05:10.4900859Z } 2023-01-11T21:05:10.4900919Z } 2023-01-11T21:05:10.4900979Z } 2023-01-11T21:05:10.4901057Z ''') 2023-01-11T21:05:10.4901062Z 2023-01-11T21:05:10.4901066Z 2023-01-11T21:05:10.4901192Z async_compile.wait(globals()) 2023-01-11T21:05:10.4901263Z del async_compile 2023-01-11T21:05:10.4901268Z 2023-01-11T21:05:10.4901338Z def call(args): 2023-01-11T21:05:10.4901394Z arg0_1, = args 2023-01-11T21:05:10.4901466Z args.clear() 2023-01-11T21:05:10.4901663Z buf0 = empty_strided((64, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4901854Z buf1 = empty_strided((64, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4902041Z buf2 = empty_strided((64, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4902228Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(buf0.data_ptr()), c_void_p(buf1.data_ptr()), c_void_p(buf2.data_ptr())) 2023-01-11T21:05:10.4902296Z del arg0_1 2023-01-11T21:05:10.4902378Z return (buf0, buf1, buf2, ) 2023-01-11T21:05:10.4902384Z 2023-01-11T21:05:10.4902388Z 2023-01-11T21:05:10.4902449Z if __name__ == "__main__": 2023-01-11T21:05:10.4902564Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.4902690Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.4902882Z arg0_1 = rand_strided((64, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4903024Z print_performance(lambda: call([arg0_1])) 2023-01-11T21:05:10.4903030Z 2023-01-11T21:05:10.4903097Z ok (2.815s) 2023-01-11T21:05:10.4903545Z test_horizonal_fusion1_cpu (__main__.CpuTests) ... inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.4903672Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.4903931Z [2023-01-11 20:51:44,509] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 205 2023-01-11T21:05:10.4904193Z [2023-01-11 20:51:47,264] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 205 2023-01-11T21:05:10.4904201Z 2023-01-11T21:05:10.4904280Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.4904353Z import torch 2023-01-11T21:05:10.4904424Z import random 2023-01-11T21:05:10.4904539Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.4904658Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.4904663Z 2023-01-11T21:05:10.4904739Z aten = torch.ops.aten 2023-01-11T21:05:10.4904873Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.4904950Z async_compile = AsyncCompile() 2023-01-11T21:05:10.4904955Z 2023-01-11T21:05:10.4904973Z 2023-01-11T21:05:10.4905093Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.4905295Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.4905414Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:05:10.4905519Z const float* __restrict__ in_ptr1, 2023-01-11T21:05:10.4905619Z const float* __restrict__ in_ptr2, 2023-01-11T21:05:10.4905720Z float* __restrict__ out_ptr0, 2023-01-11T21:05:10.4905816Z float* __restrict__ out_ptr1, 2023-01-11T21:05:10.4905897Z float* __restrict__ out_ptr2) 2023-01-11T21:05:10.4905956Z { 2023-01-11T21:05:10.4906052Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.4906113Z { 2023-01-11T21:05:10.4906188Z #pragma omp for 2023-01-11T21:05:10.4906270Z for(long i0=0; i0<128; i0+=1) 2023-01-11T21:05:10.4906331Z { 2023-01-11T21:05:10.4906450Z auto tmp0 = at::vec::Vectorized::loadu(in_ptr0 + 16*i0); 2023-01-11T21:05:10.4906580Z auto tmp1 = at::vec::Vectorized::loadu(in_ptr1 + 16*i0); 2023-01-11T21:05:10.4906665Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:05:10.4906755Z tmp2.store(out_ptr0 + 16*i0); 2023-01-11T21:05:10.4906847Z } 2023-01-11T21:05:10.4906941Z #pragma omp for simd simdlen(8) 2023-01-11T21:05:10.4907027Z for(long i0=2048; i0<2048; i0+=1) 2023-01-11T21:05:10.4907076Z { 2023-01-11T21:05:10.4907158Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:05:10.4907238Z auto tmp1 = in_ptr1[i0]; 2023-01-11T21:05:10.4907319Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:05:10.4907399Z out_ptr0[i0] = tmp2; 2023-01-11T21:05:10.4907460Z } 2023-01-11T21:05:10.4907534Z #pragma omp for 2023-01-11T21:05:10.4907600Z for(long i0=0; i0<8; i0+=1) 2023-01-11T21:05:10.4907660Z { 2023-01-11T21:05:10.4907738Z #pragma GCC ivdep 2023-01-11T21:05:10.4907821Z for(long i1=0; i1<16; i1+=1) 2023-01-11T21:05:10.4907883Z { 2023-01-11T21:05:10.4907971Z for(long i2=0; i2<1; i2+=1) 2023-01-11T21:05:10.4908034Z { 2023-01-11T21:05:10.4908174Z auto tmp0 = at::vec::Vectorized::loadu(in_ptr0 + (16*i1) + (16*i2) + (256*i0)); 2023-01-11T21:05:10.4908299Z auto tmp1 = at::vec::Vectorized(in_ptr2[i1]); 2023-01-11T21:05:10.4908474Z auto tmp3 = at::vec::Vectorized::loadu(in_ptr1 + (16*i1) + (16*i2) + (256*i0)); 2023-01-11T21:05:10.4908613Z auto tmp2 = tmp0 - tmp1; 2023-01-11T21:05:10.4908703Z auto tmp4 = tmp3 * tmp1; 2023-01-11T21:05:10.4908813Z tmp2.store(out_ptr1 + (16*i1) + (16*i2) + (256*i0)); 2023-01-11T21:05:10.4908921Z tmp4.store(out_ptr2 + (16*i1) + (16*i2) + (256*i0)); 2023-01-11T21:05:10.4908985Z } 2023-01-11T21:05:10.4909067Z #pragma omp simd simdlen(8) 2023-01-11T21:05:10.4909156Z for(long i2=16; i2<16; i2+=1) 2023-01-11T21:05:10.4909219Z { 2023-01-11T21:05:10.4909323Z auto tmp0 = in_ptr0[i2 + (16*i1) + (256*i0)]; 2023-01-11T21:05:10.4909414Z auto tmp1 = in_ptr2[i1]; 2023-01-11T21:05:10.4909517Z auto tmp3 = in_ptr1[i2 + (16*i1) + (256*i0)]; 2023-01-11T21:05:10.4909653Z auto tmp2 = tmp0 - tmp1; 2023-01-11T21:05:10.4909728Z auto tmp4 = tmp3 * tmp1; 2023-01-11T21:05:10.4909827Z out_ptr1[i2 + (16*i1) + (256*i0)] = tmp2; 2023-01-11T21:05:10.4909926Z out_ptr2[i2 + (16*i1) + (256*i0)] = tmp4; 2023-01-11T21:05:10.4909992Z } 2023-01-11T21:05:10.4910054Z } 2023-01-11T21:05:10.4910115Z } 2023-01-11T21:05:10.4910175Z } 2023-01-11T21:05:10.4910221Z } 2023-01-11T21:05:10.4910299Z ''') 2023-01-11T21:05:10.4910305Z 2023-01-11T21:05:10.4910309Z 2023-01-11T21:05:10.4910397Z async_compile.wait(globals()) 2023-01-11T21:05:10.4910469Z del async_compile 2023-01-11T21:05:10.4910474Z 2023-01-11T21:05:10.4910542Z def call(args): 2023-01-11T21:05:10.4910622Z arg0_1, arg1_1, arg2_1 = args 2023-01-11T21:05:10.4910694Z args.clear() 2023-01-11T21:05:10.4910893Z buf0 = empty_strided((8, 16, 16), (256, 16, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4911104Z buf1 = empty_strided((8, 16, 16), (256, 16, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4911307Z buf2 = empty_strided((8, 16, 16), (256, 16, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4911543Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(arg1_1.data_ptr()), c_void_p(arg2_1.data_ptr()), c_void_p(buf0.data_ptr()), c_void_p(buf1.data_ptr()), c_void_p(buf2.data_ptr())) 2023-01-11T21:05:10.4911611Z del arg0_1 2023-01-11T21:05:10.4911676Z del arg1_1 2023-01-11T21:05:10.4911738Z del arg2_1 2023-01-11T21:05:10.4911818Z return (buf0, buf1, buf2, ) 2023-01-11T21:05:10.4911825Z 2023-01-11T21:05:10.4911829Z 2023-01-11T21:05:10.4911891Z if __name__ == "__main__": 2023-01-11T21:05:10.4912005Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.4912163Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.4912371Z arg0_1 = rand_strided((8, 16, 16), (256, 16, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4912580Z arg1_1 = rand_strided((8, 16, 16), (256, 16, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4912786Z arg2_1 = rand_strided((1, 16, 1), (16, 1, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4912905Z print_performance(lambda: call([arg0_1, arg1_1, arg2_1])) 2023-01-11T21:05:10.4912910Z 2023-01-11T21:05:10.4912976Z ok (2.806s) 2023-01-11T21:05:10.4913421Z test_horizonal_fusion2_cpu (__main__.CpuTests) ... inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.4913548Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.4913792Z [2023-01-11 20:51:47,317] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 206 2023-01-11T21:05:10.4914085Z [2023-01-11 20:51:50,059] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 206 2023-01-11T21:05:10.4914091Z 2023-01-11T21:05:10.4914184Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.4914252Z import torch 2023-01-11T21:05:10.4914320Z import random 2023-01-11T21:05:10.4914435Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.4914556Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.4914561Z 2023-01-11T21:05:10.4914638Z aten = torch.ops.aten 2023-01-11T21:05:10.4914758Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.4914850Z async_compile = AsyncCompile() 2023-01-11T21:05:10.4914855Z 2023-01-11T21:05:10.4914860Z 2023-01-11T21:05:10.4914995Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.4915197Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.4915318Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:05:10.4915422Z const float* __restrict__ in_ptr1, 2023-01-11T21:05:10.4915522Z const float* __restrict__ in_ptr2, 2023-01-11T21:05:10.4915619Z float* __restrict__ out_ptr0, 2023-01-11T21:05:10.4915703Z float* __restrict__ out_ptr1, 2023-01-11T21:05:10.4915796Z float* __restrict__ out_ptr2) 2023-01-11T21:05:10.4915855Z { 2023-01-11T21:05:10.4915951Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.4916011Z { 2023-01-11T21:05:10.4916086Z #pragma omp for 2023-01-11T21:05:10.4916153Z for(long i0=0; i0<64; i0+=1) 2023-01-11T21:05:10.4916214Z { 2023-01-11T21:05:10.4916344Z auto tmp0 = at::vec::Vectorized::loadu(in_ptr0 + 16*i0); 2023-01-11T21:05:10.4916481Z auto tmp1 = at::vec::Vectorized(static_cast(1)); 2023-01-11T21:05:10.4916564Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:05:10.4916658Z tmp2.store(out_ptr0 + 16*i0); 2023-01-11T21:05:10.4916719Z } 2023-01-11T21:05:10.4916812Z #pragma omp for simd simdlen(8) 2023-01-11T21:05:10.4916884Z for(long i0=1024; i0<1024; i0+=1) 2023-01-11T21:05:10.4916944Z { 2023-01-11T21:05:10.4917027Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:05:10.4917124Z auto tmp1 = static_cast(1); 2023-01-11T21:05:10.4917206Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:05:10.4917284Z out_ptr0[i0] = tmp2; 2023-01-11T21:05:10.4917332Z } 2023-01-11T21:05:10.4917407Z #pragma omp for 2023-01-11T21:05:10.4917486Z for(long i0=0; i0<8; i0+=1) 2023-01-11T21:05:10.4917547Z { 2023-01-11T21:05:10.4917676Z auto tmp0 = at::vec::Vectorized::loadu(in_ptr1 + 16*i0); 2023-01-11T21:05:10.4917838Z auto tmp1 = at::vec::Vectorized(static_cast(2)); 2023-01-11T21:05:10.4917920Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:05:10.4918012Z tmp2.store(out_ptr1 + 16*i0); 2023-01-11T21:05:10.4918061Z } 2023-01-11T21:05:10.4918153Z #pragma omp for simd simdlen(8) 2023-01-11T21:05:10.4918234Z for(long i0=128; i0<128; i0+=1) 2023-01-11T21:05:10.4918294Z { 2023-01-11T21:05:10.4918376Z auto tmp0 = in_ptr1[i0]; 2023-01-11T21:05:10.4918474Z auto tmp1 = static_cast(2); 2023-01-11T21:05:10.4918555Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:05:10.4918620Z out_ptr1[i0] = tmp2; 2023-01-11T21:05:10.4918680Z } 2023-01-11T21:05:10.4918753Z #pragma omp for 2023-01-11T21:05:10.4918831Z for(long i0=0; i0<8; i0+=1) 2023-01-11T21:05:10.4918891Z { 2023-01-11T21:05:10.4919018Z auto tmp0 = at::vec::Vectorized::loadu(in_ptr2 + 16*i0); 2023-01-11T21:05:10.4919150Z auto tmp1 = at::vec::Vectorized(static_cast(3)); 2023-01-11T21:05:10.4919219Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:05:10.4919334Z tmp2.store(out_ptr2 + 16*i0); 2023-01-11T21:05:10.4919396Z } 2023-01-11T21:05:10.4919490Z #pragma omp for simd simdlen(8) 2023-01-11T21:05:10.4919569Z for(long i0=128; i0<128; i0+=1) 2023-01-11T21:05:10.4919629Z { 2023-01-11T21:05:10.4919711Z auto tmp0 = in_ptr2[i0]; 2023-01-11T21:05:10.4919795Z auto tmp1 = static_cast(3); 2023-01-11T21:05:10.4919874Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:05:10.4919952Z out_ptr2[i0] = tmp2; 2023-01-11T21:05:10.4920012Z } 2023-01-11T21:05:10.4920072Z } 2023-01-11T21:05:10.4920130Z } 2023-01-11T21:05:10.4920197Z ''') 2023-01-11T21:05:10.4920202Z 2023-01-11T21:05:10.4920219Z 2023-01-11T21:05:10.4920293Z async_compile.wait(globals()) 2023-01-11T21:05:10.4920366Z del async_compile 2023-01-11T21:05:10.4920372Z 2023-01-11T21:05:10.4920440Z def call(args): 2023-01-11T21:05:10.4920522Z arg0_1, arg1_1, arg2_1 = args 2023-01-11T21:05:10.4920759Z args.clear() 2023-01-11T21:05:10.4920977Z buf0 = empty_strided((8, 16, 8), (128, 8, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4921173Z buf1 = empty_strided((8, 16), (16, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4921353Z buf2 = empty_strided((16, 8), (8, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4921589Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(arg1_1.data_ptr()), c_void_p(arg2_1.data_ptr()), c_void_p(buf0.data_ptr()), c_void_p(buf1.data_ptr()), c_void_p(buf2.data_ptr())) 2023-01-11T21:05:10.4921658Z del arg0_1 2023-01-11T21:05:10.4921724Z del arg1_1 2023-01-11T21:05:10.4921791Z del arg2_1 2023-01-11T21:05:10.4921873Z return (buf0, buf1, buf2, ) 2023-01-11T21:05:10.4921878Z 2023-01-11T21:05:10.4921886Z 2023-01-11T21:05:10.4921964Z if __name__ == "__main__": 2023-01-11T21:05:10.4922082Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.4922191Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.4922400Z arg0_1 = rand_strided((8, 16, 8), (128, 8, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4922597Z arg1_1 = rand_strided((8, 16), (16, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4922791Z arg2_1 = rand_strided((16, 8), (8, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4922913Z print_performance(lambda: call([arg0_1, arg1_1, arg2_1])) 2023-01-11T21:05:10.4922919Z 2023-01-11T21:05:10.4922985Z ok (2.794s) 2023-01-11T21:05:10.4923424Z test_index1_cpu (__main__.CpuTests) ... inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.4923603Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.4923866Z [2023-01-11 20:51:50,174] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 207 2023-01-11T21:05:10.4924115Z [2023-01-11 20:51:52,899] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 207 2023-01-11T21:05:10.4924513Z inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.4924639Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.4924894Z [2023-01-11 20:51:53,009] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 208 2023-01-11T21:05:10.4925159Z [2023-01-11 20:51:55,778] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 208 2023-01-11T21:05:10.4925164Z 2023-01-11T21:05:10.4925312Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.4925383Z import torch 2023-01-11T21:05:10.4925451Z import random 2023-01-11T21:05:10.4925567Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.4925674Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.4925692Z 2023-01-11T21:05:10.4925755Z aten = torch.ops.aten 2023-01-11T21:05:10.4925887Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.4925978Z async_compile = AsyncCompile() 2023-01-11T21:05:10.4925983Z 2023-01-11T21:05:10.4925988Z 2023-01-11T21:05:10.4926121Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.4926327Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.4926450Z extern "C" void kernel(const long* __restrict__ in_ptr0, 2023-01-11T21:05:10.4926554Z const long* __restrict__ in_ptr1, 2023-01-11T21:05:10.4926646Z const float* __restrict__ in_ptr2, 2023-01-11T21:05:10.4926746Z float* __restrict__ out_ptr0) 2023-01-11T21:05:10.4926806Z { 2023-01-11T21:05:10.4926905Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.4926967Z { 2023-01-11T21:05:10.4927044Z #pragma omp for 2023-01-11T21:05:10.4927126Z for(long i0=0; i0<4; i0+=1) 2023-01-11T21:05:10.4927174Z { 2023-01-11T21:05:10.4927254Z #pragma GCC ivdep 2023-01-11T21:05:10.4927340Z for(long i1=0; i1<12; i1+=1) 2023-01-11T21:05:10.4927403Z { 2023-01-11T21:05:10.4927467Z { 2023-01-11T21:05:10.4927533Z { 2023-01-11T21:05:10.4927628Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:05:10.4927710Z auto tmp1 = in_ptr1[i0]; 2023-01-11T21:05:10.4927821Z auto tmp2 = in_ptr2[i1 + (12*tmp1) + (96*tmp0)]; 2023-01-11T21:05:10.4927916Z out_ptr0[i1 + (12*i0)] = tmp2; 2023-01-11T21:05:10.4927983Z } 2023-01-11T21:05:10.4928046Z } 2023-01-11T21:05:10.4928108Z } 2023-01-11T21:05:10.4928170Z } 2023-01-11T21:05:10.4928217Z } 2023-01-11T21:05:10.4928276Z } 2023-01-11T21:05:10.4928352Z ''') 2023-01-11T21:05:10.4928357Z 2023-01-11T21:05:10.4928361Z 2023-01-11T21:05:10.4928449Z async_compile.wait(globals()) 2023-01-11T21:05:10.4928519Z del async_compile 2023-01-11T21:05:10.4928524Z 2023-01-11T21:05:10.4928592Z def call(args): 2023-01-11T21:05:10.4928672Z arg0_1, arg1_1, arg2_1 = args 2023-01-11T21:05:10.4928729Z args.clear() 2023-01-11T21:05:10.4928929Z buf0 = empty_strided((4, 12), (12, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4929117Z kernel_cpp_0(c_void_p(arg1_1.data_ptr()), c_void_p(arg2_1.data_ptr()), c_void_p(arg0_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:05:10.4929216Z del arg0_1 2023-01-11T21:05:10.4929281Z del arg1_1 2023-01-11T21:05:10.4929345Z del arg2_1 2023-01-11T21:05:10.4929417Z return (buf0, ) 2023-01-11T21:05:10.4929422Z 2023-01-11T21:05:10.4929426Z 2023-01-11T21:05:10.4929499Z if __name__ == "__main__": 2023-01-11T21:05:10.4929600Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.4929724Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.4929930Z arg0_1 = rand_strided((8, 8, 12), (96, 12, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4930116Z arg1_1 = rand_strided((4, ), (1, ), device='cpu', dtype=torch.int64) 2023-01-11T21:05:10.4930299Z arg2_1 = rand_strided((4, ), (1, ), device='cpu', dtype=torch.int64) 2023-01-11T21:05:10.4930420Z print_performance(lambda: call([arg0_1, arg1_1, arg2_1])) 2023-01-11T21:05:10.4930425Z 2023-01-11T21:05:10.4930431Z 2023-01-11T21:05:10.4930524Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.4930592Z import torch 2023-01-11T21:05:10.4930648Z import random 2023-01-11T21:05:10.4930763Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.4930918Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.4930924Z 2023-01-11T21:05:10.4931004Z aten = torch.ops.aten 2023-01-11T21:05:10.4931139Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.4931231Z async_compile = AsyncCompile() 2023-01-11T21:05:10.4931235Z 2023-01-11T21:05:10.4931239Z 2023-01-11T21:05:10.4931370Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.4931575Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.4931683Z extern "C" void kernel(const long* __restrict__ in_ptr0, 2023-01-11T21:05:10.4931787Z const long* __restrict__ in_ptr1, 2023-01-11T21:05:10.4931889Z const float* __restrict__ in_ptr2, 2023-01-11T21:05:10.4931989Z float* __restrict__ out_ptr0) 2023-01-11T21:05:10.4932050Z { 2023-01-11T21:05:10.4932148Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.4932212Z { 2023-01-11T21:05:10.4932275Z #pragma omp for 2023-01-11T21:05:10.4932357Z for(long i0=0; i0<4; i0+=1) 2023-01-11T21:05:10.4932419Z { 2023-01-11T21:05:10.4932499Z #pragma GCC ivdep 2023-01-11T21:05:10.4932581Z for(long i1=0; i1<4; i1+=1) 2023-01-11T21:05:10.4932643Z { 2023-01-11T21:05:10.4932710Z #pragma GCC ivdep 2023-01-11T21:05:10.4932803Z for(long i2=0; i2<12; i2+=1) 2023-01-11T21:05:10.4932866Z { 2023-01-11T21:05:10.4932930Z { 2023-01-11T21:05:10.4932997Z { 2023-01-11T21:05:10.4933092Z auto tmp0 = in_ptr0[i1]; 2023-01-11T21:05:10.4933183Z auto tmp1 = in_ptr1[i0]; 2023-01-11T21:05:10.4933285Z auto tmp2 = in_ptr2[i2 + (12*tmp1) + (96*tmp0)]; 2023-01-11T21:05:10.4933389Z out_ptr0[i2 + (12*i1) + (48*i0)] = tmp2; 2023-01-11T21:05:10.4933458Z } 2023-01-11T21:05:10.4933523Z } 2023-01-11T21:05:10.4933587Z } 2023-01-11T21:05:10.4933649Z } 2023-01-11T21:05:10.4933710Z } 2023-01-11T21:05:10.4933757Z } 2023-01-11T21:05:10.4933816Z } 2023-01-11T21:05:10.4933893Z ''') 2023-01-11T21:05:10.4933898Z 2023-01-11T21:05:10.4933902Z 2023-01-11T21:05:10.4933992Z async_compile.wait(globals()) 2023-01-11T21:05:10.4934062Z del async_compile 2023-01-11T21:05:10.4934067Z 2023-01-11T21:05:10.4934137Z def call(args): 2023-01-11T21:05:10.4934218Z arg0_1, arg1_1, arg2_1 = args 2023-01-11T21:05:10.4934274Z args.clear() 2023-01-11T21:05:10.4934478Z buf0 = empty_strided((4, 4, 12), (48, 12, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4934696Z kernel_cpp_0(c_void_p(arg1_1.data_ptr()), c_void_p(arg2_1.data_ptr()), c_void_p(arg0_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:05:10.4934763Z del arg0_1 2023-01-11T21:05:10.4934830Z del arg1_1 2023-01-11T21:05:10.4934896Z del arg2_1 2023-01-11T21:05:10.4934967Z return (buf0, ) 2023-01-11T21:05:10.4934972Z 2023-01-11T21:05:10.4934976Z 2023-01-11T21:05:10.4935051Z if __name__ == "__main__": 2023-01-11T21:05:10.4935150Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.4935274Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.4935479Z arg0_1 = rand_strided((8, 8, 12), (96, 12, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4935668Z arg1_1 = rand_strided((1, 4), (4, 1), device='cpu', dtype=torch.int64) 2023-01-11T21:05:10.4935859Z arg2_1 = rand_strided((4, 1), (1, 1), device='cpu', dtype=torch.int64) 2023-01-11T21:05:10.4935980Z print_performance(lambda: call([arg0_1, arg1_1, arg2_1])) 2023-01-11T21:05:10.4935988Z 2023-01-11T21:05:10.4936054Z ok (5.713s) 2023-01-11T21:05:10.4936519Z test_index2_cpu (__main__.CpuTests) ... inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.4936645Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.4936891Z [2023-01-11 20:51:55,959] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 209 2023-01-11T21:05:10.4937154Z [2023-01-11 20:51:58,667] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 209 2023-01-11T21:05:10.4937160Z 2023-01-11T21:05:10.4937253Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.4937322Z import torch 2023-01-11T21:05:10.4937395Z import random 2023-01-11T21:05:10.4937511Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.4937631Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.4937636Z 2023-01-11T21:05:10.4937715Z aten = torch.ops.aten 2023-01-11T21:05:10.4937834Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.4937924Z async_compile = AsyncCompile() 2023-01-11T21:05:10.4937929Z 2023-01-11T21:05:10.4937934Z 2023-01-11T21:05:10.4938065Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.4938270Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.4938386Z extern "C" void kernel(const long* __restrict__ in_ptr0, 2023-01-11T21:05:10.4938577Z const float* __restrict__ in_ptr1, 2023-01-11T21:05:10.4938682Z float* __restrict__ out_ptr0, 2023-01-11T21:05:10.4938777Z float* __restrict__ out_ptr1) 2023-01-11T21:05:10.4938826Z { 2023-01-11T21:05:10.4938924Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.4938985Z { 2023-01-11T21:05:10.4939062Z #pragma omp for 2023-01-11T21:05:10.4939143Z for(long i0=0; i0<4; i0+=1) 2023-01-11T21:05:10.4939210Z { 2023-01-11T21:05:10.4939290Z #pragma GCC ivdep 2023-01-11T21:05:10.4939361Z for(long i1=0; i1<64; i1+=1) 2023-01-11T21:05:10.4939425Z { 2023-01-11T21:05:10.4939489Z { 2023-01-11T21:05:10.4939556Z { 2023-01-11T21:05:10.4939656Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:05:10.4939759Z auto tmp1 = in_ptr1[i1 + (64*tmp0)]; 2023-01-11T21:05:10.4939856Z out_ptr0[i1 + (64*i0)] = tmp1; 2023-01-11T21:05:10.4939908Z } 2023-01-11T21:05:10.4939973Z } 2023-01-11T21:05:10.4940034Z } 2023-01-11T21:05:10.4940093Z } 2023-01-11T21:05:10.4940169Z #pragma omp for 2023-01-11T21:05:10.4940283Z for(long i0=0; i0<8; i0+=1) 2023-01-11T21:05:10.4940331Z { 2023-01-11T21:05:10.4940409Z #pragma GCC ivdep 2023-01-11T21:05:10.4940489Z for(long i1=0; i1<4; i1+=1) 2023-01-11T21:05:10.4940553Z { 2023-01-11T21:05:10.4940631Z #pragma GCC ivdep 2023-01-11T21:05:10.4940718Z for(long i2=0; i2<8; i2+=1) 2023-01-11T21:05:10.4940781Z { 2023-01-11T21:05:10.4940832Z { 2023-01-11T21:05:10.4940901Z { 2023-01-11T21:05:10.4940996Z auto tmp0 = in_ptr0[i1]; 2023-01-11T21:05:10.4941105Z auto tmp1 = in_ptr1[i2 + (8*tmp0) + (64*i0)]; 2023-01-11T21:05:10.4941207Z out_ptr1[i2 + (8*i1) + (32*i0)] = tmp1; 2023-01-11T21:05:10.4941272Z } 2023-01-11T21:05:10.4941335Z } 2023-01-11T21:05:10.4941384Z } 2023-01-11T21:05:10.4941449Z } 2023-01-11T21:05:10.4941508Z } 2023-01-11T21:05:10.4941567Z } 2023-01-11T21:05:10.4941625Z } 2023-01-11T21:05:10.4941705Z ''') 2023-01-11T21:05:10.4941710Z 2023-01-11T21:05:10.4941715Z 2023-01-11T21:05:10.4941831Z async_compile.wait(globals()) 2023-01-11T21:05:10.4941890Z del async_compile 2023-01-11T21:05:10.4941894Z 2023-01-11T21:05:10.4941963Z def call(args): 2023-01-11T21:05:10.4942038Z arg0_1, arg1_1 = args 2023-01-11T21:05:10.4942107Z args.clear() 2023-01-11T21:05:10.4942319Z buf0 = empty_strided((1, 4, 8, 8), (256, 64, 8, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4942528Z buf1 = empty_strided((8, 1, 4, 8), (32, 32, 8, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4942716Z kernel_cpp_0(c_void_p(arg1_1.data_ptr()), c_void_p(arg0_1.data_ptr()), c_void_p(buf0.data_ptr()), c_void_p(buf1.data_ptr())) 2023-01-11T21:05:10.4942783Z del arg0_1 2023-01-11T21:05:10.4942835Z del arg1_1 2023-01-11T21:05:10.4942909Z return (buf0, buf1, ) 2023-01-11T21:05:10.4942916Z 2023-01-11T21:05:10.4942921Z 2023-01-11T21:05:10.4942995Z if __name__ == "__main__": 2023-01-11T21:05:10.4943107Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.4943232Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.4943438Z arg0_1 = rand_strided((8, 8, 8), (64, 8, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4943628Z arg1_1 = rand_strided((1, 4), (4, 1), device='cpu', dtype=torch.int64) 2023-01-11T21:05:10.4943728Z print_performance(lambda: call([arg0_1, arg1_1])) 2023-01-11T21:05:10.4943746Z 2023-01-11T21:05:10.4943799Z ok (2.890s) 2023-01-11T21:05:10.4944229Z test_index3_cpu (__main__.CpuTests) ... inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.4944356Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.4944616Z [2023-01-11 20:51:58,783] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 210 2023-01-11T21:05:10.4944832Z [2023-01-11 20:51:58,837] torch._inductor.ir: [WARNING] Using FallbackKernel: aten.index 2023-01-11T21:05:10.4945092Z [2023-01-11 20:51:58,842] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 210 2023-01-11T21:05:10.4945098Z 2023-01-11T21:05:10.4945190Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.4945260Z import torch 2023-01-11T21:05:10.4945329Z import random 2023-01-11T21:05:10.4945430Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.4945548Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.4945553Z 2023-01-11T21:05:10.4945631Z aten = torch.ops.aten 2023-01-11T21:05:10.4945764Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.4945885Z async_compile = AsyncCompile() 2023-01-11T21:05:10.4945890Z 2023-01-11T21:05:10.4945894Z 2023-01-11T21:05:10.4945980Z async_compile.wait(globals()) 2023-01-11T21:05:10.4946053Z del async_compile 2023-01-11T21:05:10.4946057Z 2023-01-11T21:05:10.4946125Z def call(args): 2023-01-11T21:05:10.4946193Z arg0_1, arg1_1, arg2_1 = args 2023-01-11T21:05:10.4946263Z args.clear() 2023-01-11T21:05:10.4946407Z buf0 = aten.index(as_strided(arg0_1, (3, 4, 1, 4, 3), (192, 48, 0, 12, 1)), [None, arg1_1, None, arg2_1]) 2023-01-11T21:05:10.4946472Z del arg0_1 2023-01-11T21:05:10.4946536Z del arg1_1 2023-01-11T21:05:10.4946599Z del arg2_1 2023-01-11T21:05:10.4946652Z buf1 = buf0 2023-01-11T21:05:10.4946756Z assert_size_stride(buf1, (3, 3, 1, 3), (9, 3, 3, 1)) 2023-01-11T21:05:10.4946818Z del buf0 2023-01-11T21:05:10.4954352Z return (buf1, ) 2023-01-11T21:05:10.4954364Z 2023-01-11T21:05:10.4954369Z 2023-01-11T21:05:10.4954467Z if __name__ == "__main__": 2023-01-11T21:05:10.4954594Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.4954722Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.4955059Z arg0_1 = rand_strided((3, 4, 4, 4, 3), (192, 48, 12, 3, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4955257Z arg1_1 = rand_strided((3, ), (1, ), device='cpu', dtype=torch.int64) 2023-01-11T21:05:10.4955449Z arg2_1 = rand_strided((3, ), (1, ), device='cpu', dtype=torch.int64) 2023-01-11T21:05:10.4955561Z print_performance(lambda: call([arg0_1, arg1_1, arg2_1])) 2023-01-11T21:05:10.4955580Z 2023-01-11T21:05:10.4955635Z ok (0.171s) 2023-01-11T21:05:10.4956080Z test_index_put1_cpu (__main__.CpuTests) ... inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.4956213Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.4956481Z [2023-01-11 20:51:59,781] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 211 2023-01-11T21:05:10.4956753Z [2023-01-11 20:52:02,537] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 211 2023-01-11T21:05:10.4957157Z inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.4957285Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.4957546Z [2023-01-11 20:52:10,593] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 212 2023-01-11T21:05:10.4957814Z [2023-01-11 20:52:13,344] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 212 2023-01-11T21:05:10.4957820Z 2023-01-11T21:05:10.4957918Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.4957976Z import torch 2023-01-11T21:05:10.4958046Z import random 2023-01-11T21:05:10.4958161Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.4958282Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.4958287Z 2023-01-11T21:05:10.4958365Z aten = torch.ops.aten 2023-01-11T21:05:10.4958504Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.4958597Z async_compile = AsyncCompile() 2023-01-11T21:05:10.4958603Z 2023-01-11T21:05:10.4958607Z 2023-01-11T21:05:10.4958741Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.4958935Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.4959056Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:05:10.4959207Z const long* __restrict__ in_ptr1, 2023-01-11T21:05:10.4959308Z const float* __restrict__ in_ptr2, 2023-01-11T21:05:10.4959410Z float* __restrict__ out_ptr0, 2023-01-11T21:05:10.4959509Z float* __restrict__ out_ptr1, 2023-01-11T21:05:10.4959604Z float* __restrict__ out_ptr2) 2023-01-11T21:05:10.4959652Z { 2023-01-11T21:05:10.4959748Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.4959808Z { 2023-01-11T21:05:10.4959885Z #pragma omp for 2023-01-11T21:05:10.4959966Z for(long i0=0; i0<627200; i0+=1) 2023-01-11T21:05:10.4960036Z { 2023-01-11T21:05:10.4960173Z auto tmp0 = at::vec::Vectorized::loadu(in_ptr0 + 16*i0); 2023-01-11T21:05:10.4960311Z auto tmp1 = at::vec::Vectorized(static_cast(1)); 2023-01-11T21:05:10.4960397Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:05:10.4960493Z tmp0.store(out_ptr0 + 16*i0); 2023-01-11T21:05:10.4960781Z tmp2.store(out_ptr1 + 16*i0); 2023-01-11T21:05:10.4960847Z } 2023-01-11T21:05:10.4960999Z #pragma omp for simd simdlen(8) 2023-01-11T21:05:10.4961082Z for(long i0=10035200; i0<10035200; i0+=1) 2023-01-11T21:05:10.4961145Z { 2023-01-11T21:05:10.4961233Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:05:10.4961337Z auto tmp1 = static_cast(1); 2023-01-11T21:05:10.4961423Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:05:10.4961508Z out_ptr0[i0] = tmp0; 2023-01-11T21:05:10.4961587Z out_ptr1[i0] = tmp2; 2023-01-11T21:05:10.4961635Z } 2023-01-11T21:05:10.4961714Z #pragma omp for 2023-01-11T21:05:10.4961798Z for(long i0=0; i0<601; i0+=1) 2023-01-11T21:05:10.4961862Z { 2023-01-11T21:05:10.4961947Z #pragma GCC ivdep 2023-01-11T21:05:10.4962038Z for(long i1=0; i1<12544; i1+=1) 2023-01-11T21:05:10.4962105Z { 2023-01-11T21:05:10.4962158Z { 2023-01-11T21:05:10.4962225Z { 2023-01-11T21:05:10.4962321Z auto tmp0 = in_ptr1[i0]; 2023-01-11T21:05:10.4962428Z auto tmp1 = in_ptr2[i1 + (12544*i0)]; 2023-01-11T21:05:10.4962532Z auto tmp2 = static_cast(1); 2023-01-11T21:05:10.4962627Z auto tmp3 = tmp0 + tmp2; 2023-01-11T21:05:10.4962731Z auto tmp4 = static_cast(1); 2023-01-11T21:05:10.4962813Z auto tmp5 = tmp1 + tmp4; 2023-01-11T21:05:10.4962914Z out_ptr0[i1 + (12544*tmp0)] = tmp1; 2023-01-11T21:05:10.4963015Z out_ptr1[i1 + (12544*tmp3)] = tmp5; 2023-01-11T21:05:10.4963082Z } 2023-01-11T21:05:10.4963147Z } 2023-01-11T21:05:10.4963210Z } 2023-01-11T21:05:10.4963274Z } 2023-01-11T21:05:10.4963339Z #pragma omp for 2023-01-11T21:05:10.4963426Z for(long i0=0; i0<627200; i0+=1) 2023-01-11T21:05:10.4963489Z { 2023-01-11T21:05:10.4963628Z auto tmp0 = at::vec::Vectorized::loadu(out_ptr1 + 16*i0); 2023-01-11T21:05:10.4963761Z auto tmp1 = at::vec::Vectorized(static_cast(1)); 2023-01-11T21:05:10.4963845Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:05:10.4963938Z tmp2.store(out_ptr2 + 16*i0); 2023-01-11T21:05:10.4963988Z } 2023-01-11T21:05:10.4964082Z #pragma omp for simd simdlen(8) 2023-01-11T21:05:10.4964174Z for(long i0=10035200; i0<10035200; i0+=1) 2023-01-11T21:05:10.4964237Z { 2023-01-11T21:05:10.4964322Z auto tmp0 = out_ptr1[i0]; 2023-01-11T21:05:10.4964420Z auto tmp1 = static_cast(1); 2023-01-11T21:05:10.4964504Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:05:10.4964570Z out_ptr2[i0] = tmp2; 2023-01-11T21:05:10.4964674Z } 2023-01-11T21:05:10.4964737Z } 2023-01-11T21:05:10.4964797Z } 2023-01-11T21:05:10.4964884Z ''') 2023-01-11T21:05:10.4964889Z 2023-01-11T21:05:10.4964893Z 2023-01-11T21:05:10.4964983Z async_compile.wait(globals()) 2023-01-11T21:05:10.4965059Z del async_compile 2023-01-11T21:05:10.4965064Z 2023-01-11T21:05:10.4965121Z def call(args): 2023-01-11T21:05:10.4965204Z arg0_1, arg1_1, arg2_1 = args 2023-01-11T21:05:10.4965276Z args.clear() 2023-01-11T21:05:10.4965499Z buf0 = empty_strided((800, 256, 7, 7), (12544, 49, 7, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4965724Z buf2 = empty_strided((800, 256, 7, 7), (12544, 49, 7, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4965943Z buf4 = empty_strided((800, 256, 7, 7), (12544, 49, 7, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4966182Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(arg1_1.data_ptr()), c_void_p(arg2_1.data_ptr()), c_void_p(buf0.data_ptr()), c_void_p(buf2.data_ptr()), c_void_p(buf4.data_ptr())) 2023-01-11T21:05:10.4966257Z del arg0_1 2023-01-11T21:05:10.4966311Z del arg1_1 2023-01-11T21:05:10.4966377Z del arg2_1 2023-01-11T21:05:10.4966477Z return (buf0, buf4, ) 2023-01-11T21:05:10.4966549Z 2023-01-11T21:05:10.4966554Z 2023-01-11T21:05:10.4966632Z if __name__ == "__main__": 2023-01-11T21:05:10.4966751Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.4966878Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.4967109Z arg0_1 = rand_strided((800, 256, 7, 7), (12544, 49, 7, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4967301Z arg1_1 = rand_strided((601, ), (1, ), device='cpu', dtype=torch.int64) 2023-01-11T21:05:10.4967506Z arg2_1 = rand_strided((601, 256, 7, 7), (12544, 49, 7, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4967630Z print_performance(lambda: call([arg0_1, arg1_1, arg2_1])) 2023-01-11T21:05:10.4967636Z 2023-01-11T21:05:10.4967640Z 2023-01-11T21:05:10.4967740Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.4967814Z import torch 2023-01-11T21:05:10.4967889Z import random 2023-01-11T21:05:10.4968008Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.4968133Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.4968138Z 2023-01-11T21:05:10.4968223Z aten = torch.ops.aten 2023-01-11T21:05:10.4968345Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.4968437Z async_compile = AsyncCompile() 2023-01-11T21:05:10.4968442Z 2023-01-11T21:05:10.4968447Z 2023-01-11T21:05:10.4968583Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.4968789Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.4968908Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:05:10.4969015Z const long* __restrict__ in_ptr1, 2023-01-11T21:05:10.4969118Z const float* __restrict__ in_ptr2, 2023-01-11T21:05:10.4969220Z float* __restrict__ out_ptr0, 2023-01-11T21:05:10.4969304Z float* __restrict__ out_ptr1, 2023-01-11T21:05:10.4969402Z float* __restrict__ out_ptr2) 2023-01-11T21:05:10.4969465Z { 2023-01-11T21:05:10.4969562Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.4969628Z { 2023-01-11T21:05:10.4969704Z #pragma omp for 2023-01-11T21:05:10.4969775Z for(long i0=0; i0<512; i0+=1) 2023-01-11T21:05:10.4969838Z { 2023-01-11T21:05:10.4969974Z auto tmp0 = at::vec::Vectorized::loadu(in_ptr0 + 16*i0); 2023-01-11T21:05:10.4970110Z auto tmp1 = at::vec::Vectorized(static_cast(1)); 2023-01-11T21:05:10.4970197Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:05:10.4970290Z tmp0.store(out_ptr0 + 16*i0); 2023-01-11T21:05:10.4970381Z tmp2.store(out_ptr1 + 16*i0); 2023-01-11T21:05:10.4970443Z } 2023-01-11T21:05:10.4970554Z #pragma omp for simd simdlen(8) 2023-01-11T21:05:10.4970641Z for(long i0=8192; i0<8192; i0+=1) 2023-01-11T21:05:10.4970703Z { 2023-01-11T21:05:10.4970787Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:05:10.4970890Z auto tmp1 = static_cast(1); 2023-01-11T21:05:10.4970976Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:05:10.4971057Z out_ptr0[i0] = tmp0; 2023-01-11T21:05:10.4971122Z out_ptr1[i0] = tmp2; 2023-01-11T21:05:10.4971183Z } 2023-01-11T21:05:10.4971260Z #pragma omp for 2023-01-11T21:05:10.4971342Z for(long i0=0; i0<4; i0+=1) 2023-01-11T21:05:10.4971405Z { 2023-01-11T21:05:10.4971486Z #pragma GCC ivdep 2023-01-11T21:05:10.4971554Z for(long i1=0; i1<8; i1+=1) 2023-01-11T21:05:10.4971619Z { 2023-01-11T21:05:10.4971684Z { 2023-01-11T21:05:10.4971753Z { 2023-01-11T21:05:10.4995573Z auto tmp0 = in_ptr1[i0]; 2023-01-11T21:05:10.4995727Z auto tmp1 = in_ptr2[i0]; 2023-01-11T21:05:10.4995841Z auto tmp2 = static_cast(1); 2023-01-11T21:05:10.4996006Z auto tmp3 = tmp0 + tmp2; 2023-01-11T21:05:10.4996115Z auto tmp4 = static_cast(1); 2023-01-11T21:05:10.4996210Z auto tmp5 = tmp1 + tmp4; 2023-01-11T21:05:10.4996311Z out_ptr0[i1 + (8*tmp0)] = tmp1; 2023-01-11T21:05:10.4996409Z out_ptr1[i1 + (8*tmp3)] = tmp5; 2023-01-11T21:05:10.4996479Z } 2023-01-11T21:05:10.4996543Z } 2023-01-11T21:05:10.4996592Z } 2023-01-11T21:05:10.4996656Z } 2023-01-11T21:05:10.4996737Z #pragma omp for 2023-01-11T21:05:10.4996824Z for(long i0=0; i0<512; i0+=1) 2023-01-11T21:05:10.4996887Z { 2023-01-11T21:05:10.4997029Z auto tmp0 = at::vec::Vectorized::loadu(out_ptr1 + 16*i0); 2023-01-11T21:05:10.4997161Z auto tmp1 = at::vec::Vectorized(static_cast(1)); 2023-01-11T21:05:10.4997234Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:05:10.4997315Z tmp2.store(out_ptr2 + 16*i0); 2023-01-11T21:05:10.4997367Z } 2023-01-11T21:05:10.4997452Z #pragma omp for simd simdlen(8) 2023-01-11T21:05:10.4997528Z for(long i0=8192; i0<8192; i0+=1) 2023-01-11T21:05:10.4997583Z { 2023-01-11T21:05:10.4997659Z auto tmp0 = out_ptr1[i0]; 2023-01-11T21:05:10.4997744Z auto tmp1 = static_cast(1); 2023-01-11T21:05:10.4997819Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:05:10.4997891Z out_ptr2[i0] = tmp2; 2023-01-11T21:05:10.4997943Z } 2023-01-11T21:05:10.4997995Z } 2023-01-11T21:05:10.4998045Z } 2023-01-11T21:05:10.4998143Z ''') 2023-01-11T21:05:10.4998150Z 2023-01-11T21:05:10.4998154Z 2023-01-11T21:05:10.4998235Z async_compile.wait(globals()) 2023-01-11T21:05:10.4998297Z del async_compile 2023-01-11T21:05:10.4998303Z 2023-01-11T21:05:10.4998369Z def call(args): 2023-01-11T21:05:10.4998442Z arg0_1, arg1_1, arg2_1 = args 2023-01-11T21:05:10.4998505Z args.clear() 2023-01-11T21:05:10.4998708Z buf0 = empty_strided((1024, 4, 2), (8, 2, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4998902Z buf2 = empty_strided((1024, 4, 2), (8, 2, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4999092Z buf4 = empty_strided((1024, 4, 2), (8, 2, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.4999315Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(arg1_1.data_ptr()), c_void_p(arg2_1.data_ptr()), c_void_p(buf0.data_ptr()), c_void_p(buf2.data_ptr()), c_void_p(buf4.data_ptr())) 2023-01-11T21:05:10.4999376Z del arg0_1 2023-01-11T21:05:10.4999433Z del arg1_1 2023-01-11T21:05:10.4999490Z del arg2_1 2023-01-11T21:05:10.4999559Z return (buf0, buf4, ) 2023-01-11T21:05:10.4999564Z 2023-01-11T21:05:10.4999607Z 2023-01-11T21:05:10.4999675Z if __name__ == "__main__": 2023-01-11T21:05:10.4999782Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.4999895Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.5000092Z arg0_1 = rand_strided((1024, 4, 2), (8, 2, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.5000271Z arg1_1 = rand_strided((4, ), (1, ), device='cpu', dtype=torch.int64) 2023-01-11T21:05:10.5000465Z arg2_1 = rand_strided((4, 1, 1), (1, 1, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.5000579Z print_performance(lambda: call([arg0_1, arg1_1, arg2_1])) 2023-01-11T21:05:10.5000585Z 2023-01-11T21:05:10.5000810Z ok (14.529s) 2023-01-11T21:05:10.5001246Z test_index_put2_cpu (__main__.CpuTests) ... inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.5001367Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.5001681Z [2023-01-11 20:52:13,765] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 213 2023-01-11T21:05:10.5001949Z [2023-01-11 20:52:16,520] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 213 2023-01-11T21:05:10.5001955Z 2023-01-11T21:05:10.5002047Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.5002106Z import torch 2023-01-11T21:05:10.5002168Z import random 2023-01-11T21:05:10.5002274Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.5002387Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.5002392Z 2023-01-11T21:05:10.5002462Z aten = torch.ops.aten 2023-01-11T21:05:10.5002586Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.5002669Z async_compile = AsyncCompile() 2023-01-11T21:05:10.5002677Z 2023-01-11T21:05:10.5002681Z 2023-01-11T21:05:10.5002806Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.5003001Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.5003113Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:05:10.5003209Z const long* __restrict__ in_ptr1, 2023-01-11T21:05:10.5003304Z const float* __restrict__ in_ptr2, 2023-01-11T21:05:10.5003393Z float* __restrict__ out_ptr0) 2023-01-11T21:05:10.5003446Z { 2023-01-11T21:05:10.5003534Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.5003581Z { 2023-01-11T21:05:10.5003648Z #pragma omp for 2023-01-11T21:05:10.5003722Z for(long i0=0; i0<78400; i0+=1) 2023-01-11T21:05:10.5003776Z { 2023-01-11T21:05:10.5003904Z auto tmp0 = at::vec::Vectorized::loadu(in_ptr0 + 16*i0); 2023-01-11T21:05:10.5003991Z tmp0.store(out_ptr0 + 16*i0); 2023-01-11T21:05:10.5004044Z } 2023-01-11T21:05:10.5004126Z #pragma omp for simd simdlen(8) 2023-01-11T21:05:10.5004211Z for(long i0=1254400; i0<1254400; i0+=1) 2023-01-11T21:05:10.5004266Z { 2023-01-11T21:05:10.5004340Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:05:10.5004410Z out_ptr0[i0] = tmp0; 2023-01-11T21:05:10.5004464Z } 2023-01-11T21:05:10.5004525Z #pragma omp for 2023-01-11T21:05:10.5004599Z for(long i0=0; i0<600; i0+=1) 2023-01-11T21:05:10.5004652Z { 2023-01-11T21:05:10.5004722Z #pragma GCC ivdep 2023-01-11T21:05:10.5004806Z for(long i1=0; i1<12544; i1+=1) 2023-01-11T21:05:10.5004861Z { 2023-01-11T21:05:10.5004916Z { 2023-01-11T21:05:10.5004969Z { 2023-01-11T21:05:10.5005054Z auto tmp0 = in_ptr1[i0]; 2023-01-11T21:05:10.5005149Z auto tmp1 = in_ptr2[i1 + (12544*i0)]; 2023-01-11T21:05:10.5005300Z atomic_add(&out_ptr0[i1 + (12544*tmp0)], tmp1); 2023-01-11T21:05:10.5005358Z } 2023-01-11T21:05:10.5005413Z } 2023-01-11T21:05:10.5005471Z } 2023-01-11T21:05:10.5005520Z } 2023-01-11T21:05:10.5005572Z } 2023-01-11T21:05:10.5005625Z } 2023-01-11T21:05:10.5005695Z ''') 2023-01-11T21:05:10.5005701Z 2023-01-11T21:05:10.5005705Z 2023-01-11T21:05:10.5005788Z async_compile.wait(globals()) 2023-01-11T21:05:10.5005853Z del async_compile 2023-01-11T21:05:10.5005858Z 2023-01-11T21:05:10.5005921Z def call(args): 2023-01-11T21:05:10.5005988Z arg0_1, arg1_1, arg2_1 = args 2023-01-11T21:05:10.5006050Z args.clear() 2023-01-11T21:05:10.5006269Z buf0 = empty_strided((100, 256, 7, 7), (12544, 49, 7, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.5006453Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(arg1_1.data_ptr()), c_void_p(arg2_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:05:10.5006517Z del arg0_1 2023-01-11T21:05:10.5006575Z del arg1_1 2023-01-11T21:05:10.5006632Z del arg2_1 2023-01-11T21:05:10.5006690Z return (buf0, ) 2023-01-11T21:05:10.5006699Z 2023-01-11T21:05:10.5006744Z 2023-01-11T21:05:10.5006807Z if __name__ == "__main__": 2023-01-11T21:05:10.5006914Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.5007028Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.5007245Z arg0_1 = rand_strided((100, 256, 7, 7), (12544, 49, 7, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.5007431Z arg1_1 = rand_strided((600, ), (1, ), device='cpu', dtype=torch.int64) 2023-01-11T21:05:10.5007644Z arg2_1 = rand_strided((600, 256, 7, 7), (12544, 49, 7, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.5007757Z print_performance(lambda: call([arg0_1, arg1_1, arg2_1])) 2023-01-11T21:05:10.5007762Z 2023-01-11T21:05:10.5007822Z ok (5.339s) 2023-01-11T21:05:10.5008253Z test_index_put3_cpu (__main__.CpuTests) ... inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.5008373Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.5008631Z [2023-01-11 20:52:18,901] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 214 2023-01-11T21:05:10.5008889Z [2023-01-11 20:52:21,736] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 214 2023-01-11T21:05:10.5008895Z 2023-01-11T21:05:10.5008979Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.5009043Z import torch 2023-01-11T21:05:10.5009108Z import random 2023-01-11T21:05:10.5009214Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.5009330Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.5009336Z 2023-01-11T21:05:10.5009400Z aten = torch.ops.aten 2023-01-11T21:05:10.5009528Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.5009612Z async_compile = AsyncCompile() 2023-01-11T21:05:10.5009617Z 2023-01-11T21:05:10.5009621Z 2023-01-11T21:05:10.5009746Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.5009948Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.5010061Z extern "C" void kernel(const long* __restrict__ in_ptr0, 2023-01-11T21:05:10.5010157Z const float* __restrict__ in_ptr1, 2023-01-11T21:05:10.5010249Z float* __restrict__ out_ptr0, 2023-01-11T21:05:10.5010332Z float* __restrict__ out_ptr1) 2023-01-11T21:05:10.5010386Z { 2023-01-11T21:05:10.5010477Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.5010564Z { 2023-01-11T21:05:10.5010635Z #pragma omp for 2023-01-11T21:05:10.5010712Z for(long i0=0; i0<1024; i0+=1) 2023-01-11T21:05:10.5010766Z { 2023-01-11T21:05:10.5010833Z #pragma GCC ivdep 2023-01-11T21:05:10.5010911Z for(long i1=0; i1<3; i1+=1) 2023-01-11T21:05:10.5010967Z { 2023-01-11T21:05:10.5011041Z #pragma GCC ivdep 2023-01-11T21:05:10.5011124Z for(long i2=0; i2<2; i2+=1) 2023-01-11T21:05:10.5011182Z { 2023-01-11T21:05:10.5011233Z { 2023-01-11T21:05:10.5011293Z { 2023-01-11T21:05:10.5011384Z auto tmp0 = in_ptr0[i1]; 2023-01-11T21:05:10.5011480Z auto tmp1 = in_ptr1[i2 + (2*i0)]; 2023-01-11T21:05:10.5011580Z out_ptr0[i2 + (2*tmp0) + (8*i0)] = tmp1; 2023-01-11T21:05:10.5032261Z } 2023-01-11T21:05:10.5032342Z } 2023-01-11T21:05:10.5032404Z } 2023-01-11T21:05:10.5032453Z } 2023-01-11T21:05:10.5032508Z } 2023-01-11T21:05:10.5032583Z #pragma omp for 2023-01-11T21:05:10.5032660Z for(long i0=0; i0<512; i0+=1) 2023-01-11T21:05:10.5032760Z { 2023-01-11T21:05:10.5032893Z auto tmp0 = at::vec::Vectorized::loadu(out_ptr0 + 16*i0); 2023-01-11T21:05:10.5033020Z auto tmp1 = at::vec::Vectorized(static_cast(1)); 2023-01-11T21:05:10.5033090Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:05:10.5033175Z tmp2.store(out_ptr1 + 16*i0); 2023-01-11T21:05:10.5033231Z } 2023-01-11T21:05:10.5033320Z #pragma omp for simd simdlen(8) 2023-01-11T21:05:10.5033400Z for(long i0=8192; i0<8192; i0+=1) 2023-01-11T21:05:10.5033455Z { 2023-01-11T21:05:10.5033525Z auto tmp0 = out_ptr0[i0]; 2023-01-11T21:05:10.5033618Z auto tmp1 = static_cast(1); 2023-01-11T21:05:10.5033706Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:05:10.5033777Z out_ptr1[i0] = tmp2; 2023-01-11T21:05:10.5033840Z } 2023-01-11T21:05:10.5033915Z #pragma omp for 2023-01-11T21:05:10.5034000Z for(long i0=0; i0<1024; i0+=1) 2023-01-11T21:05:10.5034048Z { 2023-01-11T21:05:10.5034127Z #pragma GCC ivdep 2023-01-11T21:05:10.5034208Z for(long i1=0; i1<3; i1+=1) 2023-01-11T21:05:10.5034271Z { 2023-01-11T21:05:10.5034349Z #pragma GCC ivdep 2023-01-11T21:05:10.5034438Z for(long i2=0; i2<2; i2+=1) 2023-01-11T21:05:10.5034502Z { 2023-01-11T21:05:10.5034553Z { 2023-01-11T21:05:10.5034621Z { 2023-01-11T21:05:10.5034717Z auto tmp0 = in_ptr0[i1]; 2023-01-11T21:05:10.5034820Z auto tmp3 = in_ptr1[i2 + (2*i0)]; 2023-01-11T21:05:10.5034926Z auto tmp1 = static_cast(1); 2023-01-11T21:05:10.5035028Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:05:10.5035137Z auto tmp4 = static_cast(1); 2023-01-11T21:05:10.5035222Z auto tmp5 = tmp3 + tmp4; 2023-01-11T21:05:10.5035327Z out_ptr1[i2 + (2*tmp2) + (8*i0)] = tmp5; 2023-01-11T21:05:10.5035395Z } 2023-01-11T21:05:10.5035460Z } 2023-01-11T21:05:10.5035524Z } 2023-01-11T21:05:10.5035586Z } 2023-01-11T21:05:10.5035647Z } 2023-01-11T21:05:10.5035694Z } 2023-01-11T21:05:10.5035753Z } 2023-01-11T21:05:10.5035838Z ''') 2023-01-11T21:05:10.5035843Z 2023-01-11T21:05:10.5035847Z 2023-01-11T21:05:10.5035935Z async_compile.wait(globals()) 2023-01-11T21:05:10.5036007Z del async_compile 2023-01-11T21:05:10.5036012Z 2023-01-11T21:05:10.5036083Z def call(args): 2023-01-11T21:05:10.5036162Z arg0_1, arg1_1, arg2_1 = args 2023-01-11T21:05:10.5036219Z args.clear() 2023-01-11T21:05:10.5036463Z buf1 = empty_strided((1024, 4, 2), (8, 2, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.5036653Z kernel_cpp_0(c_void_p(arg1_1.data_ptr()), c_void_p(arg2_1.data_ptr()), c_void_p(arg0_1.data_ptr()), c_void_p(buf1.data_ptr())) 2023-01-11T21:05:10.5036720Z del arg0_1 2023-01-11T21:05:10.5036785Z del arg1_1 2023-01-11T21:05:10.5036849Z del arg2_1 2023-01-11T21:05:10.5036918Z return (buf1, ) 2023-01-11T21:05:10.5036923Z 2023-01-11T21:05:10.5036927Z 2023-01-11T21:05:10.5037006Z if __name__ == "__main__": 2023-01-11T21:05:10.5037107Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.5037229Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.5037435Z arg0_1 = rand_strided((1024, 4, 2), (8, 2, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.5037621Z arg1_1 = rand_strided((3, ), (1, ), device='cpu', dtype=torch.int64) 2023-01-11T21:05:10.5037829Z arg2_1 = rand_strided((1024, 1, 2), (2, 2, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.5037950Z print_performance(lambda: call([arg0_1, arg1_1, arg2_1])) 2023-01-11T21:05:10.5037955Z 2023-01-11T21:05:10.5038020Z ok (3.041s) 2023-01-11T21:05:10.5038507Z test_index_put_as_masked_fill_cpu (__main__.CpuTests) ... inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.5038633Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.5038884Z [2023-01-11 20:52:21,857] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 215 2023-01-11T21:05:10.5039149Z [2023-01-11 20:52:24,641] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 215 2023-01-11T21:05:10.5039553Z inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.5039679Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.5039937Z [2023-01-11 20:52:24,779] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 216 2023-01-11T21:05:10.5040200Z [2023-01-11 20:52:27,487] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 216 2023-01-11T21:05:10.5040206Z 2023-01-11T21:05:10.5040299Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.5040368Z import torch 2023-01-11T21:05:10.5040436Z import random 2023-01-11T21:05:10.5040537Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.5040877Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.5040885Z 2023-01-11T21:05:10.5040963Z aten = torch.ops.aten 2023-01-11T21:05:10.5041098Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.5041192Z async_compile = AsyncCompile() 2023-01-11T21:05:10.5041198Z 2023-01-11T21:05:10.5041202Z 2023-01-11T21:05:10.5041340Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.5041546Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.5041667Z extern "C" void kernel(const bool* __restrict__ in_ptr0, 2023-01-11T21:05:10.5041759Z const float* __restrict__ in_ptr1, 2023-01-11T21:05:10.5041863Z const float* __restrict__ in_ptr2, 2023-01-11T21:05:10.5041963Z float* __restrict__ out_ptr0) 2023-01-11T21:05:10.5042025Z { 2023-01-11T21:05:10.5042123Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.5042186Z { 2023-01-11T21:05:10.5042318Z #pragma omp for 2023-01-11T21:05:10.5042387Z for(long i0=0; i0<512; i0+=1) 2023-01-11T21:05:10.5042449Z { 2023-01-11T21:05:10.5042550Z float g_tmp_buffer_in_ptr0[16] = {0}; 2023-01-11T21:05:10.5042674Z flag_to_float(in_ptr0 + 16*i0, g_tmp_buffer_in_ptr0, 16); 2023-01-11T21:05:10.5042816Z auto tmp0 = at::vec::Vectorized::loadu(g_tmp_buffer_in_ptr0); 2023-01-11T21:05:10.5042935Z auto tmp1 = at::vec::Vectorized(in_ptr1[0]); 2023-01-11T21:05:10.5043066Z auto tmp2 = at::vec::Vectorized::loadu(in_ptr2 + 16*i0); 2023-01-11T21:05:10.5043191Z auto tmp3 = decltype(tmp1)::blendv(tmp2, tmp1, tmp0); 2023-01-11T21:05:10.5043269Z tmp3.store(out_ptr0 + 16*i0); 2023-01-11T21:05:10.5043332Z } 2023-01-11T21:05:10.5043427Z #pragma omp for simd simdlen(8) 2023-01-11T21:05:10.5043513Z for(long i0=8192; i0<8192; i0+=1) 2023-01-11T21:05:10.5043577Z { 2023-01-11T21:05:10.5043664Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:05:10.5043746Z auto tmp1 = in_ptr1[0]; 2023-01-11T21:05:10.5043815Z auto tmp2 = in_ptr2[i0]; 2023-01-11T21:05:10.5043949Z auto tmp3 = tmp0 ? tmp1 : tmp2; 2023-01-11T21:05:10.5044034Z out_ptr0[i0] = tmp3; 2023-01-11T21:05:10.5044095Z } 2023-01-11T21:05:10.5044154Z } 2023-01-11T21:05:10.5044214Z } 2023-01-11T21:05:10.5044292Z ''') 2023-01-11T21:05:10.5044298Z 2023-01-11T21:05:10.5044303Z 2023-01-11T21:05:10.5044379Z async_compile.wait(globals()) 2023-01-11T21:05:10.5044450Z del async_compile 2023-01-11T21:05:10.5044455Z 2023-01-11T21:05:10.5044524Z def call(args): 2023-01-11T21:05:10.5044606Z arg0_1, arg1_1, arg2_1 = args 2023-01-11T21:05:10.5044676Z args.clear() 2023-01-11T21:05:10.5044884Z buf0 = empty_strided((1024, 4, 2), (8, 2, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.5045074Z kernel_cpp_0(c_void_p(arg1_1.data_ptr()), c_void_p(arg2_1.data_ptr()), c_void_p(arg0_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:05:10.5045143Z del arg0_1 2023-01-11T21:05:10.5045196Z del arg1_1 2023-01-11T21:05:10.5045260Z del arg2_1 2023-01-11T21:05:10.5045332Z return (buf0, ) 2023-01-11T21:05:10.5045338Z 2023-01-11T21:05:10.5045343Z 2023-01-11T21:05:10.5045417Z if __name__ == "__main__": 2023-01-11T21:05:10.5045529Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.5045652Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.5045864Z arg0_1 = rand_strided((1024, 4, 2), (8, 2, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.5046053Z arg1_1 = rand_strided((1024, 4, 2), (8, 2, 1), device='cpu', dtype=torch.bool) 2023-01-11T21:05:10.5046236Z arg2_1 = rand_strided((), (), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.5046358Z print_performance(lambda: call([arg0_1, arg1_1, arg2_1])) 2023-01-11T21:05:10.5046363Z 2023-01-11T21:05:10.5046367Z 2023-01-11T21:05:10.5046463Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.5046531Z import torch 2023-01-11T21:05:10.5046599Z import random 2023-01-11T21:05:10.5046713Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.5046834Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.5046838Z 2023-01-11T21:05:10.5046905Z aten = torch.ops.aten 2023-01-11T21:05:10.5047037Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.5047126Z async_compile = AsyncCompile() 2023-01-11T21:05:10.5047131Z 2023-01-11T21:05:10.5047135Z 2023-01-11T21:05:10.5047267Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.5047473Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.5047590Z extern "C" void kernel(const bool* __restrict__ in_ptr0, 2023-01-11T21:05:10.5047694Z const float* __restrict__ in_ptr1, 2023-01-11T21:05:10.5047797Z const float* __restrict__ in_ptr2, 2023-01-11T21:05:10.5047918Z float* __restrict__ out_ptr0) 2023-01-11T21:05:10.5047979Z { 2023-01-11T21:05:10.5048076Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.5048136Z { 2023-01-11T21:05:10.5048214Z #pragma omp for 2023-01-11T21:05:10.5048294Z for(long i0=0; i0<512; i0+=1) 2023-01-11T21:05:10.5048355Z { 2023-01-11T21:05:10.5048442Z float g_tmp_buffer_in_ptr0[16] = {0}; 2023-01-11T21:05:10.5048564Z flag_to_float(in_ptr0 + 16*i0, g_tmp_buffer_in_ptr0, 16); 2023-01-11T21:05:10.5048706Z auto tmp0 = at::vec::Vectorized::loadu(g_tmp_buffer_in_ptr0); 2023-01-11T21:05:10.5048840Z auto tmp1 = at::vec::Vectorized::loadu(in_ptr1 + 16*i0); 2023-01-11T21:05:10.5048958Z auto tmp2 = at::vec::Vectorized(in_ptr2[0]); 2023-01-11T21:05:10.5049043Z auto tmp3 = tmp1 + tmp2; 2023-01-11T21:05:10.5049167Z auto tmp4 = decltype(tmp3)::blendv(tmp1, tmp3, tmp0); 2023-01-11T21:05:10.5049260Z tmp4.store(out_ptr0 + 16*i0); 2023-01-11T21:05:10.5049309Z } 2023-01-11T21:05:10.5049404Z #pragma omp for simd simdlen(8) 2023-01-11T21:05:10.5049518Z for(long i0=8192; i0<8192; i0+=1) 2023-01-11T21:05:10.5049582Z { 2023-01-11T21:05:10.5049664Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:05:10.5049746Z auto tmp1 = in_ptr1[i0]; 2023-01-11T21:05:10.5049824Z auto tmp2 = in_ptr2[0]; 2023-01-11T21:05:10.5049892Z auto tmp3 = tmp1 + tmp2; 2023-01-11T21:05:10.5049984Z auto tmp4 = tmp0 ? tmp3 : tmp1; 2023-01-11T21:05:10.5050063Z out_ptr0[i0] = tmp4; 2023-01-11T21:05:10.5050124Z } 2023-01-11T21:05:10.5050183Z } 2023-01-11T21:05:10.5050242Z } 2023-01-11T21:05:10.5050307Z ''') 2023-01-11T21:05:10.5050324Z 2023-01-11T21:05:10.5050329Z 2023-01-11T21:05:10.5050403Z async_compile.wait(globals()) 2023-01-11T21:05:10.5050477Z del async_compile 2023-01-11T21:05:10.5050484Z 2023-01-11T21:05:10.5050553Z def call(args): 2023-01-11T21:05:10.5050633Z arg0_1, arg1_1, arg2_1 = args 2023-01-11T21:05:10.5050703Z args.clear() 2023-01-11T21:05:10.5050913Z buf0 = empty_strided((1024, 4, 2), (8, 2, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.5051099Z kernel_cpp_0(c_void_p(arg1_1.data_ptr()), c_void_p(arg0_1.data_ptr()), c_void_p(arg2_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:05:10.5051153Z del arg0_1 2023-01-11T21:05:10.5051216Z del arg1_1 2023-01-11T21:05:10.5051280Z del arg2_1 2023-01-11T21:05:10.5051351Z return (buf0, ) 2023-01-11T21:05:10.5051356Z 2023-01-11T21:05:10.5051361Z 2023-01-11T21:05:10.5051434Z if __name__ == "__main__": 2023-01-11T21:05:10.5051549Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.5051671Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.5051879Z arg0_1 = rand_strided((1024, 4, 2), (8, 2, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.5052068Z arg1_1 = rand_strided((1024, 4, 2), (8, 2, 1), device='cpu', dtype=torch.bool) 2023-01-11T21:05:10.5052251Z arg2_1 = rand_strided((), (), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.5052373Z print_performance(lambda: call([arg0_1, arg1_1, arg2_1])) 2023-01-11T21:05:10.5052378Z 2023-01-11T21:05:10.5052443Z ok (5.747s) 2023-01-11T21:05:10.5052891Z test_index_put_fallback1_cpu (__main__.CpuTests) ... inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.5053017Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.5053276Z [2023-01-11 20:52:27,602] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 217 2023-01-11T21:05:10.5053577Z [2023-01-11 20:52:30,220] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 217 2023-01-11T21:05:10.5053976Z inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.5054101Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.5054344Z [2023-01-11 20:52:30,327] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 218 2023-01-11T21:05:10.5054606Z [2023-01-11 20:52:30,339] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 218 2023-01-11T21:05:10.5054611Z 2023-01-11T21:05:10.5054704Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.5054775Z import torch 2023-01-11T21:05:10.5054846Z import random 2023-01-11T21:05:10.5054963Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.5055081Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.5055087Z 2023-01-11T21:05:10.5055212Z aten = torch.ops.aten 2023-01-11T21:05:10.5055334Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.5055424Z async_compile = AsyncCompile() 2023-01-11T21:05:10.5055429Z 2023-01-11T21:05:10.5055434Z 2023-01-11T21:05:10.5055567Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.5055770Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.5055888Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:05:10.5055987Z float* __restrict__ out_ptr0) 2023-01-11T21:05:10.5056047Z { 2023-01-11T21:05:10.5056122Z #pragma GCC ivdep 2023-01-11T21:05:10.5056188Z for(long i0=0; i0<3; i0+=1) 2023-01-11T21:05:10.5056247Z { 2023-01-11T21:05:10.5056313Z { 2023-01-11T21:05:10.5056375Z { 2023-01-11T21:05:10.5056462Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:05:10.5056544Z out_ptr0[i0] = tmp0; 2023-01-11T21:05:10.5056595Z } 2023-01-11T21:05:10.5056656Z } 2023-01-11T21:05:10.5056719Z } 2023-01-11T21:05:10.5056784Z } 2023-01-11T21:05:10.5056865Z ''') 2023-01-11T21:05:10.5056872Z 2023-01-11T21:05:10.5056876Z 2023-01-11T21:05:10.5056965Z async_compile.wait(globals()) 2023-01-11T21:05:10.5057036Z del async_compile 2023-01-11T21:05:10.5057041Z 2023-01-11T21:05:10.5057108Z def call(args): 2023-01-11T21:05:10.5057175Z arg0_1, arg1_1, arg2_1 = args 2023-01-11T21:05:10.5057243Z args.clear() 2023-01-11T21:05:10.5057433Z buf0 = empty_strided((3, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.5057564Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:05:10.5057631Z del arg0_1 2023-01-11T21:05:10.5057735Z aten.index_put_(buf0, [arg1_1], arg2_1, False) 2023-01-11T21:05:10.5057803Z del arg1_1 2023-01-11T21:05:10.5057854Z del arg2_1 2023-01-11T21:05:10.5057923Z return (buf0, ) 2023-01-11T21:05:10.5057928Z 2023-01-11T21:05:10.5057932Z 2023-01-11T21:05:10.5058008Z if __name__ == "__main__": 2023-01-11T21:05:10.5058119Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.5058241Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.5058432Z arg0_1 = rand_strided((3, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.5058700Z arg1_1 = rand_strided((3, ), (1, ), device='cpu', dtype=torch.bool) 2023-01-11T21:05:10.5058878Z arg2_1 = rand_strided((2, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.5059001Z print_performance(lambda: call([arg0_1, arg1_1, arg2_1])) 2023-01-11T21:05:10.5059006Z 2023-01-11T21:05:10.5059010Z 2023-01-11T21:05:10.5059105Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.5059176Z import torch 2023-01-11T21:05:10.5059288Z import random 2023-01-11T21:05:10.5059403Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.5059525Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.5059529Z 2023-01-11T21:05:10.5059611Z aten = torch.ops.aten 2023-01-11T21:05:10.5059729Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.5059822Z async_compile = AsyncCompile() 2023-01-11T21:05:10.5059826Z 2023-01-11T21:05:10.5059830Z 2023-01-11T21:05:10.5059961Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.5060163Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.5060280Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:05:10.5060379Z float* __restrict__ out_ptr0) 2023-01-11T21:05:10.5060441Z { 2023-01-11T21:05:10.5060518Z #pragma GCC ivdep 2023-01-11T21:05:10.5060582Z for(long i0=0; i0<3; i0+=1) 2023-01-11T21:05:10.5060647Z { 2023-01-11T21:05:10.5060711Z { 2023-01-11T21:05:10.5060775Z { 2023-01-11T21:05:10.5060863Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:05:10.5060944Z out_ptr0[i0] = tmp0; 2023-01-11T21:05:10.5061044Z } 2023-01-11T21:05:10.5061093Z } 2023-01-11T21:05:10.5061154Z } 2023-01-11T21:05:10.5061214Z } 2023-01-11T21:05:10.5061292Z ''') 2023-01-11T21:05:10.5061297Z 2023-01-11T21:05:10.5061301Z 2023-01-11T21:05:10.5061387Z async_compile.wait(globals()) 2023-01-11T21:05:10.5061458Z del async_compile 2023-01-11T21:05:10.5061463Z 2023-01-11T21:05:10.5061531Z def call(args): 2023-01-11T21:05:10.5061598Z arg0_1, arg1_1, arg2_1 = args 2023-01-11T21:05:10.5061667Z args.clear() 2023-01-11T21:05:10.5061856Z buf0 = empty_strided((3, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.5061989Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:05:10.5062054Z del arg0_1 2023-01-11T21:05:10.5062159Z aten.index_put_(buf0, [arg1_1], arg2_1, True) 2023-01-11T21:05:10.5062225Z del arg1_1 2023-01-11T21:05:10.5062277Z del arg2_1 2023-01-11T21:05:10.5062347Z return (buf0, ) 2023-01-11T21:05:10.5062352Z 2023-01-11T21:05:10.5062359Z 2023-01-11T21:05:10.5062432Z if __name__ == "__main__": 2023-01-11T21:05:10.5062543Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.5062665Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.5062858Z arg0_1 = rand_strided((3, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.5063042Z arg1_1 = rand_strided((3, ), (1, ), device='cpu', dtype=torch.bool) 2023-01-11T21:05:10.5063234Z arg2_1 = rand_strided((2, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.5063341Z print_performance(lambda: call([arg0_1, arg1_1, arg2_1])) 2023-01-11T21:05:10.5063346Z 2023-01-11T21:05:10.5063412Z ok (2.839s) 2023-01-11T21:05:10.5063858Z test_index_put_fallback2_cpu (__main__.CpuTests) ... inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.5063988Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.5064245Z [2023-01-11 20:52:30,446] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 219 2023-01-11T21:05:10.5064510Z [2023-01-11 20:52:33,127] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 219 2023-01-11T21:05:10.5064907Z inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.5065067Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.5065325Z [2023-01-11 20:52:33,265] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 220 2023-01-11T21:05:10.5065589Z [2023-01-11 20:52:33,285] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 220 2023-01-11T21:05:10.5065594Z 2023-01-11T21:05:10.5065688Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.5065743Z import torch 2023-01-11T21:05:10.5065812Z import random 2023-01-11T21:05:10.5065929Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.5066050Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.5066055Z 2023-01-11T21:05:10.5066133Z aten = torch.ops.aten 2023-01-11T21:05:10.5066267Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.5066362Z async_compile = AsyncCompile() 2023-01-11T21:05:10.5066369Z 2023-01-11T21:05:10.5066373Z 2023-01-11T21:05:10.5066494Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.5066699Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.5066855Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:05:10.5066955Z float* __restrict__ out_ptr0) 2023-01-11T21:05:10.5067016Z { 2023-01-11T21:05:10.5067115Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.5067176Z { 2023-01-11T21:05:10.5067239Z #pragma omp for 2023-01-11T21:05:10.5067320Z for(long i0=0; i0<6; i0+=1) 2023-01-11T21:05:10.5067382Z { 2023-01-11T21:05:10.5067446Z { 2023-01-11T21:05:10.5067510Z { 2023-01-11T21:05:10.5067603Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:05:10.5067688Z out_ptr0[i0] = tmp0; 2023-01-11T21:05:10.5067738Z } 2023-01-11T21:05:10.5067803Z } 2023-01-11T21:05:10.5067867Z } 2023-01-11T21:05:10.5067929Z } 2023-01-11T21:05:10.5067989Z } 2023-01-11T21:05:10.5068068Z ''') 2023-01-11T21:05:10.5068073Z 2023-01-11T21:05:10.5068077Z 2023-01-11T21:05:10.5068167Z async_compile.wait(globals()) 2023-01-11T21:05:10.5068224Z del async_compile 2023-01-11T21:05:10.5068229Z 2023-01-11T21:05:10.5068297Z def call(args): 2023-01-11T21:05:10.5068386Z arg0_1, arg1_1, arg2_1, arg3_1 = args 2023-01-11T21:05:10.5068456Z args.clear() 2023-01-11T21:05:10.5068659Z buf0 = empty_strided((1, 2, 3), (6, 3, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.5068792Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:05:10.5068859Z del arg0_1 2023-01-11T21:05:10.5068964Z aten.index_put_(buf0, [None,arg1_1,arg2_1], arg3_1, False) 2023-01-11T21:05:10.5069031Z del arg1_1 2023-01-11T21:05:10.5069097Z del arg2_1 2023-01-11T21:05:10.5069159Z del arg3_1 2023-01-11T21:05:10.5069230Z return (buf0, ) 2023-01-11T21:05:10.5069237Z 2023-01-11T21:05:10.5069241Z 2023-01-11T21:05:10.5069315Z if __name__ == "__main__": 2023-01-11T21:05:10.5069426Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.5069548Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.5069738Z arg0_1 = rand_strided((1, 2, 3), (6, 3, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.5069924Z arg1_1 = rand_strided((2, ), (1, ), device='cpu', dtype=torch.int64) 2023-01-11T21:05:10.5070107Z arg2_1 = rand_strided((3, ), (1, ), device='cpu', dtype=torch.bool) 2023-01-11T21:05:10.5070289Z arg3_1 = rand_strided((), (), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.5070415Z print_performance(lambda: call([arg0_1, arg1_1, arg2_1, arg3_1])) 2023-01-11T21:05:10.5070420Z 2023-01-11T21:05:10.5070425Z 2023-01-11T21:05:10.5070515Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.5070583Z import torch 2023-01-11T21:05:10.5070650Z import random 2023-01-11T21:05:10.5070792Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.5070913Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.5070918Z 2023-01-11T21:05:10.5070994Z aten = torch.ops.aten 2023-01-11T21:05:10.5071127Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.5071216Z async_compile = AsyncCompile() 2023-01-11T21:05:10.5071221Z 2023-01-11T21:05:10.5071226Z 2023-01-11T21:05:10.5071357Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.5071561Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.5071679Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:05:10.5071765Z float* __restrict__ out_ptr0) 2023-01-11T21:05:10.5071825Z { 2023-01-11T21:05:10.5071923Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.5071984Z { 2023-01-11T21:05:10.5072059Z #pragma omp for 2023-01-11T21:05:10.5072139Z for(long i0=0; i0<6; i0+=1) 2023-01-11T21:05:10.5072202Z { 2023-01-11T21:05:10.5072252Z { 2023-01-11T21:05:10.5072314Z { 2023-01-11T21:05:10.5072406Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:05:10.5072524Z out_ptr0[i0] = tmp0; 2023-01-11T21:05:10.5072588Z } 2023-01-11T21:05:10.5072650Z } 2023-01-11T21:05:10.5072698Z } 2023-01-11T21:05:10.5072759Z } 2023-01-11T21:05:10.5072817Z } 2023-01-11T21:05:10.5072894Z ''') 2023-01-11T21:05:10.5072899Z 2023-01-11T21:05:10.5072903Z 2023-01-11T21:05:10.5072994Z async_compile.wait(globals()) 2023-01-11T21:05:10.5073064Z del async_compile 2023-01-11T21:05:10.5073069Z 2023-01-11T21:05:10.5073140Z def call(args): 2023-01-11T21:05:10.5073215Z arg0_1, arg1_1, arg2_1, arg3_1 = args 2023-01-11T21:05:10.5073283Z args.clear() 2023-01-11T21:05:10.5073483Z buf0 = empty_strided((1, 2, 3), (6, 3, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.5073616Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:05:10.5073687Z del arg0_1 2023-01-11T21:05:10.5073804Z aten.index_put_(buf0, [None,arg1_1,arg2_1], arg3_1, True) 2023-01-11T21:05:10.5073872Z del arg1_1 2023-01-11T21:05:10.5073936Z del arg2_1 2023-01-11T21:05:10.5073987Z del arg3_1 2023-01-11T21:05:10.5074057Z return (buf0, ) 2023-01-11T21:05:10.5074061Z 2023-01-11T21:05:10.5074065Z 2023-01-11T21:05:10.5074142Z if __name__ == "__main__": 2023-01-11T21:05:10.5074254Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.5074375Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.5074579Z arg0_1 = rand_strided((1, 2, 3), (6, 3, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.5074764Z arg1_1 = rand_strided((2, ), (1, ), device='cpu', dtype=torch.int64) 2023-01-11T21:05:10.5074934Z arg2_1 = rand_strided((3, ), (1, ), device='cpu', dtype=torch.bool) 2023-01-11T21:05:10.5075117Z arg3_1 = rand_strided((), (), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.5075243Z print_performance(lambda: call([arg0_1, arg1_1, arg2_1, arg3_1])) 2023-01-11T21:05:10.5075248Z 2023-01-11T21:05:10.5075313Z ok (2.951s) 2023-01-11T21:05:10.5075756Z test_index_select_cpu (__main__.CpuTests) ... inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.5075880Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.5076141Z [2023-01-11 20:52:33,406] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 221 2023-01-11T21:05:10.5076402Z [2023-01-11 20:52:36,242] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 221 2023-01-11T21:05:10.5076839Z inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.5076963Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.5077220Z [2023-01-11 20:52:36,327] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 222 2023-01-11T21:05:10.5077470Z [2023-01-11 20:52:39,110] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 222 2023-01-11T21:05:10.5077474Z 2023-01-11T21:05:10.5077569Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.5077639Z import torch 2023-01-11T21:05:10.5077707Z import random 2023-01-11T21:05:10.5077821Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.5077942Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.5077948Z 2023-01-11T21:05:10.5078026Z aten = torch.ops.aten 2023-01-11T21:05:10.5078158Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.5078267Z async_compile = AsyncCompile() 2023-01-11T21:05:10.5078273Z 2023-01-11T21:05:10.5078277Z 2023-01-11T21:05:10.5078411Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.5078612Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.5078728Z extern "C" void kernel(const int* __restrict__ in_ptr0, 2023-01-11T21:05:10.5078833Z const float* __restrict__ in_ptr1, 2023-01-11T21:05:10.5078931Z float* __restrict__ out_ptr0, 2023-01-11T21:05:10.5079027Z float* __restrict__ out_ptr1, 2023-01-11T21:05:10.5079120Z float* __restrict__ out_ptr2) 2023-01-11T21:05:10.5079167Z { 2023-01-11T21:05:10.5079263Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.5079326Z { 2023-01-11T21:05:10.5079401Z #pragma omp for 2023-01-11T21:05:10.5079483Z for(long i0=0; i0<4; i0+=1) 2023-01-11T21:05:10.5079545Z { 2023-01-11T21:05:10.5079612Z #pragma GCC ivdep 2023-01-11T21:05:10.5079696Z for(long i1=0; i1<64; i1+=1) 2023-01-11T21:05:10.5079758Z { 2023-01-11T21:05:10.5079822Z { 2023-01-11T21:05:10.5079887Z { 2023-01-11T21:05:10.5079981Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:05:10.5080084Z auto tmp1 = in_ptr1[i1 + (64*tmp0)]; 2023-01-11T21:05:10.5080167Z out_ptr0[i1 + (64*i0)] = tmp1; 2023-01-11T21:05:10.5080232Z } 2023-01-11T21:05:10.5080295Z } 2023-01-11T21:05:10.5080356Z } 2023-01-11T21:05:10.5080421Z } 2023-01-11T21:05:10.5080495Z #pragma omp for 2023-01-11T21:05:10.5080574Z for(long i0=0; i0<8; i0+=1) 2023-01-11T21:05:10.5080737Z { 2023-01-11T21:05:10.5080816Z #pragma GCC ivdep 2023-01-11T21:05:10.5080898Z for(long i1=0; i1<4; i1+=1) 2023-01-11T21:05:10.5080961Z { 2023-01-11T21:05:10.5081048Z #pragma GCC ivdep 2023-01-11T21:05:10.5081139Z for(long i2=0; i2<8; i2+=1) 2023-01-11T21:05:10.5081190Z { 2023-01-11T21:05:10.5081256Z { 2023-01-11T21:05:10.5081324Z { 2023-01-11T21:05:10.5081421Z auto tmp0 = in_ptr0[i1]; 2023-01-11T21:05:10.5081538Z auto tmp1 = in_ptr1[i2 + (8*tmp0) + (64*i0)]; 2023-01-11T21:05:10.5081642Z out_ptr1[i2 + (8*i1) + (32*i0)] = tmp1; 2023-01-11T21:05:10.5081711Z } 2023-01-11T21:05:10.5081762Z } 2023-01-11T21:05:10.5081827Z } 2023-01-11T21:05:10.5081890Z } 2023-01-11T21:05:10.5082016Z } 2023-01-11T21:05:10.5082093Z #pragma omp for 2023-01-11T21:05:10.5082173Z for(long i0=0; i0<8; i0+=1) 2023-01-11T21:05:10.5082235Z { 2023-01-11T21:05:10.5082299Z #pragma GCC ivdep 2023-01-11T21:05:10.5082385Z for(long i1=0; i1<4; i1+=1) 2023-01-11T21:05:10.5082448Z { 2023-01-11T21:05:10.5082528Z #pragma GCC ivdep 2023-01-11T21:05:10.5082617Z for(long i2=0; i2<4; i2+=1) 2023-01-11T21:05:10.5082684Z { 2023-01-11T21:05:10.5082750Z { 2023-01-11T21:05:10.5082804Z { 2023-01-11T21:05:10.5082899Z auto tmp0 = in_ptr0[i1]; 2023-01-11T21:05:10.5082995Z auto tmp1 = in_ptr0[i2]; 2023-01-11T21:05:10.5083109Z auto tmp2 = in_ptr1[tmp1 + (8*tmp0) + (64*i0)]; 2023-01-11T21:05:10.5083215Z out_ptr2[i2 + (4*i1) + (16*i0)] = tmp2; 2023-01-11T21:05:10.5083286Z } 2023-01-11T21:05:10.5083355Z } 2023-01-11T21:05:10.5083405Z } 2023-01-11T21:05:10.5083468Z } 2023-01-11T21:05:10.5083530Z } 2023-01-11T21:05:10.5083592Z } 2023-01-11T21:05:10.5083696Z } 2023-01-11T21:05:10.5083778Z ''') 2023-01-11T21:05:10.5083784Z 2023-01-11T21:05:10.5083788Z 2023-01-11T21:05:10.5083877Z async_compile.wait(globals()) 2023-01-11T21:05:10.5083935Z del async_compile 2023-01-11T21:05:10.5083940Z 2023-01-11T21:05:10.5084009Z def call(args): 2023-01-11T21:05:10.5084082Z arg0_1, arg1_1 = args 2023-01-11T21:05:10.5084150Z args.clear() 2023-01-11T21:05:10.5084353Z buf0 = empty_strided((4, 8, 8), (64, 8, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.5084553Z buf1 = empty_strided((8, 4, 8), (32, 8, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.5084745Z buf2 = empty_strided((8, 4, 4), (16, 4, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.5084957Z kernel_cpp_0(c_void_p(arg1_1.data_ptr()), c_void_p(arg0_1.data_ptr()), c_void_p(buf0.data_ptr()), c_void_p(buf1.data_ptr()), c_void_p(buf2.data_ptr())) 2023-01-11T21:05:10.5085017Z del arg0_1 2023-01-11T21:05:10.5085084Z del arg1_1 2023-01-11T21:05:10.5085170Z return (buf0, buf1, buf2, ) 2023-01-11T21:05:10.5085175Z 2023-01-11T21:05:10.5085179Z 2023-01-11T21:05:10.5085257Z if __name__ == "__main__": 2023-01-11T21:05:10.5085373Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.5085496Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.5085698Z arg0_1 = rand_strided((8, 8, 8), (64, 8, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.5085872Z arg1_1 = rand_strided((4, ), (1, ), device='cpu', dtype=torch.int32) 2023-01-11T21:05:10.5085987Z print_performance(lambda: call([arg0_1, arg1_1])) 2023-01-11T21:05:10.5085993Z 2023-01-11T21:05:10.5085997Z 2023-01-11T21:05:10.5086090Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.5086160Z import torch 2023-01-11T21:05:10.5086229Z import random 2023-01-11T21:05:10.5086344Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.5086464Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.5086470Z 2023-01-11T21:05:10.5086549Z aten = torch.ops.aten 2023-01-11T21:05:10.5086668Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.5086758Z async_compile = AsyncCompile() 2023-01-11T21:05:10.5086763Z 2023-01-11T21:05:10.5086767Z 2023-01-11T21:05:10.5086899Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.5087102Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.5087222Z extern "C" void kernel(const long* __restrict__ in_ptr0, 2023-01-11T21:05:10.5087325Z const float* __restrict__ in_ptr1, 2023-01-11T21:05:10.5087423Z float* __restrict__ out_ptr0, 2023-01-11T21:05:10.5087517Z float* __restrict__ out_ptr1, 2023-01-11T21:05:10.5087637Z float* __restrict__ out_ptr2) 2023-01-11T21:05:10.5087696Z { 2023-01-11T21:05:10.5087791Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.5087852Z { 2023-01-11T21:05:10.5087929Z #pragma omp for 2023-01-11T21:05:10.5088010Z for(long i0=0; i0<4; i0+=1) 2023-01-11T21:05:10.5088072Z { 2023-01-11T21:05:10.5088139Z #pragma GCC ivdep 2023-01-11T21:05:10.5088223Z for(long i1=0; i1<64; i1+=1) 2023-01-11T21:05:10.5088285Z { 2023-01-11T21:05:10.5088348Z { 2023-01-11T21:05:10.5088412Z { 2023-01-11T21:05:10.5088507Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:05:10.5088609Z auto tmp1 = in_ptr1[i1 + (64*tmp0)]; 2023-01-11T21:05:10.5088693Z out_ptr0[i1 + (64*i0)] = tmp1; 2023-01-11T21:05:10.5088763Z } 2023-01-11T21:05:10.5088827Z } 2023-01-11T21:05:10.5088890Z } 2023-01-11T21:05:10.5088951Z } 2023-01-11T21:05:10.5089027Z #pragma omp for 2023-01-11T21:05:10.5089094Z for(long i0=0; i0<8; i0+=1) 2023-01-11T21:05:10.5089154Z { 2023-01-11T21:05:10.5089261Z #pragma GCC ivdep 2023-01-11T21:05:10.5089345Z for(long i1=0; i1<4; i1+=1) 2023-01-11T21:05:10.5089406Z { 2023-01-11T21:05:10.5089486Z #pragma GCC ivdep 2023-01-11T21:05:10.5089573Z for(long i2=0; i2<8; i2+=1) 2023-01-11T21:05:10.5089623Z { 2023-01-11T21:05:10.5089687Z { 2023-01-11T21:05:10.5089753Z { 2023-01-11T21:05:10.5089848Z auto tmp0 = in_ptr0[i1]; 2023-01-11T21:05:10.5089959Z auto tmp1 = in_ptr1[i2 + (8*tmp0) + (64*i0)]; 2023-01-11T21:05:10.5090062Z out_ptr1[i2 + (8*i1) + (32*i0)] = tmp1; 2023-01-11T21:05:10.5090128Z } 2023-01-11T21:05:10.5090182Z } 2023-01-11T21:05:10.5090244Z } 2023-01-11T21:05:10.5090305Z } 2023-01-11T21:05:10.5090366Z } 2023-01-11T21:05:10.5090441Z #pragma omp for 2023-01-11T21:05:10.5090520Z for(long i0=0; i0<8; i0+=1) 2023-01-11T21:05:10.5090581Z { 2023-01-11T21:05:10.5090645Z #pragma GCC ivdep 2023-01-11T21:05:10.5090726Z for(long i1=0; i1<4; i1+=1) 2023-01-11T21:05:10.5090788Z { 2023-01-11T21:05:10.5090867Z #pragma GCC ivdep 2023-01-11T21:05:10.5090954Z for(long i2=0; i2<4; i2+=1) 2023-01-11T21:05:10.5091017Z { 2023-01-11T21:05:10.5091082Z { 2023-01-11T21:05:10.5091135Z { 2023-01-11T21:05:10.5091230Z auto tmp0 = in_ptr0[i1]; 2023-01-11T21:05:10.5091322Z auto tmp1 = in_ptr0[i2]; 2023-01-11T21:05:10.5091434Z auto tmp2 = in_ptr1[tmp1 + (8*tmp0) + (64*i0)]; 2023-01-11T21:05:10.5091538Z out_ptr2[i2 + (4*i1) + (16*i0)] = tmp2; 2023-01-11T21:05:10.5091605Z } 2023-01-11T21:05:10.5091670Z } 2023-01-11T21:05:10.5091724Z } 2023-01-11T21:05:10.5091785Z } 2023-01-11T21:05:10.5091845Z } 2023-01-11T21:05:10.5091906Z } 2023-01-11T21:05:10.5091965Z } 2023-01-11T21:05:10.5092043Z ''') 2023-01-11T21:05:10.5092048Z 2023-01-11T21:05:10.5092053Z 2023-01-11T21:05:10.5092141Z async_compile.wait(globals()) 2023-01-11T21:05:10.5092199Z del async_compile 2023-01-11T21:05:10.5092203Z 2023-01-11T21:05:10.5092272Z def call(args): 2023-01-11T21:05:10.5092345Z arg0_1, arg1_1 = args 2023-01-11T21:05:10.5092420Z args.clear() 2023-01-11T21:05:10.5092623Z buf0 = empty_strided((4, 8, 8), (64, 8, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.5092821Z buf1 = empty_strided((8, 4, 8), (32, 8, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.5093057Z buf2 = empty_strided((8, 4, 4), (16, 4, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.5093257Z kernel_cpp_0(c_void_p(arg1_1.data_ptr()), c_void_p(arg0_1.data_ptr()), c_void_p(buf0.data_ptr()), c_void_p(buf1.data_ptr()), c_void_p(buf2.data_ptr())) 2023-01-11T21:05:10.5093326Z del arg0_1 2023-01-11T21:05:10.5093392Z del arg1_1 2023-01-11T21:05:10.5093475Z return (buf0, buf1, buf2, ) 2023-01-11T21:05:10.5093480Z 2023-01-11T21:05:10.5093484Z 2023-01-11T21:05:10.5093560Z if __name__ == "__main__": 2023-01-11T21:05:10.5093675Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.5093799Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.5094005Z arg0_1 = rand_strided((8, 8, 8), (64, 8, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.5094178Z arg1_1 = rand_strided((4, ), (1, ), device='cpu', dtype=torch.int64) 2023-01-11T21:05:10.5094292Z print_performance(lambda: call([arg0_1, arg1_1])) 2023-01-11T21:05:10.5094299Z 2023-01-11T21:05:10.5094367Z ok (5.826s) 2023-01-11T21:05:10.5094875Z test_indirect_load_broadcast_cpu (__main__.CpuTests) ... inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.5095005Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.5095268Z [2023-01-11 20:52:39,295] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 223 2023-01-11T21:05:10.5095534Z [2023-01-11 20:52:42,061] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 223 2023-01-11T21:05:10.5095540Z 2023-01-11T21:05:10.5095635Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.5095704Z import torch 2023-01-11T21:05:10.5095764Z import random 2023-01-11T21:05:10.5095878Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.5095998Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.5096003Z 2023-01-11T21:05:10.5096083Z aten = torch.ops.aten 2023-01-11T21:05:10.5096217Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.5096309Z async_compile = AsyncCompile() 2023-01-11T21:05:10.5096314Z 2023-01-11T21:05:10.5096319Z 2023-01-11T21:05:10.5096452Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.5096658Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.5096775Z extern "C" void kernel(const long* __restrict__ in_ptr0, 2023-01-11T21:05:10.5096867Z const float* __restrict__ in_ptr1, 2023-01-11T21:05:10.5096970Z const float* __restrict__ in_ptr2, 2023-01-11T21:05:10.5097073Z float* __restrict__ out_ptr0) 2023-01-11T21:05:10.5097137Z { 2023-01-11T21:05:10.5097234Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.5097296Z { 2023-01-11T21:05:10.5097359Z #pragma omp for 2023-01-11T21:05:10.5097443Z for(long i0=0; i0<32; i0+=1) 2023-01-11T21:05:10.5097505Z { 2023-01-11T21:05:10.5097587Z #pragma GCC ivdep 2023-01-11T21:05:10.5097672Z for(long i1=0; i1<21; i1+=1) 2023-01-11T21:05:10.5097735Z { 2023-01-11T21:05:10.5097799Z { 2023-01-11T21:05:10.5097851Z { 2023-01-11T21:05:10.5097955Z auto tmp0 = in_ptr0[i0 + (32*i1)]; 2023-01-11T21:05:10.5098049Z auto tmp2 = in_ptr2[i0]; 2023-01-11T21:05:10.5098154Z auto tmp1 = in_ptr1[i1 + (512*tmp0)]; 2023-01-11T21:05:10.5098247Z auto tmp3 = tmp1 + tmp2; 2023-01-11T21:05:10.5098342Z out_ptr0[i1 + (21*i0)] = tmp3; 2023-01-11T21:05:10.5098576Z } 2023-01-11T21:05:10.5098631Z } 2023-01-11T21:05:10.5098693Z } 2023-01-11T21:05:10.5098759Z } 2023-01-11T21:05:10.5098821Z } 2023-01-11T21:05:10.5098881Z } 2023-01-11T21:05:10.5098966Z ''') 2023-01-11T21:05:10.5098973Z 2023-01-11T21:05:10.5098977Z 2023-01-11T21:05:10.5099068Z async_compile.wait(globals()) 2023-01-11T21:05:10.5099126Z del async_compile 2023-01-11T21:05:10.5099145Z 2023-01-11T21:05:10.5099202Z def call(args): 2023-01-11T21:05:10.5099284Z arg0_1, arg1_1, arg2_1 = args 2023-01-11T21:05:10.5099355Z args.clear() 2023-01-11T21:05:10.5099555Z buf0 = empty_strided((32, 21), (21, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.5099745Z kernel_cpp_0(c_void_p(arg2_1.data_ptr()), c_void_p(arg1_1.data_ptr()), c_void_p(arg0_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:05:10.5099814Z del arg0_1 2023-01-11T21:05:10.5099877Z del arg1_1 2023-01-11T21:05:10.5099928Z del arg2_1 2023-01-11T21:05:10.5100000Z return (buf0, ) 2023-01-11T21:05:10.5100005Z 2023-01-11T21:05:10.5100009Z 2023-01-11T21:05:10.5100083Z if __name__ == "__main__": 2023-01-11T21:05:10.5100196Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.5100353Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.5100551Z arg0_1 = rand_strided((32, 1), (1, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.5100754Z arg1_1 = rand_strided((9521, 512), (512, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.5100934Z arg2_1 = rand_strided((32, 21), (1, 32), device='cpu', dtype=torch.int64) 2023-01-11T21:05:10.5101054Z print_performance(lambda: call([arg0_1, arg1_1, arg2_1])) 2023-01-11T21:05:10.5101058Z 2023-01-11T21:05:10.5101122Z ok (4.101s) 2023-01-11T21:05:10.5101553Z test_inf_cpu (__main__.CpuTests) ... inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.5101682Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.5101940Z [2023-01-11 20:52:43,252] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 224 2023-01-11T21:05:10.5102202Z [2023-01-11 20:52:46,002] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 224 2023-01-11T21:05:10.5102208Z 2023-01-11T21:05:10.5102300Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.5102368Z import torch 2023-01-11T21:05:10.5102435Z import random 2023-01-11T21:05:10.5102536Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.5102655Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.5102660Z 2023-01-11T21:05:10.5102737Z aten = torch.ops.aten 2023-01-11T21:05:10.5102870Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.5102961Z async_compile = AsyncCompile() 2023-01-11T21:05:10.5102966Z 2023-01-11T21:05:10.5102970Z 2023-01-11T21:05:10.5103106Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.5103311Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.5103429Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:05:10.5103515Z float* __restrict__ out_ptr0, 2023-01-11T21:05:10.5103610Z float* __restrict__ out_ptr1, 2023-01-11T21:05:10.5103703Z float* __restrict__ out_ptr2) 2023-01-11T21:05:10.5103763Z { 2023-01-11T21:05:10.5103860Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.5103921Z { 2023-01-11T21:05:10.5103995Z #pragma omp for 2023-01-11T21:05:10.5104063Z for(long i0=0; i0<8; i0+=1) 2023-01-11T21:05:10.5104123Z { 2023-01-11T21:05:10.5104186Z { 2023-01-11T21:05:10.5104277Z { 2023-01-11T21:05:10.5104371Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:05:10.5104503Z auto tmp1 = std::numeric_limits::infinity(); 2023-01-11T21:05:10.5104596Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:05:10.5104830Z auto tmp3 = -std::numeric_limits::infinity(); 2023-01-11T21:05:10.5104921Z auto tmp4 = tmp0 + tmp3; 2023-01-11T21:05:10.5105011Z auto tmp5 = tmp0 * tmp3; 2023-01-11T21:05:10.5105095Z out_ptr0[i0] = tmp2; 2023-01-11T21:05:10.5105177Z out_ptr1[i0] = tmp4; 2023-01-11T21:05:10.5105257Z out_ptr2[i0] = tmp5; 2023-01-11T21:05:10.5105322Z } 2023-01-11T21:05:10.5105370Z } 2023-01-11T21:05:10.5105431Z } 2023-01-11T21:05:10.5105491Z } 2023-01-11T21:05:10.5105550Z } 2023-01-11T21:05:10.5105627Z ''') 2023-01-11T21:05:10.5105631Z 2023-01-11T21:05:10.5105638Z 2023-01-11T21:05:10.5105725Z async_compile.wait(globals()) 2023-01-11T21:05:10.5105795Z del async_compile 2023-01-11T21:05:10.5105800Z 2023-01-11T21:05:10.5105856Z def call(args): 2023-01-11T21:05:10.5105922Z arg0_1, = args 2023-01-11T21:05:10.5106023Z args.clear() 2023-01-11T21:05:10.5106217Z buf0 = empty_strided((8, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.5106404Z buf1 = empty_strided((8, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.5106593Z buf2 = empty_strided((8, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.5106781Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(buf0.data_ptr()), c_void_p(buf1.data_ptr()), c_void_p(buf2.data_ptr())) 2023-01-11T21:05:10.5106835Z del arg0_1 2023-01-11T21:05:10.5106917Z return (buf0, buf1, buf2, ) 2023-01-11T21:05:10.5106922Z 2023-01-11T21:05:10.5106926Z 2023-01-11T21:05:10.5106999Z if __name__ == "__main__": 2023-01-11T21:05:10.5107113Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.5107237Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.5107425Z arg0_1 = rand_strided((8, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.5107533Z print_performance(lambda: call([arg0_1])) 2023-01-11T21:05:10.5107538Z 2023-01-11T21:05:10.5107604Z ok (2.789s) 2023-01-11T21:05:10.5108052Z test_inplace_activations_cpu (__main__.CpuTests) ... inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.5108167Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.5108425Z [2023-01-11 20:52:46,375] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 225 2023-01-11T21:05:10.5108688Z [2023-01-11 20:52:49,183] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 225 2023-01-11T21:05:10.5108694Z 2023-01-11T21:05:10.5108786Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.5108857Z import torch 2023-01-11T21:05:10.5108926Z import random 2023-01-11T21:05:10.5109040Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.5109158Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.5109163Z 2023-01-11T21:05:10.5109239Z aten = torch.ops.aten 2023-01-11T21:05:10.5109359Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.5109448Z async_compile = AsyncCompile() 2023-01-11T21:05:10.5109453Z 2023-01-11T21:05:10.5109457Z 2023-01-11T21:05:10.5109592Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.5109796Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.5109917Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:05:10.5110050Z float* __restrict__ out_ptr0, 2023-01-11T21:05:10.5110145Z float* __restrict__ out_ptr1, 2023-01-11T21:05:10.5110227Z float* __restrict__ out_ptr2, 2023-01-11T21:05:10.5110320Z float* __restrict__ out_ptr3, 2023-01-11T21:05:10.5110411Z float* __restrict__ out_ptr4, 2023-01-11T21:05:10.5110501Z float* __restrict__ out_ptr5, 2023-01-11T21:05:10.5110592Z float* __restrict__ out_ptr6) 2023-01-11T21:05:10.5110653Z { 2023-01-11T21:05:10.5110748Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.5110795Z { 2023-01-11T21:05:10.5110873Z #pragma omp for 2023-01-11T21:05:10.5110954Z for(long i0=0; i0<64; i0+=1) 2023-01-11T21:05:10.5111017Z { 2023-01-11T21:05:10.5111079Z { 2023-01-11T21:05:10.5111143Z { 2023-01-11T21:05:10.5111235Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:05:10.5111327Z auto tmp1 = static_cast(1); 2023-01-11T21:05:10.5111418Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:05:10.5111546Z auto tmp3 = static_cast(3); 2023-01-11T21:05:10.5111638Z auto tmp4 = tmp2 + tmp3; 2023-01-11T21:05:10.5111741Z auto tmp5 = static_cast(0.0); 2023-01-11T21:05:10.5111867Z auto tmp6 = (tmp5 != tmp5) ? tmp5 : std::max(tmp4, tmp5); 2023-01-11T21:05:10.5111973Z auto tmp7 = static_cast(6.0); 2023-01-11T21:05:10.5112097Z auto tmp8 = (tmp7 != tmp7) ? tmp7 : std::min(tmp6, tmp7); 2023-01-11T21:05:10.5112173Z auto tmp9 = tmp2 * tmp8; 2023-01-11T21:05:10.5112275Z auto tmp10 = static_cast(6); 2023-01-11T21:05:10.5112368Z auto tmp11 = tmp9 / tmp10; 2023-01-11T21:05:10.5112527Z auto tmp12 = static_cast(-1.0); 2023-01-11T21:05:10.5112656Z auto tmp13 = (tmp12 != tmp12) ? tmp12 : std::max(tmp2, tmp12); 2023-01-11T21:05:10.5112763Z auto tmp14 = static_cast(1.0); 2023-01-11T21:05:10.5112894Z auto tmp15 = (tmp14 != tmp14) ? tmp14 : std::min(tmp13, tmp14); 2023-01-11T21:05:10.5112995Z auto tmp16 = static_cast(0); 2023-01-11T21:05:10.5113074Z auto tmp17 = tmp2 > tmp16; 2023-01-11T21:05:10.5113179Z auto tmp18 = static_cast(0.01); 2023-01-11T21:05:10.5113270Z auto tmp19 = tmp2 * tmp18; 2023-01-11T21:05:10.5113368Z auto tmp20 = tmp17 ? tmp2 : tmp19; 2023-01-11T21:05:10.5113515Z auto tmp21 = std::exp(-tmp2); 2023-01-11T21:05:10.5113606Z auto tmp22 = 1 / (1 + tmp21); 2023-01-11T21:05:10.5113697Z auto tmp23 = tmp2 * tmp22; 2023-01-11T21:05:10.5113785Z auto tmp24 = std::log1p(tmp2); 2023-01-11T21:05:10.5113887Z auto tmp25 = static_cast(0); 2023-01-11T21:05:10.5113991Z auto tmp26 = static_cast(99.0); 2023-01-11T21:05:10.5114091Z auto tmp27 = tmp25 ? tmp26 : tmp2; 2023-01-11T21:05:10.5114190Z auto tmp28 = static_cast(1); 2023-01-11T21:05:10.5114287Z auto tmp29 = tmp28 ? tmp26 : tmp2; 2023-01-11T21:05:10.5114371Z out_ptr0[i0] = tmp11; 2023-01-11T21:05:10.5114443Z out_ptr1[i0] = tmp15; 2023-01-11T21:05:10.5114525Z out_ptr2[i0] = tmp20; 2023-01-11T21:05:10.5114609Z out_ptr3[i0] = tmp23; 2023-01-11T21:05:10.5114689Z out_ptr4[i0] = tmp24; 2023-01-11T21:05:10.5114769Z out_ptr5[i0] = tmp27; 2023-01-11T21:05:10.5114850Z out_ptr6[i0] = tmp29; 2023-01-11T21:05:10.5114913Z } 2023-01-11T21:05:10.5114991Z } 2023-01-11T21:05:10.5115053Z } 2023-01-11T21:05:10.5115112Z } 2023-01-11T21:05:10.5115171Z } 2023-01-11T21:05:10.5115250Z ''') 2023-01-11T21:05:10.5115255Z 2023-01-11T21:05:10.5115259Z 2023-01-11T21:05:10.5115352Z async_compile.wait(globals()) 2023-01-11T21:05:10.5115423Z del async_compile 2023-01-11T21:05:10.5115428Z 2023-01-11T21:05:10.5115496Z def call(args): 2023-01-11T21:05:10.5115551Z arg0_1, = args 2023-01-11T21:05:10.5115621Z args.clear() 2023-01-11T21:05:10.5115816Z buf0 = empty_strided((64, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.5116005Z buf1 = empty_strided((64, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.5116189Z buf2 = empty_strided((64, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.5116373Z buf3 = empty_strided((64, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.5116556Z buf4 = empty_strided((64, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.5116729Z buf5 = empty_strided((64, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.5116910Z buf6 = empty_strided((64, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.5117225Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(buf0.data_ptr()), c_void_p(buf1.data_ptr()), c_void_p(buf2.data_ptr()), c_void_p(buf3.data_ptr()), c_void_p(buf4.data_ptr()), c_void_p(buf5.data_ptr()), c_void_p(buf6.data_ptr())) 2023-01-11T21:05:10.5117296Z del arg0_1 2023-01-11T21:05:10.5117403Z return (buf0, buf1, buf2, buf3, buf4, buf5, buf6, ) 2023-01-11T21:05:10.5117409Z 2023-01-11T21:05:10.5117413Z 2023-01-11T21:05:10.5117490Z if __name__ == "__main__": 2023-01-11T21:05:10.5117602Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.5117724Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.5117915Z arg0_1 = rand_strided((64, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.5118013Z print_performance(lambda: call([arg0_1])) 2023-01-11T21:05:10.5118019Z 2023-01-11T21:05:10.5118086Z ok (3.185s) 2023-01-11T21:05:10.5118418Z test_inplace_add_cpu (__main__.CpuTests) ... [2023-01-11 20:52:49,217] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 226 2023-01-11T21:05:10.5118683Z [2023-01-11 20:52:52,029] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 226 2023-01-11T21:05:10.5118688Z 2023-01-11T21:05:10.5118781Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.5118850Z import torch 2023-01-11T21:05:10.5118918Z import random 2023-01-11T21:05:10.5119031Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.5119138Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.5119143Z 2023-01-11T21:05:10.5119220Z aten = torch.ops.aten 2023-01-11T21:05:10.5119353Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.5119445Z async_compile = AsyncCompile() 2023-01-11T21:05:10.5119453Z 2023-01-11T21:05:10.5119458Z 2023-01-11T21:05:10.5119591Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.5119796Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.5119919Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:05:10.5120023Z const float* __restrict__ in_ptr1, 2023-01-11T21:05:10.5120109Z float* __restrict__ out_ptr0) 2023-01-11T21:05:10.5120168Z { 2023-01-11T21:05:10.5120264Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.5120327Z { 2023-01-11T21:05:10.5120405Z #pragma omp for 2023-01-11T21:05:10.5120486Z for(long i0=0; i0<1; i0+=1) 2023-01-11T21:05:10.5120547Z { 2023-01-11T21:05:10.5120864Z auto tmp0 = at::vec::Vectorized::loadu(in_ptr0 + 16*i0); 2023-01-11T21:05:10.5120998Z auto tmp1 = at::vec::Vectorized::loadu(in_ptr1 + 16*i0); 2023-01-11T21:05:10.5121140Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:05:10.5121234Z tmp2.store(out_ptr0 + 16*i0); 2023-01-11T21:05:10.5121297Z } 2023-01-11T21:05:10.5121393Z #pragma omp for simd simdlen(8) 2023-01-11T21:05:10.5121478Z for(long i0=16; i0<16; i0+=1) 2023-01-11T21:05:10.5121527Z { 2023-01-11T21:05:10.5121610Z auto tmp0 = out_ptr0[i0]; 2023-01-11T21:05:10.5121695Z auto tmp1 = in_ptr1[i0]; 2023-01-11T21:05:10.5121780Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:05:10.5121859Z out_ptr0[i0] = tmp2; 2023-01-11T21:05:10.5121922Z } 2023-01-11T21:05:10.5121982Z } 2023-01-11T21:05:10.5122028Z } 2023-01-11T21:05:10.5122111Z ''') 2023-01-11T21:05:10.5122116Z 2023-01-11T21:05:10.5122121Z 2023-01-11T21:05:10.5122211Z async_compile.wait(globals()) 2023-01-11T21:05:10.5122284Z del async_compile 2023-01-11T21:05:10.5122291Z 2023-01-11T21:05:10.5122362Z def call(args): 2023-01-11T21:05:10.5122436Z arg0_1, arg1_1 = args 2023-01-11T21:05:10.5122510Z args.clear() 2023-01-11T21:05:10.5122658Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(arg1_1.data_ptr()), c_void_p(arg0_1.data_ptr())) 2023-01-11T21:05:10.5122726Z del arg1_1 2023-01-11T21:05:10.5122839Z return (arg0_1, ) 2023-01-11T21:05:10.5122845Z 2023-01-11T21:05:10.5122849Z 2023-01-11T21:05:10.5122927Z if __name__ == "__main__": 2023-01-11T21:05:10.5123040Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.5123162Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.5123361Z arg0_1 = rand_strided((4, 4), (4, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.5123554Z arg1_1 = rand_strided((4, 4), (4, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.5123656Z print_performance(lambda: call([arg0_1, arg1_1])) 2023-01-11T21:05:10.5123661Z 2023-01-11T21:05:10.5123727Z ok (2.838s) 2023-01-11T21:05:10.5124075Z test_inplace_mixed_dtype_ops_cpu (__main__.CpuTests) ... [2023-01-11 20:52:52,124] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 227 2023-01-11T21:05:10.5124341Z [2023-01-11 20:52:54,923] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 227 2023-01-11T21:05:10.5124348Z 2023-01-11T21:05:10.5124442Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.5124511Z import torch 2023-01-11T21:05:10.5124581Z import random 2023-01-11T21:05:10.5124697Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.5124805Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.5124825Z 2023-01-11T21:05:10.5124889Z aten = torch.ops.aten 2023-01-11T21:05:10.5125023Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.5125114Z async_compile = AsyncCompile() 2023-01-11T21:05:10.5125119Z 2023-01-11T21:05:10.5125123Z 2023-01-11T21:05:10.5125256Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.5125460Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.5125578Z extern "C" void kernel(float* __restrict__ in_out_ptr0, 2023-01-11T21:05:10.5125682Z const float* __restrict__ in_ptr0, 2023-01-11T21:05:10.5125777Z const double* __restrict__ in_ptr1) 2023-01-11T21:05:10.5125837Z { 2023-01-11T21:05:10.5125933Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.5125996Z { 2023-01-11T21:05:10.5126072Z #pragma omp for 2023-01-11T21:05:10.5126155Z for(long i0=0; i0<16; i0+=1) 2023-01-11T21:05:10.5126217Z { 2023-01-11T21:05:10.5126266Z { 2023-01-11T21:05:10.5126329Z { 2023-01-11T21:05:10.5126422Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:05:10.5126511Z auto tmp1 = in_ptr1[i0]; 2023-01-11T21:05:10.5126618Z auto tmp2 = static_cast(tmp1); 2023-01-11T21:05:10.5126710Z auto tmp3 = tmp0 + tmp2; 2023-01-11T21:05:10.5126852Z auto tmp4 = static_cast(tmp3); 2023-01-11T21:05:10.5126927Z auto tmp5 = tmp4 + tmp1; 2023-01-11T21:05:10.5127031Z auto tmp6 = static_cast(tmp5); 2023-01-11T21:05:10.5127140Z auto tmp7 = static_cast(tmp6); 2023-01-11T21:05:10.5127230Z auto tmp8 = tmp7 * tmp1; 2023-01-11T21:05:10.5127336Z auto tmp9 = static_cast(tmp8); 2023-01-11T21:05:10.5127427Z in_out_ptr0[i0] = tmp9; 2023-01-11T21:05:10.5127492Z } 2023-01-11T21:05:10.5127541Z } 2023-01-11T21:05:10.5127603Z } 2023-01-11T21:05:10.5127666Z } 2023-01-11T21:05:10.5127726Z } 2023-01-11T21:05:10.5127808Z ''') 2023-01-11T21:05:10.5127813Z 2023-01-11T21:05:10.5127818Z 2023-01-11T21:05:10.5127906Z async_compile.wait(globals()) 2023-01-11T21:05:10.5127979Z del async_compile 2023-01-11T21:05:10.5127984Z 2023-01-11T21:05:10.5128040Z def call(args): 2023-01-11T21:05:10.5128117Z arg0_1, arg1_1 = args 2023-01-11T21:05:10.5128189Z args.clear() 2023-01-11T21:05:10.5128382Z buf0 = empty_strided((4, 4), (4, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.5128495Z buf1 = buf0; del buf0 # reuse 2023-01-11T21:05:10.5128658Z kernel_cpp_0(c_void_p(buf1.data_ptr()), c_void_p(arg0_1.data_ptr()), c_void_p(arg1_1.data_ptr())) 2023-01-11T21:05:10.5128725Z del arg0_1 2023-01-11T21:05:10.5128776Z del arg1_1 2023-01-11T21:05:10.5128847Z return (buf1, ) 2023-01-11T21:05:10.5128852Z 2023-01-11T21:05:10.5128856Z 2023-01-11T21:05:10.5128931Z if __name__ == "__main__": 2023-01-11T21:05:10.5129046Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.5129169Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.5129368Z arg0_1 = rand_strided((4, 4), (4, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.5129564Z arg1_1 = rand_strided((4, 4), (4, 1), device='cpu', dtype=torch.float64) 2023-01-11T21:05:10.5129681Z print_performance(lambda: call([arg0_1, arg1_1])) 2023-01-11T21:05:10.5129686Z 2023-01-11T21:05:10.5129752Z ok (2.895s) 2023-01-11T21:05:10.5130074Z test_input_mutation1_cpu (__main__.CpuTests) ... [2023-01-11 20:52:54,969] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 228 2023-01-11T21:05:10.5130283Z [2023-01-11 20:52:54,988] torch._inductor.scheduler: [DEBUG] remove_buffer('buf0') 2023-01-11T21:05:10.5130482Z [2023-01-11 20:52:54,990] torch._inductor.scheduler: [DEBUG] remove_buffer('buf0') 2023-01-11T21:05:10.5130745Z [2023-01-11 20:52:57,823] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 228 2023-01-11T21:05:10.5130751Z 2023-01-11T21:05:10.5130844Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.5130913Z import torch 2023-01-11T21:05:10.5130983Z import random 2023-01-11T21:05:10.5131098Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.5131204Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.5131212Z 2023-01-11T21:05:10.5131289Z aten = torch.ops.aten 2023-01-11T21:05:10.5131421Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.5131513Z async_compile = AsyncCompile() 2023-01-11T21:05:10.5131518Z 2023-01-11T21:05:10.5131522Z 2023-01-11T21:05:10.5131653Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.5131857Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.5131973Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:05:10.5132073Z float* __restrict__ out_ptr1, 2023-01-11T21:05:10.5132157Z float* __restrict__ out_ptr2) 2023-01-11T21:05:10.5132218Z { 2023-01-11T21:05:10.5132314Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.5132375Z { 2023-01-11T21:05:10.5132450Z #pragma omp for 2023-01-11T21:05:10.5132530Z for(long i0=0; i0<4; i0+=1) 2023-01-11T21:05:10.5132611Z { 2023-01-11T21:05:10.5132743Z auto tmp0 = at::vec::Vectorized::loadu(in_ptr0 + 16*i0); 2023-01-11T21:05:10.5132875Z auto tmp1 = at::vec::Vectorized(static_cast(1)); 2023-01-11T21:05:10.5132961Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:05:10.5133043Z auto tmp3 = tmp2 * tmp2; 2023-01-11T21:05:10.5133172Z auto tmp4 = at::vec::Vectorized(static_cast(2)); 2023-01-11T21:05:10.5133253Z auto tmp5 = tmp2 + tmp4; 2023-01-11T21:05:10.5133333Z auto tmp6 = tmp3 / tmp5; 2023-01-11T21:05:10.5133411Z tmp2.store(out_ptr1 + 16*i0); 2023-01-11T21:05:10.5133501Z tmp6.store(out_ptr2 + 16*i0); 2023-01-11T21:05:10.5133561Z } 2023-01-11T21:05:10.5133655Z #pragma omp for simd simdlen(8) 2023-01-11T21:05:10.5133737Z for(long i0=64; i0<64; i0+=1) 2023-01-11T21:05:10.5133797Z { 2023-01-11T21:05:10.5133884Z auto tmp0 = out_ptr1[i0]; 2023-01-11T21:05:10.5133971Z auto tmp1 = static_cast(1); 2023-01-11T21:05:10.5134051Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:05:10.5134131Z auto tmp3 = tmp2 * tmp2; 2023-01-11T21:05:10.5134277Z auto tmp4 = static_cast(2); 2023-01-11T21:05:10.5134362Z auto tmp5 = tmp2 + tmp4; 2023-01-11T21:05:10.5134440Z auto tmp6 = tmp3 / tmp5; 2023-01-11T21:05:10.5134518Z out_ptr1[i0] = tmp2; 2023-01-11T21:05:10.5134581Z out_ptr2[i0] = tmp6; 2023-01-11T21:05:10.5134640Z } 2023-01-11T21:05:10.5134700Z } 2023-01-11T21:05:10.5134761Z } 2023-01-11T21:05:10.5134840Z ''') 2023-01-11T21:05:10.5134844Z 2023-01-11T21:05:10.5134848Z 2023-01-11T21:05:10.5134936Z async_compile.wait(globals()) 2023-01-11T21:05:10.5135011Z del async_compile 2023-01-11T21:05:10.5135017Z 2023-01-11T21:05:10.5135072Z def call(args): 2023-01-11T21:05:10.5135144Z arg0_1, = args 2023-01-11T21:05:10.5135214Z args.clear() 2023-01-11T21:05:10.5135413Z buf2 = empty_strided((64, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.5135575Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(arg0_1.data_ptr()), c_void_p(buf2.data_ptr())) 2023-01-11T21:05:10.5135646Z del arg0_1 2023-01-11T21:05:10.5135717Z return (buf2, ) 2023-01-11T21:05:10.5135722Z 2023-01-11T21:05:10.5135726Z 2023-01-11T21:05:10.5135800Z if __name__ == "__main__": 2023-01-11T21:05:10.5135900Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.5136025Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.5136223Z arg0_1 = rand_strided((64, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.5136329Z print_performance(lambda: call([arg0_1])) 2023-01-11T21:05:10.5136334Z 2023-01-11T21:05:10.5136404Z ok (2.902s) 2023-01-11T21:05:10.5136739Z test_input_mutation2_cpu (__main__.CpuTests) ... [2023-01-11 20:52:57,963] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 229 2023-01-11T21:05:10.5136961Z [2023-01-11 20:52:57,968] torch._inductor.graph: [WARNING] Creating implicit fallback for: 2023-01-11T21:05:10.5137054Z target: aten.expand_copy.default 2023-01-11T21:05:10.5137131Z args[0]: TensorBox(StorageBox( 2023-01-11T21:05:10.5137203Z Pointwise( 2023-01-11T21:05:10.5137288Z 'cpu', 2023-01-11T21:05:10.5137361Z torch.float32, 2023-01-11T21:05:10.5137459Z tmp0 = constant(66.0, torch.float32) 2023-01-11T21:05:10.5137527Z return tmp0 2023-01-11T21:05:10.5137575Z , 2023-01-11T21:05:10.5137642Z ranges=[1], 2023-01-11T21:05:10.5137750Z origins={lift_fresh_copy, _tensor_constant0} 2023-01-11T21:05:10.5137811Z ) 2023-01-11T21:05:10.5137870Z )) 2023-01-11T21:05:10.5137936Z args[1]: [64] 2023-01-11T21:05:10.5138199Z [2023-01-11 20:52:57,982] torch._inductor.ir: [WARNING] Using FallbackKernel: torch.ops.aten.expand_copy.default 2023-01-11T21:05:10.5138446Z [2023-01-11 20:53:00,781] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 229 2023-01-11T21:05:10.5138572Z 2023-01-11T21:05:10.5138656Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.5138727Z import torch 2023-01-11T21:05:10.5138802Z import random 2023-01-11T21:05:10.5138918Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.5139038Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.5139042Z 2023-01-11T21:05:10.5139121Z aten = torch.ops.aten 2023-01-11T21:05:10.5139254Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.5139331Z async_compile = AsyncCompile() 2023-01-11T21:05:10.5139335Z 2023-01-11T21:05:10.5139354Z 2023-01-11T21:05:10.5139479Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.5139682Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.5139802Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:05:10.5139904Z float* __restrict__ out_ptr0, 2023-01-11T21:05:10.5140004Z float* __restrict__ out_ptr1) 2023-01-11T21:05:10.5140066Z { 2023-01-11T21:05:10.5140163Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.5140240Z { 2023-01-11T21:05:10.5140318Z #pragma omp for 2023-01-11T21:05:10.5140400Z for(long i0=0; i0<4; i0+=1) 2023-01-11T21:05:10.5140463Z { 2023-01-11T21:05:10.5140595Z auto tmp0 = at::vec::Vectorized::loadu(in_ptr0 + 16*i0); 2023-01-11T21:05:10.5140727Z auto tmp1 = at::vec::Vectorized(static_cast(1)); 2023-01-11T21:05:10.5140811Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:05:10.5140889Z tmp2.store(out_ptr0 + 16*i0); 2023-01-11T21:05:10.5140951Z } 2023-01-11T21:05:10.5141043Z #pragma omp for simd simdlen(8) 2023-01-11T21:05:10.5141123Z for(long i0=64; i0<64; i0+=1) 2023-01-11T21:05:10.5141183Z { 2023-01-11T21:05:10.5141263Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:05:10.5141364Z auto tmp1 = static_cast(1); 2023-01-11T21:05:10.5141432Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:05:10.5141510Z out_ptr0[i0] = tmp2; 2023-01-11T21:05:10.5141573Z } 2023-01-11T21:05:10.5141649Z #pragma omp single 2023-01-11T21:05:10.5141710Z { 2023-01-11T21:05:10.5141776Z { 2023-01-11T21:05:10.5141826Z { 2023-01-11T21:05:10.5141934Z auto tmp0 = static_cast(66.0); 2023-01-11T21:05:10.5142015Z out_ptr1[0] = tmp0; 2023-01-11T21:05:10.5142079Z } 2023-01-11T21:05:10.5142146Z } 2023-01-11T21:05:10.5142207Z } 2023-01-11T21:05:10.5142267Z } 2023-01-11T21:05:10.5142312Z } 2023-01-11T21:05:10.5142391Z ''') 2023-01-11T21:05:10.5142396Z 2023-01-11T21:05:10.5142400Z 2023-01-11T21:05:10.5142532Z kernel_cpp_1 = async_compile.cpp(''' 2023-01-11T21:05:10.5142733Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.5142852Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:05:10.5142951Z float* __restrict__ out_ptr0) 2023-01-11T21:05:10.5143011Z { 2023-01-11T21:05:10.5143106Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.5143153Z { 2023-01-11T21:05:10.5143229Z #pragma omp for 2023-01-11T21:05:10.5143311Z for(long i0=0; i0<4; i0+=1) 2023-01-11T21:05:10.5143373Z { 2023-01-11T21:05:10.5143501Z auto tmp0 = at::vec::Vectorized::loadu(in_ptr0 + 16*i0); 2023-01-11T21:05:10.5143631Z auto tmp1 = at::vec::Vectorized(static_cast(2)); 2023-01-11T21:05:10.5143713Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:05:10.5143790Z tmp2.store(out_ptr0 + 16*i0); 2023-01-11T21:05:10.5143851Z } 2023-01-11T21:05:10.5143944Z #pragma omp for simd simdlen(8) 2023-01-11T21:05:10.5144024Z for(long i0=64; i0<64; i0+=1) 2023-01-11T21:05:10.5144121Z { 2023-01-11T21:05:10.5144204Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:05:10.5144302Z auto tmp1 = static_cast(2); 2023-01-11T21:05:10.5144373Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:05:10.5144452Z out_ptr0[i0] = tmp2; 2023-01-11T21:05:10.5144514Z } 2023-01-11T21:05:10.5144574Z } 2023-01-11T21:05:10.5144633Z } 2023-01-11T21:05:10.5144710Z ''') 2023-01-11T21:05:10.5144715Z 2023-01-11T21:05:10.5144720Z 2023-01-11T21:05:10.5144807Z async_compile.wait(globals()) 2023-01-11T21:05:10.5144865Z del async_compile 2023-01-11T21:05:10.5144869Z 2023-01-11T21:05:10.5144938Z def call(args): 2023-01-11T21:05:10.5145010Z primals_1, = args 2023-01-11T21:05:10.5145083Z args.clear() 2023-01-11T21:05:10.5145279Z buf0 = empty_strided((1, 64), (64, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.5145468Z buf1 = empty_strided((1, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.5145639Z kernel_cpp_0(c_void_p(primals_1.data_ptr()), c_void_p(buf0.data_ptr()), c_void_p(buf1.data_ptr())) 2023-01-11T21:05:10.5145697Z del primals_1 2023-01-11T21:05:10.5145854Z buf2 = torch.ops.aten.expand_copy.default(buf1, [64]) 2023-01-11T21:05:10.5145922Z del buf1 2023-01-11T21:05:10.5145989Z buf3 = buf2 2023-01-11T21:05:10.5146083Z assert_size_stride(buf3, (64, ), (1, )) 2023-01-11T21:05:10.5146146Z del buf2 2023-01-11T21:05:10.5146340Z buf4 = empty_strided((1, 64), (64, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.5146456Z kernel_cpp_1(c_void_p(buf3.data_ptr()), c_void_p(buf4.data_ptr())) 2023-01-11T21:05:10.5146564Z return (as_strided(buf3, (1, 64), (64, 1)), buf0, buf4, ) 2023-01-11T21:05:10.5146570Z 2023-01-11T21:05:10.5146574Z 2023-01-11T21:05:10.5146648Z if __name__ == "__main__": 2023-01-11T21:05:10.5146760Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.5146882Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.5147087Z primals_1 = rand_strided((1, 64), (64, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.5147197Z print_performance(lambda: call([primals_1])) 2023-01-11T21:05:10.5147202Z 2023-01-11T21:05:10.5147270Z ok (2.959s) 2023-01-11T21:05:10.5147593Z test_input_mutation3_cpu (__main__.CpuTests) ... [2023-01-11 20:53:00,886] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 230 2023-01-11T21:05:10.5147855Z [2023-01-11 20:53:03,716] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 230 2023-01-11T21:05:10.5147860Z 2023-01-11T21:05:10.5147953Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.5148020Z import torch 2023-01-11T21:05:10.5148090Z import random 2023-01-11T21:05:10.5148202Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.5148321Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.5148326Z 2023-01-11T21:05:10.5148403Z aten = torch.ops.aten 2023-01-11T21:05:10.5148522Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.5148612Z async_compile = AsyncCompile() 2023-01-11T21:05:10.5148617Z 2023-01-11T21:05:10.5148621Z 2023-01-11T21:05:10.5148754Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.5148957Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.5149075Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:05:10.5149174Z float* __restrict__ out_ptr0) 2023-01-11T21:05:10.5149234Z { 2023-01-11T21:05:10.5149329Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.5149376Z { 2023-01-11T21:05:10.5149451Z #pragma omp for 2023-01-11T21:05:10.5149532Z for(long i0=0; i0<4; i0+=1) 2023-01-11T21:05:10.5149594Z { 2023-01-11T21:05:10.5149724Z auto tmp0 = at::vec::Vectorized::loadu(in_ptr0 + 16*i0); 2023-01-11T21:05:10.5149856Z auto tmp1 = at::vec::Vectorized(static_cast(1)); 2023-01-11T21:05:10.5149973Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:05:10.5150050Z tmp2.store(out_ptr0 + 16*i0); 2023-01-11T21:05:10.5150111Z } 2023-01-11T21:05:10.5150207Z #pragma omp for simd simdlen(8) 2023-01-11T21:05:10.5150288Z for(long i0=64; i0<64; i0+=1) 2023-01-11T21:05:10.5150349Z { 2023-01-11T21:05:10.5150432Z auto tmp0 = out_ptr0[i0]; 2023-01-11T21:05:10.5150528Z auto tmp1 = static_cast(1); 2023-01-11T21:05:10.5150597Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:05:10.5150676Z out_ptr0[i0] = tmp2; 2023-01-11T21:05:10.5150736Z } 2023-01-11T21:05:10.5150809Z #pragma omp for 2023-01-11T21:05:10.5150890Z for(long i0=0; i0<4; i0+=1) 2023-01-11T21:05:10.5150949Z { 2023-01-11T21:05:10.5151081Z auto tmp0 = at::vec::Vectorized::loadu(out_ptr0 + 16*i0); 2023-01-11T21:05:10.5151200Z auto tmp1 = at::vec::Vectorized(static_cast(2)); 2023-01-11T21:05:10.5151282Z auto tmp2 = tmp0 * tmp1; 2023-01-11T21:05:10.5151372Z tmp2.store(out_ptr0 + 16*i0); 2023-01-11T21:05:10.5151459Z } 2023-01-11T21:05:10.5151555Z #pragma omp for simd simdlen(8) 2023-01-11T21:05:10.5151636Z for(long i0=64; i0<64; i0+=1) 2023-01-11T21:05:10.5151697Z { 2023-01-11T21:05:10.5151765Z auto tmp0 = out_ptr0[i0]; 2023-01-11T21:05:10.5151862Z auto tmp1 = static_cast(2); 2023-01-11T21:05:10.5151946Z auto tmp2 = tmp0 * tmp1; 2023-01-11T21:05:10.5152024Z out_ptr0[i0] = tmp2; 2023-01-11T21:05:10.5152086Z } 2023-01-11T21:05:10.5152159Z #pragma omp for 2023-01-11T21:05:10.5152238Z for(long i0=0; i0<4; i0+=1) 2023-01-11T21:05:10.5152286Z { 2023-01-11T21:05:10.5152419Z auto tmp0 = at::vec::Vectorized::loadu(out_ptr0 + 16*i0); 2023-01-11T21:05:10.5152556Z auto tmp1 = decltype(tmp0)(1)/(decltype(tmp0)(1) + tmp0.neg().exp()); 2023-01-11T21:05:10.5152646Z tmp1.store(out_ptr0 + 16*i0); 2023-01-11T21:05:10.5152707Z } 2023-01-11T21:05:10.5152802Z #pragma omp for simd simdlen(8) 2023-01-11T21:05:10.5152883Z for(long i0=64; i0<64; i0+=1) 2023-01-11T21:05:10.5152930Z { 2023-01-11T21:05:10.5153013Z auto tmp0 = out_ptr0[i0]; 2023-01-11T21:05:10.5153150Z auto tmp1 = std::exp(-tmp0); 2023-01-11T21:05:10.5153231Z auto tmp2 = 1 / (1 + tmp1); 2023-01-11T21:05:10.5153309Z out_ptr0[i0] = tmp2; 2023-01-11T21:05:10.5153369Z } 2023-01-11T21:05:10.5153442Z #pragma omp for 2023-01-11T21:05:10.5153508Z for(long i0=0; i0<4; i0+=1) 2023-01-11T21:05:10.5153569Z { 2023-01-11T21:05:10.5153699Z auto tmp0 = at::vec::Vectorized::loadu(out_ptr0 + 16*i0); 2023-01-11T21:05:10.5153830Z auto tmp1 = at::vec::Vectorized(static_cast(3)); 2023-01-11T21:05:10.5153914Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:05:10.5154003Z tmp2.store(out_ptr0 + 16*i0); 2023-01-11T21:05:10.5154064Z } 2023-01-11T21:05:10.5154145Z #pragma omp for simd simdlen(8) 2023-01-11T21:05:10.5154229Z for(long i0=64; i0<64; i0+=1) 2023-01-11T21:05:10.5154289Z { 2023-01-11T21:05:10.5154371Z auto tmp0 = out_ptr0[i0]; 2023-01-11T21:05:10.5154468Z auto tmp1 = static_cast(3); 2023-01-11T21:05:10.5154550Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:05:10.5154628Z out_ptr0[i0] = tmp2; 2023-01-11T21:05:10.5154675Z } 2023-01-11T21:05:10.5154750Z #pragma omp for 2023-01-11T21:05:10.5154828Z for(long i0=0; i0<4; i0+=1) 2023-01-11T21:05:10.5154890Z { 2023-01-11T21:05:10.5155022Z auto tmp0 = at::vec::Vectorized::loadu(out_ptr0 + 16*i0); 2023-01-11T21:05:10.5155153Z auto tmp1 = at::vec::Vectorized(static_cast(4)); 2023-01-11T21:05:10.5155268Z auto tmp2 = tmp0 * tmp1; 2023-01-11T21:05:10.5155344Z tmp2.store(out_ptr0 + 16*i0); 2023-01-11T21:05:10.5155404Z } 2023-01-11T21:05:10.5155502Z #pragma omp for simd simdlen(8) 2023-01-11T21:05:10.5155582Z for(long i0=64; i0<64; i0+=1) 2023-01-11T21:05:10.5155643Z { 2023-01-11T21:05:10.5155726Z auto tmp0 = out_ptr0[i0]; 2023-01-11T21:05:10.5155823Z auto tmp1 = static_cast(4); 2023-01-11T21:05:10.5155893Z auto tmp2 = tmp0 * tmp1; 2023-01-11T21:05:10.5155972Z out_ptr0[i0] = tmp2; 2023-01-11T21:05:10.5156033Z } 2023-01-11T21:05:10.5156108Z #pragma omp for 2023-01-11T21:05:10.5156189Z for(long i0=0; i0<4; i0+=1) 2023-01-11T21:05:10.5156250Z { 2023-01-11T21:05:10.5156383Z auto tmp0 = at::vec::Vectorized::loadu(out_ptr0 + 16*i0); 2023-01-11T21:05:10.5156496Z auto tmp1 = at::vec::clamp_min(tmp0, decltype(tmp0)(0)); 2023-01-11T21:05:10.5156588Z tmp1.store(out_ptr0 + 16*i0); 2023-01-11T21:05:10.5156649Z } 2023-01-11T21:05:10.5156743Z #pragma omp for simd simdlen(8) 2023-01-11T21:05:10.5156856Z for(long i0=64; i0<64; i0+=1) 2023-01-11T21:05:10.5156917Z { 2023-01-11T21:05:10.5156998Z auto tmp0 = out_ptr0[i0]; 2023-01-11T21:05:10.5157070Z auto tmp1 = tmp0 * (tmp0>0); 2023-01-11T21:05:10.5157148Z out_ptr0[i0] = tmp1; 2023-01-11T21:05:10.5157209Z } 2023-01-11T21:05:10.5157270Z } 2023-01-11T21:05:10.5157331Z } 2023-01-11T21:05:10.5157410Z ''') 2023-01-11T21:05:10.5157417Z 2023-01-11T21:05:10.5157422Z 2023-01-11T21:05:10.5157511Z async_compile.wait(globals()) 2023-01-11T21:05:10.5157570Z del async_compile 2023-01-11T21:05:10.5157588Z 2023-01-11T21:05:10.5157644Z def call(args): 2023-01-11T21:05:10.5157712Z arg0_1, = args 2023-01-11T21:05:10.5157784Z args.clear() 2023-01-11T21:05:10.5157918Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(arg0_1.data_ptr())) 2023-01-11T21:05:10.5158019Z return (as_strided(arg0_1, (64, ), (1, )), ) 2023-01-11T21:05:10.5158024Z 2023-01-11T21:05:10.5158028Z 2023-01-11T21:05:10.5158105Z if __name__ == "__main__": 2023-01-11T21:05:10.5158219Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.5158327Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.5158531Z arg0_1 = rand_strided((1, 64), (64, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.5158638Z print_performance(lambda: call([arg0_1])) 2023-01-11T21:05:10.5158643Z 2023-01-11T21:05:10.5158709Z ok (2.932s) 2023-01-11T21:05:10.5159044Z test_input_mutation4_cpu (__main__.CpuTests) ... [2023-01-11 20:53:03,744] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 231 2023-01-11T21:05:10.5159309Z [2023-01-11 20:53:06,514] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 231 2023-01-11T21:05:10.5159316Z 2023-01-11T21:05:10.5159410Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.5159479Z import torch 2023-01-11T21:05:10.5159534Z import random 2023-01-11T21:05:10.5159649Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.5159771Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.5159776Z 2023-01-11T21:05:10.5159852Z aten = torch.ops.aten 2023-01-11T21:05:10.5159986Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.5160075Z async_compile = AsyncCompile() 2023-01-11T21:05:10.5160081Z 2023-01-11T21:05:10.5160085Z 2023-01-11T21:05:10.5160216Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.5160421Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.5160527Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:05:10.5160748Z float* __restrict__ out_ptr0) 2023-01-11T21:05:10.5160809Z { 2023-01-11T21:05:10.5160965Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.5161026Z { 2023-01-11T21:05:10.5161104Z #pragma omp for 2023-01-11T21:05:10.5161187Z for(long i0=0; i0<4; i0+=1) 2023-01-11T21:05:10.5161237Z { 2023-01-11T21:05:10.5161370Z auto tmp0 = at::vec::Vectorized::loadu(in_ptr0 + 16*i0); 2023-01-11T21:05:10.5161497Z auto tmp1 = at::vec::clamp_min(tmp0, decltype(tmp0)(0)); 2023-01-11T21:05:10.5161591Z tmp1.store(out_ptr0 + 16*i0); 2023-01-11T21:05:10.5161654Z } 2023-01-11T21:05:10.5161749Z #pragma omp for simd simdlen(8) 2023-01-11T21:05:10.5161830Z for(long i0=64; i0<64; i0+=1) 2023-01-11T21:05:10.5161878Z { 2023-01-11T21:05:10.5161962Z auto tmp0 = out_ptr0[i0]; 2023-01-11T21:05:10.5162048Z auto tmp1 = tmp0 * (tmp0>0); 2023-01-11T21:05:10.5162128Z out_ptr0[i0] = tmp1; 2023-01-11T21:05:10.5162193Z } 2023-01-11T21:05:10.5162255Z } 2023-01-11T21:05:10.5162318Z } 2023-01-11T21:05:10.5162384Z ''') 2023-01-11T21:05:10.5162389Z 2023-01-11T21:05:10.5162394Z 2023-01-11T21:05:10.5162481Z async_compile.wait(globals()) 2023-01-11T21:05:10.5162552Z del async_compile 2023-01-11T21:05:10.5162607Z 2023-01-11T21:05:10.5162679Z def call(args): 2023-01-11T21:05:10.5162746Z arg0_1, = args 2023-01-11T21:05:10.5162815Z args.clear() 2023-01-11T21:05:10.5162946Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(arg0_1.data_ptr())) 2023-01-11T21:05:10.5163008Z return (arg0_1, ) 2023-01-11T21:05:10.5163025Z 2023-01-11T21:05:10.5163029Z 2023-01-11T21:05:10.5163090Z if __name__ == "__main__": 2023-01-11T21:05:10.5163201Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.5163323Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.5163521Z arg0_1 = rand_strided((1, 64), (64, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.5163628Z print_performance(lambda: call([arg0_1])) 2023-01-11T21:05:10.5163635Z 2023-01-11T21:05:10.5163700Z ok (2.798s) 2023-01-11T21:05:10.5164159Z test_invalid_operand_issue1_cpu (__main__.CpuTests) ... inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.5164286Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.5164546Z [2023-01-11 20:53:07,808] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 232 2023-01-11T21:05:10.5164797Z [2023-01-11 20:53:10,567] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 232 2023-01-11T21:05:10.5164817Z 2023-01-11T21:05:10.5164898Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.5164967Z import torch 2023-01-11T21:05:10.5165041Z import random 2023-01-11T21:05:10.5165157Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.5165277Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.5165283Z 2023-01-11T21:05:10.5165362Z aten = torch.ops.aten 2023-01-11T21:05:10.5165494Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.5165572Z async_compile = AsyncCompile() 2023-01-11T21:05:10.5165577Z 2023-01-11T21:05:10.5165581Z 2023-01-11T21:05:10.5165712Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.5165916Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.5166032Z extern "C" void kernel(const long* __restrict__ in_ptr0, 2023-01-11T21:05:10.5166134Z const long* __restrict__ in_ptr1, 2023-01-11T21:05:10.5166233Z const long* __restrict__ in_ptr2, 2023-01-11T21:05:10.5166337Z const float* __restrict__ in_ptr3, 2023-01-11T21:05:10.5166474Z float* __restrict__ out_ptr0) 2023-01-11T21:05:10.5166521Z { 2023-01-11T21:05:10.5166616Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.5166676Z { 2023-01-11T21:05:10.5166754Z #pragma omp for 2023-01-11T21:05:10.5166833Z for(long i0=0; i0<8; i0+=1) 2023-01-11T21:05:10.5166894Z { 2023-01-11T21:05:10.5166959Z #pragma GCC ivdep 2023-01-11T21:05:10.5167045Z for(long i1=0; i1<128; i1+=1) 2023-01-11T21:05:10.5167107Z { 2023-01-11T21:05:10.5167186Z #pragma GCC ivdep 2023-01-11T21:05:10.5167274Z for(long i2=0; i2<768; i2+=1) 2023-01-11T21:05:10.5167338Z { 2023-01-11T21:05:10.5167403Z { 2023-01-11T21:05:10.5167457Z { 2023-01-11T21:05:10.5167552Z auto tmp3 = in_ptr0[i0]; 2023-01-11T21:05:10.5167656Z auto tmp8 = in_ptr2[i1 + (128*i0)]; 2023-01-11T21:05:10.5167765Z auto tmp0 = static_cast(i1); 2023-01-11T21:05:10.5167868Z auto tmp1 = static_cast(0); 2023-01-11T21:05:10.5167964Z auto tmp2 = tmp0 == tmp1; 2023-01-11T21:05:10.5168097Z auto tmp4 = static_cast(1); 2023-01-11T21:05:10.5168182Z auto tmp5 = tmp0 >= tmp4; 2023-01-11T21:05:10.5168266Z auto tmp6 = 0; 2023-01-11T21:05:10.5168340Z if(tmp5) 2023-01-11T21:05:10.5168409Z { 2023-01-11T21:05:10.5168587Z auto tmp7 = in_ptr1[(-1) + i1 + (127*i0)]; 2023-01-11T21:05:10.5168672Z tmp6 = tmp7; 2023-01-11T21:05:10.5168740Z } 2023-01-11T21:05:10.5168841Z auto tmp9 = tmp5 ? tmp6 : tmp8; 2023-01-11T21:05:10.5168931Z auto tmp10 = tmp2 ? tmp3 : tmp9; 2023-01-11T21:05:10.5169040Z auto tmp11 = in_ptr3[i2 + (768*tmp10)]; 2023-01-11T21:05:10.5169145Z out_ptr0[i2 + (768*i1) + (98304*i0)] = tmp11; 2023-01-11T21:05:10.5169214Z } 2023-01-11T21:05:10.5169279Z } 2023-01-11T21:05:10.5169343Z } 2023-01-11T21:05:10.5169405Z } 2023-01-11T21:05:10.5169452Z } 2023-01-11T21:05:10.5169513Z } 2023-01-11T21:05:10.5169571Z } 2023-01-11T21:05:10.5169648Z ''') 2023-01-11T21:05:10.5169653Z 2023-01-11T21:05:10.5169657Z 2023-01-11T21:05:10.5169745Z async_compile.wait(globals()) 2023-01-11T21:05:10.5169815Z del async_compile 2023-01-11T21:05:10.5169820Z 2023-01-11T21:05:10.5169889Z def call(args): 2023-01-11T21:05:10.5169973Z arg0_1, arg1_1, arg2_1, arg3_1, arg4_1 = args 2023-01-11T21:05:10.5170042Z args.clear() 2023-01-11T21:05:10.5170259Z buf0 = empty_strided((8, 128, 768), (98304, 768, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.5170470Z kernel_cpp_0(c_void_p(arg3_1.data_ptr()), c_void_p(arg2_1.data_ptr()), c_void_p(arg4_1.data_ptr()), c_void_p(arg0_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:05:10.5170537Z del arg0_1 2023-01-11T21:05:10.5170603Z del arg2_1 2023-01-11T21:05:10.5170666Z del arg3_1 2023-01-11T21:05:10.5170717Z del arg4_1 2023-01-11T21:05:10.5170786Z return (buf0, ) 2023-01-11T21:05:10.5170791Z 2023-01-11T21:05:10.5170796Z 2023-01-11T21:05:10.5170871Z if __name__ == "__main__": 2023-01-11T21:05:10.5170986Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.5171107Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.5171311Z arg0_1 = rand_strided((50005, 768), (768, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.5171507Z arg1_1 = rand_strided((8, 128), (128, 1), device='cpu', dtype=torch.int64) 2023-01-11T21:05:10.5171701Z arg2_1 = rand_strided((8, 127), (127, 1), device='cpu', dtype=torch.int64) 2023-01-11T21:05:10.5171908Z arg3_1 = rand_strided((8, ), (1, ), device='cpu', dtype=torch.int64) 2023-01-11T21:05:10.5172098Z arg4_1 = rand_strided((8, 128), (128, 1), device='cpu', dtype=torch.int64) 2023-01-11T21:05:10.5172234Z print_performance(lambda: call([arg0_1, arg1_1, arg2_1, arg3_1, arg4_1])) 2023-01-11T21:05:10.5172239Z 2023-01-11T21:05:10.5172304Z ok (11.333s) 2023-01-11T21:05:10.5172791Z test_isinf2_cpu (__main__.CpuTests) ... inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.5172971Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.5173258Z [2023-01-11 20:53:17,882] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 233 2023-01-11T21:05:10.5173525Z [2023-01-11 20:53:20,617] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 233 2023-01-11T21:05:10.5173531Z 2023-01-11T21:05:10.5173626Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.5173755Z import torch 2023-01-11T21:05:10.5173814Z import random 2023-01-11T21:05:10.5173928Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.5174048Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.5174053Z 2023-01-11T21:05:10.5174130Z aten = torch.ops.aten 2023-01-11T21:05:10.5174263Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.5174354Z async_compile = AsyncCompile() 2023-01-11T21:05:10.5174359Z 2023-01-11T21:05:10.5174363Z 2023-01-11T21:05:10.5174497Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.5174700Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.5174806Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:05:10.5174907Z bool* __restrict__ out_ptr0) 2023-01-11T21:05:10.5174969Z { 2023-01-11T21:05:10.5175067Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.5175129Z { 2023-01-11T21:05:10.5175208Z #pragma omp for 2023-01-11T21:05:10.5175276Z for(long i0=0; i0<5; i0+=1) 2023-01-11T21:05:10.5175339Z { 2023-01-11T21:05:10.5175402Z { 2023-01-11T21:05:10.5175469Z { 2023-01-11T21:05:10.5175563Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:05:10.5175668Z auto tmp1 = static_cast(i0); 2023-01-11T21:05:10.5175771Z auto tmp2 = static_cast(2); 2023-01-11T21:05:10.5175847Z auto tmp3 = tmp1 < tmp2; 2023-01-11T21:05:10.5175946Z auto tmp4 = static_cast(1); 2023-01-11T21:05:10.5176036Z auto tmp5 = tmp1 < tmp4; 2023-01-11T21:05:10.5176141Z auto tmp6 = static_cast(1.0); 2023-01-11T21:05:10.5176270Z auto tmp7 = std::numeric_limits::infinity(); 2023-01-11T21:05:10.5176366Z auto tmp8 = tmp5 ? tmp6 : tmp7; 2023-01-11T21:05:10.5176465Z auto tmp9 = static_cast(3); 2023-01-11T21:05:10.5176556Z auto tmp10 = tmp1 < tmp9; 2023-01-11T21:05:10.5176646Z auto tmp11 = static_cast(2.0); 2023-01-11T21:05:10.5176748Z auto tmp12 = static_cast(4); 2023-01-11T21:05:10.5176837Z auto tmp13 = tmp1 < tmp12; 2023-01-11T21:05:10.5177076Z auto tmp14 = -std::numeric_limits::infinity(); 2023-01-11T21:05:10.5177202Z auto tmp15 = std::numeric_limits::quiet_NaN(); 2023-01-11T21:05:10.5177301Z auto tmp16 = tmp13 ? tmp14 : tmp15; 2023-01-11T21:05:10.5177399Z auto tmp17 = tmp10 ? tmp11 : tmp16; 2023-01-11T21:05:10.5177497Z auto tmp18 = tmp3 ? tmp8 : tmp17; 2023-01-11T21:05:10.5177609Z auto tmp19 = tmp0 == tmp18; 2023-01-11T21:05:10.5177691Z out_ptr0[i0] = tmp19; 2023-01-11T21:05:10.5177755Z } 2023-01-11T21:05:10.5177819Z } 2023-01-11T21:05:10.5177881Z } 2023-01-11T21:05:10.5177941Z } 2023-01-11T21:05:10.5177987Z } 2023-01-11T21:05:10.5178064Z ''') 2023-01-11T21:05:10.5178069Z 2023-01-11T21:05:10.5178073Z 2023-01-11T21:05:10.5178162Z async_compile.wait(globals()) 2023-01-11T21:05:10.5178232Z del async_compile 2023-01-11T21:05:10.5178237Z 2023-01-11T21:05:10.5178305Z def call(args): 2023-01-11T21:05:10.5178373Z arg0_1, = args 2023-01-11T21:05:10.5178443Z args.clear() 2023-01-11T21:05:10.5178709Z buf0 = empty_strided((5, ), (1, ), device='cpu', dtype=torch.bool) 2023-01-11T21:05:10.5178829Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:05:10.5178898Z del arg0_1 2023-01-11T21:05:10.5178971Z return (buf0, ) 2023-01-11T21:05:10.5178976Z 2023-01-11T21:05:10.5178980Z 2023-01-11T21:05:10.5179055Z if __name__ == "__main__": 2023-01-11T21:05:10.5179170Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.5179326Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.5179519Z arg0_1 = rand_strided((5, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.5179613Z print_performance(lambda: call([arg0_1])) 2023-01-11T21:05:10.5179632Z 2023-01-11T21:05:10.5179684Z ok (2.774s) 2023-01-11T21:05:10.5180118Z test_isinf_cpu (__main__.CpuTests) ... inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.5180244Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.5180512Z [2023-01-11 20:53:20,671] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 234 2023-01-11T21:05:10.5180777Z [2023-01-11 20:53:23,361] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 234 2023-01-11T21:05:10.5181176Z inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.5181299Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.5181553Z [2023-01-11 20:53:23,403] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 235 2023-01-11T21:05:10.5181813Z [2023-01-11 20:53:26,181] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 235 2023-01-11T21:05:10.5181821Z 2023-01-11T21:05:10.5181913Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.5181970Z import torch 2023-01-11T21:05:10.5182039Z import random 2023-01-11T21:05:10.5182154Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.5182274Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.5182279Z 2023-01-11T21:05:10.5182356Z aten = torch.ops.aten 2023-01-11T21:05:10.5182488Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.5182578Z async_compile = AsyncCompile() 2023-01-11T21:05:10.5182583Z 2023-01-11T21:05:10.5182587Z 2023-01-11T21:05:10.5182718Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.5182909Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.5183025Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:05:10.5183121Z bool* __restrict__ out_ptr0, 2023-01-11T21:05:10.5183247Z bool* __restrict__ out_ptr1) 2023-01-11T21:05:10.5183309Z { 2023-01-11T21:05:10.5183405Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.5183465Z { 2023-01-11T21:05:10.5183530Z #pragma omp for 2023-01-11T21:05:10.5183609Z for(long i0=0; i0<5; i0+=1) 2023-01-11T21:05:10.5183670Z { 2023-01-11T21:05:10.5183733Z { 2023-01-11T21:05:10.5183796Z { 2023-01-11T21:05:10.5183888Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:05:10.5183988Z auto tmp1 = std::isinf(tmp0); 2023-01-11T21:05:10.5184073Z auto tmp2 = std::isnan(tmp0); 2023-01-11T21:05:10.5184156Z out_ptr0[i0] = tmp1; 2023-01-11T21:05:10.5184270Z out_ptr1[i0] = tmp2; 2023-01-11T21:05:10.5184356Z } 2023-01-11T21:05:10.5184418Z } 2023-01-11T21:05:10.5184478Z } 2023-01-11T21:05:10.5184537Z } 2023-01-11T21:05:10.5184586Z } 2023-01-11T21:05:10.5184665Z ''') 2023-01-11T21:05:10.5184671Z 2023-01-11T21:05:10.5184675Z 2023-01-11T21:05:10.5184762Z async_compile.wait(globals()) 2023-01-11T21:05:10.5184832Z del async_compile 2023-01-11T21:05:10.5184837Z 2023-01-11T21:05:10.5184971Z def call(args): 2023-01-11T21:05:10.5185041Z arg0_1, = args 2023-01-11T21:05:10.5185109Z args.clear() 2023-01-11T21:05:10.5185283Z buf0 = empty_strided((5, ), (1, ), device='cpu', dtype=torch.bool) 2023-01-11T21:05:10.5185464Z buf1 = empty_strided((5, ), (1, ), device='cpu', dtype=torch.bool) 2023-01-11T21:05:10.5185628Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(buf0.data_ptr()), c_void_p(buf1.data_ptr())) 2023-01-11T21:05:10.5185696Z del arg0_1 2023-01-11T21:05:10.5185775Z return (buf0, buf1, ) 2023-01-11T21:05:10.5185780Z 2023-01-11T21:05:10.5185784Z 2023-01-11T21:05:10.5185860Z if __name__ == "__main__": 2023-01-11T21:05:10.5185975Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.5186101Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.5186281Z arg0_1 = rand_strided((5, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.5186389Z print_performance(lambda: call([arg0_1])) 2023-01-11T21:05:10.5186397Z 2023-01-11T21:05:10.5186402Z 2023-01-11T21:05:10.5186495Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.5186564Z import torch 2023-01-11T21:05:10.5186634Z import random 2023-01-11T21:05:10.5186749Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.5186869Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.5186873Z 2023-01-11T21:05:10.5186952Z aten = torch.ops.aten 2023-01-11T21:05:10.5187070Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.5187162Z async_compile = AsyncCompile() 2023-01-11T21:05:10.5187167Z 2023-01-11T21:05:10.5187172Z 2023-01-11T21:05:10.5187304Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.5187509Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.5187631Z extern "C" void kernel(const double* __restrict__ in_ptr0, 2023-01-11T21:05:10.5187729Z bool* __restrict__ out_ptr0, 2023-01-11T21:05:10.5187824Z bool* __restrict__ out_ptr1) 2023-01-11T21:05:10.5187885Z { 2023-01-11T21:05:10.5187968Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.5188028Z { 2023-01-11T21:05:10.5188104Z #pragma omp for 2023-01-11T21:05:10.5188187Z for(long i0=0; i0<5; i0+=1) 2023-01-11T21:05:10.5188249Z { 2023-01-11T21:05:10.5188311Z { 2023-01-11T21:05:10.5188360Z { 2023-01-11T21:05:10.5188453Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:05:10.5188554Z auto tmp1 = std::isinf(tmp0); 2023-01-11T21:05:10.5188653Z auto tmp2 = std::isnan(tmp0); 2023-01-11T21:05:10.5188737Z out_ptr0[i0] = tmp1; 2023-01-11T21:05:10.5188860Z out_ptr1[i0] = tmp2; 2023-01-11T21:05:10.5188923Z } 2023-01-11T21:05:10.5188971Z } 2023-01-11T21:05:10.5189033Z } 2023-01-11T21:05:10.5189095Z } 2023-01-11T21:05:10.5189157Z } 2023-01-11T21:05:10.5189236Z ''') 2023-01-11T21:05:10.5189242Z 2023-01-11T21:05:10.5189246Z 2023-01-11T21:05:10.5189337Z async_compile.wait(globals()) 2023-01-11T21:05:10.5189407Z del async_compile 2023-01-11T21:05:10.5189412Z 2023-01-11T21:05:10.5189481Z def call(args): 2023-01-11T21:05:10.5189536Z arg0_1, = args 2023-01-11T21:05:10.5189606Z args.clear() 2023-01-11T21:05:10.5189792Z buf0 = empty_strided((5, ), (1, ), device='cpu', dtype=torch.bool) 2023-01-11T21:05:10.5189973Z buf1 = empty_strided((5, ), (1, ), device='cpu', dtype=torch.bool) 2023-01-11T21:05:10.5190138Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(buf0.data_ptr()), c_void_p(buf1.data_ptr())) 2023-01-11T21:05:10.5190205Z del arg0_1 2023-01-11T21:05:10.5190281Z return (buf0, buf1, ) 2023-01-11T21:05:10.5190288Z 2023-01-11T21:05:10.5190293Z 2023-01-11T21:05:10.5190354Z if __name__ == "__main__": 2023-01-11T21:05:10.5190466Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.5190619Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.5190813Z arg0_1 = rand_strided((5, ), (1, ), device='cpu', dtype=torch.float64) 2023-01-11T21:05:10.5190921Z print_performance(lambda: call([arg0_1])) 2023-01-11T21:05:10.5190925Z 2023-01-11T21:05:10.5190992Z ok (5.562s) 2023-01-11T21:05:10.5191323Z test_kernel_names_cpu (__main__.CpuTests) ... [2023-01-11 20:53:26,214] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 236 2023-01-11T21:05:10.5191593Z [2023-01-11 20:53:28,919] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 236 2023-01-11T21:05:10.5191599Z 2023-01-11T21:05:10.5191690Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.5191745Z import torch 2023-01-11T21:05:10.5191817Z import random 2023-01-11T21:05:10.5191929Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.5192050Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.5192055Z 2023-01-11T21:05:10.5192135Z aten = torch.ops.aten 2023-01-11T21:05:10.5192268Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.5192357Z async_compile = AsyncCompile() 2023-01-11T21:05:10.5192361Z 2023-01-11T21:05:10.5192365Z 2023-01-11T21:05:10.5192484Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.5192687Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.5192805Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:05:10.5192905Z float* __restrict__ out_ptr0) 2023-01-11T21:05:10.5192964Z { 2023-01-11T21:05:10.5193059Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.5193121Z { 2023-01-11T21:05:10.5193185Z #pragma omp for 2023-01-11T21:05:10.5193266Z for(long i0=0; i0<8; i0+=1) 2023-01-11T21:05:10.5193327Z { 2023-01-11T21:05:10.5193388Z { 2023-01-11T21:05:10.5193451Z { 2023-01-11T21:05:10.5193545Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:05:10.5193647Z auto tmp1 = static_cast(2); 2023-01-11T21:05:10.5193724Z auto tmp2 = tmp0 * tmp1; 2023-01-11T21:05:10.5193808Z out_ptr0[i0] = tmp2; 2023-01-11T21:05:10.5193871Z } 2023-01-11T21:05:10.5193933Z } 2023-01-11T21:05:10.5193993Z } 2023-01-11T21:05:10.5194052Z } 2023-01-11T21:05:10.5194111Z } 2023-01-11T21:05:10.5194175Z ''') 2023-01-11T21:05:10.5194180Z 2023-01-11T21:05:10.5194185Z 2023-01-11T21:05:10.5194272Z async_compile.wait(globals()) 2023-01-11T21:05:10.5194341Z del async_compile 2023-01-11T21:05:10.5194346Z 2023-01-11T21:05:10.5194414Z def call(args): 2023-01-11T21:05:10.5194481Z arg0_1, = args 2023-01-11T21:05:10.5194582Z args.clear() 2023-01-11T21:05:10.5194770Z buf0 = empty_strided((8, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.5194893Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:05:10.5194959Z del arg0_1 2023-01-11T21:05:10.5195028Z return (buf0, ) 2023-01-11T21:05:10.5195032Z 2023-01-11T21:05:10.5195036Z 2023-01-11T21:05:10.5195110Z if __name__ == "__main__": 2023-01-11T21:05:10.5195220Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.5195342Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.5195533Z arg0_1 = rand_strided((8, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.5195638Z print_performance(lambda: call([arg0_1])) 2023-01-11T21:05:10.5195642Z 2023-01-11T21:05:10.5195694Z ok (2.735s) 2023-01-11T21:05:10.5196186Z test_kwargs_cpu (__main__.CpuTests) ... inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.5196316Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.5196574Z [2023-01-11 20:53:28,993] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 237 2023-01-11T21:05:10.5196790Z [2023-01-11 20:53:28,995] torch._inductor.graph: [WARNING] Creating implicit fallback for: 2023-01-11T21:05:10.5196896Z target: aten._histogramdd_bin_edges.default 2023-01-11T21:05:10.5196983Z args[0]: TensorBox(StorageBox( 2023-01-11T21:05:10.5197223Z InputBuffer(name='arg0_1', layout=FixedLayout('cpu', torch.float32, size=[4, 2], stride=[2, 1])) 2023-01-11T21:05:10.5197283Z )) 2023-01-11T21:05:10.5197337Z args[1]: [3, 3] 2023-01-11T21:05:10.5197496Z kwargs: {'weight': TensorBox(StorageBox( 2023-01-11T21:05:10.5197727Z InputBuffer(name='arg1_1', layout=FixedLayout('cpu', torch.float32, size=[4], stride=[1])) 2023-01-11T21:05:10.5197788Z ))} 2023-01-11T21:05:10.5198066Z [2023-01-11 20:53:29,026] torch._inductor.ir: [WARNING] Using FallbackKernel: torch.ops.aten._histogramdd_bin_edges.default 2023-01-11T21:05:10.5198282Z [2023-01-11 20:53:29,028] torch._inductor.graph: [WARNING] Creating implicit fallback for: 2023-01-11T21:05:10.5198391Z target: aten._histogramdd_from_bin_cts.default 2023-01-11T21:05:10.5198478Z args[0]: TensorBox(StorageBox( 2023-01-11T21:05:10.5198705Z InputBuffer(name='arg0_1', layout=FixedLayout('cpu', torch.float32, size=[4, 2], stride=[2, 1])) 2023-01-11T21:05:10.5198764Z )) 2023-01-11T21:05:10.5198831Z args[1]: [3, 3] 2023-01-11T21:05:10.5198973Z kwargs: {'weight': TensorBox(StorageBox( 2023-01-11T21:05:10.5199199Z InputBuffer(name='arg1_1', layout=FixedLayout('cpu', torch.float32, size=[4], stride=[1])) 2023-01-11T21:05:10.5199262Z ))} 2023-01-11T21:05:10.5199541Z [2023-01-11 20:53:29,058] torch._inductor.ir: [WARNING] Using FallbackKernel: torch.ops.aten._histogramdd_from_bin_cts.default 2023-01-11T21:05:10.5199790Z [2023-01-11 20:53:29,062] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 237 2023-01-11T21:05:10.5199810Z 2023-01-11T21:05:10.5199890Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.5199959Z import torch 2023-01-11T21:05:10.5200029Z import random 2023-01-11T21:05:10.5200144Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.5200263Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.5200268Z 2023-01-11T21:05:10.5200346Z aten = torch.ops.aten 2023-01-11T21:05:10.5200478Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.5200555Z async_compile = AsyncCompile() 2023-01-11T21:05:10.5200560Z 2023-01-11T21:05:10.5200577Z 2023-01-11T21:05:10.5200785Z async_compile.wait(globals()) 2023-01-11T21:05:10.5200923Z del async_compile 2023-01-11T21:05:10.5200928Z 2023-01-11T21:05:10.5200998Z def call(args): 2023-01-11T21:05:10.5201074Z arg0_1, arg1_1 = args 2023-01-11T21:05:10.5201145Z args.clear() 2023-01-11T21:05:10.5201300Z buf0 = torch.ops.aten._histogramdd_bin_edges.default(arg0_1, [3, 3], weight=arg1_1) 2023-01-11T21:05:10.5201369Z buf1 = buf0[0] 2023-01-11T21:05:10.5201450Z assert_size_stride(buf1, (4, ), (1, )) 2023-01-11T21:05:10.5201518Z buf2 = buf0[1] 2023-01-11T21:05:10.5201612Z assert_size_stride(buf2, (4, ), (1, )) 2023-01-11T21:05:10.5201676Z del buf0 2023-01-11T21:05:10.5201829Z buf3 = torch.ops.aten._histogramdd_from_bin_cts.default(arg0_1, [3, 3], weight=arg1_1) 2023-01-11T21:05:10.5201895Z del arg0_1 2023-01-11T21:05:10.5201962Z del arg1_1 2023-01-11T21:05:10.5202016Z buf4 = buf3 2023-01-11T21:05:10.5202111Z assert_size_stride(buf4, (3, 3), (3, 1)) 2023-01-11T21:05:10.5202176Z del buf3 2023-01-11T21:05:10.5202258Z return (buf4, buf1, buf2, ) 2023-01-11T21:05:10.5202265Z 2023-01-11T21:05:10.5202269Z 2023-01-11T21:05:10.5202347Z if __name__ == "__main__": 2023-01-11T21:05:10.5202461Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.5202620Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.5202813Z arg0_1 = rand_strided((4, 2), (2, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.5203005Z arg1_1 = rand_strided((4, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.5203119Z print_performance(lambda: call([arg0_1, arg1_1])) 2023-01-11T21:05:10.5203123Z 2023-01-11T21:05:10.5203188Z ok (0.145s) 2023-01-11T21:05:10.5203623Z test_l1_loss_cpu (__main__.CpuTests) ... inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.5203749Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.5204011Z [2023-01-11 20:53:29,114] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 238 2023-01-11T21:05:10.5204275Z [2023-01-11 20:53:31,869] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 238 2023-01-11T21:05:10.5204281Z 2023-01-11T21:05:10.5204373Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.5204428Z import torch 2023-01-11T21:05:10.5204496Z import random 2023-01-11T21:05:10.5204609Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.5204727Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.5204732Z 2023-01-11T21:05:10.5204809Z aten = torch.ops.aten 2023-01-11T21:05:10.5204940Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.5205029Z async_compile = AsyncCompile() 2023-01-11T21:05:10.5205034Z 2023-01-11T21:05:10.5205040Z 2023-01-11T21:05:10.5205171Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.5205362Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.5205479Z extern "C" void kernel(float* __restrict__ in_out_ptr0, 2023-01-11T21:05:10.5205579Z float* __restrict__ in_out_ptr1, 2023-01-11T21:05:10.5205687Z const float* __restrict__ in_ptr0, 2023-01-11T21:05:10.5205789Z const float* __restrict__ in_ptr1) 2023-01-11T21:05:10.5205848Z { 2023-01-11T21:05:10.5205933Z auto out_ptr0 = in_out_ptr0; 2023-01-11T21:05:10.5206013Z auto out_ptr1 = in_out_ptr1; 2023-01-11T21:05:10.5206061Z { 2023-01-11T21:05:10.5206248Z #pragma omp declare reduction(+:at::vec::Vectorized:omp_out += omp_in) initializer(omp_priv={{0}}) 2023-01-11T21:05:10.5206322Z float tmp4 = 0; 2023-01-11T21:05:10.5206436Z auto tmp4_vec = at::vec::Vectorized(tmp4); 2023-01-11T21:05:10.5206544Z float tmp6 = 0; 2023-01-11T21:05:10.5206658Z auto tmp6_vec = at::vec::Vectorized(tmp6); 2023-01-11T21:05:10.5206760Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.5206811Z { 2023-01-11T21:05:10.5206941Z #pragma omp for reduction(+:tmp4_vec) reduction(+:tmp6_vec) 2023-01-11T21:05:10.5207026Z for(long i0=0; i0<96; i0+=1) 2023-01-11T21:05:10.5207088Z { 2023-01-11T21:05:10.5207221Z auto tmp0 = at::vec::Vectorized::loadu(in_ptr0 + 16*i0); 2023-01-11T21:05:10.5207354Z auto tmp1 = at::vec::Vectorized::loadu(in_ptr1 + 16*i0); 2023-01-11T21:05:10.5207483Z auto tmp2 = tmp0 - tmp1; 2023-01-11T21:05:10.5207568Z auto tmp3 = tmp2.abs(); 2023-01-11T21:05:10.5207640Z auto tmp5 = tmp2 * tmp2; 2023-01-11T21:05:10.5207720Z tmp4_vec += tmp3; 2023-01-11T21:05:10.5207798Z tmp6_vec += tmp5; 2023-01-11T21:05:10.5207862Z } 2023-01-11T21:05:10.5208057Z tmp4 = at::vec::vec_reduce_all([](at::vec::Vectorized& x, at::vec::Vectorized&y) {return x + y;}, tmp4_vec); 2023-01-11T21:05:10.5208276Z tmp6 = at::vec::vec_reduce_all([](at::vec::Vectorized& x, at::vec::Vectorized&y) {return x + y;}, tmp6_vec); 2023-01-11T21:05:10.5208420Z #pragma omp for simd simdlen(8) reduction(+:tmp4) reduction(+:tmp6) 2023-01-11T21:05:10.5208509Z for(long i0=1536; i0<1536; i0+=1) 2023-01-11T21:05:10.5208558Z { 2023-01-11T21:05:10.5208643Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:05:10.5208727Z auto tmp1 = in_ptr1[i0]; 2023-01-11T21:05:10.5208854Z auto tmp2 = tmp0 - tmp1; 2023-01-11T21:05:10.5208948Z auto tmp3 = std::abs(tmp2); 2023-01-11T21:05:10.5209032Z auto tmp5 = tmp2 * tmp2; 2023-01-11T21:05:10.5209107Z tmp4 += tmp3; 2023-01-11T21:05:10.5209169Z tmp6 += tmp5; 2023-01-11T21:05:10.5209230Z } 2023-01-11T21:05:10.5209291Z } 2023-01-11T21:05:10.5209367Z out_ptr0[0] = tmp4; 2023-01-11T21:05:10.5209442Z out_ptr1[0] = tmp6; 2023-01-11T21:05:10.5209502Z } 2023-01-11T21:05:10.5209548Z { 2023-01-11T21:05:10.5209609Z { 2023-01-11T21:05:10.5209692Z auto tmp0 = out_ptr0[0]; 2023-01-11T21:05:10.5209793Z auto tmp1 = static_cast(1536); 2023-01-11T21:05:10.5209875Z auto tmp2 = tmp0 / tmp1; 2023-01-11T21:05:10.5209954Z in_out_ptr0[0] = tmp2; 2023-01-11T21:05:10.5210015Z } 2023-01-11T21:05:10.5210061Z } 2023-01-11T21:05:10.5210121Z { 2023-01-11T21:05:10.5210182Z { 2023-01-11T21:05:10.5210263Z auto tmp0 = out_ptr1[0]; 2023-01-11T21:05:10.5210363Z auto tmp1 = static_cast(1536); 2023-01-11T21:05:10.5210445Z auto tmp2 = tmp0 / tmp1; 2023-01-11T21:05:10.5210526Z in_out_ptr1[0] = tmp2; 2023-01-11T21:05:10.5210573Z } 2023-01-11T21:05:10.5210632Z } 2023-01-11T21:05:10.5210691Z } 2023-01-11T21:05:10.5210768Z ''') 2023-01-11T21:05:10.5210774Z 2023-01-11T21:05:10.5210778Z 2023-01-11T21:05:10.5210868Z async_compile.wait(globals()) 2023-01-11T21:05:10.5210940Z del async_compile 2023-01-11T21:05:10.5210944Z 2023-01-11T21:05:10.5211014Z def call(args): 2023-01-11T21:05:10.5211074Z arg0_1, arg1_1 = args 2023-01-11T21:05:10.5211143Z args.clear() 2023-01-11T21:05:10.5211329Z buf0 = empty_strided((), (), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.5211507Z buf1 = empty_strided((), (), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.5211589Z buf2 = buf0; del buf0 # reuse 2023-01-11T21:05:10.5211669Z buf3 = buf1; del buf1 # reuse 2023-01-11T21:05:10.5211854Z kernel_cpp_0(c_void_p(buf2.data_ptr()), c_void_p(buf3.data_ptr()), c_void_p(arg0_1.data_ptr()), c_void_p(arg1_1.data_ptr())) 2023-01-11T21:05:10.5211939Z del arg0_1 2023-01-11T21:05:10.5212004Z del arg1_1 2023-01-11T21:05:10.5212079Z return (buf2, buf3, ) 2023-01-11T21:05:10.5212084Z 2023-01-11T21:05:10.5212088Z 2023-01-11T21:05:10.5212163Z if __name__ == "__main__": 2023-01-11T21:05:10.5212277Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.5212399Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.5212616Z arg0_1 = rand_strided((2, 3, 16, 16), (768, 256, 16, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.5212831Z arg1_1 = rand_strided((2, 3, 16, 16), (768, 256, 16, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.5212933Z print_performance(lambda: call([arg0_1, arg1_1])) 2023-01-11T21:05:10.5212952Z 2023-01-11T21:05:10.5213004Z ok (2.811s) 2023-01-11T21:05:10.5213443Z test_layer_norm_cpu (__main__.CpuTests) ... inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.5213613Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.5213873Z [2023-01-11 20:53:32,019] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 239 2023-01-11T21:05:10.5214135Z [2023-01-11 20:53:34,826] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 239 2023-01-11T21:05:10.5214141Z 2023-01-11T21:05:10.5214233Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.5214301Z import torch 2023-01-11T21:05:10.5214369Z import random 2023-01-11T21:05:10.5214470Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.5214589Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.5214594Z 2023-01-11T21:05:10.5214670Z aten = torch.ops.aten 2023-01-11T21:05:10.5214802Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.5214894Z async_compile = AsyncCompile() 2023-01-11T21:05:10.5214899Z 2023-01-11T21:05:10.5214903Z 2023-01-11T21:05:10.5215035Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.5215240Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.5215356Z extern "C" void kernel(float* __restrict__ in_out_ptr0, 2023-01-11T21:05:10.5215444Z float* __restrict__ in_out_ptr1, 2023-01-11T21:05:10.5215549Z const float* __restrict__ in_ptr0, 2023-01-11T21:05:10.5215651Z const float* __restrict__ in_ptr1, 2023-01-11T21:05:10.5215752Z const float* __restrict__ in_ptr2, 2023-01-11T21:05:10.5215850Z float* __restrict__ out_ptr0, 2023-01-11T21:05:10.5215946Z float* __restrict__ out_ptr3) 2023-01-11T21:05:10.5216007Z { 2023-01-11T21:05:10.5216094Z auto out_ptr2 = in_out_ptr0; 2023-01-11T21:05:10.5216165Z auto out_ptr1 = in_out_ptr1; 2023-01-11T21:05:10.5216260Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.5216321Z { 2023-01-11T21:05:10.5216395Z #pragma omp for 2023-01-11T21:05:10.5216477Z for(long i0=0; i0<16; i0+=1) 2023-01-11T21:05:10.5216537Z { 2023-01-11T21:05:10.5216586Z { 2023-01-11T21:05:10.5216777Z #pragma omp declare reduction(+:at::vec::Vectorized:omp_out += omp_in) initializer(omp_priv={{0}}) 2023-01-11T21:05:10.5216853Z float tmp1 = 0; 2023-01-11T21:05:10.5216972Z auto tmp1_vec = at::vec::Vectorized(tmp1); 2023-01-11T21:05:10.5217060Z for(long i1=0; i1<2; i1+=1) 2023-01-11T21:05:10.5217124Z { 2023-01-11T21:05:10.5217265Z auto tmp0 = at::vec::Vectorized::loadu(in_ptr0 + (16*i1) + (32*i0)); 2023-01-11T21:05:10.5217345Z tmp1_vec += tmp0; 2023-01-11T21:05:10.5217425Z } 2023-01-11T21:05:10.5217620Z tmp1 = at::vec::vec_reduce_all([](at::vec::Vectorized& x, at::vec::Vectorized&y) {return x + y;}, tmp1_vec); 2023-01-11T21:05:10.5217743Z #pragma omp simd simdlen(8) reduction(+:tmp1) 2023-01-11T21:05:10.5217832Z for(long i1=32; i1<32; i1+=1) 2023-01-11T21:05:10.5217895Z { 2023-01-11T21:05:10.5217994Z auto tmp0 = in_ptr0[i1 + (32*i0)]; 2023-01-11T21:05:10.5218070Z tmp1 += tmp0; 2023-01-11T21:05:10.5218131Z } 2023-01-11T21:05:10.5218199Z out_ptr0[i0] = tmp1; 2023-01-11T21:05:10.5218260Z } 2023-01-11T21:05:10.5218321Z } 2023-01-11T21:05:10.5218396Z #pragma omp for 2023-01-11T21:05:10.5218562Z for(long i0=0; i0<16; i0+=1) 2023-01-11T21:05:10.5218629Z { 2023-01-11T21:05:10.5218678Z { 2023-01-11T21:05:10.5218869Z #pragma omp declare reduction(+:at::vec::Vectorized:omp_out += omp_in) initializer(omp_priv={{0}}) 2023-01-11T21:05:10.5218950Z float tmp6 = 0; 2023-01-11T21:05:10.5219116Z auto tmp6_vec = at::vec::Vectorized(tmp6); 2023-01-11T21:05:10.5219196Z float tmp7 = 0; 2023-01-11T21:05:10.5219316Z auto tmp7_vec = at::vec::Vectorized(tmp7); 2023-01-11T21:05:10.5219406Z for(long i1=0; i1<2; i1+=1) 2023-01-11T21:05:10.5219471Z { 2023-01-11T21:05:10.5219601Z auto tmp0 = at::vec::Vectorized::loadu(in_ptr0 + (16*i1) + (32*i0)); 2023-01-11T21:05:10.5219726Z auto tmp1 = at::vec::Vectorized(out_ptr0[i0]); 2023-01-11T21:05:10.5219862Z auto tmp2 = at::vec::Vectorized(static_cast(32)); 2023-01-11T21:05:10.5219954Z auto tmp3 = tmp1 / tmp2; 2023-01-11T21:05:10.5220095Z auto tmp4 = tmp0 - tmp3; 2023-01-11T21:05:10.5220189Z auto tmp5 = tmp4.pow(2); 2023-01-11T21:05:10.5220271Z tmp6_vec += tmp5; 2023-01-11T21:05:10.5220351Z tmp7_vec += tmp0; 2023-01-11T21:05:10.5220400Z } 2023-01-11T21:05:10.5220596Z tmp6 = at::vec::vec_reduce_all([](at::vec::Vectorized& x, at::vec::Vectorized&y) {return x + y;}, tmp6_vec); 2023-01-11T21:05:10.5220792Z tmp7 = at::vec::vec_reduce_all([](at::vec::Vectorized& x, at::vec::Vectorized&y) {return x + y;}, tmp7_vec); 2023-01-11T21:05:10.5220931Z #pragma omp simd simdlen(8) reduction(+:tmp6) reduction(+:tmp7) 2023-01-11T21:05:10.5221022Z for(long i1=32; i1<32; i1+=1) 2023-01-11T21:05:10.5221088Z { 2023-01-11T21:05:10.5221189Z auto tmp0 = in_ptr0[i1 + (32*i0)]; 2023-01-11T21:05:10.5221281Z auto tmp1 = out_ptr0[i0]; 2023-01-11T21:05:10.5221370Z auto tmp2 = static_cast(32); 2023-01-11T21:05:10.5221463Z auto tmp3 = tmp1 / tmp2; 2023-01-11T21:05:10.5221597Z auto tmp4 = tmp0 - tmp3; 2023-01-11T21:05:10.5221688Z auto tmp5 = tmp4 * tmp4; 2023-01-11T21:05:10.5221766Z tmp6 += tmp5; 2023-01-11T21:05:10.5221841Z tmp7 += tmp0; 2023-01-11T21:05:10.5221906Z } 2023-01-11T21:05:10.5221973Z out_ptr1[i0] = tmp6; 2023-01-11T21:05:10.5222050Z out_ptr2[i0] = tmp7; 2023-01-11T21:05:10.5222113Z } 2023-01-11T21:05:10.5222175Z } 2023-01-11T21:05:10.5222251Z #pragma omp for 2023-01-11T21:05:10.5222334Z for(long i0=0; i0<1; i0+=1) 2023-01-11T21:05:10.5222395Z { 2023-01-11T21:05:10.5222516Z auto tmp0 = at::vec::Vectorized::loadu(out_ptr2 + 16*i0); 2023-01-11T21:05:10.5222648Z auto tmp1 = at::vec::Vectorized(static_cast(32)); 2023-01-11T21:05:10.5222764Z auto tmp2 = tmp0 / tmp1; 2023-01-11T21:05:10.5222859Z tmp2.store(in_out_ptr0 + 16*i0); 2023-01-11T21:05:10.5222921Z } 2023-01-11T21:05:10.5223017Z #pragma omp for simd simdlen(8) 2023-01-11T21:05:10.5223097Z for(long i0=16; i0<16; i0+=1) 2023-01-11T21:05:10.5223145Z { 2023-01-11T21:05:10.5223228Z auto tmp0 = out_ptr2[i0]; 2023-01-11T21:05:10.5223327Z auto tmp1 = static_cast(32); 2023-01-11T21:05:10.5223411Z auto tmp2 = tmp0 / tmp1; 2023-01-11T21:05:10.5223492Z in_out_ptr0[i0] = tmp2; 2023-01-11T21:05:10.5223553Z } 2023-01-11T21:05:10.5223629Z #pragma omp for 2023-01-11T21:05:10.5223694Z for(long i0=0; i0<1; i0+=1) 2023-01-11T21:05:10.5223755Z { 2023-01-11T21:05:10.5223888Z auto tmp0 = at::vec::Vectorized::loadu(out_ptr1 + 16*i0); 2023-01-11T21:05:10.5224019Z auto tmp1 = at::vec::Vectorized(static_cast(32)); 2023-01-11T21:05:10.5224104Z auto tmp2 = tmp0 / tmp1; 2023-01-11T21:05:10.5224306Z auto tmp3 = at::vec::Vectorized(static_cast(1e-05)); 2023-01-11T21:05:10.5224420Z auto tmp4 = tmp2 + tmp3; 2023-01-11T21:05:10.5224507Z auto tmp5 = tmp4.rsqrt(); 2023-01-11T21:05:10.5224591Z tmp5.store(in_out_ptr1 + 16*i0); 2023-01-11T21:05:10.5224651Z } 2023-01-11T21:05:10.5224744Z #pragma omp for simd simdlen(8) 2023-01-11T21:05:10.5224822Z for(long i0=16; i0<16; i0+=1) 2023-01-11T21:05:10.5224881Z { 2023-01-11T21:05:10.5224963Z auto tmp0 = out_ptr1[i0]; 2023-01-11T21:05:10.5225049Z auto tmp1 = static_cast(32); 2023-01-11T21:05:10.5225130Z auto tmp2 = tmp0 / tmp1; 2023-01-11T21:05:10.5225279Z auto tmp3 = static_cast(1e-05); 2023-01-11T21:05:10.5225359Z auto tmp4 = tmp2 + tmp3; 2023-01-11T21:05:10.5225452Z auto tmp5 = 1 / std::sqrt(tmp4); 2023-01-11T21:05:10.5225535Z in_out_ptr1[i0] = tmp5; 2023-01-11T21:05:10.5225595Z } 2023-01-11T21:05:10.5225656Z #pragma omp for 2023-01-11T21:05:10.5225734Z for(long i0=0; i0<16; i0+=1) 2023-01-11T21:05:10.5225796Z { 2023-01-11T21:05:10.5225881Z for(long i1=0; i1<2; i1+=1) 2023-01-11T21:05:10.5225943Z { 2023-01-11T21:05:10.5226083Z auto tmp0 = at::vec::Vectorized::loadu(in_ptr0 + (16*i1) + (32*i0)); 2023-01-11T21:05:10.5226210Z auto tmp1 = at::vec::Vectorized(in_out_ptr0[i0]); 2023-01-11T21:05:10.5226337Z auto tmp3 = at::vec::Vectorized(in_out_ptr1[i0]); 2023-01-11T21:05:10.5226454Z auto tmp5 = at::vec::Vectorized::loadu(in_ptr1 + 16*i1); 2023-01-11T21:05:10.5226582Z auto tmp7 = at::vec::Vectorized::loadu(in_ptr2 + 16*i1); 2023-01-11T21:05:10.5226711Z auto tmp2 = tmp0 - tmp1; 2023-01-11T21:05:10.5226799Z auto tmp4 = tmp2 * tmp3; 2023-01-11T21:05:10.5226883Z auto tmp6 = tmp4 * tmp5; 2023-01-11T21:05:10.5226968Z auto tmp8 = tmp6 + tmp7; 2023-01-11T21:05:10.5227096Z auto tmp9 = at::vec::clamp_min(tmp8, decltype(tmp8)(0)); 2023-01-11T21:05:10.5227200Z tmp9.store(out_ptr3 + (16*i1) + (32*i0)); 2023-01-11T21:05:10.5227250Z } 2023-01-11T21:05:10.5227339Z #pragma omp simd simdlen(8) 2023-01-11T21:05:10.5227422Z for(long i1=32; i1<32; i1+=1) 2023-01-11T21:05:10.5227485Z { 2023-01-11T21:05:10.5227579Z auto tmp0 = in_ptr0[i1 + (32*i0)]; 2023-01-11T21:05:10.5227669Z auto tmp1 = in_out_ptr0[i0]; 2023-01-11T21:05:10.5227761Z auto tmp3 = in_out_ptr1[i0]; 2023-01-11T21:05:10.5227832Z auto tmp5 = in_ptr1[i1]; 2023-01-11T21:05:10.5227915Z auto tmp7 = in_ptr2[i1]; 2023-01-11T21:05:10.5228040Z auto tmp2 = tmp0 - tmp1; 2023-01-11T21:05:10.5228155Z auto tmp4 = tmp2 * tmp3; 2023-01-11T21:05:10.5228236Z auto tmp6 = tmp4 * tmp5; 2023-01-11T21:05:10.5228319Z auto tmp8 = tmp6 + tmp7; 2023-01-11T21:05:10.5228410Z auto tmp9 = tmp8 * (tmp8>0); 2023-01-11T21:05:10.5228488Z out_ptr3[i1 + (32*i0)] = tmp9; 2023-01-11T21:05:10.5228550Z } 2023-01-11T21:05:10.5228611Z } 2023-01-11T21:05:10.5228671Z } 2023-01-11T21:05:10.5228731Z } 2023-01-11T21:05:10.5228807Z ''') 2023-01-11T21:05:10.5228813Z 2023-01-11T21:05:10.5228818Z 2023-01-11T21:05:10.5228906Z async_compile.wait(globals()) 2023-01-11T21:05:10.5228964Z del async_compile 2023-01-11T21:05:10.5228969Z 2023-01-11T21:05:10.5229038Z def call(args): 2023-01-11T21:05:10.5229138Z primals_1, primals_2, primals_3 = args 2023-01-11T21:05:10.5229208Z args.clear() 2023-01-11T21:05:10.5229407Z buf0 = empty_strided((16, 1), (1, 16), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.5229603Z buf1 = empty_strided((16, 1), (1, 16), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.5229792Z buf2 = empty_strided((16, 1), (1, 16), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.5229919Z buf3 = as_strided(buf2, (16, 1), (1, 1)); del buf2 # reuse 2023-01-11T21:05:10.5230031Z buf4 = as_strided(buf1, (16, 1), (1, 1)); del buf1 # reuse 2023-01-11T21:05:10.5230225Z buf5 = empty_strided((16, 32), (32, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.5230500Z kernel_cpp_0(c_void_p(buf3.data_ptr()), c_void_p(buf4.data_ptr()), c_void_p(primals_3.data_ptr()), c_void_p(primals_1.data_ptr()), c_void_p(primals_2.data_ptr()), c_void_p(buf0.data_ptr()), c_void_p(buf5.data_ptr())) 2023-01-11T21:05:10.5230623Z return (buf5, primals_1, primals_2, primals_3, buf3, buf4, ) 2023-01-11T21:05:10.5230628Z 2023-01-11T21:05:10.5230633Z 2023-01-11T21:05:10.5230707Z if __name__ == "__main__": 2023-01-11T21:05:10.5230820Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.5230942Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.5231141Z primals_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.5231327Z primals_2 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.5231530Z primals_3 = rand_strided((16, 32), (32, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.5231664Z print_performance(lambda: call([primals_1, primals_2, primals_3])) 2023-01-11T21:05:10.5231670Z 2023-01-11T21:05:10.5231735Z ok (2.955s) 2023-01-11T21:05:10.5232174Z test_leaky_relu_cpu (__main__.CpuTests) ... inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.5232302Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.5232559Z [2023-01-11 20:53:34,902] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 240 2023-01-11T21:05:10.5232826Z [2023-01-11 20:53:37,652] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 240 2023-01-11T21:05:10.5232831Z 2023-01-11T21:05:10.5232924Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.5232992Z import torch 2023-01-11T21:05:10.5233048Z import random 2023-01-11T21:05:10.5233160Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.5233280Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.5233286Z 2023-01-11T21:05:10.5233362Z aten = torch.ops.aten 2023-01-11T21:05:10.5233494Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.5233584Z async_compile = AsyncCompile() 2023-01-11T21:05:10.5233589Z 2023-01-11T21:05:10.5233593Z 2023-01-11T21:05:10.5233757Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.5233960Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.5234068Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:05:10.5234167Z float* __restrict__ out_ptr0, 2023-01-11T21:05:10.5234260Z float* __restrict__ out_ptr1) 2023-01-11T21:05:10.5234319Z { 2023-01-11T21:05:10.5234416Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.5234476Z { 2023-01-11T21:05:10.5234551Z #pragma omp for 2023-01-11T21:05:10.5234619Z for(long i0=0; i0<256; i0+=1) 2023-01-11T21:05:10.5234681Z { 2023-01-11T21:05:10.5234742Z { 2023-01-11T21:05:10.5234804Z { 2023-01-11T21:05:10.5234895Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:05:10.5234997Z auto tmp1 = static_cast(0); 2023-01-11T21:05:10.5235073Z auto tmp2 = tmp0 > tmp1; 2023-01-11T21:05:10.5235178Z auto tmp3 = static_cast(0.2); 2023-01-11T21:05:10.5235266Z auto tmp4 = tmp0 * tmp3; 2023-01-11T21:05:10.5235391Z auto tmp5 = tmp2 ? tmp0 : tmp4; 2023-01-11T21:05:10.5235493Z auto tmp6 = static_cast(2); 2023-01-11T21:05:10.5235581Z auto tmp7 = tmp5 + tmp6; 2023-01-11T21:05:10.5235682Z auto tmp8 = static_cast(1); 2023-01-11T21:05:10.5235771Z auto tmp9 = tmp0 + tmp8; 2023-01-11T21:05:10.5235847Z auto tmp10 = tmp9 > tmp1; 2023-01-11T21:05:10.5235952Z auto tmp11 = static_cast(0.01); 2023-01-11T21:05:10.5236042Z auto tmp12 = tmp9 * tmp11; 2023-01-11T21:05:10.5236140Z auto tmp13 = tmp10 ? tmp9 : tmp12; 2023-01-11T21:05:10.5236225Z out_ptr0[i0] = tmp7; 2023-01-11T21:05:10.5236307Z out_ptr1[i0] = tmp13; 2023-01-11T21:05:10.5236372Z } 2023-01-11T21:05:10.5236422Z } 2023-01-11T21:05:10.5236482Z } 2023-01-11T21:05:10.5236541Z } 2023-01-11T21:05:10.5236599Z } 2023-01-11T21:05:10.5236678Z ''') 2023-01-11T21:05:10.5236686Z 2023-01-11T21:05:10.5236690Z 2023-01-11T21:05:10.5236781Z async_compile.wait(globals()) 2023-01-11T21:05:10.5236881Z del async_compile 2023-01-11T21:05:10.5236888Z 2023-01-11T21:05:10.5236974Z def call(args): 2023-01-11T21:05:10.5237062Z arg0_1, = args 2023-01-11T21:05:10.5237160Z args.clear() 2023-01-11T21:05:10.5237368Z buf0 = empty_strided((16, 16), (16, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.5237564Z buf1 = empty_strided((16, 16), (16, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.5237727Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(buf0.data_ptr()), c_void_p(buf1.data_ptr())) 2023-01-11T21:05:10.5237796Z del arg0_1 2023-01-11T21:05:10.5237859Z return (buf0, buf1, ) 2023-01-11T21:05:10.5237867Z 2023-01-11T21:05:10.5237883Z 2023-01-11T21:05:10.5237945Z if __name__ == "__main__": 2023-01-11T21:05:10.5238058Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.5238180Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.5238378Z arg0_1 = rand_strided((16, 16), (16, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.5238483Z print_performance(lambda: call([arg0_1])) 2023-01-11T21:05:10.5238488Z 2023-01-11T21:05:10.5238553Z ok (2.827s) 2023-01-11T21:05:10.5238984Z test_lgamma_cpu (__main__.CpuTests) ... inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.5239108Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.5239406Z [2023-01-11 20:53:37,733] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 241 2023-01-11T21:05:10.5239672Z [2023-01-11 20:53:40,500] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 241 2023-01-11T21:05:10.5239677Z 2023-01-11T21:05:10.5239769Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.5239837Z import torch 2023-01-11T21:05:10.5239905Z import random 2023-01-11T21:05:10.5240018Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.5240137Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.5240142Z 2023-01-11T21:05:10.5240219Z aten = torch.ops.aten 2023-01-11T21:05:10.5240338Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.5240428Z async_compile = AsyncCompile() 2023-01-11T21:05:10.5240433Z 2023-01-11T21:05:10.5240437Z 2023-01-11T21:05:10.5240570Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.5240898Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.5241020Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:05:10.5241181Z float* __restrict__ out_ptr0, 2023-01-11T21:05:10.5241280Z float* __restrict__ out_ptr1) 2023-01-11T21:05:10.5241341Z { 2023-01-11T21:05:10.5241424Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.5241486Z { 2023-01-11T21:05:10.5241562Z #pragma omp for 2023-01-11T21:05:10.5241644Z for(long i0=0; i0<16; i0+=1) 2023-01-11T21:05:10.5241708Z { 2023-01-11T21:05:10.5241845Z auto tmp0 = at::vec::Vectorized::loadu(in_ptr0 + 16*i0); 2023-01-11T21:05:10.5241932Z auto tmp1 = tmp0.lgamma(); 2023-01-11T21:05:10.5242051Z auto tmp2 = at::vec::Vectorized(static_cast(2)); 2023-01-11T21:05:10.5242137Z auto tmp3 = tmp1 + tmp2; 2023-01-11T21:05:10.5242269Z auto tmp4 = at::vec::Vectorized(static_cast(1)); 2023-01-11T21:05:10.5242355Z auto tmp5 = tmp0 + tmp4; 2023-01-11T21:05:10.5242438Z auto tmp6 = tmp5.cos(); 2023-01-11T21:05:10.5242535Z tmp3.store(out_ptr0 + 16*i0); 2023-01-11T21:05:10.5242628Z tmp6.store(out_ptr1 + 16*i0); 2023-01-11T21:05:10.5242676Z } 2023-01-11T21:05:10.5242772Z #pragma omp for simd simdlen(8) 2023-01-11T21:05:10.5242853Z for(long i0=256; i0<256; i0+=1) 2023-01-11T21:05:10.5242915Z { 2023-01-11T21:05:10.5243001Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:05:10.5243096Z auto tmp1 = std::lgamma(tmp0); 2023-01-11T21:05:10.5243194Z auto tmp2 = static_cast(2); 2023-01-11T21:05:10.5243263Z auto tmp3 = tmp1 + tmp2; 2023-01-11T21:05:10.5243361Z auto tmp4 = static_cast(1); 2023-01-11T21:05:10.5243445Z auto tmp5 = tmp0 + tmp4; 2023-01-11T21:05:10.5243531Z auto tmp6 = std::cos(tmp5); 2023-01-11T21:05:10.5243612Z out_ptr0[i0] = tmp3; 2023-01-11T21:05:10.5243689Z out_ptr1[i0] = tmp6; 2023-01-11T21:05:10.5243748Z } 2023-01-11T21:05:10.5243795Z } 2023-01-11T21:05:10.5243856Z } 2023-01-11T21:05:10.5243938Z ''') 2023-01-11T21:05:10.5243944Z 2023-01-11T21:05:10.5243948Z 2023-01-11T21:05:10.5244036Z async_compile.wait(globals()) 2023-01-11T21:05:10.5244106Z del async_compile 2023-01-11T21:05:10.5244111Z 2023-01-11T21:05:10.5244180Z def call(args): 2023-01-11T21:05:10.5244246Z arg0_1, = args 2023-01-11T21:05:10.5244316Z args.clear() 2023-01-11T21:05:10.5244501Z buf0 = empty_strided((16, 16), (16, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.5244696Z buf1 = empty_strided((16, 16), (16, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.5244859Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(buf0.data_ptr()), c_void_p(buf1.data_ptr())) 2023-01-11T21:05:10.5244926Z del arg0_1 2023-01-11T21:05:10.5245041Z return (buf0, buf1, ) 2023-01-11T21:05:10.5245046Z 2023-01-11T21:05:10.5245050Z 2023-01-11T21:05:10.5245125Z if __name__ == "__main__": 2023-01-11T21:05:10.5245237Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.5245348Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.5245545Z arg0_1 = rand_strided((16, 16), (16, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.5245652Z print_performance(lambda: call([arg0_1])) 2023-01-11T21:05:10.5245657Z 2023-01-11T21:05:10.5245722Z ok (2.848s) 2023-01-11T21:05:10.5246156Z test_linear1_cpu (__main__.CpuTests) ... inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.5246284Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.5246543Z [2023-01-11 20:53:40,663] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 242 2023-01-11T21:05:10.5246833Z [2023-01-11 20:53:43,344] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 242 2023-01-11T21:05:10.5246839Z 2023-01-11T21:05:10.5246932Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.5247001Z import torch 2023-01-11T21:05:10.5247057Z import random 2023-01-11T21:05:10.5247173Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.5247294Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.5247299Z 2023-01-11T21:05:10.5247377Z aten = torch.ops.aten 2023-01-11T21:05:10.5247514Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.5247640Z async_compile = AsyncCompile() 2023-01-11T21:05:10.5247648Z 2023-01-11T21:05:10.5247654Z 2023-01-11T21:05:10.5247838Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.5248095Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.5248199Z extern "C" void kernel(float* __restrict__ in_out_ptr0) 2023-01-11T21:05:10.5248261Z { 2023-01-11T21:05:10.5248378Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.5248492Z { 2023-01-11T21:05:10.5248572Z #pragma omp for 2023-01-11T21:05:10.5248652Z for(long i0=0; i0<2; i0+=1) 2023-01-11T21:05:10.5248714Z { 2023-01-11T21:05:10.5248841Z auto tmp0 = at::vec::Vectorized::loadu(in_out_ptr0 + 16*i0); 2023-01-11T21:05:10.5248973Z auto tmp1 = decltype(tmp0)(1)/(decltype(tmp0)(1) + tmp0.neg().exp()); 2023-01-11T21:05:10.5249070Z tmp1.store(in_out_ptr0 + 16*i0); 2023-01-11T21:05:10.5249132Z } 2023-01-11T21:05:10.5249225Z #pragma omp for simd simdlen(8) 2023-01-11T21:05:10.5249305Z for(long i0=32; i0<32; i0+=1) 2023-01-11T21:05:10.5249367Z { 2023-01-11T21:05:10.5249444Z auto tmp0 = in_out_ptr0[i0]; 2023-01-11T21:05:10.5249584Z auto tmp1 = std::exp(-tmp0); 2023-01-11T21:05:10.5249668Z auto tmp2 = 1 / (1 + tmp1); 2023-01-11T21:05:10.5249754Z in_out_ptr0[i0] = tmp2; 2023-01-11T21:05:10.5249844Z } 2023-01-11T21:05:10.5249935Z } 2023-01-11T21:05:10.5250048Z } 2023-01-11T21:05:10.5250175Z ''') 2023-01-11T21:05:10.5250185Z 2023-01-11T21:05:10.5250191Z 2023-01-11T21:05:10.5250322Z async_compile.wait(globals()) 2023-01-11T21:05:10.5250416Z del async_compile 2023-01-11T21:05:10.5250422Z 2023-01-11T21:05:10.5250516Z def call(args): 2023-01-11T21:05:10.5250658Z primals_1, primals_2, primals_3 = args 2023-01-11T21:05:10.5250765Z args.clear() 2023-01-11T21:05:10.5251057Z buf0 = empty_strided((2, 16), (16, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.5251256Z aten.addmm.out(primals_2, primals_3, as_strided(primals_1, (8, 16), (1, 8)), beta=1, alpha=1, out=buf0) 2023-01-11T21:05:10.5251439Z del primals_1 2023-01-11T21:05:10.5251514Z del primals_2 2023-01-11T21:05:10.5251599Z buf1 = buf0; del buf0 # reuse 2023-01-11T21:05:10.5251702Z kernel_cpp_0(c_void_p(buf1.data_ptr())) 2023-01-11T21:05:10.5251793Z return (buf1, primals_3, buf1, ) 2023-01-11T21:05:10.5251798Z 2023-01-11T21:05:10.5251803Z 2023-01-11T21:05:10.5251878Z if __name__ == "__main__": 2023-01-11T21:05:10.5251991Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.5252099Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.5252306Z primals_1 = rand_strided((16, 8), (8, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.5252508Z primals_2 = rand_strided((16, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.5252706Z primals_3 = rand_strided((2, 8), (8, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.5252845Z print_performance(lambda: call([primals_1, primals_2, primals_3])) 2023-01-11T21:05:10.5252850Z 2023-01-11T21:05:10.5252917Z ok (2.843s) 2023-01-11T21:05:10.5253407Z test_linear2_cpu (__main__.CpuTests) ... inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.5253535Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.5253794Z [2023-01-11 20:53:43,776] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 243 2023-01-11T21:05:10.5254043Z [2023-01-11 20:53:46,627] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 243 2023-01-11T21:05:10.5254064Z 2023-01-11T21:05:10.5254144Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.5254216Z import torch 2023-01-11T21:05:10.5254286Z import random 2023-01-11T21:05:10.5254403Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.5254524Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.5254529Z 2023-01-11T21:05:10.5254607Z aten = torch.ops.aten 2023-01-11T21:05:10.5254742Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.5254821Z async_compile = AsyncCompile() 2023-01-11T21:05:10.5254825Z 2023-01-11T21:05:10.5254830Z 2023-01-11T21:05:10.5254963Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.5255166Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.5255282Z extern "C" void kernel(float* __restrict__ in_out_ptr0) 2023-01-11T21:05:10.5255343Z { 2023-01-11T21:05:10.5255441Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.5255502Z { 2023-01-11T21:05:10.5255564Z #pragma omp for 2023-01-11T21:05:10.5255646Z for(long i0=0; i0<1; i0+=1) 2023-01-11T21:05:10.5255707Z { 2023-01-11T21:05:10.5255853Z auto tmp0 = at::vec::Vectorized::loadu(in_out_ptr0 + 16*i0); 2023-01-11T21:05:10.5255979Z auto tmp1 = at::vec::clamp_min(tmp0, decltype(tmp0)(0)); 2023-01-11T21:05:10.5256077Z tmp1.store(in_out_ptr0 + 16*i0); 2023-01-11T21:05:10.5256141Z } 2023-01-11T21:05:10.5256241Z #pragma omp for simd simdlen(8) 2023-01-11T21:05:10.5256307Z for(long i0=16; i0<16; i0+=1) 2023-01-11T21:05:10.5256369Z { 2023-01-11T21:05:10.5256457Z auto tmp0 = in_out_ptr0[i0]; 2023-01-11T21:05:10.5256543Z auto tmp1 = tmp0 * (tmp0>0); 2023-01-11T21:05:10.5256623Z in_out_ptr0[i0] = tmp1; 2023-01-11T21:05:10.5256684Z } 2023-01-11T21:05:10.5256731Z } 2023-01-11T21:05:10.5256790Z } 2023-01-11T21:05:10.5256866Z ''') 2023-01-11T21:05:10.5256871Z 2023-01-11T21:05:10.5256875Z 2023-01-11T21:05:10.5257009Z kernel_cpp_1 = async_compile.cpp(''' 2023-01-11T21:05:10.5257209Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.5257356Z extern "C" void kernel(float* __restrict__ in_out_ptr0) 2023-01-11T21:05:10.5257414Z { 2023-01-11T21:05:10.5257509Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.5257558Z { 2023-01-11T21:05:10.5257633Z #pragma omp for 2023-01-11T21:05:10.5257713Z for(long i0=0; i0<1; i0+=1) 2023-01-11T21:05:10.5257773Z { 2023-01-11T21:05:10.5257909Z auto tmp0 = at::vec::Vectorized::loadu(in_out_ptr0 + 16*i0); 2023-01-11T21:05:10.5258034Z auto tmp1 = at::vec::clamp_min(tmp0, decltype(tmp0)(0)); 2023-01-11T21:05:10.5258128Z tmp1.store(in_out_ptr0 + 16*i0); 2023-01-11T21:05:10.5258176Z } 2023-01-11T21:05:10.5258268Z #pragma omp for simd simdlen(8) 2023-01-11T21:05:10.5258348Z for(long i0=16; i0<16; i0+=1) 2023-01-11T21:05:10.5258408Z { 2023-01-11T21:05:10.5258601Z auto tmp0 = in_out_ptr0[i0]; 2023-01-11T21:05:10.5258691Z auto tmp1 = tmp0 * (tmp0>0); 2023-01-11T21:05:10.5258775Z in_out_ptr0[i0] = tmp1; 2023-01-11T21:05:10.5258824Z } 2023-01-11T21:05:10.5258885Z } 2023-01-11T21:05:10.5258945Z } 2023-01-11T21:05:10.5259026Z ''') 2023-01-11T21:05:10.5259064Z 2023-01-11T21:05:10.5259068Z 2023-01-11T21:05:10.5259204Z kernel_cpp_2 = async_compile.cpp(''' 2023-01-11T21:05:10.5259407Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.5259523Z extern "C" void kernel(float* __restrict__ in_out_ptr0) 2023-01-11T21:05:10.5259568Z { 2023-01-11T21:05:10.5259664Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.5259725Z { 2023-01-11T21:05:10.5259801Z #pragma omp for 2023-01-11T21:05:10.5259880Z for(long i0=0; i0<1; i0+=1) 2023-01-11T21:05:10.5259943Z { 2023-01-11T21:05:10.5260085Z auto tmp0 = at::vec::Vectorized::loadu(in_out_ptr0 + 16*i0); 2023-01-11T21:05:10.5260195Z auto tmp1 = at::vec::clamp_min(tmp0, decltype(tmp0)(0)); 2023-01-11T21:05:10.5260293Z tmp1.store(in_out_ptr0 + 16*i0); 2023-01-11T21:05:10.5260355Z } 2023-01-11T21:05:10.5260447Z #pragma omp for simd simdlen(8) 2023-01-11T21:05:10.5260527Z for(long i0=16; i0<16; i0+=1) 2023-01-11T21:05:10.5260587Z { 2023-01-11T21:05:10.5260673Z auto tmp0 = in_out_ptr0[i0]; 2023-01-11T21:05:10.5260746Z auto tmp1 = tmp0 * (tmp0>0); 2023-01-11T21:05:10.5260826Z in_out_ptr0[i0] = tmp1; 2023-01-11T21:05:10.5260887Z } 2023-01-11T21:05:10.5260947Z } 2023-01-11T21:05:10.5261005Z } 2023-01-11T21:05:10.5261082Z ''') 2023-01-11T21:05:10.5261086Z 2023-01-11T21:05:10.5261090Z 2023-01-11T21:05:10.5261221Z kernel_cpp_3 = async_compile.cpp(''' 2023-01-11T21:05:10.5261408Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.5261521Z extern "C" void kernel(float* __restrict__ in_out_ptr0, 2023-01-11T21:05:10.5261619Z bool* __restrict__ out_ptr0) 2023-01-11T21:05:10.5261679Z { 2023-01-11T21:05:10.5261772Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.5261831Z { 2023-01-11T21:05:10.5261909Z #pragma omp for 2023-01-11T21:05:10.5261977Z for(long i0=0; i0<16; i0+=1) 2023-01-11T21:05:10.5262038Z { 2023-01-11T21:05:10.5262099Z { 2023-01-11T21:05:10.5262162Z { 2023-01-11T21:05:10.5262260Z auto tmp0 = in_out_ptr0[i0]; 2023-01-11T21:05:10.5262353Z auto tmp1 = tmp0 * (tmp0>0); 2023-01-11T21:05:10.5262455Z auto tmp2 = static_cast(0); 2023-01-11T21:05:10.5262534Z auto tmp3 = tmp1 <= tmp2; 2023-01-11T21:05:10.5262622Z in_out_ptr0[i0] = tmp1; 2023-01-11T21:05:10.5262705Z out_ptr0[i0] = tmp3; 2023-01-11T21:05:10.5262770Z } 2023-01-11T21:05:10.5262833Z } 2023-01-11T21:05:10.5262925Z } 2023-01-11T21:05:10.5262985Z } 2023-01-11T21:05:10.5263030Z } 2023-01-11T21:05:10.5263107Z ''') 2023-01-11T21:05:10.5263112Z 2023-01-11T21:05:10.5263116Z 2023-01-11T21:05:10.5263204Z async_compile.wait(globals()) 2023-01-11T21:05:10.5263276Z del async_compile 2023-01-11T21:05:10.5263281Z 2023-01-11T21:05:10.5263349Z def call(args): 2023-01-11T21:05:10.5263520Z primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9 = args 2023-01-11T21:05:10.5263589Z args.clear() 2023-01-11T21:05:10.5263775Z buf0 = empty_strided((2, 8), (8, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.5264000Z aten.addmm.out(primals_2, primals_9, as_strided(primals_1, (8, 8), (1, 8)), beta=1, alpha=1, out=buf0) 2023-01-11T21:05:10.5264080Z del primals_1 2023-01-11T21:05:10.5264150Z del primals_2 2023-01-11T21:05:10.5264236Z buf1 = buf0; del buf0 # reuse 2023-01-11T21:05:10.5264392Z kernel_cpp_0(c_void_p(buf1.data_ptr())) 2023-01-11T21:05:10.5264768Z buf2 = empty_strided((2, 8), (8, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.5265056Z aten.addmm.out(primals_4, buf1, as_strided(primals_3, (8, 8), (1, 8)), beta=1, alpha=1, out=buf2) 2023-01-11T21:05:10.5265173Z del primals_4 2023-01-11T21:05:10.5265259Z buf3 = buf2; del buf2 # reuse 2023-01-11T21:05:10.5265360Z kernel_cpp_1(c_void_p(buf3.data_ptr())) 2023-01-11T21:05:10.5265555Z buf4 = empty_strided((2, 8), (8, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.5265710Z aten.addmm.out(primals_6, buf3, as_strided(primals_5, (8, 8), (1, 8)), beta=1, alpha=1, out=buf4) 2023-01-11T21:05:10.5265780Z del primals_6 2023-01-11T21:05:10.5265862Z buf5 = buf4; del buf4 # reuse 2023-01-11T21:05:10.5265949Z kernel_cpp_2(c_void_p(buf5.data_ptr())) 2023-01-11T21:05:10.5266140Z buf6 = empty_strided((2, 8), (8, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.5266291Z aten.addmm.out(primals_8, buf5, as_strided(primals_7, (8, 8), (1, 8)), beta=1, alpha=1, out=buf6) 2023-01-11T21:05:10.5266366Z del primals_8 2023-01-11T21:05:10.5266447Z buf7 = buf6; del buf6 # reuse 2023-01-11T21:05:10.5266636Z buf8 = empty_strided((2, 8), (8, 1), device='cpu', dtype=torch.bool) 2023-01-11T21:05:10.5266766Z kernel_cpp_3(c_void_p(buf7.data_ptr()), c_void_p(buf8.data_ptr())) 2023-01-11T21:05:10.5266965Z return (buf7, primals_9, buf1, buf3, buf5, buf8, as_strided(primals_7, (8, 8), (8, 1)), as_strided(primals_5, (8, 8), (8, 1)), as_strided(primals_3, (8, 8), (8, 1)), ) 2023-01-11T21:05:10.5266971Z 2023-01-11T21:05:10.5266976Z 2023-01-11T21:05:10.5267039Z if __name__ == "__main__": 2023-01-11T21:05:10.5267150Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.5267270Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.5267470Z primals_1 = rand_strided((8, 8), (8, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.5267666Z primals_2 = rand_strided((8, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.5267864Z primals_3 = rand_strided((8, 8), (8, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.5268057Z primals_4 = rand_strided((8, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.5268252Z primals_5 = rand_strided((8, 8), (8, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.5268430Z primals_6 = rand_strided((8, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.5268625Z primals_7 = rand_strided((8, 8), (8, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.5268816Z primals_8 = rand_strided((8, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.5269010Z primals_9 = rand_strided((2, 8), (8, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.5269212Z print_performance(lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9])) 2023-01-11T21:05:10.5269218Z 2023-01-11T21:05:10.5269284Z ok (3.284s) 2023-01-11T21:05:10.5269757Z test_linear_binary_cpu (__main__.CpuTests) ... inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.5269882Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.5270143Z [2023-01-11 20:53:46,869] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 244 2023-01-11T21:05:10.5270410Z [2023-01-11 20:53:49,623] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 244 2023-01-11T21:05:10.5270795Z inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.5270922Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.5271203Z [2023-01-11 20:53:49,698] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 245 2023-01-11T21:05:10.5271466Z [2023-01-11 20:53:49,716] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 245 2023-01-11T21:05:10.5271860Z inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.5271985Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.5272240Z [2023-01-11 20:53:49,943] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 246 2023-01-11T21:05:10.5272505Z [2023-01-11 20:53:52,633] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 246 2023-01-11T21:05:10.5272904Z inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.5273026Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.5273283Z [2023-01-11 20:53:52,691] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 247 2023-01-11T21:05:10.5273544Z [2023-01-11 20:53:52,708] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 247 2023-01-11T21:05:10.5273931Z inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.5274058Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.5274309Z [2023-01-11 20:53:52,938] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 248 2023-01-11T21:05:10.5274314Z 2023-01-11T21:05:10.5274408Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.5274477Z import torch 2023-01-11T21:05:10.5274546Z import random 2023-01-11T21:05:10.5274660Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.5274780Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.5274786Z 2023-01-11T21:05:10.5274849Z aten = torch.ops.aten 2023-01-11T21:05:10.5274983Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.5275139Z async_compile = AsyncCompile() 2023-01-11T21:05:10.5275144Z 2023-01-11T21:05:10.5275149Z 2023-01-11T21:05:10.5275281Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.5275488Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.5275608Z extern "C" void kernel(bfloat16* __restrict__ in_out_ptr0, 2023-01-11T21:05:10.5275719Z const bfloat16* __restrict__ in_ptr0) 2023-01-11T21:05:10.5275780Z { 2023-01-11T21:05:10.5275863Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.5275925Z { 2023-01-11T21:05:10.5276002Z #pragma omp for 2023-01-11T21:05:10.5276086Z for(long i0=0; i0<180; i0+=1) 2023-01-11T21:05:10.5276149Z { 2023-01-11T21:05:10.5276213Z { 2023-01-11T21:05:10.5276277Z { 2023-01-11T21:05:10.5276384Z auto tmp0 = static_cast(in_out_ptr0[i0]); 2023-01-11T21:05:10.5276501Z auto tmp1 = static_cast(in_ptr0[i0]); 2023-01-11T21:05:10.5276594Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:05:10.5276684Z in_out_ptr0[i0] = tmp2; 2023-01-11T21:05:10.5276750Z } 2023-01-11T21:05:10.5276840Z } 2023-01-11T21:05:10.5276903Z } 2023-01-11T21:05:10.5276951Z } 2023-01-11T21:05:10.5277009Z } 2023-01-11T21:05:10.5277086Z ''') 2023-01-11T21:05:10.5277091Z 2023-01-11T21:05:10.5277096Z 2023-01-11T21:05:10.5277183Z async_compile.wait(globals()) 2023-01-11T21:05:10.5277254Z del async_compile 2023-01-11T21:05:10.5277260Z 2023-01-11T21:05:10.5277329Z def call(args): 2023-01-11T21:05:10.5277417Z arg0_1, arg1_1, arg2_1, arg3_1 = args 2023-01-11T21:05:10.5277474Z args.clear() 2023-01-11T21:05:10.5277674Z buf0 = empty_strided((6, 30), (30, 1), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:05:10.5277843Z aten.addmm.out(arg1_1, as_strided(arg2_1, (6, 10), (10, 1)), as_strided(arg0_1, (10, 30), (1, 10)), beta=1, alpha=1, out=buf0) 2023-01-11T21:05:10.5277913Z del arg0_1 2023-01-11T21:05:10.5277977Z del arg1_1 2023-01-11T21:05:10.5278041Z del arg2_1 2023-01-11T21:05:10.5278158Z buf1 = as_strided(buf0, (2, 3, 30), (90, 30, 1)); del buf0 # reuse 2023-01-11T21:05:10.5278277Z kernel_cpp_0(c_void_p(buf1.data_ptr()), c_void_p(arg3_1.data_ptr())) 2023-01-11T21:05:10.5278344Z del arg3_1 2023-01-11T21:05:10.5278413Z return (buf1, ) 2023-01-11T21:05:10.5278418Z 2023-01-11T21:05:10.5278423Z 2023-01-11T21:05:10.5278496Z if __name__ == "__main__": 2023-01-11T21:05:10.5278609Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.5278731Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.5278933Z arg0_1 = rand_strided((30, 10), (10, 1), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:05:10.5279127Z arg1_1 = rand_strided((30, ), (1, ), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:05:10.5279318Z arg2_1 = rand_strided((2, 3, 10), (30, 10, 1), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:05:10.5279525Z arg3_1 = rand_strided((2, 3, 30), (90, 30, 1), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:05:10.5279654Z print_performance(lambda: call([arg0_1, arg1_1, arg2_1, arg3_1])) 2023-01-11T21:05:10.5279659Z 2023-01-11T21:05:10.5279663Z 2023-01-11T21:05:10.5279757Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.5279825Z import torch 2023-01-11T21:05:10.5279893Z import random 2023-01-11T21:05:10.5280010Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.5280129Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.5280134Z 2023-01-11T21:05:10.5280198Z aten = torch.ops.aten 2023-01-11T21:05:10.5280331Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.5280421Z async_compile = AsyncCompile() 2023-01-11T21:05:10.5280425Z 2023-01-11T21:05:10.5280429Z 2023-01-11T21:05:10.5280564Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.5280972Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.5281093Z extern "C" void kernel(bfloat16* __restrict__ in_out_ptr0, 2023-01-11T21:05:10.5281205Z const bfloat16* __restrict__ in_ptr0) 2023-01-11T21:05:10.5281268Z { 2023-01-11T21:05:10.5281354Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.5281415Z { 2023-01-11T21:05:10.5281493Z #pragma omp for 2023-01-11T21:05:10.5281576Z for(long i0=0; i0<180; i0+=1) 2023-01-11T21:05:10.5281638Z { 2023-01-11T21:05:10.5281703Z { 2023-01-11T21:05:10.5281767Z { 2023-01-11T21:05:10.5281874Z auto tmp0 = static_cast(in_out_ptr0[i0]); 2023-01-11T21:05:10.5281988Z auto tmp1 = static_cast(in_ptr0[i0]); 2023-01-11T21:05:10.5282078Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:05:10.5289034Z in_out_ptr0[i0] = tmp2; 2023-01-11T21:05:10.5289147Z } 2023-01-11T21:05:10.5289203Z } 2023-01-11T21:05:10.5289256Z } 2023-01-11T21:05:10.5289306Z } 2023-01-11T21:05:10.5289354Z } 2023-01-11T21:05:10.5289499Z ''') 2023-01-11T21:05:10.5289506Z 2023-01-11T21:05:10.5289673Z 2023-01-11T21:05:10.5289849Z async_compile.wait(globals()) 2023-01-11T21:05:10.5289973Z del async_compile 2023-01-11T21:05:10.5289983Z 2023-01-11T21:05:10.5290100Z def call(args): 2023-01-11T21:05:10.5290230Z arg0_1, arg1_1, arg2_1 = args 2023-01-11T21:05:10.5290314Z args.clear() 2023-01-11T21:05:10.5290515Z buf0 = empty_strided((6, 30), (30, 1), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:05:10.5290663Z aten.mm.out(as_strided(arg1_1, (6, 10), (10, 1)), as_strided(arg0_1, (10, 30), (1, 10)), out=buf0) 2023-01-11T21:05:10.5290732Z del arg0_1 2023-01-11T21:05:10.5290799Z del arg1_1 2023-01-11T21:05:10.5290917Z buf1 = as_strided(buf0, (2, 3, 30), (90, 30, 1)); del buf0 # reuse 2023-01-11T21:05:10.5291052Z kernel_cpp_0(c_void_p(buf1.data_ptr()), c_void_p(arg2_1.data_ptr())) 2023-01-11T21:05:10.5291123Z del arg2_1 2023-01-11T21:05:10.5291194Z return (buf1, ) 2023-01-11T21:05:10.5291199Z 2023-01-11T21:05:10.5291204Z 2023-01-11T21:05:10.5291268Z if __name__ == "__main__": 2023-01-11T21:05:10.5291384Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.5291510Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.5291716Z arg0_1 = rand_strided((30, 10), (10, 1), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:05:10.5291924Z arg1_1 = rand_strided((2, 3, 10), (30, 10, 1), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:05:10.5292128Z arg2_1 = rand_strided((2, 3, 30), (90, 30, 1), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:05:10.5292252Z print_performance(lambda: call([arg0_1, arg1_1, arg2_1])) 2023-01-11T21:05:10.5292257Z 2023-01-11T21:05:10.5292261Z 2023-01-11T21:05:10.5292354Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.5292410Z import torch 2023-01-11T21:05:10.5292482Z import random 2023-01-11T21:05:10.5292598Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.5292721Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.5292726Z 2023-01-11T21:05:10.5292806Z aten = torch.ops.aten 2023-01-11T21:05:10.5292940Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.5293033Z async_compile = AsyncCompile() 2023-01-11T21:05:10.5293037Z 2023-01-11T21:05:10.5293042Z 2023-01-11T21:05:10.5293172Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.5293366Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.5293487Z extern "C" void kernel(bfloat16* __restrict__ in_out_ptr0, 2023-01-11T21:05:10.5293595Z const bfloat16* __restrict__ in_ptr0) 2023-01-11T21:05:10.5293655Z { 2023-01-11T21:05:10.5293752Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.5293813Z { 2023-01-11T21:05:10.5293948Z #pragma omp for 2023-01-11T21:05:10.5294018Z for(long i0=0; i0<60; i0+=1) 2023-01-11T21:05:10.5294082Z { 2023-01-11T21:05:10.5294144Z { 2023-01-11T21:05:10.5294208Z { 2023-01-11T21:05:10.5294334Z auto tmp0 = static_cast(in_out_ptr0[i0]); 2023-01-11T21:05:10.5294451Z auto tmp1 = static_cast(in_ptr0[i0]); 2023-01-11T21:05:10.5294543Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:05:10.5294622Z in_out_ptr0[i0] = tmp2; 2023-01-11T21:05:10.5294687Z } 2023-01-11T21:05:10.5294746Z } 2023-01-11T21:05:10.5294810Z } 2023-01-11T21:05:10.5294871Z } 2023-01-11T21:05:10.5294932Z } 2023-01-11T21:05:10.5295012Z ''') 2023-01-11T21:05:10.5295017Z 2023-01-11T21:05:10.5295021Z 2023-01-11T21:05:10.5295113Z async_compile.wait(globals()) 2023-01-11T21:05:10.5295170Z del async_compile 2023-01-11T21:05:10.5295175Z 2023-01-11T21:05:10.5295247Z def call(args): 2023-01-11T21:05:10.5295342Z arg0_1, arg1_1, arg2_1, arg3_1 = args 2023-01-11T21:05:10.5295412Z args.clear() 2023-01-11T21:05:10.5295612Z buf0 = empty_strided((2, 30), (30, 1), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:05:10.5295793Z aten.addmm.out(arg1_1, arg2_1, as_strided(arg0_1, (10, 30), (1, 10)), beta=1, alpha=1, out=buf0) 2023-01-11T21:05:10.5295861Z del arg0_1 2023-01-11T21:05:10.5295912Z del arg1_1 2023-01-11T21:05:10.5295977Z del arg2_1 2023-01-11T21:05:10.5296061Z buf1 = buf0; del buf0 # reuse 2023-01-11T21:05:10.5296192Z kernel_cpp_0(c_void_p(buf1.data_ptr()), c_void_p(arg3_1.data_ptr())) 2023-01-11T21:05:10.5296257Z del arg3_1 2023-01-11T21:05:10.5296326Z return (buf1, ) 2023-01-11T21:05:10.5296331Z 2023-01-11T21:05:10.5296335Z 2023-01-11T21:05:10.5296409Z if __name__ == "__main__": 2023-01-11T21:05:10.5296521Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.5296630Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.5296833Z arg0_1 = rand_strided((30, 10), (10, 1), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:05:10.5297028Z arg1_1 = rand_strided((30, ), (1, ), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:05:10.5297232Z arg2_1 = rand_strided((2, 10), (10, 1), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:05:10.5297428Z arg3_1 = rand_strided((2, 30), (30, 1), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:05:10.5297556Z print_performance(lambda: call([arg0_1, arg1_1, arg2_1, arg3_1])) 2023-01-11T21:05:10.5297562Z 2023-01-11T21:05:10.5297566Z 2023-01-11T21:05:10.5297661Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.5297728Z import torch 2023-01-11T21:05:10.5297784Z import random 2023-01-11T21:05:10.5297898Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.5298017Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.5298022Z 2023-01-11T21:05:10.5298097Z aten = torch.ops.aten 2023-01-11T21:05:10.5298232Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.5298321Z async_compile = AsyncCompile() 2023-01-11T21:05:10.5298326Z 2023-01-11T21:05:10.5298330Z 2023-01-11T21:05:10.5298556Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.5298767Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.5298873Z extern "C" void kernel(bfloat16* __restrict__ in_out_ptr0, 2023-01-11T21:05:10.5298983Z const bfloat16* __restrict__ in_ptr0) 2023-01-11T21:05:10.5299045Z { 2023-01-11T21:05:10.5299143Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.5299208Z { 2023-01-11T21:05:10.5299285Z #pragma omp for 2023-01-11T21:05:10.5299366Z for(long i0=0; i0<60; i0+=1) 2023-01-11T21:05:10.5299414Z { 2023-01-11T21:05:10.5299478Z { 2023-01-11T21:05:10.5299545Z { 2023-01-11T21:05:10.5299666Z auto tmp0 = static_cast(in_out_ptr0[i0]); 2023-01-11T21:05:10.5299816Z auto tmp1 = static_cast(in_ptr0[i0]); 2023-01-11T21:05:10.5299910Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:05:10.5300002Z in_out_ptr0[i0] = tmp2; 2023-01-11T21:05:10.5300052Z } 2023-01-11T21:05:10.5300114Z } 2023-01-11T21:05:10.5300177Z } 2023-01-11T21:05:10.5300236Z } 2023-01-11T21:05:10.5300295Z } 2023-01-11T21:05:10.5300374Z ''') 2023-01-11T21:05:10.5300379Z 2023-01-11T21:05:10.5300383Z 2023-01-11T21:05:10.5300471Z async_compile.wait(globals()) 2023-01-11T21:05:10.5300529Z del async_compile 2023-01-11T21:05:10.5300534Z 2023-01-11T21:05:10.5300602Z def call(args): 2023-01-11T21:05:10.5300683Z arg0_1, arg1_1, arg2_1 = args 2023-01-11T21:05:10.5300751Z args.clear() 2023-01-11T21:05:10.5300951Z buf0 = empty_strided((2, 30), (30, 1), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:05:10.5301072Z aten.mm.out(arg1_1, as_strided(arg0_1, (10, 30), (1, 10)), out=buf0) 2023-01-11T21:05:10.5301140Z del arg0_1 2023-01-11T21:05:10.5301193Z del arg1_1 2023-01-11T21:05:10.5301278Z buf1 = buf0; del buf0 # reuse 2023-01-11T21:05:10.5301457Z kernel_cpp_0(c_void_p(buf1.data_ptr()), c_void_p(arg2_1.data_ptr())) 2023-01-11T21:05:10.5301524Z del arg2_1 2023-01-11T21:05:10.5301594Z return (buf1, ) 2023-01-11T21:05:10.5301598Z 2023-01-11T21:05:10.5301602Z 2023-01-11T21:05:10.5301676Z if __name__ == "__main__": 2023-01-11T21:05:10.5301788Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.5301898Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.5302102Z arg0_1 = rand_strided((30, 10), (10, 1), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:05:10.5302299Z arg1_1 = rand_strided((2, 10), (10, 1), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:05:10.5302493Z arg2_1 = rand_strided((2, 30), (30, 1), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:05:10.5302615Z print_performance(lambda: call([arg0_1, arg1_1, arg2_1])) 2023-01-11T21:05:10.5302623Z 2023-01-11T21:05:10.5302627Z 2023-01-11T21:05:10.5302721Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.5302791Z import torch 2023-01-11T21:05:10.5302863Z import random 2023-01-11T21:05:10.5302964Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.5303085Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.5303090Z 2023-01-11T21:05:10.5303167Z aten = torch.ops.aten 2023-01-11T21:05:10.5303300Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.5303389Z async_compile = AsyncCompile() 2023-01-11T21:05:10.5303394Z 2023-01-11T21:05:10.5303398Z 2023-01-11T21:05:10.5303529Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.5303732Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.5303850Z extern "C" void kernel(bfloat16* __restrict__ in_out_ptr0, 2023-01-11T21:05:10.5303959Z const bfloat16* __restrict__ in_ptr0) 2023-01-11T21:05:10.5304005Z { 2023-01-11T21:05:10.5304102Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.5304163Z { 2023-01-11T21:05:10.5304241Z #pragma omp for 2023-01-11T21:05:10.5304322Z for(long i0=0; i0<180; i0+=1) 2023-01-11T21:05:10.5304383Z { 2023-01-11T21:05:10.5304433Z { 2023-01-11T21:05:10.5304495Z { 2023-01-11T21:05:10.5304608Z auto tmp0 = static_cast(in_ptr0[i0]); 2023-01-11T21:05:10.5304727Z auto tmp1 = static_cast(in_out_ptr0[i0]); 2023-01-11T21:05:10.5304818Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:05:10.5304907Z in_out_ptr0[i0] = tmp2; 2023-01-11T21:05:10.5304970Z } 2023-01-11T21:05:10.5305019Z } 2023-01-11T21:05:10.5305079Z } 2023-01-11T21:05:10.5305139Z } 2023-01-11T21:05:10.5305198Z } 2023-01-11T21:05:10.5305274Z ''') 2023-01-11T21:05:10.5305314Z 2023-01-11T21:05:10.5305318Z 2023-01-11T21:05:10.5305406Z async_compile.wait(globals()) 2023-01-11T21:05:10.5305477Z del async_compile 2023-01-11T21:05:10.5305482Z 2023-01-11T21:05:10.5305537Z def call(args): 2023-01-11T21:05:10.5305629Z arg0_1, arg1_1, arg2_1, arg3_1 = args 2023-01-11T21:05:10.5305698Z args.clear() 2023-01-11T21:05:10.5305899Z buf0 = empty_strided((6, 30), (30, 1), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:05:10.5306070Z aten.addmm.out(arg1_1, as_strided(arg2_1, (6, 10), (10, 1)), as_strided(arg0_1, (10, 30), (1, 10)), beta=1, alpha=1, out=buf0) 2023-01-11T21:05:10.5306138Z del arg0_1 2023-01-11T21:05:10.5306202Z del arg1_1 2023-01-11T21:05:10.5306253Z del arg2_1 2023-01-11T21:05:10.5306369Z buf1 = as_strided(buf0, (2, 3, 30), (90, 30, 1)); del buf0 # reuse 2023-01-11T21:05:10.5306499Z kernel_cpp_0(c_void_p(buf1.data_ptr()), c_void_p(arg3_1.data_ptr())) 2023-01-11T21:05:10.5306563Z del arg3_1 2023-01-11T21:05:10.5306636Z return (buf1, ) 2023-01-11T21:05:10.5306641Z 2023-01-11T21:05:10.5306645Z 2023-01-11T21:05:10.5306720Z if __name__ == "__main__": 2023-01-11T21:05:10.5306835Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.5306980Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.5307171Z arg0_1 = rand_strided((30, 10), (10, 1), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:05:10.5307368Z arg1_1 = rand_strided((30, ), (1, ), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:05:10.5307576Z arg2_1 = rand_strided((2, 3, 10), (30, 10, 1), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:05:10.5307779Z arg3_1 = rand_strided((2, 3, 30), (90, 30, 1), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:05:10.5307907Z print_performance(lambda: call([arg0_1, arg1_1, arg2_1, arg3_1])) 2023-01-11T21:05:10.5308177Z [2023-01-11 20:53:55,706] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 248 2023-01-11T21:05:10.5308584Z inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.5308708Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.5308968Z [2023-01-11 20:53:55,778] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 249 2023-01-11T21:05:10.5309233Z [2023-01-11 20:53:55,796] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 249 2023-01-11T21:05:10.5309617Z inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.5309745Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.5310006Z [2023-01-11 20:53:56,024] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 250 2023-01-11T21:05:10.5310268Z [2023-01-11 20:53:58,747] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 250 2023-01-11T21:05:10.5310665Z inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.5310790Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.5311045Z [2023-01-11 20:53:58,819] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 251 2023-01-11T21:05:10.5311339Z [2023-01-11 20:53:58,862] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 251 2023-01-11T21:05:10.5311738Z inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.5311863Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.5312119Z [2023-01-11 20:53:59,073] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 252 2023-01-11T21:05:10.5312363Z [2023-01-11 20:53:59,085] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 252 2023-01-11T21:05:10.5312760Z inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.5312917Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.5313174Z [2023-01-11 20:53:59,133] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 253 2023-01-11T21:05:10.5313179Z 2023-01-11T21:05:10.5313184Z 2023-01-11T21:05:10.5313279Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.5313349Z import torch 2023-01-11T21:05:10.5313419Z import random 2023-01-11T21:05:10.5313533Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.5313653Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.5313658Z 2023-01-11T21:05:10.5313721Z aten = torch.ops.aten 2023-01-11T21:05:10.5313855Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.5313947Z async_compile = AsyncCompile() 2023-01-11T21:05:10.5313954Z 2023-01-11T21:05:10.5313959Z 2023-01-11T21:05:10.5314093Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.5314299Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.5314418Z extern "C" void kernel(bfloat16* __restrict__ in_out_ptr0, 2023-01-11T21:05:10.5314525Z const bfloat16* __restrict__ in_ptr0) 2023-01-11T21:05:10.5314584Z { 2023-01-11T21:05:10.5314667Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.5314728Z { 2023-01-11T21:05:10.5314804Z #pragma omp for 2023-01-11T21:05:10.5314886Z for(long i0=0; i0<180; i0+=1) 2023-01-11T21:05:10.5314948Z { 2023-01-11T21:05:10.5315011Z { 2023-01-11T21:05:10.5315074Z { 2023-01-11T21:05:10.5315175Z auto tmp0 = static_cast(in_ptr0[i0]); 2023-01-11T21:05:10.5315293Z auto tmp1 = static_cast(in_out_ptr0[i0]); 2023-01-11T21:05:10.5315388Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:05:10.5315476Z in_out_ptr0[i0] = tmp2; 2023-01-11T21:05:10.5315540Z } 2023-01-11T21:05:10.5315602Z } 2023-01-11T21:05:10.5315665Z } 2023-01-11T21:05:10.5315713Z } 2023-01-11T21:05:10.5315771Z } 2023-01-11T21:05:10.5315848Z ''') 2023-01-11T21:05:10.5315852Z 2023-01-11T21:05:10.5315857Z 2023-01-11T21:05:10.5315945Z async_compile.wait(globals()) 2023-01-11T21:05:10.5316015Z del async_compile 2023-01-11T21:05:10.5316020Z 2023-01-11T21:05:10.5316087Z def call(args): 2023-01-11T21:05:10.5316168Z arg0_1, arg1_1, arg2_1 = args 2023-01-11T21:05:10.5316224Z args.clear() 2023-01-11T21:05:10.5316425Z buf0 = empty_strided((6, 30), (30, 1), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:05:10.5316569Z aten.mm.out(as_strided(arg1_1, (6, 10), (10, 1)), as_strided(arg0_1, (10, 30), (1, 10)), out=buf0) 2023-01-11T21:05:10.5316636Z del arg0_1 2023-01-11T21:05:10.5316733Z del arg1_1 2023-01-11T21:05:10.5316847Z buf1 = as_strided(buf0, (2, 3, 30), (90, 30, 1)); del buf0 # reuse 2023-01-11T21:05:10.5316978Z kernel_cpp_0(c_void_p(buf1.data_ptr()), c_void_p(arg2_1.data_ptr())) 2023-01-11T21:05:10.5317033Z del arg2_1 2023-01-11T21:05:10.5317103Z return (buf1, ) 2023-01-11T21:05:10.5317107Z 2023-01-11T21:05:10.5317112Z 2023-01-11T21:05:10.5317185Z if __name__ == "__main__": 2023-01-11T21:05:10.5317297Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.5317420Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.5317622Z arg0_1 = rand_strided((30, 10), (10, 1), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:05:10.5317828Z arg1_1 = rand_strided((2, 3, 10), (30, 10, 1), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:05:10.5318031Z arg2_1 = rand_strided((2, 3, 30), (90, 30, 1), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:05:10.5318139Z print_performance(lambda: call([arg0_1, arg1_1, arg2_1])) 2023-01-11T21:05:10.5318159Z 2023-01-11T21:05:10.5318163Z 2023-01-11T21:05:10.5318242Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.5318310Z import torch 2023-01-11T21:05:10.5318378Z import random 2023-01-11T21:05:10.5318520Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.5318641Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.5318645Z 2023-01-11T21:05:10.5318723Z aten = torch.ops.aten 2023-01-11T21:05:10.5318854Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.5318931Z async_compile = AsyncCompile() 2023-01-11T21:05:10.5318947Z 2023-01-11T21:05:10.5318951Z 2023-01-11T21:05:10.5319070Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.5319269Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.5319388Z extern "C" void kernel(bfloat16* __restrict__ in_out_ptr0, 2023-01-11T21:05:10.5319497Z const bfloat16* __restrict__ in_ptr0) 2023-01-11T21:05:10.5319561Z { 2023-01-11T21:05:10.5319657Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.5319718Z { 2023-01-11T21:05:10.5319780Z #pragma omp for 2023-01-11T21:05:10.5319863Z for(long i0=0; i0<60; i0+=1) 2023-01-11T21:05:10.5319925Z { 2023-01-11T21:05:10.5319986Z { 2023-01-11T21:05:10.5320050Z { 2023-01-11T21:05:10.5320164Z auto tmp0 = static_cast(in_ptr0[i0]); 2023-01-11T21:05:10.5320282Z auto tmp1 = static_cast(in_out_ptr0[i0]); 2023-01-11T21:05:10.5320358Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:05:10.5320449Z in_out_ptr0[i0] = tmp2; 2023-01-11T21:05:10.5320512Z } 2023-01-11T21:05:10.5320574Z } 2023-01-11T21:05:10.5320799Z } 2023-01-11T21:05:10.5320866Z } 2023-01-11T21:05:10.5320911Z } 2023-01-11T21:05:10.5320993Z ''') 2023-01-11T21:05:10.5320998Z 2023-01-11T21:05:10.5321005Z 2023-01-11T21:05:10.5321095Z async_compile.wait(globals()) 2023-01-11T21:05:10.5321169Z del async_compile 2023-01-11T21:05:10.5321174Z 2023-01-11T21:05:10.5321245Z def call(args): 2023-01-11T21:05:10.5321337Z arg0_1, arg1_1, arg2_1, arg3_1 = args 2023-01-11T21:05:10.5321407Z args.clear() 2023-01-11T21:05:10.5321608Z buf0 = empty_strided((2, 30), (30, 1), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:05:10.5321745Z aten.addmm.out(arg1_1, arg2_1, as_strided(arg0_1, (10, 30), (1, 10)), beta=1, alpha=1, out=buf0) 2023-01-11T21:05:10.5321812Z del arg0_1 2023-01-11T21:05:10.5321879Z del arg1_1 2023-01-11T21:05:10.5321944Z del arg2_1 2023-01-11T21:05:10.5322029Z buf1 = buf0; del buf0 # reuse 2023-01-11T21:05:10.5322162Z kernel_cpp_0(c_void_p(buf1.data_ptr()), c_void_p(arg3_1.data_ptr())) 2023-01-11T21:05:10.5322230Z del arg3_1 2023-01-11T21:05:10.5322287Z return (buf1, ) 2023-01-11T21:05:10.5322292Z 2023-01-11T21:05:10.5322296Z 2023-01-11T21:05:10.5322431Z if __name__ == "__main__": 2023-01-11T21:05:10.5322544Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.5322668Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.5322875Z arg0_1 = rand_strided((30, 10), (10, 1), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:05:10.5323072Z arg1_1 = rand_strided((30, ), (1, ), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:05:10.5323270Z arg2_1 = rand_strided((2, 10), (10, 1), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:05:10.5323466Z arg3_1 = rand_strided((2, 30), (30, 1), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:05:10.5323580Z print_performance(lambda: call([arg0_1, arg1_1, arg2_1, arg3_1])) 2023-01-11T21:05:10.5323586Z 2023-01-11T21:05:10.5323604Z 2023-01-11T21:05:10.5323684Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.5323753Z import torch 2023-01-11T21:05:10.5323825Z import random 2023-01-11T21:05:10.5323941Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.5324068Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.5324073Z 2023-01-11T21:05:10.5324155Z aten = torch.ops.aten 2023-01-11T21:05:10.5324340Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.5324420Z async_compile = AsyncCompile() 2023-01-11T21:05:10.5324425Z 2023-01-11T21:05:10.5324443Z 2023-01-11T21:05:10.5324564Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.5324765Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.5324885Z extern "C" void kernel(bfloat16* __restrict__ in_out_ptr0, 2023-01-11T21:05:10.5324991Z const bfloat16* __restrict__ in_ptr0) 2023-01-11T21:05:10.5325051Z { 2023-01-11T21:05:10.5325147Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.5325206Z { 2023-01-11T21:05:10.5325268Z #pragma omp for 2023-01-11T21:05:10.5325348Z for(long i0=0; i0<60; i0+=1) 2023-01-11T21:05:10.5325412Z { 2023-01-11T21:05:10.5325476Z { 2023-01-11T21:05:10.5325542Z { 2023-01-11T21:05:10.5325656Z auto tmp0 = static_cast(in_ptr0[i0]); 2023-01-11T21:05:10.5325765Z auto tmp1 = static_cast(in_out_ptr0[i0]); 2023-01-11T21:05:10.5325859Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:05:10.5325949Z in_out_ptr0[i0] = tmp2; 2023-01-11T21:05:10.5326014Z } 2023-01-11T21:05:10.5326076Z } 2023-01-11T21:05:10.5326137Z } 2023-01-11T21:05:10.5326198Z } 2023-01-11T21:05:10.5326243Z } 2023-01-11T21:05:10.5326321Z ''') 2023-01-11T21:05:10.5326326Z 2023-01-11T21:05:10.5326331Z 2023-01-11T21:05:10.5326420Z async_compile.wait(globals()) 2023-01-11T21:05:10.5326490Z del async_compile 2023-01-11T21:05:10.5326495Z 2023-01-11T21:05:10.5326565Z def call(args): 2023-01-11T21:05:10.5326647Z arg0_1, arg1_1, arg2_1 = args 2023-01-11T21:05:10.5326716Z args.clear() 2023-01-11T21:05:10.5326903Z buf0 = empty_strided((2, 30), (30, 1), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:05:10.5327024Z aten.mm.out(arg1_1, as_strided(arg0_1, (10, 30), (1, 10)), out=buf0) 2023-01-11T21:05:10.5327093Z del arg0_1 2023-01-11T21:05:10.5327160Z del arg1_1 2023-01-11T21:05:10.5327242Z buf1 = buf0; del buf0 # reuse 2023-01-11T21:05:10.5327373Z kernel_cpp_0(c_void_p(buf1.data_ptr()), c_void_p(arg2_1.data_ptr())) 2023-01-11T21:05:10.5327438Z del arg2_1 2023-01-11T21:05:10.5327495Z return (buf1, ) 2023-01-11T21:05:10.5327513Z 2023-01-11T21:05:10.5327517Z 2023-01-11T21:05:10.5327577Z if __name__ == "__main__": 2023-01-11T21:05:10.5327691Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.5327812Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.5328013Z arg0_1 = rand_strided((30, 10), (10, 1), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:05:10.5328210Z arg1_1 = rand_strided((2, 10), (10, 1), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:05:10.5328438Z arg2_1 = rand_strided((2, 30), (30, 1), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:05:10.5328560Z print_performance(lambda: call([arg0_1, arg1_1, arg2_1])) 2023-01-11T21:05:10.5328567Z 2023-01-11T21:05:10.5328572Z 2023-01-11T21:05:10.5328666Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.5328722Z import torch 2023-01-11T21:05:10.5328790Z import random 2023-01-11T21:05:10.5328905Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.5329025Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.5329030Z 2023-01-11T21:05:10.5329106Z aten = torch.ops.aten 2023-01-11T21:05:10.5329237Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.5329327Z async_compile = AsyncCompile() 2023-01-11T21:05:10.5329332Z 2023-01-11T21:05:10.5329335Z 2023-01-11T21:05:10.5329467Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.5329656Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.5329777Z extern "C" void kernel(bfloat16* __restrict__ in_out_ptr0, 2023-01-11T21:05:10.5329885Z const bfloat16* __restrict__ in_ptr0) 2023-01-11T21:05:10.5329972Z { 2023-01-11T21:05:10.5330070Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.5330129Z { 2023-01-11T21:05:10.5330205Z #pragma omp for 2023-01-11T21:05:10.5330274Z for(long i0=0; i0<180; i0+=1) 2023-01-11T21:05:10.5330336Z { 2023-01-11T21:05:10.5330398Z { 2023-01-11T21:05:10.5330460Z { 2023-01-11T21:05:10.5330580Z auto tmp0 = static_cast(in_out_ptr0[i0]); 2023-01-11T21:05:10.5330692Z auto tmp1 = static_cast(in_ptr0[i0]); 2023-01-11T21:05:10.5330784Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:05:10.5330860Z in_out_ptr0[i0] = tmp2; 2023-01-11T21:05:10.5330923Z } 2023-01-11T21:05:10.5330987Z } 2023-01-11T21:05:10.5331048Z } 2023-01-11T21:05:10.5331107Z } 2023-01-11T21:05:10.5331165Z } 2023-01-11T21:05:10.5331228Z ''') 2023-01-11T21:05:10.5331245Z 2023-01-11T21:05:10.5331249Z 2023-01-11T21:05:10.5331327Z async_compile.wait(globals()) 2023-01-11T21:05:10.5331398Z del async_compile 2023-01-11T21:05:10.5331403Z 2023-01-11T21:05:10.5331472Z def call(args): 2023-01-11T21:05:10.5331563Z arg0_1, arg1_1, arg2_1, arg3_1 = args 2023-01-11T21:05:10.5331632Z args.clear() 2023-01-11T21:05:10.5331830Z buf0 = empty_strided((6, 30), (30, 1), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:05:10.5332000Z aten.addmm.out(arg1_1, as_strided(arg2_1, (6, 10), (10, 1)), as_strided(arg0_1, (10, 30), (1, 10)), beta=1, alpha=1, out=buf0) 2023-01-11T21:05:10.5332055Z del arg0_1 2023-01-11T21:05:10.5332120Z del arg1_1 2023-01-11T21:05:10.5332185Z del arg2_1 2023-01-11T21:05:10.5332303Z buf1 = as_strided(buf0, (2, 3, 30), (90, 30, 1)); del buf0 # reuse 2023-01-11T21:05:10.5332439Z kernel_cpp_0(c_void_p(buf1.data_ptr()), c_void_p(arg3_1.data_ptr())) 2023-01-11T21:05:10.5332506Z del arg3_1 2023-01-11T21:05:10.5332577Z return (buf1, ) 2023-01-11T21:05:10.5332582Z 2023-01-11T21:05:10.5332588Z 2023-01-11T21:05:10.5332664Z if __name__ == "__main__": 2023-01-11T21:05:10.5332766Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.5332887Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.5333090Z arg0_1 = rand_strided((30, 10), (10, 1), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:05:10.5333287Z arg1_1 = rand_strided((30, ), (1, ), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:05:10.5333490Z arg2_1 = rand_strided((2, 3, 10), (30, 10, 1), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:05:10.5333693Z arg3_1 = rand_strided((2, 3, 30), (90, 30, 1), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:05:10.5333821Z print_performance(lambda: call([arg0_1, arg1_1, arg2_1, arg3_1])) 2023-01-11T21:05:10.5333855Z 2023-01-11T21:05:10.5333859Z 2023-01-11T21:05:10.5333953Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.5334009Z import torch 2023-01-11T21:05:10.5334077Z import random 2023-01-11T21:05:10.5334193Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.5334312Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.5334317Z 2023-01-11T21:05:10.5334393Z aten = torch.ops.aten 2023-01-11T21:05:10.5334525Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.5334614Z async_compile = AsyncCompile() 2023-01-11T21:05:10.5334619Z 2023-01-11T21:05:10.5334623Z 2023-01-11T21:05:10.5334755Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.5334946Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.5335063Z extern "C" void kernel(bfloat16* __restrict__ in_out_ptr0, 2023-01-11T21:05:10.5335170Z const bfloat16* __restrict__ in_ptr0) 2023-01-11T21:05:10.5335232Z { 2023-01-11T21:05:10.5335328Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.5335390Z { 2023-01-11T21:05:10.5335464Z #pragma omp for 2023-01-11T21:05:10.5335594Z for(long i0=0; i0<180; i0+=1) 2023-01-11T21:05:10.5335686Z { 2023-01-11T21:05:10.5335773Z { 2023-01-11T21:05:10.5335843Z { 2023-01-11T21:05:10.5335965Z auto tmp0 = static_cast(in_out_ptr0[i0]); 2023-01-11T21:05:10.5336081Z auto tmp1 = static_cast(in_ptr0[i0]); 2023-01-11T21:05:10.5336174Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:05:10.5336251Z in_out_ptr0[i0] = tmp2; 2023-01-11T21:05:10.5336316Z } 2023-01-11T21:05:10.5336382Z } 2023-01-11T21:05:10.5336444Z } 2023-01-11T21:05:10.5336506Z } 2023-01-11T21:05:10.5336565Z } 2023-01-11T21:05:10.5336632Z ''') 2023-01-11T21:05:10.5336651Z 2023-01-11T21:05:10.5336658Z 2023-01-11T21:05:10.5336734Z async_compile.wait(globals()) 2023-01-11T21:05:10.5336807Z del async_compile 2023-01-11T21:05:10.5336812Z 2023-01-11T21:05:10.5336884Z def call(args): 2023-01-11T21:05:10.5336966Z arg0_1, arg1_1, arg2_1 = args 2023-01-11T21:05:10.5337040Z args.clear() 2023-01-11T21:05:10.5337242Z buf0 = empty_strided((6, 30), (30, 1), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:05:10.5337385Z aten.mm.out(as_strided(arg1_1, (6, 10), (10, 1)), as_strided(arg0_1, (10, 30), (1, 10)), out=buf0) 2023-01-11T21:05:10.5337439Z del arg0_1 2023-01-11T21:05:10.5337506Z del arg1_1 2023-01-11T21:05:10.5337622Z buf1 = as_strided(buf0, (2, 3, 30), (90, 30, 1)); del buf0 # reuse 2023-01-11T21:05:10.5337755Z kernel_cpp_0(c_void_p(buf1.data_ptr()), c_void_p(arg2_1.data_ptr())) 2023-01-11T21:05:10.5337827Z del arg2_1 2023-01-11T21:05:10.5337900Z return (buf1, ) 2023-01-11T21:05:10.5337905Z 2023-01-11T21:05:10.5337909Z 2023-01-11T21:05:10.5337983Z if __name__ == "__main__": 2023-01-11T21:05:10.5338098Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.5338210Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.5338413Z arg0_1 = rand_strided((30, 10), (10, 1), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:05:10.5338706Z arg1_1 = rand_strided((2, 3, 10), (30, 10, 1), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:05:10.5338916Z arg2_1 = rand_strided((2, 3, 30), (90, 30, 1), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:05:10.5339042Z print_performance(lambda: call([arg0_1, arg1_1, arg2_1])) 2023-01-11T21:05:10.5339319Z [2023-01-11 20:53:59,144] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 253 2023-01-11T21:05:10.5339733Z inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.5339899Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.5340160Z [2023-01-11 20:53:59,328] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 254 2023-01-11T21:05:10.5340411Z [2023-01-11 20:53:59,339] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 254 2023-01-11T21:05:10.5340809Z inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.5340937Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.5341194Z [2023-01-11 20:53:59,380] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 255 2023-01-11T21:05:10.5341456Z [2023-01-11 20:53:59,390] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 255 2023-01-11T21:05:10.5341910Z inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.5342039Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.5342291Z [2023-01-11 20:53:59,579] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 256 2023-01-11T21:05:10.5342554Z [2023-01-11 20:54:02,338] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 256 2023-01-11T21:05:10.5342949Z inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.5343078Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.5343318Z [2023-01-11 20:54:02,408] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 257 2023-01-11T21:05:10.5343578Z [2023-01-11 20:54:02,427] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 257 2023-01-11T21:05:10.5343971Z inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.5344096Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.5344352Z [2023-01-11 20:54:02,652] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 258 2023-01-11T21:05:10.5344358Z 2023-01-11T21:05:10.5344364Z 2023-01-11T21:05:10.5344462Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.5344532Z import torch 2023-01-11T21:05:10.5344602Z import random 2023-01-11T21:05:10.5344722Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.5344846Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.5344851Z 2023-01-11T21:05:10.5344914Z aten = torch.ops.aten 2023-01-11T21:05:10.5345047Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.5345141Z async_compile = AsyncCompile() 2023-01-11T21:05:10.5345145Z 2023-01-11T21:05:10.5345150Z 2023-01-11T21:05:10.5345284Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.5345488Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.5345637Z extern "C" void kernel(bfloat16* __restrict__ in_out_ptr0, 2023-01-11T21:05:10.5345746Z const bfloat16* __restrict__ in_ptr0) 2023-01-11T21:05:10.5345806Z { 2023-01-11T21:05:10.5345894Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.5345954Z { 2023-01-11T21:05:10.5346030Z #pragma omp for 2023-01-11T21:05:10.5346111Z for(long i0=0; i0<60; i0+=1) 2023-01-11T21:05:10.5346173Z { 2023-01-11T21:05:10.5346236Z { 2023-01-11T21:05:10.5346285Z { 2023-01-11T21:05:10.5346406Z auto tmp0 = static_cast(in_out_ptr0[i0]); 2023-01-11T21:05:10.5346526Z auto tmp1 = static_cast(in_ptr0[i0]); 2023-01-11T21:05:10.5346654Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:05:10.5346746Z in_out_ptr0[i0] = tmp2; 2023-01-11T21:05:10.5346809Z } 2023-01-11T21:05:10.5346871Z } 2023-01-11T21:05:10.5346921Z } 2023-01-11T21:05:10.5346982Z } 2023-01-11T21:05:10.5347041Z } 2023-01-11T21:05:10.5347120Z ''') 2023-01-11T21:05:10.5347125Z 2023-01-11T21:05:10.5347129Z 2023-01-11T21:05:10.5347249Z async_compile.wait(globals()) 2023-01-11T21:05:10.5347322Z del async_compile 2023-01-11T21:05:10.5347327Z 2023-01-11T21:05:10.5347395Z def call(args): 2023-01-11T21:05:10.5347484Z arg0_1, arg1_1, arg2_1, arg3_1 = args 2023-01-11T21:05:10.5347541Z args.clear() 2023-01-11T21:05:10.5347742Z buf0 = empty_strided((2, 30), (30, 1), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:05:10.5347892Z aten.addmm.out(arg1_1, arg2_1, as_strided(arg0_1, (10, 30), (1, 10)), beta=1, alpha=1, out=buf0) 2023-01-11T21:05:10.5347958Z del arg0_1 2023-01-11T21:05:10.5348023Z del arg1_1 2023-01-11T21:05:10.5348087Z del arg2_1 2023-01-11T21:05:10.5348170Z buf1 = buf0; del buf0 # reuse 2023-01-11T21:05:10.5348288Z kernel_cpp_0(c_void_p(buf1.data_ptr()), c_void_p(arg3_1.data_ptr())) 2023-01-11T21:05:10.5348356Z del arg3_1 2023-01-11T21:05:10.5348425Z return (buf1, ) 2023-01-11T21:05:10.5348430Z 2023-01-11T21:05:10.5348434Z 2023-01-11T21:05:10.5348508Z if __name__ == "__main__": 2023-01-11T21:05:10.5348623Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.5348745Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.5348946Z arg0_1 = rand_strided((30, 10), (10, 1), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:05:10.5349128Z arg1_1 = rand_strided((30, ), (1, ), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:05:10.5349324Z arg2_1 = rand_strided((2, 10), (10, 1), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:05:10.5349518Z arg3_1 = rand_strided((2, 30), (30, 1), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:05:10.5349646Z print_performance(lambda: call([arg0_1, arg1_1, arg2_1, arg3_1])) 2023-01-11T21:05:10.5349652Z 2023-01-11T21:05:10.5349656Z 2023-01-11T21:05:10.5349748Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.5349819Z import torch 2023-01-11T21:05:10.5349886Z import random 2023-01-11T21:05:10.5349999Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.5350109Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.5350127Z 2023-01-11T21:05:10.5350191Z aten = torch.ops.aten 2023-01-11T21:05:10.5350321Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.5350411Z async_compile = AsyncCompile() 2023-01-11T21:05:10.5350416Z 2023-01-11T21:05:10.5350421Z 2023-01-11T21:05:10.5350552Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.5350756Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.5350877Z extern "C" void kernel(bfloat16* __restrict__ in_out_ptr0, 2023-01-11T21:05:10.5350985Z const bfloat16* __restrict__ in_ptr0) 2023-01-11T21:05:10.5351030Z { 2023-01-11T21:05:10.5351126Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.5351215Z { 2023-01-11T21:05:10.5351293Z #pragma omp for 2023-01-11T21:05:10.5351374Z for(long i0=0; i0<60; i0+=1) 2023-01-11T21:05:10.5351438Z { 2023-01-11T21:05:10.5351501Z { 2023-01-11T21:05:10.5351554Z { 2023-01-11T21:05:10.5351674Z auto tmp0 = static_cast(in_out_ptr0[i0]); 2023-01-11T21:05:10.5351786Z auto tmp1 = static_cast(in_ptr0[i0]); 2023-01-11T21:05:10.5351877Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:05:10.5351966Z in_out_ptr0[i0] = tmp2; 2023-01-11T21:05:10.5352028Z } 2023-01-11T21:05:10.5352090Z } 2023-01-11T21:05:10.5352137Z } 2023-01-11T21:05:10.5352197Z } 2023-01-11T21:05:10.5352254Z } 2023-01-11T21:05:10.5352332Z ''') 2023-01-11T21:05:10.5352337Z 2023-01-11T21:05:10.5352341Z 2023-01-11T21:05:10.5352429Z async_compile.wait(globals()) 2023-01-11T21:05:10.5352499Z del async_compile 2023-01-11T21:05:10.5352506Z 2023-01-11T21:05:10.5352574Z def call(args): 2023-01-11T21:05:10.5352641Z arg0_1, arg1_1, arg2_1 = args 2023-01-11T21:05:10.5352710Z args.clear() 2023-01-11T21:05:10.5352936Z buf0 = empty_strided((2, 30), (30, 1), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:05:10.5353059Z aten.mm.out(arg1_1, as_strided(arg0_1, (10, 30), (1, 10)), out=buf0) 2023-01-11T21:05:10.5353124Z del arg0_1 2023-01-11T21:05:10.5353189Z del arg1_1 2023-01-11T21:05:10.5353271Z buf1 = buf0; del buf0 # reuse 2023-01-11T21:05:10.5353388Z kernel_cpp_0(c_void_p(buf1.data_ptr()), c_void_p(arg2_1.data_ptr())) 2023-01-11T21:05:10.5353453Z del arg2_1 2023-01-11T21:05:10.5353523Z return (buf1, ) 2023-01-11T21:05:10.5353528Z 2023-01-11T21:05:10.5353532Z 2023-01-11T21:05:10.5353605Z if __name__ == "__main__": 2023-01-11T21:05:10.5353716Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.5353836Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.5354042Z arg0_1 = rand_strided((30, 10), (10, 1), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:05:10.5354238Z arg1_1 = rand_strided((2, 10), (10, 1), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:05:10.5354422Z arg2_1 = rand_strided((2, 30), (30, 1), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:05:10.5354544Z print_performance(lambda: call([arg0_1, arg1_1, arg2_1])) 2023-01-11T21:05:10.5354549Z 2023-01-11T21:05:10.5354553Z 2023-01-11T21:05:10.5354645Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.5354711Z import torch 2023-01-11T21:05:10.5354780Z import random 2023-01-11T21:05:10.5354896Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.5355015Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.5355019Z 2023-01-11T21:05:10.5355095Z aten = torch.ops.aten 2023-01-11T21:05:10.5355213Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.5355302Z async_compile = AsyncCompile() 2023-01-11T21:05:10.5355308Z 2023-01-11T21:05:10.5355312Z 2023-01-11T21:05:10.5355446Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.5355647Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.5355771Z extern "C" void kernel(const bfloat16* __restrict__ in_ptr0, 2023-01-11T21:05:10.5355876Z const bfloat16* __restrict__ in_ptr1, 2023-01-11T21:05:10.5355976Z bfloat16* __restrict__ out_ptr0) 2023-01-11T21:05:10.5356035Z { 2023-01-11T21:05:10.5356118Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.5356176Z { 2023-01-11T21:05:10.5356251Z #pragma omp for 2023-01-11T21:05:10.5356332Z for(long i0=0; i0<180; i0+=1) 2023-01-11T21:05:10.5356395Z { 2023-01-11T21:05:10.5356456Z { 2023-01-11T21:05:10.5356521Z { 2023-01-11T21:05:10.5356622Z auto tmp0 = static_cast(in_ptr0[i0]); 2023-01-11T21:05:10.5356735Z auto tmp1 = static_cast(in_ptr1[i0]); 2023-01-11T21:05:10.5356855Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:05:10.5356940Z out_ptr0[i0] = tmp2; 2023-01-11T21:05:10.5357004Z } 2023-01-11T21:05:10.5357068Z } 2023-01-11T21:05:10.5357120Z } 2023-01-11T21:05:10.5357180Z } 2023-01-11T21:05:10.5357238Z } 2023-01-11T21:05:10.5357317Z ''') 2023-01-11T21:05:10.5357322Z 2023-01-11T21:05:10.5357326Z 2023-01-11T21:05:10.5357414Z async_compile.wait(globals()) 2023-01-11T21:05:10.5357484Z del async_compile 2023-01-11T21:05:10.5357488Z 2023-01-11T21:05:10.5357557Z def call(args): 2023-01-11T21:05:10.5357646Z arg0_1, arg1_1, arg2_1, arg3_1 = args 2023-01-11T21:05:10.5357703Z args.clear() 2023-01-11T21:05:10.5357901Z buf0 = empty_strided((6, 30), (30, 1), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:05:10.5358070Z aten.addmm.out(arg1_1, as_strided(arg2_1, (6, 10), (10, 1)), as_strided(arg0_1, (10, 30), (1, 10)), beta=1, alpha=1, out=buf0) 2023-01-11T21:05:10.5358140Z del arg0_1 2023-01-11T21:05:10.5358205Z del arg1_1 2023-01-11T21:05:10.5358269Z del arg2_1 2023-01-11T21:05:10.5358461Z kernel_cpp_0(c_void_p(buf0.data_ptr()), c_void_p(arg3_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:05:10.5358516Z del arg3_1 2023-01-11T21:05:10.5358619Z return (as_strided(buf0, (2, 3, 30), (90, 30, 1)), ) 2023-01-11T21:05:10.5358625Z 2023-01-11T21:05:10.5358629Z 2023-01-11T21:05:10.5358705Z if __name__ == "__main__": 2023-01-11T21:05:10.5358817Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.5358936Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.5359138Z arg0_1 = rand_strided((30, 10), (10, 1), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:05:10.5359333Z arg1_1 = rand_strided((30, ), (1, ), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:05:10.5359539Z arg2_1 = rand_strided((2, 3, 10), (30, 10, 1), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:05:10.5359731Z arg3_1 = rand_strided((2, 3, 30), (90, 30, 1), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:05:10.5359860Z print_performance(lambda: call([arg0_1, arg1_1, arg2_1, arg3_1])) 2023-01-11T21:05:10.5359867Z 2023-01-11T21:05:10.5359871Z 2023-01-11T21:05:10.5359963Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.5360033Z import torch 2023-01-11T21:05:10.5360101Z import random 2023-01-11T21:05:10.5360215Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.5360333Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.5360337Z 2023-01-11T21:05:10.5360415Z aten = torch.ops.aten 2023-01-11T21:05:10.5360533Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.5360758Z async_compile = AsyncCompile() 2023-01-11T21:05:10.5360769Z 2023-01-11T21:05:10.5360773Z 2023-01-11T21:05:10.5360915Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.5361117Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.5361249Z extern "C" void kernel(const bfloat16* __restrict__ in_ptr0, 2023-01-11T21:05:10.5361357Z const bfloat16* __restrict__ in_ptr1, 2023-01-11T21:05:10.5361462Z bfloat16* __restrict__ out_ptr0) 2023-01-11T21:05:10.5361524Z { 2023-01-11T21:05:10.5361606Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.5361667Z { 2023-01-11T21:05:10.5361744Z #pragma omp for 2023-01-11T21:05:10.5361829Z for(long i0=0; i0<180; i0+=1) 2023-01-11T21:05:10.5361892Z { 2023-01-11T21:05:10.5361956Z { 2023-01-11T21:05:10.5362021Z { 2023-01-11T21:05:10.5362124Z auto tmp0 = static_cast(in_ptr0[i0]); 2023-01-11T21:05:10.5362236Z auto tmp1 = static_cast(in_ptr1[i0]); 2023-01-11T21:05:10.5362331Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:05:10.5362416Z out_ptr0[i0] = tmp2; 2023-01-11T21:05:10.5362541Z } 2023-01-11T21:05:10.5362604Z } 2023-01-11T21:05:10.5362666Z } 2023-01-11T21:05:10.5362713Z } 2023-01-11T21:05:10.5362772Z } 2023-01-11T21:05:10.5362851Z ''') 2023-01-11T21:05:10.5362858Z 2023-01-11T21:05:10.5362863Z 2023-01-11T21:05:10.5362953Z async_compile.wait(globals()) 2023-01-11T21:05:10.5363025Z del async_compile 2023-01-11T21:05:10.5363030Z 2023-01-11T21:05:10.5363099Z def call(args): 2023-01-11T21:05:10.5363180Z arg0_1, arg1_1, arg2_1 = args 2023-01-11T21:05:10.5363237Z args.clear() 2023-01-11T21:05:10.5363438Z buf0 = empty_strided((6, 30), (30, 1), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:05:10.5363582Z aten.mm.out(as_strided(arg1_1, (6, 10), (10, 1)), as_strided(arg0_1, (10, 30), (1, 10)), out=buf0) 2023-01-11T21:05:10.5363650Z del arg0_1 2023-01-11T21:05:10.5363720Z del arg1_1 2023-01-11T21:05:10.5363882Z kernel_cpp_0(c_void_p(buf0.data_ptr()), c_void_p(arg2_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:05:10.5363951Z del arg2_1 2023-01-11T21:05:10.5364042Z return (as_strided(buf0, (2, 3, 30), (90, 30, 1)), ) 2023-01-11T21:05:10.5364047Z 2023-01-11T21:05:10.5364066Z 2023-01-11T21:05:10.5364165Z if __name__ == "__main__": 2023-01-11T21:05:10.5364283Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.5364404Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.5364604Z arg0_1 = rand_strided((30, 10), (10, 1), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:05:10.5364811Z arg1_1 = rand_strided((2, 3, 10), (30, 10, 1), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:05:10.5365015Z arg2_1 = rand_strided((2, 3, 30), (90, 30, 1), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:05:10.5365136Z print_performance(lambda: call([arg0_1, arg1_1, arg2_1])) 2023-01-11T21:05:10.5365141Z 2023-01-11T21:05:10.5365145Z 2023-01-11T21:05:10.5365239Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.5365297Z import torch 2023-01-11T21:05:10.5365365Z import random 2023-01-11T21:05:10.5365479Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.5365598Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.5365604Z 2023-01-11T21:05:10.5365683Z aten = torch.ops.aten 2023-01-11T21:05:10.5365814Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.5365904Z async_compile = AsyncCompile() 2023-01-11T21:05:10.5365908Z 2023-01-11T21:05:10.5365913Z 2023-01-11T21:05:10.5366043Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.5366236Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.5366355Z extern "C" void kernel(bfloat16* __restrict__ in_out_ptr0, 2023-01-11T21:05:10.5366463Z const bfloat16* __restrict__ in_ptr0) 2023-01-11T21:05:10.5366522Z { 2023-01-11T21:05:10.5366618Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.5366678Z { 2023-01-11T21:05:10.5366755Z #pragma omp for 2023-01-11T21:05:10.5366824Z for(long i0=0; i0<60; i0+=1) 2023-01-11T21:05:10.5366885Z { 2023-01-11T21:05:10.5366948Z { 2023-01-11T21:05:10.5367011Z { 2023-01-11T21:05:10.5367132Z auto tmp0 = static_cast(in_out_ptr0[i0]); 2023-01-11T21:05:10.5367246Z auto tmp1 = static_cast(in_ptr0[i0]); 2023-01-11T21:05:10.5367336Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:05:10.5367413Z in_out_ptr0[i0] = tmp2; 2023-01-11T21:05:10.5367475Z } 2023-01-11T21:05:10.5367537Z } 2023-01-11T21:05:10.5367597Z } 2023-01-11T21:05:10.5367657Z } 2023-01-11T21:05:10.5367717Z } 2023-01-11T21:05:10.5367781Z ''') 2023-01-11T21:05:10.5367785Z 2023-01-11T21:05:10.5367803Z 2023-01-11T21:05:10.5367878Z async_compile.wait(globals()) 2023-01-11T21:05:10.5367947Z del async_compile 2023-01-11T21:05:10.5367952Z 2023-01-11T21:05:10.5368049Z def call(args): 2023-01-11T21:05:10.5368139Z arg0_1, arg1_1, arg2_1, arg3_1 = args 2023-01-11T21:05:10.5368208Z args.clear() 2023-01-11T21:05:10.5368407Z buf0 = empty_strided((2, 30), (30, 1), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:05:10.5368559Z aten.addmm.out(arg1_1, arg2_1, as_strided(arg0_1, (10, 30), (1, 10)), beta=1, alpha=1, out=buf0) 2023-01-11T21:05:10.5368613Z del arg0_1 2023-01-11T21:05:10.5368677Z del arg1_1 2023-01-11T21:05:10.5368741Z del arg2_1 2023-01-11T21:05:10.5368824Z buf1 = buf0; del buf0 # reuse 2023-01-11T21:05:10.5368956Z kernel_cpp_0(c_void_p(buf1.data_ptr()), c_void_p(arg3_1.data_ptr())) 2023-01-11T21:05:10.5369022Z del arg3_1 2023-01-11T21:05:10.5369090Z return (buf1, ) 2023-01-11T21:05:10.5369095Z 2023-01-11T21:05:10.5369100Z 2023-01-11T21:05:10.5369161Z if __name__ == "__main__": 2023-01-11T21:05:10.5369273Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.5369394Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.5369599Z arg0_1 = rand_strided((30, 10), (10, 1), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:05:10.5369793Z arg1_1 = rand_strided((30, ), (1, ), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:05:10.5370056Z arg2_1 = rand_strided((2, 10), (10, 1), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:05:10.5370255Z arg3_1 = rand_strided((2, 30), (30, 1), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:05:10.5370383Z print_performance(lambda: call([arg0_1, arg1_1, arg2_1, arg3_1])) 2023-01-11T21:05:10.5370636Z [2023-01-11 20:54:02,662] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 258 2023-01-11T21:05:10.5371040Z inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.5371167Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.5371428Z [2023-01-11 20:54:02,711] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 259 2023-01-11T21:05:10.5371694Z [2023-01-11 20:54:02,724] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 259 2023-01-11T21:05:10.5372092Z inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.5372219Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.5372474Z [2023-01-11 20:54:02,958] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 260 2023-01-11T21:05:10.5372739Z [2023-01-11 20:54:05,696] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 260 2023-01-11T21:05:10.5373144Z inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.5373272Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.5373527Z [2023-01-11 20:54:05,768] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 261 2023-01-11T21:05:10.5373773Z [2023-01-11 20:54:05,786] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 261 2023-01-11T21:05:10.5374168Z inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.5374326Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.5374582Z [2023-01-11 20:54:06,012] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 262 2023-01-11T21:05:10.5374842Z [2023-01-11 20:54:08,746] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 262 2023-01-11T21:05:10.5375238Z inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.5375362Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.5375617Z [2023-01-11 20:54:08,806] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 263 2023-01-11T21:05:10.5375623Z 2023-01-11T21:05:10.5375627Z 2023-01-11T21:05:10.5375788Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.5375909Z import torch 2023-01-11T21:05:10.5376016Z import random 2023-01-11T21:05:10.5376231Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.5376451Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.5376460Z 2023-01-11T21:05:10.5376586Z aten = torch.ops.aten 2023-01-11T21:05:10.5376729Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.5376821Z async_compile = AsyncCompile() 2023-01-11T21:05:10.5376826Z 2023-01-11T21:05:10.5376830Z 2023-01-11T21:05:10.5376966Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.5377172Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.5377281Z extern "C" void kernel(bfloat16* __restrict__ in_out_ptr0, 2023-01-11T21:05:10.5377391Z const bfloat16* __restrict__ in_ptr0) 2023-01-11T21:05:10.5377452Z { 2023-01-11T21:05:10.5377551Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.5377612Z { 2023-01-11T21:05:10.5377688Z #pragma omp for 2023-01-11T21:05:10.5377770Z for(long i0=0; i0<60; i0+=1) 2023-01-11T21:05:10.5377819Z { 2023-01-11T21:05:10.5377882Z { 2023-01-11T21:05:10.5377945Z { 2023-01-11T21:05:10.5378066Z auto tmp0 = static_cast(in_out_ptr0[i0]); 2023-01-11T21:05:10.5378179Z auto tmp1 = static_cast(in_ptr0[i0]); 2023-01-11T21:05:10.5378270Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:05:10.5378361Z in_out_ptr0[i0] = tmp2; 2023-01-11T21:05:10.5378412Z } 2023-01-11T21:05:10.5378568Z } 2023-01-11T21:05:10.5378633Z } 2023-01-11T21:05:10.5378696Z } 2023-01-11T21:05:10.5378755Z } 2023-01-11T21:05:10.5378838Z ''') 2023-01-11T21:05:10.5378843Z 2023-01-11T21:05:10.5378847Z 2023-01-11T21:05:10.5378937Z async_compile.wait(globals()) 2023-01-11T21:05:10.5378996Z del async_compile 2023-01-11T21:05:10.5379001Z 2023-01-11T21:05:10.5379070Z def call(args): 2023-01-11T21:05:10.5379152Z arg0_1, arg1_1, arg2_1 = args 2023-01-11T21:05:10.5379223Z args.clear() 2023-01-11T21:05:10.5379423Z buf0 = empty_strided((2, 30), (30, 1), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:05:10.5379546Z aten.mm.out(arg1_1, as_strided(arg0_1, (10, 30), (1, 10)), out=buf0) 2023-01-11T21:05:10.5379614Z del arg0_1 2023-01-11T21:05:10.5379665Z del arg1_1 2023-01-11T21:05:10.5379748Z buf1 = buf0; del buf0 # reuse 2023-01-11T21:05:10.5379883Z kernel_cpp_0(c_void_p(buf1.data_ptr()), c_void_p(arg2_1.data_ptr())) 2023-01-11T21:05:10.5379950Z del arg2_1 2023-01-11T21:05:10.5380023Z return (buf1, ) 2023-01-11T21:05:10.5380065Z 2023-01-11T21:05:10.5380069Z 2023-01-11T21:05:10.5380147Z if __name__ == "__main__": 2023-01-11T21:05:10.5380258Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.5380382Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.5380572Z arg0_1 = rand_strided((30, 10), (10, 1), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:05:10.5380770Z arg1_1 = rand_strided((2, 10), (10, 1), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:05:10.5380966Z arg2_1 = rand_strided((2, 30), (30, 1), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:05:10.5381088Z print_performance(lambda: call([arg0_1, arg1_1, arg2_1])) 2023-01-11T21:05:10.5381093Z 2023-01-11T21:05:10.5381097Z 2023-01-11T21:05:10.5381189Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.5381257Z import torch 2023-01-11T21:05:10.5381325Z import random 2023-01-11T21:05:10.5381437Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.5381544Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.5381551Z 2023-01-11T21:05:10.5381627Z aten = torch.ops.aten 2023-01-11T21:05:10.5381758Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.5381892Z async_compile = AsyncCompile() 2023-01-11T21:05:10.5381898Z 2023-01-11T21:05:10.5381902Z 2023-01-11T21:05:10.5382037Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.5382239Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.5382359Z extern "C" void kernel(bfloat16* __restrict__ in_out_ptr0, 2023-01-11T21:05:10.5382467Z const bfloat16* __restrict__ in_ptr0) 2023-01-11T21:05:10.5382513Z { 2023-01-11T21:05:10.5382611Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.5382671Z { 2023-01-11T21:05:10.5382746Z #pragma omp for 2023-01-11T21:05:10.5382829Z for(long i0=0; i0<180; i0+=1) 2023-01-11T21:05:10.5382889Z { 2023-01-11T21:05:10.5382938Z { 2023-01-11T21:05:10.5383002Z { 2023-01-11T21:05:10.5383121Z auto tmp0 = static_cast(in_out_ptr0[i0]); 2023-01-11T21:05:10.5383233Z auto tmp1 = static_cast(in_ptr0[i0]); 2023-01-11T21:05:10.5383375Z auto tmp2 = tmp0 - tmp1; 2023-01-11T21:05:10.5383465Z in_out_ptr0[i0] = tmp2; 2023-01-11T21:05:10.5383531Z } 2023-01-11T21:05:10.5383580Z } 2023-01-11T21:05:10.5383641Z } 2023-01-11T21:05:10.5383702Z } 2023-01-11T21:05:10.5383762Z } 2023-01-11T21:05:10.5383841Z ''') 2023-01-11T21:05:10.5383846Z 2023-01-11T21:05:10.5383850Z 2023-01-11T21:05:10.5383940Z async_compile.wait(globals()) 2023-01-11T21:05:10.5384013Z del async_compile 2023-01-11T21:05:10.5384019Z 2023-01-11T21:05:10.5384121Z def call(args): 2023-01-11T21:05:10.5384228Z arg0_1, arg1_1, arg2_1, arg3_1 = args 2023-01-11T21:05:10.5384323Z args.clear() 2023-01-11T21:05:10.5384618Z buf0 = empty_strided((6, 30), (30, 1), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:05:10.5384849Z aten.addmm.out(arg1_1, as_strided(arg2_1, (6, 10), (10, 1)), as_strided(arg0_1, (10, 30), (1, 10)), beta=1, alpha=1, out=buf0) 2023-01-11T21:05:10.5384950Z del arg0_1 2023-01-11T21:05:10.5385042Z del arg1_1 2023-01-11T21:05:10.5385142Z del arg2_1 2023-01-11T21:05:10.5385329Z buf1 = as_strided(buf0, (2, 3, 30), (90, 30, 1)); del buf0 # reuse 2023-01-11T21:05:10.5385577Z kernel_cpp_0(c_void_p(buf1.data_ptr()), c_void_p(arg3_1.data_ptr())) 2023-01-11T21:05:10.5385699Z del arg3_1 2023-01-11T21:05:10.5385828Z return (buf1, ) 2023-01-11T21:05:10.5385836Z 2023-01-11T21:05:10.5385842Z 2023-01-11T21:05:10.5385932Z if __name__ == "__main__": 2023-01-11T21:05:10.5386047Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.5386168Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.5386376Z arg0_1 = rand_strided((30, 10), (10, 1), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:05:10.5386629Z arg1_1 = rand_strided((30, ), (1, ), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:05:10.5386835Z arg2_1 = rand_strided((2, 3, 10), (30, 10, 1), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:05:10.5387042Z arg3_1 = rand_strided((2, 3, 30), (90, 30, 1), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:05:10.5387170Z print_performance(lambda: call([arg0_1, arg1_1, arg2_1, arg3_1])) 2023-01-11T21:05:10.5387176Z 2023-01-11T21:05:10.5387180Z 2023-01-11T21:05:10.5387273Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.5387344Z import torch 2023-01-11T21:05:10.5387414Z import random 2023-01-11T21:05:10.5387528Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.5387635Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.5387641Z 2023-01-11T21:05:10.5387718Z aten = torch.ops.aten 2023-01-11T21:05:10.5387852Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.5387943Z async_compile = AsyncCompile() 2023-01-11T21:05:10.5387950Z 2023-01-11T21:05:10.5387954Z 2023-01-11T21:05:10.5388092Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.5388337Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.5388459Z extern "C" void kernel(bfloat16* __restrict__ in_out_ptr0, 2023-01-11T21:05:10.5388568Z const bfloat16* __restrict__ in_ptr0) 2023-01-11T21:05:10.5388615Z { 2023-01-11T21:05:10.5388712Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.5388773Z { 2023-01-11T21:05:10.5388848Z #pragma omp for 2023-01-11T21:05:10.5388930Z for(long i0=0; i0<180; i0+=1) 2023-01-11T21:05:10.5388991Z { 2023-01-11T21:05:10.5389052Z { 2023-01-11T21:05:10.5389102Z { 2023-01-11T21:05:10.5389220Z auto tmp0 = static_cast(in_out_ptr0[i0]); 2023-01-11T21:05:10.5389336Z auto tmp1 = static_cast(in_ptr0[i0]); 2023-01-11T21:05:10.5389475Z auto tmp2 = tmp0 - tmp1; 2023-01-11T21:05:10.5389564Z in_out_ptr0[i0] = tmp2; 2023-01-11T21:05:10.5389627Z } 2023-01-11T21:05:10.5389689Z } 2023-01-11T21:05:10.5389739Z } 2023-01-11T21:05:10.5389797Z } 2023-01-11T21:05:10.5389856Z } 2023-01-11T21:05:10.5389932Z ''') 2023-01-11T21:05:10.5389938Z 2023-01-11T21:05:10.5389942Z 2023-01-11T21:05:10.5390030Z async_compile.wait(globals()) 2023-01-11T21:05:10.5390101Z del async_compile 2023-01-11T21:05:10.5390105Z 2023-01-11T21:05:10.5390172Z def call(args): 2023-01-11T21:05:10.5390240Z arg0_1, arg1_1, arg2_1 = args 2023-01-11T21:05:10.5390309Z args.clear() 2023-01-11T21:05:10.5390510Z buf0 = empty_strided((6, 30), (30, 1), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:05:10.5390654Z aten.mm.out(as_strided(arg1_1, (6, 10), (10, 1)), as_strided(arg0_1, (10, 30), (1, 10)), out=buf0) 2023-01-11T21:05:10.5390721Z del arg0_1 2023-01-11T21:05:10.5390787Z del arg1_1 2023-01-11T21:05:10.5390903Z buf1 = as_strided(buf0, (2, 3, 30), (90, 30, 1)); del buf0 # reuse 2023-01-11T21:05:10.5391022Z kernel_cpp_0(c_void_p(buf1.data_ptr()), c_void_p(arg2_1.data_ptr())) 2023-01-11T21:05:10.5391089Z del arg2_1 2023-01-11T21:05:10.5391159Z return (buf1, ) 2023-01-11T21:05:10.5391164Z 2023-01-11T21:05:10.5391168Z 2023-01-11T21:05:10.5391242Z if __name__ == "__main__": 2023-01-11T21:05:10.5391356Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.5391478Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.5391678Z arg0_1 = rand_strided((30, 10), (10, 1), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:05:10.5391881Z arg1_1 = rand_strided((2, 3, 10), (30, 10, 1), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:05:10.5392071Z arg2_1 = rand_strided((2, 3, 30), (90, 30, 1), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:05:10.5392191Z print_performance(lambda: call([arg0_1, arg1_1, arg2_1])) 2023-01-11T21:05:10.5392227Z 2023-01-11T21:05:10.5392231Z 2023-01-11T21:05:10.5392324Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.5392392Z import torch 2023-01-11T21:05:10.5392460Z import random 2023-01-11T21:05:10.5392575Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.5392695Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.5392700Z 2023-01-11T21:05:10.5392777Z aten = torch.ops.aten 2023-01-11T21:05:10.5392894Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.5392983Z async_compile = AsyncCompile() 2023-01-11T21:05:10.5392988Z 2023-01-11T21:05:10.5392992Z 2023-01-11T21:05:10.5393125Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.5393328Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.5393447Z extern "C" void kernel(bfloat16* __restrict__ in_out_ptr0, 2023-01-11T21:05:10.5393554Z const bfloat16* __restrict__ in_ptr0) 2023-01-11T21:05:10.5393615Z { 2023-01-11T21:05:10.5393712Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.5393760Z { 2023-01-11T21:05:10.5393835Z #pragma omp for 2023-01-11T21:05:10.5393942Z for(long i0=0; i0<60; i0+=1) 2023-01-11T21:05:10.5394005Z { 2023-01-11T21:05:10.5394068Z { 2023-01-11T21:05:10.5394130Z { 2023-01-11T21:05:10.5394237Z auto tmp0 = static_cast(in_out_ptr0[i0]); 2023-01-11T21:05:10.5394352Z auto tmp1 = static_cast(in_ptr0[i0]); 2023-01-11T21:05:10.5394489Z auto tmp2 = tmp0 - tmp1; 2023-01-11T21:05:10.5394579Z in_out_ptr0[i0] = tmp2; 2023-01-11T21:05:10.5394643Z } 2023-01-11T21:05:10.5394705Z } 2023-01-11T21:05:10.5394766Z } 2023-01-11T21:05:10.5394812Z } 2023-01-11T21:05:10.5394870Z } 2023-01-11T21:05:10.5394947Z ''') 2023-01-11T21:05:10.5394952Z 2023-01-11T21:05:10.5394958Z 2023-01-11T21:05:10.5395047Z async_compile.wait(globals()) 2023-01-11T21:05:10.5395118Z del async_compile 2023-01-11T21:05:10.5395123Z 2023-01-11T21:05:10.5395191Z def call(args): 2023-01-11T21:05:10.5395282Z arg0_1, arg1_1, arg2_1, arg3_1 = args 2023-01-11T21:05:10.5395340Z args.clear() 2023-01-11T21:05:10.5395538Z buf0 = empty_strided((2, 30), (30, 1), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:05:10.5395689Z aten.addmm.out(arg1_1, arg2_1, as_strided(arg0_1, (10, 30), (1, 10)), beta=1, alpha=1, out=buf0) 2023-01-11T21:05:10.5395759Z del arg0_1 2023-01-11T21:05:10.5395823Z del arg1_1 2023-01-11T21:05:10.5395886Z del arg2_1 2023-01-11T21:05:10.5395969Z buf1 = buf0; del buf0 # reuse 2023-01-11T21:05:10.5396099Z kernel_cpp_0(c_void_p(buf1.data_ptr()), c_void_p(arg3_1.data_ptr())) 2023-01-11T21:05:10.5396152Z del arg3_1 2023-01-11T21:05:10.5396220Z return (buf1, ) 2023-01-11T21:05:10.5396225Z 2023-01-11T21:05:10.5396230Z 2023-01-11T21:05:10.5396309Z if __name__ == "__main__": 2023-01-11T21:05:10.5396420Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.5396542Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.5396746Z arg0_1 = rand_strided((30, 10), (10, 1), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:05:10.5396938Z arg1_1 = rand_strided((30, ), (1, ), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:05:10.5397121Z arg2_1 = rand_strided((2, 10), (10, 1), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:05:10.5397316Z arg3_1 = rand_strided((2, 30), (30, 1), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:05:10.5397442Z print_performance(lambda: call([arg0_1, arg1_1, arg2_1, arg3_1])) 2023-01-11T21:05:10.5397447Z 2023-01-11T21:05:10.5397451Z 2023-01-11T21:05:10.5397542Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.5397610Z import torch 2023-01-11T21:05:10.5397680Z import random 2023-01-11T21:05:10.5397792Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.5397945Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.5397951Z 2023-01-11T21:05:10.5398014Z aten = torch.ops.aten 2023-01-11T21:05:10.5398145Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.5398235Z async_compile = AsyncCompile() 2023-01-11T21:05:10.5398240Z 2023-01-11T21:05:10.5398244Z 2023-01-11T21:05:10.5398376Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.5398579Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.5398696Z extern "C" void kernel(bfloat16* __restrict__ in_out_ptr0, 2023-01-11T21:05:10.5398804Z const bfloat16* __restrict__ in_ptr0) 2023-01-11T21:05:10.5398867Z { 2023-01-11T21:05:10.5398950Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.5399009Z { 2023-01-11T21:05:10.5399085Z #pragma omp for 2023-01-11T21:05:10.5399165Z for(long i0=0; i0<60; i0+=1) 2023-01-11T21:05:10.5399228Z { 2023-01-11T21:05:10.5399290Z { 2023-01-11T21:05:10.5399353Z { 2023-01-11T21:05:10.5399459Z auto tmp0 = static_cast(in_out_ptr0[i0]); 2023-01-11T21:05:10.5399610Z auto tmp1 = static_cast(in_ptr0[i0]); 2023-01-11T21:05:10.5399748Z auto tmp2 = tmp0 - tmp1; 2023-01-11T21:05:10.5399836Z in_out_ptr0[i0] = tmp2; 2023-01-11T21:05:10.5399900Z } 2023-01-11T21:05:10.5399961Z } 2023-01-11T21:05:10.5400021Z } 2023-01-11T21:05:10.5400067Z } 2023-01-11T21:05:10.5400125Z } 2023-01-11T21:05:10.5400201Z ''') 2023-01-11T21:05:10.5400206Z 2023-01-11T21:05:10.5400210Z 2023-01-11T21:05:10.5400298Z async_compile.wait(globals()) 2023-01-11T21:05:10.5400369Z del async_compile 2023-01-11T21:05:10.5400374Z 2023-01-11T21:05:10.5400442Z def call(args): 2023-01-11T21:05:10.5400524Z arg0_1, arg1_1, arg2_1 = args 2023-01-11T21:05:10.5400580Z args.clear() 2023-01-11T21:05:10.5400963Z buf0 = empty_strided((2, 30), (30, 1), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:05:10.5401088Z aten.mm.out(arg1_1, as_strided(arg0_1, (10, 30), (1, 10)), out=buf0) 2023-01-11T21:05:10.5401158Z del arg0_1 2023-01-11T21:05:10.5401229Z del arg1_1 2023-01-11T21:05:10.5401312Z buf1 = buf0; del buf0 # reuse 2023-01-11T21:05:10.5401443Z kernel_cpp_0(c_void_p(buf1.data_ptr()), c_void_p(arg2_1.data_ptr())) 2023-01-11T21:05:10.5401496Z del arg2_1 2023-01-11T21:05:10.5401568Z return (buf1, ) 2023-01-11T21:05:10.5401573Z 2023-01-11T21:05:10.5401578Z 2023-01-11T21:05:10.5401655Z if __name__ == "__main__": 2023-01-11T21:05:10.5401768Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.5401894Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.5402099Z arg0_1 = rand_strided((30, 10), (10, 1), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:05:10.5402298Z arg1_1 = rand_strided((2, 10), (10, 1), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:05:10.5402499Z arg2_1 = rand_strided((2, 30), (30, 1), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:05:10.5402607Z print_performance(lambda: call([arg0_1, arg1_1, arg2_1])) 2023-01-11T21:05:10.5402880Z [2023-01-11 20:54:08,822] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 263 2023-01-11T21:05:10.5403280Z inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.5403407Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.5403665Z [2023-01-11 20:54:09,052] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 264 2023-01-11T21:05:10.5403931Z [2023-01-11 20:54:09,064] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 264 2023-01-11T21:05:10.5404393Z inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.5404520Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.5404780Z [2023-01-11 20:54:09,124] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 265 2023-01-11T21:05:10.5405041Z [2023-01-11 20:54:09,139] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 265 2023-01-11T21:05:10.5405435Z inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.5405603Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.5405847Z [2023-01-11 20:54:09,366] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 266 2023-01-11T21:05:10.5406113Z [2023-01-11 20:54:09,377] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 266 2023-01-11T21:05:10.5406513Z inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.5406639Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.5406896Z [2023-01-11 20:54:09,428] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 267 2023-01-11T21:05:10.5407156Z [2023-01-11 20:54:09,442] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 267 2023-01-11T21:05:10.5407552Z inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.5407677Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.5407927Z [2023-01-11 20:54:09,673] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 268 2023-01-11T21:05:10.5407933Z 2023-01-11T21:05:10.5407938Z 2023-01-11T21:05:10.5408030Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.5408097Z import torch 2023-01-11T21:05:10.5408156Z import random 2023-01-11T21:05:10.5408270Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.5408391Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.5408397Z 2023-01-11T21:05:10.5408475Z aten = torch.ops.aten 2023-01-11T21:05:10.5408608Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.5408699Z async_compile = AsyncCompile() 2023-01-11T21:05:10.5408704Z 2023-01-11T21:05:10.5408708Z 2023-01-11T21:05:10.5408841Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.5409032Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.5409151Z extern "C" void kernel(bfloat16* __restrict__ in_out_ptr0, 2023-01-11T21:05:10.5409257Z const bfloat16* __restrict__ in_ptr0) 2023-01-11T21:05:10.5409318Z { 2023-01-11T21:05:10.5409414Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.5409476Z { 2023-01-11T21:05:10.5409553Z #pragma omp for 2023-01-11T21:05:10.5409652Z for(long i0=0; i0<180; i0+=1) 2023-01-11T21:05:10.5409713Z { 2023-01-11T21:05:10.5409775Z { 2023-01-11T21:05:10.5409840Z { 2023-01-11T21:05:10.5409963Z auto tmp0 = static_cast(in_out_ptr0[i0]); 2023-01-11T21:05:10.5410076Z auto tmp1 = static_cast(in_ptr0[i0]); 2023-01-11T21:05:10.5410212Z auto tmp2 = tmp0 - tmp1; 2023-01-11T21:05:10.5410288Z in_out_ptr0[i0] = tmp2; 2023-01-11T21:05:10.5410351Z } 2023-01-11T21:05:10.5410413Z } 2023-01-11T21:05:10.5410475Z } 2023-01-11T21:05:10.5410536Z } 2023-01-11T21:05:10.5410594Z } 2023-01-11T21:05:10.5410670Z ''') 2023-01-11T21:05:10.5410675Z 2023-01-11T21:05:10.5410680Z 2023-01-11T21:05:10.5410757Z async_compile.wait(globals()) 2023-01-11T21:05:10.5410828Z del async_compile 2023-01-11T21:05:10.5410833Z 2023-01-11T21:05:10.5410902Z def call(args): 2023-01-11T21:05:10.5410994Z arg0_1, arg1_1, arg2_1, arg3_1 = args 2023-01-11T21:05:10.5411064Z args.clear() 2023-01-11T21:05:10.5411266Z buf0 = empty_strided((6, 30), (30, 1), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:05:10.5411465Z aten.addmm.out(arg1_1, as_strided(arg2_1, (6, 10), (10, 1)), as_strided(arg0_1, (10, 30), (1, 10)), beta=1, alpha=1, out=buf0) 2023-01-11T21:05:10.5411534Z del arg0_1 2023-01-11T21:05:10.5411586Z del arg1_1 2023-01-11T21:05:10.5411649Z del arg2_1 2023-01-11T21:05:10.5411765Z buf1 = as_strided(buf0, (2, 3, 30), (90, 30, 1)); del buf0 # reuse 2023-01-11T21:05:10.5411897Z kernel_cpp_0(c_void_p(buf1.data_ptr()), c_void_p(arg3_1.data_ptr())) 2023-01-11T21:05:10.5411963Z del arg3_1 2023-01-11T21:05:10.5412034Z return (buf1, ) 2023-01-11T21:05:10.5412039Z 2023-01-11T21:05:10.5412044Z 2023-01-11T21:05:10.5412118Z if __name__ == "__main__": 2023-01-11T21:05:10.5412217Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.5412341Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.5412541Z arg0_1 = rand_strided((30, 10), (10, 1), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:05:10.5412740Z arg1_1 = rand_strided((30, ), (1, ), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:05:10.5412945Z arg2_1 = rand_strided((2, 3, 10), (30, 10, 1), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:05:10.5413149Z arg3_1 = rand_strided((2, 3, 30), (90, 30, 1), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:05:10.5413277Z print_performance(lambda: call([arg0_1, arg1_1, arg2_1, arg3_1])) 2023-01-11T21:05:10.5413283Z 2023-01-11T21:05:10.5413287Z 2023-01-11T21:05:10.5413380Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.5413448Z import torch 2023-01-11T21:05:10.5413504Z import random 2023-01-11T21:05:10.5413618Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.5413738Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.5413743Z 2023-01-11T21:05:10.5413821Z aten = torch.ops.aten 2023-01-11T21:05:10.5413952Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.5414041Z async_compile = AsyncCompile() 2023-01-11T21:05:10.5414047Z 2023-01-11T21:05:10.5414053Z 2023-01-11T21:05:10.5414184Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.5414375Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.5414495Z extern "C" void kernel(bfloat16* __restrict__ in_out_ptr0, 2023-01-11T21:05:10.5414604Z const bfloat16* __restrict__ in_ptr0) 2023-01-11T21:05:10.5414665Z { 2023-01-11T21:05:10.5414760Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.5414824Z { 2023-01-11T21:05:10.5414901Z #pragma omp for 2023-01-11T21:05:10.5414970Z for(long i0=0; i0<180; i0+=1) 2023-01-11T21:05:10.5415032Z { 2023-01-11T21:05:10.5415093Z { 2023-01-11T21:05:10.5415157Z { 2023-01-11T21:05:10.5415308Z auto tmp0 = static_cast(in_out_ptr0[i0]); 2023-01-11T21:05:10.5415422Z auto tmp1 = static_cast(in_ptr0[i0]); 2023-01-11T21:05:10.5415562Z auto tmp2 = tmp0 - tmp1; 2023-01-11T21:05:10.5415640Z in_out_ptr0[i0] = tmp2; 2023-01-11T21:05:10.5415703Z } 2023-01-11T21:05:10.5415765Z } 2023-01-11T21:05:10.5415825Z } 2023-01-11T21:05:10.5415887Z } 2023-01-11T21:05:10.5415945Z } 2023-01-11T21:05:10.5416020Z ''') 2023-01-11T21:05:10.5416025Z 2023-01-11T21:05:10.5416029Z 2023-01-11T21:05:10.5416103Z async_compile.wait(globals()) 2023-01-11T21:05:10.5416173Z del async_compile 2023-01-11T21:05:10.5416178Z 2023-01-11T21:05:10.5416246Z def call(args): 2023-01-11T21:05:10.5416325Z arg0_1, arg1_1, arg2_1 = args 2023-01-11T21:05:10.5416393Z args.clear() 2023-01-11T21:05:10.5416593Z buf0 = empty_strided((6, 30), (30, 1), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:05:10.5416739Z aten.mm.out(as_strided(arg1_1, (6, 10), (10, 1)), as_strided(arg0_1, (10, 30), (1, 10)), out=buf0) 2023-01-11T21:05:10.5416805Z del arg0_1 2023-01-11T21:05:10.5416856Z del arg1_1 2023-01-11T21:05:10.5417005Z buf1 = as_strided(buf0, (2, 3, 30), (90, 30, 1)); del buf0 # reuse 2023-01-11T21:05:10.5417139Z kernel_cpp_0(c_void_p(buf1.data_ptr()), c_void_p(arg2_1.data_ptr())) 2023-01-11T21:05:10.5417204Z del arg2_1 2023-01-11T21:05:10.5417276Z return (buf1, ) 2023-01-11T21:05:10.5417280Z 2023-01-11T21:05:10.5417285Z 2023-01-11T21:05:10.5417358Z if __name__ == "__main__": 2023-01-11T21:05:10.5417470Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.5417579Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.5417778Z arg0_1 = rand_strided((30, 10), (10, 1), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:05:10.5417983Z arg1_1 = rand_strided((2, 3, 10), (30, 10, 1), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:05:10.5418187Z arg2_1 = rand_strided((2, 3, 30), (90, 30, 1), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:05:10.5418308Z print_performance(lambda: call([arg0_1, arg1_1, arg2_1])) 2023-01-11T21:05:10.5418313Z 2023-01-11T21:05:10.5418320Z 2023-01-11T21:05:10.5418413Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.5418569Z import torch 2023-01-11T21:05:10.5418640Z import random 2023-01-11T21:05:10.5418743Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.5418864Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.5418869Z 2023-01-11T21:05:10.5418947Z aten = torch.ops.aten 2023-01-11T21:05:10.5419080Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.5419171Z async_compile = AsyncCompile() 2023-01-11T21:05:10.5419176Z 2023-01-11T21:05:10.5419180Z 2023-01-11T21:05:10.5419317Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.5419522Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.5419642Z extern "C" void kernel(bfloat16* __restrict__ in_out_ptr0, 2023-01-11T21:05:10.5419737Z const bfloat16* __restrict__ in_ptr0) 2023-01-11T21:05:10.5419798Z { 2023-01-11T21:05:10.5419896Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.5419957Z { 2023-01-11T21:05:10.5420034Z #pragma omp for 2023-01-11T21:05:10.5420115Z for(long i0=0; i0<60; i0+=1) 2023-01-11T21:05:10.5420178Z { 2023-01-11T21:05:10.5420227Z { 2023-01-11T21:05:10.5420291Z { 2023-01-11T21:05:10.5420409Z auto tmp0 = static_cast(in_out_ptr0[i0]); 2023-01-11T21:05:10.5420522Z auto tmp1 = static_cast(in_ptr0[i0]); 2023-01-11T21:05:10.5420657Z auto tmp2 = tmp0 - tmp1; 2023-01-11T21:05:10.5420747Z in_out_ptr0[i0] = tmp2; 2023-01-11T21:05:10.5420810Z } 2023-01-11T21:05:10.5420858Z } 2023-01-11T21:05:10.5420954Z } 2023-01-11T21:05:10.5421013Z } 2023-01-11T21:05:10.5421071Z } 2023-01-11T21:05:10.5421148Z ''') 2023-01-11T21:05:10.5421153Z 2023-01-11T21:05:10.5421157Z 2023-01-11T21:05:10.5421251Z async_compile.wait(globals()) 2023-01-11T21:05:10.5421320Z del async_compile 2023-01-11T21:05:10.5421325Z 2023-01-11T21:05:10.5421380Z def call(args): 2023-01-11T21:05:10.5421466Z arg0_1, arg1_1, arg2_1, arg3_1 = args 2023-01-11T21:05:10.5421535Z args.clear() 2023-01-11T21:05:10.5421735Z buf0 = empty_strided((2, 30), (30, 1), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:05:10.5421885Z aten.addmm.out(arg1_1, arg2_1, as_strided(arg0_1, (10, 30), (1, 10)), beta=1, alpha=1, out=buf0) 2023-01-11T21:05:10.5421952Z del arg0_1 2023-01-11T21:05:10.5422016Z del arg1_1 2023-01-11T21:05:10.5422068Z del arg2_1 2023-01-11T21:05:10.5422150Z buf1 = buf0; del buf0 # reuse 2023-01-11T21:05:10.5422281Z kernel_cpp_0(c_void_p(buf1.data_ptr()), c_void_p(arg3_1.data_ptr())) 2023-01-11T21:05:10.5422347Z del arg3_1 2023-01-11T21:05:10.5422419Z return (buf1, ) 2023-01-11T21:05:10.5422424Z 2023-01-11T21:05:10.5422428Z 2023-01-11T21:05:10.5422502Z if __name__ == "__main__": 2023-01-11T21:05:10.5422658Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.5422781Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.5422969Z arg0_1 = rand_strided((30, 10), (10, 1), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:05:10.5423164Z arg1_1 = rand_strided((30, ), (1, ), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:05:10.5423359Z arg2_1 = rand_strided((2, 10), (10, 1), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:05:10.5423553Z arg3_1 = rand_strided((2, 30), (30, 1), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:05:10.5423681Z print_performance(lambda: call([arg0_1, arg1_1, arg2_1, arg3_1])) 2023-01-11T21:05:10.5423687Z 2023-01-11T21:05:10.5423691Z 2023-01-11T21:05:10.5423784Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.5423854Z import torch 2023-01-11T21:05:10.5423922Z import random 2023-01-11T21:05:10.5424022Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.5424144Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.5424149Z 2023-01-11T21:05:10.5424225Z aten = torch.ops.aten 2023-01-11T21:05:10.5424357Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.5424446Z async_compile = AsyncCompile() 2023-01-11T21:05:10.5424451Z 2023-01-11T21:05:10.5424457Z 2023-01-11T21:05:10.5424589Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.5424791Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.5424910Z extern "C" void kernel(bfloat16* __restrict__ in_out_ptr0, 2023-01-11T21:05:10.5425004Z const bfloat16* __restrict__ in_ptr0) 2023-01-11T21:05:10.5425063Z { 2023-01-11T21:05:10.5425158Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.5425221Z { 2023-01-11T21:05:10.5425295Z #pragma omp for 2023-01-11T21:05:10.5425375Z for(long i0=0; i0<60; i0+=1) 2023-01-11T21:05:10.5425436Z { 2023-01-11T21:05:10.5425486Z { 2023-01-11T21:05:10.5425552Z { 2023-01-11T21:05:10.5425671Z auto tmp0 = static_cast(in_out_ptr0[i0]); 2023-01-11T21:05:10.5425784Z auto tmp1 = static_cast(in_ptr0[i0]); 2023-01-11T21:05:10.5425920Z auto tmp2 = tmp0 - tmp1; 2023-01-11T21:05:10.5426011Z in_out_ptr0[i0] = tmp2; 2023-01-11T21:05:10.5426073Z } 2023-01-11T21:05:10.5426123Z } 2023-01-11T21:05:10.5426184Z } 2023-01-11T21:05:10.5426244Z } 2023-01-11T21:05:10.5426303Z } 2023-01-11T21:05:10.5426379Z ''') 2023-01-11T21:05:10.5426385Z 2023-01-11T21:05:10.5426389Z 2023-01-11T21:05:10.5426477Z async_compile.wait(globals()) 2023-01-11T21:05:10.5426547Z del async_compile 2023-01-11T21:05:10.5426582Z 2023-01-11T21:05:10.5426639Z def call(args): 2023-01-11T21:05:10.5426718Z arg0_1, arg1_1, arg2_1 = args 2023-01-11T21:05:10.5426787Z args.clear() 2023-01-11T21:05:10.5426989Z buf0 = empty_strided((2, 30), (30, 1), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:05:10.5427110Z aten.mm.out(arg1_1, as_strided(arg0_1, (10, 30), (1, 10)), out=buf0) 2023-01-11T21:05:10.5427175Z del arg0_1 2023-01-11T21:05:10.5427240Z del arg1_1 2023-01-11T21:05:10.5427309Z buf1 = buf0; del buf0 # reuse 2023-01-11T21:05:10.5427441Z kernel_cpp_0(c_void_p(buf1.data_ptr()), c_void_p(arg2_1.data_ptr())) 2023-01-11T21:05:10.5427507Z del arg2_1 2023-01-11T21:05:10.5427578Z return (buf1, ) 2023-01-11T21:05:10.5427583Z 2023-01-11T21:05:10.5427588Z 2023-01-11T21:05:10.5427660Z if __name__ == "__main__": 2023-01-11T21:05:10.5427772Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.5427895Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.5428086Z arg0_1 = rand_strided((30, 10), (10, 1), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:05:10.5428284Z arg1_1 = rand_strided((2, 10), (10, 1), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:05:10.5428509Z arg2_1 = rand_strided((2, 30), (30, 1), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:05:10.5428631Z print_performance(lambda: call([arg0_1, arg1_1, arg2_1])) 2023-01-11T21:05:10.5428636Z 2023-01-11T21:05:10.5428639Z 2023-01-11T21:05:10.5428732Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.5428801Z import torch 2023-01-11T21:05:10.5428869Z import random 2023-01-11T21:05:10.5428981Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.5429087Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.5429105Z 2023-01-11T21:05:10.5429168Z aten = torch.ops.aten 2023-01-11T21:05:10.5429299Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.5429388Z async_compile = AsyncCompile() 2023-01-11T21:05:10.5429394Z 2023-01-11T21:05:10.5429399Z 2023-01-11T21:05:10.5429531Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.5429734Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.5429857Z extern "C" void kernel(const bfloat16* __restrict__ in_ptr0, 2023-01-11T21:05:10.5429966Z const bfloat16* __restrict__ in_ptr1, 2023-01-11T21:05:10.5430066Z bfloat16* __restrict__ out_ptr0) 2023-01-11T21:05:10.5430113Z { 2023-01-11T21:05:10.5430207Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.5430267Z { 2023-01-11T21:05:10.5430343Z #pragma omp for 2023-01-11T21:05:10.5430422Z for(long i0=0; i0<180; i0+=1) 2023-01-11T21:05:10.5430486Z { 2023-01-11T21:05:10.5430534Z { 2023-01-11T21:05:10.5430598Z { 2023-01-11T21:05:10.5430714Z auto tmp0 = static_cast(in_ptr0[i0]); 2023-01-11T21:05:10.5430825Z auto tmp1 = static_cast(in_ptr1[i0]); 2023-01-11T21:05:10.5430962Z auto tmp2 = tmp0 - tmp1; 2023-01-11T21:05:10.5431046Z out_ptr0[i0] = tmp2; 2023-01-11T21:05:10.5431110Z } 2023-01-11T21:05:10.5431161Z } 2023-01-11T21:05:10.5431223Z } 2023-01-11T21:05:10.5431283Z } 2023-01-11T21:05:10.5431341Z } 2023-01-11T21:05:10.5431418Z ''') 2023-01-11T21:05:10.5431424Z 2023-01-11T21:05:10.5431428Z 2023-01-11T21:05:10.5431518Z async_compile.wait(globals()) 2023-01-11T21:05:10.5431587Z del async_compile 2023-01-11T21:05:10.5431592Z 2023-01-11T21:05:10.5431647Z def call(args): 2023-01-11T21:05:10.5431736Z arg0_1, arg1_1, arg2_1, arg3_1 = args 2023-01-11T21:05:10.5431805Z args.clear() 2023-01-11T21:05:10.5432003Z buf0 = empty_strided((6, 30), (30, 1), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:05:10.5432173Z aten.addmm.out(arg1_1, as_strided(arg2_1, (6, 10), (10, 1)), as_strided(arg0_1, (10, 30), (1, 10)), beta=1, alpha=1, out=buf0) 2023-01-11T21:05:10.5432271Z del arg0_1 2023-01-11T21:05:10.5432335Z del arg1_1 2023-01-11T21:05:10.5432388Z del arg2_1 2023-01-11T21:05:10.5432551Z kernel_cpp_0(c_void_p(buf0.data_ptr()), c_void_p(arg3_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:05:10.5432616Z del arg3_1 2023-01-11T21:05:10.5432718Z return (as_strided(buf0, (2, 3, 30), (90, 30, 1)), ) 2023-01-11T21:05:10.5432723Z 2023-01-11T21:05:10.5432727Z 2023-01-11T21:05:10.5432801Z if __name__ == "__main__": 2023-01-11T21:05:10.5432917Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.5433037Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.5433240Z arg0_1 = rand_strided((30, 10), (10, 1), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:05:10.5433423Z arg1_1 = rand_strided((30, ), (1, ), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:05:10.5433627Z arg2_1 = rand_strided((2, 3, 10), (30, 10, 1), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:05:10.5433834Z arg3_1 = rand_strided((2, 3, 30), (90, 30, 1), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:05:10.5433961Z print_performance(lambda: call([arg0_1, arg1_1, arg2_1, arg3_1])) 2023-01-11T21:05:10.5434260Z [2023-01-11 20:54:12,393] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 268 2023-01-11T21:05:10.5434664Z inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.5434788Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.5435046Z [2023-01-11 20:54:12,463] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 269 2023-01-11T21:05:10.5435308Z [2023-01-11 20:54:12,482] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 269 2023-01-11T21:05:10.5435708Z inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.5435832Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.5436077Z [2023-01-11 20:54:12,707] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 270 2023-01-11T21:05:10.5436336Z [2023-01-11 20:54:12,717] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 270 2023-01-11T21:05:10.5436733Z inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.5436860Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.5437114Z [2023-01-11 20:54:12,766] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 271 2023-01-11T21:05:10.5437376Z [2023-01-11 20:54:12,780] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 271 2023-01-11T21:05:10.5437382Z 2023-01-11T21:05:10.5437386Z 2023-01-11T21:05:10.5437479Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.5437547Z import torch 2023-01-11T21:05:10.5437616Z import random 2023-01-11T21:05:10.5437720Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.5437839Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.5437844Z 2023-01-11T21:05:10.5437920Z aten = torch.ops.aten 2023-01-11T21:05:10.5438053Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.5438176Z async_compile = AsyncCompile() 2023-01-11T21:05:10.5438182Z 2023-01-11T21:05:10.5438186Z 2023-01-11T21:05:10.5438319Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.5438524Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.5438647Z extern "C" void kernel(const bfloat16* __restrict__ in_ptr0, 2023-01-11T21:05:10.5438753Z const bfloat16* __restrict__ in_ptr1, 2023-01-11T21:05:10.5438841Z bfloat16* __restrict__ out_ptr0) 2023-01-11T21:05:10.5438901Z { 2023-01-11T21:05:10.5438997Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.5439057Z { 2023-01-11T21:05:10.5439135Z #pragma omp for 2023-01-11T21:05:10.5439218Z for(long i0=0; i0<180; i0+=1) 2023-01-11T21:05:10.5439266Z { 2023-01-11T21:05:10.5439328Z { 2023-01-11T21:05:10.5439389Z { 2023-01-11T21:05:10.5439506Z auto tmp0 = static_cast(in_ptr0[i0]); 2023-01-11T21:05:10.5439623Z auto tmp1 = static_cast(in_ptr1[i0]); 2023-01-11T21:05:10.5439789Z auto tmp2 = tmp0 - tmp1; 2023-01-11T21:05:10.5439874Z out_ptr0[i0] = tmp2; 2023-01-11T21:05:10.5439924Z } 2023-01-11T21:05:10.5439985Z } 2023-01-11T21:05:10.5440046Z } 2023-01-11T21:05:10.5440106Z } 2023-01-11T21:05:10.5440164Z } 2023-01-11T21:05:10.5440242Z ''') 2023-01-11T21:05:10.5440248Z 2023-01-11T21:05:10.5440252Z 2023-01-11T21:05:10.5440340Z async_compile.wait(globals()) 2023-01-11T21:05:10.5440397Z del async_compile 2023-01-11T21:05:10.5440414Z 2023-01-11T21:05:10.5440470Z def call(args): 2023-01-11T21:05:10.5440550Z arg0_1, arg1_1, arg2_1 = args 2023-01-11T21:05:10.5440756Z args.clear() 2023-01-11T21:05:10.5440977Z buf0 = empty_strided((6, 30), (30, 1), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:05:10.5441124Z aten.mm.out(as_strided(arg1_1, (6, 10), (10, 1)), as_strided(arg0_1, (10, 30), (1, 10)), out=buf0) 2023-01-11T21:05:10.5441192Z del arg0_1 2023-01-11T21:05:10.5441257Z del arg1_1 2023-01-11T21:05:10.5441406Z kernel_cpp_0(c_void_p(buf0.data_ptr()), c_void_p(arg2_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:05:10.5441475Z del arg2_1 2023-01-11T21:05:10.5441579Z return (as_strided(buf0, (2, 3, 30), (90, 30, 1)), ) 2023-01-11T21:05:10.5441584Z 2023-01-11T21:05:10.5441588Z 2023-01-11T21:05:10.5441665Z if __name__ == "__main__": 2023-01-11T21:05:10.5441780Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.5441903Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.5442106Z arg0_1 = rand_strided((30, 10), (10, 1), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:05:10.5442314Z arg1_1 = rand_strided((2, 3, 10), (30, 10, 1), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:05:10.5442507Z arg2_1 = rand_strided((2, 3, 30), (90, 30, 1), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:05:10.5442632Z print_performance(lambda: call([arg0_1, arg1_1, arg2_1])) 2023-01-11T21:05:10.5442637Z 2023-01-11T21:05:10.5442642Z 2023-01-11T21:05:10.5442740Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.5442811Z import torch 2023-01-11T21:05:10.5442880Z import random 2023-01-11T21:05:10.5442994Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.5443115Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.5443120Z 2023-01-11T21:05:10.5443197Z aten = torch.ops.aten 2023-01-11T21:05:10.5443315Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.5443406Z async_compile = AsyncCompile() 2023-01-11T21:05:10.5443411Z 2023-01-11T21:05:10.5443415Z 2023-01-11T21:05:10.5443547Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.5443750Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.5443929Z extern "C" void kernel(bfloat16* __restrict__ in_out_ptr0, 2023-01-11T21:05:10.5444037Z const bfloat16* __restrict__ in_ptr0) 2023-01-11T21:05:10.5444098Z { 2023-01-11T21:05:10.5444185Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.5444246Z { 2023-01-11T21:05:10.5444322Z #pragma omp for 2023-01-11T21:05:10.5444404Z for(long i0=0; i0<60; i0+=1) 2023-01-11T21:05:10.5444469Z { 2023-01-11T21:05:10.5444533Z { 2023-01-11T21:05:10.5444597Z { 2023-01-11T21:05:10.5444705Z auto tmp0 = static_cast(in_out_ptr0[i0]); 2023-01-11T21:05:10.5444818Z auto tmp1 = static_cast(in_ptr0[i0]); 2023-01-11T21:05:10.5444958Z auto tmp2 = tmp0 - tmp1; 2023-01-11T21:05:10.5445050Z in_out_ptr0[i0] = tmp2; 2023-01-11T21:05:10.5445115Z } 2023-01-11T21:05:10.5445178Z } 2023-01-11T21:05:10.5445239Z } 2023-01-11T21:05:10.5445289Z } 2023-01-11T21:05:10.5445348Z } 2023-01-11T21:05:10.5445427Z ''') 2023-01-11T21:05:10.5445432Z 2023-01-11T21:05:10.5445436Z 2023-01-11T21:05:10.5445526Z async_compile.wait(globals()) 2023-01-11T21:05:10.5445633Z del async_compile 2023-01-11T21:05:10.5445638Z 2023-01-11T21:05:10.5445709Z def call(args): 2023-01-11T21:05:10.5445799Z arg0_1, arg1_1, arg2_1, arg3_1 = args 2023-01-11T21:05:10.5445856Z args.clear() 2023-01-11T21:05:10.5446059Z buf0 = empty_strided((2, 30), (30, 1), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:05:10.5446209Z aten.addmm.out(arg1_1, arg2_1, as_strided(arg0_1, (10, 30), (1, 10)), beta=1, alpha=1, out=buf0) 2023-01-11T21:05:10.5446278Z del arg0_1 2023-01-11T21:05:10.5446344Z del arg1_1 2023-01-11T21:05:10.5446407Z del arg2_1 2023-01-11T21:05:10.5446492Z buf1 = buf0; del buf0 # reuse 2023-01-11T21:05:10.5446609Z kernel_cpp_0(c_void_p(buf1.data_ptr()), c_void_p(arg3_1.data_ptr())) 2023-01-11T21:05:10.5446673Z del arg3_1 2023-01-11T21:05:10.5446746Z return (buf1, ) 2023-01-11T21:05:10.5446751Z 2023-01-11T21:05:10.5446756Z 2023-01-11T21:05:10.5446829Z if __name__ == "__main__": 2023-01-11T21:05:10.5446941Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.5447063Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.5447265Z arg0_1 = rand_strided((30, 10), (10, 1), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:05:10.5447459Z arg1_1 = rand_strided((30, ), (1, ), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:05:10.5447642Z arg2_1 = rand_strided((2, 10), (10, 1), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:05:10.5447837Z arg3_1 = rand_strided((2, 30), (30, 1), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:05:10.5447963Z print_performance(lambda: call([arg0_1, arg1_1, arg2_1, arg3_1])) 2023-01-11T21:05:10.5447969Z 2023-01-11T21:05:10.5447973Z 2023-01-11T21:05:10.5448067Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.5448138Z import torch 2023-01-11T21:05:10.5448206Z import random 2023-01-11T21:05:10.5448319Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.5448438Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.5448445Z 2023-01-11T21:05:10.5448509Z aten = torch.ops.aten 2023-01-11T21:05:10.5448640Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.5448729Z async_compile = AsyncCompile() 2023-01-11T21:05:10.5448735Z 2023-01-11T21:05:10.5448740Z 2023-01-11T21:05:10.5448871Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.5449073Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.5449192Z extern "C" void kernel(bfloat16* __restrict__ in_out_ptr0, 2023-01-11T21:05:10.5449300Z const bfloat16* __restrict__ in_ptr0) 2023-01-11T21:05:10.5449359Z { 2023-01-11T21:05:10.5449442Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.5449501Z { 2023-01-11T21:05:10.5449607Z #pragma omp for 2023-01-11T21:05:10.5449690Z for(long i0=0; i0<60; i0+=1) 2023-01-11T21:05:10.5449754Z { 2023-01-11T21:05:10.5449818Z { 2023-01-11T21:05:10.5449882Z { 2023-01-11T21:05:10.5449990Z auto tmp0 = static_cast(in_out_ptr0[i0]); 2023-01-11T21:05:10.5450103Z auto tmp1 = static_cast(in_ptr0[i0]); 2023-01-11T21:05:10.5450239Z auto tmp2 = tmp0 - tmp1; 2023-01-11T21:05:10.5450328Z in_out_ptr0[i0] = tmp2; 2023-01-11T21:05:10.5450395Z } 2023-01-11T21:05:10.5450458Z } 2023-01-11T21:05:10.5450517Z } 2023-01-11T21:05:10.5450564Z } 2023-01-11T21:05:10.5450622Z } 2023-01-11T21:05:10.5450699Z ''') 2023-01-11T21:05:10.5450704Z 2023-01-11T21:05:10.5450708Z 2023-01-11T21:05:10.5450796Z async_compile.wait(globals()) 2023-01-11T21:05:10.5450867Z del async_compile 2023-01-11T21:05:10.5450871Z 2023-01-11T21:05:10.5450942Z def call(args): 2023-01-11T21:05:10.5451022Z arg0_1, arg1_1, arg2_1 = args 2023-01-11T21:05:10.5451079Z args.clear() 2023-01-11T21:05:10.5451277Z buf0 = empty_strided((2, 30), (30, 1), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:05:10.5451429Z aten.mm.out(arg1_1, as_strided(arg0_1, (10, 30), (1, 10)), out=buf0) 2023-01-11T21:05:10.5451497Z del arg0_1 2023-01-11T21:05:10.5451562Z del arg1_1 2023-01-11T21:05:10.5451644Z buf1 = buf0; del buf0 # reuse 2023-01-11T21:05:10.5451773Z kernel_cpp_0(c_void_p(buf1.data_ptr()), c_void_p(arg2_1.data_ptr())) 2023-01-11T21:05:10.5451825Z del arg2_1 2023-01-11T21:05:10.5451895Z return (buf1, ) 2023-01-11T21:05:10.5451900Z 2023-01-11T21:05:10.5451904Z 2023-01-11T21:05:10.5451976Z if __name__ == "__main__": 2023-01-11T21:05:10.5452091Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.5452214Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.5452415Z arg0_1 = rand_strided((30, 10), (10, 1), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:05:10.5452615Z arg1_1 = rand_strided((2, 10), (10, 1), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:05:10.5452813Z arg2_1 = rand_strided((2, 30), (30, 1), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:05:10.5452922Z print_performance(lambda: call([arg0_1, arg1_1, arg2_1])) 2023-01-11T21:05:10.5452927Z 2023-01-11T21:05:10.5452990Z ok (26.149s) 2023-01-11T21:05:10.5453432Z test_linear_packed_cpu (__main__.CpuTests) ... inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.5453558Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.5453816Z [2023-01-11 20:54:12,853] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 272 2023-01-11T21:05:10.5454081Z [2023-01-11 20:54:12,885] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 272 2023-01-11T21:05:10.5454482Z inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.5454606Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.5454860Z [2023-01-11 20:54:12,935] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 273 2023-01-11T21:05:10.5455121Z [2023-01-11 20:54:12,940] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 273 2023-01-11T21:05:10.5455518Z inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.5455678Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.5455933Z [2023-01-11 20:54:12,997] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 274 2023-01-11T21:05:10.5456194Z [2023-01-11 20:54:13,001] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 274 2023-01-11T21:05:10.5456590Z inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.5456719Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.5456973Z [2023-01-11 20:54:13,028] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 275 2023-01-11T21:05:10.5457264Z [2023-01-11 20:54:13,032] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 275 2023-01-11T21:05:10.5457270Z 2023-01-11T21:05:10.5457362Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.5457431Z import torch 2023-01-11T21:05:10.5457499Z import random 2023-01-11T21:05:10.5457601Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.5457720Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.5457726Z 2023-01-11T21:05:10.5457801Z aten = torch.ops.aten 2023-01-11T21:05:10.5457933Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.5458023Z async_compile = AsyncCompile() 2023-01-11T21:05:10.5458029Z 2023-01-11T21:05:10.5458033Z 2023-01-11T21:05:10.5458121Z async_compile.wait(globals()) 2023-01-11T21:05:10.5458191Z del async_compile 2023-01-11T21:05:10.5458196Z 2023-01-11T21:05:10.5458264Z def call(args): 2023-01-11T21:05:10.5458332Z arg0_1, arg1_1, arg2_1 = args 2023-01-11T21:05:10.5458403Z args.clear() 2023-01-11T21:05:10.5458681Z buf0 = empty_strided((6, 30), (30, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.5458850Z aten.addmm.out(arg1_1, as_strided(arg2_1, (6, 10), (10, 1)), as_strided(arg0_1, (10, 30), (1, 10)), beta=1, alpha=1, out=buf0) 2023-01-11T21:05:10.5458919Z del arg0_1 2023-01-11T21:05:10.5458986Z del arg1_1 2023-01-11T21:05:10.5459052Z del arg2_1 2023-01-11T21:05:10.5459143Z return (as_strided(buf0, (2, 3, 30), (90, 30, 1)), ) 2023-01-11T21:05:10.5459148Z 2023-01-11T21:05:10.5459167Z 2023-01-11T21:05:10.5459229Z if __name__ == "__main__": 2023-01-11T21:05:10.5459341Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.5459463Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.5459669Z arg0_1 = rand_strided((30, 10), (10, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.5459863Z arg1_1 = rand_strided((30, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.5460072Z arg2_1 = rand_strided((2, 3, 10), (30, 10, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.5460193Z print_performance(lambda: call([arg0_1, arg1_1, arg2_1])) 2023-01-11T21:05:10.5460198Z 2023-01-11T21:05:10.5460202Z 2023-01-11T21:05:10.5460295Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.5460350Z import torch 2023-01-11T21:05:10.5460421Z import random 2023-01-11T21:05:10.5460535Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.5460653Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.5460658Z 2023-01-11T21:05:10.5460735Z aten = torch.ops.aten 2023-01-11T21:05:10.5460866Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.5460956Z async_compile = AsyncCompile() 2023-01-11T21:05:10.5461028Z 2023-01-11T21:05:10.5461032Z 2023-01-11T21:05:10.5461106Z async_compile.wait(globals()) 2023-01-11T21:05:10.5461177Z del async_compile 2023-01-11T21:05:10.5461182Z 2023-01-11T21:05:10.5461254Z def call(args): 2023-01-11T21:05:10.5461327Z arg0_1, arg1_1 = args 2023-01-11T21:05:10.5461396Z args.clear() 2023-01-11T21:05:10.5461592Z buf0 = empty_strided((6, 30), (30, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.5461734Z aten.mm.out(as_strided(arg1_1, (6, 10), (10, 1)), as_strided(arg0_1, (10, 30), (1, 10)), out=buf0) 2023-01-11T21:05:10.5461802Z del arg0_1 2023-01-11T21:05:10.5461855Z del arg1_1 2023-01-11T21:05:10.5461961Z return (as_strided(buf0, (2, 3, 30), (90, 30, 1)), ) 2023-01-11T21:05:10.5461966Z 2023-01-11T21:05:10.5461970Z 2023-01-11T21:05:10.5462045Z if __name__ == "__main__": 2023-01-11T21:05:10.5462158Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.5462282Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.5462483Z arg0_1 = rand_strided((30, 10), (10, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.5462690Z arg1_1 = rand_strided((2, 3, 10), (30, 10, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.5462846Z print_performance(lambda: call([arg0_1, arg1_1])) 2023-01-11T21:05:10.5462851Z 2023-01-11T21:05:10.5462855Z 2023-01-11T21:05:10.5462936Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.5463004Z import torch 2023-01-11T21:05:10.5463073Z import random 2023-01-11T21:05:10.5463186Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.5463304Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.5463308Z 2023-01-11T21:05:10.5463385Z aten = torch.ops.aten 2023-01-11T21:05:10.5463515Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.5463591Z async_compile = AsyncCompile() 2023-01-11T21:05:10.5463609Z 2023-01-11T21:05:10.5463613Z 2023-01-11T21:05:10.5463688Z async_compile.wait(globals()) 2023-01-11T21:05:10.5463760Z del async_compile 2023-01-11T21:05:10.5463765Z 2023-01-11T21:05:10.5463833Z def call(args): 2023-01-11T21:05:10.5463912Z arg0_1, arg1_1, arg2_1 = args 2023-01-11T21:05:10.5463983Z args.clear() 2023-01-11T21:05:10.5464177Z buf0 = empty_strided((2, 30), (30, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.5464325Z aten.addmm.out(arg1_1, arg2_1, as_strided(arg0_1, (10, 30), (1, 10)), beta=1, alpha=1, out=buf0) 2023-01-11T21:05:10.5464379Z del arg0_1 2023-01-11T21:05:10.5464444Z del arg1_1 2023-01-11T21:05:10.5464510Z del arg2_1 2023-01-11T21:05:10.5464582Z return (buf0, ) 2023-01-11T21:05:10.5464587Z 2023-01-11T21:05:10.5464592Z 2023-01-11T21:05:10.5464665Z if __name__ == "__main__": 2023-01-11T21:05:10.5464778Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.5464902Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.5465102Z arg0_1 = rand_strided((30, 10), (10, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.5465283Z arg1_1 = rand_strided((30, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.5465481Z arg2_1 = rand_strided((2, 10), (10, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.5465602Z print_performance(lambda: call([arg0_1, arg1_1, arg2_1])) 2023-01-11T21:05:10.5465607Z 2023-01-11T21:05:10.5465612Z 2023-01-11T21:05:10.5465704Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.5465772Z import torch 2023-01-11T21:05:10.5465840Z import random 2023-01-11T21:05:10.5465952Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.5466070Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.5466076Z 2023-01-11T21:05:10.5466139Z aten = torch.ops.aten 2023-01-11T21:05:10.5466268Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.5466360Z async_compile = AsyncCompile() 2023-01-11T21:05:10.5466365Z 2023-01-11T21:05:10.5466369Z 2023-01-11T21:05:10.5466486Z async_compile.wait(globals()) 2023-01-11T21:05:10.5466555Z del async_compile 2023-01-11T21:05:10.5466560Z 2023-01-11T21:05:10.5466628Z def call(args): 2023-01-11T21:05:10.5466700Z arg0_1, arg1_1 = args 2023-01-11T21:05:10.5466770Z args.clear() 2023-01-11T21:05:10.5466952Z buf0 = empty_strided((2, 30), (30, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.5467071Z aten.mm.out(arg1_1, as_strided(arg0_1, (10, 30), (1, 10)), out=buf0) 2023-01-11T21:05:10.5467137Z del arg0_1 2023-01-11T21:05:10.5467201Z del arg1_1 2023-01-11T21:05:10.5467272Z return (buf0, ) 2023-01-11T21:05:10.5467277Z 2023-01-11T21:05:10.5467281Z 2023-01-11T21:05:10.5467354Z if __name__ == "__main__": 2023-01-11T21:05:10.5467464Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.5467572Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.5467771Z arg0_1 = rand_strided((30, 10), (10, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.5467971Z arg1_1 = rand_strided((2, 10), (10, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.5468085Z print_performance(lambda: call([arg0_1, arg1_1])) 2023-01-11T21:05:10.5468090Z 2023-01-11T21:05:10.5468155Z ok (0.249s) 2023-01-11T21:05:10.5468621Z test_linear_unary_cpu (__main__.CpuTests) ... inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.5468753Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.5469013Z [2023-01-11 20:54:13,212] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 276 2023-01-11T21:05:10.5469278Z [2023-01-11 20:54:16,083] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 276 2023-01-11T21:05:10.5469678Z inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.5469791Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.5470048Z [2023-01-11 20:54:16,148] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 277 2023-01-11T21:05:10.5470308Z [2023-01-11 20:54:16,164] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 277 2023-01-11T21:05:10.5470703Z inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.5470830Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.5471085Z [2023-01-11 20:54:16,399] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 278 2023-01-11T21:05:10.5471343Z [2023-01-11 20:54:19,121] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 278 2023-01-11T21:05:10.5471737Z inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.5471861Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.5472114Z [2023-01-11 20:54:19,174] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 279 2023-01-11T21:05:10.5472407Z [2023-01-11 20:54:19,188] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 279 2023-01-11T21:05:10.5472807Z inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.5472919Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.5473169Z [2023-01-11 20:54:19,416] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 280 2023-01-11T21:05:10.5473175Z 2023-01-11T21:05:10.5473267Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.5473336Z import torch 2023-01-11T21:05:10.5473407Z import random 2023-01-11T21:05:10.5473519Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.5473641Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.5473646Z 2023-01-11T21:05:10.5473723Z aten = torch.ops.aten 2023-01-11T21:05:10.5473877Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.5473968Z async_compile = AsyncCompile() 2023-01-11T21:05:10.5473973Z 2023-01-11T21:05:10.5473978Z 2023-01-11T21:05:10.5474110Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.5474315Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.5474432Z extern "C" void kernel(bfloat16* __restrict__ in_out_ptr0) 2023-01-11T21:05:10.5474494Z { 2023-01-11T21:05:10.5474589Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.5474652Z { 2023-01-11T21:05:10.5474713Z #pragma omp for 2023-01-11T21:05:10.5474796Z for(long i0=0; i0<180; i0+=1) 2023-01-11T21:05:10.5474857Z { 2023-01-11T21:05:10.5474920Z { 2023-01-11T21:05:10.5474985Z { 2023-01-11T21:05:10.5475107Z auto tmp0 = static_cast(in_out_ptr0[i0]); 2023-01-11T21:05:10.5475189Z auto tmp1 = tmp0 * (tmp0>0); 2023-01-11T21:05:10.5475281Z in_out_ptr0[i0] = tmp1; 2023-01-11T21:05:10.5475345Z } 2023-01-11T21:05:10.5475408Z } 2023-01-11T21:05:10.5475470Z } 2023-01-11T21:05:10.5475532Z } 2023-01-11T21:05:10.5475590Z } 2023-01-11T21:05:10.5475653Z ''') 2023-01-11T21:05:10.5475658Z 2023-01-11T21:05:10.5475662Z 2023-01-11T21:05:10.5475750Z async_compile.wait(globals()) 2023-01-11T21:05:10.5475821Z del async_compile 2023-01-11T21:05:10.5475826Z 2023-01-11T21:05:10.5475895Z def call(args): 2023-01-11T21:05:10.5475975Z arg0_1, arg1_1, arg2_1 = args 2023-01-11T21:05:10.5476045Z args.clear() 2023-01-11T21:05:10.5476244Z buf0 = empty_strided((6, 30), (30, 1), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:05:10.5476413Z aten.addmm.out(arg1_1, as_strided(arg2_1, (6, 10), (10, 1)), as_strided(arg0_1, (10, 30), (1, 10)), beta=1, alpha=1, out=buf0) 2023-01-11T21:05:10.5476470Z del arg0_1 2023-01-11T21:05:10.5476535Z del arg1_1 2023-01-11T21:05:10.5476599Z del arg2_1 2023-01-11T21:05:10.5476715Z buf1 = as_strided(buf0, (2, 3, 30), (90, 30, 1)); del buf0 # reuse 2023-01-11T21:05:10.5476817Z kernel_cpp_0(c_void_p(buf1.data_ptr())) 2023-01-11T21:05:10.5476888Z return (buf1, ) 2023-01-11T21:05:10.5476892Z 2023-01-11T21:05:10.5476897Z 2023-01-11T21:05:10.5476970Z if __name__ == "__main__": 2023-01-11T21:05:10.5477069Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.5477189Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.5477393Z arg0_1 = rand_strided((30, 10), (10, 1), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:05:10.5477588Z arg1_1 = rand_strided((30, ), (1, ), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:05:10.5477793Z arg2_1 = rand_strided((2, 3, 10), (30, 10, 1), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:05:10.5477944Z print_performance(lambda: call([arg0_1, arg1_1, arg2_1])) 2023-01-11T21:05:10.5477949Z 2023-01-11T21:05:10.5477953Z 2023-01-11T21:05:10.5478044Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.5478118Z import torch 2023-01-11T21:05:10.5478174Z import random 2023-01-11T21:05:10.5478288Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.5478408Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.5478413Z 2023-01-11T21:05:10.5478493Z aten = torch.ops.aten 2023-01-11T21:05:10.5478626Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.5478716Z async_compile = AsyncCompile() 2023-01-11T21:05:10.5478721Z 2023-01-11T21:05:10.5478726Z 2023-01-11T21:05:10.5478860Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.5479067Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.5479173Z extern "C" void kernel(bfloat16* __restrict__ in_out_ptr0) 2023-01-11T21:05:10.5479238Z { 2023-01-11T21:05:10.5479334Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.5479395Z { 2023-01-11T21:05:10.5479475Z #pragma omp for 2023-01-11T21:05:10.5479584Z for(long i0=0; i0<180; i0+=1) 2023-01-11T21:05:10.5479648Z { 2023-01-11T21:05:10.5479697Z { 2023-01-11T21:05:10.5479760Z { 2023-01-11T21:05:10.5479882Z auto tmp0 = static_cast(in_out_ptr0[i0]); 2023-01-11T21:05:10.5479977Z auto tmp1 = tmp0 * (tmp0>0); 2023-01-11T21:05:10.5480067Z in_out_ptr0[i0] = tmp1; 2023-01-11T21:05:10.5480132Z } 2023-01-11T21:05:10.5480195Z } 2023-01-11T21:05:10.5480243Z } 2023-01-11T21:05:10.5480303Z } 2023-01-11T21:05:10.5480361Z } 2023-01-11T21:05:10.5480439Z ''') 2023-01-11T21:05:10.5480444Z 2023-01-11T21:05:10.5480449Z 2023-01-11T21:05:10.5480539Z async_compile.wait(globals()) 2023-01-11T21:05:10.5480744Z del async_compile 2023-01-11T21:05:10.5480753Z 2023-01-11T21:05:10.5480833Z def call(args): 2023-01-11T21:05:10.5480894Z arg0_1, arg1_1 = args 2023-01-11T21:05:10.5480966Z args.clear() 2023-01-11T21:05:10.5481178Z buf0 = empty_strided((6, 30), (30, 1), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:05:10.5481321Z aten.mm.out(as_strided(arg1_1, (6, 10), (10, 1)), as_strided(arg0_1, (10, 30), (1, 10)), out=buf0) 2023-01-11T21:05:10.5481389Z del arg0_1 2023-01-11T21:05:10.5481454Z del arg1_1 2023-01-11T21:05:10.5481569Z buf1 = as_strided(buf0, (2, 3, 30), (90, 30, 1)); del buf0 # reuse 2023-01-11T21:05:10.5481658Z kernel_cpp_0(c_void_p(buf1.data_ptr())) 2023-01-11T21:05:10.5481733Z return (buf1, ) 2023-01-11T21:05:10.5481738Z 2023-01-11T21:05:10.5481742Z 2023-01-11T21:05:10.5481818Z if __name__ == "__main__": 2023-01-11T21:05:10.5481931Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.5482054Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.5482258Z arg0_1 = rand_strided((30, 10), (10, 1), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:05:10.5482467Z arg1_1 = rand_strided((2, 3, 10), (30, 10, 1), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:05:10.5482582Z print_performance(lambda: call([arg0_1, arg1_1])) 2023-01-11T21:05:10.5482587Z 2023-01-11T21:05:10.5482592Z 2023-01-11T21:05:10.5482683Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.5482739Z import torch 2023-01-11T21:05:10.5482809Z import random 2023-01-11T21:05:10.5482923Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.5483044Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.5483049Z 2023-01-11T21:05:10.5483126Z aten = torch.ops.aten 2023-01-11T21:05:10.5483258Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.5483349Z async_compile = AsyncCompile() 2023-01-11T21:05:10.5483354Z 2023-01-11T21:05:10.5483358Z 2023-01-11T21:05:10.5483564Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.5483754Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.5483875Z extern "C" void kernel(bfloat16* __restrict__ in_out_ptr0) 2023-01-11T21:05:10.5483937Z { 2023-01-11T21:05:10.5484034Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.5484096Z { 2023-01-11T21:05:10.5484173Z #pragma omp for 2023-01-11T21:05:10.5484240Z for(long i0=0; i0<60; i0+=1) 2023-01-11T21:05:10.5484303Z { 2023-01-11T21:05:10.5484366Z { 2023-01-11T21:05:10.5484429Z { 2023-01-11T21:05:10.5484550Z auto tmp0 = static_cast(in_out_ptr0[i0]); 2023-01-11T21:05:10.5484644Z auto tmp1 = tmp0 * (tmp0>0); 2023-01-11T21:05:10.5484738Z in_out_ptr0[i0] = tmp1; 2023-01-11T21:05:10.5484788Z } 2023-01-11T21:05:10.5484852Z } 2023-01-11T21:05:10.5484913Z } 2023-01-11T21:05:10.5484976Z } 2023-01-11T21:05:10.5485033Z } 2023-01-11T21:05:10.5485110Z ''') 2023-01-11T21:05:10.5485115Z 2023-01-11T21:05:10.5485119Z 2023-01-11T21:05:10.5485210Z async_compile.wait(globals()) 2023-01-11T21:05:10.5485307Z del async_compile 2023-01-11T21:05:10.5485325Z 2023-01-11T21:05:10.5485382Z def call(args): 2023-01-11T21:05:10.5485462Z arg0_1, arg1_1, arg2_1 = args 2023-01-11T21:05:10.5485531Z args.clear() 2023-01-11T21:05:10.5485731Z buf0 = empty_strided((2, 30), (30, 1), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:05:10.5485882Z aten.addmm.out(arg1_1, arg2_1, as_strided(arg0_1, (10, 30), (1, 10)), beta=1, alpha=1, out=buf0) 2023-01-11T21:05:10.5485948Z del arg0_1 2023-01-11T21:05:10.5486013Z del arg1_1 2023-01-11T21:05:10.5486065Z del arg2_1 2023-01-11T21:05:10.5486147Z buf1 = buf0; del buf0 # reuse 2023-01-11T21:05:10.5486251Z kernel_cpp_0(c_void_p(buf1.data_ptr())) 2023-01-11T21:05:10.5486320Z return (buf1, ) 2023-01-11T21:05:10.5486328Z 2023-01-11T21:05:10.5486332Z 2023-01-11T21:05:10.5486406Z if __name__ == "__main__": 2023-01-11T21:05:10.5486518Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.5486641Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.5486829Z arg0_1 = rand_strided((30, 10), (10, 1), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:05:10.5487022Z arg1_1 = rand_strided((30, ), (1, ), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:05:10.5487217Z arg2_1 = rand_strided((2, 10), (10, 1), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:05:10.5487338Z print_performance(lambda: call([arg0_1, arg1_1, arg2_1])) 2023-01-11T21:05:10.5487344Z 2023-01-11T21:05:10.5487348Z 2023-01-11T21:05:10.5487439Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.5487507Z import torch 2023-01-11T21:05:10.5487577Z import random 2023-01-11T21:05:10.5487691Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.5487797Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.5487804Z 2023-01-11T21:05:10.5487881Z aten = torch.ops.aten 2023-01-11T21:05:10.5488014Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.5488105Z async_compile = AsyncCompile() 2023-01-11T21:05:10.5488111Z 2023-01-11T21:05:10.5488115Z 2023-01-11T21:05:10.5488247Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.5488448Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.5488566Z extern "C" void kernel(bfloat16* __restrict__ in_out_ptr0) 2023-01-11T21:05:10.5488626Z { 2023-01-11T21:05:10.5488710Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.5488771Z { 2023-01-11T21:05:10.5488846Z #pragma omp for 2023-01-11T21:05:10.5488929Z for(long i0=0; i0<60; i0+=1) 2023-01-11T21:05:10.5488994Z { 2023-01-11T21:05:10.5489056Z { 2023-01-11T21:05:10.5489119Z { 2023-01-11T21:05:10.5489225Z auto tmp0 = static_cast(in_out_ptr0[i0]); 2023-01-11T21:05:10.5489350Z auto tmp1 = tmp0 * (tmp0>0); 2023-01-11T21:05:10.5489443Z in_out_ptr0[i0] = tmp1; 2023-01-11T21:05:10.5489511Z } 2023-01-11T21:05:10.5489573Z } 2023-01-11T21:05:10.5489633Z } 2023-01-11T21:05:10.5489680Z } 2023-01-11T21:05:10.5489738Z } 2023-01-11T21:05:10.5489817Z ''') 2023-01-11T21:05:10.5489822Z 2023-01-11T21:05:10.5489826Z 2023-01-11T21:05:10.5489918Z async_compile.wait(globals()) 2023-01-11T21:05:10.5489988Z del async_compile 2023-01-11T21:05:10.5489993Z 2023-01-11T21:05:10.5490061Z def call(args): 2023-01-11T21:05:10.5490134Z arg0_1, arg1_1 = args 2023-01-11T21:05:10.5490203Z args.clear() 2023-01-11T21:05:10.5490389Z buf0 = empty_strided((2, 30), (30, 1), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:05:10.5490510Z aten.mm.out(arg1_1, as_strided(arg0_1, (10, 30), (1, 10)), out=buf0) 2023-01-11T21:05:10.5490576Z del arg0_1 2023-01-11T21:05:10.5490644Z del arg1_1 2023-01-11T21:05:10.5490726Z buf1 = buf0; del buf0 # reuse 2023-01-11T21:05:10.5490827Z kernel_cpp_0(c_void_p(buf1.data_ptr())) 2023-01-11T21:05:10.5490896Z return (buf1, ) 2023-01-11T21:05:10.5490934Z 2023-01-11T21:05:10.5490939Z 2023-01-11T21:05:10.5491001Z if __name__ == "__main__": 2023-01-11T21:05:10.5491113Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.5491231Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.5491431Z arg0_1 = rand_strided((30, 10), (10, 1), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:05:10.5491627Z arg1_1 = rand_strided((2, 10), (10, 1), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:05:10.5491740Z print_performance(lambda: call([arg0_1, arg1_1])) 2023-01-11T21:05:10.5491745Z 2023-01-11T21:05:10.5491749Z 2023-01-11T21:05:10.5491840Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.5491908Z import torch 2023-01-11T21:05:10.5491964Z import random 2023-01-11T21:05:10.5492080Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.5492198Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.5492203Z 2023-01-11T21:05:10.5492280Z aten = torch.ops.aten 2023-01-11T21:05:10.5492413Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.5492504Z async_compile = AsyncCompile() 2023-01-11T21:05:10.5492510Z 2023-01-11T21:05:10.5492514Z 2023-01-11T21:05:10.5492644Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.5492847Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.5492952Z extern "C" void kernel(bfloat16* __restrict__ in_out_ptr0) 2023-01-11T21:05:10.5493012Z { 2023-01-11T21:05:10.5493107Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.5493167Z { 2023-01-11T21:05:10.5493241Z #pragma omp for 2023-01-11T21:05:10.5493322Z for(long i0=0; i0<180; i0+=1) 2023-01-11T21:05:10.5493387Z { 2023-01-11T21:05:10.5493437Z { 2023-01-11T21:05:10.5493499Z { 2023-01-11T21:05:10.5493620Z auto tmp0 = static_cast(in_out_ptr0[i0]); 2023-01-11T21:05:10.5493791Z auto tmp1 = std::exp(-tmp0); 2023-01-11T21:05:10.5493881Z auto tmp2 = 1 / (1 + tmp1); 2023-01-11T21:05:10.5493970Z in_out_ptr0[i0] = tmp2; 2023-01-11T21:05:10.5494034Z } 2023-01-11T21:05:10.5494083Z } 2023-01-11T21:05:10.5494145Z } 2023-01-11T21:05:10.5494207Z } 2023-01-11T21:05:10.5494266Z } 2023-01-11T21:05:10.5494342Z ''') 2023-01-11T21:05:10.5494347Z 2023-01-11T21:05:10.5494351Z 2023-01-11T21:05:10.5494438Z async_compile.wait(globals()) 2023-01-11T21:05:10.5494508Z del async_compile 2023-01-11T21:05:10.5494513Z 2023-01-11T21:05:10.5494568Z def call(args): 2023-01-11T21:05:10.5494647Z arg0_1, arg1_1, arg2_1 = args 2023-01-11T21:05:10.5494716Z args.clear() 2023-01-11T21:05:10.5494952Z buf0 = empty_strided((6, 30), (30, 1), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:05:10.5495119Z aten.addmm.out(arg1_1, as_strided(arg2_1, (6, 10), (10, 1)), as_strided(arg0_1, (10, 30), (1, 10)), beta=1, alpha=1, out=buf0) 2023-01-11T21:05:10.5495189Z del arg0_1 2023-01-11T21:05:10.5495255Z del arg1_1 2023-01-11T21:05:10.5495306Z del arg2_1 2023-01-11T21:05:10.5495421Z buf1 = as_strided(buf0, (2, 3, 30), (90, 30, 1)); del buf0 # reuse 2023-01-11T21:05:10.5495523Z kernel_cpp_0(c_void_p(buf1.data_ptr())) 2023-01-11T21:05:10.5495593Z return (buf1, ) 2023-01-11T21:05:10.5495598Z 2023-01-11T21:05:10.5495602Z 2023-01-11T21:05:10.5495676Z if __name__ == "__main__": 2023-01-11T21:05:10.5495788Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.5495909Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.5496111Z arg0_1 = rand_strided((30, 10), (10, 1), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:05:10.5496293Z arg1_1 = rand_strided((30, ), (1, ), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:05:10.5496497Z arg2_1 = rand_strided((2, 3, 10), (30, 10, 1), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:05:10.5496649Z print_performance(lambda: call([arg0_1, arg1_1, arg2_1])) 2023-01-11T21:05:10.5496920Z [2023-01-11 20:54:22,088] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 280 2023-01-11T21:05:10.5497319Z inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.5497445Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.5497701Z [2023-01-11 20:54:22,165] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 281 2023-01-11T21:05:10.5497966Z [2023-01-11 20:54:22,182] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 281 2023-01-11T21:05:10.5498368Z inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.5498580Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.5498825Z [2023-01-11 20:54:22,406] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 282 2023-01-11T21:05:10.5499088Z [2023-01-11 20:54:25,127] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 282 2023-01-11T21:05:10.5499484Z inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.5499613Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.5499865Z [2023-01-11 20:54:25,185] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 283 2023-01-11T21:05:10.5500125Z [2023-01-11 20:54:25,201] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 283 2023-01-11T21:05:10.5500525Z inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.5500649Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.5500942Z [2023-01-11 20:54:25,455] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 284 2023-01-11T21:05:10.5501205Z [2023-01-11 20:54:28,146] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 284 2023-01-11T21:05:10.5501597Z inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.5501719Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.5501958Z [2023-01-11 20:54:28,207] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 285 2023-01-11T21:05:10.5501976Z 2023-01-11T21:05:10.5501981Z 2023-01-11T21:05:10.5502059Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.5502131Z import torch 2023-01-11T21:05:10.5502201Z import random 2023-01-11T21:05:10.5502318Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.5502438Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.5502493Z 2023-01-11T21:05:10.5502572Z aten = torch.ops.aten 2023-01-11T21:05:10.5502704Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.5502781Z async_compile = AsyncCompile() 2023-01-11T21:05:10.5502786Z 2023-01-11T21:05:10.5502803Z 2023-01-11T21:05:10.5502921Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.5503127Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.5503245Z extern "C" void kernel(bfloat16* __restrict__ in_out_ptr0) 2023-01-11T21:05:10.5503307Z { 2023-01-11T21:05:10.5503402Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.5503463Z { 2023-01-11T21:05:10.5503527Z #pragma omp for 2023-01-11T21:05:10.5503610Z for(long i0=0; i0<180; i0+=1) 2023-01-11T21:05:10.5503672Z { 2023-01-11T21:05:10.5503735Z { 2023-01-11T21:05:10.5503799Z { 2023-01-11T21:05:10.5503923Z auto tmp0 = static_cast(in_out_ptr0[i0]); 2023-01-11T21:05:10.5504073Z auto tmp1 = std::exp(-tmp0); 2023-01-11T21:05:10.5504150Z auto tmp2 = 1 / (1 + tmp1); 2023-01-11T21:05:10.5504242Z in_out_ptr0[i0] = tmp2; 2023-01-11T21:05:10.5504308Z } 2023-01-11T21:05:10.5504371Z } 2023-01-11T21:05:10.5504432Z } 2023-01-11T21:05:10.5504492Z } 2023-01-11T21:05:10.5504550Z } 2023-01-11T21:05:10.5504613Z ''') 2023-01-11T21:05:10.5504618Z 2023-01-11T21:05:10.5504622Z 2023-01-11T21:05:10.5504716Z async_compile.wait(globals()) 2023-01-11T21:05:10.5504785Z del async_compile 2023-01-11T21:05:10.5504790Z 2023-01-11T21:05:10.5504859Z def call(args): 2023-01-11T21:05:10.5504933Z arg0_1, arg1_1 = args 2023-01-11T21:05:10.5505004Z args.clear() 2023-01-11T21:05:10.5505205Z buf0 = empty_strided((6, 30), (30, 1), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:05:10.5505351Z aten.mm.out(as_strided(arg1_1, (6, 10), (10, 1)), as_strided(arg0_1, (10, 30), (1, 10)), out=buf0) 2023-01-11T21:05:10.5505406Z del arg0_1 2023-01-11T21:05:10.5505470Z del arg1_1 2023-01-11T21:05:10.5505586Z buf1 = as_strided(buf0, (2, 3, 30), (90, 30, 1)); del buf0 # reuse 2023-01-11T21:05:10.5505686Z kernel_cpp_0(c_void_p(buf1.data_ptr())) 2023-01-11T21:05:10.5505757Z return (buf1, ) 2023-01-11T21:05:10.5505762Z 2023-01-11T21:05:10.5505767Z 2023-01-11T21:05:10.5505842Z if __name__ == "__main__": 2023-01-11T21:05:10.5505954Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.5506062Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.5506262Z arg0_1 = rand_strided((30, 10), (10, 1), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:05:10.5506468Z arg1_1 = rand_strided((2, 3, 10), (30, 10, 1), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:05:10.5506617Z print_performance(lambda: call([arg0_1, arg1_1])) 2023-01-11T21:05:10.5506622Z 2023-01-11T21:05:10.5506626Z 2023-01-11T21:05:10.5506721Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.5506790Z import torch 2023-01-11T21:05:10.5506859Z import random 2023-01-11T21:05:10.5506970Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.5507076Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.5507081Z 2023-01-11T21:05:10.5507158Z aten = torch.ops.aten 2023-01-11T21:05:10.5507289Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.5507378Z async_compile = AsyncCompile() 2023-01-11T21:05:10.5507384Z 2023-01-11T21:05:10.5507388Z 2023-01-11T21:05:10.5507519Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.5507722Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.5507844Z extern "C" void kernel(bfloat16* __restrict__ in_out_ptr0) 2023-01-11T21:05:10.5507904Z { 2023-01-11T21:05:10.5507987Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.5508047Z { 2023-01-11T21:05:10.5508159Z #pragma omp for 2023-01-11T21:05:10.5508241Z for(long i0=0; i0<60; i0+=1) 2023-01-11T21:05:10.5508302Z { 2023-01-11T21:05:10.5508364Z { 2023-01-11T21:05:10.5508426Z { 2023-01-11T21:05:10.5508533Z auto tmp0 = static_cast(in_out_ptr0[i0]); 2023-01-11T21:05:10.5508679Z auto tmp1 = std::exp(-tmp0); 2023-01-11T21:05:10.5508769Z auto tmp2 = 1 / (1 + tmp1); 2023-01-11T21:05:10.5508858Z in_out_ptr0[i0] = tmp2; 2023-01-11T21:05:10.5508921Z } 2023-01-11T21:05:10.5508983Z } 2023-01-11T21:05:10.5509047Z } 2023-01-11T21:05:10.5509094Z } 2023-01-11T21:05:10.5509155Z } 2023-01-11T21:05:10.5509231Z ''') 2023-01-11T21:05:10.5509239Z 2023-01-11T21:05:10.5509243Z 2023-01-11T21:05:10.5509331Z async_compile.wait(globals()) 2023-01-11T21:05:10.5509401Z del async_compile 2023-01-11T21:05:10.5509406Z 2023-01-11T21:05:10.5509474Z def call(args): 2023-01-11T21:05:10.5509558Z arg0_1, arg1_1, arg2_1 = args 2023-01-11T21:05:10.5509615Z args.clear() 2023-01-11T21:05:10.5509817Z buf0 = empty_strided((2, 30), (30, 1), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:05:10.5509968Z aten.addmm.out(arg1_1, arg2_1, as_strided(arg0_1, (10, 30), (1, 10)), beta=1, alpha=1, out=buf0) 2023-01-11T21:05:10.5510035Z del arg0_1 2023-01-11T21:05:10.5510101Z del arg1_1 2023-01-11T21:05:10.5510165Z del arg2_1 2023-01-11T21:05:10.5510249Z buf1 = buf0; del buf0 # reuse 2023-01-11T21:05:10.5510338Z kernel_cpp_0(c_void_p(buf1.data_ptr())) 2023-01-11T21:05:10.5510409Z return (buf1, ) 2023-01-11T21:05:10.5510414Z 2023-01-11T21:05:10.5510418Z 2023-01-11T21:05:10.5510497Z if __name__ == "__main__": 2023-01-11T21:05:10.5510612Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.5510733Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.5510935Z arg0_1 = rand_strided((30, 10), (10, 1), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:05:10.5511130Z arg1_1 = rand_strided((30, ), (1, ), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:05:10.5511327Z arg2_1 = rand_strided((2, 10), (10, 1), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:05:10.5511434Z print_performance(lambda: call([arg0_1, arg1_1, arg2_1])) 2023-01-11T21:05:10.5511439Z 2023-01-11T21:05:10.5511457Z 2023-01-11T21:05:10.5511537Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.5511605Z import torch 2023-01-11T21:05:10.5511677Z import random 2023-01-11T21:05:10.5511791Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.5511912Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.5511917Z 2023-01-11T21:05:10.5511994Z aten = torch.ops.aten 2023-01-11T21:05:10.5512166Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.5512243Z async_compile = AsyncCompile() 2023-01-11T21:05:10.5512248Z 2023-01-11T21:05:10.5512252Z 2023-01-11T21:05:10.5512385Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.5512587Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.5512707Z extern "C" void kernel(bfloat16* __restrict__ in_out_ptr0) 2023-01-11T21:05:10.5512769Z { 2023-01-11T21:05:10.5512864Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.5512925Z { 2023-01-11T21:05:10.5512986Z #pragma omp for 2023-01-11T21:05:10.5513068Z for(long i0=0; i0<60; i0+=1) 2023-01-11T21:05:10.5513129Z { 2023-01-11T21:05:10.5513191Z { 2023-01-11T21:05:10.5513255Z { 2023-01-11T21:05:10.5513375Z auto tmp0 = static_cast(in_out_ptr0[i0]); 2023-01-11T21:05:10.5513524Z auto tmp1 = std::exp(-tmp0); 2023-01-11T21:05:10.5513604Z auto tmp2 = 1 / (1 + tmp1); 2023-01-11T21:05:10.5513695Z in_out_ptr0[i0] = tmp2; 2023-01-11T21:05:10.5513759Z } 2023-01-11T21:05:10.5513855Z } 2023-01-11T21:05:10.5513918Z } 2023-01-11T21:05:10.5513979Z } 2023-01-11T21:05:10.5514038Z } 2023-01-11T21:05:10.5514101Z ''') 2023-01-11T21:05:10.5514106Z 2023-01-11T21:05:10.5514110Z 2023-01-11T21:05:10.5514200Z async_compile.wait(globals()) 2023-01-11T21:05:10.5514271Z del async_compile 2023-01-11T21:05:10.5514275Z 2023-01-11T21:05:10.5514344Z def call(args): 2023-01-11T21:05:10.5514418Z arg0_1, arg1_1 = args 2023-01-11T21:05:10.5514489Z args.clear() 2023-01-11T21:05:10.5514688Z buf0 = empty_strided((2, 30), (30, 1), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:05:10.5514795Z aten.mm.out(arg1_1, as_strided(arg0_1, (10, 30), (1, 10)), out=buf0) 2023-01-11T21:05:10.5514862Z del arg0_1 2023-01-11T21:05:10.5514931Z del arg1_1 2023-01-11T21:05:10.5515017Z buf1 = buf0; del buf0 # reuse 2023-01-11T21:05:10.5515119Z kernel_cpp_0(c_void_p(buf1.data_ptr())) 2023-01-11T21:05:10.5515191Z return (buf1, ) 2023-01-11T21:05:10.5515196Z 2023-01-11T21:05:10.5515202Z 2023-01-11T21:05:10.5515276Z if __name__ == "__main__": 2023-01-11T21:05:10.5515387Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.5515496Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.5515694Z arg0_1 = rand_strided((30, 10), (10, 1), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:05:10.5515892Z arg1_1 = rand_strided((2, 10), (10, 1), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:05:10.5516005Z print_performance(lambda: call([arg0_1, arg1_1])) 2023-01-11T21:05:10.5516010Z 2023-01-11T21:05:10.5516014Z 2023-01-11T21:05:10.5516106Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.5516174Z import torch 2023-01-11T21:05:10.5516242Z import random 2023-01-11T21:05:10.5516355Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.5516463Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.5516468Z 2023-01-11T21:05:10.5516543Z aten = torch.ops.aten 2023-01-11T21:05:10.5516676Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.5516766Z async_compile = AsyncCompile() 2023-01-11T21:05:10.5516771Z 2023-01-11T21:05:10.5516776Z 2023-01-11T21:05:10.5516906Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.5517109Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.5517227Z extern "C" void kernel(bfloat16* __restrict__ in_out_ptr0) 2023-01-11T21:05:10.5517286Z { 2023-01-11T21:05:10.5517369Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.5517428Z { 2023-01-11T21:05:10.5517503Z #pragma omp for 2023-01-11T21:05:10.5517584Z for(long i0=0; i0<180; i0+=1) 2023-01-11T21:05:10.5517645Z { 2023-01-11T21:05:10.5517734Z { 2023-01-11T21:05:10.5517784Z { 2023-01-11T21:05:10.5517902Z auto tmp0 = static_cast(in_out_ptr0[i0]); 2023-01-11T21:05:10.5518004Z auto tmp1 = std::tanh(tmp0); 2023-01-11T21:05:10.5518092Z in_out_ptr0[i0] = tmp1; 2023-01-11T21:05:10.5518155Z } 2023-01-11T21:05:10.5518216Z } 2023-01-11T21:05:10.5518276Z } 2023-01-11T21:05:10.5518323Z } 2023-01-11T21:05:10.5518382Z } 2023-01-11T21:05:10.5518459Z ''') 2023-01-11T21:05:10.5518464Z 2023-01-11T21:05:10.5518468Z 2023-01-11T21:05:10.5518555Z async_compile.wait(globals()) 2023-01-11T21:05:10.5518625Z del async_compile 2023-01-11T21:05:10.5518630Z 2023-01-11T21:05:10.5518700Z def call(args): 2023-01-11T21:05:10.5518780Z arg0_1, arg1_1, arg2_1 = args 2023-01-11T21:05:10.5518849Z args.clear() 2023-01-11T21:05:10.5519034Z buf0 = empty_strided((6, 30), (30, 1), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:05:10.5519204Z aten.addmm.out(arg1_1, as_strided(arg2_1, (6, 10), (10, 1)), as_strided(arg0_1, (10, 30), (1, 10)), beta=1, alpha=1, out=buf0) 2023-01-11T21:05:10.5519272Z del arg0_1 2023-01-11T21:05:10.5519337Z del arg1_1 2023-01-11T21:05:10.5519435Z del arg2_1 2023-01-11T21:05:10.5519553Z buf1 = as_strided(buf0, (2, 3, 30), (90, 30, 1)); del buf0 # reuse 2023-01-11T21:05:10.5519653Z kernel_cpp_0(c_void_p(buf1.data_ptr())) 2023-01-11T21:05:10.5519711Z return (buf1, ) 2023-01-11T21:05:10.5519716Z 2023-01-11T21:05:10.5519720Z 2023-01-11T21:05:10.5519794Z if __name__ == "__main__": 2023-01-11T21:05:10.5519906Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.5520030Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.5520235Z arg0_1 = rand_strided((30, 10), (10, 1), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:05:10.5520430Z arg1_1 = rand_strided((30, ), (1, ), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:05:10.5520778Z arg2_1 = rand_strided((2, 3, 10), (30, 10, 1), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:05:10.5520904Z print_performance(lambda: call([arg0_1, arg1_1, arg2_1])) 2023-01-11T21:05:10.5520910Z 2023-01-11T21:05:10.5520914Z 2023-01-11T21:05:10.5520996Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.5521066Z import torch 2023-01-11T21:05:10.5521139Z import random 2023-01-11T21:05:10.5521254Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.5521374Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.5521379Z 2023-01-11T21:05:10.5521458Z aten = torch.ops.aten 2023-01-11T21:05:10.5521591Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.5521683Z async_compile = AsyncCompile() 2023-01-11T21:05:10.5521688Z 2023-01-11T21:05:10.5521694Z 2023-01-11T21:05:10.5521816Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.5522020Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.5522143Z extern "C" void kernel(bfloat16* __restrict__ in_out_ptr0) 2023-01-11T21:05:10.5522204Z { 2023-01-11T21:05:10.5522299Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.5522361Z { 2023-01-11T21:05:10.5522441Z #pragma omp for 2023-01-11T21:05:10.5522511Z for(long i0=0; i0<180; i0+=1) 2023-01-11T21:05:10.5522574Z { 2023-01-11T21:05:10.5522637Z { 2023-01-11T21:05:10.5522705Z { 2023-01-11T21:05:10.5522825Z auto tmp0 = static_cast(in_out_ptr0[i0]); 2023-01-11T21:05:10.5522925Z auto tmp1 = std::tanh(tmp0); 2023-01-11T21:05:10.5523015Z in_out_ptr0[i0] = tmp1; 2023-01-11T21:05:10.5523065Z } 2023-01-11T21:05:10.5523127Z } 2023-01-11T21:05:10.5523187Z } 2023-01-11T21:05:10.5523246Z } 2023-01-11T21:05:10.5523303Z } 2023-01-11T21:05:10.5523379Z ''') 2023-01-11T21:05:10.5523384Z 2023-01-11T21:05:10.5523451Z 2023-01-11T21:05:10.5523541Z async_compile.wait(globals()) 2023-01-11T21:05:10.5523599Z del async_compile 2023-01-11T21:05:10.5523603Z 2023-01-11T21:05:10.5523673Z def call(args): 2023-01-11T21:05:10.5523747Z arg0_1, arg1_1 = args 2023-01-11T21:05:10.5523820Z args.clear() 2023-01-11T21:05:10.5524021Z buf0 = empty_strided((6, 30), (30, 1), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:05:10.5524163Z aten.mm.out(as_strided(arg1_1, (6, 10), (10, 1)), as_strided(arg0_1, (10, 30), (1, 10)), out=buf0) 2023-01-11T21:05:10.5524235Z del arg0_1 2023-01-11T21:05:10.5524287Z del arg1_1 2023-01-11T21:05:10.5524402Z buf1 = as_strided(buf0, (2, 3, 30), (90, 30, 1)); del buf0 # reuse 2023-01-11T21:05:10.5524504Z kernel_cpp_0(c_void_p(buf1.data_ptr())) 2023-01-11T21:05:10.5524576Z return (buf1, ) 2023-01-11T21:05:10.5524581Z 2023-01-11T21:05:10.5524585Z 2023-01-11T21:05:10.5524660Z if __name__ == "__main__": 2023-01-11T21:05:10.5524772Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.5524900Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.5525103Z arg0_1 = rand_strided((30, 10), (10, 1), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:05:10.5525334Z arg1_1 = rand_strided((2, 3, 10), (30, 10, 1), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:05:10.5525450Z print_performance(lambda: call([arg0_1, arg1_1])) 2023-01-11T21:05:10.5525717Z [2023-01-11 20:54:28,224] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 285 2023-01-11T21:05:10.5526116Z inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.5526241Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.5526501Z [2023-01-11 20:54:28,439] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 286 2023-01-11T21:05:10.5526765Z [2023-01-11 20:54:31,089] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 286 2023-01-11T21:05:10.5527165Z inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.5527290Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.5527543Z [2023-01-11 20:54:31,140] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 287 2023-01-11T21:05:10.5527802Z [2023-01-11 20:54:31,155] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 287 2023-01-11T21:05:10.5528189Z inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.5528313Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.5528565Z [2023-01-11 20:54:31,487] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 288 2023-01-11T21:05:10.5528826Z [2023-01-11 20:54:34,208] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 288 2023-01-11T21:05:10.5529220Z inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.5529377Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.5529632Z [2023-01-11 20:54:34,420] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 289 2023-01-11T21:05:10.5529892Z [2023-01-11 20:54:34,446] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 289 2023-01-11T21:05:10.5530283Z inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.5530407Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.5530656Z [2023-01-11 20:54:34,704] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 290 2023-01-11T21:05:10.5530664Z 2023-01-11T21:05:10.5530668Z 2023-01-11T21:05:10.5530761Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.5530816Z import torch 2023-01-11T21:05:10.5530886Z import random 2023-01-11T21:05:10.5531031Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.5531152Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.5531157Z 2023-01-11T21:05:10.5531233Z aten = torch.ops.aten 2023-01-11T21:05:10.5531365Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.5531454Z async_compile = AsyncCompile() 2023-01-11T21:05:10.5531460Z 2023-01-11T21:05:10.5531464Z 2023-01-11T21:05:10.5531597Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.5531786Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.5531906Z extern "C" void kernel(bfloat16* __restrict__ in_out_ptr0) 2023-01-11T21:05:10.5531966Z { 2023-01-11T21:05:10.5532060Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.5532122Z { 2023-01-11T21:05:10.5532197Z #pragma omp for 2023-01-11T21:05:10.5532278Z for(long i0=0; i0<60; i0+=1) 2023-01-11T21:05:10.5532326Z { 2023-01-11T21:05:10.5532390Z { 2023-01-11T21:05:10.5532453Z { 2023-01-11T21:05:10.5532574Z auto tmp0 = static_cast(in_out_ptr0[i0]); 2023-01-11T21:05:10.5532676Z auto tmp1 = std::tanh(tmp0); 2023-01-11T21:05:10.5532766Z in_out_ptr0[i0] = tmp1; 2023-01-11T21:05:10.5532816Z } 2023-01-11T21:05:10.5532878Z } 2023-01-11T21:05:10.5532937Z } 2023-01-11T21:05:10.5532996Z } 2023-01-11T21:05:10.5533055Z } 2023-01-11T21:05:10.5533131Z ''') 2023-01-11T21:05:10.5533136Z 2023-01-11T21:05:10.5533141Z 2023-01-11T21:05:10.5533229Z async_compile.wait(globals()) 2023-01-11T21:05:10.5533287Z del async_compile 2023-01-11T21:05:10.5533304Z 2023-01-11T21:05:10.5533360Z def call(args): 2023-01-11T21:05:10.5533442Z arg0_1, arg1_1, arg2_1 = args 2023-01-11T21:05:10.5533511Z args.clear() 2023-01-11T21:05:10.5533711Z buf0 = empty_strided((2, 30), (30, 1), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:05:10.5533863Z aten.addmm.out(arg1_1, arg2_1, as_strided(arg0_1, (10, 30), (1, 10)), beta=1, alpha=1, out=buf0) 2023-01-11T21:05:10.5533930Z del arg0_1 2023-01-11T21:05:10.5533994Z del arg1_1 2023-01-11T21:05:10.5534047Z del arg2_1 2023-01-11T21:05:10.5534132Z buf1 = buf0; del buf0 # reuse 2023-01-11T21:05:10.5534232Z kernel_cpp_0(c_void_p(buf1.data_ptr())) 2023-01-11T21:05:10.5534303Z return (buf1, ) 2023-01-11T21:05:10.5534308Z 2023-01-11T21:05:10.5534312Z 2023-01-11T21:05:10.5534389Z if __name__ == "__main__": 2023-01-11T21:05:10.5534502Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.5534623Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.5534811Z arg0_1 = rand_strided((30, 10), (10, 1), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:05:10.5535044Z arg1_1 = rand_strided((30, ), (1, ), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:05:10.5535238Z arg2_1 = rand_strided((2, 10), (10, 1), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:05:10.5535360Z print_performance(lambda: call([arg0_1, arg1_1, arg2_1])) 2023-01-11T21:05:10.5535365Z 2023-01-11T21:05:10.5535369Z 2023-01-11T21:05:10.5535462Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.5535533Z import torch 2023-01-11T21:05:10.5535601Z import random 2023-01-11T21:05:10.5535714Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.5535820Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.5535825Z 2023-01-11T21:05:10.5535902Z aten = torch.ops.aten 2023-01-11T21:05:10.5536033Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.5536122Z async_compile = AsyncCompile() 2023-01-11T21:05:10.5536127Z 2023-01-11T21:05:10.5536131Z 2023-01-11T21:05:10.5536265Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.5536469Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.5536621Z extern "C" void kernel(bfloat16* __restrict__ in_out_ptr0) 2023-01-11T21:05:10.5536681Z { 2023-01-11T21:05:10.5536766Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.5536830Z { 2023-01-11T21:05:10.5536905Z #pragma omp for 2023-01-11T21:05:10.5536987Z for(long i0=0; i0<60; i0+=1) 2023-01-11T21:05:10.5537048Z { 2023-01-11T21:05:10.5537112Z { 2023-01-11T21:05:10.5537174Z { 2023-01-11T21:05:10.5537281Z auto tmp0 = static_cast(in_out_ptr0[i0]); 2023-01-11T21:05:10.5537380Z auto tmp1 = std::tanh(tmp0); 2023-01-11T21:05:10.5537468Z in_out_ptr0[i0] = tmp1; 2023-01-11T21:05:10.5537531Z } 2023-01-11T21:05:10.5537592Z } 2023-01-11T21:05:10.5537653Z } 2023-01-11T21:05:10.5537716Z } 2023-01-11T21:05:10.5537762Z } 2023-01-11T21:05:10.5537839Z ''') 2023-01-11T21:05:10.5537843Z 2023-01-11T21:05:10.5537848Z 2023-01-11T21:05:10.5537935Z async_compile.wait(globals()) 2023-01-11T21:05:10.5538008Z del async_compile 2023-01-11T21:05:10.5538013Z 2023-01-11T21:05:10.5538082Z def call(args): 2023-01-11T21:05:10.5538155Z arg0_1, arg1_1 = args 2023-01-11T21:05:10.5538225Z args.clear() 2023-01-11T21:05:10.5538411Z buf0 = empty_strided((2, 30), (30, 1), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:05:10.5538619Z aten.mm.out(arg1_1, as_strided(arg0_1, (10, 30), (1, 10)), out=buf0) 2023-01-11T21:05:10.5538688Z del arg0_1 2023-01-11T21:05:10.5538756Z del arg1_1 2023-01-11T21:05:10.5538841Z buf1 = buf0; del buf0 # reuse 2023-01-11T21:05:10.5538944Z kernel_cpp_0(c_void_p(buf1.data_ptr())) 2023-01-11T21:05:10.5539016Z return (buf1, ) 2023-01-11T21:05:10.5539021Z 2023-01-11T21:05:10.5539025Z 2023-01-11T21:05:10.5539085Z if __name__ == "__main__": 2023-01-11T21:05:10.5539201Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.5539324Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.5539533Z arg0_1 = rand_strided((30, 10), (10, 1), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:05:10.5539733Z arg1_1 = rand_strided((2, 10), (10, 1), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:05:10.5539849Z print_performance(lambda: call([arg0_1, arg1_1])) 2023-01-11T21:05:10.5539854Z 2023-01-11T21:05:10.5539858Z 2023-01-11T21:05:10.5539952Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.5540021Z import torch 2023-01-11T21:05:10.5540076Z import random 2023-01-11T21:05:10.5540191Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.5540313Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.5540317Z 2023-01-11T21:05:10.5540393Z aten = torch.ops.aten 2023-01-11T21:05:10.5540525Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.5540649Z async_compile = AsyncCompile() 2023-01-11T21:05:10.5540654Z 2023-01-11T21:05:10.5540658Z 2023-01-11T21:05:10.5540790Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.5540994Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.5541099Z extern "C" void kernel(bfloat16* __restrict__ in_out_ptr0) 2023-01-11T21:05:10.5541159Z { 2023-01-11T21:05:10.5541254Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.5541314Z { 2023-01-11T21:05:10.5541391Z #pragma omp for 2023-01-11T21:05:10.5541472Z for(long i0=0; i0<180; i0+=1) 2023-01-11T21:05:10.5541533Z { 2023-01-11T21:05:10.5541582Z { 2023-01-11T21:05:10.5541645Z { 2023-01-11T21:05:10.5541763Z auto tmp0 = static_cast(in_out_ptr0[i0]); 2023-01-11T21:05:10.5541870Z auto tmp1 = static_cast(tmp0); 2023-01-11T21:05:10.5541973Z auto tmp2 = static_cast(3); 2023-01-11T21:05:10.5542066Z auto tmp3 = tmp1 + tmp2; 2023-01-11T21:05:10.5542170Z auto tmp4 = static_cast(0.0); 2023-01-11T21:05:10.5542332Z auto tmp5 = (tmp4 != tmp4) ? tmp4 : std::max(tmp3, tmp4); 2023-01-11T21:05:10.5542438Z auto tmp6 = static_cast(6.0); 2023-01-11T21:05:10.5542561Z auto tmp7 = (tmp6 != tmp6) ? tmp6 : std::min(tmp5, tmp6); 2023-01-11T21:05:10.5542651Z auto tmp8 = tmp1 * tmp7; 2023-01-11T21:05:10.5542754Z auto tmp9 = static_cast(6); 2023-01-11T21:05:10.5542846Z auto tmp10 = tmp8 / tmp9; 2023-01-11T21:05:10.5542957Z auto tmp11 = static_cast(tmp10); 2023-01-11T21:05:10.5543048Z in_out_ptr0[i0] = tmp11; 2023-01-11T21:05:10.5543099Z } 2023-01-11T21:05:10.5543162Z } 2023-01-11T21:05:10.5543224Z } 2023-01-11T21:05:10.5543290Z } 2023-01-11T21:05:10.5543349Z } 2023-01-11T21:05:10.5543426Z ''') 2023-01-11T21:05:10.5543432Z 2023-01-11T21:05:10.5543436Z 2023-01-11T21:05:10.5543526Z async_compile.wait(globals()) 2023-01-11T21:05:10.5543584Z del async_compile 2023-01-11T21:05:10.5543589Z 2023-01-11T21:05:10.5543658Z def call(args): 2023-01-11T21:05:10.5543739Z arg0_1, arg1_1, arg2_1 = args 2023-01-11T21:05:10.5543810Z args.clear() 2023-01-11T21:05:10.5544009Z buf0 = empty_strided((6, 30), (30, 1), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:05:10.5544178Z aten.addmm.out(arg1_1, as_strided(arg2_1, (6, 10), (10, 1)), as_strided(arg0_1, (10, 30), (1, 10)), beta=1, alpha=1, out=buf0) 2023-01-11T21:05:10.5544247Z del arg0_1 2023-01-11T21:05:10.5544299Z del arg1_1 2023-01-11T21:05:10.5544364Z del arg2_1 2023-01-11T21:05:10.5544480Z buf1 = as_strided(buf0, (2, 3, 30), (90, 30, 1)); del buf0 # reuse 2023-01-11T21:05:10.5544584Z kernel_cpp_0(c_void_p(buf1.data_ptr())) 2023-01-11T21:05:10.5544658Z return (buf1, ) 2023-01-11T21:05:10.5544662Z 2023-01-11T21:05:10.5544667Z 2023-01-11T21:05:10.5544744Z if __name__ == "__main__": 2023-01-11T21:05:10.5544858Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.5544982Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.5545171Z arg0_1 = rand_strided((30, 10), (10, 1), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:05:10.5545366Z arg1_1 = rand_strided((30, ), (1, ), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:05:10.5545572Z arg2_1 = rand_strided((2, 3, 10), (30, 10, 1), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:05:10.5545693Z print_performance(lambda: call([arg0_1, arg1_1, arg2_1])) 2023-01-11T21:05:10.5545697Z 2023-01-11T21:05:10.5545702Z 2023-01-11T21:05:10.5545794Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.5545863Z import torch 2023-01-11T21:05:10.5545937Z import random 2023-01-11T21:05:10.5546051Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.5546188Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.5546193Z 2023-01-11T21:05:10.5546270Z aten = torch.ops.aten 2023-01-11T21:05:10.5546405Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.5546495Z async_compile = AsyncCompile() 2023-01-11T21:05:10.5546500Z 2023-01-11T21:05:10.5546504Z 2023-01-11T21:05:10.5546637Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.5546841Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.5546960Z extern "C" void kernel(bfloat16* __restrict__ in_out_ptr0) 2023-01-11T21:05:10.5547021Z { 2023-01-11T21:05:10.5547105Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.5547166Z { 2023-01-11T21:05:10.5547241Z #pragma omp for 2023-01-11T21:05:10.5547322Z for(long i0=0; i0<180; i0+=1) 2023-01-11T21:05:10.5547385Z { 2023-01-11T21:05:10.5547447Z { 2023-01-11T21:05:10.5547499Z { 2023-01-11T21:05:10.5547620Z auto tmp0 = static_cast(in_out_ptr0[i0]); 2023-01-11T21:05:10.5547727Z auto tmp1 = static_cast(tmp0); 2023-01-11T21:05:10.5547911Z auto tmp2 = static_cast(3); 2023-01-11T21:05:10.5548005Z auto tmp3 = tmp1 + tmp2; 2023-01-11T21:05:10.5548110Z auto tmp4 = static_cast(0.0); 2023-01-11T21:05:10.5548238Z auto tmp5 = (tmp4 != tmp4) ? tmp4 : std::max(tmp3, tmp4); 2023-01-11T21:05:10.5548344Z auto tmp6 = static_cast(6.0); 2023-01-11T21:05:10.5548455Z auto tmp7 = (tmp6 != tmp6) ? tmp6 : std::min(tmp5, tmp6); 2023-01-11T21:05:10.5548545Z auto tmp8 = tmp1 * tmp7; 2023-01-11T21:05:10.5548647Z auto tmp9 = static_cast(6); 2023-01-11T21:05:10.5548741Z auto tmp10 = tmp8 / tmp9; 2023-01-11T21:05:10.5548854Z auto tmp11 = static_cast(tmp10); 2023-01-11T21:05:10.5548949Z in_out_ptr0[i0] = tmp11; 2023-01-11T21:05:10.5549015Z } 2023-01-11T21:05:10.5549063Z } 2023-01-11T21:05:10.5549127Z } 2023-01-11T21:05:10.5549189Z } 2023-01-11T21:05:10.5549248Z } 2023-01-11T21:05:10.5549328Z ''') 2023-01-11T21:05:10.5549333Z 2023-01-11T21:05:10.5549336Z 2023-01-11T21:05:10.5549425Z async_compile.wait(globals()) 2023-01-11T21:05:10.5549502Z del async_compile 2023-01-11T21:05:10.5549507Z 2023-01-11T21:05:10.5549577Z def call(args): 2023-01-11T21:05:10.5549637Z arg0_1, arg1_1 = args 2023-01-11T21:05:10.5549708Z args.clear() 2023-01-11T21:05:10.5549910Z buf0 = empty_strided((6, 30), (30, 1), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:05:10.5550056Z aten.mm.out(as_strided(arg1_1, (6, 10), (10, 1)), as_strided(arg0_1, (10, 30), (1, 10)), out=buf0) 2023-01-11T21:05:10.5550123Z del arg0_1 2023-01-11T21:05:10.5550188Z del arg1_1 2023-01-11T21:05:10.5550305Z buf1 = as_strided(buf0, (2, 3, 30), (90, 30, 1)); del buf0 # reuse 2023-01-11T21:05:10.5550394Z kernel_cpp_0(c_void_p(buf1.data_ptr())) 2023-01-11T21:05:10.5550467Z return (buf1, ) 2023-01-11T21:05:10.5550475Z 2023-01-11T21:05:10.5550479Z 2023-01-11T21:05:10.5550552Z if __name__ == "__main__": 2023-01-11T21:05:10.5550664Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.5550785Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.5550987Z arg0_1 = rand_strided((30, 10), (10, 1), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:05:10.5551193Z arg1_1 = rand_strided((2, 3, 10), (30, 10, 1), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:05:10.5551305Z print_performance(lambda: call([arg0_1, arg1_1])) 2023-01-11T21:05:10.5551310Z 2023-01-11T21:05:10.5551314Z 2023-01-11T21:05:10.5551394Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.5551461Z import torch 2023-01-11T21:05:10.5551529Z import random 2023-01-11T21:05:10.5551674Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.5551793Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.5551798Z 2023-01-11T21:05:10.5551874Z aten = torch.ops.aten 2023-01-11T21:05:10.5552008Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.5552085Z async_compile = AsyncCompile() 2023-01-11T21:05:10.5552104Z 2023-01-11T21:05:10.5552108Z 2023-01-11T21:05:10.5552226Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.5552430Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.5552549Z extern "C" void kernel(bfloat16* __restrict__ in_out_ptr0) 2023-01-11T21:05:10.5552607Z { 2023-01-11T21:05:10.5552702Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.5552762Z { 2023-01-11T21:05:10.5552838Z #pragma omp for 2023-01-11T21:05:10.5552907Z for(long i0=0; i0<60; i0+=1) 2023-01-11T21:05:10.5552971Z { 2023-01-11T21:05:10.5553036Z { 2023-01-11T21:05:10.5553099Z { 2023-01-11T21:05:10.5553219Z auto tmp0 = static_cast(in_out_ptr0[i0]); 2023-01-11T21:05:10.5553359Z auto tmp1 = static_cast(tmp0); 2023-01-11T21:05:10.5553465Z auto tmp2 = static_cast(3); 2023-01-11T21:05:10.5553543Z auto tmp3 = tmp1 + tmp2; 2023-01-11T21:05:10.5553647Z auto tmp4 = static_cast(0.0); 2023-01-11T21:05:10.5553772Z auto tmp5 = (tmp4 != tmp4) ? tmp4 : std::max(tmp3, tmp4); 2023-01-11T21:05:10.5553876Z auto tmp6 = static_cast(6.0); 2023-01-11T21:05:10.5554001Z auto tmp7 = (tmp6 != tmp6) ? tmp6 : std::min(tmp5, tmp6); 2023-01-11T21:05:10.5554091Z auto tmp8 = tmp1 * tmp7; 2023-01-11T21:05:10.5554191Z auto tmp9 = static_cast(6); 2023-01-11T21:05:10.5554283Z auto tmp10 = tmp8 / tmp9; 2023-01-11T21:05:10.5554385Z auto tmp11 = static_cast(tmp10); 2023-01-11T21:05:10.5554474Z in_out_ptr0[i0] = tmp11; 2023-01-11T21:05:10.5554537Z } 2023-01-11T21:05:10.5554601Z } 2023-01-11T21:05:10.5554663Z } 2023-01-11T21:05:10.5554723Z } 2023-01-11T21:05:10.5554768Z } 2023-01-11T21:05:10.5554845Z ''') 2023-01-11T21:05:10.5554850Z 2023-01-11T21:05:10.5554854Z 2023-01-11T21:05:10.5554944Z async_compile.wait(globals()) 2023-01-11T21:05:10.5555015Z del async_compile 2023-01-11T21:05:10.5555020Z 2023-01-11T21:05:10.5555087Z def call(args): 2023-01-11T21:05:10.5555167Z arg0_1, arg1_1, arg2_1 = args 2023-01-11T21:05:10.5555236Z args.clear() 2023-01-11T21:05:10.5555436Z buf0 = empty_strided((2, 30), (30, 1), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:05:10.5555575Z aten.addmm.out(arg1_1, arg2_1, as_strided(arg0_1, (10, 30), (1, 10)), beta=1, alpha=1, out=buf0) 2023-01-11T21:05:10.5555644Z del arg0_1 2023-01-11T21:05:10.5555709Z del arg1_1 2023-01-11T21:05:10.5555772Z del arg2_1 2023-01-11T21:05:10.5555855Z buf1 = buf0; del buf0 # reuse 2023-01-11T21:05:10.5555959Z kernel_cpp_0(c_void_p(buf1.data_ptr())) 2023-01-11T21:05:10.5556029Z return (buf1, ) 2023-01-11T21:05:10.5556034Z 2023-01-11T21:05:10.5556038Z 2023-01-11T21:05:10.5556099Z if __name__ == "__main__": 2023-01-11T21:05:10.5556210Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.5556329Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.5556530Z arg0_1 = rand_strided((30, 10), (10, 1), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:05:10.5556725Z arg1_1 = rand_strided((30, ), (1, ), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:05:10.5556920Z arg2_1 = rand_strided((2, 10), (10, 1), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:05:10.5557040Z print_performance(lambda: call([arg0_1, arg1_1, arg2_1])) 2023-01-11T21:05:10.5557338Z [2023-01-11 20:54:37,443] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 290 2023-01-11T21:05:10.5557738Z inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.5557850Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.5558105Z [2023-01-11 20:54:37,603] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 291 2023-01-11T21:05:10.5558366Z [2023-01-11 20:54:37,625] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 291 2023-01-11T21:05:10.5558763Z inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.5558917Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.5559174Z [2023-01-11 20:54:37,821] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 292 2023-01-11T21:05:10.5559436Z [2023-01-11 20:54:40,547] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 292 2023-01-11T21:05:10.5559831Z inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.5559954Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.5560208Z [2023-01-11 20:54:40,636] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 293 2023-01-11T21:05:10.5560469Z [2023-01-11 20:54:40,663] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 293 2023-01-11T21:05:10.5560992Z inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.5561122Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.5561380Z [2023-01-11 20:54:40,928] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 294 2023-01-11T21:05:10.5561385Z 2023-01-11T21:05:10.5561390Z 2023-01-11T21:05:10.5561487Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.5561560Z import torch 2023-01-11T21:05:10.5561630Z import random 2023-01-11T21:05:10.5561745Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.5561866Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.5561873Z 2023-01-11T21:05:10.5561952Z aten = torch.ops.aten 2023-01-11T21:05:10.5562072Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.5562164Z async_compile = AsyncCompile() 2023-01-11T21:05:10.5562169Z 2023-01-11T21:05:10.5562174Z 2023-01-11T21:05:10.5562308Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.5562513Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.5562633Z extern "C" void kernel(bfloat16* __restrict__ in_out_ptr0) 2023-01-11T21:05:10.5562697Z { 2023-01-11T21:05:10.5562792Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.5562839Z { 2023-01-11T21:05:10.5562914Z #pragma omp for 2023-01-11T21:05:10.5562995Z for(long i0=0; i0<60; i0+=1) 2023-01-11T21:05:10.5563112Z { 2023-01-11T21:05:10.5563175Z { 2023-01-11T21:05:10.5563242Z { 2023-01-11T21:05:10.5563366Z auto tmp0 = static_cast(in_out_ptr0[i0]); 2023-01-11T21:05:10.5563460Z auto tmp1 = static_cast(tmp0); 2023-01-11T21:05:10.5563562Z auto tmp2 = static_cast(3); 2023-01-11T21:05:10.5563653Z auto tmp3 = tmp1 + tmp2; 2023-01-11T21:05:10.5563760Z auto tmp4 = static_cast(0.0); 2023-01-11T21:05:10.5563888Z auto tmp5 = (tmp4 != tmp4) ? tmp4 : std::max(tmp3, tmp4); 2023-01-11T21:05:10.5563992Z auto tmp6 = static_cast(6.0); 2023-01-11T21:05:10.5564116Z auto tmp7 = (tmp6 != tmp6) ? tmp6 : std::min(tmp5, tmp6); 2023-01-11T21:05:10.5564207Z auto tmp8 = tmp1 * tmp7; 2023-01-11T21:05:10.5564296Z auto tmp9 = static_cast(6); 2023-01-11T21:05:10.5564390Z auto tmp10 = tmp8 / tmp9; 2023-01-11T21:05:10.5564502Z auto tmp11 = static_cast(tmp10); 2023-01-11T21:05:10.5564628Z in_out_ptr0[i0] = tmp11; 2023-01-11T21:05:10.5564694Z } 2023-01-11T21:05:10.5564755Z } 2023-01-11T21:05:10.5564815Z } 2023-01-11T21:05:10.5564862Z } 2023-01-11T21:05:10.5564921Z } 2023-01-11T21:05:10.5564999Z ''') 2023-01-11T21:05:10.5565004Z 2023-01-11T21:05:10.5565008Z 2023-01-11T21:05:10.5565096Z async_compile.wait(globals()) 2023-01-11T21:05:10.5565167Z del async_compile 2023-01-11T21:05:10.5565172Z 2023-01-11T21:05:10.5565241Z def call(args): 2023-01-11T21:05:10.5565315Z arg0_1, arg1_1 = args 2023-01-11T21:05:10.5565373Z args.clear() 2023-01-11T21:05:10.5565573Z buf0 = empty_strided((2, 30), (30, 1), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:05:10.5565692Z aten.mm.out(arg1_1, as_strided(arg0_1, (10, 30), (1, 10)), out=buf0) 2023-01-11T21:05:10.5565762Z del arg0_1 2023-01-11T21:05:10.5565828Z del arg1_1 2023-01-11T21:05:10.5565912Z buf1 = buf0; del buf0 # reuse 2023-01-11T21:05:10.5566016Z kernel_cpp_0(c_void_p(buf1.data_ptr())) 2023-01-11T21:05:10.5566075Z return (buf1, ) 2023-01-11T21:05:10.5566081Z 2023-01-11T21:05:10.5566099Z 2023-01-11T21:05:10.5566160Z if __name__ == "__main__": 2023-01-11T21:05:10.5566273Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.5566395Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.5566594Z arg0_1 = rand_strided((30, 10), (10, 1), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:05:10.5566790Z arg1_1 = rand_strided((2, 10), (10, 1), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:05:10.5566907Z print_performance(lambda: call([arg0_1, arg1_1])) 2023-01-11T21:05:10.5566912Z 2023-01-11T21:05:10.5566917Z 2023-01-11T21:05:10.5567007Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.5567076Z import torch 2023-01-11T21:05:10.5567132Z import random 2023-01-11T21:05:10.5567245Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.5567364Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.5567371Z 2023-01-11T21:05:10.5567451Z aten = torch.ops.aten 2023-01-11T21:05:10.5567582Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.5567672Z async_compile = AsyncCompile() 2023-01-11T21:05:10.5567677Z 2023-01-11T21:05:10.5567682Z 2023-01-11T21:05:10.5567813Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.5568018Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.5568125Z extern "C" void kernel(bfloat16* __restrict__ in_out_ptr0) 2023-01-11T21:05:10.5568184Z { 2023-01-11T21:05:10.5568278Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.5568340Z { 2023-01-11T21:05:10.5568416Z #pragma omp for 2023-01-11T21:05:10.5568497Z for(long i0=0; i0<180; i0+=1) 2023-01-11T21:05:10.5568574Z { 2023-01-11T21:05:10.5568636Z { 2023-01-11T21:05:10.5568698Z { 2023-01-11T21:05:10.5568820Z auto tmp0 = static_cast(in_out_ptr0[i0]); 2023-01-11T21:05:10.5568926Z auto tmp1 = static_cast(tmp0); 2023-01-11T21:05:10.5569027Z auto tmp2 = static_cast(0); 2023-01-11T21:05:10.5569118Z auto tmp3 = tmp1 > tmp2; 2023-01-11T21:05:10.5569210Z auto tmp4 = static_cast(0.1); 2023-01-11T21:05:10.5569304Z auto tmp5 = tmp1 * tmp4; 2023-01-11T21:05:10.5569399Z auto tmp6 = tmp3 ? tmp1 : tmp5; 2023-01-11T21:05:10.5569508Z auto tmp7 = static_cast(tmp6); 2023-01-11T21:05:10.5569595Z in_out_ptr0[i0] = tmp7; 2023-01-11T21:05:10.5569659Z } 2023-01-11T21:05:10.5569721Z } 2023-01-11T21:05:10.5569771Z } 2023-01-11T21:05:10.5569831Z } 2023-01-11T21:05:10.5569889Z } 2023-01-11T21:05:10.5569966Z ''') 2023-01-11T21:05:10.5569971Z 2023-01-11T21:05:10.5569975Z 2023-01-11T21:05:10.5570063Z async_compile.wait(globals()) 2023-01-11T21:05:10.5570163Z del async_compile 2023-01-11T21:05:10.5570168Z 2023-01-11T21:05:10.5570238Z def call(args): 2023-01-11T21:05:10.5570319Z arg0_1, arg1_1, arg2_1 = args 2023-01-11T21:05:10.5570375Z args.clear() 2023-01-11T21:05:10.5570577Z buf0 = empty_strided((6, 30), (30, 1), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:05:10.5570747Z aten.addmm.out(arg1_1, as_strided(arg2_1, (6, 10), (10, 1)), as_strided(arg0_1, (10, 30), (1, 10)), beta=1, alpha=1, out=buf0) 2023-01-11T21:05:10.5570814Z del arg0_1 2023-01-11T21:05:10.5570881Z del arg1_1 2023-01-11T21:05:10.5570945Z del arg2_1 2023-01-11T21:05:10.5571059Z buf1 = as_strided(buf0, (2, 3, 30), (90, 30, 1)); del buf0 # reuse 2023-01-11T21:05:10.5571148Z kernel_cpp_0(c_void_p(buf1.data_ptr())) 2023-01-11T21:05:10.5571221Z return (buf1, ) 2023-01-11T21:05:10.5571226Z 2023-01-11T21:05:10.5571231Z 2023-01-11T21:05:10.5571304Z if __name__ == "__main__": 2023-01-11T21:05:10.5571418Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.5571540Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.5571739Z arg0_1 = rand_strided((30, 10), (10, 1), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:05:10.5571931Z arg1_1 = rand_strided((30, ), (1, ), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:05:10.5572134Z arg2_1 = rand_strided((2, 3, 10), (30, 10, 1), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:05:10.5572242Z print_performance(lambda: call([arg0_1, arg1_1, arg2_1])) 2023-01-11T21:05:10.5572247Z 2023-01-11T21:05:10.5572264Z 2023-01-11T21:05:10.5572342Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.5572410Z import torch 2023-01-11T21:05:10.5572479Z import random 2023-01-11T21:05:10.5572592Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.5572714Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.5572719Z 2023-01-11T21:05:10.5572794Z aten = torch.ops.aten 2023-01-11T21:05:10.5572929Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.5573007Z async_compile = AsyncCompile() 2023-01-11T21:05:10.5573011Z 2023-01-11T21:05:10.5573015Z 2023-01-11T21:05:10.5573146Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.5573349Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.5573471Z extern "C" void kernel(bfloat16* __restrict__ in_out_ptr0) 2023-01-11T21:05:10.5573531Z { 2023-01-11T21:05:10.5573626Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.5573686Z { 2023-01-11T21:05:10.5573748Z #pragma omp for 2023-01-11T21:05:10.5573829Z for(long i0=0; i0<180; i0+=1) 2023-01-11T21:05:10.5573891Z { 2023-01-11T21:05:10.5573953Z { 2023-01-11T21:05:10.5574045Z { 2023-01-11T21:05:10.5574164Z auto tmp0 = static_cast(in_out_ptr0[i0]); 2023-01-11T21:05:10.5574271Z auto tmp1 = static_cast(tmp0); 2023-01-11T21:05:10.5574363Z auto tmp2 = static_cast(0); 2023-01-11T21:05:10.5574453Z auto tmp3 = tmp1 > tmp2; 2023-01-11T21:05:10.5574557Z auto tmp4 = static_cast(0.1); 2023-01-11T21:05:10.5574647Z auto tmp5 = tmp1 * tmp4; 2023-01-11T21:05:10.5574745Z auto tmp6 = tmp3 ? tmp1 : tmp5; 2023-01-11T21:05:10.5574854Z auto tmp7 = static_cast(tmp6); 2023-01-11T21:05:10.5574944Z in_out_ptr0[i0] = tmp7; 2023-01-11T21:05:10.5574994Z } 2023-01-11T21:05:10.5575056Z } 2023-01-11T21:05:10.5575117Z } 2023-01-11T21:05:10.5575178Z } 2023-01-11T21:05:10.5575237Z } 2023-01-11T21:05:10.5575315Z ''') 2023-01-11T21:05:10.5575323Z 2023-01-11T21:05:10.5575327Z 2023-01-11T21:05:10.5575414Z async_compile.wait(globals()) 2023-01-11T21:05:10.5575473Z del async_compile 2023-01-11T21:05:10.5575491Z 2023-01-11T21:05:10.5575547Z def call(args): 2023-01-11T21:05:10.5575652Z arg0_1, arg1_1 = args 2023-01-11T21:05:10.5575725Z args.clear() 2023-01-11T21:05:10.5575925Z buf0 = empty_strided((6, 30), (30, 1), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:05:10.5576067Z aten.mm.out(as_strided(arg1_1, (6, 10), (10, 1)), as_strided(arg0_1, (10, 30), (1, 10)), out=buf0) 2023-01-11T21:05:10.5576136Z del arg0_1 2023-01-11T21:05:10.5576202Z del arg1_1 2023-01-11T21:05:10.5576303Z buf1 = as_strided(buf0, (2, 3, 30), (90, 30, 1)); del buf0 # reuse 2023-01-11T21:05:10.5576407Z kernel_cpp_0(c_void_p(buf1.data_ptr())) 2023-01-11T21:05:10.5576478Z return (buf1, ) 2023-01-11T21:05:10.5576483Z 2023-01-11T21:05:10.5576487Z 2023-01-11T21:05:10.5576562Z if __name__ == "__main__": 2023-01-11T21:05:10.5576677Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.5576797Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.5577001Z arg0_1 = rand_strided((30, 10), (10, 1), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:05:10.5577205Z arg1_1 = rand_strided((2, 3, 10), (30, 10, 1), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:05:10.5577308Z print_performance(lambda: call([arg0_1, arg1_1])) 2023-01-11T21:05:10.5577313Z 2023-01-11T21:05:10.5577317Z 2023-01-11T21:05:10.5577409Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.5577478Z import torch 2023-01-11T21:05:10.5577548Z import random 2023-01-11T21:05:10.5577661Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.5577781Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.5577786Z 2023-01-11T21:05:10.5577863Z aten = torch.ops.aten 2023-01-11T21:05:10.5577980Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.5578073Z async_compile = AsyncCompile() 2023-01-11T21:05:10.5578079Z 2023-01-11T21:05:10.5578083Z 2023-01-11T21:05:10.5578216Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.5578422Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.5578631Z extern "C" void kernel(bfloat16* __restrict__ in_out_ptr0) 2023-01-11T21:05:10.5578693Z { 2023-01-11T21:05:10.5578790Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.5578850Z { 2023-01-11T21:05:10.5578912Z #pragma omp for 2023-01-11T21:05:10.5578994Z for(long i0=0; i0<60; i0+=1) 2023-01-11T21:05:10.5579056Z { 2023-01-11T21:05:10.5579119Z { 2023-01-11T21:05:10.5579183Z { 2023-01-11T21:05:10.5579304Z auto tmp0 = static_cast(in_out_ptr0[i0]); 2023-01-11T21:05:10.5579413Z auto tmp1 = static_cast(tmp0); 2023-01-11T21:05:10.5579502Z auto tmp2 = static_cast(0); 2023-01-11T21:05:10.5579632Z auto tmp3 = tmp1 > tmp2; 2023-01-11T21:05:10.5579738Z auto tmp4 = static_cast(0.1); 2023-01-11T21:05:10.5579830Z auto tmp5 = tmp1 * tmp4; 2023-01-11T21:05:10.5579930Z auto tmp6 = tmp3 ? tmp1 : tmp5; 2023-01-11T21:05:10.5580040Z auto tmp7 = static_cast(tmp6); 2023-01-11T21:05:10.5580131Z in_out_ptr0[i0] = tmp7; 2023-01-11T21:05:10.5580182Z } 2023-01-11T21:05:10.5580245Z } 2023-01-11T21:05:10.5580307Z } 2023-01-11T21:05:10.5580367Z } 2023-01-11T21:05:10.5580425Z } 2023-01-11T21:05:10.5580502Z ''') 2023-01-11T21:05:10.5580509Z 2023-01-11T21:05:10.5580514Z 2023-01-11T21:05:10.5580600Z async_compile.wait(globals()) 2023-01-11T21:05:10.5580659Z del async_compile 2023-01-11T21:05:10.5580663Z 2023-01-11T21:05:10.5580732Z def call(args): 2023-01-11T21:05:10.5580812Z arg0_1, arg1_1, arg2_1 = args 2023-01-11T21:05:10.5580885Z args.clear() 2023-01-11T21:05:10.5581085Z buf0 = empty_strided((2, 30), (30, 1), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:05:10.5581291Z aten.addmm.out(arg1_1, arg2_1, as_strided(arg0_1, (10, 30), (1, 10)), beta=1, alpha=1, out=buf0) 2023-01-11T21:05:10.5581360Z del arg0_1 2023-01-11T21:05:10.5581412Z del arg1_1 2023-01-11T21:05:10.5581476Z del arg2_1 2023-01-11T21:05:10.5581559Z buf1 = buf0; del buf0 # reuse 2023-01-11T21:05:10.5581661Z kernel_cpp_0(c_void_p(buf1.data_ptr())) 2023-01-11T21:05:10.5581730Z return (buf1, ) 2023-01-11T21:05:10.5581736Z 2023-01-11T21:05:10.5581740Z 2023-01-11T21:05:10.5581814Z if __name__ == "__main__": 2023-01-11T21:05:10.5581926Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.5582047Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.5582238Z arg0_1 = rand_strided((30, 10), (10, 1), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:05:10.5582435Z arg1_1 = rand_strided((30, ), (1, ), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:05:10.5582637Z arg2_1 = rand_strided((2, 10), (10, 1), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:05:10.5582761Z print_performance(lambda: call([arg0_1, arg1_1, arg2_1])) 2023-01-11T21:05:10.5583029Z [2023-01-11 20:54:43,663] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 294 2023-01-11T21:05:10.5583430Z inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.5583556Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.5583810Z [2023-01-11 20:54:43,732] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 295 2023-01-11T21:05:10.5584075Z [2023-01-11 20:54:43,751] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 295 2023-01-11T21:05:10.5584471Z inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.5584583Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.5584838Z [2023-01-11 20:54:44,048] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 296 2023-01-11T21:05:10.5585097Z [2023-01-11 20:54:46,785] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 296 2023-01-11T21:05:10.5585492Z inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.5585650Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.5585903Z [2023-01-11 20:54:46,888] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 297 2023-01-11T21:05:10.5586162Z [2023-01-11 20:54:46,911] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 297 2023-01-11T21:05:10.5586559Z inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.5586684Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.5586939Z [2023-01-11 20:54:47,160] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 298 2023-01-11T21:05:10.5587224Z [2023-01-11 20:54:49,856] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 298 2023-01-11T21:05:10.5587604Z inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.5587729Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.5587981Z [2023-01-11 20:54:49,949] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 299 2023-01-11T21:05:10.5587986Z 2023-01-11T21:05:10.5587991Z 2023-01-11T21:05:10.5588084Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.5588155Z import torch 2023-01-11T21:05:10.5588224Z import random 2023-01-11T21:05:10.5588339Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.5588459Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.5588466Z 2023-01-11T21:05:10.5588544Z aten = torch.ops.aten 2023-01-11T21:05:10.5588665Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.5588755Z async_compile = AsyncCompile() 2023-01-11T21:05:10.5588760Z 2023-01-11T21:05:10.5588764Z 2023-01-11T21:05:10.5588898Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.5589100Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.5589219Z extern "C" void kernel(bfloat16* __restrict__ in_out_ptr0) 2023-01-11T21:05:10.5589280Z { 2023-01-11T21:05:10.5589374Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.5589425Z { 2023-01-11T21:05:10.5594744Z #pragma omp for 2023-01-11T21:05:10.5594866Z for(long i0=0; i0<60; i0+=1) 2023-01-11T21:05:10.5594937Z { 2023-01-11T21:05:10.5595004Z { 2023-01-11T21:05:10.5595069Z { 2023-01-11T21:05:10.5595184Z auto tmp0 = static_cast(in_out_ptr0[i0]); 2023-01-11T21:05:10.5595296Z auto tmp1 = static_cast(tmp0); 2023-01-11T21:05:10.5595399Z auto tmp2 = static_cast(0); 2023-01-11T21:05:10.5595491Z auto tmp3 = tmp1 > tmp2; 2023-01-11T21:05:10.5595595Z auto tmp4 = static_cast(0.1); 2023-01-11T21:05:10.5595685Z auto tmp5 = tmp1 * tmp4; 2023-01-11T21:05:10.5595782Z auto tmp6 = tmp3 ? tmp1 : tmp5; 2023-01-11T21:05:10.5595893Z auto tmp7 = static_cast(tmp6); 2023-01-11T21:05:10.5595970Z in_out_ptr0[i0] = tmp7; 2023-01-11T21:05:10.5596033Z } 2023-01-11T21:05:10.5596095Z } 2023-01-11T21:05:10.5596240Z } 2023-01-11T21:05:10.5596301Z } 2023-01-11T21:05:10.5596359Z } 2023-01-11T21:05:10.5596450Z ''') 2023-01-11T21:05:10.5596457Z 2023-01-11T21:05:10.5596476Z 2023-01-11T21:05:10.5596554Z async_compile.wait(globals()) 2023-01-11T21:05:10.5596627Z del async_compile 2023-01-11T21:05:10.5596632Z 2023-01-11T21:05:10.5596701Z def call(args): 2023-01-11T21:05:10.5596776Z arg0_1, arg1_1 = args 2023-01-11T21:05:10.5596847Z args.clear() 2023-01-11T21:05:10.5597059Z buf0 = empty_strided((2, 30), (30, 1), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:05:10.5597181Z aten.mm.out(arg1_1, as_strided(arg0_1, (10, 30), (1, 10)), out=buf0) 2023-01-11T21:05:10.5597236Z del arg0_1 2023-01-11T21:05:10.5597300Z del arg1_1 2023-01-11T21:05:10.5597383Z buf1 = buf0; del buf0 # reuse 2023-01-11T21:05:10.5597484Z kernel_cpp_0(c_void_p(buf1.data_ptr())) 2023-01-11T21:05:10.5597554Z return (buf1, ) 2023-01-11T21:05:10.5597559Z 2023-01-11T21:05:10.5597564Z 2023-01-11T21:05:10.5597640Z if __name__ == "__main__": 2023-01-11T21:05:10.5597753Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.5597863Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.5598102Z arg0_1 = rand_strided((30, 10), (10, 1), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:05:10.5598303Z arg1_1 = rand_strided((2, 10), (10, 1), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:05:10.5598418Z print_performance(lambda: call([arg0_1, arg1_1])) 2023-01-11T21:05:10.5598423Z 2023-01-11T21:05:10.5598427Z 2023-01-11T21:05:10.5598519Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.5598590Z import torch 2023-01-11T21:05:10.5598660Z import random 2023-01-11T21:05:10.5598772Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.5598879Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.5598883Z 2023-01-11T21:05:10.5598960Z aten = torch.ops.aten 2023-01-11T21:05:10.5599090Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.5599184Z async_compile = AsyncCompile() 2023-01-11T21:05:10.5599189Z 2023-01-11T21:05:10.5599193Z 2023-01-11T21:05:10.5599325Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.5599534Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.5599654Z extern "C" void kernel(bfloat16* __restrict__ in_out_ptr0) 2023-01-11T21:05:10.5599709Z { 2023-01-11T21:05:10.5599793Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.5599858Z { 2023-01-11T21:05:10.5599935Z #pragma omp for 2023-01-11T21:05:10.5600004Z for(long i0=0; i0<180; i0+=1) 2023-01-11T21:05:10.5600066Z { 2023-01-11T21:05:10.5600127Z { 2023-01-11T21:05:10.5600191Z { 2023-01-11T21:05:10.5600310Z auto tmp0 = static_cast(in_out_ptr0[i0]); 2023-01-11T21:05:10.5600417Z auto tmp1 = static_cast(tmp0); 2023-01-11T21:05:10.5600574Z auto tmp2 = static_cast(-0.5); 2023-01-11T21:05:10.5600900Z auto tmp3 = (tmp2 != tmp2) ? tmp2 : std::max(tmp1, tmp2); 2023-01-11T21:05:10.5601008Z auto tmp4 = static_cast(4.0); 2023-01-11T21:05:10.5601137Z auto tmp5 = (tmp4 != tmp4) ? tmp4 : std::min(tmp3, tmp4); 2023-01-11T21:05:10.5601248Z auto tmp6 = static_cast(tmp5); 2023-01-11T21:05:10.5601339Z in_out_ptr0[i0] = tmp6; 2023-01-11T21:05:10.5601404Z } 2023-01-11T21:05:10.5601468Z } 2023-01-11T21:05:10.5601517Z } 2023-01-11T21:05:10.5601578Z } 2023-01-11T21:05:10.5601637Z } 2023-01-11T21:05:10.5601718Z ''') 2023-01-11T21:05:10.5601723Z 2023-01-11T21:05:10.5601727Z 2023-01-11T21:05:10.5601818Z async_compile.wait(globals()) 2023-01-11T21:05:10.5601891Z del async_compile 2023-01-11T21:05:10.5601898Z 2023-01-11T21:05:10.5601968Z def call(args): 2023-01-11T21:05:10.5602050Z arg0_1, arg1_1, arg2_1 = args 2023-01-11T21:05:10.5602177Z args.clear() 2023-01-11T21:05:10.5602380Z buf0 = empty_strided((6, 30), (30, 1), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:05:10.5602552Z aten.addmm.out(arg1_1, as_strided(arg2_1, (6, 10), (10, 1)), as_strided(arg0_1, (10, 30), (1, 10)), beta=1, alpha=1, out=buf0) 2023-01-11T21:05:10.5602621Z del arg0_1 2023-01-11T21:05:10.5602688Z del arg1_1 2023-01-11T21:05:10.5602754Z del arg2_1 2023-01-11T21:05:10.5602869Z buf1 = as_strided(buf0, (2, 3, 30), (90, 30, 1)); del buf0 # reuse 2023-01-11T21:05:10.5602959Z kernel_cpp_0(c_void_p(buf1.data_ptr())) 2023-01-11T21:05:10.5603030Z return (buf1, ) 2023-01-11T21:05:10.5603035Z 2023-01-11T21:05:10.5603039Z 2023-01-11T21:05:10.5603116Z if __name__ == "__main__": 2023-01-11T21:05:10.5603229Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.5603351Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.5603554Z arg0_1 = rand_strided((30, 10), (10, 1), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:05:10.5603755Z arg1_1 = rand_strided((30, ), (1, ), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:05:10.5604005Z arg2_1 = rand_strided((2, 3, 10), (30, 10, 1), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:05:10.5604117Z print_performance(lambda: call([arg0_1, arg1_1, arg2_1])) 2023-01-11T21:05:10.5604122Z 2023-01-11T21:05:10.5604127Z 2023-01-11T21:05:10.5604223Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.5604291Z import torch 2023-01-11T21:05:10.5604360Z import random 2023-01-11T21:05:10.5604473Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.5604593Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.5604598Z 2023-01-11T21:05:10.5604674Z aten = torch.ops.aten 2023-01-11T21:05:10.5604807Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.5604884Z async_compile = AsyncCompile() 2023-01-11T21:05:10.5604889Z 2023-01-11T21:05:10.5604896Z 2023-01-11T21:05:10.5605029Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.5605232Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.5605352Z extern "C" void kernel(bfloat16* __restrict__ in_out_ptr0) 2023-01-11T21:05:10.5605412Z { 2023-01-11T21:05:10.5605508Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.5605569Z { 2023-01-11T21:05:10.5605631Z #pragma omp for 2023-01-11T21:05:10.5605714Z for(long i0=0; i0<180; i0+=1) 2023-01-11T21:05:10.5605776Z { 2023-01-11T21:05:10.5605841Z { 2023-01-11T21:05:10.5605905Z { 2023-01-11T21:05:10.5606024Z auto tmp0 = static_cast(in_out_ptr0[i0]); 2023-01-11T21:05:10.5606131Z auto tmp1 = static_cast(tmp0); 2023-01-11T21:05:10.5606274Z auto tmp2 = static_cast(-0.5); 2023-01-11T21:05:10.5606399Z auto tmp3 = (tmp2 != tmp2) ? tmp2 : std::max(tmp1, tmp2); 2023-01-11T21:05:10.5606505Z auto tmp4 = static_cast(4.0); 2023-01-11T21:05:10.5606628Z auto tmp5 = (tmp4 != tmp4) ? tmp4 : std::min(tmp3, tmp4); 2023-01-11T21:05:10.5606739Z auto tmp6 = static_cast(tmp5); 2023-01-11T21:05:10.5606828Z in_out_ptr0[i0] = tmp6; 2023-01-11T21:05:10.5606891Z } 2023-01-11T21:05:10.5606952Z } 2023-01-11T21:05:10.5607001Z } 2023-01-11T21:05:10.5607061Z } 2023-01-11T21:05:10.5607119Z } 2023-01-11T21:05:10.5607195Z ''') 2023-01-11T21:05:10.5607200Z 2023-01-11T21:05:10.5607204Z 2023-01-11T21:05:10.5607291Z async_compile.wait(globals()) 2023-01-11T21:05:10.5607361Z del async_compile 2023-01-11T21:05:10.5607366Z 2023-01-11T21:05:10.5607433Z def call(args): 2023-01-11T21:05:10.5607493Z arg0_1, arg1_1 = args 2023-01-11T21:05:10.5607562Z args.clear() 2023-01-11T21:05:10.5607759Z buf0 = empty_strided((6, 30), (30, 1), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:05:10.5607931Z aten.mm.out(as_strided(arg1_1, (6, 10), (10, 1)), as_strided(arg0_1, (10, 30), (1, 10)), out=buf0) 2023-01-11T21:05:10.5608000Z del arg0_1 2023-01-11T21:05:10.5608068Z del arg1_1 2023-01-11T21:05:10.5608183Z buf1 = as_strided(buf0, (2, 3, 30), (90, 30, 1)); del buf0 # reuse 2023-01-11T21:05:10.5608270Z kernel_cpp_0(c_void_p(buf1.data_ptr())) 2023-01-11T21:05:10.5608340Z return (buf1, ) 2023-01-11T21:05:10.5608345Z 2023-01-11T21:05:10.5608349Z 2023-01-11T21:05:10.5608423Z if __name__ == "__main__": 2023-01-11T21:05:10.5608533Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.5608653Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.5608857Z arg0_1 = rand_strided((30, 10), (10, 1), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:05:10.5609062Z arg1_1 = rand_strided((2, 3, 10), (30, 10, 1), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:05:10.5609178Z print_performance(lambda: call([arg0_1, arg1_1])) 2023-01-11T21:05:10.5609184Z 2023-01-11T21:05:10.5609188Z 2023-01-11T21:05:10.5609280Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.5609335Z import torch 2023-01-11T21:05:10.5609432Z import random 2023-01-11T21:05:10.5609546Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.5609664Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.5609669Z 2023-01-11T21:05:10.5609745Z aten = torch.ops.aten 2023-01-11T21:05:10.5609877Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.5609966Z async_compile = AsyncCompile() 2023-01-11T21:05:10.5609971Z 2023-01-11T21:05:10.5609975Z 2023-01-11T21:05:10.5610094Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.5610297Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.5610415Z extern "C" void kernel(bfloat16* __restrict__ in_out_ptr0) 2023-01-11T21:05:10.5610478Z { 2023-01-11T21:05:10.5610573Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.5610636Z { 2023-01-11T21:05:10.5610711Z #pragma omp for 2023-01-11T21:05:10.5610780Z for(long i0=0; i0<60; i0+=1) 2023-01-11T21:05:10.5610845Z { 2023-01-11T21:05:10.5610907Z { 2023-01-11T21:05:10.5610971Z { 2023-01-11T21:05:10.5611090Z auto tmp0 = static_cast(in_out_ptr0[i0]); 2023-01-11T21:05:10.5611200Z auto tmp1 = static_cast(tmp0); 2023-01-11T21:05:10.5611358Z auto tmp2 = static_cast(-0.5); 2023-01-11T21:05:10.5611471Z auto tmp3 = (tmp2 != tmp2) ? tmp2 : std::max(tmp1, tmp2); 2023-01-11T21:05:10.5611576Z auto tmp4 = static_cast(4.0); 2023-01-11T21:05:10.5611698Z auto tmp5 = (tmp4 != tmp4) ? tmp4 : std::min(tmp3, tmp4); 2023-01-11T21:05:10.5611809Z auto tmp6 = static_cast(tmp5); 2023-01-11T21:05:10.5611903Z in_out_ptr0[i0] = tmp6; 2023-01-11T21:05:10.5611967Z } 2023-01-11T21:05:10.5612030Z } 2023-01-11T21:05:10.5612092Z } 2023-01-11T21:05:10.5612140Z } 2023-01-11T21:05:10.5612202Z } 2023-01-11T21:05:10.5612280Z ''') 2023-01-11T21:05:10.5612286Z 2023-01-11T21:05:10.5612290Z 2023-01-11T21:05:10.5612378Z async_compile.wait(globals()) 2023-01-11T21:05:10.5612450Z del async_compile 2023-01-11T21:05:10.5612455Z 2023-01-11T21:05:10.5612524Z def call(args): 2023-01-11T21:05:10.5612605Z arg0_1, arg1_1, arg2_1 = args 2023-01-11T21:05:10.5612661Z args.clear() 2023-01-11T21:05:10.5612858Z buf0 = empty_strided((2, 30), (30, 1), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:05:10.5613008Z aten.addmm.out(arg1_1, arg2_1, as_strided(arg0_1, (10, 30), (1, 10)), beta=1, alpha=1, out=buf0) 2023-01-11T21:05:10.5613075Z del arg0_1 2023-01-11T21:05:10.5613142Z del arg1_1 2023-01-11T21:05:10.5613206Z del arg2_1 2023-01-11T21:05:10.5613323Z buf1 = buf0; del buf0 # reuse 2023-01-11T21:05:10.5613413Z kernel_cpp_0(c_void_p(buf1.data_ptr())) 2023-01-11T21:05:10.5613483Z return (buf1, ) 2023-01-11T21:05:10.5613488Z 2023-01-11T21:05:10.5613492Z 2023-01-11T21:05:10.5613570Z if __name__ == "__main__": 2023-01-11T21:05:10.5613683Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.5613804Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.5614004Z arg0_1 = rand_strided((30, 10), (10, 1), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:05:10.5614200Z arg1_1 = rand_strided((30, ), (1, ), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:05:10.5614397Z arg2_1 = rand_strided((2, 10), (10, 1), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:05:10.5614505Z print_performance(lambda: call([arg0_1, arg1_1, arg2_1])) 2023-01-11T21:05:10.5614510Z 2023-01-11T21:05:10.5614530Z 2023-01-11T21:05:10.5614609Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.5614681Z import torch 2023-01-11T21:05:10.5614750Z import random 2023-01-11T21:05:10.5614863Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.5614982Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.5615016Z 2023-01-11T21:05:10.5615095Z aten = torch.ops.aten 2023-01-11T21:05:10.5615225Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.5615302Z async_compile = AsyncCompile() 2023-01-11T21:05:10.5615307Z 2023-01-11T21:05:10.5615311Z 2023-01-11T21:05:10.5615445Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.5615648Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.5615767Z extern "C" void kernel(bfloat16* __restrict__ in_out_ptr0) 2023-01-11T21:05:10.5615827Z { 2023-01-11T21:05:10.5615929Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.5615989Z { 2023-01-11T21:05:10.5616052Z #pragma omp for 2023-01-11T21:05:10.5616133Z for(long i0=0; i0<60; i0+=1) 2023-01-11T21:05:10.5616197Z { 2023-01-11T21:05:10.5616259Z { 2023-01-11T21:05:10.5616323Z { 2023-01-11T21:05:10.5616446Z auto tmp0 = static_cast(in_out_ptr0[i0]); 2023-01-11T21:05:10.5616553Z auto tmp1 = static_cast(tmp0); 2023-01-11T21:05:10.5616697Z auto tmp2 = static_cast(-0.5); 2023-01-11T21:05:10.5616822Z auto tmp3 = (tmp2 != tmp2) ? tmp2 : std::max(tmp1, tmp2); 2023-01-11T21:05:10.5616925Z auto tmp4 = static_cast(4.0); 2023-01-11T21:05:10.5617050Z auto tmp5 = (tmp4 != tmp4) ? tmp4 : std::min(tmp3, tmp4); 2023-01-11T21:05:10.5617158Z auto tmp6 = static_cast(tmp5); 2023-01-11T21:05:10.5617248Z in_out_ptr0[i0] = tmp6; 2023-01-11T21:05:10.5617310Z } 2023-01-11T21:05:10.5617373Z } 2023-01-11T21:05:10.5617422Z } 2023-01-11T21:05:10.5617483Z } 2023-01-11T21:05:10.5617543Z } 2023-01-11T21:05:10.5617619Z ''') 2023-01-11T21:05:10.5617624Z 2023-01-11T21:05:10.5617628Z 2023-01-11T21:05:10.5617715Z async_compile.wait(globals()) 2023-01-11T21:05:10.5617789Z del async_compile 2023-01-11T21:05:10.5617794Z 2023-01-11T21:05:10.5617862Z def call(args): 2023-01-11T21:05:10.5617923Z arg0_1, arg1_1 = args 2023-01-11T21:05:10.5617991Z args.clear() 2023-01-11T21:05:10.5618190Z buf0 = empty_strided((2, 30), (30, 1), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:05:10.5618309Z aten.mm.out(arg1_1, as_strided(arg0_1, (10, 30), (1, 10)), out=buf0) 2023-01-11T21:05:10.5618375Z del arg0_1 2023-01-11T21:05:10.5618440Z del arg1_1 2023-01-11T21:05:10.5618639Z buf1 = buf0; del buf0 # reuse 2023-01-11T21:05:10.5618731Z kernel_cpp_0(c_void_p(buf1.data_ptr())) 2023-01-11T21:05:10.5618802Z return (buf1, ) 2023-01-11T21:05:10.5618809Z 2023-01-11T21:05:10.5618813Z 2023-01-11T21:05:10.5618889Z if __name__ == "__main__": 2023-01-11T21:05:10.5619057Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.5619177Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.5619384Z arg0_1 = rand_strided((30, 10), (10, 1), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:05:10.5619585Z arg1_1 = rand_strided((2, 10), (10, 1), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:05:10.5619700Z print_performance(lambda: call([arg0_1, arg1_1])) 2023-01-11T21:05:10.5619956Z [2023-01-11 20:54:49,973] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 299 2023-01-11T21:05:10.5620362Z inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.5620490Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.5620753Z [2023-01-11 20:54:50,276] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 300 2023-01-11T21:05:10.5621049Z [2023-01-11 20:54:52,968] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 300 2023-01-11T21:05:10.5621453Z inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.5621578Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.5621835Z [2023-01-11 20:54:53,069] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 301 2023-01-11T21:05:10.5622098Z [2023-01-11 20:54:53,093] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 301 2023-01-11T21:05:10.5622500Z inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.5622626Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.5622868Z [2023-01-11 20:54:53,284] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 302 2023-01-11T21:05:10.5623128Z [2023-01-11 20:54:55,945] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 302 2023-01-11T21:05:10.5623524Z inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.5623647Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.5623902Z [2023-01-11 20:54:56,023] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 303 2023-01-11T21:05:10.5623907Z 2023-01-11T21:05:10.5623912Z 2023-01-11T21:05:10.5624007Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.5624076Z import torch 2023-01-11T21:05:10.5624145Z import random 2023-01-11T21:05:10.5624259Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.5624378Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.5624383Z 2023-01-11T21:05:10.5624447Z aten = torch.ops.aten 2023-01-11T21:05:10.5624579Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.5624670Z async_compile = AsyncCompile() 2023-01-11T21:05:10.5624675Z 2023-01-11T21:05:10.5624713Z 2023-01-11T21:05:10.5624850Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.5625053Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.5625173Z extern "C" void kernel(bfloat16* __restrict__ in_out_ptr0) 2023-01-11T21:05:10.5625233Z { 2023-01-11T21:05:10.5625328Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.5625376Z { 2023-01-11T21:05:10.5625451Z #pragma omp for 2023-01-11T21:05:10.5625534Z for(long i0=0; i0<180; i0+=1) 2023-01-11T21:05:10.5625595Z { 2023-01-11T21:05:10.5625657Z { 2023-01-11T21:05:10.5625719Z { 2023-01-11T21:05:10.5625826Z auto tmp0 = static_cast(in_out_ptr0[i0]); 2023-01-11T21:05:10.5625931Z auto tmp1 = static_cast(tmp0); 2023-01-11T21:05:10.5626039Z auto tmp2 = static_cast(0.5); 2023-01-11T21:05:10.5626129Z auto tmp3 = tmp1 * tmp2; 2023-01-11T21:05:10.5626243Z auto tmp4 = static_cast(0.7071067811865476); 2023-01-11T21:05:10.5626333Z auto tmp5 = tmp1 * tmp4; 2023-01-11T21:05:10.5626430Z auto tmp6 = std::erf(tmp5); 2023-01-11T21:05:10.5626580Z auto tmp7 = static_cast(1); 2023-01-11T21:05:10.5626659Z auto tmp8 = tmp6 + tmp7; 2023-01-11T21:05:10.5626747Z auto tmp9 = tmp3 * tmp8; 2023-01-11T21:05:10.5626855Z auto tmp10 = static_cast(tmp9); 2023-01-11T21:05:10.5626942Z in_out_ptr0[i0] = tmp10; 2023-01-11T21:05:10.5627006Z } 2023-01-11T21:05:10.5627068Z } 2023-01-11T21:05:10.5627127Z } 2023-01-11T21:05:10.5627174Z } 2023-01-11T21:05:10.5627232Z } 2023-01-11T21:05:10.5627310Z ''') 2023-01-11T21:05:10.5627315Z 2023-01-11T21:05:10.5627319Z 2023-01-11T21:05:10.5627408Z async_compile.wait(globals()) 2023-01-11T21:05:10.5627478Z del async_compile 2023-01-11T21:05:10.5627485Z 2023-01-11T21:05:10.5627553Z def call(args): 2023-01-11T21:05:10.5627633Z arg0_1, arg1_1, arg2_1 = args 2023-01-11T21:05:10.5627690Z args.clear() 2023-01-11T21:05:10.5627892Z buf0 = empty_strided((6, 30), (30, 1), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:05:10.5628063Z aten.addmm.out(arg1_1, as_strided(arg2_1, (6, 10), (10, 1)), as_strided(arg0_1, (10, 30), (1, 10)), beta=1, alpha=1, out=buf0) 2023-01-11T21:05:10.5628130Z del arg0_1 2023-01-11T21:05:10.5628197Z del arg1_1 2023-01-11T21:05:10.5628262Z del arg2_1 2023-01-11T21:05:10.5628379Z buf1 = as_strided(buf0, (2, 3, 30), (90, 30, 1)); del buf0 # reuse 2023-01-11T21:05:10.5628467Z kernel_cpp_0(c_void_p(buf1.data_ptr())) 2023-01-11T21:05:10.5628539Z return (buf1, ) 2023-01-11T21:05:10.5628543Z 2023-01-11T21:05:10.5628548Z 2023-01-11T21:05:10.5628623Z if __name__ == "__main__": 2023-01-11T21:05:10.5628737Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.5628861Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.5629061Z arg0_1 = rand_strided((30, 10), (10, 1), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:05:10.5629259Z arg1_1 = rand_strided((30, ), (1, ), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:05:10.5629463Z arg2_1 = rand_strided((2, 3, 10), (30, 10, 1), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:05:10.5629572Z print_performance(lambda: call([arg0_1, arg1_1, arg2_1])) 2023-01-11T21:05:10.5629589Z 2023-01-11T21:05:10.5629594Z 2023-01-11T21:05:10.5629674Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.5629741Z import torch 2023-01-11T21:05:10.5629809Z import random 2023-01-11T21:05:10.5629920Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.5630040Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.5630044Z 2023-01-11T21:05:10.5630121Z aten = torch.ops.aten 2023-01-11T21:05:10.5630253Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.5630367Z async_compile = AsyncCompile() 2023-01-11T21:05:10.5630371Z 2023-01-11T21:05:10.5630388Z 2023-01-11T21:05:10.5630507Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.5630711Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.5630830Z extern "C" void kernel(bfloat16* __restrict__ in_out_ptr0) 2023-01-11T21:05:10.5630889Z { 2023-01-11T21:05:10.5630985Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.5631045Z { 2023-01-11T21:05:10.5631120Z #pragma omp for 2023-01-11T21:05:10.5631189Z for(long i0=0; i0<180; i0+=1) 2023-01-11T21:05:10.5631251Z { 2023-01-11T21:05:10.5631313Z { 2023-01-11T21:05:10.5631375Z { 2023-01-11T21:05:10.5631495Z auto tmp0 = static_cast(in_out_ptr0[i0]); 2023-01-11T21:05:10.5631602Z auto tmp1 = static_cast(tmp0); 2023-01-11T21:05:10.5631694Z auto tmp2 = static_cast(0.5); 2023-01-11T21:05:10.5631786Z auto tmp3 = tmp1 * tmp2; 2023-01-11T21:05:10.5631896Z auto tmp4 = static_cast(0.7071067811865476); 2023-01-11T21:05:10.5632017Z auto tmp5 = tmp1 * tmp4; 2023-01-11T21:05:10.5632117Z auto tmp6 = std::erf(tmp5); 2023-01-11T21:05:10.5632219Z auto tmp7 = static_cast(1); 2023-01-11T21:05:10.5632308Z auto tmp8 = tmp6 + tmp7; 2023-01-11T21:05:10.5632398Z auto tmp9 = tmp3 * tmp8; 2023-01-11T21:05:10.5632496Z auto tmp10 = static_cast(tmp9); 2023-01-11T21:05:10.5632582Z in_out_ptr0[i0] = tmp10; 2023-01-11T21:05:10.5632648Z } 2023-01-11T21:05:10.5632710Z } 2023-01-11T21:05:10.5632770Z } 2023-01-11T21:05:10.5632831Z } 2023-01-11T21:05:10.5632877Z } 2023-01-11T21:05:10.5632954Z ''') 2023-01-11T21:05:10.5632961Z 2023-01-11T21:05:10.5632965Z 2023-01-11T21:05:10.5633055Z async_compile.wait(globals()) 2023-01-11T21:05:10.5633126Z del async_compile 2023-01-11T21:05:10.5633131Z 2023-01-11T21:05:10.5633199Z def call(args): 2023-01-11T21:05:10.5633275Z arg0_1, arg1_1 = args 2023-01-11T21:05:10.5633344Z args.clear() 2023-01-11T21:05:10.5633543Z buf0 = empty_strided((6, 30), (30, 1), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:05:10.5633705Z aten.mm.out(as_strided(arg1_1, (6, 10), (10, 1)), as_strided(arg0_1, (10, 30), (1, 10)), out=buf0) 2023-01-11T21:05:10.5633771Z del arg0_1 2023-01-11T21:05:10.5633835Z del arg1_1 2023-01-11T21:05:10.5633949Z buf1 = as_strided(buf0, (2, 3, 30), (90, 30, 1)); del buf0 # reuse 2023-01-11T21:05:10.5634050Z kernel_cpp_0(c_void_p(buf1.data_ptr())) 2023-01-11T21:05:10.5634120Z return (buf1, ) 2023-01-11T21:05:10.5634125Z 2023-01-11T21:05:10.5634130Z 2023-01-11T21:05:10.5634204Z if __name__ == "__main__": 2023-01-11T21:05:10.5634316Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.5634427Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.5634627Z arg0_1 = rand_strided((30, 10), (10, 1), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:05:10.5634835Z arg1_1 = rand_strided((2, 3, 10), (30, 10, 1), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:05:10.5634949Z print_performance(lambda: call([arg0_1, arg1_1])) 2023-01-11T21:05:10.5634955Z 2023-01-11T21:05:10.5634959Z 2023-01-11T21:05:10.5635051Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.5635119Z import torch 2023-01-11T21:05:10.5635187Z import random 2023-01-11T21:05:10.5635300Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.5635408Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.5635413Z 2023-01-11T21:05:10.5635488Z aten = torch.ops.aten 2023-01-11T21:05:10.5635619Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.5635709Z async_compile = AsyncCompile() 2023-01-11T21:05:10.5635743Z 2023-01-11T21:05:10.5635748Z 2023-01-11T21:05:10.5635880Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.5636084Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.5636202Z extern "C" void kernel(bfloat16* __restrict__ in_out_ptr0) 2023-01-11T21:05:10.5636261Z { 2023-01-11T21:05:10.5636344Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.5636405Z { 2023-01-11T21:05:10.5636480Z #pragma omp for 2023-01-11T21:05:10.5636561Z for(long i0=0; i0<60; i0+=1) 2023-01-11T21:05:10.5636624Z { 2023-01-11T21:05:10.5636685Z { 2023-01-11T21:05:10.5636735Z { 2023-01-11T21:05:10.5636853Z auto tmp0 = static_cast(in_out_ptr0[i0]); 2023-01-11T21:05:10.5636960Z auto tmp1 = static_cast(tmp0); 2023-01-11T21:05:10.5637064Z auto tmp2 = static_cast(0.5); 2023-01-11T21:05:10.5637157Z auto tmp3 = tmp1 * tmp2; 2023-01-11T21:05:10.5637268Z auto tmp4 = static_cast(0.7071067811865476); 2023-01-11T21:05:10.5637358Z auto tmp5 = tmp1 * tmp4; 2023-01-11T21:05:10.5637484Z auto tmp6 = std::erf(tmp5); 2023-01-11T21:05:10.5637576Z auto tmp7 = static_cast(1); 2023-01-11T21:05:10.5637664Z auto tmp8 = tmp6 + tmp7; 2023-01-11T21:05:10.5637751Z auto tmp9 = tmp3 * tmp8; 2023-01-11T21:05:10.5637861Z auto tmp10 = static_cast(tmp9); 2023-01-11T21:05:10.5637948Z in_out_ptr0[i0] = tmp10; 2023-01-11T21:05:10.5638012Z } 2023-01-11T21:05:10.5638073Z } 2023-01-11T21:05:10.5638121Z } 2023-01-11T21:05:10.5638181Z } 2023-01-11T21:05:10.5638239Z } 2023-01-11T21:05:10.5638316Z ''') 2023-01-11T21:05:10.5638321Z 2023-01-11T21:05:10.5638325Z 2023-01-11T21:05:10.5638416Z async_compile.wait(globals()) 2023-01-11T21:05:10.5638486Z del async_compile 2023-01-11T21:05:10.5638491Z 2023-01-11T21:05:10.5638562Z def call(args): 2023-01-11T21:05:10.5638628Z arg0_1, arg1_1, arg2_1 = args 2023-01-11T21:05:10.5638700Z args.clear() 2023-01-11T21:05:10.5638900Z buf0 = empty_strided((2, 30), (30, 1), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:05:10.5639049Z aten.addmm.out(arg1_1, arg2_1, as_strided(arg0_1, (10, 30), (1, 10)), beta=1, alpha=1, out=buf0) 2023-01-11T21:05:10.5639115Z del arg0_1 2023-01-11T21:05:10.5639179Z del arg1_1 2023-01-11T21:05:10.5639242Z del arg2_1 2023-01-11T21:05:10.5639311Z buf1 = buf0; del buf0 # reuse 2023-01-11T21:05:10.5639413Z kernel_cpp_0(c_void_p(buf1.data_ptr())) 2023-01-11T21:05:10.5639483Z return (buf1, ) 2023-01-11T21:05:10.5639489Z 2023-01-11T21:05:10.5639493Z 2023-01-11T21:05:10.5639567Z if __name__ == "__main__": 2023-01-11T21:05:10.5639678Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.5639801Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.5640001Z arg0_1 = rand_strided((30, 10), (10, 1), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:05:10.5640195Z arg1_1 = rand_strided((30, ), (1, ), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:05:10.5640378Z arg2_1 = rand_strided((2, 10), (10, 1), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:05:10.5640496Z print_performance(lambda: call([arg0_1, arg1_1, arg2_1])) 2023-01-11T21:05:10.5640501Z 2023-01-11T21:05:10.5640505Z 2023-01-11T21:05:10.5640740Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.5640813Z import torch 2023-01-11T21:05:10.5640883Z import random 2023-01-11T21:05:10.5640999Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.5641119Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.5641125Z 2023-01-11T21:05:10.5641202Z aten = torch.ops.aten 2023-01-11T21:05:10.5641322Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.5641506Z async_compile = AsyncCompile() 2023-01-11T21:05:10.5641511Z 2023-01-11T21:05:10.5641516Z 2023-01-11T21:05:10.5641652Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.5641860Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.5641981Z extern "C" void kernel(bfloat16* __restrict__ in_out_ptr0) 2023-01-11T21:05:10.5642042Z { 2023-01-11T21:05:10.5642140Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.5642187Z { 2023-01-11T21:05:10.5642263Z #pragma omp for 2023-01-11T21:05:10.5642345Z for(long i0=0; i0<60; i0+=1) 2023-01-11T21:05:10.5642408Z { 2023-01-11T21:05:10.5642471Z { 2023-01-11T21:05:10.5642535Z { 2023-01-11T21:05:10.5642656Z auto tmp0 = static_cast(in_out_ptr0[i0]); 2023-01-11T21:05:10.5642749Z auto tmp1 = static_cast(tmp0); 2023-01-11T21:05:10.5642854Z auto tmp2 = static_cast(0.5); 2023-01-11T21:05:10.5642948Z auto tmp3 = tmp1 * tmp2; 2023-01-11T21:05:10.5643061Z auto tmp4 = static_cast(0.7071067811865476); 2023-01-11T21:05:10.5643186Z auto tmp5 = tmp1 * tmp4; 2023-01-11T21:05:10.5643286Z auto tmp6 = std::erf(tmp5); 2023-01-11T21:05:10.5643389Z auto tmp7 = static_cast(1); 2023-01-11T21:05:10.5643467Z auto tmp8 = tmp6 + tmp7; 2023-01-11T21:05:10.5643555Z auto tmp9 = tmp3 * tmp8; 2023-01-11T21:05:10.5643665Z auto tmp10 = static_cast(tmp9); 2023-01-11T21:05:10.5643752Z in_out_ptr0[i0] = tmp10; 2023-01-11T21:05:10.5643819Z } 2023-01-11T21:05:10.5643881Z } 2023-01-11T21:05:10.5643944Z } 2023-01-11T21:05:10.5643991Z } 2023-01-11T21:05:10.5644050Z } 2023-01-11T21:05:10.5644128Z ''') 2023-01-11T21:05:10.5644134Z 2023-01-11T21:05:10.5644140Z 2023-01-11T21:05:10.5644229Z async_compile.wait(globals()) 2023-01-11T21:05:10.5644300Z del async_compile 2023-01-11T21:05:10.5644305Z 2023-01-11T21:05:10.5644374Z def call(args): 2023-01-11T21:05:10.5644451Z arg0_1, arg1_1 = args 2023-01-11T21:05:10.5644522Z args.clear() 2023-01-11T21:05:10.5644710Z buf0 = empty_strided((2, 30), (30, 1), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:05:10.5644830Z aten.mm.out(arg1_1, as_strided(arg0_1, (10, 30), (1, 10)), out=buf0) 2023-01-11T21:05:10.5644897Z del arg0_1 2023-01-11T21:05:10.5644963Z del arg1_1 2023-01-11T21:05:10.5645046Z buf1 = buf0; del buf0 # reuse 2023-01-11T21:05:10.5645149Z kernel_cpp_0(c_void_p(buf1.data_ptr())) 2023-01-11T21:05:10.5645219Z return (buf1, ) 2023-01-11T21:05:10.5645223Z 2023-01-11T21:05:10.5645227Z 2023-01-11T21:05:10.5645289Z if __name__ == "__main__": 2023-01-11T21:05:10.5645400Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.5645523Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.5645727Z arg0_1 = rand_strided((30, 10), (10, 1), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:05:10.5645928Z arg1_1 = rand_strided((2, 10), (10, 1), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:05:10.5646043Z print_performance(lambda: call([arg0_1, arg1_1])) 2023-01-11T21:05:10.5646312Z [2023-01-11 20:54:56,041] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 303 2023-01-11T21:05:10.5646711Z inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.5646836Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.5647080Z [2023-01-11 20:54:56,275] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 304 2023-01-11T21:05:10.5647374Z [2023-01-11 20:54:58,904] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 304 2023-01-11T21:05:10.5647774Z inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.5647902Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.5648154Z [2023-01-11 20:54:58,991] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 305 2023-01-11T21:05:10.5648416Z [2023-01-11 20:54:59,022] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 305 2023-01-11T21:05:10.5648848Z inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.5648978Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.5649232Z [2023-01-11 20:54:59,230] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 306 2023-01-11T21:05:10.5649495Z [2023-01-11 20:55:01,860] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 306 2023-01-11T21:05:10.5649894Z inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.5650006Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.5650263Z [2023-01-11 20:55:01,942] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 307 2023-01-11T21:05:10.5650270Z 2023-01-11T21:05:10.5650275Z 2023-01-11T21:05:10.5650369Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.5650438Z import torch 2023-01-11T21:05:10.5650508Z import random 2023-01-11T21:05:10.5650622Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.5650743Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.5650748Z 2023-01-11T21:05:10.5650825Z aten = torch.ops.aten 2023-01-11T21:05:10.5650958Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.5651037Z async_compile = AsyncCompile() 2023-01-11T21:05:10.5651043Z 2023-01-11T21:05:10.5651047Z 2023-01-11T21:05:10.5651179Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.5651381Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.5651502Z extern "C" void kernel(bfloat16* __restrict__ in_out_ptr0) 2023-01-11T21:05:10.5651562Z { 2023-01-11T21:05:10.5651657Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.5651719Z { 2023-01-11T21:05:10.5651781Z #pragma omp for 2023-01-11T21:05:10.5651863Z for(long i0=0; i0<180; i0+=1) 2023-01-11T21:05:10.5651923Z { 2023-01-11T21:05:10.5651986Z { 2023-01-11T21:05:10.5652048Z { 2023-01-11T21:05:10.5652167Z auto tmp0 = static_cast(in_out_ptr0[i0]); 2023-01-11T21:05:10.5652273Z auto tmp1 = static_cast(tmp0); 2023-01-11T21:05:10.5652364Z auto tmp2 = static_cast(0.5); 2023-01-11T21:05:10.5652455Z auto tmp3 = tmp1 * tmp2; 2023-01-11T21:05:10.5652544Z auto tmp4 = tmp1 * tmp1; 2023-01-11T21:05:10.5652630Z auto tmp5 = tmp4 * tmp1; 2023-01-11T21:05:10.5652773Z auto tmp6 = static_cast(0.044715); 2023-01-11T21:05:10.5652863Z auto tmp7 = tmp5 * tmp6; 2023-01-11T21:05:10.5652950Z auto tmp8 = tmp1 + tmp7; 2023-01-11T21:05:10.5653052Z auto tmp9 = static_cast(0.7978845608028654); 2023-01-11T21:05:10.5653144Z auto tmp10 = tmp8 * tmp9; 2023-01-11T21:05:10.5653241Z auto tmp11 = std::tanh(tmp10); 2023-01-11T21:05:10.5653344Z auto tmp12 = static_cast(1); 2023-01-11T21:05:10.5653435Z auto tmp13 = tmp11 + tmp12; 2023-01-11T21:05:10.5653526Z auto tmp14 = tmp3 * tmp13; 2023-01-11T21:05:10.5653635Z auto tmp15 = static_cast(tmp14); 2023-01-11T21:05:10.5653726Z in_out_ptr0[i0] = tmp15; 2023-01-11T21:05:10.5653776Z } 2023-01-11T21:05:10.5653839Z } 2023-01-11T21:05:10.5653899Z } 2023-01-11T21:05:10.5653962Z } 2023-01-11T21:05:10.5654021Z } 2023-01-11T21:05:10.5654098Z ''') 2023-01-11T21:05:10.5654103Z 2023-01-11T21:05:10.5654108Z 2023-01-11T21:05:10.5654197Z async_compile.wait(globals()) 2023-01-11T21:05:10.5654281Z del async_compile 2023-01-11T21:05:10.5654287Z 2023-01-11T21:05:10.5654357Z def call(args): 2023-01-11T21:05:10.5654436Z arg0_1, arg1_1, arg2_1 = args 2023-01-11T21:05:10.5654506Z args.clear() 2023-01-11T21:05:10.5654706Z buf0 = empty_strided((6, 30), (30, 1), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:05:10.5654874Z aten.addmm.out(arg1_1, as_strided(arg2_1, (6, 10), (10, 1)), as_strided(arg0_1, (10, 30), (1, 10)), beta=1, alpha=1, out=buf0) 2023-01-11T21:05:10.5654940Z del arg0_1 2023-01-11T21:05:10.5654993Z del arg1_1 2023-01-11T21:05:10.5655057Z del arg2_1 2023-01-11T21:05:10.5655172Z buf1 = as_strided(buf0, (2, 3, 30), (90, 30, 1)); del buf0 # reuse 2023-01-11T21:05:10.5655273Z kernel_cpp_0(c_void_p(buf1.data_ptr())) 2023-01-11T21:05:10.5655346Z return (buf1, ) 2023-01-11T21:05:10.5655350Z 2023-01-11T21:05:10.5655355Z 2023-01-11T21:05:10.5655429Z if __name__ == "__main__": 2023-01-11T21:05:10.5655545Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.5655665Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.5655855Z arg0_1 = rand_strided((30, 10), (10, 1), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:05:10.5656049Z arg1_1 = rand_strided((30, ), (1, ), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:05:10.5656253Z arg2_1 = rand_strided((2, 3, 10), (30, 10, 1), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:05:10.5656374Z print_performance(lambda: call([arg0_1, arg1_1, arg2_1])) 2023-01-11T21:05:10.5656379Z 2023-01-11T21:05:10.5656384Z 2023-01-11T21:05:10.5656476Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.5656545Z import torch 2023-01-11T21:05:10.5656613Z import random 2023-01-11T21:05:10.5656714Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.5656839Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.5656844Z 2023-01-11T21:05:10.5656919Z aten = torch.ops.aten 2023-01-11T21:05:10.5657055Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.5657145Z async_compile = AsyncCompile() 2023-01-11T21:05:10.5657150Z 2023-01-11T21:05:10.5657154Z 2023-01-11T21:05:10.5657283Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.5657485Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.5657602Z extern "C" void kernel(bfloat16* __restrict__ in_out_ptr0) 2023-01-11T21:05:10.5657662Z { 2023-01-11T21:05:10.5657744Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.5657804Z { 2023-01-11T21:05:10.5657879Z #pragma omp for 2023-01-11T21:05:10.5657960Z for(long i0=0; i0<180; i0+=1) 2023-01-11T21:05:10.5658022Z { 2023-01-11T21:05:10.5658083Z { 2023-01-11T21:05:10.5658162Z { 2023-01-11T21:05:10.5658282Z auto tmp0 = static_cast(in_out_ptr0[i0]); 2023-01-11T21:05:10.5658387Z auto tmp1 = static_cast(tmp0); 2023-01-11T21:05:10.5658583Z auto tmp2 = static_cast(0.5); 2023-01-11T21:05:10.5658679Z auto tmp3 = tmp1 * tmp2; 2023-01-11T21:05:10.5658769Z auto tmp4 = tmp1 * tmp1; 2023-01-11T21:05:10.5658857Z auto tmp5 = tmp4 * tmp1; 2023-01-11T21:05:10.5658951Z auto tmp6 = static_cast(0.044715); 2023-01-11T21:05:10.5659039Z auto tmp7 = tmp5 * tmp6; 2023-01-11T21:05:10.5659127Z auto tmp8 = tmp1 + tmp7; 2023-01-11T21:05:10.5659239Z auto tmp9 = static_cast(0.7978845608028654); 2023-01-11T21:05:10.5659332Z auto tmp10 = tmp8 * tmp9; 2023-01-11T21:05:10.5659433Z auto tmp11 = std::tanh(tmp10); 2023-01-11T21:05:10.5659539Z auto tmp12 = static_cast(1); 2023-01-11T21:05:10.5659631Z auto tmp13 = tmp11 + tmp12; 2023-01-11T21:05:10.5659710Z auto tmp14 = tmp3 * tmp13; 2023-01-11T21:05:10.5659853Z auto tmp15 = static_cast(tmp14); 2023-01-11T21:05:10.5659949Z in_out_ptr0[i0] = tmp15; 2023-01-11T21:05:10.5660013Z } 2023-01-11T21:05:10.5660077Z } 2023-01-11T21:05:10.5660139Z } 2023-01-11T21:05:10.5660198Z } 2023-01-11T21:05:10.5660243Z } 2023-01-11T21:05:10.5660322Z ''') 2023-01-11T21:05:10.5660327Z 2023-01-11T21:05:10.5660331Z 2023-01-11T21:05:10.5660420Z async_compile.wait(globals()) 2023-01-11T21:05:10.5660489Z del async_compile 2023-01-11T21:05:10.5660494Z 2023-01-11T21:05:10.5660563Z def call(args): 2023-01-11T21:05:10.5660635Z arg0_1, arg1_1 = args 2023-01-11T21:05:10.5660704Z args.clear() 2023-01-11T21:05:10.5660888Z buf0 = empty_strided((6, 30), (30, 1), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:05:10.5661032Z aten.mm.out(as_strided(arg1_1, (6, 10), (10, 1)), as_strided(arg0_1, (10, 30), (1, 10)), out=buf0) 2023-01-11T21:05:10.5661099Z del arg0_1 2023-01-11T21:05:10.5661166Z del arg1_1 2023-01-11T21:05:10.5661280Z buf1 = as_strided(buf0, (2, 3, 30), (90, 30, 1)); del buf0 # reuse 2023-01-11T21:05:10.5661381Z kernel_cpp_0(c_void_p(buf1.data_ptr())) 2023-01-11T21:05:10.5661451Z return (buf1, ) 2023-01-11T21:05:10.5661455Z 2023-01-11T21:05:10.5661459Z 2023-01-11T21:05:10.5661534Z if __name__ == "__main__": 2023-01-11T21:05:10.5661634Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.5661756Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.5661959Z arg0_1 = rand_strided((30, 10), (10, 1), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:05:10.5662166Z arg1_1 = rand_strided((2, 3, 10), (30, 10, 1), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:05:10.5662286Z print_performance(lambda: call([arg0_1, arg1_1])) 2023-01-11T21:05:10.5662291Z 2023-01-11T21:05:10.5662295Z 2023-01-11T21:05:10.5662387Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.5662457Z import torch 2023-01-11T21:05:10.5662527Z import random 2023-01-11T21:05:10.5662628Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.5662747Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.5662752Z 2023-01-11T21:05:10.5662828Z aten = torch.ops.aten 2023-01-11T21:05:10.5662960Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.5663049Z async_compile = AsyncCompile() 2023-01-11T21:05:10.5663054Z 2023-01-11T21:05:10.5663058Z 2023-01-11T21:05:10.5663189Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.5663391Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.5663510Z extern "C" void kernel(bfloat16* __restrict__ in_out_ptr0) 2023-01-11T21:05:10.5663587Z { 2023-01-11T21:05:10.5663682Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.5663742Z { 2023-01-11T21:05:10.5663816Z #pragma omp for 2023-01-11T21:05:10.5663897Z for(long i0=0; i0<60; i0+=1) 2023-01-11T21:05:10.5663960Z { 2023-01-11T21:05:10.5664010Z { 2023-01-11T21:05:10.5664072Z { 2023-01-11T21:05:10.5664191Z auto tmp0 = static_cast(in_out_ptr0[i0]); 2023-01-11T21:05:10.5664297Z auto tmp1 = static_cast(tmp0); 2023-01-11T21:05:10.5664403Z auto tmp2 = static_cast(0.5); 2023-01-11T21:05:10.5664492Z auto tmp3 = tmp1 * tmp2; 2023-01-11T21:05:10.5664580Z auto tmp4 = tmp1 * tmp1; 2023-01-11T21:05:10.5664655Z auto tmp5 = tmp4 * tmp1; 2023-01-11T21:05:10.5664762Z auto tmp6 = static_cast(0.044715); 2023-01-11T21:05:10.5664847Z auto tmp7 = tmp5 * tmp6; 2023-01-11T21:05:10.5664937Z auto tmp8 = tmp1 + tmp7; 2023-01-11T21:05:10.5665050Z auto tmp9 = static_cast(0.7978845608028654); 2023-01-11T21:05:10.5665185Z auto tmp10 = tmp8 * tmp9; 2023-01-11T21:05:10.5665285Z auto tmp11 = std::tanh(tmp10); 2023-01-11T21:05:10.5665386Z auto tmp12 = static_cast(1); 2023-01-11T21:05:10.5665466Z auto tmp13 = tmp11 + tmp12; 2023-01-11T21:05:10.5665556Z auto tmp14 = tmp3 * tmp13; 2023-01-11T21:05:10.5665665Z auto tmp15 = static_cast(tmp14); 2023-01-11T21:05:10.5665754Z in_out_ptr0[i0] = tmp15; 2023-01-11T21:05:10.5665818Z } 2023-01-11T21:05:10.5665880Z } 2023-01-11T21:05:10.5665941Z } 2023-01-11T21:05:10.5665988Z } 2023-01-11T21:05:10.5666046Z } 2023-01-11T21:05:10.5666128Z ''') 2023-01-11T21:05:10.5666133Z 2023-01-11T21:05:10.5666140Z 2023-01-11T21:05:10.5666228Z async_compile.wait(globals()) 2023-01-11T21:05:10.5666298Z del async_compile 2023-01-11T21:05:10.5666303Z 2023-01-11T21:05:10.5666372Z def call(args): 2023-01-11T21:05:10.5666455Z arg0_1, arg1_1, arg2_1 = args 2023-01-11T21:05:10.5666512Z args.clear() 2023-01-11T21:05:10.5666713Z buf0 = empty_strided((2, 30), (30, 1), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:05:10.5666864Z aten.addmm.out(arg1_1, arg2_1, as_strided(arg0_1, (10, 30), (1, 10)), beta=1, alpha=1, out=buf0) 2023-01-11T21:05:10.5666932Z del arg0_1 2023-01-11T21:05:10.5666998Z del arg1_1 2023-01-11T21:05:10.5667063Z del arg2_1 2023-01-11T21:05:10.5667147Z buf1 = buf0; del buf0 # reuse 2023-01-11T21:05:10.5667235Z kernel_cpp_0(c_void_p(buf1.data_ptr())) 2023-01-11T21:05:10.5667305Z return (buf1, ) 2023-01-11T21:05:10.5667310Z 2023-01-11T21:05:10.5667314Z 2023-01-11T21:05:10.5667388Z if __name__ == "__main__": 2023-01-11T21:05:10.5667499Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.5667624Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.5667826Z arg0_1 = rand_strided((30, 10), (10, 1), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:05:10.5668024Z arg1_1 = rand_strided((30, ), (1, ), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:05:10.5668219Z arg2_1 = rand_strided((2, 10), (10, 1), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:05:10.5668328Z print_performance(lambda: call([arg0_1, arg1_1, arg2_1])) 2023-01-11T21:05:10.5668333Z 2023-01-11T21:05:10.5668350Z 2023-01-11T21:05:10.5668429Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.5668496Z import torch 2023-01-11T21:05:10.5668564Z import random 2023-01-11T21:05:10.5668677Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.5668797Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.5668802Z 2023-01-11T21:05:10.5668877Z aten = torch.ops.aten 2023-01-11T21:05:10.5669009Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.5669116Z async_compile = AsyncCompile() 2023-01-11T21:05:10.5669121Z 2023-01-11T21:05:10.5669137Z 2023-01-11T21:05:10.5669257Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.5669461Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.5669578Z extern "C" void kernel(bfloat16* __restrict__ in_out_ptr0) 2023-01-11T21:05:10.5669638Z { 2023-01-11T21:05:10.5669732Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.5669792Z { 2023-01-11T21:05:10.5669854Z #pragma omp for 2023-01-11T21:05:10.5669935Z for(long i0=0; i0<60; i0+=1) 2023-01-11T21:05:10.5669996Z { 2023-01-11T21:05:10.5670058Z { 2023-01-11T21:05:10.5670120Z { 2023-01-11T21:05:10.5670239Z auto tmp0 = static_cast(in_out_ptr0[i0]); 2023-01-11T21:05:10.5670343Z auto tmp1 = static_cast(tmp0); 2023-01-11T21:05:10.5670437Z auto tmp2 = static_cast(0.5); 2023-01-11T21:05:10.5670529Z auto tmp3 = tmp1 * tmp2; 2023-01-11T21:05:10.5670618Z auto tmp4 = tmp1 * tmp1; 2023-01-11T21:05:10.5670735Z auto tmp5 = tmp4 * tmp1; 2023-01-11T21:05:10.5670845Z auto tmp6 = static_cast(0.044715); 2023-01-11T21:05:10.5670932Z auto tmp7 = tmp5 * tmp6; 2023-01-11T21:05:10.5671020Z auto tmp8 = tmp1 + tmp7; 2023-01-11T21:05:10.5671133Z auto tmp9 = static_cast(0.7978845608028654); 2023-01-11T21:05:10.5671212Z auto tmp10 = tmp8 * tmp9; 2023-01-11T21:05:10.5671310Z auto tmp11 = std::tanh(tmp10); 2023-01-11T21:05:10.5671411Z auto tmp12 = static_cast(1); 2023-01-11T21:05:10.5671502Z auto tmp13 = tmp11 + tmp12; 2023-01-11T21:05:10.5671592Z auto tmp14 = tmp3 * tmp13; 2023-01-11T21:05:10.5671707Z auto tmp15 = static_cast(tmp14); 2023-01-11T21:05:10.5671797Z in_out_ptr0[i0] = tmp15; 2023-01-11T21:05:10.5671848Z } 2023-01-11T21:05:10.5671912Z } 2023-01-11T21:05:10.5671972Z } 2023-01-11T21:05:10.5672033Z } 2023-01-11T21:05:10.5672093Z } 2023-01-11T21:05:10.5672169Z ''') 2023-01-11T21:05:10.5672174Z 2023-01-11T21:05:10.5672179Z 2023-01-11T21:05:10.5672267Z async_compile.wait(globals()) 2023-01-11T21:05:10.5672324Z del async_compile 2023-01-11T21:05:10.5672329Z 2023-01-11T21:05:10.5672397Z def call(args): 2023-01-11T21:05:10.5672470Z arg0_1, arg1_1 = args 2023-01-11T21:05:10.5672540Z args.clear() 2023-01-11T21:05:10.5672739Z buf0 = empty_strided((2, 30), (30, 1), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:05:10.5672858Z aten.mm.out(arg1_1, as_strided(arg0_1, (10, 30), (1, 10)), out=buf0) 2023-01-11T21:05:10.5672924Z del arg0_1 2023-01-11T21:05:10.5672978Z del arg1_1 2023-01-11T21:05:10.5673060Z buf1 = buf0; del buf0 # reuse 2023-01-11T21:05:10.5673161Z kernel_cpp_0(c_void_p(buf1.data_ptr())) 2023-01-11T21:05:10.5673231Z return (buf1, ) 2023-01-11T21:05:10.5673236Z 2023-01-11T21:05:10.5673242Z 2023-01-11T21:05:10.5673318Z if __name__ == "__main__": 2023-01-11T21:05:10.5673430Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.5673551Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.5673751Z arg0_1 = rand_strided((30, 10), (10, 1), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:05:10.5673935Z arg1_1 = rand_strided((2, 10), (10, 1), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:05:10.5674048Z print_performance(lambda: call([arg0_1, arg1_1])) 2023-01-11T21:05:10.5674317Z [2023-01-11 20:55:01,970] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 307 2023-01-11T21:05:10.5674724Z inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.5674885Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.5675143Z [2023-01-11 20:55:02,201] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 308 2023-01-11T21:05:10.5675409Z [2023-01-11 20:55:04,831] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 308 2023-01-11T21:05:10.5675803Z inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.5675930Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.5676184Z [2023-01-11 20:55:04,910] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 309 2023-01-11T21:05:10.5676460Z [2023-01-11 20:55:04,930] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 309 2023-01-11T21:05:10.5676860Z inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.5676985Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.5677235Z [2023-01-11 20:55:05,130] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 310 2023-01-11T21:05:10.5677499Z [2023-01-11 20:55:07,772] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 310 2023-01-11T21:05:10.5677898Z inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.5678023Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.5678279Z [2023-01-11 20:55:07,843] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 311 2023-01-11T21:05:10.5678539Z [2023-01-11 20:55:07,859] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 311 2023-01-11T21:05:10.5678931Z inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.5679061Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.5679318Z [2023-01-11 20:55:08,125] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 312 2023-01-11T21:05:10.5679323Z 2023-01-11T21:05:10.5679328Z 2023-01-11T21:05:10.5679409Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.5679478Z import torch 2023-01-11T21:05:10.5679548Z import random 2023-01-11T21:05:10.5679663Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.5679785Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.5679790Z 2023-01-11T21:05:10.5679869Z aten = torch.ops.aten 2023-01-11T21:05:10.5680004Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.5680097Z async_compile = AsyncCompile() 2023-01-11T21:05:10.5680102Z 2023-01-11T21:05:10.5680137Z 2023-01-11T21:05:10.5680259Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.5680461Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.5680704Z extern "C" void kernel(bfloat16* __restrict__ in_out_ptr0) 2023-01-11T21:05:10.5680769Z { 2023-01-11T21:05:10.5680867Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.5680928Z { 2023-01-11T21:05:10.5681009Z #pragma omp for 2023-01-11T21:05:10.5681078Z for(long i0=0; i0<180; i0+=1) 2023-01-11T21:05:10.5681140Z { 2023-01-11T21:05:10.5681203Z { 2023-01-11T21:05:10.5681268Z { 2023-01-11T21:05:10.5681389Z auto tmp0 = static_cast(in_out_ptr0[i0]); 2023-01-11T21:05:10.5681497Z auto tmp1 = static_cast(tmp0); 2023-01-11T21:05:10.5681603Z auto tmp2 = static_cast(0.0); 2023-01-11T21:05:10.5681717Z auto tmp3 = (tmp2 != tmp2) ? tmp2 : std::max(tmp1, tmp2); 2023-01-11T21:05:10.5681825Z auto tmp4 = static_cast(6.0); 2023-01-11T21:05:10.5681949Z auto tmp5 = (tmp4 != tmp4) ? tmp4 : std::min(tmp3, tmp4); 2023-01-11T21:05:10.5682115Z auto tmp6 = static_cast(tmp5); 2023-01-11T21:05:10.5682205Z in_out_ptr0[i0] = tmp6; 2023-01-11T21:05:10.5682268Z } 2023-01-11T21:05:10.5682331Z } 2023-01-11T21:05:10.5682380Z } 2023-01-11T21:05:10.5682441Z } 2023-01-11T21:05:10.5682503Z } 2023-01-11T21:05:10.5682584Z ''') 2023-01-11T21:05:10.5682591Z 2023-01-11T21:05:10.5682595Z 2023-01-11T21:05:10.5682684Z async_compile.wait(globals()) 2023-01-11T21:05:10.5682756Z del async_compile 2023-01-11T21:05:10.5682761Z 2023-01-11T21:05:10.5682830Z def call(args): 2023-01-11T21:05:10.5682913Z arg0_1, arg1_1, arg2_1 = args 2023-01-11T21:05:10.5682970Z args.clear() 2023-01-11T21:05:10.5683170Z buf0 = empty_strided((6, 30), (30, 1), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:05:10.5683343Z aten.addmm.out(arg1_1, as_strided(arg2_1, (6, 10), (10, 1)), as_strided(arg0_1, (10, 30), (1, 10)), beta=1, alpha=1, out=buf0) 2023-01-11T21:05:10.5683414Z del arg0_1 2023-01-11T21:05:10.5683480Z del arg1_1 2023-01-11T21:05:10.5683546Z del arg2_1 2023-01-11T21:05:10.5683661Z buf1 = as_strided(buf0, (2, 3, 30), (90, 30, 1)); del buf0 # reuse 2023-01-11T21:05:10.5683750Z kernel_cpp_0(c_void_p(buf1.data_ptr())) 2023-01-11T21:05:10.5683819Z return (buf1, ) 2023-01-11T21:05:10.5683825Z 2023-01-11T21:05:10.5683829Z 2023-01-11T21:05:10.5683903Z if __name__ == "__main__": 2023-01-11T21:05:10.5684014Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.5684136Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.5684335Z arg0_1 = rand_strided((30, 10), (10, 1), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:05:10.5684527Z arg1_1 = rand_strided((30, ), (1, ), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:05:10.5684734Z arg2_1 = rand_strided((2, 3, 10), (30, 10, 1), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:05:10.5684847Z print_performance(lambda: call([arg0_1, arg1_1, arg2_1])) 2023-01-11T21:05:10.5684852Z 2023-01-11T21:05:10.5684869Z 2023-01-11T21:05:10.5684949Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.5685016Z import torch 2023-01-11T21:05:10.5685084Z import random 2023-01-11T21:05:10.5685198Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.5685316Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.5685321Z 2023-01-11T21:05:10.5685398Z aten = torch.ops.aten 2023-01-11T21:05:10.5685529Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.5685606Z async_compile = AsyncCompile() 2023-01-11T21:05:10.5685610Z 2023-01-11T21:05:10.5685627Z 2023-01-11T21:05:10.5685746Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.5685950Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.5686106Z extern "C" void kernel(bfloat16* __restrict__ in_out_ptr0) 2023-01-11T21:05:10.5686168Z { 2023-01-11T21:05:10.5686265Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.5686326Z { 2023-01-11T21:05:10.5686388Z #pragma omp for 2023-01-11T21:05:10.5686470Z for(long i0=0; i0<180; i0+=1) 2023-01-11T21:05:10.5686530Z { 2023-01-11T21:05:10.5686592Z { 2023-01-11T21:05:10.5686654Z { 2023-01-11T21:05:10.5686772Z auto tmp0 = static_cast(in_out_ptr0[i0]); 2023-01-11T21:05:10.5686877Z auto tmp1 = static_cast(tmp0); 2023-01-11T21:05:10.5686968Z auto tmp2 = static_cast(0.0); 2023-01-11T21:05:10.5687094Z auto tmp3 = (tmp2 != tmp2) ? tmp2 : std::max(tmp1, tmp2); 2023-01-11T21:05:10.5687199Z auto tmp4 = static_cast(6.0); 2023-01-11T21:05:10.5687326Z auto tmp5 = (tmp4 != tmp4) ? tmp4 : std::min(tmp3, tmp4); 2023-01-11T21:05:10.5687435Z auto tmp6 = static_cast(tmp5); 2023-01-11T21:05:10.5687551Z in_out_ptr0[i0] = tmp6; 2023-01-11T21:05:10.5687615Z } 2023-01-11T21:05:10.5687677Z } 2023-01-11T21:05:10.5687724Z } 2023-01-11T21:05:10.5687784Z } 2023-01-11T21:05:10.5687842Z } 2023-01-11T21:05:10.5687920Z ''') 2023-01-11T21:05:10.5687925Z 2023-01-11T21:05:10.5687929Z 2023-01-11T21:05:10.5688015Z async_compile.wait(globals()) 2023-01-11T21:05:10.5688087Z del async_compile 2023-01-11T21:05:10.5688091Z 2023-01-11T21:05:10.5688159Z def call(args): 2023-01-11T21:05:10.5688219Z arg0_1, arg1_1 = args 2023-01-11T21:05:10.5688288Z args.clear() 2023-01-11T21:05:10.5688487Z buf0 = empty_strided((6, 30), (30, 1), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:05:10.5688629Z aten.mm.out(as_strided(arg1_1, (6, 10), (10, 1)), as_strided(arg0_1, (10, 30), (1, 10)), out=buf0) 2023-01-11T21:05:10.5688697Z del arg0_1 2023-01-11T21:05:10.5688761Z del arg1_1 2023-01-11T21:05:10.5688876Z buf1 = as_strided(buf0, (2, 3, 30), (90, 30, 1)); del buf0 # reuse 2023-01-11T21:05:10.5688966Z kernel_cpp_0(c_void_p(buf1.data_ptr())) 2023-01-11T21:05:10.5689037Z return (buf1, ) 2023-01-11T21:05:10.5689041Z 2023-01-11T21:05:10.5689046Z 2023-01-11T21:05:10.5689119Z if __name__ == "__main__": 2023-01-11T21:05:10.5689230Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.5689350Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.5689552Z arg0_1 = rand_strided((30, 10), (10, 1), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:05:10.5689755Z arg1_1 = rand_strided((2, 3, 10), (30, 10, 1), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:05:10.5689869Z print_performance(lambda: call([arg0_1, arg1_1])) 2023-01-11T21:05:10.5689874Z 2023-01-11T21:05:10.5689878Z 2023-01-11T21:05:10.5689972Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.5690027Z import torch 2023-01-11T21:05:10.5690096Z import random 2023-01-11T21:05:10.5690209Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.5690329Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.5690335Z 2023-01-11T21:05:10.5690410Z aten = torch.ops.aten 2023-01-11T21:05:10.5690543Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.5690631Z async_compile = AsyncCompile() 2023-01-11T21:05:10.5690636Z 2023-01-11T21:05:10.5690641Z 2023-01-11T21:05:10.5690770Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.5690958Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.5691077Z extern "C" void kernel(bfloat16* __restrict__ in_out_ptr0) 2023-01-11T21:05:10.5691136Z { 2023-01-11T21:05:10.5691232Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.5691292Z { 2023-01-11T21:05:10.5691396Z #pragma omp for 2023-01-11T21:05:10.5691476Z for(long i0=0; i0<60; i0+=1) 2023-01-11T21:05:10.5691525Z { 2023-01-11T21:05:10.5691587Z { 2023-01-11T21:05:10.5691648Z { 2023-01-11T21:05:10.5691769Z auto tmp0 = static_cast(in_out_ptr0[i0]); 2023-01-11T21:05:10.5691875Z auto tmp1 = static_cast(tmp0); 2023-01-11T21:05:10.5691979Z auto tmp2 = static_cast(0.0); 2023-01-11T21:05:10.5692104Z auto tmp3 = (tmp2 != tmp2) ? tmp2 : std::max(tmp1, tmp2); 2023-01-11T21:05:10.5692193Z auto tmp4 = static_cast(6.0); 2023-01-11T21:05:10.5692315Z auto tmp5 = (tmp4 != tmp4) ? tmp4 : std::min(tmp3, tmp4); 2023-01-11T21:05:10.5692424Z auto tmp6 = static_cast(tmp5); 2023-01-11T21:05:10.5692512Z in_out_ptr0[i0] = tmp6; 2023-01-11T21:05:10.5692576Z } 2023-01-11T21:05:10.5692640Z } 2023-01-11T21:05:10.5692701Z } 2023-01-11T21:05:10.5692748Z } 2023-01-11T21:05:10.5692806Z } 2023-01-11T21:05:10.5692882Z ''') 2023-01-11T21:05:10.5692887Z 2023-01-11T21:05:10.5692892Z 2023-01-11T21:05:10.5693024Z async_compile.wait(globals()) 2023-01-11T21:05:10.5693097Z del async_compile 2023-01-11T21:05:10.5693102Z 2023-01-11T21:05:10.5693169Z def call(args): 2023-01-11T21:05:10.5693248Z arg0_1, arg1_1, arg2_1 = args 2023-01-11T21:05:10.5693304Z args.clear() 2023-01-11T21:05:10.5693502Z buf0 = empty_strided((2, 30), (30, 1), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:05:10.5693653Z aten.addmm.out(arg1_1, arg2_1, as_strided(arg0_1, (10, 30), (1, 10)), beta=1, alpha=1, out=buf0) 2023-01-11T21:05:10.5693719Z del arg0_1 2023-01-11T21:05:10.5693784Z del arg1_1 2023-01-11T21:05:10.5693847Z del arg2_1 2023-01-11T21:05:10.5693928Z buf1 = buf0; del buf0 # reuse 2023-01-11T21:05:10.5694017Z kernel_cpp_0(c_void_p(buf1.data_ptr())) 2023-01-11T21:05:10.5694090Z return (buf1, ) 2023-01-11T21:05:10.5694095Z 2023-01-11T21:05:10.5694099Z 2023-01-11T21:05:10.5694171Z if __name__ == "__main__": 2023-01-11T21:05:10.5694285Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.5694407Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.5694605Z arg0_1 = rand_strided((30, 10), (10, 1), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:05:10.5694798Z arg1_1 = rand_strided((30, ), (1, ), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:05:10.5694992Z arg2_1 = rand_strided((2, 10), (10, 1), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:05:10.5695100Z print_performance(lambda: call([arg0_1, arg1_1, arg2_1])) 2023-01-11T21:05:10.5695118Z 2023-01-11T21:05:10.5695122Z 2023-01-11T21:05:10.5695201Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.5695269Z import torch 2023-01-11T21:05:10.5695337Z import random 2023-01-11T21:05:10.5695450Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.5695571Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.5695577Z 2023-01-11T21:05:10.5695652Z aten = torch.ops.aten 2023-01-11T21:05:10.5695786Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.5695863Z async_compile = AsyncCompile() 2023-01-11T21:05:10.5695868Z 2023-01-11T21:05:10.5695885Z 2023-01-11T21:05:10.5696003Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.5696206Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.5696325Z extern "C" void kernel(bfloat16* __restrict__ in_out_ptr0) 2023-01-11T21:05:10.5696384Z { 2023-01-11T21:05:10.5696480Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.5696539Z { 2023-01-11T21:05:10.5696614Z #pragma omp for 2023-01-11T21:05:10.5696683Z for(long i0=0; i0<60; i0+=1) 2023-01-11T21:05:10.5696743Z { 2023-01-11T21:05:10.5696805Z { 2023-01-11T21:05:10.5696902Z { 2023-01-11T21:05:10.5697022Z auto tmp0 = static_cast(in_out_ptr0[i0]); 2023-01-11T21:05:10.5697128Z auto tmp1 = static_cast(tmp0); 2023-01-11T21:05:10.5697222Z auto tmp2 = static_cast(0.0); 2023-01-11T21:05:10.5697347Z auto tmp3 = (tmp2 != tmp2) ? tmp2 : std::max(tmp1, tmp2); 2023-01-11T21:05:10.5697448Z auto tmp4 = static_cast(6.0); 2023-01-11T21:05:10.5697569Z auto tmp5 = (tmp4 != tmp4) ? tmp4 : std::min(tmp3, tmp4); 2023-01-11T21:05:10.5697679Z auto tmp6 = static_cast(tmp5); 2023-01-11T21:05:10.5697767Z in_out_ptr0[i0] = tmp6; 2023-01-11T21:05:10.5697830Z } 2023-01-11T21:05:10.5697892Z } 2023-01-11T21:05:10.5697940Z } 2023-01-11T21:05:10.5698000Z } 2023-01-11T21:05:10.5698057Z } 2023-01-11T21:05:10.5698134Z ''') 2023-01-11T21:05:10.5698141Z 2023-01-11T21:05:10.5698145Z 2023-01-11T21:05:10.5698233Z async_compile.wait(globals()) 2023-01-11T21:05:10.5698302Z del async_compile 2023-01-11T21:05:10.5698307Z 2023-01-11T21:05:10.5698375Z def call(args): 2023-01-11T21:05:10.5698558Z arg0_1, arg1_1 = args 2023-01-11T21:05:10.5698644Z args.clear() 2023-01-11T21:05:10.5698849Z buf0 = empty_strided((2, 30), (30, 1), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:05:10.5698969Z aten.mm.out(arg1_1, as_strided(arg0_1, (10, 30), (1, 10)), out=buf0) 2023-01-11T21:05:10.5699037Z del arg0_1 2023-01-11T21:05:10.5699103Z del arg1_1 2023-01-11T21:05:10.5699187Z buf1 = buf0; del buf0 # reuse 2023-01-11T21:05:10.5699275Z kernel_cpp_0(c_void_p(buf1.data_ptr())) 2023-01-11T21:05:10.5699347Z return (buf1, ) 2023-01-11T21:05:10.5699353Z 2023-01-11T21:05:10.5699357Z 2023-01-11T21:05:10.5699431Z if __name__ == "__main__": 2023-01-11T21:05:10.5699544Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.5699669Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.5699872Z arg0_1 = rand_strided((30, 10), (10, 1), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:05:10.5700072Z arg1_1 = rand_strided((2, 10), (10, 1), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:05:10.5700187Z print_performance(lambda: call([arg0_1, arg1_1])) 2023-01-11T21:05:10.5700192Z 2023-01-11T21:05:10.5700196Z 2023-01-11T21:05:10.5700293Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.5700348Z import torch 2023-01-11T21:05:10.5700417Z import random 2023-01-11T21:05:10.5700532Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.5700654Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.5700659Z 2023-01-11T21:05:10.5700736Z aten = torch.ops.aten 2023-01-11T21:05:10.5700871Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.5700962Z async_compile = AsyncCompile() 2023-01-11T21:05:10.5700968Z 2023-01-11T21:05:10.5700972Z 2023-01-11T21:05:10.5701091Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.5701298Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.5701419Z extern "C" void kernel(bfloat16* __restrict__ in_out_ptr0) 2023-01-11T21:05:10.5701481Z { 2023-01-11T21:05:10.5701577Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.5701638Z { 2023-01-11T21:05:10.5701713Z #pragma omp for 2023-01-11T21:05:10.5701781Z for(long i0=0; i0<180; i0+=1) 2023-01-11T21:05:10.5701842Z { 2023-01-11T21:05:10.5701904Z { 2023-01-11T21:05:10.5701966Z { 2023-01-11T21:05:10.5702085Z auto tmp0 = static_cast(in_out_ptr0[i0]); 2023-01-11T21:05:10.5702191Z auto tmp1 = static_cast(tmp0); 2023-01-11T21:05:10.5702337Z auto tmp2 = std::exp(-tmp1); 2023-01-11T21:05:10.5702414Z auto tmp3 = 1 / (1 + tmp2); 2023-01-11T21:05:10.5702549Z auto tmp4 = tmp1 * tmp3; 2023-01-11T21:05:10.5702657Z auto tmp5 = static_cast(tmp4); 2023-01-11T21:05:10.5702746Z in_out_ptr0[i0] = tmp5; 2023-01-11T21:05:10.5702811Z } 2023-01-11T21:05:10.5702874Z } 2023-01-11T21:05:10.5702935Z } 2023-01-11T21:05:10.5702983Z } 2023-01-11T21:05:10.5703040Z } 2023-01-11T21:05:10.5703117Z ''') 2023-01-11T21:05:10.5703122Z 2023-01-11T21:05:10.5703127Z 2023-01-11T21:05:10.5703215Z async_compile.wait(globals()) 2023-01-11T21:05:10.5703286Z del async_compile 2023-01-11T21:05:10.5703291Z 2023-01-11T21:05:10.5703360Z def call(args): 2023-01-11T21:05:10.5703440Z arg0_1, arg1_1, arg2_1 = args 2023-01-11T21:05:10.5703510Z args.clear() 2023-01-11T21:05:10.5703697Z buf0 = empty_strided((6, 30), (30, 1), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:05:10.5703865Z aten.addmm.out(arg1_1, as_strided(arg2_1, (6, 10), (10, 1)), as_strided(arg0_1, (10, 30), (1, 10)), beta=1, alpha=1, out=buf0) 2023-01-11T21:05:10.5703935Z del arg0_1 2023-01-11T21:05:10.5704000Z del arg1_1 2023-01-11T21:05:10.5704064Z del arg2_1 2023-01-11T21:05:10.5704220Z buf1 = as_strided(buf0, (2, 3, 30), (90, 30, 1)); del buf0 # reuse 2023-01-11T21:05:10.5704323Z kernel_cpp_0(c_void_p(buf1.data_ptr())) 2023-01-11T21:05:10.5704380Z return (buf1, ) 2023-01-11T21:05:10.5704385Z 2023-01-11T21:05:10.5704389Z 2023-01-11T21:05:10.5704464Z if __name__ == "__main__": 2023-01-11T21:05:10.5704575Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.5704697Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.5704898Z arg0_1 = rand_strided((30, 10), (10, 1), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:05:10.5705089Z arg1_1 = rand_strided((30, ), (1, ), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:05:10.5705292Z arg2_1 = rand_strided((2, 3, 10), (30, 10, 1), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:05:10.5705417Z print_performance(lambda: call([arg0_1, arg1_1, arg2_1])) 2023-01-11T21:05:10.5705671Z [2023-01-11 20:55:10,750] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 312 2023-01-11T21:05:10.5706076Z inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.5706200Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.5706455Z [2023-01-11 20:55:10,903] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 313 2023-01-11T21:05:10.5706716Z [2023-01-11 20:55:10,929] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 313 2023-01-11T21:05:10.5707117Z inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.5707246Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.5707502Z [2023-01-11 20:55:11,167] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 314 2023-01-11T21:05:10.5707763Z [2023-01-11 20:55:13,793] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 314 2023-01-11T21:05:10.5708157Z inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.5708310Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.5708562Z [2023-01-11 20:55:13,920] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 315 2023-01-11T21:05:10.5708810Z [2023-01-11 20:55:13,935] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 315 2023-01-11T21:05:10.5708815Z 2023-01-11T21:05:10.5708833Z 2023-01-11T21:05:10.5708912Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.5708981Z import torch 2023-01-11T21:05:10.5709049Z import random 2023-01-11T21:05:10.5709165Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.5709285Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.5709290Z 2023-01-11T21:05:10.5709367Z aten = torch.ops.aten 2023-01-11T21:05:10.5709501Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.5709578Z async_compile = AsyncCompile() 2023-01-11T21:05:10.5709583Z 2023-01-11T21:05:10.5709589Z 2023-01-11T21:05:10.5709721Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.5709922Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.5710069Z extern "C" void kernel(bfloat16* __restrict__ in_out_ptr0) 2023-01-11T21:05:10.5710131Z { 2023-01-11T21:05:10.5710227Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.5710287Z { 2023-01-11T21:05:10.5710349Z #pragma omp for 2023-01-11T21:05:10.5710431Z for(long i0=0; i0<180; i0+=1) 2023-01-11T21:05:10.5710493Z { 2023-01-11T21:05:10.5710555Z { 2023-01-11T21:05:10.5710620Z { 2023-01-11T21:05:10.5710739Z auto tmp0 = static_cast(in_out_ptr0[i0]); 2023-01-11T21:05:10.5710847Z auto tmp1 = static_cast(tmp0); 2023-01-11T21:05:10.5710981Z auto tmp2 = std::exp(-tmp1); 2023-01-11T21:05:10.5711072Z auto tmp3 = 1 / (1 + tmp2); 2023-01-11T21:05:10.5711167Z auto tmp4 = tmp1 * tmp3; 2023-01-11T21:05:10.5711277Z auto tmp5 = static_cast(tmp4); 2023-01-11T21:05:10.5711367Z in_out_ptr0[i0] = tmp5; 2023-01-11T21:05:10.5711435Z } 2023-01-11T21:05:10.5711497Z } 2023-01-11T21:05:10.5711546Z } 2023-01-11T21:05:10.5711606Z } 2023-01-11T21:05:10.5711665Z } 2023-01-11T21:05:10.5711745Z ''') 2023-01-11T21:05:10.5711752Z 2023-01-11T21:05:10.5711756Z 2023-01-11T21:05:10.5711845Z async_compile.wait(globals()) 2023-01-11T21:05:10.5711920Z del async_compile 2023-01-11T21:05:10.5711925Z 2023-01-11T21:05:10.5711994Z def call(args): 2023-01-11T21:05:10.5712055Z arg0_1, arg1_1 = args 2023-01-11T21:05:10.5712125Z args.clear() 2023-01-11T21:05:10.5712325Z buf0 = empty_strided((6, 30), (30, 1), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:05:10.5712468Z aten.mm.out(as_strided(arg1_1, (6, 10), (10, 1)), as_strided(arg0_1, (10, 30), (1, 10)), out=buf0) 2023-01-11T21:05:10.5712539Z del arg0_1 2023-01-11T21:05:10.5712603Z del arg1_1 2023-01-11T21:05:10.5712718Z buf1 = as_strided(buf0, (2, 3, 30), (90, 30, 1)); del buf0 # reuse 2023-01-11T21:05:10.5712822Z kernel_cpp_0(c_void_p(buf1.data_ptr())) 2023-01-11T21:05:10.5712880Z return (buf1, ) 2023-01-11T21:05:10.5712885Z 2023-01-11T21:05:10.5712889Z 2023-01-11T21:05:10.5712964Z if __name__ == "__main__": 2023-01-11T21:05:10.5713077Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.5713198Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.5713399Z arg0_1 = rand_strided((30, 10), (10, 1), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:05:10.5713604Z arg1_1 = rand_strided((2, 3, 10), (30, 10, 1), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:05:10.5713717Z print_performance(lambda: call([arg0_1, arg1_1])) 2023-01-11T21:05:10.5713722Z 2023-01-11T21:05:10.5713726Z 2023-01-11T21:05:10.5713818Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.5713904Z import torch 2023-01-11T21:05:10.5713974Z import random 2023-01-11T21:05:10.5714087Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.5714209Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.5714214Z 2023-01-11T21:05:10.5714291Z aten = torch.ops.aten 2023-01-11T21:05:10.5714422Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.5714513Z async_compile = AsyncCompile() 2023-01-11T21:05:10.5714518Z 2023-01-11T21:05:10.5714522Z 2023-01-11T21:05:10.5714654Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.5714843Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.5714963Z extern "C" void kernel(bfloat16* __restrict__ in_out_ptr0) 2023-01-11T21:05:10.5715022Z { 2023-01-11T21:05:10.5715117Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.5715177Z { 2023-01-11T21:05:10.5715252Z #pragma omp for 2023-01-11T21:05:10.5715336Z for(long i0=0; i0<60; i0+=1) 2023-01-11T21:05:10.5715384Z { 2023-01-11T21:05:10.5715445Z { 2023-01-11T21:05:10.5715508Z { 2023-01-11T21:05:10.5715653Z auto tmp0 = static_cast(in_out_ptr0[i0]); 2023-01-11T21:05:10.5715761Z auto tmp1 = static_cast(tmp0); 2023-01-11T21:05:10.5715907Z auto tmp2 = std::exp(-tmp1); 2023-01-11T21:05:10.5715998Z auto tmp3 = 1 / (1 + tmp2); 2023-01-11T21:05:10.5716075Z auto tmp4 = tmp1 * tmp3; 2023-01-11T21:05:10.5716185Z auto tmp5 = static_cast(tmp4); 2023-01-11T21:05:10.5716273Z in_out_ptr0[i0] = tmp5; 2023-01-11T21:05:10.5716335Z } 2023-01-11T21:05:10.5716397Z } 2023-01-11T21:05:10.5716457Z } 2023-01-11T21:05:10.5716516Z } 2023-01-11T21:05:10.5716562Z } 2023-01-11T21:05:10.5716637Z ''') 2023-01-11T21:05:10.5716644Z 2023-01-11T21:05:10.5716648Z 2023-01-11T21:05:10.5716737Z async_compile.wait(globals()) 2023-01-11T21:05:10.5716810Z del async_compile 2023-01-11T21:05:10.5716815Z 2023-01-11T21:05:10.5716885Z def call(args): 2023-01-11T21:05:10.5716965Z arg0_1, arg1_1, arg2_1 = args 2023-01-11T21:05:10.5717035Z args.clear() 2023-01-11T21:05:10.5717221Z buf0 = empty_strided((2, 30), (30, 1), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:05:10.5717371Z aten.addmm.out(arg1_1, arg2_1, as_strided(arg0_1, (10, 30), (1, 10)), beta=1, alpha=1, out=buf0) 2023-01-11T21:05:10.5717437Z del arg0_1 2023-01-11T21:05:10.5717502Z del arg1_1 2023-01-11T21:05:10.5717566Z del arg2_1 2023-01-11T21:05:10.5717651Z buf1 = buf0; del buf0 # reuse 2023-01-11T21:05:10.5717753Z kernel_cpp_0(c_void_p(buf1.data_ptr())) 2023-01-11T21:05:10.5717810Z return (buf1, ) 2023-01-11T21:05:10.5717815Z 2023-01-11T21:05:10.5717832Z 2023-01-11T21:05:10.5717893Z if __name__ == "__main__": 2023-01-11T21:05:10.5718007Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.5718128Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.5718330Z arg0_1 = rand_strided((30, 10), (10, 1), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:05:10.5718524Z arg1_1 = rand_strided((30, ), (1, ), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:05:10.5718718Z arg2_1 = rand_strided((2, 10), (10, 1), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:05:10.5718839Z print_performance(lambda: call([arg0_1, arg1_1, arg2_1])) 2023-01-11T21:05:10.5718843Z 2023-01-11T21:05:10.5718848Z 2023-01-11T21:05:10.5718940Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.5718994Z import torch 2023-01-11T21:05:10.5719062Z import random 2023-01-11T21:05:10.5719175Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.5719293Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.5719298Z 2023-01-11T21:05:10.5719375Z aten = torch.ops.aten 2023-01-11T21:05:10.5719535Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.5719624Z async_compile = AsyncCompile() 2023-01-11T21:05:10.5719629Z 2023-01-11T21:05:10.5719633Z 2023-01-11T21:05:10.5719753Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.5719956Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.5720074Z extern "C" void kernel(bfloat16* __restrict__ in_out_ptr0) 2023-01-11T21:05:10.5720134Z { 2023-01-11T21:05:10.5720229Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.5720289Z { 2023-01-11T21:05:10.5720365Z #pragma omp for 2023-01-11T21:05:10.5720433Z for(long i0=0; i0<60; i0+=1) 2023-01-11T21:05:10.5720495Z { 2023-01-11T21:05:10.5720556Z { 2023-01-11T21:05:10.5720735Z { 2023-01-11T21:05:10.5720856Z auto tmp0 = static_cast(in_out_ptr0[i0]); 2023-01-11T21:05:10.5720964Z auto tmp1 = static_cast(tmp0); 2023-01-11T21:05:10.5721116Z auto tmp2 = std::exp(-tmp1); 2023-01-11T21:05:10.5721193Z auto tmp3 = 1 / (1 + tmp2); 2023-01-11T21:05:10.5721337Z auto tmp4 = tmp1 * tmp3; 2023-01-11T21:05:10.5721451Z auto tmp5 = static_cast(tmp4); 2023-01-11T21:05:10.5721541Z in_out_ptr0[i0] = tmp5; 2023-01-11T21:05:10.5721606Z } 2023-01-11T21:05:10.5721669Z } 2023-01-11T21:05:10.5721730Z } 2023-01-11T21:05:10.5721777Z } 2023-01-11T21:05:10.5721837Z } 2023-01-11T21:05:10.5721916Z ''') 2023-01-11T21:05:10.5721921Z 2023-01-11T21:05:10.5721925Z 2023-01-11T21:05:10.5722016Z async_compile.wait(globals()) 2023-01-11T21:05:10.5722088Z del async_compile 2023-01-11T21:05:10.5722093Z 2023-01-11T21:05:10.5722163Z def call(args): 2023-01-11T21:05:10.5722238Z arg0_1, arg1_1 = args 2023-01-11T21:05:10.5722309Z args.clear() 2023-01-11T21:05:10.5722501Z buf0 = empty_strided((2, 30), (30, 1), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:05:10.5722620Z aten.mm.out(arg1_1, as_strided(arg0_1, (10, 30), (1, 10)), out=buf0) 2023-01-11T21:05:10.5722688Z del arg0_1 2023-01-11T21:05:10.5722758Z del arg1_1 2023-01-11T21:05:10.5722845Z buf1 = buf0; del buf0 # reuse 2023-01-11T21:05:10.5722948Z kernel_cpp_0(c_void_p(buf1.data_ptr())) 2023-01-11T21:05:10.5723019Z return (buf1, ) 2023-01-11T21:05:10.5723024Z 2023-01-11T21:05:10.5723028Z 2023-01-11T21:05:10.5723089Z if __name__ == "__main__": 2023-01-11T21:05:10.5723202Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.5723324Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.5723524Z arg0_1 = rand_strided((30, 10), (10, 1), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:05:10.5723721Z arg1_1 = rand_strided((2, 10), (10, 1), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:05:10.5723835Z print_performance(lambda: call([arg0_1, arg1_1])) 2023-01-11T21:05:10.5723841Z 2023-01-11T21:05:10.5723908Z ok (60.904s) 2023-01-11T21:05:10.5724349Z test_linspace1_cpu (__main__.CpuTests) ... inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.5724474Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.5724719Z [2023-01-11 20:55:13,997] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 316 2023-01-11T21:05:10.5724979Z [2023-01-11 20:55:16,621] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 316 2023-01-11T21:05:10.5724985Z 2023-01-11T21:05:10.5725077Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.5725146Z import torch 2023-01-11T21:05:10.5725253Z import random 2023-01-11T21:05:10.5725369Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.5725487Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.5725492Z 2023-01-11T21:05:10.5725570Z aten = torch.ops.aten 2023-01-11T21:05:10.5725691Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.5725781Z async_compile = AsyncCompile() 2023-01-11T21:05:10.5725786Z 2023-01-11T21:05:10.5725791Z 2023-01-11T21:05:10.5725923Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.5726125Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.5726242Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:05:10.5726340Z float* __restrict__ out_ptr0) 2023-01-11T21:05:10.5726399Z { 2023-01-11T21:05:10.5726494Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.5726543Z { 2023-01-11T21:05:10.5726618Z #pragma omp for 2023-01-11T21:05:10.5726700Z for(long i0=0; i0<7; i0+=1) 2023-01-11T21:05:10.5726761Z { 2023-01-11T21:05:10.5726822Z { 2023-01-11T21:05:10.5726885Z { 2023-01-11T21:05:10.5727030Z auto tmp4 = in_ptr0[i0]; 2023-01-11T21:05:10.5727139Z auto tmp0 = static_cast(0.125); 2023-01-11T21:05:10.5727241Z auto tmp1 = static_cast(i0); 2023-01-11T21:05:10.5727332Z auto tmp2 = tmp0 * tmp1; 2023-01-11T21:05:10.5727421Z auto tmp3 = tmp2 + tmp0; 2023-01-11T21:05:10.5727508Z auto tmp5 = tmp3 + tmp4; 2023-01-11T21:05:10.5727594Z out_ptr0[i0] = tmp5; 2023-01-11T21:05:10.5727644Z } 2023-01-11T21:05:10.5727707Z } 2023-01-11T21:05:10.5727769Z } 2023-01-11T21:05:10.5727833Z } 2023-01-11T21:05:10.5727892Z } 2023-01-11T21:05:10.5727973Z ''') 2023-01-11T21:05:10.5727978Z 2023-01-11T21:05:10.5727984Z 2023-01-11T21:05:10.5728073Z async_compile.wait(globals()) 2023-01-11T21:05:10.5728130Z del async_compile 2023-01-11T21:05:10.5728150Z 2023-01-11T21:05:10.5728206Z def call(args): 2023-01-11T21:05:10.5728274Z arg0_1, = args 2023-01-11T21:05:10.5728347Z args.clear() 2023-01-11T21:05:10.5728543Z buf0 = empty_strided((1, 7), (7, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.5728674Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:05:10.5728741Z del arg0_1 2023-01-11T21:05:10.5728797Z return (buf0, ) 2023-01-11T21:05:10.5728815Z 2023-01-11T21:05:10.5728819Z 2023-01-11T21:05:10.5728880Z if __name__ == "__main__": 2023-01-11T21:05:10.5728992Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.5729112Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.5729306Z arg0_1 = rand_strided((1, 7), (7, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.5729410Z print_performance(lambda: call([arg0_1])) 2023-01-11T21:05:10.5729417Z 2023-01-11T21:05:10.5729482Z ok (2.688s) 2023-01-11T21:05:10.5729921Z test_linspace2_cpu (__main__.CpuTests) ... inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.5730045Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.5730306Z [2023-01-11 20:55:16,681] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 317 2023-01-11T21:05:10.5730557Z [2023-01-11 20:55:19,279] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 317 2023-01-11T21:05:10.5730562Z 2023-01-11T21:05:10.5730653Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.5730720Z import torch 2023-01-11T21:05:10.5730817Z import random 2023-01-11T21:05:10.5730930Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.5731047Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.5731053Z 2023-01-11T21:05:10.5731129Z aten = torch.ops.aten 2023-01-11T21:05:10.5731260Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.5731338Z async_compile = AsyncCompile() 2023-01-11T21:05:10.5731343Z 2023-01-11T21:05:10.5731347Z 2023-01-11T21:05:10.5731479Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.5731682Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.5731799Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:05:10.5731898Z float* __restrict__ out_ptr0) 2023-01-11T21:05:10.5731957Z { 2023-01-11T21:05:10.5732017Z { 2023-01-11T21:05:10.5732065Z { 2023-01-11T21:05:10.5732150Z auto tmp4 = in_ptr0[0]; 2023-01-11T21:05:10.5732252Z auto tmp0 = static_cast(0.0); 2023-01-11T21:05:10.5732350Z auto tmp1 = static_cast(0); 2023-01-11T21:05:10.5732432Z auto tmp2 = tmp0 * tmp1; 2023-01-11T21:05:10.5732536Z auto tmp3 = tmp2 + tmp1; 2023-01-11T21:05:10.5732617Z auto tmp5 = tmp3 + tmp4; 2023-01-11T21:05:10.5732680Z out_ptr0[0] = tmp5; 2023-01-11T21:05:10.5732740Z } 2023-01-11T21:05:10.5732799Z } 2023-01-11T21:05:10.5732856Z } 2023-01-11T21:05:10.5732933Z ''') 2023-01-11T21:05:10.5732938Z 2023-01-11T21:05:10.5732942Z 2023-01-11T21:05:10.5733029Z async_compile.wait(globals()) 2023-01-11T21:05:10.5733100Z del async_compile 2023-01-11T21:05:10.5733105Z 2023-01-11T21:05:10.5733160Z def call(args): 2023-01-11T21:05:10.5733229Z arg0_1, = args 2023-01-11T21:05:10.5733297Z args.clear() 2023-01-11T21:05:10.5733490Z buf0 = empty_strided((1, 1), (1, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.5733620Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:05:10.5733690Z del arg0_1 2023-01-11T21:05:10.5733760Z return (buf0, ) 2023-01-11T21:05:10.5733765Z 2023-01-11T21:05:10.5733769Z 2023-01-11T21:05:10.5733845Z if __name__ == "__main__": 2023-01-11T21:05:10.5733944Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.5734063Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.5734257Z arg0_1 = rand_strided((1, 1), (1, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.5734362Z print_performance(lambda: call([arg0_1])) 2023-01-11T21:05:10.5734367Z 2023-01-11T21:05:10.5734432Z ok (2.658s) 2023-01-11T21:05:10.5734877Z test_linspace3_cpu (__main__.CpuTests) ... inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.5735005Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.5735266Z [2023-01-11 20:55:19,333] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 318 2023-01-11T21:05:10.5735528Z [2023-01-11 20:55:19,336] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 318 2023-01-11T21:05:10.5735533Z 2023-01-11T21:05:10.5735612Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.5735680Z import torch 2023-01-11T21:05:10.5735748Z import random 2023-01-11T21:05:10.5735862Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.5735980Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.5735985Z 2023-01-11T21:05:10.5736061Z aten = torch.ops.aten 2023-01-11T21:05:10.5736192Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.5736269Z async_compile = AsyncCompile() 2023-01-11T21:05:10.5736317Z 2023-01-11T21:05:10.5736321Z 2023-01-11T21:05:10.5736394Z async_compile.wait(globals()) 2023-01-11T21:05:10.5736466Z del async_compile 2023-01-11T21:05:10.5736471Z 2023-01-11T21:05:10.5736540Z def call(args): 2023-01-11T21:05:10.5736733Z buf0 = empty_strided((0, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.5736805Z return (buf0, ) 2023-01-11T21:05:10.5736810Z 2023-01-11T21:05:10.5736814Z 2023-01-11T21:05:10.5736887Z if __name__ == "__main__": 2023-01-11T21:05:10.5737000Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.5737122Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.5737205Z print_performance(lambda: call([])) 2023-01-11T21:05:10.5737210Z 2023-01-11T21:05:10.5737274Z ok (0.053s) 2023-01-11T21:05:10.5737601Z test_list_clearing_cpu (__main__.CpuTests) ... [2023-01-11 20:55:19,383] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph None 2023-01-11T21:05:10.5737866Z [2023-01-11 20:55:22,057] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph None 2023-01-11T21:05:10.5737872Z 2023-01-11T21:05:10.5737961Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.5738060Z import torch 2023-01-11T21:05:10.5738129Z import random 2023-01-11T21:05:10.5738242Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.5738346Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.5738351Z 2023-01-11T21:05:10.5738427Z aten = torch.ops.aten 2023-01-11T21:05:10.5738643Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.5738740Z async_compile = AsyncCompile() 2023-01-11T21:05:10.5738745Z 2023-01-11T21:05:10.5738750Z 2023-01-11T21:05:10.5738884Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.5739089Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.5739211Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:05:10.5739319Z const float* __restrict__ in_ptr1, 2023-01-11T21:05:10.5739404Z float* __restrict__ out_ptr0) 2023-01-11T21:05:10.5739465Z { 2023-01-11T21:05:10.5739566Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.5739627Z { 2023-01-11T21:05:10.5739705Z #pragma omp for 2023-01-11T21:05:10.5739786Z for(long i0=0; i0<1; i0+=1) 2023-01-11T21:05:10.5739848Z { 2023-01-11T21:05:10.5739969Z auto tmp0 = at::vec::Vectorized::loadu(in_ptr0 + 16*i0); 2023-01-11T21:05:10.5740100Z auto tmp1 = at::vec::Vectorized::loadu(in_ptr1 + 16*i0); 2023-01-11T21:05:10.5740185Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:05:10.5740278Z tmp2.store(out_ptr0 + 16*i0); 2023-01-11T21:05:10.5740340Z } 2023-01-11T21:05:10.5740435Z #pragma omp for simd simdlen(8) 2023-01-11T21:05:10.5740517Z for(long i0=16; i0<25; i0+=1) 2023-01-11T21:05:10.5740567Z { 2023-01-11T21:05:10.5740650Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:05:10.5740729Z auto tmp1 = in_ptr1[i0]; 2023-01-11T21:05:10.5740811Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:05:10.5740891Z out_ptr0[i0] = tmp2; 2023-01-11T21:05:10.5740954Z } 2023-01-11T21:05:10.5741013Z } 2023-01-11T21:05:10.5741058Z } 2023-01-11T21:05:10.5741135Z ''') 2023-01-11T21:05:10.5741140Z 2023-01-11T21:05:10.5741144Z 2023-01-11T21:05:10.5741231Z async_compile.wait(globals()) 2023-01-11T21:05:10.5741305Z del async_compile 2023-01-11T21:05:10.5741310Z 2023-01-11T21:05:10.5741382Z def call(args): 2023-01-11T21:05:10.5741450Z x_1, y_1 = args 2023-01-11T21:05:10.5741523Z args.clear() 2023-01-11T21:05:10.5741702Z buf0 = empty_strided((5, 5), (5, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.5741857Z kernel_cpp_0(c_void_p(x_1.data_ptr()), c_void_p(y_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:05:10.5741924Z del x_1 2023-01-11T21:05:10.5742025Z del y_1 2023-01-11T21:05:10.5742219Z buf1 = empty_strided((5, 5), (5, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.5742308Z aten.mm.out(buf0, buf0, out=buf1) 2023-01-11T21:05:10.5742381Z return (buf1, ) 2023-01-11T21:05:10.5742388Z 2023-01-11T21:05:10.5742392Z 2023-01-11T21:05:10.5742466Z if __name__ == "__main__": 2023-01-11T21:05:10.5742565Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.5742687Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.5742872Z x_1 = rand_strided((5, 5), (5, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.5743057Z y_1 = rand_strided((5, 5), (5, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.5743166Z print_performance(lambda: call([x_1, y_1])) 2023-01-11T21:05:10.5743171Z 2023-01-11T21:05:10.5743237Z ok (2.721s) 2023-01-11T21:05:10.5743709Z test_log1p_cpu (__main__.CpuTests) ... inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.5743840Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.5744099Z [2023-01-11 20:55:22,094] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 319 2023-01-11T21:05:10.5744346Z [2023-01-11 20:55:24,769] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 319 2023-01-11T21:05:10.5744744Z inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.5744867Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.5745123Z [2023-01-11 20:55:24,825] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 320 2023-01-11T21:05:10.5745387Z [2023-01-11 20:55:27,467] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 320 2023-01-11T21:05:10.5745784Z inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.5745909Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.5746165Z [2023-01-11 20:55:27,502] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 321 2023-01-11T21:05:10.5746426Z [2023-01-11 20:55:30,130] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 321 2023-01-11T21:05:10.5746827Z inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.5746953Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.5747193Z [2023-01-11 20:55:30,166] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 322 2023-01-11T21:05:10.5747455Z [2023-01-11 20:55:32,817] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 322 2023-01-11T21:05:10.5747850Z inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.5748006Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.5748262Z [2023-01-11 20:55:32,853] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 323 2023-01-11T21:05:10.5748268Z 2023-01-11T21:05:10.5748362Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.5748431Z import torch 2023-01-11T21:05:10.5748500Z import random 2023-01-11T21:05:10.5748615Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.5748722Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.5748739Z 2023-01-11T21:05:10.5748803Z aten = torch.ops.aten 2023-01-11T21:05:10.5748934Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.5749024Z async_compile = AsyncCompile() 2023-01-11T21:05:10.5749029Z 2023-01-11T21:05:10.5749033Z 2023-01-11T21:05:10.5749168Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.5749371Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.5749524Z extern "C" void kernel(const half* __restrict__ in_ptr0, 2023-01-11T21:05:10.5749624Z half* __restrict__ out_ptr0, 2023-01-11T21:05:10.5749704Z half* __restrict__ out_ptr1) 2023-01-11T21:05:10.5749764Z { 2023-01-11T21:05:10.5749859Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.5749919Z { 2023-01-11T21:05:10.5749993Z #pragma omp for 2023-01-11T21:05:10.5750074Z for(long i0=0; i0<64; i0+=1) 2023-01-11T21:05:10.5750136Z { 2023-01-11T21:05:10.5750186Z { 2023-01-11T21:05:10.5750248Z { 2023-01-11T21:05:10.5750362Z auto tmp0 = static_cast(in_ptr0[i0]); 2023-01-11T21:05:10.5750465Z auto tmp1 = std::log1p(tmp0); 2023-01-11T21:05:10.5750566Z auto tmp2 = static_cast(2); 2023-01-11T21:05:10.5750659Z auto tmp3 = tmp1 * tmp2; 2023-01-11T21:05:10.5750742Z out_ptr0[i0] = tmp1; 2023-01-11T21:05:10.5750815Z out_ptr1[i0] = tmp3; 2023-01-11T21:05:10.5750878Z } 2023-01-11T21:05:10.5750940Z } 2023-01-11T21:05:10.5751001Z } 2023-01-11T21:05:10.5751060Z } 2023-01-11T21:05:10.5751118Z } 2023-01-11T21:05:10.5751195Z ''') 2023-01-11T21:05:10.5751200Z 2023-01-11T21:05:10.5751204Z 2023-01-11T21:05:10.5751280Z async_compile.wait(globals()) 2023-01-11T21:05:10.5751351Z del async_compile 2023-01-11T21:05:10.5751356Z 2023-01-11T21:05:10.5751424Z def call(args): 2023-01-11T21:05:10.5751491Z arg0_1, = args 2023-01-11T21:05:10.5751562Z args.clear() 2023-01-11T21:05:10.5751756Z buf0 = empty_strided((64, ), (1, ), device='cpu', dtype=torch.float16) 2023-01-11T21:05:10.5751945Z buf1 = empty_strided((64, ), (1, ), device='cpu', dtype=torch.float16) 2023-01-11T21:05:10.5752099Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(buf0.data_ptr()), c_void_p(buf1.data_ptr())) 2023-01-11T21:05:10.5752165Z del arg0_1 2023-01-11T21:05:10.5752241Z return (buf0, buf1, ) 2023-01-11T21:05:10.5752249Z 2023-01-11T21:05:10.5752253Z 2023-01-11T21:05:10.5752326Z if __name__ == "__main__": 2023-01-11T21:05:10.5752440Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.5752561Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.5752751Z arg0_1 = rand_strided((64, ), (1, ), device='cpu', dtype=torch.float16) 2023-01-11T21:05:10.5752856Z print_performance(lambda: call([arg0_1])) 2023-01-11T21:05:10.5752862Z 2023-01-11T21:05:10.5752866Z 2023-01-11T21:05:10.5752958Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.5753014Z import torch 2023-01-11T21:05:10.5753083Z import random 2023-01-11T21:05:10.5753195Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.5753313Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.5753348Z 2023-01-11T21:05:10.5753424Z aten = torch.ops.aten 2023-01-11T21:05:10.5753557Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.5753650Z async_compile = AsyncCompile() 2023-01-11T21:05:10.5753655Z 2023-01-11T21:05:10.5753659Z 2023-01-11T21:05:10.5753791Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.5753980Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.5754097Z extern "C" void kernel(const half* __restrict__ in_ptr0, 2023-01-11T21:05:10.5754192Z half* __restrict__ out_ptr0, 2023-01-11T21:05:10.5754285Z half* __restrict__ out_ptr1) 2023-01-11T21:05:10.5754345Z { 2023-01-11T21:05:10.5754440Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.5754500Z { 2023-01-11T21:05:10.5754562Z #pragma omp for 2023-01-11T21:05:10.5754644Z for(long i0=0; i0<201; i0+=1) 2023-01-11T21:05:10.5754707Z { 2023-01-11T21:05:10.5754770Z { 2023-01-11T21:05:10.5754832Z { 2023-01-11T21:05:10.5754946Z auto tmp0 = static_cast(in_ptr0[i0]); 2023-01-11T21:05:10.5755074Z auto tmp1 = std::log1p(tmp0); 2023-01-11T21:05:10.5755164Z auto tmp2 = static_cast(2); 2023-01-11T21:05:10.5755254Z auto tmp3 = tmp1 * tmp2; 2023-01-11T21:05:10.5755338Z out_ptr0[i0] = tmp1; 2023-01-11T21:05:10.5755420Z out_ptr1[i0] = tmp3; 2023-01-11T21:05:10.5755484Z } 2023-01-11T21:05:10.5755545Z } 2023-01-11T21:05:10.5755593Z } 2023-01-11T21:05:10.5755652Z } 2023-01-11T21:05:10.5755709Z } 2023-01-11T21:05:10.5755785Z ''') 2023-01-11T21:05:10.5755790Z 2023-01-11T21:05:10.5755795Z 2023-01-11T21:05:10.5755882Z async_compile.wait(globals()) 2023-01-11T21:05:10.5755953Z del async_compile 2023-01-11T21:05:10.5755959Z 2023-01-11T21:05:10.5756028Z def call(args): 2023-01-11T21:05:10.5756096Z arg0_1, = args 2023-01-11T21:05:10.5756152Z args.clear() 2023-01-11T21:05:10.5756346Z buf0 = empty_strided((201, ), (1, ), device='cpu', dtype=torch.float16) 2023-01-11T21:05:10.5756538Z buf1 = empty_strided((201, ), (1, ), device='cpu', dtype=torch.float16) 2023-01-11T21:05:10.5756697Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(buf0.data_ptr()), c_void_p(buf1.data_ptr())) 2023-01-11T21:05:10.5756764Z del arg0_1 2023-01-11T21:05:10.5756840Z return (buf0, buf1, ) 2023-01-11T21:05:10.5756845Z 2023-01-11T21:05:10.5756849Z 2023-01-11T21:05:10.5756923Z if __name__ == "__main__": 2023-01-11T21:05:10.5757023Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.5757145Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.5757337Z arg0_1 = rand_strided((201, ), (1, ), device='cpu', dtype=torch.float16) 2023-01-11T21:05:10.5757443Z print_performance(lambda: call([arg0_1])) 2023-01-11T21:05:10.5757450Z 2023-01-11T21:05:10.5757454Z 2023-01-11T21:05:10.5757545Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.5757614Z import torch 2023-01-11T21:05:10.5757682Z import random 2023-01-11T21:05:10.5757798Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.5757904Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.5757921Z 2023-01-11T21:05:10.5757985Z aten = torch.ops.aten 2023-01-11T21:05:10.5758116Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.5758205Z async_compile = AsyncCompile() 2023-01-11T21:05:10.5758211Z 2023-01-11T21:05:10.5758215Z 2023-01-11T21:05:10.5758346Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.5758548Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.5758665Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:05:10.5758763Z float* __restrict__ out_ptr0, 2023-01-11T21:05:10.5758877Z float* __restrict__ out_ptr1) 2023-01-11T21:05:10.5758936Z { 2023-01-11T21:05:10.5759032Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.5759093Z { 2023-01-11T21:05:10.5759168Z #pragma omp for 2023-01-11T21:05:10.5759251Z for(long i0=0; i0<4; i0+=1) 2023-01-11T21:05:10.5759312Z { 2023-01-11T21:05:10.5759431Z auto tmp0 = at::vec::Vectorized::loadu(in_ptr0 + 16*i0); 2023-01-11T21:05:10.5759515Z auto tmp1 = tmp0.log1p(); 2023-01-11T21:05:10.5759646Z auto tmp2 = at::vec::Vectorized(static_cast(2)); 2023-01-11T21:05:10.5759730Z auto tmp3 = tmp1 * tmp2; 2023-01-11T21:05:10.5759821Z tmp1.store(out_ptr0 + 16*i0); 2023-01-11T21:05:10.5759910Z tmp3.store(out_ptr1 + 16*i0); 2023-01-11T21:05:10.5759971Z } 2023-01-11T21:05:10.5760051Z #pragma omp for simd simdlen(8) 2023-01-11T21:05:10.5760132Z for(long i0=64; i0<64; i0+=1) 2023-01-11T21:05:10.5760193Z { 2023-01-11T21:05:10.5760275Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:05:10.5760365Z auto tmp1 = std::log1p(tmp0); 2023-01-11T21:05:10.5760491Z auto tmp2 = static_cast(2); 2023-01-11T21:05:10.5760576Z auto tmp3 = tmp1 * tmp2; 2023-01-11T21:05:10.5760778Z out_ptr0[i0] = tmp1; 2023-01-11T21:05:10.5760857Z out_ptr1[i0] = tmp3; 2023-01-11T21:05:10.5760919Z } 2023-01-11T21:05:10.5760980Z } 2023-01-11T21:05:10.5761040Z } 2023-01-11T21:05:10.5761120Z ''') 2023-01-11T21:05:10.5761125Z 2023-01-11T21:05:10.5761129Z 2023-01-11T21:05:10.5761219Z async_compile.wait(globals()) 2023-01-11T21:05:10.5761278Z del async_compile 2023-01-11T21:05:10.5761296Z 2023-01-11T21:05:10.5761352Z def call(args): 2023-01-11T21:05:10.5761421Z arg0_1, = args 2023-01-11T21:05:10.5761491Z args.clear() 2023-01-11T21:05:10.5761687Z buf0 = empty_strided((64, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.5761878Z buf1 = empty_strided((64, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.5762041Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(buf0.data_ptr()), c_void_p(buf1.data_ptr())) 2023-01-11T21:05:10.5762110Z del arg0_1 2023-01-11T21:05:10.5762172Z return (buf0, buf1, ) 2023-01-11T21:05:10.5762177Z 2023-01-11T21:05:10.5762181Z 2023-01-11T21:05:10.5762255Z if __name__ == "__main__": 2023-01-11T21:05:10.5762371Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.5762493Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.5762688Z arg0_1 = rand_strided((64, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.5762794Z print_performance(lambda: call([arg0_1])) 2023-01-11T21:05:10.5762800Z 2023-01-11T21:05:10.5762804Z 2023-01-11T21:05:10.5762894Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.5762962Z import torch 2023-01-11T21:05:10.5763018Z import random 2023-01-11T21:05:10.5763135Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.5763252Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.5763257Z 2023-01-11T21:05:10.5763334Z aten = torch.ops.aten 2023-01-11T21:05:10.5763468Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.5763559Z async_compile = AsyncCompile() 2023-01-11T21:05:10.5763564Z 2023-01-11T21:05:10.5763568Z 2023-01-11T21:05:10.5763698Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.5763902Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.5764007Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:05:10.5764106Z float* __restrict__ out_ptr0, 2023-01-11T21:05:10.5764200Z float* __restrict__ out_ptr1) 2023-01-11T21:05:10.5764259Z { 2023-01-11T21:05:10.5764354Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.5764471Z { 2023-01-11T21:05:10.5764549Z #pragma omp for 2023-01-11T21:05:10.5764616Z for(long i0=0; i0<12; i0+=1) 2023-01-11T21:05:10.5764679Z { 2023-01-11T21:05:10.5764813Z auto tmp0 = at::vec::Vectorized::loadu(in_ptr0 + 16*i0); 2023-01-11T21:05:10.5764901Z auto tmp1 = tmp0.log1p(); 2023-01-11T21:05:10.5765034Z auto tmp2 = at::vec::Vectorized(static_cast(2)); 2023-01-11T21:05:10.5765119Z auto tmp3 = tmp1 * tmp2; 2023-01-11T21:05:10.5765220Z tmp1.store(out_ptr0 + 16*i0); 2023-01-11T21:05:10.5765297Z tmp3.store(out_ptr1 + 16*i0); 2023-01-11T21:05:10.5765360Z } 2023-01-11T21:05:10.5765455Z #pragma omp for simd simdlen(8) 2023-01-11T21:05:10.5765538Z for(long i0=192; i0<201; i0+=1) 2023-01-11T21:05:10.5765601Z { 2023-01-11T21:05:10.5765687Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:05:10.5765780Z auto tmp1 = std::log1p(tmp0); 2023-01-11T21:05:10.5765868Z auto tmp2 = static_cast(2); 2023-01-11T21:05:10.5765951Z auto tmp3 = tmp1 * tmp2; 2023-01-11T21:05:10.5766031Z out_ptr0[i0] = tmp1; 2023-01-11T21:05:10.5766157Z out_ptr1[i0] = tmp3; 2023-01-11T21:05:10.5766219Z } 2023-01-11T21:05:10.5766278Z } 2023-01-11T21:05:10.5766336Z } 2023-01-11T21:05:10.5766401Z ''') 2023-01-11T21:05:10.5766406Z 2023-01-11T21:05:10.5766410Z 2023-01-11T21:05:10.5766498Z async_compile.wait(globals()) 2023-01-11T21:05:10.5766568Z del async_compile 2023-01-11T21:05:10.5766573Z 2023-01-11T21:05:10.5766643Z def call(args): 2023-01-11T21:05:10.5766710Z arg0_1, = args 2023-01-11T21:05:10.5766779Z args.clear() 2023-01-11T21:05:10.5766974Z buf0 = empty_strided((201, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.5767155Z buf1 = empty_strided((201, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.5767317Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(buf0.data_ptr()), c_void_p(buf1.data_ptr())) 2023-01-11T21:05:10.5767388Z del arg0_1 2023-01-11T21:05:10.5767465Z return (buf0, buf1, ) 2023-01-11T21:05:10.5767470Z 2023-01-11T21:05:10.5767474Z 2023-01-11T21:05:10.5767552Z if __name__ == "__main__": 2023-01-11T21:05:10.5767668Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.5767791Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.5767987Z arg0_1 = rand_strided((201, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.5768080Z print_performance(lambda: call([arg0_1])) 2023-01-11T21:05:10.5768099Z 2023-01-11T21:05:10.5768103Z 2023-01-11T21:05:10.5768182Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.5768252Z import torch 2023-01-11T21:05:10.5768323Z import random 2023-01-11T21:05:10.5768437Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.5768556Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.5768561Z 2023-01-11T21:05:10.5768639Z aten = torch.ops.aten 2023-01-11T21:05:10.5768770Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.5768848Z async_compile = AsyncCompile() 2023-01-11T21:05:10.5768853Z 2023-01-11T21:05:10.5768870Z 2023-01-11T21:05:10.5768992Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.5769195Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.5769314Z extern "C" void kernel(const double* __restrict__ in_ptr0, 2023-01-11T21:05:10.5769414Z double* __restrict__ out_ptr0, 2023-01-11T21:05:10.5769512Z double* __restrict__ out_ptr1) 2023-01-11T21:05:10.5769571Z { 2023-01-11T21:05:10.5769667Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.5769715Z { 2023-01-11T21:05:10.5769791Z #pragma omp for 2023-01-11T21:05:10.5769871Z for(long i0=0; i0<64; i0+=1) 2023-01-11T21:05:10.5769932Z { 2023-01-11T21:05:10.5769994Z { 2023-01-11T21:05:10.5770090Z { 2023-01-11T21:05:10.5770169Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:05:10.5770270Z auto tmp1 = std::log1p(tmp0); 2023-01-11T21:05:10.5770375Z auto tmp2 = static_cast(2); 2023-01-11T21:05:10.5770465Z auto tmp3 = tmp1 * tmp2; 2023-01-11T21:05:10.5770549Z out_ptr0[i0] = tmp1; 2023-01-11T21:05:10.5770631Z out_ptr1[i0] = tmp3; 2023-01-11T21:05:10.5770694Z } 2023-01-11T21:05:10.5770756Z } 2023-01-11T21:05:10.5770805Z } 2023-01-11T21:05:10.5770869Z } 2023-01-11T21:05:10.5770927Z } 2023-01-11T21:05:10.5771004Z ''') 2023-01-11T21:05:10.5771009Z 2023-01-11T21:05:10.5771013Z 2023-01-11T21:05:10.5771101Z async_compile.wait(globals()) 2023-01-11T21:05:10.5771171Z del async_compile 2023-01-11T21:05:10.5771176Z 2023-01-11T21:05:10.5771244Z def call(args): 2023-01-11T21:05:10.5771300Z arg0_1, = args 2023-01-11T21:05:10.5771371Z args.clear() 2023-01-11T21:05:10.5771563Z buf0 = empty_strided((64, ), (1, ), device='cpu', dtype=torch.float64) 2023-01-11T21:05:10.5771754Z buf1 = empty_strided((64, ), (1, ), device='cpu', dtype=torch.float64) 2023-01-11T21:05:10.5771946Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(buf0.data_ptr()), c_void_p(buf1.data_ptr())) 2023-01-11T21:05:10.5772014Z del arg0_1 2023-01-11T21:05:10.5772089Z return (buf0, buf1, ) 2023-01-11T21:05:10.5772094Z 2023-01-11T21:05:10.5772099Z 2023-01-11T21:05:10.5772160Z if __name__ == "__main__": 2023-01-11T21:05:10.5772273Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.5772394Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.5772585Z arg0_1 = rand_strided((64, ), (1, ), device='cpu', dtype=torch.float64) 2023-01-11T21:05:10.5772692Z print_performance(lambda: call([arg0_1])) 2023-01-11T21:05:10.5772959Z [2023-01-11 20:55:35,432] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 323 2023-01-11T21:05:10.5773365Z inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.5773493Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.5773751Z [2023-01-11 20:55:35,468] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 324 2023-01-11T21:05:10.5774000Z [2023-01-11 20:55:38,084] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 324 2023-01-11T21:05:10.5774398Z inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.5774524Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.5774782Z [2023-01-11 20:55:38,121] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 325 2023-01-11T21:05:10.5775045Z [2023-01-11 20:55:40,797] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 325 2023-01-11T21:05:10.5775443Z inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.5775567Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.5775821Z [2023-01-11 20:55:40,839] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 326 2023-01-11T21:05:10.5776112Z [2023-01-11 20:55:43,440] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 326 2023-01-11T21:05:10.5776511Z inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.5776637Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.5776890Z [2023-01-11 20:55:43,476] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 327 2023-01-11T21:05:10.5777136Z [2023-01-11 20:55:46,099] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 327 2023-01-11T21:05:10.5777562Z inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.5777690Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.5777944Z [2023-01-11 20:55:46,135] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 328 2023-01-11T21:05:10.5777951Z 2023-01-11T21:05:10.5777956Z 2023-01-11T21:05:10.5778049Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.5778120Z import torch 2023-01-11T21:05:10.5778189Z import random 2023-01-11T21:05:10.5778305Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.5778426Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.5778431Z 2023-01-11T21:05:10.5778578Z aten = torch.ops.aten 2023-01-11T21:05:10.5778716Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.5778810Z async_compile = AsyncCompile() 2023-01-11T21:05:10.5778815Z 2023-01-11T21:05:10.5778820Z 2023-01-11T21:05:10.5778955Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.5779162Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.5779287Z extern "C" void kernel(const double* __restrict__ in_ptr0, 2023-01-11T21:05:10.5779388Z double* __restrict__ out_ptr0, 2023-01-11T21:05:10.5779484Z double* __restrict__ out_ptr1) 2023-01-11T21:05:10.5779530Z { 2023-01-11T21:05:10.5779626Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.5779688Z { 2023-01-11T21:05:10.5779765Z #pragma omp for 2023-01-11T21:05:10.5779849Z for(long i0=0; i0<201; i0+=1) 2023-01-11T21:05:10.5779915Z { 2023-01-11T21:05:10.5779978Z { 2023-01-11T21:05:10.5780029Z { 2023-01-11T21:05:10.5780125Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:05:10.5780226Z auto tmp1 = std::log1p(tmp0); 2023-01-11T21:05:10.5780331Z auto tmp2 = static_cast(2); 2023-01-11T21:05:10.5780424Z auto tmp3 = tmp1 * tmp2; 2023-01-11T21:05:10.5780509Z out_ptr0[i0] = tmp1; 2023-01-11T21:05:10.5780593Z out_ptr1[i0] = tmp3; 2023-01-11T21:05:10.5780643Z } 2023-01-11T21:05:10.5780707Z } 2023-01-11T21:05:10.5780767Z } 2023-01-11T21:05:10.5780826Z } 2023-01-11T21:05:10.5780885Z } 2023-01-11T21:05:10.5780962Z ''') 2023-01-11T21:05:10.5780967Z 2023-01-11T21:05:10.5780971Z 2023-01-11T21:05:10.5781060Z async_compile.wait(globals()) 2023-01-11T21:05:10.5781117Z del async_compile 2023-01-11T21:05:10.5781122Z 2023-01-11T21:05:10.5781189Z def call(args): 2023-01-11T21:05:10.5781256Z arg0_1, = args 2023-01-11T21:05:10.5781326Z args.clear() 2023-01-11T21:05:10.5781522Z buf0 = empty_strided((201, ), (1, ), device='cpu', dtype=torch.float64) 2023-01-11T21:05:10.5781746Z buf1 = empty_strided((201, ), (1, ), device='cpu', dtype=torch.float64) 2023-01-11T21:05:10.5781908Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(buf0.data_ptr()), c_void_p(buf1.data_ptr())) 2023-01-11T21:05:10.5781964Z del arg0_1 2023-01-11T21:05:10.5782039Z return (buf0, buf1, ) 2023-01-11T21:05:10.5782044Z 2023-01-11T21:05:10.5782048Z 2023-01-11T21:05:10.5782121Z if __name__ == "__main__": 2023-01-11T21:05:10.5782233Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.5782353Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.5782545Z arg0_1 = rand_strided((201, ), (1, ), device='cpu', dtype=torch.float64) 2023-01-11T21:05:10.5782650Z print_performance(lambda: call([arg0_1])) 2023-01-11T21:05:10.5782655Z 2023-01-11T21:05:10.5782659Z 2023-01-11T21:05:10.5782750Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.5782818Z import torch 2023-01-11T21:05:10.5782876Z import random 2023-01-11T21:05:10.5782987Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.5783107Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.5783112Z 2023-01-11T21:05:10.5783243Z aten = torch.ops.aten 2023-01-11T21:05:10.5783376Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.5783465Z async_compile = AsyncCompile() 2023-01-11T21:05:10.5783470Z 2023-01-11T21:05:10.5783474Z 2023-01-11T21:05:10.5783606Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.5783795Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.5783910Z extern "C" void kernel(const int* __restrict__ in_ptr0, 2023-01-11T21:05:10.5784027Z float* __restrict__ out_ptr0, 2023-01-11T21:05:10.5784158Z float* __restrict__ out_ptr1) 2023-01-11T21:05:10.5784234Z { 2023-01-11T21:05:10.5784376Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.5784466Z { 2023-01-11T21:05:10.5784552Z #pragma omp for 2023-01-11T21:05:10.5784657Z for(long i0=0; i0<64; i0+=1) 2023-01-11T21:05:10.5784734Z { 2023-01-11T21:05:10.5784819Z { 2023-01-11T21:05:10.5784908Z { 2023-01-11T21:05:10.5785029Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:05:10.5785190Z auto tmp1 = static_cast(tmp0); 2023-01-11T21:05:10.5785307Z auto tmp2 = std::log1p(tmp1); 2023-01-11T21:05:10.5785437Z auto tmp3 = static_cast(2); 2023-01-11T21:05:10.5785549Z auto tmp4 = tmp2 * tmp3; 2023-01-11T21:05:10.5785658Z out_ptr0[i0] = tmp2; 2023-01-11T21:05:10.5785778Z out_ptr1[i0] = tmp4; 2023-01-11T21:05:10.5785890Z } 2023-01-11T21:05:10.5785978Z } 2023-01-11T21:05:10.5786048Z } 2023-01-11T21:05:10.5786143Z } 2023-01-11T21:05:10.5786230Z } 2023-01-11T21:05:10.5786358Z ''') 2023-01-11T21:05:10.5786367Z 2023-01-11T21:05:10.5786372Z 2023-01-11T21:05:10.5786490Z async_compile.wait(globals()) 2023-01-11T21:05:10.5786594Z del async_compile 2023-01-11T21:05:10.5786603Z 2023-01-11T21:05:10.5786728Z def call(args): 2023-01-11T21:05:10.5786842Z arg0_1, = args 2023-01-11T21:05:10.5786943Z args.clear() 2023-01-11T21:05:10.5787238Z buf0 = empty_strided((64, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.5787501Z buf1 = empty_strided((64, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.5787714Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(buf0.data_ptr()), c_void_p(buf1.data_ptr())) 2023-01-11T21:05:10.5787806Z del arg0_1 2023-01-11T21:05:10.5787919Z return (buf0, buf1, ) 2023-01-11T21:05:10.5787927Z 2023-01-11T21:05:10.5787934Z 2023-01-11T21:05:10.5788053Z if __name__ == "__main__": 2023-01-11T21:05:10.5788222Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.5788483Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.5788836Z arg0_1 = rand_strided((64, ), (1, ), device='cpu', dtype=torch.int32) 2023-01-11T21:05:10.5789028Z print_performance(lambda: call([arg0_1])) 2023-01-11T21:05:10.5789036Z 2023-01-11T21:05:10.5789043Z 2023-01-11T21:05:10.5789189Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.5789300Z import torch 2023-01-11T21:05:10.5789415Z import random 2023-01-11T21:05:10.5789602Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.5789791Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.5789800Z 2023-01-11T21:05:10.5789933Z aten = torch.ops.aten 2023-01-11T21:05:10.5790174Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.5790336Z async_compile = AsyncCompile() 2023-01-11T21:05:10.5790345Z 2023-01-11T21:05:10.5790351Z 2023-01-11T21:05:10.5790608Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.5790930Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.5791143Z extern "C" void kernel(const int* __restrict__ in_ptr0, 2023-01-11T21:05:10.5791396Z float* __restrict__ out_ptr0, 2023-01-11T21:05:10.5791547Z float* __restrict__ out_ptr1) 2023-01-11T21:05:10.5791655Z { 2023-01-11T21:05:10.5791830Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.5791938Z { 2023-01-11T21:05:10.5792072Z #pragma omp for 2023-01-11T21:05:10.5792223Z for(long i0=0; i0<201; i0+=1) 2023-01-11T21:05:10.5792331Z { 2023-01-11T21:05:10.5792420Z { 2023-01-11T21:05:10.5792519Z { 2023-01-11T21:05:10.5792647Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:05:10.5792844Z auto tmp1 = static_cast(tmp0); 2023-01-11T21:05:10.5793042Z auto tmp2 = std::log1p(tmp1); 2023-01-11T21:05:10.5793235Z auto tmp3 = static_cast(2); 2023-01-11T21:05:10.5793393Z auto tmp4 = tmp2 * tmp3; 2023-01-11T21:05:10.5793510Z out_ptr0[i0] = tmp2; 2023-01-11T21:05:10.5793586Z out_ptr1[i0] = tmp4; 2023-01-11T21:05:10.5793653Z } 2023-01-11T21:05:10.5793715Z } 2023-01-11T21:05:10.5793775Z } 2023-01-11T21:05:10.5793835Z } 2023-01-11T21:05:10.5793892Z } 2023-01-11T21:05:10.5793991Z ''') 2023-01-11T21:05:10.5793998Z 2023-01-11T21:05:10.5794002Z 2023-01-11T21:05:10.5794079Z async_compile.wait(globals()) 2023-01-11T21:05:10.5794149Z del async_compile 2023-01-11T21:05:10.5794154Z 2023-01-11T21:05:10.5794222Z def call(args): 2023-01-11T21:05:10.5794288Z arg0_1, = args 2023-01-11T21:05:10.5794357Z args.clear() 2023-01-11T21:05:10.5794553Z buf0 = empty_strided((201, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.5794742Z buf1 = empty_strided((201, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.5794907Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(buf0.data_ptr()), c_void_p(buf1.data_ptr())) 2023-01-11T21:05:10.5794961Z del arg0_1 2023-01-11T21:05:10.5795038Z return (buf0, buf1, ) 2023-01-11T21:05:10.5795043Z 2023-01-11T21:05:10.5795049Z 2023-01-11T21:05:10.5795124Z if __name__ == "__main__": 2023-01-11T21:05:10.5795236Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.5795357Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.5795550Z arg0_1 = rand_strided((201, ), (1, ), device='cpu', dtype=torch.int32) 2023-01-11T21:05:10.5795655Z print_performance(lambda: call([arg0_1])) 2023-01-11T21:05:10.5795660Z 2023-01-11T21:05:10.5795664Z 2023-01-11T21:05:10.5795756Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.5795811Z import torch 2023-01-11T21:05:10.5795880Z import random 2023-01-11T21:05:10.5795994Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.5796112Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.5796180Z 2023-01-11T21:05:10.5796258Z aten = torch.ops.aten 2023-01-11T21:05:10.5796391Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.5796483Z async_compile = AsyncCompile() 2023-01-11T21:05:10.5796488Z 2023-01-11T21:05:10.5796492Z 2023-01-11T21:05:10.5796625Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.5796818Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.5796936Z extern "C" void kernel(const long* __restrict__ in_ptr0, 2023-01-11T21:05:10.5797037Z float* __restrict__ out_ptr0, 2023-01-11T21:05:10.5797133Z float* __restrict__ out_ptr1) 2023-01-11T21:05:10.5797194Z { 2023-01-11T21:05:10.5797290Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.5797354Z { 2023-01-11T21:05:10.5797418Z #pragma omp for 2023-01-11T21:05:10.5797499Z for(long i0=0; i0<64; i0+=1) 2023-01-11T21:05:10.5797564Z { 2023-01-11T21:05:10.5797626Z { 2023-01-11T21:05:10.5797688Z { 2023-01-11T21:05:10.5797779Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:05:10.5797907Z auto tmp1 = static_cast(tmp0); 2023-01-11T21:05:10.5798010Z auto tmp2 = std::log1p(tmp1); 2023-01-11T21:05:10.5798111Z auto tmp3 = static_cast(2); 2023-01-11T21:05:10.5798201Z auto tmp4 = tmp2 * tmp3; 2023-01-11T21:05:10.5798285Z out_ptr0[i0] = tmp2; 2023-01-11T21:05:10.5798367Z out_ptr1[i0] = tmp4; 2023-01-11T21:05:10.5798433Z } 2023-01-11T21:05:10.5798496Z } 2023-01-11T21:05:10.5798543Z } 2023-01-11T21:05:10.5798602Z } 2023-01-11T21:05:10.5798661Z } 2023-01-11T21:05:10.5798738Z ''') 2023-01-11T21:05:10.5798744Z 2023-01-11T21:05:10.5798748Z 2023-01-11T21:05:10.5798835Z async_compile.wait(globals()) 2023-01-11T21:05:10.5798908Z del async_compile 2023-01-11T21:05:10.5798913Z 2023-01-11T21:05:10.5798982Z def call(args): 2023-01-11T21:05:10.5799037Z arg0_1, = args 2023-01-11T21:05:10.5799107Z args.clear() 2023-01-11T21:05:10.5799305Z buf0 = empty_strided((64, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.5799495Z buf1 = empty_strided((64, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.5799659Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(buf0.data_ptr()), c_void_p(buf1.data_ptr())) 2023-01-11T21:05:10.5799727Z del arg0_1 2023-01-11T21:05:10.5799803Z return (buf0, buf1, ) 2023-01-11T21:05:10.5799808Z 2023-01-11T21:05:10.5799812Z 2023-01-11T21:05:10.5799887Z if __name__ == "__main__": 2023-01-11T21:05:10.5799987Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.5800108Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.5800295Z arg0_1 = rand_strided((64, ), (1, ), device='cpu', dtype=torch.int64) 2023-01-11T21:05:10.5800403Z print_performance(lambda: call([arg0_1])) 2023-01-11T21:05:10.5800408Z 2023-01-11T21:05:10.5800412Z 2023-01-11T21:05:10.5800502Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.5800569Z import torch 2023-01-11T21:05:10.5800766Z import random 2023-01-11T21:05:10.5800868Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.5800987Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.5800992Z 2023-01-11T21:05:10.5801069Z aten = torch.ops.aten 2023-01-11T21:05:10.5801202Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.5801294Z async_compile = AsyncCompile() 2023-01-11T21:05:10.5801299Z 2023-01-11T21:05:10.5801303Z 2023-01-11T21:05:10.5801437Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.5801641Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.5801758Z extern "C" void kernel(const long* __restrict__ in_ptr0, 2023-01-11T21:05:10.5801909Z float* __restrict__ out_ptr0, 2023-01-11T21:05:10.5802006Z float* __restrict__ out_ptr1) 2023-01-11T21:05:10.5802065Z { 2023-01-11T21:05:10.5802162Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.5802226Z { 2023-01-11T21:05:10.5802301Z #pragma omp for 2023-01-11T21:05:10.5802383Z for(long i0=0; i0<201; i0+=1) 2023-01-11T21:05:10.5802432Z { 2023-01-11T21:05:10.5802494Z { 2023-01-11T21:05:10.5802558Z { 2023-01-11T21:05:10.5802650Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:05:10.5802759Z auto tmp1 = static_cast(tmp0); 2023-01-11T21:05:10.5802862Z auto tmp2 = std::log1p(tmp1); 2023-01-11T21:05:10.5802964Z auto tmp3 = static_cast(2); 2023-01-11T21:05:10.5803043Z auto tmp4 = tmp2 * tmp3; 2023-01-11T21:05:10.5803127Z out_ptr0[i0] = tmp2; 2023-01-11T21:05:10.5803213Z out_ptr1[i0] = tmp4; 2023-01-11T21:05:10.5803279Z } 2023-01-11T21:05:10.5803341Z } 2023-01-11T21:05:10.5803403Z } 2023-01-11T21:05:10.5803465Z } 2023-01-11T21:05:10.5803510Z } 2023-01-11T21:05:10.5803624Z ''') 2023-01-11T21:05:10.5803630Z 2023-01-11T21:05:10.5803634Z 2023-01-11T21:05:10.5803723Z async_compile.wait(globals()) 2023-01-11T21:05:10.5803793Z del async_compile 2023-01-11T21:05:10.5803798Z 2023-01-11T21:05:10.5803866Z def call(args): 2023-01-11T21:05:10.5803932Z arg0_1, = args 2023-01-11T21:05:10.5804002Z args.clear() 2023-01-11T21:05:10.5804184Z buf0 = empty_strided((201, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.5804373Z buf1 = empty_strided((201, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.5804534Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(buf0.data_ptr()), c_void_p(buf1.data_ptr())) 2023-01-11T21:05:10.5804602Z del arg0_1 2023-01-11T21:05:10.5804680Z return (buf0, buf1, ) 2023-01-11T21:05:10.5804687Z 2023-01-11T21:05:10.5804691Z 2023-01-11T21:05:10.5804767Z if __name__ == "__main__": 2023-01-11T21:05:10.5804881Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.5805005Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.5805183Z arg0_1 = rand_strided((201, ), (1, ), device='cpu', dtype=torch.int64) 2023-01-11T21:05:10.5805290Z print_performance(lambda: call([arg0_1])) 2023-01-11T21:05:10.5805562Z [2023-01-11 20:55:48,739] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 328 2023-01-11T21:05:10.5805567Z 2023-01-11T21:05:10.5805635Z ok (26.687s) 2023-01-11T21:05:10.5806069Z test_log2_cpu (__main__.CpuTests) ... inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.5806198Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.5806456Z [2023-01-11 20:55:48,785] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 329 2023-01-11T21:05:10.5806723Z [2023-01-11 20:55:51,402] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 329 2023-01-11T21:05:10.5806729Z 2023-01-11T21:05:10.5806827Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.5806898Z import torch 2023-01-11T21:05:10.5806955Z import random 2023-01-11T21:05:10.5807070Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.5807193Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.5807198Z 2023-01-11T21:05:10.5807275Z aten = torch.ops.aten 2023-01-11T21:05:10.5807409Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.5807500Z async_compile = AsyncCompile() 2023-01-11T21:05:10.5807538Z 2023-01-11T21:05:10.5807542Z 2023-01-11T21:05:10.5807677Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.5807872Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.5807988Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:05:10.5808092Z float* __restrict__ out_ptr0, 2023-01-11T21:05:10.5808191Z float* __restrict__ out_ptr1) 2023-01-11T21:05:10.5808252Z { 2023-01-11T21:05:10.5808350Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.5808411Z { 2023-01-11T21:05:10.5808475Z #pragma omp for 2023-01-11T21:05:10.5808557Z for(long i0=0; i0<4; i0+=1) 2023-01-11T21:05:10.5808619Z { 2023-01-11T21:05:10.5808752Z auto tmp0 = at::vec::Vectorized::loadu(in_ptr0 + 16*i0); 2023-01-11T21:05:10.5808837Z auto tmp1 = tmp0.log(); 2023-01-11T21:05:10.5808981Z auto tmp2 = at::vec::Vectorized(static_cast(1.4426950408889634)); 2023-01-11T21:05:10.5809069Z auto tmp3 = tmp1 * tmp2; 2023-01-11T21:05:10.5809201Z auto tmp4 = at::vec::Vectorized(static_cast(1)); 2023-01-11T21:05:10.5809301Z auto tmp5 = tmp0 + tmp4; 2023-01-11T21:05:10.5809386Z auto tmp6 = tmp5.log(); 2023-01-11T21:05:10.5809469Z auto tmp7 = tmp6 * tmp2; 2023-01-11T21:05:10.5809600Z auto tmp8 = at::vec::Vectorized(static_cast(2)); 2023-01-11T21:05:10.5809724Z auto tmp9 = tmp7 - tmp8; 2023-01-11T21:05:10.5809816Z tmp3.store(out_ptr0 + 16*i0); 2023-01-11T21:05:10.5809908Z tmp9.store(out_ptr1 + 16*i0); 2023-01-11T21:05:10.5809956Z } 2023-01-11T21:05:10.5810050Z #pragma omp for simd simdlen(8) 2023-01-11T21:05:10.5810132Z for(long i0=64; i0<64; i0+=1) 2023-01-11T21:05:10.5810195Z { 2023-01-11T21:05:10.5810280Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:05:10.5810371Z auto tmp1 = std::log(tmp0); 2023-01-11T21:05:10.5810480Z auto tmp2 = static_cast(1.4426950408889634); 2023-01-11T21:05:10.5810550Z auto tmp3 = tmp1 * tmp2; 2023-01-11T21:05:10.5810652Z auto tmp4 = static_cast(1); 2023-01-11T21:05:10.5810735Z auto tmp5 = tmp0 + tmp4; 2023-01-11T21:05:10.5810821Z auto tmp6 = std::log(tmp5); 2023-01-11T21:05:10.5810900Z auto tmp7 = tmp6 * tmp2; 2023-01-11T21:05:10.5810994Z auto tmp8 = static_cast(2); 2023-01-11T21:05:10.5811114Z auto tmp9 = tmp7 - tmp8; 2023-01-11T21:05:10.5811181Z out_ptr0[i0] = tmp3; 2023-01-11T21:05:10.5811259Z out_ptr1[i0] = tmp9; 2023-01-11T21:05:10.5811319Z } 2023-01-11T21:05:10.5811378Z } 2023-01-11T21:05:10.5811435Z } 2023-01-11T21:05:10.5811512Z ''') 2023-01-11T21:05:10.5811517Z 2023-01-11T21:05:10.5811521Z 2023-01-11T21:05:10.5811612Z async_compile.wait(globals()) 2023-01-11T21:05:10.5811673Z del async_compile 2023-01-11T21:05:10.5811689Z 2023-01-11T21:05:10.5811746Z def call(args): 2023-01-11T21:05:10.5811813Z arg0_1, = args 2023-01-11T21:05:10.5811882Z args.clear() 2023-01-11T21:05:10.5812076Z buf0 = empty_strided((64, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.5812266Z buf1 = empty_strided((64, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.5812428Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(buf0.data_ptr()), c_void_p(buf1.data_ptr())) 2023-01-11T21:05:10.5812494Z del arg0_1 2023-01-11T21:05:10.5812557Z return (buf0, buf1, ) 2023-01-11T21:05:10.5812562Z 2023-01-11T21:05:10.5812567Z 2023-01-11T21:05:10.5812640Z if __name__ == "__main__": 2023-01-11T21:05:10.5812751Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.5812872Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.5813064Z arg0_1 = rand_strided((64, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.5813201Z print_performance(lambda: call([arg0_1])) 2023-01-11T21:05:10.5813206Z 2023-01-11T21:05:10.5813271Z ok (2.664s) 2023-01-11T21:05:10.5813709Z test_log_fp64_cpu (__main__.CpuTests) ... inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.5813834Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.5814081Z [2023-01-11 20:55:51,438] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 330 2023-01-11T21:05:10.5814340Z [2023-01-11 20:55:54,031] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 330 2023-01-11T21:05:10.5814345Z 2023-01-11T21:05:10.5814436Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.5814507Z import torch 2023-01-11T21:05:10.5814578Z import random 2023-01-11T21:05:10.5814691Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.5814838Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.5814844Z 2023-01-11T21:05:10.5814920Z aten = torch.ops.aten 2023-01-11T21:05:10.5815040Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.5815128Z async_compile = AsyncCompile() 2023-01-11T21:05:10.5815133Z 2023-01-11T21:05:10.5815137Z 2023-01-11T21:05:10.5815268Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.5815471Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.5815591Z extern "C" void kernel(const double* __restrict__ in_ptr0, 2023-01-11T21:05:10.5815693Z double* __restrict__ out_ptr0, 2023-01-11T21:05:10.5815788Z double* __restrict__ out_ptr1) 2023-01-11T21:05:10.5815848Z { 2023-01-11T21:05:10.5815931Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.5815990Z { 2023-01-11T21:05:10.5816066Z #pragma omp for 2023-01-11T21:05:10.5816147Z for(long i0=0; i0<1024; i0+=1) 2023-01-11T21:05:10.5816211Z { 2023-01-11T21:05:10.5816272Z { 2023-01-11T21:05:10.5816323Z { 2023-01-11T21:05:10.5816413Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:05:10.5816510Z auto tmp1 = std::log(tmp0); 2023-01-11T21:05:10.5816625Z auto tmp2 = static_cast(1.4426950408889634); 2023-01-11T21:05:10.5816714Z auto tmp3 = tmp1 * tmp2; 2023-01-11T21:05:10.5816797Z out_ptr0[i0] = tmp1; 2023-01-11T21:05:10.5816879Z out_ptr1[i0] = tmp3; 2023-01-11T21:05:10.5816929Z } 2023-01-11T21:05:10.5816989Z } 2023-01-11T21:05:10.5817049Z } 2023-01-11T21:05:10.5817111Z } 2023-01-11T21:05:10.5817171Z } 2023-01-11T21:05:10.5817247Z ''') 2023-01-11T21:05:10.5817252Z 2023-01-11T21:05:10.5817256Z 2023-01-11T21:05:10.5817343Z async_compile.wait(globals()) 2023-01-11T21:05:10.5817401Z del async_compile 2023-01-11T21:05:10.5817418Z 2023-01-11T21:05:10.5817475Z def call(args): 2023-01-11T21:05:10.5817542Z arg0_1, = args 2023-01-11T21:05:10.5817611Z args.clear() 2023-01-11T21:05:10.5817805Z buf0 = empty_strided((1024, ), (1, ), device='cpu', dtype=torch.float64) 2023-01-11T21:05:10.5817998Z buf1 = empty_strided((1024, ), (1, ), device='cpu', dtype=torch.float64) 2023-01-11T21:05:10.5818158Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(buf0.data_ptr()), c_void_p(buf1.data_ptr())) 2023-01-11T21:05:10.5818226Z del arg0_1 2023-01-11T21:05:10.5818289Z return (buf0, buf1, ) 2023-01-11T21:05:10.5818294Z 2023-01-11T21:05:10.5818298Z 2023-01-11T21:05:10.5818372Z if __name__ == "__main__": 2023-01-11T21:05:10.5818581Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.5818782Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.5818983Z arg0_1 = rand_strided((1024, ), (1, ), device='cpu', dtype=torch.float64) 2023-01-11T21:05:10.5819092Z print_performance(lambda: call([arg0_1])) 2023-01-11T21:05:10.5819098Z 2023-01-11T21:05:10.5819164Z ok (2.630s) 2023-01-11T21:05:10.5819607Z test_log_softmax_cpu (__main__.CpuTests) ... inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.5819731Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.5819975Z [2023-01-11 20:55:54,136] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 331 2023-01-11T21:05:10.5820235Z [2023-01-11 20:55:57,039] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 331 2023-01-11T21:05:10.5820242Z 2023-01-11T21:05:10.5820335Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.5820404Z import torch 2023-01-11T21:05:10.5820503Z import random 2023-01-11T21:05:10.5820621Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.5820741Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.5820746Z 2023-01-11T21:05:10.5820826Z aten = torch.ops.aten 2023-01-11T21:05:10.5820945Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.5821037Z async_compile = AsyncCompile() 2023-01-11T21:05:10.5821042Z 2023-01-11T21:05:10.5821046Z 2023-01-11T21:05:10.5821179Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.5821382Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.5821502Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:05:10.5821605Z const float* __restrict__ in_ptr1, 2023-01-11T21:05:10.5821702Z float* __restrict__ out_ptr0, 2023-01-11T21:05:10.5821797Z float* __restrict__ out_ptr1, 2023-01-11T21:05:10.5821880Z float* __restrict__ out_ptr2, 2023-01-11T21:05:10.5821972Z float* __restrict__ out_ptr3, 2023-01-11T21:05:10.5822063Z float* __restrict__ out_ptr4, 2023-01-11T21:05:10.5822154Z float* __restrict__ out_ptr5, 2023-01-11T21:05:10.5822245Z float* __restrict__ out_ptr6, 2023-01-11T21:05:10.5822334Z float* __restrict__ out_ptr7, 2023-01-11T21:05:10.5822424Z float* __restrict__ out_ptr8) 2023-01-11T21:05:10.5822470Z { 2023-01-11T21:05:10.5822565Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.5822625Z { 2023-01-11T21:05:10.5822698Z #pragma omp for 2023-01-11T21:05:10.5822777Z for(long i0=0; i0<8; i0+=1) 2023-01-11T21:05:10.5822840Z { 2023-01-11T21:05:10.5822901Z { 2023-01-11T21:05:10.5822951Z { 2023-01-11T21:05:10.5823189Z float tmp3 = -std::numeric_limits::infinity(); 2023-01-11T21:05:10.5823279Z for(long i1=0; i1<8; i1+=1) 2023-01-11T21:05:10.5823344Z { 2023-01-11T21:05:10.5823410Z { 2023-01-11T21:05:10.5823513Z auto tmp0 = in_ptr0[i1 + (8*i0)]; 2023-01-11T21:05:10.5823613Z auto tmp1 = in_ptr1[i1 + (8*i0)]; 2023-01-11T21:05:10.5823694Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:05:10.5823794Z tmp3 = std::max(tmp3, tmp2); 2023-01-11T21:05:10.5823860Z } 2023-01-11T21:05:10.5823925Z } 2023-01-11T21:05:10.5824007Z out_ptr0[i0] = tmp3; 2023-01-11T21:05:10.5824068Z } 2023-01-11T21:05:10.5824162Z } 2023-01-11T21:05:10.5824211Z } 2023-01-11T21:05:10.5824285Z #pragma omp for 2023-01-11T21:05:10.5824364Z for(long i0=0; i0<8; i0+=1) 2023-01-11T21:05:10.5824425Z { 2023-01-11T21:05:10.5824491Z { 2023-01-11T21:05:10.5824554Z { 2023-01-11T21:05:10.5824633Z float tmp6 = 0; 2023-01-11T21:05:10.5824833Z float tmp7 = -std::numeric_limits::infinity(); 2023-01-11T21:05:10.5824923Z for(long i1=0; i1<8; i1+=1) 2023-01-11T21:05:10.5824987Z { 2023-01-11T21:05:10.5825053Z { 2023-01-11T21:05:10.5825153Z auto tmp0 = in_ptr0[i1 + (8*i0)]; 2023-01-11T21:05:10.5825254Z auto tmp1 = in_ptr1[i1 + (8*i0)]; 2023-01-11T21:05:10.5825352Z auto tmp3 = out_ptr0[i0]; 2023-01-11T21:05:10.5825435Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:05:10.5825578Z auto tmp4 = tmp2 - tmp3; 2023-01-11T21:05:10.5825680Z auto tmp5 = std::exp(tmp4); 2023-01-11T21:05:10.5825763Z tmp6 += tmp5; 2023-01-11T21:05:10.5825909Z tmp7 = std::max(tmp7, tmp1); 2023-01-11T21:05:10.5825977Z } 2023-01-11T21:05:10.5826041Z } 2023-01-11T21:05:10.5826112Z out_ptr1[i0] = tmp6; 2023-01-11T21:05:10.5826192Z out_ptr2[i0] = tmp7; 2023-01-11T21:05:10.5826254Z } 2023-01-11T21:05:10.5826316Z } 2023-01-11T21:05:10.5826376Z } 2023-01-11T21:05:10.5826449Z #pragma omp for 2023-01-11T21:05:10.5826528Z for(long i0=0; i0<8; i0+=1) 2023-01-11T21:05:10.5826576Z { 2023-01-11T21:05:10.5826637Z { 2023-01-11T21:05:10.5826698Z { 2023-01-11T21:05:10.5826909Z float tmp1 = -std::numeric_limits::infinity(); 2023-01-11T21:05:10.5827001Z for(long i1=0; i1<8; i1+=1) 2023-01-11T21:05:10.5827069Z { 2023-01-11T21:05:10.5827160Z { 2023-01-11T21:05:10.5827293Z auto tmp0 = in_ptr0[i0 + (8*i1)]; 2023-01-11T21:05:10.5827442Z tmp1 = std::max(tmp1, tmp0); 2023-01-11T21:05:10.5827514Z } 2023-01-11T21:05:10.5827578Z } 2023-01-11T21:05:10.5827659Z out_ptr3[i0] = tmp1; 2023-01-11T21:05:10.5827721Z } 2023-01-11T21:05:10.5827781Z } 2023-01-11T21:05:10.5827828Z } 2023-01-11T21:05:10.5827902Z #pragma omp for 2023-01-11T21:05:10.5827980Z for(long i0=0; i0<8; i0+=1) 2023-01-11T21:05:10.5828040Z { 2023-01-11T21:05:10.5828101Z { 2023-01-11T21:05:10.5828163Z { 2023-01-11T21:05:10.5828229Z float tmp4 = 0; 2023-01-11T21:05:10.5828318Z for(long i1=0; i1<8; i1+=1) 2023-01-11T21:05:10.5828383Z { 2023-01-11T21:05:10.5828450Z { 2023-01-11T21:05:10.5828550Z auto tmp0 = in_ptr0[i0 + (8*i1)]; 2023-01-11T21:05:10.5828647Z auto tmp1 = out_ptr3[i0]; 2023-01-11T21:05:10.5828792Z auto tmp2 = tmp0 - tmp1; 2023-01-11T21:05:10.5828881Z auto tmp3 = std::exp(tmp2); 2023-01-11T21:05:10.5828960Z tmp4 += tmp3; 2023-01-11T21:05:10.5829025Z } 2023-01-11T21:05:10.5829090Z } 2023-01-11T21:05:10.5829172Z out_ptr4[i0] = tmp4; 2023-01-11T21:05:10.5829234Z } 2023-01-11T21:05:10.5829296Z } 2023-01-11T21:05:10.5829343Z } 2023-01-11T21:05:10.5829419Z #pragma omp for 2023-01-11T21:05:10.5829496Z for(long i0=0; i0<8; i0+=1) 2023-01-11T21:05:10.5829594Z { 2023-01-11T21:05:10.5829656Z { 2023-01-11T21:05:10.5829716Z { 2023-01-11T21:05:10.5829793Z float tmp4 = 0; 2023-01-11T21:05:10.5829869Z for(long i1=0; i1<8; i1+=1) 2023-01-11T21:05:10.5829937Z { 2023-01-11T21:05:10.5830001Z { 2023-01-11T21:05:10.5830102Z auto tmp0 = in_ptr1[i1 + (8*i0)]; 2023-01-11T21:05:10.5830198Z auto tmp1 = out_ptr2[i0]; 2023-01-11T21:05:10.5830340Z auto tmp2 = tmp0 - tmp1; 2023-01-11T21:05:10.5830442Z auto tmp3 = std::exp(tmp2); 2023-01-11T21:05:10.5830510Z tmp4 += tmp3; 2023-01-11T21:05:10.5830576Z } 2023-01-11T21:05:10.5830638Z } 2023-01-11T21:05:10.5830720Z out_ptr5[i0] = tmp4; 2023-01-11T21:05:10.5830782Z } 2023-01-11T21:05:10.5830841Z } 2023-01-11T21:05:10.5830903Z } 2023-01-11T21:05:10.5830964Z #pragma omp for 2023-01-11T21:05:10.5831041Z for(long i0=0; i0<8; i0+=1) 2023-01-11T21:05:10.5831101Z { 2023-01-11T21:05:10.5831206Z #pragma GCC ivdep 2023-01-11T21:05:10.5831288Z for(long i1=0; i1<8; i1+=1) 2023-01-11T21:05:10.5831351Z { 2023-01-11T21:05:10.5831401Z { 2023-01-11T21:05:10.5831464Z { 2023-01-11T21:05:10.5831563Z auto tmp0 = in_ptr0[i1 + (8*i0)]; 2023-01-11T21:05:10.5831662Z auto tmp1 = in_ptr1[i1 + (8*i0)]; 2023-01-11T21:05:10.5831756Z auto tmp3 = out_ptr0[i0]; 2023-01-11T21:05:10.5831847Z auto tmp5 = out_ptr1[i0]; 2023-01-11T21:05:10.5831940Z auto tmp8 = out_ptr3[i1]; 2023-01-11T21:05:10.5832032Z auto tmp10 = out_ptr4[i1]; 2023-01-11T21:05:10.5832110Z auto tmp13 = out_ptr2[i0]; 2023-01-11T21:05:10.5832200Z auto tmp15 = out_ptr5[i0]; 2023-01-11T21:05:10.5832293Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:05:10.5832434Z auto tmp4 = tmp2 - tmp3; 2023-01-11T21:05:10.5832533Z auto tmp6 = std::log(tmp5); 2023-01-11T21:05:10.5832671Z auto tmp7 = tmp4 - tmp6; 2023-01-11T21:05:10.5832807Z auto tmp9 = tmp0 - tmp8; 2023-01-11T21:05:10.5832896Z auto tmp11 = std::log(tmp10); 2023-01-11T21:05:10.5833035Z auto tmp12 = tmp9 - tmp11; 2023-01-11T21:05:10.5833173Z auto tmp14 = tmp1 - tmp13; 2023-01-11T21:05:10.5833269Z auto tmp16 = std::log(tmp15); 2023-01-11T21:05:10.5833410Z auto tmp17 = tmp14 - tmp16; 2023-01-11T21:05:10.5833499Z out_ptr6[i1 + (8*i0)] = tmp7; 2023-01-11T21:05:10.5833592Z out_ptr7[i1 + (8*i0)] = tmp12; 2023-01-11T21:05:10.5833674Z out_ptr8[i1 + (8*i0)] = tmp17; 2023-01-11T21:05:10.5833738Z } 2023-01-11T21:05:10.5833799Z } 2023-01-11T21:05:10.5833864Z } 2023-01-11T21:05:10.5833925Z } 2023-01-11T21:05:10.5833984Z } 2023-01-11T21:05:10.5834044Z } 2023-01-11T21:05:10.5834107Z ''') 2023-01-11T21:05:10.5834114Z 2023-01-11T21:05:10.5834118Z 2023-01-11T21:05:10.5834213Z async_compile.wait(globals()) 2023-01-11T21:05:10.5834285Z del async_compile 2023-01-11T21:05:10.5834290Z 2023-01-11T21:05:10.5834360Z def call(args): 2023-01-11T21:05:10.5834436Z arg0_1, arg1_1 = args 2023-01-11T21:05:10.5834506Z args.clear() 2023-01-11T21:05:10.5834701Z buf0 = empty_strided((8, 1), (1, 8), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.5834881Z buf1 = empty_strided((8, 1), (1, 8), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.5835070Z buf6 = empty_strided((8, 1), (1, 8), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.5835287Z buf3 = empty_strided((1, 8), (8, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.5835473Z buf4 = empty_strided((1, 8), (8, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.5835660Z buf7 = empty_strided((8, 1), (1, 8), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.5835844Z buf2 = empty_strided((8, 8), (8, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.5836027Z buf5 = empty_strided((8, 8), (8, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.5836210Z buf8 = empty_strided((8, 8), (8, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.5836563Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(arg1_1.data_ptr()), c_void_p(buf0.data_ptr()), c_void_p(buf1.data_ptr()), c_void_p(buf6.data_ptr()), c_void_p(buf3.data_ptr()), c_void_p(buf4.data_ptr()), c_void_p(buf7.data_ptr()), c_void_p(buf2.data_ptr()), c_void_p(buf5.data_ptr()), c_void_p(buf8.data_ptr())) 2023-01-11T21:05:10.5836621Z del arg0_1 2023-01-11T21:05:10.5836688Z del arg1_1 2023-01-11T21:05:10.5836770Z return (buf2, buf5, buf8, ) 2023-01-11T21:05:10.5836774Z 2023-01-11T21:05:10.5836779Z 2023-01-11T21:05:10.5836882Z if __name__ == "__main__": 2023-01-11T21:05:10.5836998Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.5837119Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.5837314Z arg0_1 = rand_strided((8, 8), (8, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.5837509Z arg1_1 = rand_strided((8, 8), (8, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.5837610Z print_performance(lambda: call([arg0_1, arg1_1])) 2023-01-11T21:05:10.5837615Z 2023-01-11T21:05:10.5837681Z ok (3.008s) 2023-01-11T21:05:10.5838256Z test_logsumexp_cpu (__main__.CpuTests) ... inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.5838390Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.5838725Z [2023-01-11 20:55:57,158] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 332 2023-01-11T21:05:10.5838993Z [2023-01-11 20:55:59,930] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 332 2023-01-11T21:05:10.5838999Z 2023-01-11T21:05:10.5839092Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.5839162Z import torch 2023-01-11T21:05:10.5839233Z import random 2023-01-11T21:05:10.5839334Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.5839455Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.5839460Z 2023-01-11T21:05:10.5839537Z aten = torch.ops.aten 2023-01-11T21:05:10.5839671Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.5839766Z async_compile = AsyncCompile() 2023-01-11T21:05:10.5839771Z 2023-01-11T21:05:10.5839775Z 2023-01-11T21:05:10.5839909Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.5840116Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.5840234Z extern "C" void kernel(float* __restrict__ in_out_ptr0, 2023-01-11T21:05:10.5840323Z float* __restrict__ in_out_ptr1, 2023-01-11T21:05:10.5840428Z const float* __restrict__ in_ptr0, 2023-01-11T21:05:10.5840527Z float* __restrict__ out_ptr1, 2023-01-11T21:05:10.5840751Z float* __restrict__ out_ptr3) 2023-01-11T21:05:10.5840813Z { 2023-01-11T21:05:10.5840900Z auto out_ptr0 = in_out_ptr0; 2023-01-11T21:05:10.5840981Z auto out_ptr2 = in_out_ptr1; 2023-01-11T21:05:10.5841067Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.5841129Z { 2023-01-11T21:05:10.5841280Z #pragma omp for 2023-01-11T21:05:10.5841363Z for(long i0=0; i0<8; i0+=1) 2023-01-11T21:05:10.5841426Z { 2023-01-11T21:05:10.5841491Z { 2023-01-11T21:05:10.5841555Z { 2023-01-11T21:05:10.5841772Z float tmp1 = -std::numeric_limits::infinity(); 2023-01-11T21:05:10.5841866Z for(long i1=0; i1<8; i1+=1) 2023-01-11T21:05:10.5841931Z { 2023-01-11T21:05:10.5841999Z { 2023-01-11T21:05:10.5842106Z auto tmp0 = in_ptr0[i1 + (8*i0)]; 2023-01-11T21:05:10.5842210Z tmp1 = std::max(tmp1, tmp0); 2023-01-11T21:05:10.5842278Z } 2023-01-11T21:05:10.5842330Z } 2023-01-11T21:05:10.5842414Z out_ptr0[i0] = tmp1; 2023-01-11T21:05:10.5842478Z } 2023-01-11T21:05:10.5842541Z } 2023-01-11T21:05:10.5842601Z } 2023-01-11T21:05:10.5842678Z #pragma omp for 2023-01-11T21:05:10.5842757Z for(long i0=0; i0<8; i0+=1) 2023-01-11T21:05:10.5842805Z { 2023-01-11T21:05:10.5842866Z { 2023-01-11T21:05:10.5842928Z { 2023-01-11T21:05:10.5843041Z float tmp4 = 0; 2023-01-11T21:05:10.5843134Z for(long i1=0; i1<8; i1+=1) 2023-01-11T21:05:10.5843199Z { 2023-01-11T21:05:10.5843264Z { 2023-01-11T21:05:10.5843353Z auto tmp0 = in_ptr0[i1 + (8*i0)]; 2023-01-11T21:05:10.5843448Z auto tmp1 = out_ptr0[i0]; 2023-01-11T21:05:10.5843595Z auto tmp2 = tmp0 - tmp1; 2023-01-11T21:05:10.5843697Z auto tmp3 = std::exp(tmp2); 2023-01-11T21:05:10.5843776Z tmp4 += tmp3; 2023-01-11T21:05:10.5843842Z } 2023-01-11T21:05:10.5843905Z } 2023-01-11T21:05:10.5843978Z out_ptr1[i0] = tmp4; 2023-01-11T21:05:10.5844040Z } 2023-01-11T21:05:10.5844102Z } 2023-01-11T21:05:10.5844161Z } 2023-01-11T21:05:10.5844235Z #pragma omp for 2023-01-11T21:05:10.5844314Z for(long i0=0; i0<8; i0+=1) 2023-01-11T21:05:10.5844363Z { 2023-01-11T21:05:10.5844423Z { 2023-01-11T21:05:10.5844485Z { 2023-01-11T21:05:10.5844574Z auto tmp0 = out_ptr1[i0]; 2023-01-11T21:05:10.5844663Z auto tmp2 = out_ptr0[i0]; 2023-01-11T21:05:10.5844756Z auto tmp1 = std::log(tmp0); 2023-01-11T21:05:10.5844850Z auto tmp3 = std::abs(tmp2); 2023-01-11T21:05:10.5844973Z auto tmp4 = std::numeric_limits::infinity(); 2023-01-11T21:05:10.5845050Z auto tmp5 = tmp3 == tmp4; 2023-01-11T21:05:10.5845153Z auto tmp6 = static_cast(0.0); 2023-01-11T21:05:10.5845253Z auto tmp7 = tmp5 ? tmp6 : tmp2; 2023-01-11T21:05:10.5845340Z auto tmp8 = tmp1 + tmp7; 2023-01-11T21:05:10.5845427Z in_out_ptr0[i0] = tmp8; 2023-01-11T21:05:10.5845489Z } 2023-01-11T21:05:10.5845552Z } 2023-01-11T21:05:10.5845600Z } 2023-01-11T21:05:10.5845675Z #pragma omp for 2023-01-11T21:05:10.5845753Z for(long i0=0; i0<8; i0+=1) 2023-01-11T21:05:10.5845813Z { 2023-01-11T21:05:10.5845873Z { 2023-01-11T21:05:10.5845934Z { 2023-01-11T21:05:10.5846133Z float tmp1 = -std::numeric_limits::infinity(); 2023-01-11T21:05:10.5846221Z for(long i1=0; i1<8; i1+=1) 2023-01-11T21:05:10.5846285Z { 2023-01-11T21:05:10.5846351Z { 2023-01-11T21:05:10.5846453Z auto tmp0 = in_ptr0[i0 + (8*i1)]; 2023-01-11T21:05:10.5846554Z tmp1 = std::max(tmp1, tmp0); 2023-01-11T21:05:10.5846651Z } 2023-01-11T21:05:10.5846718Z } 2023-01-11T21:05:10.5846789Z out_ptr2[i0] = tmp1; 2023-01-11T21:05:10.5846852Z } 2023-01-11T21:05:10.5846914Z } 2023-01-11T21:05:10.5846974Z } 2023-01-11T21:05:10.5847047Z #pragma omp for 2023-01-11T21:05:10.5847127Z for(long i0=0; i0<8; i0+=1) 2023-01-11T21:05:10.5847175Z { 2023-01-11T21:05:10.5847235Z { 2023-01-11T21:05:10.5847297Z { 2023-01-11T21:05:10.5847374Z float tmp4 = 0; 2023-01-11T21:05:10.5847462Z for(long i1=0; i1<8; i1+=1) 2023-01-11T21:05:10.5847526Z { 2023-01-11T21:05:10.5847590Z { 2023-01-11T21:05:10.5847678Z auto tmp0 = in_ptr0[i0 + (8*i1)]; 2023-01-11T21:05:10.5847774Z auto tmp1 = out_ptr2[i0]; 2023-01-11T21:05:10.5847919Z auto tmp2 = tmp0 - tmp1; 2023-01-11T21:05:10.5848021Z auto tmp3 = std::exp(tmp2); 2023-01-11T21:05:10.5848100Z tmp4 += tmp3; 2023-01-11T21:05:10.5848196Z } 2023-01-11T21:05:10.5848264Z } 2023-01-11T21:05:10.5848335Z out_ptr3[i0] = tmp4; 2023-01-11T21:05:10.5848400Z } 2023-01-11T21:05:10.5848461Z } 2023-01-11T21:05:10.5848522Z } 2023-01-11T21:05:10.5848596Z #pragma omp for 2023-01-11T21:05:10.5848675Z for(long i0=0; i0<8; i0+=1) 2023-01-11T21:05:10.5848735Z { 2023-01-11T21:05:10.5848784Z { 2023-01-11T21:05:10.5848848Z { 2023-01-11T21:05:10.5848939Z auto tmp0 = out_ptr3[i0]; 2023-01-11T21:05:10.5849029Z auto tmp2 = out_ptr2[i0]; 2023-01-11T21:05:10.5849124Z auto tmp1 = std::log(tmp0); 2023-01-11T21:05:10.5849217Z auto tmp3 = std::abs(tmp2); 2023-01-11T21:05:10.5849345Z auto tmp4 = std::numeric_limits::infinity(); 2023-01-11T21:05:10.5849423Z auto tmp5 = tmp3 == tmp4; 2023-01-11T21:05:10.5849528Z auto tmp6 = static_cast(0.0); 2023-01-11T21:05:10.5849625Z auto tmp7 = tmp5 ? tmp6 : tmp2; 2023-01-11T21:05:10.5849714Z auto tmp8 = tmp1 + tmp7; 2023-01-11T21:05:10.5849817Z auto tmp9 = static_cast(2); 2023-01-11T21:05:10.5849952Z auto tmp10 = tmp8 - tmp9; 2023-01-11T21:05:10.5850039Z in_out_ptr1[i0] = tmp10; 2023-01-11T21:05:10.5850090Z } 2023-01-11T21:05:10.5850150Z } 2023-01-11T21:05:10.5850210Z } 2023-01-11T21:05:10.5850270Z } 2023-01-11T21:05:10.5850328Z } 2023-01-11T21:05:10.5850403Z ''') 2023-01-11T21:05:10.5850410Z 2023-01-11T21:05:10.5850414Z 2023-01-11T21:05:10.5850503Z async_compile.wait(globals()) 2023-01-11T21:05:10.5850564Z del async_compile 2023-01-11T21:05:10.5850569Z 2023-01-11T21:05:10.5850637Z def call(args): 2023-01-11T21:05:10.5850705Z arg0_1, = args 2023-01-11T21:05:10.5850774Z args.clear() 2023-01-11T21:05:10.5850971Z buf0 = empty_strided((8, 1), (1, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.5851159Z buf1 = empty_strided((8, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.5851268Z buf2 = as_strided(buf0, (8, ), (1, )); del buf0 # reuse 2023-01-11T21:05:10.5851445Z buf3 = empty_strided((1, 8), (8, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.5851630Z buf4 = empty_strided((8, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.5851737Z buf5 = as_strided(buf3, (8, ), (1, )); del buf3 # reuse 2023-01-11T21:05:10.5851947Z kernel_cpp_0(c_void_p(buf2.data_ptr()), c_void_p(buf5.data_ptr()), c_void_p(arg0_1.data_ptr()), c_void_p(buf1.data_ptr()), c_void_p(buf4.data_ptr())) 2023-01-11T21:05:10.5852049Z del arg0_1 2023-01-11T21:05:10.5852124Z return (buf2, buf5, ) 2023-01-11T21:05:10.5852130Z 2023-01-11T21:05:10.5852134Z 2023-01-11T21:05:10.5852207Z if __name__ == "__main__": 2023-01-11T21:05:10.5852323Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.5852446Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.5852626Z arg0_1 = rand_strided((8, 8), (8, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.5852732Z print_performance(lambda: call([arg0_1])) 2023-01-11T21:05:10.5852737Z 2023-01-11T21:05:10.5852801Z ok (2.888s) 2023-01-11T21:05:10.5853239Z test_long_tensor_cpu (__main__.CpuTests) ... inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.5853365Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.5853624Z [2023-01-11 20:55:59,981] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 333 2023-01-11T21:05:10.5853914Z [2023-01-11 20:56:02,713] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 333 2023-01-11T21:05:10.5853921Z 2023-01-11T21:05:10.5854013Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.5854081Z import torch 2023-01-11T21:05:10.5854137Z import random 2023-01-11T21:05:10.5854249Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.5854369Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.5854374Z 2023-01-11T21:05:10.5854449Z aten = torch.ops.aten 2023-01-11T21:05:10.5854582Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.5854671Z async_compile = AsyncCompile() 2023-01-11T21:05:10.5854676Z 2023-01-11T21:05:10.5854680Z 2023-01-11T21:05:10.5854816Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.5855017Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.5855124Z extern "C" void kernel(const long* __restrict__ in_ptr0, 2023-01-11T21:05:10.5855219Z long* __restrict__ out_ptr0, 2023-01-11T21:05:10.5855312Z long* __restrict__ out_ptr1) 2023-01-11T21:05:10.5855370Z { 2023-01-11T21:05:10.5855467Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.5855527Z { 2023-01-11T21:05:10.5855601Z #pragma omp for 2023-01-11T21:05:10.5855670Z for(long i0=0; i0<64; i0+=1) 2023-01-11T21:05:10.5855731Z { 2023-01-11T21:05:10.5855793Z { 2023-01-11T21:05:10.5855855Z { 2023-01-11T21:05:10.5855946Z auto tmp1 = in_ptr0[i0]; 2023-01-11T21:05:10.5856051Z auto tmp0 = static_cast(294); 2023-01-11T21:05:10.5856186Z auto tmp2 = tmp0 - tmp1; 2023-01-11T21:05:10.5856278Z auto tmp3 = static_cast(295); 2023-01-11T21:05:10.5856365Z auto tmp4 = tmp3 + tmp1; 2023-01-11T21:05:10.5856447Z out_ptr0[i0] = tmp2; 2023-01-11T21:05:10.5856532Z out_ptr1[i0] = tmp4; 2023-01-11T21:05:10.5856595Z } 2023-01-11T21:05:10.5856655Z } 2023-01-11T21:05:10.5856703Z } 2023-01-11T21:05:10.5856762Z } 2023-01-11T21:05:10.5856819Z } 2023-01-11T21:05:10.5856895Z ''') 2023-01-11T21:05:10.5856900Z 2023-01-11T21:05:10.5856904Z 2023-01-11T21:05:10.5856992Z async_compile.wait(globals()) 2023-01-11T21:05:10.5857063Z del async_compile 2023-01-11T21:05:10.5857068Z 2023-01-11T21:05:10.5857135Z def call(args): 2023-01-11T21:05:10.5857202Z arg0_1, = args 2023-01-11T21:05:10.5857258Z args.clear() 2023-01-11T21:05:10.5857447Z buf0 = empty_strided((8, 8), (8, 1), device='cpu', dtype=torch.int64) 2023-01-11T21:05:10.5857634Z buf1 = empty_strided((8, 8), (8, 1), device='cpu', dtype=torch.int64) 2023-01-11T21:05:10.5857833Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(buf0.data_ptr()), c_void_p(buf1.data_ptr())) 2023-01-11T21:05:10.5857902Z del arg0_1 2023-01-11T21:05:10.5857979Z return (buf0, buf1, ) 2023-01-11T21:05:10.5857983Z 2023-01-11T21:05:10.5857988Z 2023-01-11T21:05:10.5858060Z if __name__ == "__main__": 2023-01-11T21:05:10.5858173Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.5858281Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.5858549Z arg0_1 = rand_strided((8, 8), (8, 1), device='cpu', dtype=torch.int64) 2023-01-11T21:05:10.5858662Z print_performance(lambda: call([arg0_1])) 2023-01-11T21:05:10.5858666Z 2023-01-11T21:05:10.5858733Z ok (2.782s) 2023-01-11T21:05:10.5859074Z test_lowmem_dropout1_cpu (__main__.CpuTests) ... [2023-01-11 20:56:02,766] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 334 2023-01-11T21:05:10.5859343Z [2023-01-11 20:56:05,389] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 334 2023-01-11T21:05:10.5859635Z [2023-01-11 20:56:05,396] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling BACKWARDS graph 334 2023-01-11T21:05:10.5859901Z [2023-01-11 20:56:05,408] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling BACKWARDS graph 334 2023-01-11T21:05:10.5860141Z [2023-01-11 20:56:05,671] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 335 2023-01-11T21:05:10.5860393Z [2023-01-11 20:56:05,673] torch._inductor.lowering: [WARNING] using triton random, expect difference from eager 2023-01-11T21:05:10.5860651Z [2023-01-11 20:56:08,286] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 335 2023-01-11T21:05:10.5860900Z [2023-01-11 20:56:08,293] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling BACKWARDS graph 335 2023-01-11T21:05:10.5860905Z 2023-01-11T21:05:10.5860998Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.5861065Z import torch 2023-01-11T21:05:10.5861133Z import random 2023-01-11T21:05:10.5861245Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.5861353Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.5861370Z 2023-01-11T21:05:10.5861434Z aten = torch.ops.aten 2023-01-11T21:05:10.5861566Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.5861656Z async_compile = AsyncCompile() 2023-01-11T21:05:10.5861661Z 2023-01-11T21:05:10.5861665Z 2023-01-11T21:05:10.5861798Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.5862000Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.5862116Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:05:10.5862217Z const float* __restrict__ in_ptr1, 2023-01-11T21:05:10.5862314Z float* __restrict__ out_ptr0) 2023-01-11T21:05:10.5862363Z { 2023-01-11T21:05:10.5862458Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.5862518Z { 2023-01-11T21:05:10.5862592Z #pragma omp for 2023-01-11T21:05:10.5862676Z for(long i0=0; i0<6250; i0+=1) 2023-01-11T21:05:10.5862737Z { 2023-01-11T21:05:10.5862863Z auto tmp0 = at::vec::Vectorized::loadu(in_ptr0 + 16*i0); 2023-01-11T21:05:10.5862992Z auto tmp1 = at::vec::Vectorized::loadu(in_ptr1 + 16*i0); 2023-01-11T21:05:10.5863079Z auto tmp2 = tmp0 * tmp1; 2023-01-11T21:05:10.5863169Z tmp2.store(out_ptr0 + 16*i0); 2023-01-11T21:05:10.5863230Z } 2023-01-11T21:05:10.5863324Z #pragma omp for simd simdlen(8) 2023-01-11T21:05:10.5863410Z for(long i0=100000; i0<100000; i0+=1) 2023-01-11T21:05:10.5863471Z { 2023-01-11T21:05:10.5863542Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:05:10.5863621Z auto tmp1 = in_ptr1[i0]; 2023-01-11T21:05:10.5863734Z auto tmp2 = tmp0 * tmp1; 2023-01-11T21:05:10.5863816Z out_ptr0[i0] = tmp2; 2023-01-11T21:05:10.5863875Z } 2023-01-11T21:05:10.5863934Z } 2023-01-11T21:05:10.5863980Z } 2023-01-11T21:05:10.5864065Z ''') 2023-01-11T21:05:10.5864069Z 2023-01-11T21:05:10.5864073Z 2023-01-11T21:05:10.5864159Z async_compile.wait(globals()) 2023-01-11T21:05:10.5864230Z del async_compile 2023-01-11T21:05:10.5864235Z 2023-01-11T21:05:10.5864303Z def call(args): 2023-01-11T21:05:10.5864387Z primals_1, primals_2 = args 2023-01-11T21:05:10.5864455Z args.clear() 2023-01-11T21:05:10.5864654Z buf0 = empty_strided((100000, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.5864814Z kernel_cpp_0(c_void_p(primals_1.data_ptr()), c_void_p(primals_2.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:05:10.5864885Z del primals_2 2023-01-11T21:05:10.5864968Z return (buf0, primals_1, ) 2023-01-11T21:05:10.5864972Z 2023-01-11T21:05:10.5864979Z 2023-01-11T21:05:10.5865052Z if __name__ == "__main__": 2023-01-11T21:05:10.5865164Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.5865283Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.5865533Z primals_1 = rand_strided((100000, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.5865736Z primals_2 = rand_strided((100000, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.5865848Z print_performance(lambda: call([primals_1, primals_2])) 2023-01-11T21:05:10.5865853Z 2023-01-11T21:05:10.5865857Z 2023-01-11T21:05:10.5865947Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.5866018Z import torch 2023-01-11T21:05:10.5866087Z import random 2023-01-11T21:05:10.5866203Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.5866322Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.5866327Z 2023-01-11T21:05:10.5866405Z aten = torch.ops.aten 2023-01-11T21:05:10.5866538Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.5866620Z async_compile = AsyncCompile() 2023-01-11T21:05:10.5866624Z 2023-01-11T21:05:10.5866628Z 2023-01-11T21:05:10.5866761Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.5866966Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.5867086Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:05:10.5867190Z const float* __restrict__ in_ptr1, 2023-01-11T21:05:10.5867290Z float* __restrict__ out_ptr0) 2023-01-11T21:05:10.5867351Z { 2023-01-11T21:05:10.5867434Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.5867496Z { 2023-01-11T21:05:10.5867572Z #pragma omp for 2023-01-11T21:05:10.5867656Z for(long i0=0; i0<6250; i0+=1) 2023-01-11T21:05:10.5867718Z { 2023-01-11T21:05:10.5867851Z auto tmp0 = at::vec::Vectorized::loadu(in_ptr0 + 16*i0); 2023-01-11T21:05:10.5867984Z auto tmp1 = at::vec::Vectorized::loadu(in_ptr1 + 16*i0); 2023-01-11T21:05:10.5868070Z auto tmp2 = tmp0 * tmp1; 2023-01-11T21:05:10.5868148Z tmp2.store(out_ptr0 + 16*i0); 2023-01-11T21:05:10.5868212Z } 2023-01-11T21:05:10.5868307Z #pragma omp for simd simdlen(8) 2023-01-11T21:05:10.5868399Z for(long i0=100000; i0<100000; i0+=1) 2023-01-11T21:05:10.5868460Z { 2023-01-11T21:05:10.5868546Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:05:10.5868613Z auto tmp1 = in_ptr1[i0]; 2023-01-11T21:05:10.5868694Z auto tmp2 = tmp0 * tmp1; 2023-01-11T21:05:10.5868773Z out_ptr0[i0] = tmp2; 2023-01-11T21:05:10.5868834Z } 2023-01-11T21:05:10.5868895Z } 2023-01-11T21:05:10.5868954Z } 2023-01-11T21:05:10.5869031Z ''') 2023-01-11T21:05:10.5869036Z 2023-01-11T21:05:10.5869040Z 2023-01-11T21:05:10.5869128Z async_compile.wait(globals()) 2023-01-11T21:05:10.5869187Z del async_compile 2023-01-11T21:05:10.5869229Z 2023-01-11T21:05:10.5869301Z def call(args): 2023-01-11T21:05:10.5869387Z primals_1, tangents_1 = args 2023-01-11T21:05:10.5869457Z args.clear() 2023-01-11T21:05:10.5869660Z buf0 = empty_strided((100000, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.5869834Z kernel_cpp_0(c_void_p(tangents_1.data_ptr()), c_void_p(primals_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:05:10.5869906Z del primals_1 2023-01-11T21:05:10.5869964Z del tangents_1 2023-01-11T21:05:10.5870041Z return (None, buf0, ) 2023-01-11T21:05:10.5870045Z 2023-01-11T21:05:10.5870049Z 2023-01-11T21:05:10.5870126Z if __name__ == "__main__": 2023-01-11T21:05:10.5870239Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.5870361Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.5870564Z primals_1 = rand_strided((100000, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.5870770Z tangents_1 = rand_strided((100000, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.5870898Z print_performance(lambda: call([primals_1, tangents_1])) 2023-01-11T21:05:10.5870903Z 2023-01-11T21:05:10.5870908Z 2023-01-11T21:05:10.5871016Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.5871088Z import torch 2023-01-11T21:05:10.5871155Z import random 2023-01-11T21:05:10.5871268Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.5871385Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.5871390Z 2023-01-11T21:05:10.5871466Z aten = torch.ops.aten 2023-01-11T21:05:10.5871596Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.5871685Z async_compile = AsyncCompile() 2023-01-11T21:05:10.5871833Z seed_cpu_None = None # 9130db9322feaa41c28986790b86d7dd047e77339ff46fce775dbaa5929b26ce 2023-01-11T21:05:10.5871838Z 2023-01-11T21:05:10.5871842Z 2023-01-11T21:05:10.5871973Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.5872179Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.5872293Z extern "C" void kernel(const long* __restrict__ seed0, 2023-01-11T21:05:10.5872398Z const float* __restrict__ in_ptr1, 2023-01-11T21:05:10.5872500Z const float* __restrict__ in_ptr2, 2023-01-11T21:05:10.5872596Z float* __restrict__ out_ptr0) 2023-01-11T21:05:10.5872655Z { 2023-01-11T21:05:10.5872738Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.5872798Z { 2023-01-11T21:05:10.5872872Z #pragma omp for 2023-01-11T21:05:10.5872956Z for(long i0=0; i0<100000; i0+=1) 2023-01-11T21:05:10.5873017Z { 2023-01-11T21:05:10.5873077Z { 2023-01-11T21:05:10.5873127Z { 2023-01-11T21:05:10.5873211Z auto tmp0 = seed0[0]; 2023-01-11T21:05:10.5873302Z auto tmp6 = in_ptr1[i0]; 2023-01-11T21:05:10.5873390Z auto tmp7 = in_ptr2[i0]; 2023-01-11T21:05:10.5873491Z auto tmp1 = static_cast(i0); 2023-01-11T21:05:10.5873626Z auto tmp2 = static_cast(normalized_rand_cpu(tmp0, tmp1));; 2023-01-11T21:05:10.5873731Z auto tmp3 = static_cast(0.33); 2023-01-11T21:05:10.5873808Z auto tmp4 = tmp2 > tmp3; 2023-01-11T21:05:10.5873911Z auto tmp5 = static_cast(tmp4); 2023-01-11T21:05:10.5873999Z auto tmp8 = tmp6 * tmp7; 2023-01-11T21:05:10.5874086Z auto tmp9 = tmp5 * tmp8; 2023-01-11T21:05:10.5874199Z auto tmp10 = static_cast(1.492537313432836); 2023-01-11T21:05:10.5874288Z auto tmp11 = tmp9 * tmp10; 2023-01-11T21:05:10.5874372Z out_ptr0[i0] = tmp11; 2023-01-11T21:05:10.5874436Z } 2023-01-11T21:05:10.5874486Z } 2023-01-11T21:05:10.5874546Z } 2023-01-11T21:05:10.5874637Z } 2023-01-11T21:05:10.5874697Z } 2023-01-11T21:05:10.5874772Z ''') 2023-01-11T21:05:10.5874778Z 2023-01-11T21:05:10.5874782Z 2023-01-11T21:05:10.5874869Z async_compile.wait(globals()) 2023-01-11T21:05:10.5874942Z del async_compile 2023-01-11T21:05:10.5874949Z 2023-01-11T21:05:10.5875005Z def call(args): 2023-01-11T21:05:10.5875089Z primals_1, primals_2 = args 2023-01-11T21:05:10.5875157Z args.clear() 2023-01-11T21:05:10.5875286Z torch.randint(2**31, size=(), dtype=torch.int64, out=seed_cpu_None) 2023-01-11T21:05:10.5875485Z buf0 = empty_strided((100000, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.5875694Z kernel_cpp_0(c_void_p(seed_cpu_None.data_ptr()), c_void_p(primals_1.data_ptr()), c_void_p(primals_2.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:05:10.5875764Z del primals_2 2023-01-11T21:05:10.5875865Z return (buf0, primals_1, seed_cpu_None.clone(), ) 2023-01-11T21:05:10.5875881Z 2023-01-11T21:05:10.5875885Z 2023-01-11T21:05:10.5875950Z if __name__ == "__main__": 2023-01-11T21:05:10.5876061Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.5876182Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.5876411Z seed_cpu_None = rand_strided((), (), device='cpu', dtype=torch.int64) 2023-01-11T21:05:10.5876619Z primals_1 = rand_strided((100000, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.5876817Z primals_2 = rand_strided((100000, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.5876943Z print_performance(lambda: call([primals_1, primals_2])) 2023-01-11T21:05:10.5876949Z 2023-01-11T21:05:10.5876953Z 2023-01-11T21:05:10.5877045Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.5877100Z import torch 2023-01-11T21:05:10.5877171Z import random 2023-01-11T21:05:10.5877287Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.5877404Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.5877409Z 2023-01-11T21:05:10.5877487Z aten = torch.ops.aten 2023-01-11T21:05:10.5877617Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.5877704Z async_compile = AsyncCompile() 2023-01-11T21:05:10.5877709Z 2023-01-11T21:05:10.5877715Z 2023-01-11T21:05:10.5883427Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.5883691Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.5883801Z extern "C" void kernel(const long* __restrict__ in_ptr0, 2023-01-11T21:05:10.5883908Z const float* __restrict__ in_ptr1, 2023-01-11T21:05:10.5884010Z const float* __restrict__ in_ptr2, 2023-01-11T21:05:10.5884110Z float* __restrict__ out_ptr0) 2023-01-11T21:05:10.5884171Z { 2023-01-11T21:05:10.5884269Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.5884329Z { 2023-01-11T21:05:10.5884392Z #pragma omp for 2023-01-11T21:05:10.5884478Z for(long i0=0; i0<100000; i0+=1) 2023-01-11T21:05:10.5884545Z { 2023-01-11T21:05:10.5884607Z { 2023-01-11T21:05:10.5884673Z { 2023-01-11T21:05:10.5884762Z auto tmp0 = in_ptr0[0]; 2023-01-11T21:05:10.5884854Z auto tmp6 = in_ptr1[i0]; 2023-01-11T21:05:10.5884934Z auto tmp10 = in_ptr2[i0]; 2023-01-11T21:05:10.5885035Z auto tmp1 = static_cast(i0); 2023-01-11T21:05:10.5885172Z auto tmp2 = static_cast(normalized_rand_cpu(tmp0, tmp1));; 2023-01-11T21:05:10.5885276Z auto tmp3 = static_cast(0.33); 2023-01-11T21:05:10.5885365Z auto tmp4 = tmp2 > tmp3; 2023-01-11T21:05:10.5885468Z auto tmp5 = static_cast(tmp4); 2023-01-11T21:05:10.5885558Z auto tmp7 = tmp5 * tmp6; 2023-01-11T21:05:10.5885658Z auto tmp8 = static_cast(1.492537313432836); 2023-01-11T21:05:10.5885747Z auto tmp9 = tmp7 * tmp8; 2023-01-11T21:05:10.5885963Z auto tmp11 = tmp9 * tmp10; 2023-01-11T21:05:10.5886047Z out_ptr0[i0] = tmp11; 2023-01-11T21:05:10.5886111Z } 2023-01-11T21:05:10.5886176Z } 2023-01-11T21:05:10.5886240Z } 2023-01-11T21:05:10.5886287Z } 2023-01-11T21:05:10.5886346Z } 2023-01-11T21:05:10.5886453Z ''') 2023-01-11T21:05:10.5886460Z 2023-01-11T21:05:10.5886464Z 2023-01-11T21:05:10.5886554Z async_compile.wait(globals()) 2023-01-11T21:05:10.5886623Z del async_compile 2023-01-11T21:05:10.5886629Z 2023-01-11T21:05:10.5886697Z def call(args): 2023-01-11T21:05:10.5886807Z primals_1, philox_seed_like, tangents_1 = args 2023-01-11T21:05:10.5886878Z args.clear() 2023-01-11T21:05:10.5887068Z buf0 = empty_strided((100000, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.5887284Z kernel_cpp_0(c_void_p(philox_seed_like.data_ptr()), c_void_p(tangents_1.data_ptr()), c_void_p(primals_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:05:10.5887367Z del philox_seed_like 2023-01-11T21:05:10.5887436Z del primals_1 2023-01-11T21:05:10.5887505Z del tangents_1 2023-01-11T21:05:10.5887626Z return (None, buf0, ) 2023-01-11T21:05:10.5887632Z 2023-01-11T21:05:10.5887636Z 2023-01-11T21:05:10.5887710Z if __name__ == "__main__": 2023-01-11T21:05:10.5887811Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.5887932Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.5888140Z primals_1 = rand_strided((100000, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.5888338Z philox_seed_like = rand_strided((), (), device='cpu', dtype=torch.int64) 2023-01-11T21:05:10.5888541Z tangents_1 = rand_strided((100000, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.5888678Z print_performance(lambda: call([primals_1, philox_seed_like, tangents_1])) 2023-01-11T21:05:10.5888951Z [2023-01-11 20:56:10,979] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling BACKWARDS graph 335 2023-01-11T21:05:10.5888959Z 2023-01-11T21:05:10.5889027Z ok (8.361s) 2023-01-11T21:05:10.5889366Z test_lowmem_dropout2_cpu (__main__.CpuTests) ... [2023-01-11 20:56:11,543] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 336 2023-01-11T21:05:10.5889625Z [2023-01-11 20:56:11,545] torch._inductor.lowering: [WARNING] using triton random, expect difference from eager 2023-01-11T21:05:10.5889892Z [2023-01-11 20:56:14,249] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 336 2023-01-11T21:05:10.5890133Z [2023-01-11 20:56:14,256] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling BACKWARDS graph 336 2023-01-11T21:05:10.5890393Z [2023-01-11 20:56:17,005] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling BACKWARDS graph 336 2023-01-11T21:05:10.5890399Z 2023-01-11T21:05:10.5890493Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.5890564Z import torch 2023-01-11T21:05:10.5890632Z import random 2023-01-11T21:05:10.5890747Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.5890866Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.5890873Z 2023-01-11T21:05:10.5890952Z aten = torch.ops.aten 2023-01-11T21:05:10.5891073Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.5891163Z async_compile = AsyncCompile() 2023-01-11T21:05:10.5891324Z seed_cpu_None = None # 9130db9322feaa41c28986790b86d7dd047e77339ff46fce775dbaa5929b26ce 2023-01-11T21:05:10.5891329Z 2023-01-11T21:05:10.5891333Z 2023-01-11T21:05:10.5891465Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.5891670Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.5891784Z extern "C" void kernel(float* __restrict__ in_out_ptr0, 2023-01-11T21:05:10.5891885Z const long* __restrict__ seed0) 2023-01-11T21:05:10.5891977Z { 2023-01-11T21:05:10.5892062Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.5892122Z { 2023-01-11T21:05:10.5892197Z #pragma omp for 2023-01-11T21:05:10.5892282Z for(long i0=0; i0<256; i0+=1) 2023-01-11T21:05:10.5892343Z { 2023-01-11T21:05:10.5892406Z { 2023-01-11T21:05:10.5892469Z { 2023-01-11T21:05:10.5892542Z auto tmp0 = seed0[0]; 2023-01-11T21:05:10.5892638Z auto tmp6 = in_out_ptr0[i0]; 2023-01-11T21:05:10.5892740Z auto tmp1 = static_cast(i0); 2023-01-11T21:05:10.5892878Z auto tmp2 = static_cast(normalized_rand_cpu(tmp0, tmp1));; 2023-01-11T21:05:10.5892985Z auto tmp3 = static_cast(0.5); 2023-01-11T21:05:10.5893076Z auto tmp4 = tmp2 > tmp3; 2023-01-11T21:05:10.5893180Z auto tmp5 = static_cast(tmp4); 2023-01-11T21:05:10.5893257Z auto tmp7 = tmp5 * tmp6; 2023-01-11T21:05:10.5893362Z auto tmp8 = static_cast(2.0); 2023-01-11T21:05:10.5893451Z auto tmp9 = tmp7 * tmp8; 2023-01-11T21:05:10.5893574Z in_out_ptr0[i0] = tmp9; 2023-01-11T21:05:10.5893640Z } 2023-01-11T21:05:10.5893701Z } 2023-01-11T21:05:10.5893763Z } 2023-01-11T21:05:10.5893810Z } 2023-01-11T21:05:10.5893868Z } 2023-01-11T21:05:10.5893946Z ''') 2023-01-11T21:05:10.5893951Z 2023-01-11T21:05:10.5893955Z 2023-01-11T21:05:10.5894087Z kernel_cpp_1 = async_compile.cpp(''' 2023-01-11T21:05:10.5894291Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.5894405Z extern "C" void kernel(float* __restrict__ in_out_ptr0, 2023-01-11T21:05:10.5894505Z const long* __restrict__ seed0) 2023-01-11T21:05:10.5894552Z { 2023-01-11T21:05:10.5894647Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.5894710Z { 2023-01-11T21:05:10.5894786Z #pragma omp for 2023-01-11T21:05:10.5894868Z for(long i0=0; i0<256; i0+=1) 2023-01-11T21:05:10.5894929Z { 2023-01-11T21:05:10.5894991Z { 2023-01-11T21:05:10.5895043Z { 2023-01-11T21:05:10.5895127Z auto tmp0 = seed0[0]; 2023-01-11T21:05:10.5895221Z auto tmp6 = in_out_ptr0[i0]; 2023-01-11T21:05:10.5895329Z auto tmp1 = static_cast(256 + i0); 2023-01-11T21:05:10.5895465Z auto tmp2 = static_cast(normalized_rand_cpu(tmp0, tmp1));; 2023-01-11T21:05:10.5895569Z auto tmp3 = static_cast(0.5); 2023-01-11T21:05:10.5895659Z auto tmp4 = tmp2 > tmp3; 2023-01-11T21:05:10.5895751Z auto tmp5 = static_cast(tmp4); 2023-01-11T21:05:10.5895841Z auto tmp7 = tmp5 * tmp6; 2023-01-11T21:05:10.5895944Z auto tmp8 = static_cast(2.0); 2023-01-11T21:05:10.5896035Z auto tmp9 = tmp7 * tmp8; 2023-01-11T21:05:10.5896124Z in_out_ptr0[i0] = tmp9; 2023-01-11T21:05:10.5896188Z } 2023-01-11T21:05:10.5896249Z } 2023-01-11T21:05:10.5896299Z } 2023-01-11T21:05:10.5896359Z } 2023-01-11T21:05:10.5896418Z } 2023-01-11T21:05:10.5896495Z ''') 2023-01-11T21:05:10.5896500Z 2023-01-11T21:05:10.5896504Z 2023-01-11T21:05:10.5896594Z async_compile.wait(globals()) 2023-01-11T21:05:10.5896664Z del async_compile 2023-01-11T21:05:10.5896670Z 2023-01-11T21:05:10.5896738Z def call(args): 2023-01-11T21:05:10.5896825Z primals_1, primals_2, primals_3 = args 2023-01-11T21:05:10.5896894Z args.clear() 2023-01-11T21:05:10.5897026Z torch.randint(2**31, size=(), dtype=torch.int64, out=seed_cpu_None) 2023-01-11T21:05:10.5897224Z buf0 = empty_strided((8, 32), (32, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.5897355Z aten.mm.out(primals_3, as_strided(primals_1, (32, 32), (1, 32)), out=buf0) 2023-01-11T21:05:10.5897458Z del primals_1 2023-01-11T21:05:10.5897543Z buf1 = buf0; del buf0 # reuse 2023-01-11T21:05:10.5897689Z kernel_cpp_0(c_void_p(buf1.data_ptr()), c_void_p(seed_cpu_None.data_ptr())) 2023-01-11T21:05:10.5897872Z buf2 = empty_strided((8, 32), (32, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.5897995Z aten.mm.out(buf1, as_strided(primals_2, (32, 32), (1, 32)), out=buf2) 2023-01-11T21:05:10.5898078Z buf3 = buf2; del buf2 # reuse 2023-01-11T21:05:10.5898218Z kernel_cpp_1(c_void_p(buf3.data_ptr()), c_void_p(seed_cpu_None.data_ptr())) 2023-01-11T21:05:10.5898373Z return (buf3, primals_3, seed_cpu_None.clone(), buf1, as_strided(primals_2, (32, 32), (32, 1)), ) 2023-01-11T21:05:10.5898379Z 2023-01-11T21:05:10.5898384Z 2023-01-11T21:05:10.5898458Z if __name__ == "__main__": 2023-01-11T21:05:10.5898673Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.5898798Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.5898982Z seed_cpu_None = rand_strided((), (), device='cpu', dtype=torch.int64) 2023-01-11T21:05:10.5899192Z primals_1 = rand_strided((32, 32), (32, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.5899423Z primals_2 = rand_strided((32, 32), (32, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.5899627Z primals_3 = rand_strided((8, 32), (32, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.5899765Z print_performance(lambda: call([primals_1, primals_2, primals_3])) 2023-01-11T21:05:10.5899771Z 2023-01-11T21:05:10.5899775Z 2023-01-11T21:05:10.5899868Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.5899937Z import torch 2023-01-11T21:05:10.5900009Z import random 2023-01-11T21:05:10.5900111Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.5900233Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.5900238Z 2023-01-11T21:05:10.5900317Z aten = torch.ops.aten 2023-01-11T21:05:10.5900451Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.5900541Z async_compile = AsyncCompile() 2023-01-11T21:05:10.5900546Z 2023-01-11T21:05:10.5900551Z 2023-01-11T21:05:10.5900688Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.5900891Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.5901010Z extern "C" void kernel(const long* __restrict__ in_ptr0, 2023-01-11T21:05:10.5901101Z const float* __restrict__ in_ptr1, 2023-01-11T21:05:10.5901201Z float* __restrict__ out_ptr0) 2023-01-11T21:05:10.5901262Z { 2023-01-11T21:05:10.5901358Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.5901419Z { 2023-01-11T21:05:10.5901496Z #pragma omp for 2023-01-11T21:05:10.5901579Z for(long i0=0; i0<256; i0+=1) 2023-01-11T21:05:10.5901627Z { 2023-01-11T21:05:10.5901693Z { 2023-01-11T21:05:10.5901756Z { 2023-01-11T21:05:10.5901849Z auto tmp0 = in_ptr0[0]; 2023-01-11T21:05:10.5901940Z auto tmp6 = in_ptr1[i0]; 2023-01-11T21:05:10.5902047Z auto tmp1 = static_cast(256 + i0); 2023-01-11T21:05:10.5902184Z auto tmp2 = static_cast(normalized_rand_cpu(tmp0, tmp1));; 2023-01-11T21:05:10.5902276Z auto tmp3 = static_cast(0.5); 2023-01-11T21:05:10.5902366Z auto tmp4 = tmp2 > tmp3; 2023-01-11T21:05:10.5902472Z auto tmp5 = static_cast(tmp4); 2023-01-11T21:05:10.5902562Z auto tmp7 = tmp5 * tmp6; 2023-01-11T21:05:10.5902666Z auto tmp8 = static_cast(2.0); 2023-01-11T21:05:10.5902755Z auto tmp9 = tmp7 * tmp8; 2023-01-11T21:05:10.5902840Z out_ptr0[i0] = tmp9; 2023-01-11T21:05:10.5902891Z } 2023-01-11T21:05:10.5902952Z } 2023-01-11T21:05:10.5903047Z } 2023-01-11T21:05:10.5903107Z } 2023-01-11T21:05:10.5903166Z } 2023-01-11T21:05:10.5903246Z ''') 2023-01-11T21:05:10.5903251Z 2023-01-11T21:05:10.5903256Z 2023-01-11T21:05:10.5903389Z kernel_cpp_1 = async_compile.cpp(''' 2023-01-11T21:05:10.5903582Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.5903698Z extern "C" void kernel(float* __restrict__ in_out_ptr0, 2023-01-11T21:05:10.5903801Z const long* __restrict__ in_ptr0) 2023-01-11T21:05:10.5903861Z { 2023-01-11T21:05:10.5903957Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.5904018Z { 2023-01-11T21:05:10.5904093Z #pragma omp for 2023-01-11T21:05:10.5904162Z for(long i0=0; i0<256; i0+=1) 2023-01-11T21:05:10.5904223Z { 2023-01-11T21:05:10.5904288Z { 2023-01-11T21:05:10.5904350Z { 2023-01-11T21:05:10.5904441Z auto tmp0 = in_ptr0[0]; 2023-01-11T21:05:10.5904539Z auto tmp6 = in_out_ptr0[i0]; 2023-01-11T21:05:10.5904641Z auto tmp1 = static_cast(i0); 2023-01-11T21:05:10.5904763Z auto tmp2 = static_cast(normalized_rand_cpu(tmp0, tmp1));; 2023-01-11T21:05:10.5904898Z auto tmp3 = static_cast(0.5); 2023-01-11T21:05:10.5904989Z auto tmp4 = tmp2 > tmp3; 2023-01-11T21:05:10.5905096Z auto tmp5 = static_cast(tmp4); 2023-01-11T21:05:10.5905185Z auto tmp7 = tmp5 * tmp6; 2023-01-11T21:05:10.5905290Z auto tmp8 = static_cast(2.0); 2023-01-11T21:05:10.5905379Z auto tmp9 = tmp7 * tmp8; 2023-01-11T21:05:10.5905469Z in_out_ptr0[i0] = tmp9; 2023-01-11T21:05:10.5905519Z } 2023-01-11T21:05:10.5905580Z } 2023-01-11T21:05:10.5905641Z } 2023-01-11T21:05:10.5905700Z } 2023-01-11T21:05:10.5905757Z } 2023-01-11T21:05:10.5905836Z ''') 2023-01-11T21:05:10.5905841Z 2023-01-11T21:05:10.5905845Z 2023-01-11T21:05:10.5905933Z async_compile.wait(globals()) 2023-01-11T21:05:10.5905990Z del async_compile 2023-01-11T21:05:10.5905995Z 2023-01-11T21:05:10.5906063Z def call(args): 2023-01-11T21:05:10.5906195Z primals_3, philox_seed_like, mul_1, permute_4, tangents_1 = args 2023-01-11T21:05:10.5906267Z args.clear() 2023-01-11T21:05:10.5906464Z buf0 = empty_strided((8, 32), (32, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.5906646Z kernel_cpp_0(c_void_p(philox_seed_like.data_ptr()), c_void_p(tangents_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:05:10.5906718Z del tangents_1 2023-01-11T21:05:10.5906902Z buf1 = empty_strided((32, 32), (32, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.5907019Z aten.mm.out(as_strided(buf0, (32, 8), (1, 32)), mul_1, out=buf1) 2023-01-11T21:05:10.5907085Z del mul_1 2023-01-11T21:05:10.5907279Z buf2 = empty_strided((8, 32), (32, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.5907379Z aten.mm.out(buf0, permute_4, out=buf2) 2023-01-11T21:05:10.5907443Z del buf0 2023-01-11T21:05:10.5907512Z del permute_4 2023-01-11T21:05:10.5907586Z buf3 = buf2; del buf2 # reuse 2023-01-11T21:05:10.5907734Z kernel_cpp_1(c_void_p(buf3.data_ptr()), c_void_p(philox_seed_like.data_ptr())) 2023-01-11T21:05:10.5907812Z del philox_seed_like 2023-01-11T21:05:10.5908008Z buf4 = empty_strided((32, 32), (32, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.5908131Z aten.mm.out(as_strided(buf3, (32, 8), (1, 32)), primals_3, out=buf4) 2023-01-11T21:05:10.5908195Z del buf3 2023-01-11T21:05:10.5908264Z del primals_3 2023-01-11T21:05:10.5908382Z return (as_strided(buf4, (32, 32), (32, 1)), as_strided(buf1, (32, 32), (32, 1)), None, ) 2023-01-11T21:05:10.5908399Z 2023-01-11T21:05:10.5908404Z 2023-01-11T21:05:10.5908465Z if __name__ == "__main__": 2023-01-11T21:05:10.5908576Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.5908728Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.5908930Z primals_3 = rand_strided((8, 32), (32, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.5909129Z philox_seed_like = rand_strided((), (), device='cpu', dtype=torch.int64) 2023-01-11T21:05:10.5909321Z mul_1 = rand_strided((8, 32), (32, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.5909524Z permute_4 = rand_strided((32, 32), (32, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.5909722Z tangents_1 = rand_strided((8, 32), (32, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.5909874Z print_performance(lambda: call([primals_3, philox_seed_like, mul_1, permute_4, tangents_1])) 2023-01-11T21:05:10.5909879Z 2023-01-11T21:05:10.5909945Z ok (5.927s) 2023-01-11T21:05:10.5910385Z test_masked_fill_cpu (__main__.CpuTests) ... inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.5910582Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.5910845Z [2023-01-11 20:56:17,078] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 337 2023-01-11T21:05:10.5911111Z [2023-01-11 20:56:19,735] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 337 2023-01-11T21:05:10.5911116Z 2023-01-11T21:05:10.5911212Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.5911281Z import torch 2023-01-11T21:05:10.5911351Z import random 2023-01-11T21:05:10.5911452Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.5911574Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.5911579Z 2023-01-11T21:05:10.5911656Z aten = torch.ops.aten 2023-01-11T21:05:10.5911794Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.5911885Z async_compile = AsyncCompile() 2023-01-11T21:05:10.5911890Z 2023-01-11T21:05:10.5911894Z 2023-01-11T21:05:10.5912030Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.5912236Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.5912353Z extern "C" void kernel(const bool* __restrict__ in_ptr0, 2023-01-11T21:05:10.5912445Z const float* __restrict__ in_ptr1, 2023-01-11T21:05:10.5912544Z float* __restrict__ out_ptr0, 2023-01-11T21:05:10.5912640Z float* __restrict__ out_ptr1) 2023-01-11T21:05:10.5912700Z { 2023-01-11T21:05:10.5912794Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.5912854Z { 2023-01-11T21:05:10.5912929Z #pragma omp for 2023-01-11T21:05:10.5912997Z for(long i0=0; i0<16; i0+=1) 2023-01-11T21:05:10.5913061Z { 2023-01-11T21:05:10.5913139Z #pragma GCC ivdep 2023-01-11T21:05:10.5913223Z for(long i1=0; i1<16; i1+=1) 2023-01-11T21:05:10.5913286Z { 2023-01-11T21:05:10.5913349Z { 2023-01-11T21:05:10.5913417Z { 2023-01-11T21:05:10.5913499Z auto tmp0 = in_ptr0[i1]; 2023-01-11T21:05:10.5913599Z auto tmp2 = in_ptr1[i1 + (16*i0)]; 2023-01-11T21:05:10.5913766Z auto tmp1 = static_cast(-10000.0); 2023-01-11T21:05:10.5913865Z auto tmp3 = tmp0 ? tmp1 : tmp2; 2023-01-11T21:05:10.5913969Z auto tmp4 = static_cast(2); 2023-01-11T21:05:10.5914062Z auto tmp5 = tmp3 + tmp4; 2023-01-11T21:05:10.5914152Z auto tmp6 = tmp0 == 0; 2023-01-11T21:05:10.5914247Z auto tmp7 = static_cast(667.0); 2023-01-11T21:05:10.5914353Z auto tmp8 = static_cast(2.0); 2023-01-11T21:05:10.5914473Z auto tmp9 = tmp2 / tmp8; 2023-01-11T21:05:10.5914575Z auto tmp10 = tmp6 ? tmp7 : tmp9; 2023-01-11T21:05:10.5914671Z out_ptr0[i1 + (16*i0)] = tmp5; 2023-01-11T21:05:10.5914767Z out_ptr1[i1 + (16*i0)] = tmp10; 2023-01-11T21:05:10.5914832Z } 2023-01-11T21:05:10.5914883Z } 2023-01-11T21:05:10.5914945Z } 2023-01-11T21:05:10.5915005Z } 2023-01-11T21:05:10.5915065Z } 2023-01-11T21:05:10.5915125Z } 2023-01-11T21:05:10.5915202Z ''') 2023-01-11T21:05:10.5915207Z 2023-01-11T21:05:10.5915211Z 2023-01-11T21:05:10.5915302Z async_compile.wait(globals()) 2023-01-11T21:05:10.5915360Z del async_compile 2023-01-11T21:05:10.5915379Z 2023-01-11T21:05:10.5915434Z def call(args): 2023-01-11T21:05:10.5915507Z arg0_1, arg1_1 = args 2023-01-11T21:05:10.5915576Z args.clear() 2023-01-11T21:05:10.5915777Z buf0 = empty_strided((16, 16), (16, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.5915976Z buf1 = empty_strided((16, 16), (16, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.5916191Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(arg1_1.data_ptr()), c_void_p(buf0.data_ptr()), c_void_p(buf1.data_ptr())) 2023-01-11T21:05:10.5916262Z del arg0_1 2023-01-11T21:05:10.5916312Z del arg1_1 2023-01-11T21:05:10.5916389Z return (buf0, buf1, ) 2023-01-11T21:05:10.5916394Z 2023-01-11T21:05:10.5916398Z 2023-01-11T21:05:10.5916472Z if __name__ == "__main__": 2023-01-11T21:05:10.5916584Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.5916707Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.5916898Z arg0_1 = rand_strided((1, 16), (16, 1), device='cpu', dtype=torch.bool) 2023-01-11T21:05:10.5917097Z arg1_1 = rand_strided((16, 16), (16, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.5917211Z print_performance(lambda: call([arg0_1, arg1_1])) 2023-01-11T21:05:10.5917221Z 2023-01-11T21:05:10.5917273Z ok (2.736s) 2023-01-11T21:05:10.5917618Z test_masked_fill_promotion_cpu (__main__.CpuTests) ... [2023-01-11 20:56:19,788] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 338 2023-01-11T21:05:10.5917884Z [2023-01-11 20:56:22,468] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 338 2023-01-11T21:05:10.5918138Z [2023-01-11 20:56:22,555] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 339 2023-01-11T21:05:10.5918400Z [2023-01-11 20:56:25,229] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 339 2023-01-11T21:05:10.5918405Z 2023-01-11T21:05:10.5918497Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.5918566Z import torch 2023-01-11T21:05:10.5918635Z import random 2023-01-11T21:05:10.5918735Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.5918854Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.5918861Z 2023-01-11T21:05:10.5918938Z aten = torch.ops.aten 2023-01-11T21:05:10.5919068Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.5919161Z async_compile = AsyncCompile() 2023-01-11T21:05:10.5919168Z 2023-01-11T21:05:10.5919172Z 2023-01-11T21:05:10.5919304Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.5919507Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.5919624Z extern "C" void kernel(const bool* __restrict__ in_ptr0, 2023-01-11T21:05:10.5919715Z const float* __restrict__ in_ptr1, 2023-01-11T21:05:10.5919812Z float* __restrict__ out_ptr0) 2023-01-11T21:05:10.5919871Z { 2023-01-11T21:05:10.5919966Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.5920027Z { 2023-01-11T21:05:10.5920103Z #pragma omp for 2023-01-11T21:05:10.5920183Z for(long i0=0; i0<16; i0+=1) 2023-01-11T21:05:10.5920263Z { 2023-01-11T21:05:10.5920346Z for(long i1=0; i1<1; i1+=1) 2023-01-11T21:05:10.5920409Z { 2023-01-11T21:05:10.5920514Z float g_tmp_buffer_in_ptr0[16] = {0}; 2023-01-11T21:05:10.5920773Z flag_to_float(in_ptr0 + 16*i1, g_tmp_buffer_in_ptr0, 16); 2023-01-11T21:05:10.5920931Z auto tmp0 = at::vec::Vectorized::loadu(g_tmp_buffer_in_ptr0); 2023-01-11T21:05:10.5921071Z auto tmp2 = at::vec::Vectorized::loadu(in_ptr1 + (16*i0) + (16*i1)); 2023-01-11T21:05:10.5921208Z auto tmp1 = at::vec::Vectorized(static_cast(3.5)); 2023-01-11T21:05:10.5921321Z auto tmp3 = decltype(tmp1)::blendv(tmp2, tmp1, tmp0); 2023-01-11T21:05:10.5921425Z tmp3.store(out_ptr0 + (16*i0) + (16*i1)); 2023-01-11T21:05:10.5921490Z } 2023-01-11T21:05:10.5921584Z #pragma omp simd simdlen(8) 2023-01-11T21:05:10.5921674Z for(long i1=16; i1<16; i1+=1) 2023-01-11T21:05:10.5921737Z { 2023-01-11T21:05:10.5921823Z auto tmp0 = in_ptr0[i1]; 2023-01-11T21:05:10.5921906Z auto tmp2 = in_ptr1[i1 + (16*i0)]; 2023-01-11T21:05:10.5922060Z auto tmp1 = static_cast(3.5); 2023-01-11T21:05:10.5922158Z auto tmp3 = tmp0 ? tmp1 : tmp2; 2023-01-11T21:05:10.5922250Z out_ptr0[i1 + (16*i0)] = tmp3; 2023-01-11T21:05:10.5922314Z } 2023-01-11T21:05:10.5922378Z } 2023-01-11T21:05:10.5922439Z } 2023-01-11T21:05:10.5922485Z } 2023-01-11T21:05:10.5922568Z ''') 2023-01-11T21:05:10.5922573Z 2023-01-11T21:05:10.5922577Z 2023-01-11T21:05:10.5922666Z async_compile.wait(globals()) 2023-01-11T21:05:10.5922739Z del async_compile 2023-01-11T21:05:10.5922744Z 2023-01-11T21:05:10.5922814Z def call(args): 2023-01-11T21:05:10.5922889Z arg0_1, arg1_1 = args 2023-01-11T21:05:10.5922960Z args.clear() 2023-01-11T21:05:10.5923147Z buf0 = empty_strided((16, 16), (16, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.5923309Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(arg1_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:05:10.5923379Z del arg0_1 2023-01-11T21:05:10.5923445Z del arg1_1 2023-01-11T21:05:10.5923515Z return (buf0, ) 2023-01-11T21:05:10.5923520Z 2023-01-11T21:05:10.5923523Z 2023-01-11T21:05:10.5923597Z if __name__ == "__main__": 2023-01-11T21:05:10.5923709Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.5923830Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.5924007Z arg0_1 = rand_strided((1, 16), (16, 1), device='cpu', dtype=torch.bool) 2023-01-11T21:05:10.5924206Z arg1_1 = rand_strided((16, 16), (16, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.5924319Z print_performance(lambda: call([arg0_1, arg1_1])) 2023-01-11T21:05:10.5924324Z 2023-01-11T21:05:10.5924328Z 2023-01-11T21:05:10.5924420Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.5924490Z import torch 2023-01-11T21:05:10.5924559Z import random 2023-01-11T21:05:10.5924672Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.5924794Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.5924799Z 2023-01-11T21:05:10.5924868Z aten = torch.ops.aten 2023-01-11T21:05:10.5925000Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.5925090Z async_compile = AsyncCompile() 2023-01-11T21:05:10.5925095Z 2023-01-11T21:05:10.5925099Z 2023-01-11T21:05:10.5925232Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.5925434Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.5925550Z extern "C" void kernel(const bool* __restrict__ in_ptr0, 2023-01-11T21:05:10.5925651Z const long* __restrict__ in_ptr1, 2023-01-11T21:05:10.5925746Z long* __restrict__ out_ptr0) 2023-01-11T21:05:10.5925833Z { 2023-01-11T21:05:10.5925929Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.5925989Z { 2023-01-11T21:05:10.5926065Z #pragma omp for 2023-01-11T21:05:10.5926145Z for(long i0=0; i0<16; i0+=1) 2023-01-11T21:05:10.5926209Z { 2023-01-11T21:05:10.5926288Z #pragma GCC ivdep 2023-01-11T21:05:10.5926359Z for(long i1=0; i1<16; i1+=1) 2023-01-11T21:05:10.5926420Z { 2023-01-11T21:05:10.5926482Z { 2023-01-11T21:05:10.5926546Z { 2023-01-11T21:05:10.5926639Z auto tmp0 = in_ptr0[i1]; 2023-01-11T21:05:10.5926739Z auto tmp3 = in_ptr1[i1 + (16*i0)]; 2023-01-11T21:05:10.5926846Z auto tmp1 = static_cast(3.5); 2023-01-11T21:05:10.5926941Z auto tmp2 = static_cast(tmp1); 2023-01-11T21:05:10.5927039Z auto tmp4 = tmp0 ? tmp2 : tmp3; 2023-01-11T21:05:10.5927134Z out_ptr0[i1 + (16*i0)] = tmp4; 2023-01-11T21:05:10.5927204Z } 2023-01-11T21:05:10.5927269Z } 2023-01-11T21:05:10.5927332Z } 2023-01-11T21:05:10.5927394Z } 2023-01-11T21:05:10.5927468Z } 2023-01-11T21:05:10.5927528Z } 2023-01-11T21:05:10.5927605Z ''') 2023-01-11T21:05:10.5927611Z 2023-01-11T21:05:10.5927614Z 2023-01-11T21:05:10.5927704Z async_compile.wait(globals()) 2023-01-11T21:05:10.5927774Z del async_compile 2023-01-11T21:05:10.5927779Z 2023-01-11T21:05:10.5927846Z def call(args): 2023-01-11T21:05:10.5927919Z arg0_1, arg1_1 = args 2023-01-11T21:05:10.5927976Z args.clear() 2023-01-11T21:05:10.5928168Z buf0 = empty_strided((16, 16), (16, 1), device='cpu', dtype=torch.int64) 2023-01-11T21:05:10.5928331Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(arg1_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:05:10.5928397Z del arg0_1 2023-01-11T21:05:10.5928462Z del arg1_1 2023-01-11T21:05:10.5928532Z return (buf0, ) 2023-01-11T21:05:10.5928539Z 2023-01-11T21:05:10.5928543Z 2023-01-11T21:05:10.5928615Z if __name__ == "__main__": 2023-01-11T21:05:10.5928716Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.5928840Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.5929029Z arg0_1 = rand_strided((1, 16), (16, 1), device='cpu', dtype=torch.bool) 2023-01-11T21:05:10.5929224Z arg1_1 = rand_strided((16, 16), (16, 1), device='cpu', dtype=torch.int64) 2023-01-11T21:05:10.5929336Z print_performance(lambda: call([arg0_1, arg1_1])) 2023-01-11T21:05:10.5929341Z 2023-01-11T21:05:10.5929407Z ok (5.489s) 2023-01-11T21:05:10.5929841Z test_max_min_cpu (__main__.CpuTests) ... inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.5929969Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.5930231Z [2023-01-11 20:56:25,266] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 340 2023-01-11T21:05:10.5930494Z [2023-01-11 20:56:27,940] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 340 2023-01-11T21:05:10.5930878Z inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.5931004Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.5931256Z [2023-01-11 20:56:27,983] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 341 2023-01-11T21:05:10.5931553Z [2023-01-11 20:56:28,000] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 341 2023-01-11T21:05:10.5931558Z 2023-01-11T21:05:10.5931651Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.5931722Z import torch 2023-01-11T21:05:10.5931791Z import random 2023-01-11T21:05:10.5931904Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.5932009Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.5932026Z 2023-01-11T21:05:10.5932089Z aten = torch.ops.aten 2023-01-11T21:05:10.5932223Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.5932314Z async_compile = AsyncCompile() 2023-01-11T21:05:10.5932319Z 2023-01-11T21:05:10.5932323Z 2023-01-11T21:05:10.5932455Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.5932659Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.5932776Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:05:10.5932882Z const float* __restrict__ in_ptr1, 2023-01-11T21:05:10.5932982Z float* __restrict__ out_ptr0, 2023-01-11T21:05:10.5933092Z float* __restrict__ out_ptr1) 2023-01-11T21:05:10.5933154Z { 2023-01-11T21:05:10.5933250Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.5933311Z { 2023-01-11T21:05:10.5933388Z #pragma omp for 2023-01-11T21:05:10.5933469Z for(long i0=0; i0<8; i0+=1) 2023-01-11T21:05:10.5933517Z { 2023-01-11T21:05:10.5933581Z { 2023-01-11T21:05:10.5933645Z { 2023-01-11T21:05:10.5933737Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:05:10.5933828Z auto tmp1 = in_ptr1[i0]; 2023-01-11T21:05:10.5933960Z auto tmp2 = (tmp1 != tmp1) ? tmp1 : std::max(tmp0, tmp1); 2023-01-11T21:05:10.5934085Z auto tmp3 = (tmp1 != tmp1) ? tmp1 : std::min(tmp0, tmp1); 2023-01-11T21:05:10.5934172Z out_ptr0[i0] = tmp2; 2023-01-11T21:05:10.5934241Z out_ptr1[i0] = tmp3; 2023-01-11T21:05:10.5934304Z } 2023-01-11T21:05:10.5934368Z } 2023-01-11T21:05:10.5934431Z } 2023-01-11T21:05:10.5934493Z } 2023-01-11T21:05:10.5934551Z } 2023-01-11T21:05:10.5934616Z ''') 2023-01-11T21:05:10.5934621Z 2023-01-11T21:05:10.5934640Z 2023-01-11T21:05:10.5934713Z async_compile.wait(globals()) 2023-01-11T21:05:10.5934784Z del async_compile 2023-01-11T21:05:10.5934789Z 2023-01-11T21:05:10.5934858Z def call(args): 2023-01-11T21:05:10.5934932Z arg0_1, arg1_1 = args 2023-01-11T21:05:10.5935004Z args.clear() 2023-01-11T21:05:10.5935193Z buf0 = empty_strided((8, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.5935382Z buf1 = empty_strided((8, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.5935559Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(arg1_1.data_ptr()), c_void_p(buf0.data_ptr()), c_void_p(buf1.data_ptr())) 2023-01-11T21:05:10.5935629Z del arg0_1 2023-01-11T21:05:10.5935694Z del arg1_1 2023-01-11T21:05:10.5935771Z return (buf0, buf1, ) 2023-01-11T21:05:10.5935775Z 2023-01-11T21:05:10.5935779Z 2023-01-11T21:05:10.5935857Z if __name__ == "__main__": 2023-01-11T21:05:10.5935970Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.5936093Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.5936282Z arg0_1 = rand_strided((8, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.5936458Z arg1_1 = rand_strided((8, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.5936576Z print_performance(lambda: call([arg0_1, arg1_1])) 2023-01-11T21:05:10.5936581Z 2023-01-11T21:05:10.5936585Z 2023-01-11T21:05:10.5936677Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.5936746Z import torch 2023-01-11T21:05:10.5936817Z import random 2023-01-11T21:05:10.5936930Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.5937081Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.5937086Z 2023-01-11T21:05:10.5937162Z aten = torch.ops.aten 2023-01-11T21:05:10.5937283Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.5937374Z async_compile = AsyncCompile() 2023-01-11T21:05:10.5937379Z 2023-01-11T21:05:10.5937383Z 2023-01-11T21:05:10.5937516Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.5937720Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.5937838Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:05:10.5937941Z const float* __restrict__ in_ptr1, 2023-01-11T21:05:10.5938040Z float* __restrict__ out_ptr0, 2023-01-11T21:05:10.5938137Z float* __restrict__ out_ptr1) 2023-01-11T21:05:10.5938187Z { 2023-01-11T21:05:10.5938283Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.5938346Z { 2023-01-11T21:05:10.5938420Z #pragma omp for 2023-01-11T21:05:10.5938579Z for(long i0=0; i0<8; i0+=1) 2023-01-11T21:05:10.5938646Z { 2023-01-11T21:05:10.5938696Z { 2023-01-11T21:05:10.5938803Z { 2023-01-11T21:05:10.5938899Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:05:10.5938991Z auto tmp1 = in_ptr1[i0]; 2023-01-11T21:05:10.5939121Z auto tmp2 = (tmp1 != tmp1) ? tmp1 : std::max(tmp0, tmp1); 2023-01-11T21:05:10.5939246Z auto tmp3 = (tmp1 != tmp1) ? tmp1 : std::min(tmp0, tmp1); 2023-01-11T21:05:10.5939330Z out_ptr0[i0] = tmp2; 2023-01-11T21:05:10.5939413Z out_ptr1[i0] = tmp3; 2023-01-11T21:05:10.5939463Z } 2023-01-11T21:05:10.5939525Z } 2023-01-11T21:05:10.5939585Z } 2023-01-11T21:05:10.5939644Z } 2023-01-11T21:05:10.5939702Z } 2023-01-11T21:05:10.5939784Z ''') 2023-01-11T21:05:10.5939791Z 2023-01-11T21:05:10.5939795Z 2023-01-11T21:05:10.5939885Z async_compile.wait(globals()) 2023-01-11T21:05:10.5939942Z del async_compile 2023-01-11T21:05:10.5939947Z 2023-01-11T21:05:10.5940017Z def call(args): 2023-01-11T21:05:10.5940093Z arg0_1, arg1_1 = args 2023-01-11T21:05:10.5940166Z args.clear() 2023-01-11T21:05:10.5940356Z buf0 = empty_strided((8, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.5940544Z buf1 = empty_strided((8, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.5940728Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(arg1_1.data_ptr()), c_void_p(buf0.data_ptr()), c_void_p(buf1.data_ptr())) 2023-01-11T21:05:10.5940782Z del arg0_1 2023-01-11T21:05:10.5940847Z del arg1_1 2023-01-11T21:05:10.5940921Z return (buf0, buf1, ) 2023-01-11T21:05:10.5940925Z 2023-01-11T21:05:10.5940929Z 2023-01-11T21:05:10.5941003Z if __name__ == "__main__": 2023-01-11T21:05:10.5941115Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.5941241Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.5941431Z arg0_1 = rand_strided((8, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.5941619Z arg1_1 = rand_strided((8, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.5941720Z print_performance(lambda: call([arg0_1, arg1_1])) 2023-01-11T21:05:10.5941725Z 2023-01-11T21:05:10.5941790Z ok (2.771s) 2023-01-11T21:05:10.5942229Z test_max_pool2d1_cpu (__main__.CpuTests) ... inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.5942354Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.5942614Z [2023-01-11 20:56:28,033] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 342 2023-01-11T21:05:10.5942910Z [2023-01-11 20:56:30,778] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 342 2023-01-11T21:05:10.5942917Z 2023-01-11T21:05:10.5943011Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.5943079Z import torch 2023-01-11T21:05:10.5943149Z import random 2023-01-11T21:05:10.5943250Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.5943368Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.5943373Z 2023-01-11T21:05:10.5943450Z aten = torch.ops.aten 2023-01-11T21:05:10.5943580Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.5943669Z async_compile = AsyncCompile() 2023-01-11T21:05:10.5943674Z 2023-01-11T21:05:10.5943678Z 2023-01-11T21:05:10.5943809Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.5944011Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.5944131Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:05:10.5944217Z float* __restrict__ out_ptr0, 2023-01-11T21:05:10.5944344Z long* __restrict__ out_ptr1) 2023-01-11T21:05:10.5944405Z { 2023-01-11T21:05:10.5944501Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.5944566Z { 2023-01-11T21:05:10.5944645Z #pragma omp for 2023-01-11T21:05:10.5944724Z for(long i0=0; i0<8; i0+=1) 2023-01-11T21:05:10.5944773Z { 2023-01-11T21:05:10.5944853Z #pragma GCC ivdep 2023-01-11T21:05:10.5944933Z for(long i1=0; i1<7; i1+=1) 2023-01-11T21:05:10.5944994Z { 2023-01-11T21:05:10.5945074Z #pragma GCC ivdep 2023-01-11T21:05:10.5945160Z for(long i2=0; i2<7; i2+=1) 2023-01-11T21:05:10.5945224Z { 2023-01-11T21:05:10.5945276Z { 2023-01-11T21:05:10.5945342Z { 2023-01-11T21:05:10.5945456Z auto tmp0 = in_ptr0[(2*i2) + (32*i1) + (256*i0)]; 2023-01-11T21:05:10.5945570Z auto tmp1 = in_ptr0[1 + (2*i2) + (32*i1) + (256*i0)]; 2023-01-11T21:05:10.5945684Z auto tmp3 = in_ptr0[2 + (2*i2) + (32*i1) + (256*i0)]; 2023-01-11T21:05:10.5945796Z auto tmp5 = in_ptr0[16 + (2*i2) + (32*i1) + (256*i0)]; 2023-01-11T21:05:10.5945901Z auto tmp7 = in_ptr0[17 + (2*i2) + (32*i1) + (256*i0)]; 2023-01-11T21:05:10.5945993Z auto tmp9 = in_ptr0[18 + (2*i2) + (32*i1) + (256*i0)]; 2023-01-11T21:05:10.5946104Z auto tmp11 = in_ptr0[32 + (2*i2) + (32*i1) + (256*i0)]; 2023-01-11T21:05:10.5946211Z auto tmp13 = in_ptr0[33 + (2*i2) + (32*i1) + (256*i0)]; 2023-01-11T21:05:10.5946315Z auto tmp15 = in_ptr0[34 + (2*i2) + (32*i1) + (256*i0)]; 2023-01-11T21:05:10.5946445Z auto tmp2 = (tmp0 != tmp0) ? tmp0 : std::max(tmp1, tmp0); 2023-01-11T21:05:10.5946567Z auto tmp4 = (tmp2 != tmp2) ? tmp2 : std::max(tmp3, tmp2); 2023-01-11T21:05:10.5946690Z auto tmp6 = (tmp4 != tmp4) ? tmp4 : std::max(tmp5, tmp4); 2023-01-11T21:05:10.5946808Z auto tmp8 = (tmp6 != tmp6) ? tmp6 : std::max(tmp7, tmp6); 2023-01-11T21:05:10.5946932Z auto tmp10 = (tmp8 != tmp8) ? tmp8 : std::max(tmp9, tmp8); 2023-01-11T21:05:10.5947062Z auto tmp12 = (tmp10 != tmp10) ? tmp10 : std::max(tmp11, tmp10); 2023-01-11T21:05:10.5947179Z auto tmp14 = (tmp12 != tmp12) ? tmp12 : std::max(tmp13, tmp12); 2023-01-11T21:05:10.5947305Z auto tmp16 = (tmp14 != tmp14) ? tmp14 : std::max(tmp15, tmp14); 2023-01-11T21:05:10.5947420Z auto tmp17 = static_cast((2*i2) + (32*i1)); 2023-01-11T21:05:10.5947566Z auto tmp18 = static_cast(1 + (2*i2) + (32*i1)); 2023-01-11T21:05:10.5947663Z auto tmp19 = tmp1 > tmp0; 2023-01-11T21:05:10.5947772Z auto tmp20 = tmp19 ? tmp18 : tmp17; 2023-01-11T21:05:10.5947890Z auto tmp21 = static_cast(2 + (2*i2) + (32*i1)); 2023-01-11T21:05:10.5947983Z auto tmp22 = tmp3 > tmp2; 2023-01-11T21:05:10.5948074Z auto tmp23 = tmp22 ? tmp21 : tmp20; 2023-01-11T21:05:10.5948192Z auto tmp24 = static_cast(16 + (2*i2) + (32*i1)); 2023-01-11T21:05:10.5948285Z auto tmp25 = tmp5 > tmp4; 2023-01-11T21:05:10.5948387Z auto tmp26 = tmp25 ? tmp24 : tmp23; 2023-01-11T21:05:10.5948504Z auto tmp27 = static_cast(17 + (2*i2) + (32*i1)); 2023-01-11T21:05:10.5948598Z auto tmp28 = tmp7 > tmp6; 2023-01-11T21:05:10.5948702Z auto tmp29 = tmp28 ? tmp27 : tmp26; 2023-01-11T21:05:10.5948820Z auto tmp30 = static_cast(18 + (2*i2) + (32*i1)); 2023-01-11T21:05:10.5948941Z auto tmp31 = tmp9 > tmp8; 2023-01-11T21:05:10.5949045Z auto tmp32 = tmp31 ? tmp30 : tmp29; 2023-01-11T21:05:10.5949159Z auto tmp33 = static_cast(32 + (2*i2) + (32*i1)); 2023-01-11T21:05:10.5949254Z auto tmp34 = tmp11 > tmp10; 2023-01-11T21:05:10.5949354Z auto tmp35 = tmp34 ? tmp33 : tmp32; 2023-01-11T21:05:10.5949469Z auto tmp36 = static_cast(33 + (2*i2) + (32*i1)); 2023-01-11T21:05:10.5949562Z auto tmp37 = tmp13 > tmp12; 2023-01-11T21:05:10.5949650Z auto tmp38 = tmp37 ? tmp36 : tmp35; 2023-01-11T21:05:10.5949765Z auto tmp39 = static_cast(34 + (2*i2) + (32*i1)); 2023-01-11T21:05:10.5949858Z auto tmp40 = tmp15 > tmp14; 2023-01-11T21:05:10.5949963Z auto tmp41 = tmp40 ? tmp39 : tmp38; 2023-01-11T21:05:10.5950066Z out_ptr0[i2 + (7*i1) + (49*i0)] = tmp16; 2023-01-11T21:05:10.5950165Z out_ptr1[i2 + (7*i1) + (49*i0)] = tmp41; 2023-01-11T21:05:10.5950234Z } 2023-01-11T21:05:10.5950300Z } 2023-01-11T21:05:10.5950351Z } 2023-01-11T21:05:10.5950417Z } 2023-01-11T21:05:10.5950480Z } 2023-01-11T21:05:10.5950540Z } 2023-01-11T21:05:10.5950600Z } 2023-01-11T21:05:10.5950679Z ''') 2023-01-11T21:05:10.5950684Z 2023-01-11T21:05:10.5950689Z 2023-01-11T21:05:10.5950777Z async_compile.wait(globals()) 2023-01-11T21:05:10.5950835Z del async_compile 2023-01-11T21:05:10.5950840Z 2023-01-11T21:05:10.5950910Z def call(args): 2023-01-11T21:05:10.5950979Z arg0_1, = args 2023-01-11T21:05:10.5951048Z args.clear() 2023-01-11T21:05:10.5951262Z buf0 = empty_strided((2, 4, 7, 7), (196, 49, 7, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.5951472Z buf1 = empty_strided((2, 4, 7, 7), (196, 49, 7, 1), device='cpu', dtype=torch.int64) 2023-01-11T21:05:10.5951637Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(buf0.data_ptr()), c_void_p(buf1.data_ptr())) 2023-01-11T21:05:10.5951691Z del arg0_1 2023-01-11T21:05:10.5951768Z return (buf0, buf1, ) 2023-01-11T21:05:10.5951773Z 2023-01-11T21:05:10.5951777Z 2023-01-11T21:05:10.5951851Z if __name__ == "__main__": 2023-01-11T21:05:10.5951963Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.5952084Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.5952302Z arg0_1 = rand_strided((2, 4, 16, 16), (1024, 256, 16, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.5952408Z print_performance(lambda: call([arg0_1])) 2023-01-11T21:05:10.5952445Z 2023-01-11T21:05:10.5952512Z ok (2.783s) 2023-01-11T21:05:10.5952954Z test_max_pool2d2_cpu (__main__.CpuTests) ... inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.5953067Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.5953324Z [2023-01-11 20:56:30,946] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 343 2023-01-11T21:05:10.5953587Z [2023-01-11 20:56:33,713] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 343 2023-01-11T21:05:10.5953592Z 2023-01-11T21:05:10.5953685Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.5953753Z import torch 2023-01-11T21:05:10.5953824Z import random 2023-01-11T21:05:10.5953937Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.5954055Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.5954060Z 2023-01-11T21:05:10.5954151Z aten = torch.ops.aten 2023-01-11T21:05:10.5954289Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.5954378Z async_compile = AsyncCompile() 2023-01-11T21:05:10.5954383Z 2023-01-11T21:05:10.5954387Z 2023-01-11T21:05:10.5954518Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.5954720Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.5954837Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:05:10.5954936Z float* __restrict__ out_ptr0, 2023-01-11T21:05:10.5955032Z long* __restrict__ out_ptr1) 2023-01-11T21:05:10.5955079Z { 2023-01-11T21:05:10.5955175Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.5955238Z { 2023-01-11T21:05:10.5955313Z #pragma omp for 2023-01-11T21:05:10.5955395Z for(long i0=0; i0<1024; i0+=1) 2023-01-11T21:05:10.5955456Z { 2023-01-11T21:05:10.5955537Z #pragma GCC ivdep 2023-01-11T21:05:10.5955609Z for(long i1=0; i1<27; i1+=1) 2023-01-11T21:05:10.5955671Z { 2023-01-11T21:05:10.5955750Z #pragma GCC ivdep 2023-01-11T21:05:10.5955837Z for(long i2=0; i2<27; i2+=1) 2023-01-11T21:05:10.5955900Z { 2023-01-11T21:05:10.5955964Z { 2023-01-11T21:05:10.5956031Z { 2023-01-11T21:05:10.5956130Z auto tmp0 = in_ptr0[(2*i2) + (110*i1) + (3025*i0)]; 2023-01-11T21:05:10.5956246Z auto tmp1 = in_ptr0[1 + (2*i2) + (110*i1) + (3025*i0)]; 2023-01-11T21:05:10.5956355Z auto tmp3 = in_ptr0[2 + (2*i2) + (110*i1) + (3025*i0)]; 2023-01-11T21:05:10.5956470Z auto tmp5 = in_ptr0[55 + (2*i2) + (110*i1) + (3025*i0)]; 2023-01-11T21:05:10.5956579Z auto tmp7 = in_ptr0[56 + (2*i2) + (110*i1) + (3025*i0)]; 2023-01-11T21:05:10.5956687Z auto tmp9 = in_ptr0[57 + (2*i2) + (110*i1) + (3025*i0)]; 2023-01-11T21:05:10.5956801Z auto tmp11 = in_ptr0[110 + (2*i2) + (110*i1) + (3025*i0)]; 2023-01-11T21:05:10.5956913Z auto tmp13 = in_ptr0[111 + (2*i2) + (110*i1) + (3025*i0)]; 2023-01-11T21:05:10.5957012Z auto tmp15 = in_ptr0[112 + (2*i2) + (110*i1) + (3025*i0)]; 2023-01-11T21:05:10.5957139Z auto tmp2 = (tmp0 != tmp0) ? tmp0 : std::max(tmp1, tmp0); 2023-01-11T21:05:10.5957261Z auto tmp4 = (tmp2 != tmp2) ? tmp2 : std::max(tmp3, tmp2); 2023-01-11T21:05:10.5957381Z auto tmp6 = (tmp4 != tmp4) ? tmp4 : std::max(tmp5, tmp4); 2023-01-11T21:05:10.5957531Z auto tmp8 = (tmp6 != tmp6) ? tmp6 : std::max(tmp7, tmp6); 2023-01-11T21:05:10.5957657Z auto tmp10 = (tmp8 != tmp8) ? tmp8 : std::max(tmp9, tmp8); 2023-01-11T21:05:10.5957792Z auto tmp12 = (tmp10 != tmp10) ? tmp10 : std::max(tmp11, tmp10); 2023-01-11T21:05:10.5957921Z auto tmp14 = (tmp12 != tmp12) ? tmp12 : std::max(tmp13, tmp12); 2023-01-11T21:05:10.5958044Z auto tmp16 = (tmp14 != tmp14) ? tmp14 : std::max(tmp15, tmp14); 2023-01-11T21:05:10.5958148Z auto tmp17 = static_cast((2*i2) + (110*i1)); 2023-01-11T21:05:10.5958266Z auto tmp18 = static_cast(1 + (2*i2) + (110*i1)); 2023-01-11T21:05:10.5958361Z auto tmp19 = tmp1 > tmp0; 2023-01-11T21:05:10.5958464Z auto tmp20 = tmp19 ? tmp18 : tmp17; 2023-01-11T21:05:10.5958582Z auto tmp21 = static_cast(2 + (2*i2) + (110*i1)); 2023-01-11T21:05:10.5958678Z auto tmp22 = tmp3 > tmp2; 2023-01-11T21:05:10.5958781Z auto tmp23 = tmp22 ? tmp21 : tmp20; 2023-01-11T21:05:10.5958924Z auto tmp24 = static_cast(55 + (2*i2) + (110*i1)); 2023-01-11T21:05:10.5959007Z auto tmp25 = tmp5 > tmp4; 2023-01-11T21:05:10.5959110Z auto tmp26 = tmp25 ? tmp24 : tmp23; 2023-01-11T21:05:10.5959228Z auto tmp27 = static_cast(56 + (2*i2) + (110*i1)); 2023-01-11T21:05:10.5959321Z auto tmp28 = tmp7 > tmp6; 2023-01-11T21:05:10.5959422Z auto tmp29 = tmp28 ? tmp27 : tmp26; 2023-01-11T21:05:10.5959537Z auto tmp30 = static_cast(57 + (2*i2) + (110*i1)); 2023-01-11T21:05:10.5959631Z auto tmp31 = tmp9 > tmp8; 2023-01-11T21:05:10.5959734Z auto tmp32 = tmp31 ? tmp30 : tmp29; 2023-01-11T21:05:10.5959840Z auto tmp33 = static_cast(110 + (2*i2) + (110*i1)); 2023-01-11T21:05:10.5959938Z auto tmp34 = tmp11 > tmp10; 2023-01-11T21:05:10.5960040Z auto tmp35 = tmp34 ? tmp33 : tmp32; 2023-01-11T21:05:10.5960156Z auto tmp36 = static_cast(111 + (2*i2) + (110*i1)); 2023-01-11T21:05:10.5960251Z auto tmp37 = tmp13 > tmp12; 2023-01-11T21:05:10.5960350Z auto tmp38 = tmp37 ? tmp36 : tmp35; 2023-01-11T21:05:10.5960469Z auto tmp39 = static_cast(112 + (2*i2) + (110*i1)); 2023-01-11T21:05:10.5960562Z auto tmp40 = tmp15 > tmp14; 2023-01-11T21:05:10.5960772Z auto tmp41 = tmp40 ? tmp39 : tmp38; 2023-01-11T21:05:10.5960878Z out_ptr0[i2 + (27*i1) + (729*i0)] = tmp16; 2023-01-11T21:05:10.5960988Z out_ptr1[i2 + (27*i1) + (729*i0)] = tmp41; 2023-01-11T21:05:10.5961057Z } 2023-01-11T21:05:10.5961125Z } 2023-01-11T21:05:10.5961190Z } 2023-01-11T21:05:10.5961254Z } 2023-01-11T21:05:10.5961302Z } 2023-01-11T21:05:10.5961364Z } 2023-01-11T21:05:10.5961424Z } 2023-01-11T21:05:10.5961509Z ''') 2023-01-11T21:05:10.5961514Z 2023-01-11T21:05:10.5961518Z 2023-01-11T21:05:10.5961611Z async_compile.wait(globals()) 2023-01-11T21:05:10.5961683Z del async_compile 2023-01-11T21:05:10.5961688Z 2023-01-11T21:05:10.5961757Z def call(args): 2023-01-11T21:05:10.5961811Z arg0_1, = args 2023-01-11T21:05:10.5961881Z args.clear() 2023-01-11T21:05:10.5962104Z buf0 = empty_strided((16, 64, 27, 27), (46656, 729, 27, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.5962320Z buf1 = empty_strided((16, 64, 27, 27), (46656, 729, 27, 1), device='cpu', dtype=torch.int64) 2023-01-11T21:05:10.5962546Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(buf0.data_ptr()), c_void_p(buf1.data_ptr())) 2023-01-11T21:05:10.5962616Z del arg0_1 2023-01-11T21:05:10.5962695Z return (buf0, buf1, ) 2023-01-11T21:05:10.5962701Z 2023-01-11T21:05:10.5962705Z 2023-01-11T21:05:10.5962781Z if __name__ == "__main__": 2023-01-11T21:05:10.5962882Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.5963004Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.5963233Z arg0_1 = rand_strided((16, 64, 55, 55), (193600, 3025, 55, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.5963340Z print_performance(lambda: call([arg0_1])) 2023-01-11T21:05:10.5963345Z 2023-01-11T21:05:10.5963413Z ok (3.600s) 2023-01-11T21:05:10.5963852Z test_max_pool2d3_cpu (__main__.CpuTests) ... inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.5964019Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.5964281Z [2023-01-11 20:56:34,421] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 344 2023-01-11T21:05:10.5964287Z 2023-01-11T21:05:10.5964378Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.5964434Z import torch 2023-01-11T21:05:10.5964504Z import random 2023-01-11T21:05:10.5964617Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.5964738Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.5964742Z 2023-01-11T21:05:10.5964820Z aten = torch.ops.aten 2023-01-11T21:05:10.5964951Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.5965042Z async_compile = AsyncCompile() 2023-01-11T21:05:10.5965048Z 2023-01-11T21:05:10.5965052Z 2023-01-11T21:05:10.5965185Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.5965374Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.5965495Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:05:10.5965597Z float* __restrict__ out_ptr0, 2023-01-11T21:05:10.5965694Z long* __restrict__ out_ptr1) 2023-01-11T21:05:10.5965755Z { 2023-01-11T21:05:10.5965850Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.5965914Z { 2023-01-11T21:05:10.5965976Z #pragma omp for 2023-01-11T21:05:10.5966057Z for(long i0=0; i0<4; i0+=1) 2023-01-11T21:05:10.5966119Z { 2023-01-11T21:05:10.5966199Z #pragma GCC ivdep 2023-01-11T21:05:10.5966280Z for(long i1=0; i1<4; i1+=1) 2023-01-11T21:05:10.5966344Z { 2023-01-11T21:05:10.5966408Z { 2023-01-11T21:05:10.5966463Z { 2023-01-11T21:05:10.5966637Z auto tmp0 = static_cast((-1) + (2*i0)); 2023-01-11T21:05:10.5966740Z auto tmp1 = static_cast(0); 2023-01-11T21:05:10.5966836Z auto tmp2 = tmp0 >= tmp1; 2023-01-11T21:05:10.5966939Z auto tmp3 = static_cast(8); 2023-01-11T21:05:10.5967032Z auto tmp4 = tmp0 < tmp3; 2023-01-11T21:05:10.5967123Z auto tmp5 = tmp2 & tmp4; 2023-01-11T21:05:10.5967279Z auto tmp6 = static_cast((-1) + (2*i1)); 2023-01-11T21:05:10.5967372Z auto tmp7 = tmp6 >= tmp1; 2023-01-11T21:05:10.5967463Z auto tmp8 = tmp6 < tmp3; 2023-01-11T21:05:10.5967554Z auto tmp9 = tmp7 & tmp8; 2023-01-11T21:05:10.5967649Z auto tmp10 = tmp5 & tmp9; 2023-01-11T21:05:10.5967892Z float tmp11 = -std::numeric_limits::infinity(); 2023-01-11T21:05:10.5968001Z if(tmp10) 2023-01-11T21:05:10.5968056Z { 2023-01-11T21:05:10.5968233Z auto tmp12 = in_ptr0[(-9) + (2*i1) + (16*i0)]; 2023-01-11T21:05:10.5968322Z tmp11 = tmp12; 2023-01-11T21:05:10.5968390Z } 2023-01-11T21:05:10.5968498Z auto tmp13 = static_cast(2*i1); 2023-01-11T21:05:10.5968594Z auto tmp14 = tmp13 >= tmp1; 2023-01-11T21:05:10.5968688Z auto tmp15 = tmp13 < tmp3; 2023-01-11T21:05:10.5968784Z auto tmp16 = tmp14 & tmp15; 2023-01-11T21:05:10.5968862Z auto tmp17 = tmp5 & tmp16; 2023-01-11T21:05:10.5969080Z float tmp18 = -std::numeric_limits::infinity(); 2023-01-11T21:05:10.5969155Z if(tmp17) 2023-01-11T21:05:10.5969222Z { 2023-01-11T21:05:10.5969399Z auto tmp19 = in_ptr0[(-8) + (2*i1) + (16*i0)]; 2023-01-11T21:05:10.5969482Z tmp18 = tmp19; 2023-01-11T21:05:10.5969550Z } 2023-01-11T21:05:10.5969706Z auto tmp20 = (tmp11 != tmp11) ? tmp11 : std::max(tmp18, tmp11); 2023-01-11T21:05:10.5969819Z auto tmp21 = static_cast(1 + (2*i1)); 2023-01-11T21:05:10.5969912Z auto tmp22 = tmp21 >= tmp1; 2023-01-11T21:05:10.5970003Z auto tmp23 = tmp21 < tmp3; 2023-01-11T21:05:10.5970095Z auto tmp24 = tmp22 & tmp23; 2023-01-11T21:05:10.5970186Z auto tmp25 = tmp5 & tmp24; 2023-01-11T21:05:10.5970403Z float tmp26 = -std::numeric_limits::infinity(); 2023-01-11T21:05:10.5970477Z if(tmp25) 2023-01-11T21:05:10.5970531Z { 2023-01-11T21:05:10.5970706Z auto tmp27 = in_ptr0[(-7) + (2*i1) + (16*i0)]; 2023-01-11T21:05:10.5970787Z tmp26 = tmp27; 2023-01-11T21:05:10.5970854Z } 2023-01-11T21:05:10.5970987Z auto tmp28 = (tmp20 != tmp20) ? tmp20 : std::max(tmp26, tmp20); 2023-01-11T21:05:10.5971097Z auto tmp29 = static_cast(2*i0); 2023-01-11T21:05:10.5971189Z auto tmp30 = tmp29 >= tmp1; 2023-01-11T21:05:10.5971268Z auto tmp31 = tmp29 < tmp3; 2023-01-11T21:05:10.5971358Z auto tmp32 = tmp30 & tmp31; 2023-01-11T21:05:10.5971448Z auto tmp33 = tmp32 & tmp9; 2023-01-11T21:05:10.5971663Z float tmp34 = -std::numeric_limits::infinity(); 2023-01-11T21:05:10.5971739Z if(tmp33) 2023-01-11T21:05:10.5971807Z { 2023-01-11T21:05:10.5971982Z auto tmp35 = in_ptr0[(-1) + (2*i1) + (16*i0)]; 2023-01-11T21:05:10.5972066Z tmp34 = tmp35; 2023-01-11T21:05:10.5972120Z } 2023-01-11T21:05:10.5972248Z auto tmp36 = (tmp28 != tmp28) ? tmp28 : std::max(tmp34, tmp28); 2023-01-11T21:05:10.5972341Z auto tmp37 = tmp32 & tmp16; 2023-01-11T21:05:10.5972554Z float tmp38 = -std::numeric_limits::infinity(); 2023-01-11T21:05:10.5972628Z if(tmp37) 2023-01-11T21:05:10.5972694Z { 2023-01-11T21:05:10.5972800Z auto tmp39 = in_ptr0[(2*i1) + (16*i0)]; 2023-01-11T21:05:10.5972869Z tmp38 = tmp39; 2023-01-11T21:05:10.5972935Z } 2023-01-11T21:05:10.5973063Z auto tmp40 = (tmp36 != tmp36) ? tmp36 : std::max(tmp38, tmp36); 2023-01-11T21:05:10.5973156Z auto tmp41 = tmp32 & tmp24; 2023-01-11T21:05:10.5973404Z float tmp42 = -std::numeric_limits::infinity(); 2023-01-11T21:05:10.5973478Z if(tmp41) 2023-01-11T21:05:10.5973544Z { 2023-01-11T21:05:10.5973652Z auto tmp43 = in_ptr0[1 + (2*i1) + (16*i0)]; 2023-01-11T21:05:10.5973721Z tmp42 = tmp43; 2023-01-11T21:05:10.5973790Z } 2023-01-11T21:05:10.5973915Z auto tmp44 = (tmp40 != tmp40) ? tmp40 : std::max(tmp42, tmp40); 2023-01-11T21:05:10.5974024Z auto tmp45 = static_cast(1 + (2*i0)); 2023-01-11T21:05:10.5974117Z auto tmp46 = tmp45 >= tmp1; 2023-01-11T21:05:10.5974211Z auto tmp47 = tmp45 < tmp3; 2023-01-11T21:05:10.5974302Z auto tmp48 = tmp46 & tmp47; 2023-01-11T21:05:10.5974379Z auto tmp49 = tmp48 & tmp9; 2023-01-11T21:05:10.5974593Z float tmp50 = -std::numeric_limits::infinity(); 2023-01-11T21:05:10.5974670Z if(tmp49) 2023-01-11T21:05:10.5974735Z { 2023-01-11T21:05:10.5974870Z auto tmp51 = in_ptr0[7 + (2*i1) + (16*i0)]; 2023-01-11T21:05:10.5974953Z tmp50 = tmp51; 2023-01-11T21:05:10.5975018Z } 2023-01-11T21:05:10.5975143Z auto tmp52 = (tmp44 != tmp44) ? tmp44 : std::max(tmp50, tmp44); 2023-01-11T21:05:10.5975222Z auto tmp53 = tmp48 & tmp16; 2023-01-11T21:05:10.5975435Z float tmp54 = -std::numeric_limits::infinity(); 2023-01-11T21:05:10.5975508Z if(tmp53) 2023-01-11T21:05:10.5975573Z { 2023-01-11T21:05:10.5975679Z auto tmp55 = in_ptr0[8 + (2*i1) + (16*i0)]; 2023-01-11T21:05:10.5975759Z tmp54 = tmp55; 2023-01-11T21:05:10.5975830Z } 2023-01-11T21:05:10.5975941Z auto tmp56 = (tmp52 != tmp52) ? tmp52 : std::max(tmp54, tmp52); 2023-01-11T21:05:10.5976033Z auto tmp57 = tmp48 & tmp24; 2023-01-11T21:05:10.5976246Z float tmp58 = -std::numeric_limits::infinity(); 2023-01-11T21:05:10.5976319Z if(tmp57) 2023-01-11T21:05:10.5976385Z { 2023-01-11T21:05:10.5976489Z auto tmp59 = in_ptr0[9 + (2*i1) + (16*i0)]; 2023-01-11T21:05:10.5976569Z tmp58 = tmp59; 2023-01-11T21:05:10.5976635Z } 2023-01-11T21:05:10.5976747Z auto tmp60 = (tmp56 != tmp56) ? tmp56 : std::max(tmp58, tmp56); 2023-01-11T21:05:10.5976956Z float tmp61 = -std::numeric_limits::infinity(); 2023-01-11T21:05:10.5977029Z if(tmp10) 2023-01-11T21:05:10.5977095Z { 2023-01-11T21:05:10.5977271Z auto tmp62 = in_ptr0[(-9) + (2*i1) + (16*i0)]; 2023-01-11T21:05:10.5977351Z tmp61 = tmp62; 2023-01-11T21:05:10.5977417Z } 2023-01-11T21:05:10.5977601Z auto tmp63 = static_cast((-9) + (2*i1) + (16*i0)); 2023-01-11T21:05:10.5977803Z float tmp64 = -std::numeric_limits::infinity(); 2023-01-11T21:05:10.5977877Z if(tmp17) 2023-01-11T21:05:10.5977943Z { 2023-01-11T21:05:10.5978113Z auto tmp65 = in_ptr0[(-8) + (2*i1) + (16*i0)]; 2023-01-11T21:05:10.5978193Z tmp64 = tmp65; 2023-01-11T21:05:10.5978259Z } 2023-01-11T21:05:10.5978441Z auto tmp66 = static_cast((-8) + (2*i1) + (16*i0)); 2023-01-11T21:05:10.5978605Z auto tmp67 = tmp64 > tmp61; 2023-01-11T21:05:10.5978754Z auto tmp68 = tmp67 ? tmp66 : tmp63; 2023-01-11T21:05:10.5978882Z auto tmp69 = (tmp61 != tmp61) ? tmp61 : std::max(tmp64, tmp61); 2023-01-11T21:05:10.5979104Z float tmp70 = -std::numeric_limits::infinity(); 2023-01-11T21:05:10.5979181Z if(tmp25) 2023-01-11T21:05:10.5979250Z { 2023-01-11T21:05:10.5979422Z auto tmp71 = in_ptr0[(-7) + (2*i1) + (16*i0)]; 2023-01-11T21:05:10.5979505Z tmp70 = tmp71; 2023-01-11T21:05:10.5979560Z } 2023-01-11T21:05:10.5979745Z auto tmp72 = static_cast((-7) + (2*i1) + (16*i0)); 2023-01-11T21:05:10.5979840Z auto tmp73 = tmp70 > tmp69; 2023-01-11T21:05:10.5979944Z auto tmp74 = tmp73 ? tmp72 : tmp68; 2023-01-11T21:05:10.5980075Z auto tmp75 = (tmp69 != tmp69) ? tmp69 : std::max(tmp70, tmp69); 2023-01-11T21:05:10.5980296Z float tmp76 = -std::numeric_limits::infinity(); 2023-01-11T21:05:10.5980372Z if(tmp33) 2023-01-11T21:05:10.5980426Z { 2023-01-11T21:05:10.5980629Z auto tmp77 = in_ptr0[(-1) + (2*i1) + (16*i0)]; 2023-01-11T21:05:10.5980712Z tmp76 = tmp77; 2023-01-11T21:05:10.5980779Z } 2023-01-11T21:05:10.5980962Z auto tmp78 = static_cast((-1) + (2*i1) + (16*i0)); 2023-01-11T21:05:10.5981056Z auto tmp79 = tmp76 > tmp75; 2023-01-11T21:05:10.5981157Z auto tmp80 = tmp79 ? tmp78 : tmp74; 2023-01-11T21:05:10.5981284Z auto tmp81 = (tmp75 != tmp75) ? tmp75 : std::max(tmp76, tmp75); 2023-01-11T21:05:10.5981486Z float tmp82 = -std::numeric_limits::infinity(); 2023-01-11T21:05:10.5981559Z if(tmp37) 2023-01-11T21:05:10.5981628Z { 2023-01-11T21:05:10.5981732Z auto tmp83 = in_ptr0[(2*i1) + (16*i0)]; 2023-01-11T21:05:10.5981813Z tmp82 = tmp83; 2023-01-11T21:05:10.5981882Z } 2023-01-11T21:05:10.5981996Z auto tmp84 = static_cast((2*i1) + (16*i0)); 2023-01-11T21:05:10.5982076Z auto tmp85 = tmp82 > tmp81; 2023-01-11T21:05:10.5982177Z auto tmp86 = tmp85 ? tmp84 : tmp80; 2023-01-11T21:05:10.5982303Z auto tmp87 = (tmp81 != tmp81) ? tmp81 : std::max(tmp82, tmp81); 2023-01-11T21:05:10.5982518Z float tmp88 = -std::numeric_limits::infinity(); 2023-01-11T21:05:10.5982592Z if(tmp41) 2023-01-11T21:05:10.5982658Z { 2023-01-11T21:05:10.5982763Z auto tmp89 = in_ptr0[1 + (2*i1) + (16*i0)]; 2023-01-11T21:05:10.5982849Z tmp88 = tmp89; 2023-01-11T21:05:10.5982902Z } 2023-01-11T21:05:10.5983017Z auto tmp90 = static_cast(1 + (2*i1) + (16*i0)); 2023-01-11T21:05:10.5983111Z auto tmp91 = tmp88 > tmp87; 2023-01-11T21:05:10.5983213Z auto tmp92 = tmp91 ? tmp90 : tmp86; 2023-01-11T21:05:10.5983343Z auto tmp93 = (tmp87 != tmp87) ? tmp87 : std::max(tmp88, tmp87); 2023-01-11T21:05:10.5983556Z float tmp94 = -std::numeric_limits::infinity(); 2023-01-11T21:05:10.5983629Z if(tmp49) 2023-01-11T21:05:10.5983695Z { 2023-01-11T21:05:10.5983787Z auto tmp95 = in_ptr0[7 + (2*i1) + (16*i0)]; 2023-01-11T21:05:10.5983869Z tmp94 = tmp95; 2023-01-11T21:05:10.5983935Z } 2023-01-11T21:05:10.5984047Z auto tmp96 = static_cast(7 + (2*i1) + (16*i0)); 2023-01-11T21:05:10.5984182Z auto tmp97 = tmp94 > tmp93; 2023-01-11T21:05:10.5984284Z auto tmp98 = tmp97 ? tmp96 : tmp92; 2023-01-11T21:05:10.5984411Z auto tmp99 = (tmp93 != tmp93) ? tmp93 : std::max(tmp94, tmp93); 2023-01-11T21:05:10.5984628Z float tmp100 = -std::numeric_limits::infinity(); 2023-01-11T21:05:10.5984689Z if(tmp53) 2023-01-11T21:05:10.5984757Z { 2023-01-11T21:05:10.5984864Z auto tmp101 = in_ptr0[8 + (2*i1) + (16*i0)]; 2023-01-11T21:05:10.5984950Z tmp100 = tmp101; 2023-01-11T21:05:10.5985018Z } 2023-01-11T21:05:10.5985137Z auto tmp102 = static_cast(8 + (2*i1) + (16*i0)); 2023-01-11T21:05:10.5985236Z auto tmp103 = tmp100 > tmp99; 2023-01-11T21:05:10.5985327Z auto tmp104 = tmp103 ? tmp102 : tmp98; 2023-01-11T21:05:10.5985465Z auto tmp105 = (tmp99 != tmp99) ? tmp99 : std::max(tmp100, tmp99); 2023-01-11T21:05:10.5985728Z float tmp106 = -std::numeric_limits::infinity(); 2023-01-11T21:05:10.5985806Z if(tmp57) 2023-01-11T21:05:10.5985872Z { 2023-01-11T21:05:10.5985979Z auto tmp107 = in_ptr0[9 + (2*i1) + (16*i0)]; 2023-01-11T21:05:10.5986064Z tmp106 = tmp107; 2023-01-11T21:05:10.5986131Z } 2023-01-11T21:05:10.5986232Z auto tmp108 = static_cast(9 + (2*i1) + (16*i0)); 2023-01-11T21:05:10.5986328Z auto tmp109 = tmp106 > tmp105; 2023-01-11T21:05:10.5986431Z auto tmp110 = tmp109 ? tmp108 : tmp104; 2023-01-11T21:05:10.5986565Z auto tmp111 = (tmp105 != tmp105) ? tmp105 : std::max(tmp106, tmp105); 2023-01-11T21:05:10.5986664Z out_ptr0[i1 + (4*i0)] = tmp60; 2023-01-11T21:05:10.5986759Z out_ptr1[i1 + (4*i0)] = tmp110; 2023-01-11T21:05:10.5986825Z } 2023-01-11T21:05:10.5986878Z } 2023-01-11T21:05:10.5986941Z } 2023-01-11T21:05:10.5987002Z } 2023-01-11T21:05:10.5987063Z } 2023-01-11T21:05:10.5987123Z } 2023-01-11T21:05:10.5987201Z ''') 2023-01-11T21:05:10.5987207Z 2023-01-11T21:05:10.5987212Z 2023-01-11T21:05:10.5987303Z async_compile.wait(globals()) 2023-01-11T21:05:10.5987360Z del async_compile 2023-01-11T21:05:10.5987366Z 2023-01-11T21:05:10.5987436Z def call(args): 2023-01-11T21:05:10.5987503Z arg0_1, = args 2023-01-11T21:05:10.5987573Z args.clear() 2023-01-11T21:05:10.5987788Z buf0 = empty_strided((1, 1, 4, 4), (16, 16, 4, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.5987991Z buf1 = empty_strided((1, 1, 4, 4), (16, 16, 4, 1), device='cpu', dtype=torch.int64) 2023-01-11T21:05:10.5988158Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(buf0.data_ptr()), c_void_p(buf1.data_ptr())) 2023-01-11T21:05:10.5988226Z del arg0_1 2023-01-11T21:05:10.5988289Z return (buf0, buf1, ) 2023-01-11T21:05:10.5988296Z 2023-01-11T21:05:10.5988301Z 2023-01-11T21:05:10.5988375Z if __name__ == "__main__": 2023-01-11T21:05:10.5988487Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.5988609Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.5988817Z arg0_1 = rand_strided((1, 1, 8, 8), (64, 64, 8, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.5988923Z print_performance(lambda: call([arg0_1])) 2023-01-11T21:05:10.5989192Z [2023-01-11 20:56:37,284] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 344 2023-01-11T21:05:10.5989198Z 2023-01-11T21:05:10.5989263Z ok (2.903s) 2023-01-11T21:05:10.5989688Z test_max_pool2d4_cpu (__main__.CpuTests) ... inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.5989846Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.5990104Z [2023-01-11 20:56:37,335] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 345 2023-01-11T21:05:10.5990366Z [2023-01-11 20:56:40,124] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 345 2023-01-11T21:05:10.5990371Z 2023-01-11T21:05:10.5990464Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.5990532Z import torch 2023-01-11T21:05:10.5990601Z import random 2023-01-11T21:05:10.5990713Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.5990831Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.5990839Z 2023-01-11T21:05:10.5990904Z aten = torch.ops.aten 2023-01-11T21:05:10.5991035Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.5991125Z async_compile = AsyncCompile() 2023-01-11T21:05:10.5991162Z 2023-01-11T21:05:10.5991167Z 2023-01-11T21:05:10.5991301Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.5991504Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.5991621Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:05:10.5991719Z float* __restrict__ out_ptr0, 2023-01-11T21:05:10.5991814Z long* __restrict__ out_ptr1) 2023-01-11T21:05:10.5991861Z { 2023-01-11T21:05:10.5991956Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.5992016Z { 2023-01-11T21:05:10.5992090Z #pragma omp for 2023-01-11T21:05:10.5992171Z for(long i0=0; i0<16; i0+=1) 2023-01-11T21:05:10.5992232Z { 2023-01-11T21:05:10.5992312Z #pragma GCC ivdep 2023-01-11T21:05:10.5992384Z for(long i1=0; i1<55; i1+=1) 2023-01-11T21:05:10.5992446Z { 2023-01-11T21:05:10.5992524Z #pragma GCC ivdep 2023-01-11T21:05:10.5992614Z for(long i2=0; i2<55; i2+=1) 2023-01-11T21:05:10.5992678Z { 2023-01-11T21:05:10.5992743Z { 2023-01-11T21:05:10.5992797Z { 2023-01-11T21:05:10.5992909Z auto tmp0 = in_ptr0[(2*i2) + (222*i1) + (12321*i0)]; 2023-01-11T21:05:10.5993023Z auto tmp1 = in_ptr0[1 + (2*i2) + (222*i1) + (12321*i0)]; 2023-01-11T21:05:10.5993133Z auto tmp3 = in_ptr0[2 + (2*i2) + (222*i1) + (12321*i0)]; 2023-01-11T21:05:10.5993245Z auto tmp5 = in_ptr0[111 + (2*i2) + (222*i1) + (12321*i0)]; 2023-01-11T21:05:10.5993359Z auto tmp7 = in_ptr0[112 + (2*i2) + (222*i1) + (12321*i0)]; 2023-01-11T21:05:10.5993474Z auto tmp9 = in_ptr0[113 + (2*i2) + (222*i1) + (12321*i0)]; 2023-01-11T21:05:10.5993588Z auto tmp11 = in_ptr0[222 + (2*i2) + (222*i1) + (12321*i0)]; 2023-01-11T21:05:10.5993704Z auto tmp13 = in_ptr0[223 + (2*i2) + (222*i1) + (12321*i0)]; 2023-01-11T21:05:10.5993804Z auto tmp15 = in_ptr0[224 + (2*i2) + (222*i1) + (12321*i0)]; 2023-01-11T21:05:10.5993932Z auto tmp2 = (tmp0 != tmp0) ? tmp0 : std::max(tmp1, tmp0); 2023-01-11T21:05:10.5994054Z auto tmp4 = (tmp2 != tmp2) ? tmp2 : std::max(tmp3, tmp2); 2023-01-11T21:05:10.5994173Z auto tmp6 = (tmp4 != tmp4) ? tmp4 : std::max(tmp5, tmp4); 2023-01-11T21:05:10.5994291Z auto tmp8 = (tmp6 != tmp6) ? tmp6 : std::max(tmp7, tmp6); 2023-01-11T21:05:10.5994414Z auto tmp10 = (tmp8 != tmp8) ? tmp8 : std::max(tmp9, tmp8); 2023-01-11T21:05:10.5994602Z auto tmp12 = (tmp10 != tmp10) ? tmp10 : std::max(tmp11, tmp10); 2023-01-11T21:05:10.5994733Z auto tmp14 = (tmp12 != tmp12) ? tmp12 : std::max(tmp13, tmp12); 2023-01-11T21:05:10.5994863Z auto tmp16 = (tmp14 != tmp14) ? tmp14 : std::max(tmp15, tmp14); 2023-01-11T21:05:10.5994969Z auto tmp17 = static_cast((2*i2) + (222*i1)); 2023-01-11T21:05:10.5995089Z auto tmp18 = static_cast(1 + (2*i2) + (222*i1)); 2023-01-11T21:05:10.5995186Z auto tmp19 = tmp1 > tmp0; 2023-01-11T21:05:10.5995291Z auto tmp20 = tmp19 ? tmp18 : tmp17; 2023-01-11T21:05:10.5995412Z auto tmp21 = static_cast(2 + (2*i2) + (222*i1)); 2023-01-11T21:05:10.5995507Z auto tmp22 = tmp3 > tmp2; 2023-01-11T21:05:10.5995612Z auto tmp23 = tmp22 ? tmp21 : tmp20; 2023-01-11T21:05:10.5995734Z auto tmp24 = static_cast(111 + (2*i2) + (222*i1)); 2023-01-11T21:05:10.5995817Z auto tmp25 = tmp5 > tmp4; 2023-01-11T21:05:10.5995949Z auto tmp26 = tmp25 ? tmp24 : tmp23; 2023-01-11T21:05:10.5996071Z auto tmp27 = static_cast(112 + (2*i2) + (222*i1)); 2023-01-11T21:05:10.5996168Z auto tmp28 = tmp7 > tmp6; 2023-01-11T21:05:10.5996271Z auto tmp29 = tmp28 ? tmp27 : tmp26; 2023-01-11T21:05:10.5996387Z auto tmp30 = static_cast(113 + (2*i2) + (222*i1)); 2023-01-11T21:05:10.5996481Z auto tmp31 = tmp9 > tmp8; 2023-01-11T21:05:10.5996582Z auto tmp32 = tmp31 ? tmp30 : tmp29; 2023-01-11T21:05:10.5996688Z auto tmp33 = static_cast(222 + (2*i2) + (222*i1)); 2023-01-11T21:05:10.5996788Z auto tmp34 = tmp11 > tmp10; 2023-01-11T21:05:10.5996891Z auto tmp35 = tmp34 ? tmp33 : tmp32; 2023-01-11T21:05:10.5997009Z auto tmp36 = static_cast(223 + (2*i2) + (222*i1)); 2023-01-11T21:05:10.5997106Z auto tmp37 = tmp13 > tmp12; 2023-01-11T21:05:10.5997206Z auto tmp38 = tmp37 ? tmp36 : tmp35; 2023-01-11T21:05:10.5997325Z auto tmp39 = static_cast(224 + (2*i2) + (222*i1)); 2023-01-11T21:05:10.5997406Z auto tmp40 = tmp15 > tmp14; 2023-01-11T21:05:10.5997504Z auto tmp41 = tmp40 ? tmp39 : tmp38; 2023-01-11T21:05:10.5997610Z out_ptr0[i2 + (55*i1) + (3025*i0)] = tmp16; 2023-01-11T21:05:10.5997714Z out_ptr1[i2 + (55*i1) + (3025*i0)] = tmp41; 2023-01-11T21:05:10.5997784Z } 2023-01-11T21:05:10.5997852Z } 2023-01-11T21:05:10.5997916Z } 2023-01-11T21:05:10.5997979Z } 2023-01-11T21:05:10.5998028Z } 2023-01-11T21:05:10.5998088Z } 2023-01-11T21:05:10.5998150Z } 2023-01-11T21:05:10.5998229Z ''') 2023-01-11T21:05:10.5998234Z 2023-01-11T21:05:10.5998238Z 2023-01-11T21:05:10.5998329Z async_compile.wait(globals()) 2023-01-11T21:05:10.5998402Z del async_compile 2023-01-11T21:05:10.5998407Z 2023-01-11T21:05:10.5998476Z def call(args): 2023-01-11T21:05:10.5998531Z arg0_1, = args 2023-01-11T21:05:10.5998601Z args.clear() 2023-01-11T21:05:10.5998825Z buf0 = empty_strided((2, 8, 55, 55), (24200, 3025, 55, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.5999042Z buf1 = empty_strided((2, 8, 55, 55), (24200, 3025, 55, 1), device='cpu', dtype=torch.int64) 2023-01-11T21:05:10.5999204Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(buf0.data_ptr()), c_void_p(buf1.data_ptr())) 2023-01-11T21:05:10.5999298Z del arg0_1 2023-01-11T21:05:10.5999374Z return (buf0, buf1, ) 2023-01-11T21:05:10.5999378Z 2023-01-11T21:05:10.5999382Z 2023-01-11T21:05:10.5999462Z if __name__ == "__main__": 2023-01-11T21:05:10.5999565Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.5999687Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.5999914Z arg0_1 = rand_strided((2, 8, 111, 111), (98568, 12321, 111, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6000022Z print_performance(lambda: call([arg0_1])) 2023-01-11T21:05:10.6000028Z 2023-01-11T21:05:10.6000095Z ok (2.937s) 2023-01-11T21:05:10.6000530Z test_max_pool2d5_cpu (__main__.CpuTests) ... inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.6000781Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.6001094Z [2023-01-11 20:56:40,404] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 346 2023-01-11T21:05:10.6001363Z [2023-01-11 20:56:43,152] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 346 2023-01-11T21:05:10.6001368Z 2023-01-11T21:05:10.6001448Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.6001518Z import torch 2023-01-11T21:05:10.6001588Z import random 2023-01-11T21:05:10.6001704Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.6001827Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.6001833Z 2023-01-11T21:05:10.6001911Z aten = torch.ops.aten 2023-01-11T21:05:10.6002044Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.6002122Z async_compile = AsyncCompile() 2023-01-11T21:05:10.6002141Z 2023-01-11T21:05:10.6002148Z 2023-01-11T21:05:10.6002266Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.6002470Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.6002591Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:05:10.6002692Z float* __restrict__ out_ptr0, 2023-01-11T21:05:10.6002788Z long* __restrict__ out_ptr1) 2023-01-11T21:05:10.6002850Z { 2023-01-11T21:05:10.6002948Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.6002995Z { 2023-01-11T21:05:10.6003071Z #pragma omp for 2023-01-11T21:05:10.6003153Z for(long i0=0; i0<1024; i0+=1) 2023-01-11T21:05:10.6003214Z { 2023-01-11T21:05:10.6003294Z #pragma GCC ivdep 2023-01-11T21:05:10.6003379Z for(long i1=0; i1<18; i1+=1) 2023-01-11T21:05:10.6003443Z { 2023-01-11T21:05:10.6003510Z #pragma GCC ivdep 2023-01-11T21:05:10.6003598Z for(long i2=0; i2<18; i2+=1) 2023-01-11T21:05:10.6003664Z { 2023-01-11T21:05:10.6003729Z { 2023-01-11T21:05:10.6003796Z { 2023-01-11T21:05:10.6003910Z auto tmp0 = in_ptr0[(3*i2) + (165*i1) + (3025*i0)]; 2023-01-11T21:05:10.6004025Z auto tmp1 = in_ptr0[1 + (3*i2) + (165*i1) + (3025*i0)]; 2023-01-11T21:05:10.6004123Z auto tmp3 = in_ptr0[2 + (3*i2) + (165*i1) + (3025*i0)]; 2023-01-11T21:05:10.6004235Z auto tmp5 = in_ptr0[55 + (3*i2) + (165*i1) + (3025*i0)]; 2023-01-11T21:05:10.6004344Z auto tmp7 = in_ptr0[56 + (3*i2) + (165*i1) + (3025*i0)]; 2023-01-11T21:05:10.6004449Z auto tmp9 = in_ptr0[57 + (3*i2) + (165*i1) + (3025*i0)]; 2023-01-11T21:05:10.6004563Z auto tmp11 = in_ptr0[110 + (3*i2) + (165*i1) + (3025*i0)]; 2023-01-11T21:05:10.6004676Z auto tmp13 = in_ptr0[111 + (3*i2) + (165*i1) + (3025*i0)]; 2023-01-11T21:05:10.6004827Z auto tmp15 = in_ptr0[112 + (3*i2) + (165*i1) + (3025*i0)]; 2023-01-11T21:05:10.6004959Z auto tmp2 = (tmp0 != tmp0) ? tmp0 : std::max(tmp1, tmp0); 2023-01-11T21:05:10.6005069Z auto tmp4 = (tmp2 != tmp2) ? tmp2 : std::max(tmp3, tmp2); 2023-01-11T21:05:10.6005187Z auto tmp6 = (tmp4 != tmp4) ? tmp4 : std::max(tmp5, tmp4); 2023-01-11T21:05:10.6005308Z auto tmp8 = (tmp6 != tmp6) ? tmp6 : std::max(tmp7, tmp6); 2023-01-11T21:05:10.6005433Z auto tmp10 = (tmp8 != tmp8) ? tmp8 : std::max(tmp9, tmp8); 2023-01-11T21:05:10.6005564Z auto tmp12 = (tmp10 != tmp10) ? tmp10 : std::max(tmp11, tmp10); 2023-01-11T21:05:10.6005693Z auto tmp14 = (tmp12 != tmp12) ? tmp12 : std::max(tmp13, tmp12); 2023-01-11T21:05:10.6005821Z auto tmp16 = (tmp14 != tmp14) ? tmp14 : std::max(tmp15, tmp14); 2023-01-11T21:05:10.6005938Z auto tmp17 = static_cast((3*i2) + (165*i1)); 2023-01-11T21:05:10.6006085Z auto tmp18 = static_cast(1 + (3*i2) + (165*i1)); 2023-01-11T21:05:10.6006183Z auto tmp19 = tmp1 > tmp0; 2023-01-11T21:05:10.6006274Z auto tmp20 = tmp19 ? tmp18 : tmp17; 2023-01-11T21:05:10.6006395Z auto tmp21 = static_cast(2 + (3*i2) + (165*i1)); 2023-01-11T21:05:10.6006494Z auto tmp22 = tmp3 > tmp2; 2023-01-11T21:05:10.6006597Z auto tmp23 = tmp22 ? tmp21 : tmp20; 2023-01-11T21:05:10.6006715Z auto tmp24 = static_cast(55 + (3*i2) + (165*i1)); 2023-01-11T21:05:10.6006812Z auto tmp25 = tmp5 > tmp4; 2023-01-11T21:05:10.6006914Z auto tmp26 = tmp25 ? tmp24 : tmp23; 2023-01-11T21:05:10.6007021Z auto tmp27 = static_cast(56 + (3*i2) + (165*i1)); 2023-01-11T21:05:10.6007116Z auto tmp28 = tmp7 > tmp6; 2023-01-11T21:05:10.6007220Z auto tmp29 = tmp28 ? tmp27 : tmp26; 2023-01-11T21:05:10.6007337Z auto tmp30 = static_cast(57 + (3*i2) + (165*i1)); 2023-01-11T21:05:10.6007432Z auto tmp31 = tmp9 > tmp8; 2023-01-11T21:05:10.6007532Z auto tmp32 = tmp31 ? tmp30 : tmp29; 2023-01-11T21:05:10.6007650Z auto tmp33 = static_cast(110 + (3*i2) + (165*i1)); 2023-01-11T21:05:10.6007745Z auto tmp34 = tmp11 > tmp10; 2023-01-11T21:05:10.6007834Z auto tmp35 = tmp34 ? tmp33 : tmp32; 2023-01-11T21:05:10.6007950Z auto tmp36 = static_cast(111 + (3*i2) + (165*i1)); 2023-01-11T21:05:10.6008046Z auto tmp37 = tmp13 > tmp12; 2023-01-11T21:05:10.6008146Z auto tmp38 = tmp37 ? tmp36 : tmp35; 2023-01-11T21:05:10.6008263Z auto tmp39 = static_cast(112 + (3*i2) + (165*i1)); 2023-01-11T21:05:10.6008357Z auto tmp40 = tmp15 > tmp14; 2023-01-11T21:05:10.6008455Z auto tmp41 = tmp40 ? tmp39 : tmp38; 2023-01-11T21:05:10.6008561Z out_ptr0[i2 + (18*i1) + (324*i0)] = tmp16; 2023-01-11T21:05:10.6008651Z out_ptr1[i2 + (18*i1) + (324*i0)] = tmp41; 2023-01-11T21:05:10.6008718Z } 2023-01-11T21:05:10.6008784Z } 2023-01-11T21:05:10.6008847Z } 2023-01-11T21:05:10.6008909Z } 2023-01-11T21:05:10.6008970Z } 2023-01-11T21:05:10.6009028Z } 2023-01-11T21:05:10.6009074Z } 2023-01-11T21:05:10.6009153Z ''') 2023-01-11T21:05:10.6009186Z 2023-01-11T21:05:10.6009190Z 2023-01-11T21:05:10.6009282Z async_compile.wait(globals()) 2023-01-11T21:05:10.6009353Z del async_compile 2023-01-11T21:05:10.6009358Z 2023-01-11T21:05:10.6009427Z def call(args): 2023-01-11T21:05:10.6009497Z arg0_1, = args 2023-01-11T21:05:10.6009567Z args.clear() 2023-01-11T21:05:10.6009778Z buf0 = empty_strided((16, 64, 18, 18), (20736, 324, 18, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6009994Z buf1 = empty_strided((16, 64, 18, 18), (20736, 324, 18, 1), device='cpu', dtype=torch.int64) 2023-01-11T21:05:10.6010156Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(buf0.data_ptr()), c_void_p(buf1.data_ptr())) 2023-01-11T21:05:10.6010224Z del arg0_1 2023-01-11T21:05:10.6010300Z return (buf0, buf1, ) 2023-01-11T21:05:10.6010305Z 2023-01-11T21:05:10.6010309Z 2023-01-11T21:05:10.6010383Z if __name__ == "__main__": 2023-01-11T21:05:10.6010496Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.6010619Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.6010830Z arg0_1 = rand_strided((16, 64, 55, 55), (193600, 3025, 55, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6010968Z print_performance(lambda: call([arg0_1])) 2023-01-11T21:05:10.6010973Z 2023-01-11T21:05:10.6011040Z ok (3.543s) 2023-01-11T21:05:10.6011477Z test_max_pool2d6_cpu (__main__.CpuTests) ... inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.6011604Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.6011862Z [2023-01-11 20:56:43,902] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 347 2023-01-11T21:05:10.6012109Z [2023-01-11 20:56:43,913] torch._inductor.ir: [WARNING] Using FallbackKernel: aten.max_pool2d_with_indices 2023-01-11T21:05:10.6012373Z [2023-01-11 20:56:43,916] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 347 2023-01-11T21:05:10.6012381Z 2023-01-11T21:05:10.6012475Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.6012544Z import torch 2023-01-11T21:05:10.6012601Z import random 2023-01-11T21:05:10.6012715Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.6012836Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.6012841Z 2023-01-11T21:05:10.6012921Z aten = torch.ops.aten 2023-01-11T21:05:10.6013056Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.6013146Z async_compile = AsyncCompile() 2023-01-11T21:05:10.6013151Z 2023-01-11T21:05:10.6013155Z 2023-01-11T21:05:10.6013241Z async_compile.wait(globals()) 2023-01-11T21:05:10.6013299Z del async_compile 2023-01-11T21:05:10.6013316Z 2023-01-11T21:05:10.6013376Z def call(args): 2023-01-11T21:05:10.6013442Z arg0_1, = args 2023-01-11T21:05:10.6013512Z args.clear() 2023-01-11T21:05:10.6013641Z buf0 = aten.max_pool2d_with_indices(arg0_1, [13, 13], [13, 13], [0, 0], 1, False) 2023-01-11T21:05:10.6013709Z del arg0_1 2023-01-11T21:05:10.6013775Z buf1 = buf0[0] 2023-01-11T21:05:10.6013870Z assert_size_stride(buf1, (16, 64, 4, 4), (1024, 16, 4, 1)) 2023-01-11T21:05:10.6013935Z buf2 = buf0[1] 2023-01-11T21:05:10.6014040Z assert_size_stride(buf2, (16, 64, 4, 4), (1024, 16, 4, 1)) 2023-01-11T21:05:10.6014103Z del buf0 2023-01-11T21:05:10.6014179Z return (buf1, buf2, ) 2023-01-11T21:05:10.6014184Z 2023-01-11T21:05:10.6014188Z 2023-01-11T21:05:10.6014262Z if __name__ == "__main__": 2023-01-11T21:05:10.6014371Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.6014491Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.6014704Z arg0_1 = rand_strided((16, 64, 55, 55), (193600, 3025, 55, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6014842Z print_performance(lambda: call([arg0_1])) 2023-01-11T21:05:10.6014847Z 2023-01-11T21:05:10.6014912Z ok (0.590s) 2023-01-11T21:05:10.6015376Z test_max_pool2d_with_indices_backward2_cpu (__main__.CpuTests) ... inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.6015501Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.6015758Z [2023-01-11 20:56:44,396] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 348 2023-01-11T21:05:10.6016020Z [2023-01-11 20:56:47,161] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 348 2023-01-11T21:05:10.6016028Z 2023-01-11T21:05:10.6016120Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.6016189Z import torch 2023-01-11T21:05:10.6016245Z import random 2023-01-11T21:05:10.6016360Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.6016507Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.6016513Z 2023-01-11T21:05:10.6016592Z aten = torch.ops.aten 2023-01-11T21:05:10.6016723Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.6016813Z async_compile = AsyncCompile() 2023-01-11T21:05:10.6016818Z 2023-01-11T21:05:10.6016822Z 2023-01-11T21:05:10.6016955Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.6017160Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.6017263Z extern "C" void kernel(const long* __restrict__ in_ptr0, 2023-01-11T21:05:10.6017366Z const float* __restrict__ in_ptr1, 2023-01-11T21:05:10.6017464Z float* __restrict__ out_ptr0) 2023-01-11T21:05:10.6017526Z { 2023-01-11T21:05:10.6017622Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.6017684Z { 2023-01-11T21:05:10.6017758Z #pragma omp for 2023-01-11T21:05:10.6017828Z for(long i0=0; i0<8; i0+=1) 2023-01-11T21:05:10.6017889Z { 2023-01-11T21:05:10.6017968Z #pragma GCC ivdep 2023-01-11T21:05:10.6018051Z for(long i1=0; i1<40; i1+=1) 2023-01-11T21:05:10.6018114Z { 2023-01-11T21:05:10.6018192Z #pragma GCC ivdep 2023-01-11T21:05:10.6018280Z for(long i2=0; i2<56; i2+=1) 2023-01-11T21:05:10.6018331Z { 2023-01-11T21:05:10.6018400Z { 2023-01-11T21:05:10.6018540Z { 2023-01-11T21:05:10.6018659Z auto tmp0 = static_cast(i2 + (56*i1)); 2023-01-11T21:05:10.6018771Z auto tmp1 = static_cast((i1 / 2)); 2023-01-11T21:05:10.6018878Z auto tmp2 = static_cast((i2 / 2)); 2023-01-11T21:05:10.6018998Z auto tmp3 = static_cast(1 + (((1 + i1) / 2))); 2023-01-11T21:05:10.6019101Z auto tmp4 = static_cast(1 + (((1 + i2) / 2))); 2023-01-11T21:05:10.6019207Z auto tmp5 = static_cast(0); 2023-01-11T21:05:10.6019340Z auto tmp6 = (tmp5 != tmp5) ? tmp5 : std::max(tmp1, tmp5); 2023-01-11T21:05:10.6019466Z auto tmp7 = (tmp5 != tmp5) ? tmp5 : std::max(tmp2, tmp5); 2023-01-11T21:05:10.6019573Z auto tmp8 = static_cast(21); 2023-01-11T21:05:10.6019701Z auto tmp9 = (tmp8 != tmp8) ? tmp8 : std::min(tmp3, tmp8); 2023-01-11T21:05:10.6019810Z auto tmp10 = static_cast(29); 2023-01-11T21:05:10.6019940Z auto tmp11 = (tmp10 != tmp10) ? tmp10 : std::min(tmp4, tmp10); 2023-01-11T21:05:10.6020075Z auto tmp12 = tmp6 + tmp5; 2023-01-11T21:05:10.6020157Z auto tmp13 = tmp7 + tmp5; 2023-01-11T21:05:10.6020260Z auto tmp14 = static_cast(1); 2023-01-11T21:05:10.6020415Z auto tmp15 = tmp9 - tmp14; 2023-01-11T21:05:10.6020545Z auto tmp16 = (tmp15 != tmp15) ? tmp15 : std::min(tmp12, tmp15); 2023-01-11T21:05:10.6020694Z auto tmp17 = tmp11 - tmp14; 2023-01-11T21:05:10.6020823Z auto tmp18 = (tmp17 != tmp17) ? tmp17 : std::min(tmp13, tmp17); 2023-01-11T21:05:10.6020939Z auto tmp19 = in_ptr0[tmp18 + (29*tmp16) + (609*i0)]; 2023-01-11T21:05:10.6021054Z auto tmp20 = in_ptr1[tmp18 + (29*tmp16) + (609*i0)]; 2023-01-11T21:05:10.6021137Z auto tmp21 = tmp19 == tmp0; 2023-01-11T21:05:10.6021245Z auto tmp22 = static_cast(0.0); 2023-01-11T21:05:10.6021351Z auto tmp23 = tmp21 ? tmp20 : tmp22; 2023-01-11T21:05:10.6021447Z auto tmp24 = tmp7 + tmp14; 2023-01-11T21:05:10.6021615Z auto tmp25 = (tmp17 != tmp17) ? tmp17 : std::min(tmp24, tmp17); 2023-01-11T21:05:10.6021734Z auto tmp26 = in_ptr0[tmp25 + (29*tmp16) + (609*i0)]; 2023-01-11T21:05:10.6021847Z auto tmp27 = in_ptr1[tmp25 + (29*tmp16) + (609*i0)]; 2023-01-11T21:05:10.6021942Z auto tmp28 = tmp26 == tmp0; 2023-01-11T21:05:10.6022026Z auto tmp29 = tmp12 < tmp9; 2023-01-11T21:05:10.6022121Z auto tmp30 = tmp24 < tmp11; 2023-01-11T21:05:10.6022215Z auto tmp31 = tmp29 & tmp30; 2023-01-11T21:05:10.6022305Z auto tmp32 = tmp31 & tmp28; 2023-01-11T21:05:10.6022399Z auto tmp33 = tmp23 + tmp27; 2023-01-11T21:05:10.6022504Z auto tmp34 = tmp32 ? tmp33 : tmp23; 2023-01-11T21:05:10.6022599Z auto tmp35 = tmp6 + tmp14; 2023-01-11T21:05:10.6022729Z auto tmp36 = (tmp15 != tmp15) ? tmp15 : std::min(tmp35, tmp15); 2023-01-11T21:05:10.6022833Z auto tmp37 = in_ptr0[tmp18 + (29*tmp36) + (609*i0)]; 2023-01-11T21:05:10.6022951Z auto tmp38 = in_ptr1[tmp18 + (29*tmp36) + (609*i0)]; 2023-01-11T21:05:10.6023047Z auto tmp39 = tmp37 == tmp0; 2023-01-11T21:05:10.6023144Z auto tmp40 = tmp35 < tmp9; 2023-01-11T21:05:10.6023239Z auto tmp41 = tmp13 < tmp11; 2023-01-11T21:05:10.6023335Z auto tmp42 = tmp40 & tmp41; 2023-01-11T21:05:10.6023430Z auto tmp43 = tmp42 & tmp39; 2023-01-11T21:05:10.6023512Z auto tmp44 = tmp34 + tmp38; 2023-01-11T21:05:10.6023617Z auto tmp45 = tmp43 ? tmp44 : tmp34; 2023-01-11T21:05:10.6023732Z auto tmp46 = in_ptr0[tmp25 + (29*tmp36) + (609*i0)]; 2023-01-11T21:05:10.6023848Z auto tmp47 = in_ptr1[tmp25 + (29*tmp36) + (609*i0)]; 2023-01-11T21:05:10.6023942Z auto tmp48 = tmp46 == tmp0; 2023-01-11T21:05:10.6024035Z auto tmp49 = tmp40 & tmp30; 2023-01-11T21:05:10.6024128Z auto tmp50 = tmp49 & tmp48; 2023-01-11T21:05:10.6024220Z auto tmp51 = tmp45 + tmp47; 2023-01-11T21:05:10.6024309Z auto tmp52 = tmp50 ? tmp51 : tmp45; 2023-01-11T21:05:10.6024412Z out_ptr0[i2 + (56*i1) + (2240*i0)] = tmp52; 2023-01-11T21:05:10.6024479Z } 2023-01-11T21:05:10.6024544Z } 2023-01-11T21:05:10.6024609Z } 2023-01-11T21:05:10.6024701Z } 2023-01-11T21:05:10.6024763Z } 2023-01-11T21:05:10.6024811Z } 2023-01-11T21:05:10.6024869Z } 2023-01-11T21:05:10.6024948Z ''') 2023-01-11T21:05:10.6024954Z 2023-01-11T21:05:10.6024961Z 2023-01-11T21:05:10.6025051Z async_compile.wait(globals()) 2023-01-11T21:05:10.6025121Z del async_compile 2023-01-11T21:05:10.6025126Z 2023-01-11T21:05:10.6025194Z def call(args): 2023-01-11T21:05:10.6025275Z arg0_1, arg1_1, arg2_1 = args 2023-01-11T21:05:10.6025334Z args.clear() 2023-01-11T21:05:10.6025555Z buf0 = empty_strided((2, 4, 40, 56), (8960, 2240, 56, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6025716Z kernel_cpp_0(c_void_p(arg2_1.data_ptr()), c_void_p(arg0_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:05:10.6025784Z del arg0_1 2023-01-11T21:05:10.6025849Z del arg2_1 2023-01-11T21:05:10.6025919Z return (buf0, ) 2023-01-11T21:05:10.6025924Z 2023-01-11T21:05:10.6025928Z 2023-01-11T21:05:10.6026005Z if __name__ == "__main__": 2023-01-11T21:05:10.6026119Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.6026228Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.6026476Z arg0_1 = rand_strided((2, 4, 21, 29), (2436, 609, 29, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6026695Z arg1_1 = rand_strided((2, 4, 40, 56), (8960, 2240, 56, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6026908Z arg2_1 = rand_strided((2, 4, 21, 29), (2436, 609, 29, 1), device='cpu', dtype=torch.int64) 2023-01-11T21:05:10.6027029Z print_performance(lambda: call([arg0_1, arg1_1, arg2_1])) 2023-01-11T21:05:10.6027034Z 2023-01-11T21:05:10.6027100Z ok (2.841s) 2023-01-11T21:05:10.6027560Z test_max_pool2d_with_indices_backward3_cpu (__main__.CpuTests) ... inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.6027688Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.6027949Z [2023-01-11 20:56:47,758] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 349 2023-01-11T21:05:10.6028199Z [2023-01-11 20:56:50,432] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 349 2023-01-11T21:05:10.6028218Z 2023-01-11T21:05:10.6028297Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.6028366Z import torch 2023-01-11T21:05:10.6028435Z import random 2023-01-11T21:05:10.6028548Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.6028667Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.6028672Z 2023-01-11T21:05:10.6028748Z aten = torch.ops.aten 2023-01-11T21:05:10.6028879Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.6028959Z async_compile = AsyncCompile() 2023-01-11T21:05:10.6028964Z 2023-01-11T21:05:10.6028982Z 2023-01-11T21:05:10.6029101Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.6029304Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.6029422Z extern "C" void kernel(const long* __restrict__ in_ptr0, 2023-01-11T21:05:10.6029525Z const float* __restrict__ in_ptr1, 2023-01-11T21:05:10.6029623Z float* __restrict__ out_ptr0) 2023-01-11T21:05:10.6029685Z { 2023-01-11T21:05:10.6029780Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.6029828Z { 2023-01-11T21:05:10.6029907Z #pragma omp for 2023-01-11T21:05:10.6029989Z for(long i0=0; i0<8192; i0+=1) 2023-01-11T21:05:10.6030052Z { 2023-01-11T21:05:10.6030131Z #pragma GCC ivdep 2023-01-11T21:05:10.6030216Z for(long i1=0; i1<37; i1+=1) 2023-01-11T21:05:10.6030295Z { 2023-01-11T21:05:10.6030378Z #pragma GCC ivdep 2023-01-11T21:05:10.6030468Z for(long i2=0; i2<38; i2+=1) 2023-01-11T21:05:10.6030533Z { 2023-01-11T21:05:10.6030602Z { 2023-01-11T21:05:10.6030670Z { 2023-01-11T21:05:10.6030783Z auto tmp0 = static_cast(i2 + (38*i1)); 2023-01-11T21:05:10.6030884Z auto tmp1 = static_cast(((1 + i1) / 2)); 2023-01-11T21:05:10.6030996Z auto tmp2 = static_cast(((1 + i2) / 2)); 2023-01-11T21:05:10.6031108Z auto tmp3 = static_cast(1 + (i1 / 2)); 2023-01-11T21:05:10.6031216Z auto tmp4 = static_cast(1 + (i2 / 2)); 2023-01-11T21:05:10.6031322Z auto tmp5 = static_cast(0); 2023-01-11T21:05:10.6031453Z auto tmp6 = (tmp5 != tmp5) ? tmp5 : std::max(tmp1, tmp5); 2023-01-11T21:05:10.6031579Z auto tmp7 = (tmp5 != tmp5) ? tmp5 : std::max(tmp2, tmp5); 2023-01-11T21:05:10.6031685Z auto tmp8 = static_cast(19); 2023-01-11T21:05:10.6031839Z auto tmp9 = (tmp8 != tmp8) ? tmp8 : std::min(tmp3, tmp8); 2023-01-11T21:05:10.6031954Z auto tmp10 = (tmp8 != tmp8) ? tmp8 : std::min(tmp4, tmp8); 2023-01-11T21:05:10.6032052Z auto tmp11 = tmp6 + tmp5; 2023-01-11T21:05:10.6032145Z auto tmp12 = tmp7 + tmp5; 2023-01-11T21:05:10.6032250Z auto tmp13 = static_cast(1); 2023-01-11T21:05:10.6032401Z auto tmp14 = tmp9 - tmp13; 2023-01-11T21:05:10.6032533Z auto tmp15 = (tmp14 != tmp14) ? tmp14 : std::min(tmp11, tmp14); 2023-01-11T21:05:10.6032681Z auto tmp16 = tmp10 - tmp13; 2023-01-11T21:05:10.6032810Z auto tmp17 = (tmp16 != tmp16) ? tmp16 : std::min(tmp12, tmp16); 2023-01-11T21:05:10.6032914Z auto tmp18 = in_ptr0[tmp17 + (19*tmp15) + (361*i0)]; 2023-01-11T21:05:10.6033034Z auto tmp19 = in_ptr1[tmp17 + (19*tmp15) + (361*i0)]; 2023-01-11T21:05:10.6033133Z auto tmp20 = tmp18 == tmp0; 2023-01-11T21:05:10.6033243Z auto tmp21 = static_cast(0.0); 2023-01-11T21:05:10.6033346Z auto tmp22 = tmp20 ? tmp19 : tmp21; 2023-01-11T21:05:10.6033452Z out_ptr0[i2 + (38*i1) + (1406*i0)] = tmp22; 2023-01-11T21:05:10.6033521Z } 2023-01-11T21:05:10.6033573Z } 2023-01-11T21:05:10.6033636Z } 2023-01-11T21:05:10.6033699Z } 2023-01-11T21:05:10.6033761Z } 2023-01-11T21:05:10.6033822Z } 2023-01-11T21:05:10.6033881Z } 2023-01-11T21:05:10.6033958Z ''') 2023-01-11T21:05:10.6033965Z 2023-01-11T21:05:10.6033969Z 2023-01-11T21:05:10.6034046Z async_compile.wait(globals()) 2023-01-11T21:05:10.6034121Z del async_compile 2023-01-11T21:05:10.6034126Z 2023-01-11T21:05:10.6034196Z def call(args): 2023-01-11T21:05:10.6034279Z arg0_1, arg1_1, arg2_1 = args 2023-01-11T21:05:10.6034349Z args.clear() 2023-01-11T21:05:10.6034577Z buf0 = empty_strided((32, 256, 37, 38), (359936, 1406, 38, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6034733Z kernel_cpp_0(c_void_p(arg2_1.data_ptr()), c_void_p(arg0_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:05:10.6034799Z del arg0_1 2023-01-11T21:05:10.6034851Z del arg2_1 2023-01-11T21:05:10.6034922Z return (buf0, ) 2023-01-11T21:05:10.6034927Z 2023-01-11T21:05:10.6034931Z 2023-01-11T21:05:10.6035004Z if __name__ == "__main__": 2023-01-11T21:05:10.6035120Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.6035241Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.6035504Z arg0_1 = rand_strided((32, 256, 19, 19), (92416, 361, 19, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6035729Z arg1_1 = rand_strided((32, 256, 37, 38), (359936, 1406, 38, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6035949Z arg2_1 = rand_strided((32, 256, 19, 19), (92416, 361, 19, 1), device='cpu', dtype=torch.int64) 2023-01-11T21:05:10.6036056Z print_performance(lambda: call([arg0_1, arg1_1, arg2_1])) 2023-01-11T21:05:10.6036061Z 2023-01-11T21:05:10.6036127Z ok (6.884s) 2023-01-11T21:05:10.6036586Z test_max_pool2d_with_indices_backward4_cpu (__main__.CpuTests) ... inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.6036711Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.6036974Z [2023-01-11 20:56:54,123] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 350 2023-01-11T21:05:10.6036979Z 2023-01-11T21:05:10.6037099Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.6037173Z import torch 2023-01-11T21:05:10.6037241Z import random 2023-01-11T21:05:10.6037354Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.6037461Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.6037466Z 2023-01-11T21:05:10.6037544Z aten = torch.ops.aten 2023-01-11T21:05:10.6037675Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.6037765Z async_compile = AsyncCompile() 2023-01-11T21:05:10.6037770Z 2023-01-11T21:05:10.6037774Z 2023-01-11T21:05:10.6037908Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.6038112Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.6038231Z extern "C" void kernel(const long* __restrict__ in_ptr0, 2023-01-11T21:05:10.6038335Z const float* __restrict__ in_ptr1, 2023-01-11T21:05:10.6038421Z float* __restrict__ out_ptr0) 2023-01-11T21:05:10.6038483Z { 2023-01-11T21:05:10.6038578Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.6038638Z { 2023-01-11T21:05:10.6038713Z #pragma omp for 2023-01-11T21:05:10.6038794Z for(long i0=0; i0<128; i0+=1) 2023-01-11T21:05:10.6038855Z { 2023-01-11T21:05:10.6038921Z #pragma GCC ivdep 2023-01-11T21:05:10.6039002Z for(long i1=0; i1<3; i1+=1) 2023-01-11T21:05:10.6039063Z { 2023-01-11T21:05:10.6039143Z #pragma GCC ivdep 2023-01-11T21:05:10.6039231Z for(long i2=0; i2<4; i2+=1) 2023-01-11T21:05:10.6039294Z { 2023-01-11T21:05:10.6039358Z { 2023-01-11T21:05:10.6039411Z { 2023-01-11T21:05:10.6039524Z auto tmp0 = static_cast(i2 + (4*i1)); 2023-01-11T21:05:10.6039695Z auto tmp1 = static_cast((-2) + i1); 2023-01-11T21:05:10.6039863Z auto tmp2 = static_cast((-2) + i2); 2023-01-11T21:05:10.6039971Z auto tmp3 = static_cast(3 + i1); 2023-01-11T21:05:10.6040077Z auto tmp4 = static_cast(3 + i2); 2023-01-11T21:05:10.6040181Z auto tmp5 = static_cast(0); 2023-01-11T21:05:10.6040297Z auto tmp6 = (tmp5 != tmp5) ? tmp5 : std::max(tmp1, tmp5); 2023-01-11T21:05:10.6040419Z auto tmp7 = (tmp5 != tmp5) ? tmp5 : std::max(tmp2, tmp5); 2023-01-11T21:05:10.6040523Z auto tmp8 = static_cast(3); 2023-01-11T21:05:10.6040757Z auto tmp9 = (tmp8 != tmp8) ? tmp8 : std::min(tmp3, tmp8); 2023-01-11T21:05:10.6040865Z auto tmp10 = static_cast(4); 2023-01-11T21:05:10.6041049Z auto tmp11 = (tmp10 != tmp10) ? tmp10 : std::min(tmp4, tmp10); 2023-01-11T21:05:10.6041147Z auto tmp12 = tmp6 + tmp5; 2023-01-11T21:05:10.6041246Z auto tmp13 = tmp7 + tmp5; 2023-01-11T21:05:10.6041337Z auto tmp14 = static_cast(1); 2023-01-11T21:05:10.6041489Z auto tmp15 = tmp9 - tmp14; 2023-01-11T21:05:10.6041622Z auto tmp16 = (tmp15 != tmp15) ? tmp15 : std::min(tmp12, tmp15); 2023-01-11T21:05:10.6041772Z auto tmp17 = tmp11 - tmp14; 2023-01-11T21:05:10.6041903Z auto tmp18 = (tmp17 != tmp17) ? tmp17 : std::min(tmp13, tmp17); 2023-01-11T21:05:10.6042022Z auto tmp19 = in_ptr0[tmp18 + (4*tmp16) + (12*i0)]; 2023-01-11T21:05:10.6042139Z auto tmp20 = in_ptr1[tmp18 + (4*tmp16) + (12*i0)]; 2023-01-11T21:05:10.6042239Z auto tmp21 = tmp19 == tmp0; 2023-01-11T21:05:10.6042350Z auto tmp22 = static_cast(0.0); 2023-01-11T21:05:10.6042478Z auto tmp23 = tmp21 ? tmp20 : tmp22; 2023-01-11T21:05:10.6042578Z auto tmp24 = tmp7 + tmp14; 2023-01-11T21:05:10.6042706Z auto tmp25 = (tmp17 != tmp17) ? tmp17 : std::min(tmp24, tmp17); 2023-01-11T21:05:10.6042821Z auto tmp26 = in_ptr0[tmp25 + (4*tmp16) + (12*i0)]; 2023-01-11T21:05:10.6042935Z auto tmp27 = in_ptr1[tmp25 + (4*tmp16) + (12*i0)]; 2023-01-11T21:05:10.6043030Z auto tmp28 = tmp26 == tmp0; 2023-01-11T21:05:10.6043124Z auto tmp29 = tmp12 < tmp9; 2023-01-11T21:05:10.6043207Z auto tmp30 = tmp24 < tmp11; 2023-01-11T21:05:10.6043300Z auto tmp31 = tmp29 & tmp30; 2023-01-11T21:05:10.6043394Z auto tmp32 = tmp31 & tmp28; 2023-01-11T21:05:10.6043487Z auto tmp33 = tmp23 + tmp27; 2023-01-11T21:05:10.6043590Z auto tmp34 = tmp32 ? tmp33 : tmp23; 2023-01-11T21:05:10.6043696Z auto tmp35 = static_cast(2); 2023-01-11T21:05:10.6043790Z auto tmp36 = tmp7 + tmp35; 2023-01-11T21:05:10.6043916Z auto tmp37 = (tmp17 != tmp17) ? tmp17 : std::min(tmp36, tmp17); 2023-01-11T21:05:10.6044017Z auto tmp38 = in_ptr0[tmp37 + (4*tmp16) + (12*i0)]; 2023-01-11T21:05:10.6044132Z auto tmp39 = in_ptr1[tmp37 + (4*tmp16) + (12*i0)]; 2023-01-11T21:05:10.6044226Z auto tmp40 = tmp38 == tmp0; 2023-01-11T21:05:10.6044319Z auto tmp41 = tmp36 < tmp11; 2023-01-11T21:05:10.6044413Z auto tmp42 = tmp29 & tmp41; 2023-01-11T21:05:10.6044510Z auto tmp43 = tmp42 & tmp40; 2023-01-11T21:05:10.6044602Z auto tmp44 = tmp34 + tmp39; 2023-01-11T21:05:10.6044712Z auto tmp45 = tmp43 ? tmp44 : tmp34; 2023-01-11T21:05:10.6044795Z auto tmp46 = tmp7 + tmp8; 2023-01-11T21:05:10.6044922Z auto tmp47 = (tmp17 != tmp17) ? tmp17 : std::min(tmp46, tmp17); 2023-01-11T21:05:10.6045035Z auto tmp48 = in_ptr0[tmp47 + (4*tmp16) + (12*i0)]; 2023-01-11T21:05:10.6045148Z auto tmp49 = in_ptr1[tmp47 + (4*tmp16) + (12*i0)]; 2023-01-11T21:05:10.6045242Z auto tmp50 = tmp48 == tmp0; 2023-01-11T21:05:10.6045334Z auto tmp51 = tmp46 < tmp11; 2023-01-11T21:05:10.6045428Z auto tmp52 = tmp29 & tmp51; 2023-01-11T21:05:10.6045520Z auto tmp53 = tmp52 & tmp50; 2023-01-11T21:05:10.6045629Z auto tmp54 = tmp45 + tmp49; 2023-01-11T21:05:10.6045733Z auto tmp55 = tmp53 ? tmp54 : tmp45; 2023-01-11T21:05:10.6045829Z auto tmp56 = tmp7 + tmp10; 2023-01-11T21:05:10.6045959Z auto tmp57 = (tmp17 != tmp17) ? tmp17 : std::min(tmp56, tmp17); 2023-01-11T21:05:10.6046074Z auto tmp58 = in_ptr0[tmp57 + (4*tmp16) + (12*i0)]; 2023-01-11T21:05:10.6046186Z auto tmp59 = in_ptr1[tmp57 + (4*tmp16) + (12*i0)]; 2023-01-11T21:05:10.6046280Z auto tmp60 = tmp58 == tmp0; 2023-01-11T21:05:10.6046372Z auto tmp61 = tmp56 < tmp11; 2023-01-11T21:05:10.6046452Z auto tmp62 = tmp29 & tmp61; 2023-01-11T21:05:10.6046543Z auto tmp63 = tmp62 & tmp60; 2023-01-11T21:05:10.6046635Z auto tmp64 = tmp55 + tmp59; 2023-01-11T21:05:10.6046739Z auto tmp65 = tmp63 ? tmp64 : tmp55; 2023-01-11T21:05:10.6046835Z auto tmp66 = tmp6 + tmp14; 2023-01-11T21:05:10.6046993Z auto tmp67 = (tmp15 != tmp15) ? tmp15 : std::min(tmp66, tmp15); 2023-01-11T21:05:10.6047110Z auto tmp68 = in_ptr0[tmp18 + (4*tmp67) + (12*i0)]; 2023-01-11T21:05:10.6047211Z auto tmp69 = in_ptr1[tmp18 + (4*tmp67) + (12*i0)]; 2023-01-11T21:05:10.6047305Z auto tmp70 = tmp68 == tmp0; 2023-01-11T21:05:10.6047400Z auto tmp71 = tmp66 < tmp9; 2023-01-11T21:05:10.6047492Z auto tmp72 = tmp13 < tmp11; 2023-01-11T21:05:10.6047584Z auto tmp73 = tmp71 & tmp72; 2023-01-11T21:05:10.6047677Z auto tmp74 = tmp73 & tmp70; 2023-01-11T21:05:10.6047768Z auto tmp75 = tmp65 + tmp69; 2023-01-11T21:05:10.6047872Z auto tmp76 = tmp74 ? tmp75 : tmp65; 2023-01-11T21:05:10.6047972Z auto tmp77 = in_ptr0[tmp25 + (4*tmp67) + (12*i0)]; 2023-01-11T21:05:10.6048085Z auto tmp78 = in_ptr1[tmp25 + (4*tmp67) + (12*i0)]; 2023-01-11T21:05:10.6048178Z auto tmp79 = tmp77 == tmp0; 2023-01-11T21:05:10.6048271Z auto tmp80 = tmp71 & tmp30; 2023-01-11T21:05:10.6048363Z auto tmp81 = tmp80 & tmp79; 2023-01-11T21:05:10.6048454Z auto tmp82 = tmp76 + tmp78; 2023-01-11T21:05:10.6048557Z auto tmp83 = tmp81 ? tmp82 : tmp76; 2023-01-11T21:05:10.6048659Z auto tmp84 = in_ptr0[tmp37 + (4*tmp67) + (12*i0)]; 2023-01-11T21:05:10.6048770Z auto tmp85 = in_ptr1[tmp37 + (4*tmp67) + (12*i0)]; 2023-01-11T21:05:10.6048866Z auto tmp86 = tmp84 == tmp0; 2023-01-11T21:05:10.6048958Z auto tmp87 = tmp71 & tmp41; 2023-01-11T21:05:10.6049049Z auto tmp88 = tmp87 & tmp86; 2023-01-11T21:05:10.6049144Z auto tmp89 = tmp83 + tmp85; 2023-01-11T21:05:10.6049246Z auto tmp90 = tmp88 ? tmp89 : tmp83; 2023-01-11T21:05:10.6049361Z auto tmp91 = in_ptr0[tmp47 + (4*tmp67) + (12*i0)]; 2023-01-11T21:05:10.6049460Z auto tmp92 = in_ptr1[tmp47 + (4*tmp67) + (12*i0)]; 2023-01-11T21:05:10.6049551Z auto tmp93 = tmp91 == tmp0; 2023-01-11T21:05:10.6049644Z auto tmp94 = tmp71 & tmp51; 2023-01-11T21:05:10.6049736Z auto tmp95 = tmp94 & tmp93; 2023-01-11T21:05:10.6049827Z auto tmp96 = tmp90 + tmp92; 2023-01-11T21:05:10.6049930Z auto tmp97 = tmp95 ? tmp96 : tmp90; 2023-01-11T21:05:10.6050072Z auto tmp98 = in_ptr0[tmp57 + (4*tmp67) + (12*i0)]; 2023-01-11T21:05:10.6050186Z auto tmp99 = in_ptr1[tmp57 + (4*tmp67) + (12*i0)]; 2023-01-11T21:05:10.6050274Z auto tmp100 = tmp98 == tmp0; 2023-01-11T21:05:10.6050373Z auto tmp101 = tmp71 & tmp61; 2023-01-11T21:05:10.6050472Z auto tmp102 = tmp101 & tmp100; 2023-01-11T21:05:10.6050567Z auto tmp103 = tmp97 + tmp99; 2023-01-11T21:05:10.6050672Z auto tmp104 = tmp102 ? tmp103 : tmp97; 2023-01-11T21:05:10.6050767Z auto tmp105 = tmp6 + tmp35; 2023-01-11T21:05:10.6050901Z auto tmp106 = (tmp15 != tmp15) ? tmp15 : std::min(tmp105, tmp15); 2023-01-11T21:05:10.6051018Z auto tmp107 = in_ptr0[tmp18 + (4*tmp106) + (12*i0)]; 2023-01-11T21:05:10.6051124Z auto tmp108 = in_ptr1[tmp18 + (4*tmp106) + (12*i0)]; 2023-01-11T21:05:10.6051220Z auto tmp109 = tmp107 == tmp0; 2023-01-11T21:05:10.6051352Z auto tmp110 = tmp105 < tmp9; 2023-01-11T21:05:10.6051451Z auto tmp111 = tmp110 & tmp72; 2023-01-11T21:05:10.6051548Z auto tmp112 = tmp111 & tmp109; 2023-01-11T21:05:10.6051644Z auto tmp113 = tmp104 + tmp108; 2023-01-11T21:05:10.6051750Z auto tmp114 = tmp112 ? tmp113 : tmp104; 2023-01-11T21:05:10.6051854Z auto tmp115 = in_ptr0[tmp25 + (4*tmp106) + (12*i0)]; 2023-01-11T21:05:10.6051968Z auto tmp116 = in_ptr1[tmp25 + (4*tmp106) + (12*i0)]; 2023-01-11T21:05:10.6052065Z auto tmp117 = tmp115 == tmp0; 2023-01-11T21:05:10.6052159Z auto tmp118 = tmp110 & tmp30; 2023-01-11T21:05:10.6052257Z auto tmp119 = tmp118 & tmp117; 2023-01-11T21:05:10.6052353Z auto tmp120 = tmp114 + tmp116; 2023-01-11T21:05:10.6052459Z auto tmp121 = tmp119 ? tmp120 : tmp114; 2023-01-11T21:05:10.6052574Z auto tmp122 = in_ptr0[tmp37 + (4*tmp106) + (12*i0)]; 2023-01-11T21:05:10.6052674Z auto tmp123 = in_ptr1[tmp37 + (4*tmp106) + (12*i0)]; 2023-01-11T21:05:10.6052769Z auto tmp124 = tmp122 == tmp0; 2023-01-11T21:05:10.6052862Z auto tmp125 = tmp110 & tmp41; 2023-01-11T21:05:10.6052959Z auto tmp126 = tmp125 & tmp124; 2023-01-11T21:05:10.6053054Z auto tmp127 = tmp121 + tmp123; 2023-01-11T21:05:10.6053158Z auto tmp128 = tmp126 ? tmp127 : tmp121; 2023-01-11T21:05:10.6053272Z auto tmp129 = in_ptr0[tmp47 + (4*tmp106) + (12*i0)]; 2023-01-11T21:05:10.6053386Z auto tmp130 = in_ptr1[tmp47 + (4*tmp106) + (12*i0)]; 2023-01-11T21:05:10.6053470Z auto tmp131 = tmp129 == tmp0; 2023-01-11T21:05:10.6053566Z auto tmp132 = tmp110 & tmp51; 2023-01-11T21:05:10.6053662Z auto tmp133 = tmp132 & tmp131; 2023-01-11T21:05:10.6053758Z auto tmp134 = tmp128 + tmp130; 2023-01-11T21:05:10.6053861Z auto tmp135 = tmp133 ? tmp134 : tmp128; 2023-01-11T21:05:10.6053974Z auto tmp136 = in_ptr0[tmp57 + (4*tmp106) + (12*i0)]; 2023-01-11T21:05:10.6054086Z auto tmp137 = in_ptr1[tmp57 + (4*tmp106) + (12*i0)]; 2023-01-11T21:05:10.6054168Z auto tmp138 = tmp136 == tmp0; 2023-01-11T21:05:10.6054262Z auto tmp139 = tmp110 & tmp61; 2023-01-11T21:05:10.6054359Z auto tmp140 = tmp139 & tmp138; 2023-01-11T21:05:10.6054482Z auto tmp141 = tmp135 + tmp137; 2023-01-11T21:05:10.6054585Z auto tmp142 = tmp140 ? tmp141 : tmp135; 2023-01-11T21:05:10.6054683Z auto tmp143 = tmp6 + tmp8; 2023-01-11T21:05:10.6054815Z auto tmp144 = (tmp15 != tmp15) ? tmp15 : std::min(tmp143, tmp15); 2023-01-11T21:05:10.6054928Z auto tmp145 = in_ptr0[tmp18 + (4*tmp144) + (12*i0)]; 2023-01-11T21:05:10.6055032Z auto tmp146 = in_ptr1[tmp18 + (4*tmp144) + (12*i0)]; 2023-01-11T21:05:10.6055128Z auto tmp147 = tmp145 == tmp0; 2023-01-11T21:05:10.6055223Z auto tmp148 = tmp143 < tmp9; 2023-01-11T21:05:10.6055317Z auto tmp149 = tmp148 & tmp72; 2023-01-11T21:05:10.6055414Z auto tmp150 = tmp149 & tmp147; 2023-01-11T21:05:10.6055510Z auto tmp151 = tmp142 + tmp146; 2023-01-11T21:05:10.6055615Z auto tmp152 = tmp150 ? tmp151 : tmp142; 2023-01-11T21:05:10.6055769Z auto tmp153 = in_ptr0[tmp25 + (4*tmp144) + (12*i0)]; 2023-01-11T21:05:10.6055869Z auto tmp154 = in_ptr1[tmp25 + (4*tmp144) + (12*i0)]; 2023-01-11T21:05:10.6055963Z auto tmp155 = tmp153 == tmp0; 2023-01-11T21:05:10.6056055Z auto tmp156 = tmp148 & tmp30; 2023-01-11T21:05:10.6056151Z auto tmp157 = tmp156 & tmp155; 2023-01-11T21:05:10.6056245Z auto tmp158 = tmp152 + tmp154; 2023-01-11T21:05:10.6056348Z auto tmp159 = tmp157 ? tmp158 : tmp152; 2023-01-11T21:05:10.6056462Z auto tmp160 = in_ptr0[tmp37 + (4*tmp144) + (12*i0)]; 2023-01-11T21:05:10.6056572Z auto tmp161 = in_ptr1[tmp37 + (4*tmp144) + (12*i0)]; 2023-01-11T21:05:10.6056660Z auto tmp162 = tmp160 == tmp0; 2023-01-11T21:05:10.6056753Z auto tmp163 = tmp148 & tmp41; 2023-01-11T21:05:10.6056850Z auto tmp164 = tmp163 & tmp162; 2023-01-11T21:05:10.6056945Z auto tmp165 = tmp159 + tmp161; 2023-01-11T21:05:10.6057049Z auto tmp166 = tmp164 ? tmp165 : tmp159; 2023-01-11T21:05:10.6057162Z auto tmp167 = in_ptr0[tmp47 + (4*tmp144) + (12*i0)]; 2023-01-11T21:05:10.6057274Z auto tmp168 = in_ptr1[tmp47 + (4*tmp144) + (12*i0)]; 2023-01-11T21:05:10.6057356Z auto tmp169 = tmp167 == tmp0; 2023-01-11T21:05:10.6057453Z auto tmp170 = tmp148 & tmp51; 2023-01-11T21:05:10.6057551Z auto tmp171 = tmp170 & tmp169; 2023-01-11T21:05:10.6057648Z auto tmp172 = tmp166 + tmp168; 2023-01-11T21:05:10.6057754Z auto tmp173 = tmp171 ? tmp172 : tmp166; 2023-01-11T21:05:10.6057868Z auto tmp174 = in_ptr0[tmp57 + (4*tmp144) + (12*i0)]; 2023-01-11T21:05:10.6057983Z auto tmp175 = in_ptr1[tmp57 + (4*tmp144) + (12*i0)]; 2023-01-11T21:05:10.6058079Z auto tmp176 = tmp174 == tmp0; 2023-01-11T21:05:10.6058160Z auto tmp177 = tmp148 & tmp61; 2023-01-11T21:05:10.6058255Z auto tmp178 = tmp177 & tmp176; 2023-01-11T21:05:10.6058349Z auto tmp179 = tmp173 + tmp175; 2023-01-11T21:05:10.6058452Z auto tmp180 = tmp178 ? tmp179 : tmp173; 2023-01-11T21:05:10.6058643Z auto tmp181 = tmp6 + tmp10; 2023-01-11T21:05:10.6058778Z auto tmp182 = (tmp15 != tmp15) ? tmp15 : std::min(tmp181, tmp15); 2023-01-11T21:05:10.6058894Z auto tmp183 = in_ptr0[tmp18 + (4*tmp182) + (12*i0)]; 2023-01-11T21:05:10.6059043Z auto tmp184 = in_ptr1[tmp18 + (4*tmp182) + (12*i0)]; 2023-01-11T21:05:10.6059128Z auto tmp185 = tmp183 == tmp0; 2023-01-11T21:05:10.6059227Z auto tmp186 = tmp181 < tmp9; 2023-01-11T21:05:10.6059321Z auto tmp187 = tmp186 & tmp72; 2023-01-11T21:05:10.6059422Z auto tmp188 = tmp187 & tmp185; 2023-01-11T21:05:10.6059520Z auto tmp189 = tmp180 + tmp184; 2023-01-11T21:05:10.6059627Z auto tmp190 = tmp188 ? tmp189 : tmp180; 2023-01-11T21:05:10.6059747Z auto tmp191 = in_ptr0[tmp25 + (4*tmp182) + (12*i0)]; 2023-01-11T21:05:10.6059860Z auto tmp192 = in_ptr1[tmp25 + (4*tmp182) + (12*i0)]; 2023-01-11T21:05:10.6059942Z auto tmp193 = tmp191 == tmp0; 2023-01-11T21:05:10.6060040Z auto tmp194 = tmp186 & tmp30; 2023-01-11T21:05:10.6060137Z auto tmp195 = tmp194 & tmp193; 2023-01-11T21:05:10.6060267Z auto tmp196 = tmp190 + tmp192; 2023-01-11T21:05:10.6060375Z auto tmp197 = tmp195 ? tmp196 : tmp190; 2023-01-11T21:05:10.6060488Z auto tmp198 = in_ptr0[tmp37 + (4*tmp182) + (12*i0)]; 2023-01-11T21:05:10.6060601Z auto tmp199 = in_ptr1[tmp37 + (4*tmp182) + (12*i0)]; 2023-01-11T21:05:10.6060684Z auto tmp200 = tmp198 == tmp0; 2023-01-11T21:05:10.6060778Z auto tmp201 = tmp186 & tmp41; 2023-01-11T21:05:10.6060875Z auto tmp202 = tmp201 & tmp200; 2023-01-11T21:05:10.6060972Z auto tmp203 = tmp197 + tmp199; 2023-01-11T21:05:10.6061076Z auto tmp204 = tmp202 ? tmp203 : tmp197; 2023-01-11T21:05:10.6061191Z auto tmp205 = in_ptr0[tmp47 + (4*tmp182) + (12*i0)]; 2023-01-11T21:05:10.6061303Z auto tmp206 = in_ptr1[tmp47 + (4*tmp182) + (12*i0)]; 2023-01-11T21:05:10.6061401Z auto tmp207 = tmp205 == tmp0; 2023-01-11T21:05:10.6061482Z auto tmp208 = tmp186 & tmp51; 2023-01-11T21:05:10.6061578Z auto tmp209 = tmp208 & tmp207; 2023-01-11T21:05:10.6061674Z auto tmp210 = tmp204 + tmp206; 2023-01-11T21:05:10.6061777Z auto tmp211 = tmp209 ? tmp210 : tmp204; 2023-01-11T21:05:10.6061890Z auto tmp212 = in_ptr0[tmp57 + (4*tmp182) + (12*i0)]; 2023-01-11T21:05:10.6062001Z auto tmp213 = in_ptr1[tmp57 + (4*tmp182) + (12*i0)]; 2023-01-11T21:05:10.6062097Z auto tmp214 = tmp212 == tmp0; 2023-01-11T21:05:10.6062191Z auto tmp215 = tmp186 & tmp61; 2023-01-11T21:05:10.6062278Z auto tmp216 = tmp215 & tmp214; 2023-01-11T21:05:10.6062372Z auto tmp217 = tmp211 + tmp213; 2023-01-11T21:05:10.6062478Z auto tmp218 = tmp216 ? tmp217 : tmp211; 2023-01-11T21:05:10.6062582Z out_ptr0[i2 + (4*i1) + (12*i0)] = tmp218; 2023-01-11T21:05:10.6062651Z } 2023-01-11T21:05:10.6062717Z } 2023-01-11T21:05:10.6062781Z } 2023-01-11T21:05:10.6062830Z } 2023-01-11T21:05:10.6062891Z } 2023-01-11T21:05:10.6062952Z } 2023-01-11T21:05:10.6063012Z } 2023-01-11T21:05:10.6063106Z ''') 2023-01-11T21:05:10.6063112Z 2023-01-11T21:05:10.6063116Z 2023-01-11T21:05:10.6063206Z async_compile.wait(globals()) 2023-01-11T21:05:10.6063278Z del async_compile 2023-01-11T21:05:10.6063283Z 2023-01-11T21:05:10.6063339Z def call(args): 2023-01-11T21:05:10.6063421Z arg0_1, arg1_1, arg2_1 = args 2023-01-11T21:05:10.6063524Z args.clear() 2023-01-11T21:05:10.6063744Z buf0 = empty_strided((2, 64, 3, 4), (768, 12, 4, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6063909Z kernel_cpp_0(c_void_p(arg2_1.data_ptr()), c_void_p(arg0_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:05:10.6063978Z del arg0_1 2023-01-11T21:05:10.6064044Z del arg2_1 2023-01-11T21:05:10.6064101Z return (buf0, ) 2023-01-11T21:05:10.6064120Z 2023-01-11T21:05:10.6064124Z 2023-01-11T21:05:10.6064186Z if __name__ == "__main__": 2023-01-11T21:05:10.6064301Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.6064424Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.6064638Z arg0_1 = rand_strided((2, 64, 3, 4), (768, 12, 4, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6064850Z arg1_1 = rand_strided((2, 64, 3, 4), (768, 12, 4, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6065058Z arg2_1 = rand_strided((2, 64, 3, 4), (768, 12, 4, 1), device='cpu', dtype=torch.int64) 2023-01-11T21:05:10.6065183Z print_performance(lambda: call([arg0_1, arg1_1, arg2_1])) 2023-01-11T21:05:10.6065479Z [2023-01-11 20:56:57,100] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 350 2023-01-11T21:05:10.6065486Z 2023-01-11T21:05:10.6065540Z ok (3.025s) 2023-01-11T21:05:10.6065999Z test_max_pool2d_with_indices_backward5_cpu (__main__.CpuTests) ... inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.6066124Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.6066383Z [2023-01-11 20:56:57,159] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 351 2023-01-11T21:05:10.6066641Z [2023-01-11 20:56:57,186] torch._inductor.ir: [WARNING] Using FallbackKernel: aten.max_pool2d_with_indices_backward 2023-01-11T21:05:10.6066902Z [2023-01-11 20:56:57,190] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 351 2023-01-11T21:05:10.6066908Z 2023-01-11T21:05:10.6067003Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.6067073Z import torch 2023-01-11T21:05:10.6067142Z import random 2023-01-11T21:05:10.6067244Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.6067363Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.6067368Z 2023-01-11T21:05:10.6067445Z aten = torch.ops.aten 2023-01-11T21:05:10.6067578Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.6067669Z async_compile = AsyncCompile() 2023-01-11T21:05:10.6067675Z 2023-01-11T21:05:10.6067679Z 2023-01-11T21:05:10.6067764Z async_compile.wait(globals()) 2023-01-11T21:05:10.6067838Z del async_compile 2023-01-11T21:05:10.6067843Z 2023-01-11T21:05:10.6067913Z def call(args): 2023-01-11T21:05:10.6067980Z arg0_1, arg1_1, arg2_1 = args 2023-01-11T21:05:10.6068049Z args.clear() 2023-01-11T21:05:10.6068203Z buf0 = aten.max_pool2d_with_indices_backward(arg0_1, arg1_1, [13, 13], [1, 1], [2, 2], [1, 1], False, arg2_1) 2023-01-11T21:05:10.6068270Z del arg0_1 2023-01-11T21:05:10.6068337Z del arg1_1 2023-01-11T21:05:10.6068401Z del arg2_1 2023-01-11T21:05:10.6068466Z buf1 = buf0 2023-01-11T21:05:10.6068563Z assert_size_stride(buf1, (2, 64, 20, 20), (25600, 400, 20, 1)) 2023-01-11T21:05:10.6068627Z del buf0 2023-01-11T21:05:10.6068696Z return (buf1, ) 2023-01-11T21:05:10.6068702Z 2023-01-11T21:05:10.6068706Z 2023-01-11T21:05:10.6068780Z if __name__ == "__main__": 2023-01-11T21:05:10.6068892Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.6069012Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.6069262Z arg0_1 = rand_strided((2, 64, 12, 12), (9216, 144, 12, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6069484Z arg1_1 = rand_strided((2, 64, 20, 20), (25600, 400, 20, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6069688Z arg2_1 = rand_strided((2, 64, 12, 12), (9216, 144, 12, 1), device='cpu', dtype=torch.int64) 2023-01-11T21:05:10.6069809Z print_performance(lambda: call([arg0_1, arg1_1, arg2_1])) 2023-01-11T21:05:10.6069814Z 2023-01-11T21:05:10.6069879Z ok (0.133s) 2023-01-11T21:05:10.6070338Z test_max_pool2d_with_indices_backward_cpu (__main__.CpuTests) ... inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.6070463Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.6070727Z [2023-01-11 20:56:57,279] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 352 2023-01-11T21:05:10.6071049Z [2023-01-11 20:56:59,954] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 352 2023-01-11T21:05:10.6071055Z 2023-01-11T21:05:10.6071149Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.6071216Z import torch 2023-01-11T21:05:10.6071272Z import random 2023-01-11T21:05:10.6071385Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.6071503Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.6071508Z 2023-01-11T21:05:10.6071585Z aten = torch.ops.aten 2023-01-11T21:05:10.6071717Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.6071812Z async_compile = AsyncCompile() 2023-01-11T21:05:10.6071817Z 2023-01-11T21:05:10.6071821Z 2023-01-11T21:05:10.6071955Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.6072160Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.6072265Z extern "C" void kernel(const long* __restrict__ in_ptr0, 2023-01-11T21:05:10.6072374Z const float* __restrict__ in_ptr1, 2023-01-11T21:05:10.6072473Z float* __restrict__ out_ptr0) 2023-01-11T21:05:10.6072534Z { 2023-01-11T21:05:10.6072631Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.6072694Z { 2023-01-11T21:05:10.6072771Z #pragma omp for 2023-01-11T21:05:10.6072839Z for(long i0=0; i0<8; i0+=1) 2023-01-11T21:05:10.6072901Z { 2023-01-11T21:05:10.6072980Z #pragma GCC ivdep 2023-01-11T21:05:10.6073063Z for(long i1=0; i1<18; i1+=1) 2023-01-11T21:05:10.6073126Z { 2023-01-11T21:05:10.6073204Z #pragma GCC ivdep 2023-01-11T21:05:10.6073292Z for(long i2=0; i2<14; i2+=1) 2023-01-11T21:05:10.6073343Z { 2023-01-11T21:05:10.6073410Z { 2023-01-11T21:05:10.6073476Z { 2023-01-11T21:05:10.6073588Z auto tmp0 = static_cast(i2 + (14*i1)); 2023-01-11T21:05:10.6073699Z auto tmp1 = static_cast((i1 / 2)); 2023-01-11T21:05:10.6073805Z auto tmp2 = static_cast((i2 / 2)); 2023-01-11T21:05:10.6073916Z auto tmp3 = static_cast(1 + (i1 / 2)); 2023-01-11T21:05:10.6074013Z auto tmp4 = static_cast(1 + (i2 / 2)); 2023-01-11T21:05:10.6074118Z auto tmp5 = static_cast(0); 2023-01-11T21:05:10.6074248Z auto tmp6 = (tmp5 != tmp5) ? tmp5 : std::max(tmp1, tmp5); 2023-01-11T21:05:10.6074372Z auto tmp7 = (tmp5 != tmp5) ? tmp5 : std::max(tmp2, tmp5); 2023-01-11T21:05:10.6074477Z auto tmp8 = static_cast(9); 2023-01-11T21:05:10.6074633Z auto tmp9 = (tmp8 != tmp8) ? tmp8 : std::min(tmp3, tmp8); 2023-01-11T21:05:10.6074737Z auto tmp10 = static_cast(7); 2023-01-11T21:05:10.6074868Z auto tmp11 = (tmp10 != tmp10) ? tmp10 : std::min(tmp4, tmp10); 2023-01-11T21:05:10.6074965Z auto tmp12 = tmp6 + tmp5; 2023-01-11T21:05:10.6075045Z auto tmp13 = tmp7 + tmp5; 2023-01-11T21:05:10.6075147Z auto tmp14 = static_cast(1); 2023-01-11T21:05:10.6075294Z auto tmp15 = tmp9 - tmp14; 2023-01-11T21:05:10.6075423Z auto tmp16 = (tmp15 != tmp15) ? tmp15 : std::min(tmp12, tmp15); 2023-01-11T21:05:10.6075572Z auto tmp17 = tmp11 - tmp14; 2023-01-11T21:05:10.6075700Z auto tmp18 = (tmp17 != tmp17) ? tmp17 : std::min(tmp13, tmp17); 2023-01-11T21:05:10.6075817Z auto tmp19 = in_ptr0[tmp18 + (7*tmp16) + (63*i0)]; 2023-01-11T21:05:10.6075934Z auto tmp20 = in_ptr1[tmp18 + (7*tmp16) + (63*i0)]; 2023-01-11T21:05:10.6076018Z auto tmp21 = tmp19 == tmp0; 2023-01-11T21:05:10.6076154Z auto tmp22 = static_cast(0.0); 2023-01-11T21:05:10.6076263Z auto tmp23 = tmp21 ? tmp20 : tmp22; 2023-01-11T21:05:10.6076366Z out_ptr0[i2 + (14*i1) + (252*i0)] = tmp23; 2023-01-11T21:05:10.6076434Z } 2023-01-11T21:05:10.6076500Z } 2023-01-11T21:05:10.6076563Z } 2023-01-11T21:05:10.6076613Z } 2023-01-11T21:05:10.6076673Z } 2023-01-11T21:05:10.6076732Z } 2023-01-11T21:05:10.6076790Z } 2023-01-11T21:05:10.6076869Z ''') 2023-01-11T21:05:10.6076874Z 2023-01-11T21:05:10.6076878Z 2023-01-11T21:05:10.6076968Z async_compile.wait(globals()) 2023-01-11T21:05:10.6077038Z del async_compile 2023-01-11T21:05:10.6077045Z 2023-01-11T21:05:10.6077101Z def call(args): 2023-01-11T21:05:10.6077180Z arg0_1, arg1_1, arg2_1 = args 2023-01-11T21:05:10.6077250Z args.clear() 2023-01-11T21:05:10.6077470Z buf0 = empty_strided((2, 4, 18, 14), (1008, 252, 14, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6077633Z kernel_cpp_0(c_void_p(arg2_1.data_ptr()), c_void_p(arg0_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:05:10.6077700Z del arg0_1 2023-01-11T21:05:10.6077764Z del arg2_1 2023-01-11T21:05:10.6077820Z return (buf0, ) 2023-01-11T21:05:10.6077837Z 2023-01-11T21:05:10.6077841Z 2023-01-11T21:05:10.6077902Z if __name__ == "__main__": 2023-01-11T21:05:10.6078016Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.6078140Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.6078351Z arg0_1 = rand_strided((2, 4, 9, 7), (252, 63, 7, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6078568Z arg1_1 = rand_strided((2, 4, 18, 14), (1008, 252, 14, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6078775Z arg2_1 = rand_strided((2, 4, 9, 7), (252, 63, 7, 1), device='cpu', dtype=torch.int64) 2023-01-11T21:05:10.6078897Z print_performance(lambda: call([arg0_1, arg1_1, arg2_1])) 2023-01-11T21:05:10.6078903Z 2023-01-11T21:05:10.6078968Z ok (2.720s) 2023-01-11T21:05:10.6079388Z test_mean_cpu (__main__.CpuTests) ... inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.6079512Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.6079771Z [2023-01-11 20:57:00,007] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 353 2023-01-11T21:05:10.6080061Z [2023-01-11 20:57:02,798] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 353 2023-01-11T21:05:10.6080066Z 2023-01-11T21:05:10.6080158Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.6080227Z import torch 2023-01-11T21:05:10.6080295Z import random 2023-01-11T21:05:10.6080408Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.6080526Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.6080532Z 2023-01-11T21:05:10.6080747Z aten = torch.ops.aten 2023-01-11T21:05:10.6080882Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.6080976Z async_compile = AsyncCompile() 2023-01-11T21:05:10.6080981Z 2023-01-11T21:05:10.6080985Z 2023-01-11T21:05:10.6081120Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.6081329Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.6081448Z extern "C" void kernel(float* __restrict__ in_out_ptr0, 2023-01-11T21:05:10.6081556Z float* __restrict__ in_out_ptr1, 2023-01-11T21:05:10.6081660Z const float* __restrict__ in_ptr0, 2023-01-11T21:05:10.6081800Z float* __restrict__ out_ptr2, 2023-01-11T21:05:10.6081902Z float* __restrict__ out_ptr3) 2023-01-11T21:05:10.6081962Z { 2023-01-11T21:05:10.6082046Z auto out_ptr1 = in_out_ptr0; 2023-01-11T21:05:10.6082127Z auto out_ptr0 = in_out_ptr1; 2023-01-11T21:05:10.6082187Z { 2023-01-11T21:05:10.6082373Z #pragma omp declare reduction(+:at::vec::Vectorized:omp_out += omp_in) initializer(omp_priv={{0}}) 2023-01-11T21:05:10.6082434Z float tmp1 = 0; 2023-01-11T21:05:10.6082549Z auto tmp1_vec = at::vec::Vectorized(tmp1); 2023-01-11T21:05:10.6082651Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.6082716Z { 2023-01-11T21:05:10.6082824Z #pragma omp for reduction(+:tmp1_vec) 2023-01-11T21:05:10.6082910Z for(long i0=0; i0<4; i0+=1) 2023-01-11T21:05:10.6082974Z { 2023-01-11T21:05:10.6083094Z auto tmp0 = at::vec::Vectorized::loadu(in_ptr0 + 16*i0); 2023-01-11T21:05:10.6083176Z tmp1_vec += tmp0; 2023-01-11T21:05:10.6083240Z } 2023-01-11T21:05:10.6083437Z tmp1 = at::vec::vec_reduce_all([](at::vec::Vectorized& x, at::vec::Vectorized&y) {return x + y;}, tmp1_vec); 2023-01-11T21:05:10.6083560Z #pragma omp for simd simdlen(8) reduction(+:tmp1) 2023-01-11T21:05:10.6083647Z for(long i0=64; i0<64; i0+=1) 2023-01-11T21:05:10.6083711Z { 2023-01-11T21:05:10.6083798Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:05:10.6083860Z tmp1 += tmp0; 2023-01-11T21:05:10.6083922Z } 2023-01-11T21:05:10.6083982Z } 2023-01-11T21:05:10.6084057Z out_ptr0[0] = tmp1; 2023-01-11T21:05:10.6084118Z } 2023-01-11T21:05:10.6084215Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.6084275Z { 2023-01-11T21:05:10.6084335Z #pragma omp for 2023-01-11T21:05:10.6084415Z for(long i0=0; i0<8; i0+=1) 2023-01-11T21:05:10.6084476Z { 2023-01-11T21:05:10.6084539Z { 2023-01-11T21:05:10.6084602Z { 2023-01-11T21:05:10.6084679Z float tmp1 = 0; 2023-01-11T21:05:10.6084757Z for(long i1=0; i1<8; i1+=1) 2023-01-11T21:05:10.6084821Z { 2023-01-11T21:05:10.6084887Z { 2023-01-11T21:05:10.6084991Z auto tmp0 = in_ptr0[i1 + (8*i0)]; 2023-01-11T21:05:10.6085074Z tmp1 += tmp0; 2023-01-11T21:05:10.6085141Z } 2023-01-11T21:05:10.6085205Z } 2023-01-11T21:05:10.6085275Z out_ptr1[i0] = tmp1; 2023-01-11T21:05:10.6085338Z } 2023-01-11T21:05:10.6085398Z } 2023-01-11T21:05:10.6085497Z } 2023-01-11T21:05:10.6085572Z #pragma omp for 2023-01-11T21:05:10.6085650Z for(long i0=0; i0<8; i0+=1) 2023-01-11T21:05:10.6085716Z { 2023-01-11T21:05:10.6085790Z { 2023-01-11T21:05:10.6085886Z { 2023-01-11T21:05:10.6086018Z auto tmp0 = out_ptr1[i0]; 2023-01-11T21:05:10.6086151Z auto tmp1 = static_cast(8); 2023-01-11T21:05:10.6086243Z auto tmp2 = tmp0 / tmp1; 2023-01-11T21:05:10.6086331Z in_out_ptr0[i0] = tmp2; 2023-01-11T21:05:10.6086396Z } 2023-01-11T21:05:10.6086444Z } 2023-01-11T21:05:10.6086504Z } 2023-01-11T21:05:10.6086593Z #pragma omp for collapse(2) 2023-01-11T21:05:10.6086671Z for(long i0=0; i0<2; i0+=1) 2023-01-11T21:05:10.6086731Z { 2023-01-11T21:05:10.6086810Z for(long i1=0; i1<8; i1+=1) 2023-01-11T21:05:10.6086859Z { 2023-01-11T21:05:10.6086921Z { 2023-01-11T21:05:10.6086988Z { 2023-01-11T21:05:10.6087090Z auto tmp0 = in_ptr0[i1 + (32*i0)]; 2023-01-11T21:05:10.6087193Z auto tmp1 = in_ptr0[8 + i1 + (32*i0)]; 2023-01-11T21:05:10.6087331Z auto tmp3 = in_ptr0[16 + i1 + (32*i0)]; 2023-01-11T21:05:10.6087434Z auto tmp5 = in_ptr0[24 + i1 + (32*i0)]; 2023-01-11T21:05:10.6087514Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:05:10.6087609Z auto tmp4 = tmp2 + tmp3; 2023-01-11T21:05:10.6087700Z auto tmp6 = tmp4 + tmp5; 2023-01-11T21:05:10.6087804Z auto tmp7 = static_cast(4); 2023-01-11T21:05:10.6087894Z auto tmp8 = tmp6 / tmp7; 2023-01-11T21:05:10.6087988Z out_ptr2[i1 + (8*i0)] = tmp8; 2023-01-11T21:05:10.6088053Z } 2023-01-11T21:05:10.6088115Z } 2023-01-11T21:05:10.6088167Z } 2023-01-11T21:05:10.6088226Z } 2023-01-11T21:05:10.6088300Z #pragma omp for 2023-01-11T21:05:10.6088381Z for(long i0=0; i0<2; i0+=1) 2023-01-11T21:05:10.6088441Z { 2023-01-11T21:05:10.6088576Z auto tmp0 = at::vec::Vectorized::loadu(in_ptr0 + 16*i0); 2023-01-11T21:05:10.6088714Z auto tmp1 = at::vec::Vectorized::loadu(in_ptr0 + 32 + (16*i0)); 2023-01-11T21:05:10.6088785Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:05:10.6088916Z auto tmp3 = at::vec::Vectorized(static_cast(2)); 2023-01-11T21:05:10.6088998Z auto tmp4 = tmp2 / tmp3; 2023-01-11T21:05:10.6089088Z tmp4.store(out_ptr3 + 16*i0); 2023-01-11T21:05:10.6089148Z } 2023-01-11T21:05:10.6089243Z #pragma omp for simd simdlen(8) 2023-01-11T21:05:10.6089323Z for(long i0=32; i0<32; i0+=1) 2023-01-11T21:05:10.6089371Z { 2023-01-11T21:05:10.6089451Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:05:10.6089539Z auto tmp1 = in_ptr0[32 + i0]; 2023-01-11T21:05:10.6089621Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:05:10.6089719Z auto tmp3 = static_cast(2); 2023-01-11T21:05:10.6089802Z auto tmp4 = tmp2 / tmp3; 2023-01-11T21:05:10.6089879Z out_ptr3[i0] = tmp4; 2023-01-11T21:05:10.6089928Z } 2023-01-11T21:05:10.6090004Z #pragma omp single 2023-01-11T21:05:10.6090065Z { 2023-01-11T21:05:10.6090125Z { 2023-01-11T21:05:10.6090189Z { 2023-01-11T21:05:10.6090279Z auto tmp0 = out_ptr0[0]; 2023-01-11T21:05:10.6090369Z auto tmp1 = static_cast(64); 2023-01-11T21:05:10.6090459Z auto tmp2 = tmp0 / tmp1; 2023-01-11T21:05:10.6090544Z in_out_ptr1[0] = tmp2; 2023-01-11T21:05:10.6090607Z } 2023-01-11T21:05:10.6090668Z } 2023-01-11T21:05:10.6090728Z } 2023-01-11T21:05:10.6090820Z } 2023-01-11T21:05:10.6090865Z } 2023-01-11T21:05:10.6090958Z ''') 2023-01-11T21:05:10.6090963Z 2023-01-11T21:05:10.6090968Z 2023-01-11T21:05:10.6091057Z async_compile.wait(globals()) 2023-01-11T21:05:10.6091129Z del async_compile 2023-01-11T21:05:10.6091137Z 2023-01-11T21:05:10.6091206Z def call(args): 2023-01-11T21:05:10.6091274Z arg0_1, = args 2023-01-11T21:05:10.6091345Z args.clear() 2023-01-11T21:05:10.6091520Z buf0 = empty_strided((), (), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6091723Z buf1 = empty_strided((1, 2, 4), (8, 4, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6091807Z buf2 = buf1; del buf1 # reuse 2023-01-11T21:05:10.6092014Z buf3 = empty_strided((1, 2, 1, 8), (16, 8, 8, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6092203Z buf4 = empty_strided((4, 8), (8, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6092286Z buf5 = buf0; del buf0 # reuse 2023-01-11T21:05:10.6092498Z kernel_cpp_0(c_void_p(buf2.data_ptr()), c_void_p(buf5.data_ptr()), c_void_p(arg0_1.data_ptr()), c_void_p(buf3.data_ptr()), c_void_p(buf4.data_ptr())) 2023-01-11T21:05:10.6092569Z del arg0_1 2023-01-11T21:05:10.6092642Z return (buf5, buf2, buf3, buf4, ) 2023-01-11T21:05:10.6092692Z 2023-01-11T21:05:10.6092711Z 2023-01-11T21:05:10.6092775Z if __name__ == "__main__": 2023-01-11T21:05:10.6092887Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.6093009Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.6093219Z arg0_1 = rand_strided((1, 2, 4, 8), (64, 32, 8, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6093326Z print_performance(lambda: call([arg0_1])) 2023-01-11T21:05:10.6093331Z 2023-01-11T21:05:10.6093401Z ok (2.843s) 2023-01-11T21:05:10.6093847Z test_min_max_reduction_cpu (__main__.CpuTests) ... inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.6093978Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.6094240Z [2023-01-11 20:57:02,857] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 354 2023-01-11T21:05:10.6094490Z [2023-01-11 20:57:05,576] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 354 2023-01-11T21:05:10.6094495Z 2023-01-11T21:05:10.6094586Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.6094659Z import torch 2023-01-11T21:05:10.6094730Z import random 2023-01-11T21:05:10.6094843Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.6094962Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.6094967Z 2023-01-11T21:05:10.6095044Z aten = torch.ops.aten 2023-01-11T21:05:10.6095162Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.6095255Z async_compile = AsyncCompile() 2023-01-11T21:05:10.6095260Z 2023-01-11T21:05:10.6095265Z 2023-01-11T21:05:10.6095397Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.6095605Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.6095723Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:05:10.6095827Z const float* __restrict__ in_ptr1, 2023-01-11T21:05:10.6095926Z float* __restrict__ out_ptr0, 2023-01-11T21:05:10.6096022Z float* __restrict__ out_ptr1, 2023-01-11T21:05:10.6096102Z float* __restrict__ out_ptr2) 2023-01-11T21:05:10.6096162Z { 2023-01-11T21:05:10.6096222Z { 2023-01-11T21:05:10.6096639Z #pragma omp declare reduction(max:at::vec::Vectorized:omp_out = at::vec::maximum(omp_out, omp_in)) initializer(omp_priv={{-std::numeric_limits::infinity()}}) 2023-01-11T21:05:10.6096982Z float tmp3 = -std::numeric_limits::infinity(); 2023-01-11T21:05:10.6097158Z auto tmp3_vec = at::vec::Vectorized(tmp3); 2023-01-11T21:05:10.6097405Z #pragma omp declare reduction(min:at::vec::Vectorized:omp_out = at::vec::minimum(omp_out, omp_in)) initializer(omp_priv={{std::numeric_limits::infinity()}}) 2023-01-11T21:05:10.6097527Z float tmp4 = std::numeric_limits::infinity(); 2023-01-11T21:05:10.6097642Z auto tmp4_vec = at::vec::Vectorized(tmp4); 2023-01-11T21:05:10.6097838Z float tmp7 = -std::numeric_limits::infinity(); 2023-01-11T21:05:10.6097938Z auto tmp7_vec = at::vec::Vectorized(tmp7); 2023-01-11T21:05:10.6098040Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.6098103Z { 2023-01-11T21:05:10.6098267Z #pragma omp for reduction(max:tmp3_vec) reduction(min:tmp4_vec) reduction(max:tmp7_vec) 2023-01-11T21:05:10.6098354Z for(long i0=0; i0<4; i0+=1) 2023-01-11T21:05:10.6098417Z { 2023-01-11T21:05:10.6098615Z auto tmp0 = at::vec::Vectorized::loadu(in_ptr0 + 16*i0); 2023-01-11T21:05:10.6098777Z auto tmp1 = at::vec::Vectorized::loadu(in_ptr1 + 16*i0); 2023-01-11T21:05:10.6098869Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:05:10.6099003Z auto tmp5 = at::vec::Vectorized(static_cast(1)); 2023-01-11T21:05:10.6099089Z auto tmp6 = tmp0 + tmp5; 2023-01-11T21:05:10.6099208Z tmp3_vec = at::vec::maximum(tmp3_vec, tmp2); 2023-01-11T21:05:10.6099321Z tmp4_vec = at::vec::minimum(tmp4_vec, tmp2); 2023-01-11T21:05:10.6099432Z tmp7_vec = at::vec::maximum(tmp7_vec, tmp6); 2023-01-11T21:05:10.6099496Z } 2023-01-11T21:05:10.6099706Z tmp3 = at::vec::vec_reduce_all([](at::vec::Vectorized& x, at::vec::Vectorized&y) {return at::vec::maximum(x, y);}, tmp3_vec); 2023-01-11T21:05:10.6099899Z tmp4 = at::vec::vec_reduce_all([](at::vec::Vectorized& x, at::vec::Vectorized&y) {return at::vec::minimum(x, y);}, tmp4_vec); 2023-01-11T21:05:10.6100107Z tmp7 = at::vec::vec_reduce_all([](at::vec::Vectorized& x, at::vec::Vectorized&y) {return at::vec::maximum(x, y);}, tmp7_vec); 2023-01-11T21:05:10.6100276Z #pragma omp for simd simdlen(8) reduction(max:tmp3) reduction(min:tmp4) reduction(max:tmp7) 2023-01-11T21:05:10.6100361Z for(long i0=64; i0<64; i0+=1) 2023-01-11T21:05:10.6100425Z { 2023-01-11T21:05:10.6100511Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:05:10.6100595Z auto tmp1 = in_ptr1[i0]; 2023-01-11T21:05:10.6100680Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:05:10.6100768Z auto tmp5 = static_cast(1); 2023-01-11T21:05:10.6100852Z auto tmp6 = tmp0 + tmp5; 2023-01-11T21:05:10.6100948Z tmp3 = std::max(tmp3, tmp2); 2023-01-11T21:05:10.6101040Z tmp4 = std::min(tmp4, tmp2); 2023-01-11T21:05:10.6101130Z tmp7 = std::max(tmp7, tmp6); 2023-01-11T21:05:10.6101195Z } 2023-01-11T21:05:10.6101255Z } 2023-01-11T21:05:10.6101319Z out_ptr0[0] = tmp3; 2023-01-11T21:05:10.6101393Z out_ptr1[0] = tmp4; 2023-01-11T21:05:10.6101467Z out_ptr2[0] = tmp7; 2023-01-11T21:05:10.6101527Z } 2023-01-11T21:05:10.6101585Z } 2023-01-11T21:05:10.6101664Z ''') 2023-01-11T21:05:10.6101669Z 2023-01-11T21:05:10.6101673Z 2023-01-11T21:05:10.6101762Z async_compile.wait(globals()) 2023-01-11T21:05:10.6101821Z del async_compile 2023-01-11T21:05:10.6101838Z 2023-01-11T21:05:10.6101893Z def call(args): 2023-01-11T21:05:10.6101966Z arg0_1, arg1_1 = args 2023-01-11T21:05:10.6102037Z args.clear() 2023-01-11T21:05:10.6102222Z buf0 = empty_strided((), (), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6102430Z buf1 = empty_strided((), (), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6102622Z buf2 = empty_strided((1, 1), (1, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6102836Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(arg1_1.data_ptr()), c_void_p(buf0.data_ptr()), c_void_p(buf1.data_ptr()), c_void_p(buf2.data_ptr())) 2023-01-11T21:05:10.6102892Z del arg0_1 2023-01-11T21:05:10.6102956Z del arg1_1 2023-01-11T21:05:10.6103036Z return (buf0, buf1, buf2, ) 2023-01-11T21:05:10.6103041Z 2023-01-11T21:05:10.6103045Z 2023-01-11T21:05:10.6103119Z if __name__ == "__main__": 2023-01-11T21:05:10.6103232Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.6103354Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.6103549Z arg0_1 = rand_strided((8, 8), (8, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6103741Z arg1_1 = rand_strided((8, 8), (8, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6103845Z print_performance(lambda: call([arg0_1, arg1_1])) 2023-01-11T21:05:10.6103850Z 2023-01-11T21:05:10.6103914Z ok (2.778s) 2023-01-11T21:05:10.6104396Z test_misaligned_address_issue1_cpu (__main__.CpuTests) ... inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.6104527Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.6104789Z [2023-01-11 20:57:05,635] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 355 2023-01-11T21:05:10.6105052Z [2023-01-11 20:57:08,260] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 355 2023-01-11T21:05:10.6105057Z 2023-01-11T21:05:10.6105150Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.6105221Z import torch 2023-01-11T21:05:10.6105288Z import random 2023-01-11T21:05:10.6105389Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.6105511Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.6105516Z 2023-01-11T21:05:10.6105596Z aten = torch.ops.aten 2023-01-11T21:05:10.6105729Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.6105819Z async_compile = AsyncCompile() 2023-01-11T21:05:10.6105824Z 2023-01-11T21:05:10.6105828Z 2023-01-11T21:05:10.6105960Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.6106162Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.6106279Z extern "C" void kernel(const long* __restrict__ in_ptr0, 2023-01-11T21:05:10.6106370Z const float* __restrict__ in_ptr1, 2023-01-11T21:05:10.6106468Z float* __restrict__ out_ptr0) 2023-01-11T21:05:10.6106530Z { 2023-01-11T21:05:10.6106590Z { 2023-01-11T21:05:10.6106652Z { 2023-01-11T21:05:10.6106738Z auto tmp0 = in_ptr0[0]; 2023-01-11T21:05:10.6106823Z auto tmp1 = in_ptr1[tmp0]; 2023-01-11T21:05:10.6106889Z out_ptr0[0] = tmp1; 2023-01-11T21:05:10.6106949Z } 2023-01-11T21:05:10.6107007Z } 2023-01-11T21:05:10.6107065Z } 2023-01-11T21:05:10.6107141Z ''') 2023-01-11T21:05:10.6107146Z 2023-01-11T21:05:10.6107150Z 2023-01-11T21:05:10.6107235Z async_compile.wait(globals()) 2023-01-11T21:05:10.6107306Z del async_compile 2023-01-11T21:05:10.6107311Z 2023-01-11T21:05:10.6107367Z def call(args): 2023-01-11T21:05:10.6107438Z arg0_1, arg1_1 = args 2023-01-11T21:05:10.6107506Z args.clear() 2023-01-11T21:05:10.6107698Z buf0 = empty_strided((1, 1), (1, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6107856Z kernel_cpp_0(c_void_p(arg1_1.data_ptr()), c_void_p(arg0_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:05:10.6107954Z del arg0_1 2023-01-11T21:05:10.6108018Z del arg1_1 2023-01-11T21:05:10.6108076Z return (buf0, ) 2023-01-11T21:05:10.6108093Z 2023-01-11T21:05:10.6108097Z 2023-01-11T21:05:10.6108158Z if __name__ == "__main__": 2023-01-11T21:05:10.6108272Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.6108392Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.6108594Z arg0_1 = rand_strided((1, 1000), (1000, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6108786Z arg1_1 = rand_strided((1, 1), (1, 1), device='cpu', dtype=torch.int64) 2023-01-11T21:05:10.6108899Z print_performance(lambda: call([arg0_1, arg1_1])) 2023-01-11T21:05:10.6108904Z 2023-01-11T21:05:10.6108969Z ok (2.682s) 2023-01-11T21:05:10.6109404Z test_mm_views_cpu (__main__.CpuTests) ... inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.6109532Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.6109806Z [2023-01-11 20:57:08,305] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 356 2023-01-11T21:05:10.6110070Z [2023-01-11 20:57:08,309] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 356 2023-01-11T21:05:10.6110075Z 2023-01-11T21:05:10.6110167Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.6110235Z import torch 2023-01-11T21:05:10.6110305Z import random 2023-01-11T21:05:10.6110418Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.6110536Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.6110540Z 2023-01-11T21:05:10.6110617Z aten = torch.ops.aten 2023-01-11T21:05:10.6110735Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.6110827Z async_compile = AsyncCompile() 2023-01-11T21:05:10.6110832Z 2023-01-11T21:05:10.6110836Z 2023-01-11T21:05:10.6110923Z async_compile.wait(globals()) 2023-01-11T21:05:10.6110992Z del async_compile 2023-01-11T21:05:10.6110999Z 2023-01-11T21:05:10.6111069Z def call(args): 2023-01-11T21:05:10.6111142Z arg0_1, arg1_1 = args 2023-01-11T21:05:10.6111211Z args.clear() 2023-01-11T21:05:10.6111396Z buf0 = empty_strided((32, 32), (32, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6111514Z aten.mm.out(arg0_1, as_strided(arg1_1, (32, 32), (32, 1)), out=buf0) 2023-01-11T21:05:10.6111580Z del arg0_1 2023-01-11T21:05:10.6111644Z del arg1_1 2023-01-11T21:05:10.6111713Z return (buf0, ) 2023-01-11T21:05:10.6111718Z 2023-01-11T21:05:10.6111722Z 2023-01-11T21:05:10.6111795Z if __name__ == "__main__": 2023-01-11T21:05:10.6111907Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.6112025Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.6112214Z arg0_1 = rand_strided((32, 32), (1, 32), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6112423Z arg1_1 = rand_strided((32, 1, 32), (32, 1024, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6112537Z print_performance(lambda: call([arg0_1, arg1_1])) 2023-01-11T21:05:10.6112542Z 2023-01-11T21:05:10.6112608Z ok (0.047s) 2023-01-11T21:05:10.6113047Z test_move_arange_cpu (__main__.CpuTests) ... inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.6113169Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.6113424Z [2023-01-11 20:57:08,366] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 357 2023-01-11T21:05:10.6113714Z [2023-01-11 20:57:11,047] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 357 2023-01-11T21:05:10.6113718Z 2023-01-11T21:05:10.6113810Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.6113867Z import torch 2023-01-11T21:05:10.6113935Z import random 2023-01-11T21:05:10.6114047Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.6114164Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.6114169Z 2023-01-11T21:05:10.6114246Z aten = torch.ops.aten 2023-01-11T21:05:10.6114378Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.6114469Z async_compile = AsyncCompile() 2023-01-11T21:05:10.6114474Z 2023-01-11T21:05:10.6114478Z 2023-01-11T21:05:10.6114615Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.6114806Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.6114926Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:05:10.6115029Z float* __restrict__ out_ptr0) 2023-01-11T21:05:10.6115090Z { 2023-01-11T21:05:10.6115185Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.6115275Z { 2023-01-11T21:05:10.6115351Z #pragma omp for 2023-01-11T21:05:10.6115419Z for(long i0=0; i0<32; i0+=1) 2023-01-11T21:05:10.6115480Z { 2023-01-11T21:05:10.6115541Z { 2023-01-11T21:05:10.6115605Z { 2023-01-11T21:05:10.6115695Z auto tmp2 = in_ptr0[i0]; 2023-01-11T21:05:10.6115797Z auto tmp0 = static_cast(i0); 2023-01-11T21:05:10.6115903Z auto tmp1 = static_cast(tmp0); 2023-01-11T21:05:10.6115980Z auto tmp3 = tmp1 + tmp2; 2023-01-11T21:05:10.6116062Z out_ptr0[i0] = tmp3; 2023-01-11T21:05:10.6116126Z } 2023-01-11T21:05:10.6116187Z } 2023-01-11T21:05:10.6116248Z } 2023-01-11T21:05:10.6116310Z } 2023-01-11T21:05:10.6116368Z } 2023-01-11T21:05:10.6116432Z ''') 2023-01-11T21:05:10.6116437Z 2023-01-11T21:05:10.6116441Z 2023-01-11T21:05:10.6116528Z async_compile.wait(globals()) 2023-01-11T21:05:10.6116600Z del async_compile 2023-01-11T21:05:10.6116604Z 2023-01-11T21:05:10.6116673Z def call(args): 2023-01-11T21:05:10.6116740Z arg0_1, = args 2023-01-11T21:05:10.6116809Z args.clear() 2023-01-11T21:05:10.6117001Z buf0 = empty_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6117121Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:05:10.6117187Z del arg0_1 2023-01-11T21:05:10.6117255Z return (buf0, ) 2023-01-11T21:05:10.6117260Z 2023-01-11T21:05:10.6117264Z 2023-01-11T21:05:10.6117338Z if __name__ == "__main__": 2023-01-11T21:05:10.6117449Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.6117571Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.6117765Z arg0_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6117870Z print_performance(lambda: call([arg0_1])) 2023-01-11T21:05:10.6117875Z 2023-01-11T21:05:10.6117927Z ok (2.739s) 2023-01-11T21:05:10.6118065Z test_multi_device_cpu (__main__.CpuTests) ... skip: requires cuda (0.002s) 2023-01-11T21:05:10.6118224Z test_multi_gpu_device_cpu (__main__.CpuTests) ... skip: requires multiple cuda devices (0.001s) 2023-01-11T21:05:10.6118369Z test_multilayer_low_prec_cpu (__main__.CpuTests) ... skip: requires CUDA (0.001s) 2023-01-11T21:05:10.6118512Z test_nan_to_num_cpu (__main__.CpuTests) ... skip: Skipping due to op bugs (0.001s) 2023-01-11T21:05:10.6118944Z test_narrow_cpu (__main__.CpuTests) ... inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.6119098Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.6119360Z [2023-01-11 20:57:11,118] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 358 2023-01-11T21:05:10.6119626Z [2023-01-11 20:57:13,784] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 358 2023-01-11T21:05:10.6119631Z 2023-01-11T21:05:10.6119723Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.6119778Z import torch 2023-01-11T21:05:10.6119848Z import random 2023-01-11T21:05:10.6119962Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.6120080Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.6120085Z 2023-01-11T21:05:10.6120162Z aten = torch.ops.aten 2023-01-11T21:05:10.6120293Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.6120383Z async_compile = AsyncCompile() 2023-01-11T21:05:10.6120390Z 2023-01-11T21:05:10.6120394Z 2023-01-11T21:05:10.6120511Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.6120908Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.6121031Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:05:10.6121131Z float* __restrict__ out_ptr0) 2023-01-11T21:05:10.6121192Z { 2023-01-11T21:05:10.6121289Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.6121352Z { 2023-01-11T21:05:10.6121414Z #pragma omp for 2023-01-11T21:05:10.6121498Z for(long i0=0; i0<64; i0+=1) 2023-01-11T21:05:10.6121561Z { 2023-01-11T21:05:10.6121702Z auto tmp0 = at::vec::Vectorized::loadu(in_ptr0 + 640 + (16*i0)); 2023-01-11T21:05:10.6121834Z auto tmp1 = at::vec::Vectorized(static_cast(2)); 2023-01-11T21:05:10.6121920Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:05:10.6122054Z auto tmp3 = at::vec::Vectorized(static_cast(1)); 2023-01-11T21:05:10.6122141Z auto tmp4 = tmp2 + tmp3; 2023-01-11T21:05:10.6122220Z tmp4.store(out_ptr0 + 16*i0); 2023-01-11T21:05:10.6122285Z } 2023-01-11T21:05:10.6122382Z #pragma omp for simd simdlen(8) 2023-01-11T21:05:10.6122466Z for(long i0=1024; i0<1024; i0+=1) 2023-01-11T21:05:10.6122530Z { 2023-01-11T21:05:10.6122620Z auto tmp0 = in_ptr0[640 + i0]; 2023-01-11T21:05:10.6122717Z auto tmp1 = static_cast(2); 2023-01-11T21:05:10.6122788Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:05:10.6122884Z auto tmp3 = static_cast(1); 2023-01-11T21:05:10.6122965Z auto tmp4 = tmp2 + tmp3; 2023-01-11T21:05:10.6123043Z out_ptr0[i0] = tmp4; 2023-01-11T21:05:10.6123104Z } 2023-01-11T21:05:10.6123164Z } 2023-01-11T21:05:10.6123222Z } 2023-01-11T21:05:10.6123290Z ''') 2023-01-11T21:05:10.6123297Z 2023-01-11T21:05:10.6123301Z 2023-01-11T21:05:10.6123387Z async_compile.wait(globals()) 2023-01-11T21:05:10.6123460Z del async_compile 2023-01-11T21:05:10.6123465Z 2023-01-11T21:05:10.6123533Z def call(args): 2023-01-11T21:05:10.6123604Z arg0_1, = args 2023-01-11T21:05:10.6123675Z args.clear() 2023-01-11T21:05:10.6123875Z buf0 = empty_strided((16, 64), (64, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6123993Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:05:10.6124099Z return (as_strided(arg0_1, (64, 16), (64, 1), 10), buf0, ) 2023-01-11T21:05:10.6124104Z 2023-01-11T21:05:10.6124109Z 2023-01-11T21:05:10.6124183Z if __name__ == "__main__": 2023-01-11T21:05:10.6124294Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.6124415Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.6124612Z arg0_1 = rand_strided((64, 64), (64, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6124758Z print_performance(lambda: call([arg0_1])) 2023-01-11T21:05:10.6124763Z 2023-01-11T21:05:10.6124827Z ok (2.742s) 2023-01-11T21:05:10.6125274Z test_new_empty_strided_cpu (__main__.CpuTests) ... inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.6125401Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.6125647Z [2023-01-11 20:57:13,887] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 359 2023-01-11T21:05:10.6125910Z [2023-01-11 20:57:16,528] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 359 2023-01-11T21:05:10.6125915Z 2023-01-11T21:05:10.6126008Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.6126079Z import torch 2023-01-11T21:05:10.6126147Z import random 2023-01-11T21:05:10.6126260Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.6126379Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.6126412Z 2023-01-11T21:05:10.6126493Z aten = torch.ops.aten 2023-01-11T21:05:10.6126613Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.6126702Z async_compile = AsyncCompile() 2023-01-11T21:05:10.6126707Z 2023-01-11T21:05:10.6126711Z 2023-01-11T21:05:10.6126843Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.6127045Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.6127159Z extern "C" void kernel(float* __restrict__ out_ptr0) 2023-01-11T21:05:10.6127220Z { 2023-01-11T21:05:10.6127316Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.6127364Z { 2023-01-11T21:05:10.6127440Z #pragma omp for 2023-01-11T21:05:10.6127522Z for(long i0=0; i0<1024; i0+=1) 2023-01-11T21:05:10.6127586Z { 2023-01-11T21:05:10.6127723Z auto tmp0 = at::vec::Vectorized(static_cast(123)); 2023-01-11T21:05:10.6127815Z tmp0.store(out_ptr0 + 16*i0); 2023-01-11T21:05:10.6127880Z } 2023-01-11T21:05:10.6127961Z #pragma omp for simd simdlen(8) 2023-01-11T21:05:10.6128049Z for(long i0=16384; i0<16384; i0+=1) 2023-01-11T21:05:10.6128111Z { 2023-01-11T21:05:10.6128212Z auto tmp0 = static_cast(123); 2023-01-11T21:05:10.6128292Z out_ptr0[i0] = tmp0; 2023-01-11T21:05:10.6128353Z } 2023-01-11T21:05:10.6128413Z } 2023-01-11T21:05:10.6128458Z } 2023-01-11T21:05:10.6128536Z ''') 2023-01-11T21:05:10.6128541Z 2023-01-11T21:05:10.6128546Z 2023-01-11T21:05:10.6128633Z async_compile.wait(globals()) 2023-01-11T21:05:10.6128705Z del async_compile 2023-01-11T21:05:10.6128711Z 2023-01-11T21:05:10.6128781Z def call(args): 2023-01-11T21:05:10.6128849Z arg0_1, = args 2023-01-11T21:05:10.6128920Z args.clear() 2023-01-11T21:05:10.6129122Z buf0 = empty_strided((1, 128, 128), (16384, 128, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6129226Z kernel_cpp_0(c_void_p(buf0.data_ptr())) 2023-01-11T21:05:10.6129297Z return (buf0, ) 2023-01-11T21:05:10.6129301Z 2023-01-11T21:05:10.6129306Z 2023-01-11T21:05:10.6129379Z if __name__ == "__main__": 2023-01-11T21:05:10.6129491Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.6129611Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.6129804Z arg0_1 = rand_strided((55, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6129909Z print_performance(lambda: call([arg0_1])) 2023-01-11T21:05:10.6129914Z 2023-01-11T21:05:10.6129966Z ok (2.742s) 2023-01-11T21:05:10.6130407Z test_new_ones_cpu (__main__.CpuTests) ... inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.6130567Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.6130825Z [2023-01-11 20:57:16,678] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 360 2023-01-11T21:05:10.6131086Z [2023-01-11 20:57:19,297] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 360 2023-01-11T21:05:10.6131091Z 2023-01-11T21:05:10.6131183Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.6131253Z import torch 2023-01-11T21:05:10.6131322Z import random 2023-01-11T21:05:10.6131438Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.6131544Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.6131562Z 2023-01-11T21:05:10.6131625Z aten = torch.ops.aten 2023-01-11T21:05:10.6131758Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.6131848Z async_compile = AsyncCompile() 2023-01-11T21:05:10.6131853Z 2023-01-11T21:05:10.6131857Z 2023-01-11T21:05:10.6132035Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.6132241Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.6132351Z extern "C" void kernel(float* __restrict__ out_ptr0, 2023-01-11T21:05:10.6132447Z float* __restrict__ out_ptr1) 2023-01-11T21:05:10.6132494Z { 2023-01-11T21:05:10.6132553Z { 2023-01-11T21:05:10.6132614Z { 2023-01-11T21:05:10.6132712Z auto tmp0 = static_cast(1); 2023-01-11T21:05:10.6132789Z out_ptr0[0] = tmp0; 2023-01-11T21:05:10.6132849Z } 2023-01-11T21:05:10.6132907Z } 2023-01-11T21:05:10.6132955Z { 2023-01-11T21:05:10.6133014Z { 2023-01-11T21:05:10.6133110Z auto tmp0 = static_cast(0); 2023-01-11T21:05:10.6133188Z out_ptr1[0] = tmp0; 2023-01-11T21:05:10.6133248Z } 2023-01-11T21:05:10.6133312Z } 2023-01-11T21:05:10.6133357Z } 2023-01-11T21:05:10.6133434Z ''') 2023-01-11T21:05:10.6133438Z 2023-01-11T21:05:10.6133444Z 2023-01-11T21:05:10.6133533Z async_compile.wait(globals()) 2023-01-11T21:05:10.6133605Z del async_compile 2023-01-11T21:05:10.6133610Z 2023-01-11T21:05:10.6133681Z def call(args): 2023-01-11T21:05:10.6133749Z arg0_1, = args 2023-01-11T21:05:10.6133819Z args.clear() 2023-01-11T21:05:10.6134004Z buf0 = empty_strided((), (), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6134170Z buf1 = empty_strided((), (), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6134304Z kernel_cpp_0(c_void_p(buf0.data_ptr()), c_void_p(buf1.data_ptr())) 2023-01-11T21:05:10.6134382Z return (buf0, buf1, ) 2023-01-11T21:05:10.6134386Z 2023-01-11T21:05:10.6134391Z 2023-01-11T21:05:10.6134464Z if __name__ == "__main__": 2023-01-11T21:05:10.6134576Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.6134698Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.6134887Z arg0_1 = rand_strided((8, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6134994Z print_performance(lambda: call([arg0_1])) 2023-01-11T21:05:10.6134999Z 2023-01-11T21:05:10.6135051Z ok (2.762s) 2023-01-11T21:05:10.6135492Z test_nll_loss_forward_cpu (__main__.CpuTests) ... inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.6135616Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.6135873Z [2023-01-11 20:57:19,403] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 361 2023-01-11T21:05:10.6136169Z [2023-01-11 20:57:22,077] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 361 2023-01-11T21:05:10.6136175Z 2023-01-11T21:05:10.6136268Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.6136339Z import torch 2023-01-11T21:05:10.6136407Z import random 2023-01-11T21:05:10.6136521Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.6136627Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.6136632Z 2023-01-11T21:05:10.6136708Z aten = torch.ops.aten 2023-01-11T21:05:10.6136837Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.6136927Z async_compile = AsyncCompile() 2023-01-11T21:05:10.6136932Z 2023-01-11T21:05:10.6136937Z 2023-01-11T21:05:10.6137067Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.6137269Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.6137383Z extern "C" void kernel(float* __restrict__ in_out_ptr0, 2023-01-11T21:05:10.6137488Z const long* __restrict__ in_ptr0, 2023-01-11T21:05:10.6137579Z const float* __restrict__ in_ptr1, 2023-01-11T21:05:10.6137710Z float* __restrict__ out_ptr1) 2023-01-11T21:05:10.6137772Z { 2023-01-11T21:05:10.6137856Z auto out_ptr0 = in_out_ptr0; 2023-01-11T21:05:10.6137916Z { 2023-01-11T21:05:10.6137978Z { 2023-01-11T21:05:10.6138052Z float tmp3 = 0; 2023-01-11T21:05:10.6138143Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.6138204Z { 2023-01-11T21:05:10.6138306Z #pragma omp for reduction(+:tmp3) 2023-01-11T21:05:10.6138394Z for(long i0=0; i0<5; i0+=1) 2023-01-11T21:05:10.6138458Z { 2023-01-11T21:05:10.6138614Z { 2023-01-11T21:05:10.6138712Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:05:10.6138803Z auto tmp1 = in_ptr1[tmp0 + (5*i0)]; 2023-01-11T21:05:10.6138938Z auto tmp2 = -tmp1; 2023-01-11T21:05:10.6139018Z tmp3 += tmp2; 2023-01-11T21:05:10.6139085Z } 2023-01-11T21:05:10.6139152Z } 2023-01-11T21:05:10.6139218Z } 2023-01-11T21:05:10.6139281Z out_ptr0[0] = tmp3; 2023-01-11T21:05:10.6139345Z } 2023-01-11T21:05:10.6139406Z } 2023-01-11T21:05:10.6139466Z { 2023-01-11T21:05:10.6139527Z { 2023-01-11T21:05:10.6139611Z auto tmp0 = out_ptr0[0]; 2023-01-11T21:05:10.6139708Z auto tmp1 = static_cast(5); 2023-01-11T21:05:10.6139777Z auto tmp2 = tmp0 / tmp1; 2023-01-11T21:05:10.6139856Z in_out_ptr0[0] = tmp2; 2023-01-11T21:05:10.6139916Z } 2023-01-11T21:05:10.6139974Z } 2023-01-11T21:05:10.6140034Z { 2023-01-11T21:05:10.6140093Z { 2023-01-11T21:05:10.6140193Z auto tmp0 = static_cast(5.0); 2023-01-11T21:05:10.6140257Z out_ptr1[0] = tmp0; 2023-01-11T21:05:10.6140317Z } 2023-01-11T21:05:10.6140378Z } 2023-01-11T21:05:10.6140437Z } 2023-01-11T21:05:10.6140513Z ''') 2023-01-11T21:05:10.6140520Z 2023-01-11T21:05:10.6140527Z 2023-01-11T21:05:10.6140614Z async_compile.wait(globals()) 2023-01-11T21:05:10.6140684Z del async_compile 2023-01-11T21:05:10.6140690Z 2023-01-11T21:05:10.6140745Z def call(args): 2023-01-11T21:05:10.6140818Z arg0_1, arg1_1 = args 2023-01-11T21:05:10.6140887Z args.clear() 2023-01-11T21:05:10.6141074Z buf0 = empty_strided((), (), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6141157Z buf1 = buf0; del buf0 # reuse 2023-01-11T21:05:10.6141337Z buf2 = empty_strided((), (), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6141526Z kernel_cpp_0(c_void_p(buf1.data_ptr()), c_void_p(arg1_1.data_ptr()), c_void_p(arg0_1.data_ptr()), c_void_p(buf2.data_ptr())) 2023-01-11T21:05:10.6141580Z del arg0_1 2023-01-11T21:05:10.6141679Z del arg1_1 2023-01-11T21:05:10.6141754Z return (buf1, buf2, ) 2023-01-11T21:05:10.6141759Z 2023-01-11T21:05:10.6141763Z 2023-01-11T21:05:10.6141838Z if __name__ == "__main__": 2023-01-11T21:05:10.6141953Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.6142075Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.6142271Z arg0_1 = rand_strided((5, 5), (5, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6142455Z arg1_1 = rand_strided((5, ), (1, ), device='cpu', dtype=torch.int64) 2023-01-11T21:05:10.6142555Z print_performance(lambda: call([arg0_1, arg1_1])) 2023-01-11T21:05:10.6142560Z 2023-01-11T21:05:10.6142625Z ok (2.780s) 2023-01-11T21:05:10.6143086Z test_no_mega_fusion_during_lowering_cpu (__main__.CpuTests) ... inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.6143214Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.6143503Z [2023-01-11 20:57:22,609] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 362 2023-01-11T21:05:10.6143509Z 2023-01-11T21:05:10.6143602Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.6143671Z import torch 2023-01-11T21:05:10.6143739Z import random 2023-01-11T21:05:10.6143851Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.6143958Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.6143963Z 2023-01-11T21:05:10.6144040Z aten = torch.ops.aten 2023-01-11T21:05:10.6144171Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.6144261Z async_compile = AsyncCompile() 2023-01-11T21:05:10.6144266Z 2023-01-11T21:05:10.6144270Z 2023-01-11T21:05:10.6144402Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.6144607Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.6144720Z extern "C" void kernel(float* __restrict__ in_out_ptr0, 2023-01-11T21:05:10.6144827Z const float* __restrict__ in_ptr0, 2023-01-11T21:05:10.6144918Z const float* __restrict__ in_ptr1, 2023-01-11T21:05:10.6145018Z const float* __restrict__ in_ptr2, 2023-01-11T21:05:10.6145117Z const float* __restrict__ in_ptr3, 2023-01-11T21:05:10.6145216Z const float* __restrict__ in_ptr4, 2023-01-11T21:05:10.6145313Z const float* __restrict__ in_ptr5, 2023-01-11T21:05:10.6145411Z const float* __restrict__ in_ptr6, 2023-01-11T21:05:10.6145509Z const float* __restrict__ in_ptr7, 2023-01-11T21:05:10.6145608Z const float* __restrict__ in_ptr8, 2023-01-11T21:05:10.6145695Z const float* __restrict__ in_ptr9, 2023-01-11T21:05:10.6145799Z const float* __restrict__ in_ptr10, 2023-01-11T21:05:10.6145904Z const float* __restrict__ in_ptr11, 2023-01-11T21:05:10.6146005Z const float* __restrict__ in_ptr12, 2023-01-11T21:05:10.6146106Z const float* __restrict__ in_ptr13, 2023-01-11T21:05:10.6146205Z const float* __restrict__ in_ptr14, 2023-01-11T21:05:10.6146304Z const float* __restrict__ in_ptr15, 2023-01-11T21:05:10.6146391Z const float* __restrict__ in_ptr16, 2023-01-11T21:05:10.6146490Z const float* __restrict__ in_ptr17, 2023-01-11T21:05:10.6146588Z const float* __restrict__ in_ptr18, 2023-01-11T21:05:10.6146687Z const float* __restrict__ in_ptr19, 2023-01-11T21:05:10.6146785Z const float* __restrict__ in_ptr20, 2023-01-11T21:05:10.6146916Z const float* __restrict__ in_ptr21, 2023-01-11T21:05:10.6147014Z const float* __restrict__ in_ptr22, 2023-01-11T21:05:10.6147114Z const float* __restrict__ in_ptr23, 2023-01-11T21:05:10.6147199Z const float* __restrict__ in_ptr24, 2023-01-11T21:05:10.6147297Z const float* __restrict__ in_ptr25, 2023-01-11T21:05:10.6147395Z const float* __restrict__ in_ptr26, 2023-01-11T21:05:10.6147493Z const float* __restrict__ in_ptr27, 2023-01-11T21:05:10.6147591Z const float* __restrict__ in_ptr28, 2023-01-11T21:05:10.6147688Z const float* __restrict__ in_ptr29, 2023-01-11T21:05:10.6147786Z const float* __restrict__ in_ptr30, 2023-01-11T21:05:10.6147871Z const float* __restrict__ in_ptr31, 2023-01-11T21:05:10.6147975Z const float* __restrict__ in_ptr32, 2023-01-11T21:05:10.6148073Z const float* __restrict__ in_ptr33, 2023-01-11T21:05:10.6148171Z const float* __restrict__ in_ptr34, 2023-01-11T21:05:10.6148297Z const float* __restrict__ in_ptr35, 2023-01-11T21:05:10.6148397Z const float* __restrict__ in_ptr36, 2023-01-11T21:05:10.6148494Z const float* __restrict__ in_ptr37, 2023-01-11T21:05:10.6148593Z const float* __restrict__ in_ptr38, 2023-01-11T21:05:10.6148679Z const float* __restrict__ in_ptr39, 2023-01-11T21:05:10.6148777Z const float* __restrict__ in_ptr40, 2023-01-11T21:05:10.6148874Z const float* __restrict__ in_ptr41, 2023-01-11T21:05:10.6148972Z const float* __restrict__ in_ptr42, 2023-01-11T21:05:10.6149070Z const float* __restrict__ in_ptr43, 2023-01-11T21:05:10.6149168Z const float* __restrict__ in_ptr44, 2023-01-11T21:05:10.6149265Z const float* __restrict__ in_ptr45, 2023-01-11T21:05:10.6149352Z const float* __restrict__ in_ptr46, 2023-01-11T21:05:10.6149449Z const float* __restrict__ in_ptr47, 2023-01-11T21:05:10.6149547Z const float* __restrict__ in_ptr48, 2023-01-11T21:05:10.6149648Z const float* __restrict__ in_ptr49) 2023-01-11T21:05:10.6149711Z { 2023-01-11T21:05:10.6149797Z auto out_ptr0 = in_out_ptr0; 2023-01-11T21:05:10.6149893Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.6149940Z { 2023-01-11T21:05:10.6150015Z #pragma omp for 2023-01-11T21:05:10.6150096Z for(long i0=0; i0<4; i0+=1) 2023-01-11T21:05:10.6150158Z { 2023-01-11T21:05:10.6150294Z auto tmp0 = at::vec::Vectorized::loadu(in_ptr0 + 16*i0); 2023-01-11T21:05:10.6150425Z auto tmp2 = at::vec::Vectorized::loadu(in_ptr1 + 16*i0); 2023-01-11T21:05:10.6150552Z auto tmp4 = at::vec::Vectorized::loadu(in_ptr2 + 16*i0); 2023-01-11T21:05:10.6150678Z auto tmp6 = at::vec::Vectorized::loadu(in_ptr3 + 16*i0); 2023-01-11T21:05:10.6150788Z auto tmp8 = at::vec::Vectorized::loadu(in_ptr4 + 16*i0); 2023-01-11T21:05:10.6150918Z auto tmp10 = at::vec::Vectorized::loadu(in_ptr5 + 16*i0); 2023-01-11T21:05:10.6151046Z auto tmp12 = at::vec::Vectorized::loadu(in_ptr6 + 16*i0); 2023-01-11T21:05:10.6151171Z auto tmp14 = at::vec::Vectorized::loadu(in_ptr7 + 16*i0); 2023-01-11T21:05:10.6151296Z auto tmp16 = at::vec::Vectorized::loadu(in_ptr8 + 16*i0); 2023-01-11T21:05:10.6151379Z auto tmp1 = tmp0 + tmp0; 2023-01-11T21:05:10.6151462Z auto tmp3 = tmp1 + tmp2; 2023-01-11T21:05:10.6151541Z auto tmp5 = tmp3 + tmp4; 2023-01-11T21:05:10.6151636Z auto tmp7 = tmp5 + tmp6; 2023-01-11T21:05:10.6151718Z auto tmp9 = tmp7 + tmp8; 2023-01-11T21:05:10.6151800Z auto tmp11 = tmp9 + tmp10; 2023-01-11T21:05:10.6151888Z auto tmp13 = tmp11 + tmp12; 2023-01-11T21:05:10.6151970Z auto tmp15 = tmp13 + tmp14; 2023-01-11T21:05:10.6152052Z auto tmp17 = tmp15 + tmp16; 2023-01-11T21:05:10.6152144Z tmp17.store(out_ptr0 + 16*i0); 2023-01-11T21:05:10.6152192Z } 2023-01-11T21:05:10.6152286Z #pragma omp for simd simdlen(8) 2023-01-11T21:05:10.6152367Z for(long i0=64; i0<64; i0+=1) 2023-01-11T21:05:10.6152429Z { 2023-01-11T21:05:10.6152511Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:05:10.6152592Z auto tmp2 = in_ptr1[i0]; 2023-01-11T21:05:10.6152670Z auto tmp4 = in_ptr2[i0]; 2023-01-11T21:05:10.6152736Z auto tmp6 = in_ptr3[i0]; 2023-01-11T21:05:10.6152815Z auto tmp8 = in_ptr4[i0]; 2023-01-11T21:05:10.6152899Z auto tmp10 = in_ptr5[i0]; 2023-01-11T21:05:10.6152979Z auto tmp12 = in_ptr6[i0]; 2023-01-11T21:05:10.6153058Z auto tmp14 = in_ptr7[i0]; 2023-01-11T21:05:10.6153163Z auto tmp16 = in_ptr8[i0]; 2023-01-11T21:05:10.6153244Z auto tmp1 = tmp0 + tmp0; 2023-01-11T21:05:10.6153311Z auto tmp3 = tmp1 + tmp2; 2023-01-11T21:05:10.6153388Z auto tmp5 = tmp3 + tmp4; 2023-01-11T21:05:10.6153467Z auto tmp7 = tmp5 + tmp6; 2023-01-11T21:05:10.6153545Z auto tmp9 = tmp7 + tmp8; 2023-01-11T21:05:10.6153628Z auto tmp11 = tmp9 + tmp10; 2023-01-11T21:05:10.6153712Z auto tmp13 = tmp11 + tmp12; 2023-01-11T21:05:10.6153793Z auto tmp15 = tmp13 + tmp14; 2023-01-11T21:05:10.6153863Z auto tmp17 = tmp15 + tmp16; 2023-01-11T21:05:10.6153941Z out_ptr0[i0] = tmp17; 2023-01-11T21:05:10.6154002Z } 2023-01-11T21:05:10.6154076Z #pragma omp for 2023-01-11T21:05:10.6154158Z for(long i0=0; i0<4; i0+=1) 2023-01-11T21:05:10.6154218Z { 2023-01-11T21:05:10.6154353Z auto tmp0 = at::vec::Vectorized::loadu(out_ptr0 + 16*i0); 2023-01-11T21:05:10.6154471Z auto tmp1 = at::vec::Vectorized::loadu(in_ptr9 + 16*i0); 2023-01-11T21:05:10.6154600Z auto tmp3 = at::vec::Vectorized::loadu(in_ptr10 + 16*i0); 2023-01-11T21:05:10.6154730Z auto tmp5 = at::vec::Vectorized::loadu(in_ptr11 + 16*i0); 2023-01-11T21:05:10.6154855Z auto tmp7 = at::vec::Vectorized::loadu(in_ptr12 + 16*i0); 2023-01-11T21:05:10.6154981Z auto tmp9 = at::vec::Vectorized::loadu(in_ptr13 + 16*i0); 2023-01-11T21:05:10.6155110Z auto tmp11 = at::vec::Vectorized::loadu(in_ptr14 + 16*i0); 2023-01-11T21:05:10.6155238Z auto tmp13 = at::vec::Vectorized::loadu(in_ptr15 + 16*i0); 2023-01-11T21:05:10.6155364Z auto tmp15 = at::vec::Vectorized::loadu(in_ptr16 + 16*i0); 2023-01-11T21:05:10.6155450Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:05:10.6155518Z auto tmp4 = tmp2 + tmp3; 2023-01-11T21:05:10.6155597Z auto tmp6 = tmp4 + tmp5; 2023-01-11T21:05:10.6155678Z auto tmp8 = tmp6 + tmp7; 2023-01-11T21:05:10.6155760Z auto tmp10 = tmp8 + tmp9; 2023-01-11T21:05:10.6155845Z auto tmp12 = tmp10 + tmp11; 2023-01-11T21:05:10.6155927Z auto tmp14 = tmp12 + tmp13; 2023-01-11T21:05:10.6156009Z auto tmp16 = tmp14 + tmp15; 2023-01-11T21:05:10.6156093Z tmp16.store(in_out_ptr0 + 16*i0); 2023-01-11T21:05:10.6156153Z } 2023-01-11T21:05:10.6156247Z #pragma omp for simd simdlen(8) 2023-01-11T21:05:10.6156328Z for(long i0=64; i0<64; i0+=1) 2023-01-11T21:05:10.6156390Z { 2023-01-11T21:05:10.6156474Z auto tmp0 = out_ptr0[i0]; 2023-01-11T21:05:10.6156555Z auto tmp1 = in_ptr9[i0]; 2023-01-11T21:05:10.6156624Z auto tmp3 = in_ptr10[i0]; 2023-01-11T21:05:10.6156766Z auto tmp5 = in_ptr11[i0]; 2023-01-11T21:05:10.6156846Z auto tmp7 = in_ptr12[i0]; 2023-01-11T21:05:10.6156926Z auto tmp9 = in_ptr13[i0]; 2023-01-11T21:05:10.6157015Z auto tmp11 = in_ptr14[i0]; 2023-01-11T21:05:10.6157100Z auto tmp13 = in_ptr15[i0]; 2023-01-11T21:05:10.6157185Z auto tmp15 = in_ptr16[i0]; 2023-01-11T21:05:10.6157254Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:05:10.6157335Z auto tmp4 = tmp2 + tmp3; 2023-01-11T21:05:10.6157415Z auto tmp6 = tmp4 + tmp5; 2023-01-11T21:05:10.6157496Z auto tmp8 = tmp6 + tmp7; 2023-01-11T21:05:10.6157578Z auto tmp10 = tmp8 + tmp9; 2023-01-11T21:05:10.6157662Z auto tmp12 = tmp10 + tmp11; 2023-01-11T21:05:10.6157732Z auto tmp14 = tmp12 + tmp13; 2023-01-11T21:05:10.6157818Z auto tmp16 = tmp14 + tmp15; 2023-01-11T21:05:10.6157903Z in_out_ptr0[i0] = tmp16; 2023-01-11T21:05:10.6157966Z } 2023-01-11T21:05:10.6158042Z #pragma omp for 2023-01-11T21:05:10.6158123Z for(long i0=0; i0<4; i0+=1) 2023-01-11T21:05:10.6158184Z { 2023-01-11T21:05:10.6158332Z auto tmp0 = at::vec::Vectorized::loadu(in_out_ptr0 + 16*i0); 2023-01-11T21:05:10.6158465Z auto tmp1 = at::vec::Vectorized::loadu(in_ptr17 + 16*i0); 2023-01-11T21:05:10.6158595Z auto tmp3 = at::vec::Vectorized::loadu(in_ptr18 + 16*i0); 2023-01-11T21:05:10.6158721Z auto tmp5 = at::vec::Vectorized::loadu(in_ptr19 + 16*i0); 2023-01-11T21:05:10.6158847Z auto tmp7 = at::vec::Vectorized::loadu(in_ptr20 + 16*i0); 2023-01-11T21:05:10.6158971Z auto tmp9 = at::vec::Vectorized::loadu(in_ptr21 + 16*i0); 2023-01-11T21:05:10.6159101Z auto tmp11 = at::vec::Vectorized::loadu(in_ptr22 + 16*i0); 2023-01-11T21:05:10.6159228Z auto tmp13 = at::vec::Vectorized::loadu(in_ptr23 + 16*i0); 2023-01-11T21:05:10.6159356Z auto tmp15 = at::vec::Vectorized::loadu(in_ptr24 + 16*i0); 2023-01-11T21:05:10.6159440Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:05:10.6159511Z auto tmp4 = tmp2 + tmp3; 2023-01-11T21:05:10.6159592Z auto tmp6 = tmp4 + tmp5; 2023-01-11T21:05:10.6159673Z auto tmp8 = tmp6 + tmp7; 2023-01-11T21:05:10.6159755Z auto tmp10 = tmp8 + tmp9; 2023-01-11T21:05:10.6159839Z auto tmp12 = tmp10 + tmp11; 2023-01-11T21:05:10.6159922Z auto tmp14 = tmp12 + tmp13; 2023-01-11T21:05:10.6159991Z auto tmp16 = tmp14 + tmp15; 2023-01-11T21:05:10.6160088Z tmp16.store(in_out_ptr0 + 16*i0); 2023-01-11T21:05:10.6160148Z } 2023-01-11T21:05:10.6160242Z #pragma omp for simd simdlen(8) 2023-01-11T21:05:10.6160322Z for(long i0=64; i0<64; i0+=1) 2023-01-11T21:05:10.6160385Z { 2023-01-11T21:05:10.6160475Z auto tmp0 = in_out_ptr0[i0]; 2023-01-11T21:05:10.6160547Z auto tmp1 = in_ptr17[i0]; 2023-01-11T21:05:10.6160742Z auto tmp3 = in_ptr18[i0]; 2023-01-11T21:05:10.6160826Z auto tmp5 = in_ptr19[i0]; 2023-01-11T21:05:10.6160909Z auto tmp7 = in_ptr20[i0]; 2023-01-11T21:05:10.6160989Z auto tmp9 = in_ptr21[i0]; 2023-01-11T21:05:10.6161075Z auto tmp11 = in_ptr22[i0]; 2023-01-11T21:05:10.6161158Z auto tmp13 = in_ptr23[i0]; 2023-01-11T21:05:10.6161228Z auto tmp15 = in_ptr24[i0]; 2023-01-11T21:05:10.6161312Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:05:10.6161394Z auto tmp4 = tmp2 + tmp3; 2023-01-11T21:05:10.6161474Z auto tmp6 = tmp4 + tmp5; 2023-01-11T21:05:10.6161555Z auto tmp8 = tmp6 + tmp7; 2023-01-11T21:05:10.6161638Z auto tmp10 = tmp8 + tmp9; 2023-01-11T21:05:10.6161723Z auto tmp12 = tmp10 + tmp11; 2023-01-11T21:05:10.6161793Z auto tmp14 = tmp12 + tmp13; 2023-01-11T21:05:10.6161929Z auto tmp16 = tmp14 + tmp15; 2023-01-11T21:05:10.6162009Z in_out_ptr0[i0] = tmp16; 2023-01-11T21:05:10.6162070Z } 2023-01-11T21:05:10.6162144Z #pragma omp for 2023-01-11T21:05:10.6162226Z for(long i0=0; i0<4; i0+=1) 2023-01-11T21:05:10.6162288Z { 2023-01-11T21:05:10.6162410Z auto tmp0 = at::vec::Vectorized::loadu(in_out_ptr0 + 16*i0); 2023-01-11T21:05:10.6162541Z auto tmp1 = at::vec::Vectorized::loadu(in_ptr25 + 16*i0); 2023-01-11T21:05:10.6162669Z auto tmp3 = at::vec::Vectorized::loadu(in_ptr26 + 16*i0); 2023-01-11T21:05:10.6162795Z auto tmp5 = at::vec::Vectorized::loadu(in_ptr27 + 16*i0); 2023-01-11T21:05:10.6162920Z auto tmp7 = at::vec::Vectorized::loadu(in_ptr28 + 16*i0); 2023-01-11T21:05:10.6163045Z auto tmp9 = at::vec::Vectorized::loadu(in_ptr29 + 16*i0); 2023-01-11T21:05:10.6163175Z auto tmp11 = at::vec::Vectorized::loadu(in_ptr30 + 16*i0); 2023-01-11T21:05:10.6163308Z auto tmp13 = at::vec::Vectorized::loadu(in_ptr31 + 16*i0); 2023-01-11T21:05:10.6163471Z auto tmp15 = at::vec::Vectorized::loadu(in_ptr32 + 16*i0); 2023-01-11T21:05:10.6163544Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:05:10.6163626Z auto tmp4 = tmp2 + tmp3; 2023-01-11T21:05:10.6163706Z auto tmp6 = tmp4 + tmp5; 2023-01-11T21:05:10.6163786Z auto tmp8 = tmp6 + tmp7; 2023-01-11T21:05:10.6163869Z auto tmp10 = tmp8 + tmp9; 2023-01-11T21:05:10.6163951Z auto tmp12 = tmp10 + tmp11; 2023-01-11T21:05:10.6164033Z auto tmp14 = tmp12 + tmp13; 2023-01-11T21:05:10.6164102Z auto tmp16 = tmp14 + tmp15; 2023-01-11T21:05:10.6164199Z tmp16.store(in_out_ptr0 + 16*i0); 2023-01-11T21:05:10.6164260Z } 2023-01-11T21:05:10.6164352Z #pragma omp for simd simdlen(8) 2023-01-11T21:05:10.6164434Z for(long i0=64; i0<64; i0+=1) 2023-01-11T21:05:10.6164495Z { 2023-01-11T21:05:10.6164581Z auto tmp0 = in_out_ptr0[i0]; 2023-01-11T21:05:10.6164652Z auto tmp1 = in_ptr25[i0]; 2023-01-11T21:05:10.6164735Z auto tmp3 = in_ptr26[i0]; 2023-01-11T21:05:10.6164814Z auto tmp5 = in_ptr27[i0]; 2023-01-11T21:05:10.6164894Z auto tmp7 = in_ptr28[i0]; 2023-01-11T21:05:10.6164974Z auto tmp9 = in_ptr29[i0]; 2023-01-11T21:05:10.6165057Z auto tmp11 = in_ptr30[i0]; 2023-01-11T21:05:10.6165139Z auto tmp13 = in_ptr31[i0]; 2023-01-11T21:05:10.6165208Z auto tmp15 = in_ptr32[i0]; 2023-01-11T21:05:10.6165289Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:05:10.6165370Z auto tmp4 = tmp2 + tmp3; 2023-01-11T21:05:10.6165448Z auto tmp6 = tmp4 + tmp5; 2023-01-11T21:05:10.6165526Z auto tmp8 = tmp6 + tmp7; 2023-01-11T21:05:10.6165606Z auto tmp10 = tmp8 + tmp9; 2023-01-11T21:05:10.6165691Z auto tmp12 = tmp10 + tmp11; 2023-01-11T21:05:10.6165761Z auto tmp14 = tmp12 + tmp13; 2023-01-11T21:05:10.6165842Z auto tmp16 = tmp14 + tmp15; 2023-01-11T21:05:10.6165923Z in_out_ptr0[i0] = tmp16; 2023-01-11T21:05:10.6165984Z } 2023-01-11T21:05:10.6166057Z #pragma omp for 2023-01-11T21:05:10.6166136Z for(long i0=0; i0<4; i0+=1) 2023-01-11T21:05:10.6166196Z { 2023-01-11T21:05:10.6166317Z auto tmp0 = at::vec::Vectorized::loadu(in_out_ptr0 + 16*i0); 2023-01-11T21:05:10.6166447Z auto tmp1 = at::vec::Vectorized::loadu(in_ptr33 + 16*i0); 2023-01-11T21:05:10.6166579Z auto tmp3 = at::vec::Vectorized::loadu(in_ptr34 + 16*i0); 2023-01-11T21:05:10.6166704Z auto tmp5 = at::vec::Vectorized::loadu(in_ptr35 + 16*i0); 2023-01-11T21:05:10.6166829Z auto tmp7 = at::vec::Vectorized::loadu(in_ptr36 + 16*i0); 2023-01-11T21:05:10.6166981Z auto tmp9 = at::vec::Vectorized::loadu(in_ptr37 + 16*i0); 2023-01-11T21:05:10.6167110Z auto tmp11 = at::vec::Vectorized::loadu(in_ptr38 + 16*i0); 2023-01-11T21:05:10.6167240Z auto tmp13 = at::vec::Vectorized::loadu(in_ptr39 + 16*i0); 2023-01-11T21:05:10.6167357Z auto tmp15 = at::vec::Vectorized::loadu(in_ptr40 + 16*i0); 2023-01-11T21:05:10.6172492Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:05:10.6172616Z auto tmp4 = tmp2 + tmp3; 2023-01-11T21:05:10.6172700Z auto tmp6 = tmp4 + tmp5; 2023-01-11T21:05:10.6172780Z auto tmp8 = tmp6 + tmp7; 2023-01-11T21:05:10.6172865Z auto tmp10 = tmp8 + tmp9; 2023-01-11T21:05:10.6172939Z auto tmp12 = tmp10 + tmp11; 2023-01-11T21:05:10.6173023Z auto tmp14 = tmp12 + tmp13; 2023-01-11T21:05:10.6173107Z auto tmp16 = tmp14 + tmp15; 2023-01-11T21:05:10.6173205Z tmp16.store(in_out_ptr0 + 16*i0); 2023-01-11T21:05:10.6173274Z } 2023-01-11T21:05:10.6173372Z #pragma omp for simd simdlen(8) 2023-01-11T21:05:10.6173453Z for(long i0=64; i0<64; i0+=1) 2023-01-11T21:05:10.6173503Z { 2023-01-11T21:05:10.6173691Z auto tmp0 = in_out_ptr0[i0]; 2023-01-11T21:05:10.6173778Z auto tmp1 = in_ptr33[i0]; 2023-01-11T21:05:10.6173859Z auto tmp3 = in_ptr34[i0]; 2023-01-11T21:05:10.6173938Z auto tmp5 = in_ptr35[i0]; 2023-01-11T21:05:10.6174017Z auto tmp7 = in_ptr36[i0]; 2023-01-11T21:05:10.6174097Z auto tmp9 = in_ptr37[i0]; 2023-01-11T21:05:10.6174168Z auto tmp11 = in_ptr38[i0]; 2023-01-11T21:05:10.6174249Z auto tmp13 = in_ptr39[i0]; 2023-01-11T21:05:10.6174330Z auto tmp15 = in_ptr40[i0]; 2023-01-11T21:05:10.6174414Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:05:10.6174493Z auto tmp4 = tmp2 + tmp3; 2023-01-11T21:05:10.6174572Z auto tmp6 = tmp4 + tmp5; 2023-01-11T21:05:10.6174655Z auto tmp8 = tmp6 + tmp7; 2023-01-11T21:05:10.6174723Z auto tmp10 = tmp8 + tmp9; 2023-01-11T21:05:10.6174805Z auto tmp12 = tmp10 + tmp11; 2023-01-11T21:05:10.6174891Z auto tmp14 = tmp12 + tmp13; 2023-01-11T21:05:10.6174972Z auto tmp16 = tmp14 + tmp15; 2023-01-11T21:05:10.6175053Z in_out_ptr0[i0] = tmp16; 2023-01-11T21:05:10.6175115Z } 2023-01-11T21:05:10.6175190Z #pragma omp for 2023-01-11T21:05:10.6175258Z for(long i0=0; i0<4; i0+=1) 2023-01-11T21:05:10.6175318Z { 2023-01-11T21:05:10.6175465Z auto tmp0 = at::vec::Vectorized::loadu(in_out_ptr0 + 16*i0); 2023-01-11T21:05:10.6175599Z auto tmp1 = at::vec::Vectorized::loadu(in_ptr41 + 16*i0); 2023-01-11T21:05:10.6175729Z auto tmp3 = at::vec::Vectorized::loadu(in_ptr42 + 16*i0); 2023-01-11T21:05:10.6175854Z auto tmp5 = at::vec::Vectorized::loadu(in_ptr43 + 16*i0); 2023-01-11T21:05:10.6175983Z auto tmp7 = at::vec::Vectorized::loadu(in_ptr44 + 16*i0); 2023-01-11T21:05:10.6176106Z auto tmp9 = at::vec::Vectorized::loadu(in_ptr45 + 16*i0); 2023-01-11T21:05:10.6176226Z auto tmp11 = at::vec::Vectorized::loadu(in_ptr46 + 16*i0); 2023-01-11T21:05:10.6176355Z auto tmp13 = at::vec::Vectorized::loadu(in_ptr47 + 16*i0); 2023-01-11T21:05:10.6176481Z auto tmp15 = at::vec::Vectorized::loadu(in_ptr48 + 16*i0); 2023-01-11T21:05:10.6176564Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:05:10.6176644Z auto tmp4 = tmp2 + tmp3; 2023-01-11T21:05:10.6176722Z auto tmp6 = tmp4 + tmp5; 2023-01-11T21:05:10.6176802Z auto tmp8 = tmp6 + tmp7; 2023-01-11T21:05:10.6176882Z auto tmp10 = tmp8 + tmp9; 2023-01-11T21:05:10.6176952Z auto tmp12 = tmp10 + tmp11; 2023-01-11T21:05:10.6177040Z auto tmp14 = tmp12 + tmp13; 2023-01-11T21:05:10.6177153Z auto tmp16 = tmp14 + tmp15; 2023-01-11T21:05:10.6177252Z tmp16.store(in_out_ptr0 + 16*i0); 2023-01-11T21:05:10.6177313Z } 2023-01-11T21:05:10.6177407Z #pragma omp for simd simdlen(8) 2023-01-11T21:05:10.6177489Z for(long i0=64; i0<64; i0+=1) 2023-01-11T21:05:10.6177549Z { 2023-01-11T21:05:10.6177637Z auto tmp0 = in_out_ptr0[i0]; 2023-01-11T21:05:10.6177708Z auto tmp1 = in_ptr41[i0]; 2023-01-11T21:05:10.6177790Z auto tmp3 = in_ptr42[i0]; 2023-01-11T21:05:10.6177870Z auto tmp5 = in_ptr43[i0]; 2023-01-11T21:05:10.6177950Z auto tmp7 = in_ptr44[i0]; 2023-01-11T21:05:10.6178028Z auto tmp9 = in_ptr45[i0]; 2023-01-11T21:05:10.6178111Z auto tmp11 = in_ptr46[i0]; 2023-01-11T21:05:10.6178195Z auto tmp13 = in_ptr47[i0]; 2023-01-11T21:05:10.6178265Z auto tmp15 = in_ptr48[i0]; 2023-01-11T21:05:10.6178345Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:05:10.6178428Z auto tmp4 = tmp2 + tmp3; 2023-01-11T21:05:10.6178603Z auto tmp6 = tmp4 + tmp5; 2023-01-11T21:05:10.6178686Z auto tmp8 = tmp6 + tmp7; 2023-01-11T21:05:10.6178768Z auto tmp10 = tmp8 + tmp9; 2023-01-11T21:05:10.6178882Z auto tmp12 = tmp10 + tmp11; 2023-01-11T21:05:10.6178954Z auto tmp14 = tmp12 + tmp13; 2023-01-11T21:05:10.6179037Z auto tmp16 = tmp14 + tmp15; 2023-01-11T21:05:10.6179121Z in_out_ptr0[i0] = tmp16; 2023-01-11T21:05:10.6179183Z } 2023-01-11T21:05:10.6179259Z #pragma omp for 2023-01-11T21:05:10.6179341Z for(long i0=0; i0<4; i0+=1) 2023-01-11T21:05:10.6179389Z { 2023-01-11T21:05:10.6179525Z auto tmp0 = at::vec::Vectorized::loadu(in_out_ptr0 + 16*i0); 2023-01-11T21:05:10.6179657Z auto tmp1 = at::vec::Vectorized::loadu(in_ptr49 + 16*i0); 2023-01-11T21:05:10.6179741Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:05:10.6179878Z tmp2.store(in_out_ptr0 + 16*i0); 2023-01-11T21:05:10.6179971Z } 2023-01-11T21:05:10.6180101Z #pragma omp for simd simdlen(8) 2023-01-11T21:05:10.6180217Z for(long i0=64; i0<64; i0+=1) 2023-01-11T21:05:10.6180277Z { 2023-01-11T21:05:10.6180366Z auto tmp0 = in_out_ptr0[i0]; 2023-01-11T21:05:10.6180449Z auto tmp1 = in_ptr49[i0]; 2023-01-11T21:05:10.6180568Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:05:10.6180678Z in_out_ptr0[i0] = tmp2; 2023-01-11T21:05:10.6180738Z } 2023-01-11T21:05:10.6180784Z } 2023-01-11T21:05:10.6180844Z } 2023-01-11T21:05:10.6180959Z ''') 2023-01-11T21:05:10.6180966Z 2023-01-11T21:05:10.6180970Z 2023-01-11T21:05:10.6181059Z async_compile.wait(globals()) 2023-01-11T21:05:10.6181131Z del async_compile 2023-01-11T21:05:10.6181136Z 2023-01-11T21:05:10.6181206Z def call(args): 2023-01-11T21:05:10.6181540Z arg0_1, arg1_1, arg2_1, arg3_1, arg4_1, arg5_1, arg6_1, arg7_1, arg8_1, arg9_1, arg10_1, arg11_1, arg12_1, arg13_1, arg14_1, arg15_1, arg16_1, arg17_1, arg18_1, arg19_1, arg20_1, arg21_1, arg22_1, arg23_1, arg24_1, arg25_1, arg26_1, arg27_1, arg28_1, arg29_1, arg30_1, arg31_1, arg32_1, arg33_1, arg34_1, arg35_1, arg36_1, arg37_1, arg38_1, arg39_1, arg40_1, arg41_1, arg42_1, arg43_1, arg44_1, arg45_1, arg46_1, arg47_1, arg48_1, arg49_1 = args 2023-01-11T21:05:10.6181615Z args.clear() 2023-01-11T21:05:10.6181817Z buf0 = empty_strided((64, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6181887Z buf1 = buf0; del buf0 # reuse 2023-01-11T21:05:10.6181968Z buf2 = buf1; del buf1 # reuse 2023-01-11T21:05:10.6182048Z buf3 = buf2; del buf2 # reuse 2023-01-11T21:05:10.6182127Z buf4 = buf3; del buf3 # reuse 2023-01-11T21:05:10.6182205Z buf5 = buf4; del buf4 # reuse 2023-01-11T21:05:10.6182284Z buf6 = buf5; del buf5 # reuse 2023-01-11T21:05:10.6183552Z kernel_cpp_0(c_void_p(buf6.data_ptr()), c_void_p(arg0_1.data_ptr()), c_void_p(arg1_1.data_ptr()), c_void_p(arg2_1.data_ptr()), c_void_p(arg3_1.data_ptr()), c_void_p(arg4_1.data_ptr()), c_void_p(arg5_1.data_ptr()), c_void_p(arg6_1.data_ptr()), c_void_p(arg7_1.data_ptr()), c_void_p(arg8_1.data_ptr()), c_void_p(arg9_1.data_ptr()), c_void_p(arg10_1.data_ptr()), c_void_p(arg11_1.data_ptr()), c_void_p(arg12_1.data_ptr()), c_void_p(arg13_1.data_ptr()), c_void_p(arg14_1.data_ptr()), c_void_p(arg15_1.data_ptr()), c_void_p(arg16_1.data_ptr()), c_void_p(arg17_1.data_ptr()), c_void_p(arg18_1.data_ptr()), c_void_p(arg19_1.data_ptr()), c_void_p(arg20_1.data_ptr()), c_void_p(arg21_1.data_ptr()), c_void_p(arg22_1.data_ptr()), c_void_p(arg23_1.data_ptr()), c_void_p(arg24_1.data_ptr()), c_void_p(arg25_1.data_ptr()), c_void_p(arg26_1.data_ptr()), c_void_p(arg27_1.data_ptr()), c_void_p(arg28_1.data_ptr()), c_void_p(arg29_1.data_ptr()), c_void_p(arg30_1.data_ptr()), c_void_p(arg31_1.data_ptr()), c_void_p(arg32_1.data_ptr()), c_void_p(arg33_1.data_ptr()), c_void_p(arg34_1.data_ptr()), c_void_p(arg35_1.data_ptr()), c_void_p(arg36_1.data_ptr()), c_void_p(arg37_1.data_ptr()), c_void_p(arg38_1.data_ptr()), c_void_p(arg39_1.data_ptr()), c_void_p(arg40_1.data_ptr()), c_void_p(arg41_1.data_ptr()), c_void_p(arg42_1.data_ptr()), c_void_p(arg43_1.data_ptr()), c_void_p(arg44_1.data_ptr()), c_void_p(arg45_1.data_ptr()), c_void_p(arg46_1.data_ptr()), c_void_p(arg47_1.data_ptr()), c_void_p(arg48_1.data_ptr()), c_void_p(arg49_1.data_ptr())) 2023-01-11T21:05:10.6183657Z del arg0_1 2023-01-11T21:05:10.6183723Z del arg10_1 2023-01-11T21:05:10.6183788Z del arg11_1 2023-01-11T21:05:10.6183851Z del arg12_1 2023-01-11T21:05:10.6183916Z del arg13_1 2023-01-11T21:05:10.6183966Z del arg14_1 2023-01-11T21:05:10.6184029Z del arg15_1 2023-01-11T21:05:10.6184092Z del arg16_1 2023-01-11T21:05:10.6184156Z del arg17_1 2023-01-11T21:05:10.6184222Z del arg18_1 2023-01-11T21:05:10.6184287Z del arg19_1 2023-01-11T21:05:10.6184338Z del arg1_1 2023-01-11T21:05:10.6184402Z del arg20_1 2023-01-11T21:05:10.6184470Z del arg21_1 2023-01-11T21:05:10.6184535Z del arg22_1 2023-01-11T21:05:10.6184599Z del arg23_1 2023-01-11T21:05:10.6184663Z del arg24_1 2023-01-11T21:05:10.6184727Z del arg25_1 2023-01-11T21:05:10.6184779Z del arg26_1 2023-01-11T21:05:10.6184844Z del arg27_1 2023-01-11T21:05:10.6184907Z del arg28_1 2023-01-11T21:05:10.6184971Z del arg29_1 2023-01-11T21:05:10.6185035Z del arg2_1 2023-01-11T21:05:10.6185097Z del arg30_1 2023-01-11T21:05:10.6185147Z del arg31_1 2023-01-11T21:05:10.6185210Z del arg32_1 2023-01-11T21:05:10.6185272Z del arg33_1 2023-01-11T21:05:10.6185335Z del arg34_1 2023-01-11T21:05:10.6185399Z del arg35_1 2023-01-11T21:05:10.6185461Z del arg36_1 2023-01-11T21:05:10.6185524Z del arg37_1 2023-01-11T21:05:10.6185576Z del arg38_1 2023-01-11T21:05:10.6185639Z del arg39_1 2023-01-11T21:05:10.6185703Z del arg3_1 2023-01-11T21:05:10.6185766Z del arg40_1 2023-01-11T21:05:10.6185828Z del arg41_1 2023-01-11T21:05:10.6185894Z del arg42_1 2023-01-11T21:05:10.6185944Z del arg43_1 2023-01-11T21:05:10.6186007Z del arg44_1 2023-01-11T21:05:10.6186070Z del arg45_1 2023-01-11T21:05:10.6186132Z del arg46_1 2023-01-11T21:05:10.6186198Z del arg47_1 2023-01-11T21:05:10.6186260Z del arg48_1 2023-01-11T21:05:10.6186322Z del arg49_1 2023-01-11T21:05:10.6186374Z del arg4_1 2023-01-11T21:05:10.6186437Z del arg5_1 2023-01-11T21:05:10.6186501Z del arg6_1 2023-01-11T21:05:10.6186564Z del arg7_1 2023-01-11T21:05:10.6186627Z del arg8_1 2023-01-11T21:05:10.6186690Z del arg9_1 2023-01-11T21:05:10.6186747Z return (buf6, ) 2023-01-11T21:05:10.6186752Z 2023-01-11T21:05:10.6186771Z 2023-01-11T21:05:10.6186832Z if __name__ == "__main__": 2023-01-11T21:05:10.6186949Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.6187074Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.6187274Z arg0_1 = rand_strided((64, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6187499Z arg1_1 = rand_strided((64, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6187689Z arg2_1 = rand_strided((64, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6187880Z arg3_1 = rand_strided((64, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6188050Z arg4_1 = rand_strided((64, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6188233Z arg5_1 = rand_strided((64, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6188415Z arg6_1 = rand_strided((64, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6188598Z arg7_1 = rand_strided((64, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6188781Z arg8_1 = rand_strided((64, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6188962Z arg9_1 = rand_strided((64, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6189152Z arg10_1 = rand_strided((64, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6189345Z arg11_1 = rand_strided((64, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6189548Z arg12_1 = rand_strided((64, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6189737Z arg13_1 = rand_strided((64, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6189919Z arg14_1 = rand_strided((64, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6190102Z arg15_1 = rand_strided((64, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6190285Z arg16_1 = rand_strided((64, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6190469Z arg17_1 = rand_strided((64, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6190651Z arg18_1 = rand_strided((64, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6190834Z arg19_1 = rand_strided((64, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6191006Z arg20_1 = rand_strided((64, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6191189Z arg21_1 = rand_strided((64, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6191374Z arg22_1 = rand_strided((64, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6191557Z arg23_1 = rand_strided((64, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6191740Z arg24_1 = rand_strided((64, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6191924Z arg25_1 = rand_strided((64, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6192105Z arg26_1 = rand_strided((64, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6192287Z arg27_1 = rand_strided((64, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6192456Z arg28_1 = rand_strided((64, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6192640Z arg29_1 = rand_strided((64, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6192826Z arg30_1 = rand_strided((64, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6193010Z arg31_1 = rand_strided((64, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6193195Z arg32_1 = rand_strided((64, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6193380Z arg33_1 = rand_strided((64, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6193564Z arg34_1 = rand_strided((64, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6193746Z arg35_1 = rand_strided((64, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6193914Z arg36_1 = rand_strided((64, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6194097Z arg37_1 = rand_strided((64, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6194279Z arg38_1 = rand_strided((64, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6194462Z arg39_1 = rand_strided((64, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6194672Z arg40_1 = rand_strided((64, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6194856Z arg41_1 = rand_strided((64, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6195039Z arg42_1 = rand_strided((64, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6195223Z arg43_1 = rand_strided((64, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6195391Z arg44_1 = rand_strided((64, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6195573Z arg45_1 = rand_strided((64, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6195754Z arg46_1 = rand_strided((64, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6195937Z arg47_1 = rand_strided((64, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6196117Z arg48_1 = rand_strided((64, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6196301Z arg49_1 = rand_strided((64, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6196694Z print_performance(lambda: call([arg0_1, arg1_1, arg2_1, arg3_1, arg4_1, arg5_1, arg6_1, arg7_1, arg8_1, arg9_1, arg10_1, arg11_1, arg12_1, arg13_1, arg14_1, arg15_1, arg16_1, arg17_1, arg18_1, arg19_1, arg20_1, arg21_1, arg22_1, arg23_1, arg24_1, arg25_1, arg26_1, arg27_1, arg28_1, arg29_1, arg30_1, arg31_1, arg32_1, arg33_1, arg34_1, arg35_1, arg36_1, arg37_1, arg38_1, arg39_1, arg40_1, arg41_1, arg42_1, arg43_1, arg44_1, arg45_1, arg46_1, arg47_1, arg48_1, arg49_1])) 2023-01-11T21:05:10.6196969Z [2023-01-11 20:57:25,629] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 362 2023-01-11T21:05:10.6196975Z 2023-01-11T21:05:10.6197054Z --> 7 2023-01-11T21:05:10.6197119Z ok (3.581s) 2023-01-11T21:05:10.6197550Z test_no_op_reduction_cpu (__main__.CpuTests) ... inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.6197680Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.6197941Z [2023-01-11 20:57:25,697] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 363 2023-01-11T21:05:10.6198206Z [2023-01-11 20:57:28,332] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 363 2023-01-11T21:05:10.6198211Z 2023-01-11T21:05:10.6198303Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.6198371Z import torch 2023-01-11T21:05:10.6198441Z import random 2023-01-11T21:05:10.6198557Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.6198677Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.6198682Z 2023-01-11T21:05:10.6198745Z aten = torch.ops.aten 2023-01-11T21:05:10.6198881Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.6198970Z async_compile = AsyncCompile() 2023-01-11T21:05:10.6198974Z 2023-01-11T21:05:10.6198979Z 2023-01-11T21:05:10.6199115Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.6199316Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.6199435Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:05:10.6199533Z float* __restrict__ out_ptr0, 2023-01-11T21:05:10.6199629Z float* __restrict__ out_ptr1) 2023-01-11T21:05:10.6199676Z { 2023-01-11T21:05:10.6199774Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.6199834Z { 2023-01-11T21:05:10.6199908Z #pragma omp for 2023-01-11T21:05:10.6199988Z for(long i0=0; i0<8; i0+=1) 2023-01-11T21:05:10.6200049Z { 2023-01-11T21:05:10.6200098Z { 2023-01-11T21:05:10.6200195Z { 2023-01-11T21:05:10.6200287Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:05:10.6200391Z auto tmp1 = static_cast(1); 2023-01-11T21:05:10.6200480Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:05:10.6200568Z out_ptr0[i0] = tmp0; 2023-01-11T21:05:10.6200779Z out_ptr1[i0] = tmp2; 2023-01-11T21:05:10.6200829Z } 2023-01-11T21:05:10.6200892Z } 2023-01-11T21:05:10.6200953Z } 2023-01-11T21:05:10.6201015Z } 2023-01-11T21:05:10.6201074Z } 2023-01-11T21:05:10.6201155Z ''') 2023-01-11T21:05:10.6201161Z 2023-01-11T21:05:10.6201165Z 2023-01-11T21:05:10.6201254Z async_compile.wait(globals()) 2023-01-11T21:05:10.6201313Z del async_compile 2023-01-11T21:05:10.6201331Z 2023-01-11T21:05:10.6201388Z def call(args): 2023-01-11T21:05:10.6201455Z arg0_1, = args 2023-01-11T21:05:10.6201525Z args.clear() 2023-01-11T21:05:10.6201720Z buf0 = empty_strided((8, 1), (1, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6201925Z buf1 = empty_strided((8, 1, 1), (1, 1, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6202154Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(buf0.data_ptr()), c_void_p(buf1.data_ptr())) 2023-01-11T21:05:10.6202223Z del arg0_1 2023-01-11T21:05:10.6202286Z return (buf0, buf1, ) 2023-01-11T21:05:10.6202291Z 2023-01-11T21:05:10.6202295Z 2023-01-11T21:05:10.6202369Z if __name__ == "__main__": 2023-01-11T21:05:10.6202486Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.6202609Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.6202815Z arg0_1 = rand_strided((8, 1, 1), (1, 1, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6202923Z print_performance(lambda: call([arg0_1])) 2023-01-11T21:05:10.6202928Z 2023-01-11T21:05:10.6202993Z ok (2.673s) 2023-01-11T21:05:10.6203326Z test_output_strides_cpu (__main__.CpuTests) ... [2023-01-11 20:57:28,366] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 364 2023-01-11T21:05:10.6203588Z [2023-01-11 20:57:31,043] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 364 2023-01-11T21:05:10.6203846Z [2023-01-11 20:57:31,064] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 365 2023-01-11T21:05:10.6204106Z [2023-01-11 20:57:31,068] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 365 2023-01-11T21:05:10.6204358Z [2023-01-11 20:57:31,099] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 366 2023-01-11T21:05:10.6204621Z [2023-01-11 20:57:31,105] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 366 2023-01-11T21:05:10.6204626Z 2023-01-11T21:05:10.6204718Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.6204787Z import torch 2023-01-11T21:05:10.6204855Z import random 2023-01-11T21:05:10.6204957Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.6205079Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.6205083Z 2023-01-11T21:05:10.6205165Z aten = torch.ops.aten 2023-01-11T21:05:10.6205300Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.6205390Z async_compile = AsyncCompile() 2023-01-11T21:05:10.6205395Z 2023-01-11T21:05:10.6205399Z 2023-01-11T21:05:10.6205531Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.6205735Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.6205852Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:05:10.6205950Z float* __restrict__ out_ptr0) 2023-01-11T21:05:10.6205997Z { 2023-01-11T21:05:10.6206093Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.6206153Z { 2023-01-11T21:05:10.6206227Z #pragma omp for 2023-01-11T21:05:10.6206308Z for(long i0=0; i0<4; i0+=1) 2023-01-11T21:05:10.6206411Z { 2023-01-11T21:05:10.6206478Z #pragma GCC ivdep 2023-01-11T21:05:10.6206561Z for(long i1=0; i1<16; i1+=1) 2023-01-11T21:05:10.6206624Z { 2023-01-11T21:05:10.6206706Z #pragma GCC ivdep 2023-01-11T21:05:10.6206793Z for(long i2=0; i2<4; i2+=1) 2023-01-11T21:05:10.6206857Z { 2023-01-11T21:05:10.6206922Z { 2023-01-11T21:05:10.6206976Z { 2023-01-11T21:05:10.6207086Z auto tmp0 = in_ptr0[i1 + (16*i2) + (64*i0)]; 2023-01-11T21:05:10.6207189Z out_ptr0[i2 + (4*i1) + (64*i0)] = tmp0; 2023-01-11T21:05:10.6207254Z } 2023-01-11T21:05:10.6207319Z } 2023-01-11T21:05:10.6207381Z } 2023-01-11T21:05:10.6207442Z } 2023-01-11T21:05:10.6207490Z } 2023-01-11T21:05:10.6207549Z } 2023-01-11T21:05:10.6207607Z } 2023-01-11T21:05:10.6207688Z ''') 2023-01-11T21:05:10.6207693Z 2023-01-11T21:05:10.6207697Z 2023-01-11T21:05:10.6207785Z async_compile.wait(globals()) 2023-01-11T21:05:10.6207856Z del async_compile 2023-01-11T21:05:10.6207860Z 2023-01-11T21:05:10.6207957Z def call(args): 2023-01-11T21:05:10.6208014Z arg0_1, = args 2023-01-11T21:05:10.6208083Z args.clear() 2023-01-11T21:05:10.6208294Z buf0 = empty_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6208427Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:05:10.6208493Z del arg0_1 2023-01-11T21:05:10.6208561Z return (buf0, ) 2023-01-11T21:05:10.6208566Z 2023-01-11T21:05:10.6208570Z 2023-01-11T21:05:10.6208643Z if __name__ == "__main__": 2023-01-11T21:05:10.6208756Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.6208866Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.6209077Z arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6209186Z print_performance(lambda: call([arg0_1])) 2023-01-11T21:05:10.6209191Z 2023-01-11T21:05:10.6209195Z 2023-01-11T21:05:10.6209286Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.6209357Z import torch 2023-01-11T21:05:10.6209426Z import random 2023-01-11T21:05:10.6209537Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.6209644Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.6209661Z 2023-01-11T21:05:10.6209724Z aten = torch.ops.aten 2023-01-11T21:05:10.6209855Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.6209945Z async_compile = AsyncCompile() 2023-01-11T21:05:10.6209950Z 2023-01-11T21:05:10.6209954Z 2023-01-11T21:05:10.6210040Z async_compile.wait(globals()) 2023-01-11T21:05:10.6210110Z del async_compile 2023-01-11T21:05:10.6210115Z 2023-01-11T21:05:10.6210184Z def call(args): 2023-01-11T21:05:10.6210250Z arg0_1, = args 2023-01-11T21:05:10.6210306Z args.clear() 2023-01-11T21:05:10.6210406Z return (as_strided(arg0_1, (64, 4), (4, 1)), ) 2023-01-11T21:05:10.6210411Z 2023-01-11T21:05:10.6210415Z 2023-01-11T21:05:10.6210489Z if __name__ == "__main__": 2023-01-11T21:05:10.6210600Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.6210720Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.6210930Z arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6211036Z print_performance(lambda: call([arg0_1])) 2023-01-11T21:05:10.6211041Z 2023-01-11T21:05:10.6211045Z 2023-01-11T21:05:10.6211134Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.6211201Z import torch 2023-01-11T21:05:10.6211257Z import random 2023-01-11T21:05:10.6211368Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.6211486Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.6211491Z 2023-01-11T21:05:10.6211567Z aten = torch.ops.aten 2023-01-11T21:05:10.6211735Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.6211824Z async_compile = AsyncCompile() 2023-01-11T21:05:10.6211829Z 2023-01-11T21:05:10.6211832Z 2023-01-11T21:05:10.6211919Z async_compile.wait(globals()) 2023-01-11T21:05:10.6211977Z del async_compile 2023-01-11T21:05:10.6211994Z 2023-01-11T21:05:10.6212050Z def call(args): 2023-01-11T21:05:10.6212117Z arg0_1, = args 2023-01-11T21:05:10.6212185Z args.clear() 2023-01-11T21:05:10.6212290Z return (as_strided(arg0_1, (4, 4, 1), (4, 16, 0), 3), ) 2023-01-11T21:05:10.6212294Z 2023-01-11T21:05:10.6212299Z 2023-01-11T21:05:10.6212372Z if __name__ == "__main__": 2023-01-11T21:05:10.6212482Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.6212602Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.6212801Z arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6212909Z print_performance(lambda: call([arg0_1])) 2023-01-11T21:05:10.6212916Z 2023-01-11T21:05:10.6213381Z inductor/test_torchinductor.py:3148: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.6213499Z self.assertEqual(inp.storage(), out.storage()) 2023-01-11T21:05:10.6214167Z /opt/conda/lib/python3.7/site-packages/torch/testing/_internal/common_utils.py:1904: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.6214256Z device=typed_storage.device, 2023-01-11T21:05:10.6214320Z ok (2.769s) 2023-01-11T21:05:10.6214758Z test_permute_cpu (__main__.CpuTests) ... inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.6214885Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.6215144Z [2023-01-11 20:57:31,147] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 367 2023-01-11T21:05:10.6215413Z [2023-01-11 20:57:33,819] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 367 2023-01-11T21:05:10.6215419Z 2023-01-11T21:05:10.6215514Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.6215569Z import torch 2023-01-11T21:05:10.6215639Z import random 2023-01-11T21:05:10.6215753Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.6215876Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.6215881Z 2023-01-11T21:05:10.6215959Z aten = torch.ops.aten 2023-01-11T21:05:10.6216092Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.6216184Z async_compile = AsyncCompile() 2023-01-11T21:05:10.6216189Z 2023-01-11T21:05:10.6216193Z 2023-01-11T21:05:10.6216324Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.6216516Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.6216637Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:05:10.6216735Z float* __restrict__ out_ptr0, 2023-01-11T21:05:10.6216830Z float* __restrict__ out_ptr1) 2023-01-11T21:05:10.6216890Z { 2023-01-11T21:05:10.6216987Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.6217046Z { 2023-01-11T21:05:10.6217109Z #pragma omp for 2023-01-11T21:05:10.6217223Z for(long i0=0; i0<2; i0+=1) 2023-01-11T21:05:10.6217287Z { 2023-01-11T21:05:10.6217425Z auto tmp0 = at::vec::Vectorized::loadu(in_ptr0 + 16*i0); 2023-01-11T21:05:10.6217560Z auto tmp1 = at::vec::Vectorized(static_cast(1)); 2023-01-11T21:05:10.6217645Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:05:10.6217773Z auto tmp3 = at::vec::Vectorized(static_cast(2)); 2023-01-11T21:05:10.6217842Z auto tmp4 = tmp2 + tmp3; 2023-01-11T21:05:10.6217922Z auto tmp5 = tmp0 + tmp3; 2023-01-11T21:05:10.6218012Z tmp4.store(out_ptr0 + 16*i0); 2023-01-11T21:05:10.6218101Z tmp5.store(out_ptr1 + 16*i0); 2023-01-11T21:05:10.6218162Z } 2023-01-11T21:05:10.6218256Z #pragma omp for simd simdlen(8) 2023-01-11T21:05:10.6218336Z for(long i0=32; i0<32; i0+=1) 2023-01-11T21:05:10.6218384Z { 2023-01-11T21:05:10.6218572Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:05:10.6218677Z auto tmp1 = static_cast(1); 2023-01-11T21:05:10.6218761Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:05:10.6218858Z auto tmp3 = static_cast(2); 2023-01-11T21:05:10.6218975Z auto tmp4 = tmp2 + tmp3; 2023-01-11T21:05:10.6219059Z auto tmp5 = tmp0 + tmp3; 2023-01-11T21:05:10.6219124Z out_ptr0[i0] = tmp4; 2023-01-11T21:05:10.6219202Z out_ptr1[i0] = tmp5; 2023-01-11T21:05:10.6219263Z } 2023-01-11T21:05:10.6219325Z } 2023-01-11T21:05:10.6219385Z } 2023-01-11T21:05:10.6219469Z ''') 2023-01-11T21:05:10.6219474Z 2023-01-11T21:05:10.6219478Z 2023-01-11T21:05:10.6219568Z async_compile.wait(globals()) 2023-01-11T21:05:10.6219626Z del async_compile 2023-01-11T21:05:10.6219631Z 2023-01-11T21:05:10.6219700Z def call(args): 2023-01-11T21:05:10.6219766Z arg0_1, = args 2023-01-11T21:05:10.6219835Z args.clear() 2023-01-11T21:05:10.6220053Z buf0 = empty_strided((2, 2, 2, 2, 2), (4, 8, 1, 16, 2), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6220266Z buf1 = empty_strided((2, 2, 2, 2, 2), (4, 8, 1, 16, 2), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6220434Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(buf0.data_ptr()), c_void_p(buf1.data_ptr())) 2023-01-11T21:05:10.6220502Z del arg0_1 2023-01-11T21:05:10.6220565Z return (buf0, buf1, ) 2023-01-11T21:05:10.6220570Z 2023-01-11T21:05:10.6220574Z 2023-01-11T21:05:10.6220648Z if __name__ == "__main__": 2023-01-11T21:05:10.6220759Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.6220882Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.6221096Z arg0_1 = rand_strided((2, 2, 2, 2, 2), (16, 8, 4, 2, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6221202Z print_performance(lambda: call([arg0_1])) 2023-01-11T21:05:10.6221207Z 2023-01-11T21:05:10.6221274Z ok (2.719s) 2023-01-11T21:05:10.6221711Z test_pow1_cpu (__main__.CpuTests) ... inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.6221838Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.6222083Z [2023-01-11 20:57:34,116] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 368 2023-01-11T21:05:10.6222344Z [2023-01-11 20:57:36,908] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 368 2023-01-11T21:05:10.6222349Z 2023-01-11T21:05:10.6222441Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.6222510Z import torch 2023-01-11T21:05:10.6222578Z import random 2023-01-11T21:05:10.6222691Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.6222811Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.6222849Z 2023-01-11T21:05:10.6222927Z aten = torch.ops.aten 2023-01-11T21:05:10.6223047Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.6223136Z async_compile = AsyncCompile() 2023-01-11T21:05:10.6223143Z 2023-01-11T21:05:10.6223148Z 2023-01-11T21:05:10.6223281Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.6223481Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.6223602Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:05:10.6223701Z float* __restrict__ out_ptr0, 2023-01-11T21:05:10.6223798Z float* __restrict__ out_ptr1, 2023-01-11T21:05:10.6223891Z float* __restrict__ out_ptr2, 2023-01-11T21:05:10.6223968Z float* __restrict__ out_ptr3, 2023-01-11T21:05:10.6224059Z float* __restrict__ out_ptr4, 2023-01-11T21:05:10.6224149Z float* __restrict__ out_ptr5, 2023-01-11T21:05:10.6224243Z float* __restrict__ out_ptr6, 2023-01-11T21:05:10.6224333Z float* __restrict__ out_ptr7, 2023-01-11T21:05:10.6224455Z float* __restrict__ out_ptr8, 2023-01-11T21:05:10.6224548Z float* __restrict__ out_ptr9, 2023-01-11T21:05:10.6224633Z float* __restrict__ out_ptr10, 2023-01-11T21:05:10.6224732Z float* __restrict__ out_ptr11, 2023-01-11T21:05:10.6224828Z float* __restrict__ out_ptr12, 2023-01-11T21:05:10.6224922Z float* __restrict__ out_ptr13, 2023-01-11T21:05:10.6225016Z float* __restrict__ out_ptr14, 2023-01-11T21:05:10.6225109Z float* __restrict__ out_ptr15) 2023-01-11T21:05:10.6225169Z { 2023-01-11T21:05:10.6225253Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.6225315Z { 2023-01-11T21:05:10.6225394Z #pragma omp for 2023-01-11T21:05:10.6225474Z for(long i0=0; i0<16; i0+=1) 2023-01-11T21:05:10.6225538Z { 2023-01-11T21:05:10.6225675Z auto tmp0 = at::vec::Vectorized::loadu(in_ptr0 + 16*i0); 2023-01-11T21:05:10.6225773Z auto tmp1 = tmp0.reciprocal(); 2023-01-11T21:05:10.6225844Z auto tmp2 = tmp1 * tmp1; 2023-01-11T21:05:10.6225926Z auto tmp3 = tmp2 * tmp2; 2023-01-11T21:05:10.6226006Z auto tmp4 = tmp3 * tmp3; 2023-01-11T21:05:10.6226085Z auto tmp5 = tmp2 * tmp1; 2023-01-11T21:05:10.6226168Z auto tmp6 = tmp5 * tmp5; 2023-01-11T21:05:10.6226247Z auto tmp7 = tmp6 * tmp1; 2023-01-11T21:05:10.6226327Z auto tmp8 = tmp3 * tmp1; 2023-01-11T21:05:10.6226446Z auto tmp9 = at::vec::Vectorized(static_cast(1)); 2023-01-11T21:05:10.6226529Z auto tmp10 = tmp0 * tmp0; 2023-01-11T21:05:10.6226613Z auto tmp11 = tmp10 * tmp0; 2023-01-11T21:05:10.6226700Z auto tmp12 = tmp10 * tmp10; 2023-01-11T21:05:10.6226783Z auto tmp13 = tmp12 * tmp0; 2023-01-11T21:05:10.6226866Z auto tmp14 = tmp11 * tmp11; 2023-01-11T21:05:10.6226950Z auto tmp15 = tmp14 * tmp0; 2023-01-11T21:05:10.6227019Z auto tmp16 = tmp12 * tmp12; 2023-01-11T21:05:10.6227111Z tmp4.store(out_ptr0 + 16*i0); 2023-01-11T21:05:10.6227201Z tmp7.store(out_ptr1 + 16*i0); 2023-01-11T21:05:10.6227289Z tmp6.store(out_ptr2 + 16*i0); 2023-01-11T21:05:10.6227377Z tmp8.store(out_ptr3 + 16*i0); 2023-01-11T21:05:10.6227464Z tmp3.store(out_ptr4 + 16*i0); 2023-01-11T21:05:10.6227551Z tmp5.store(out_ptr5 + 16*i0); 2023-01-11T21:05:10.6227624Z tmp2.store(out_ptr6 + 16*i0); 2023-01-11T21:05:10.6227711Z tmp1.store(out_ptr7 + 16*i0); 2023-01-11T21:05:10.6227797Z tmp9.store(out_ptr8 + 16*i0); 2023-01-11T21:05:10.6227888Z tmp10.store(out_ptr9 + 16*i0); 2023-01-11T21:05:10.6228017Z tmp11.store(out_ptr10 + 16*i0); 2023-01-11T21:05:10.6228111Z tmp12.store(out_ptr11 + 16*i0); 2023-01-11T21:05:10.6228202Z tmp13.store(out_ptr12 + 16*i0); 2023-01-11T21:05:10.6228281Z tmp14.store(out_ptr13 + 16*i0); 2023-01-11T21:05:10.6228371Z tmp15.store(out_ptr14 + 16*i0); 2023-01-11T21:05:10.6228461Z tmp16.store(out_ptr15 + 16*i0); 2023-01-11T21:05:10.6228524Z } 2023-01-11T21:05:10.6228619Z #pragma omp for simd simdlen(8) 2023-01-11T21:05:10.6228701Z for(long i0=256; i0<256; i0+=1) 2023-01-11T21:05:10.6228764Z { 2023-01-11T21:05:10.6228835Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:05:10.6228913Z auto tmp1 = 1 / tmp0; 2023-01-11T21:05:10.6228995Z auto tmp2 = tmp1 * tmp1; 2023-01-11T21:05:10.6229076Z auto tmp3 = tmp2 * tmp2; 2023-01-11T21:05:10.6229155Z auto tmp4 = tmp3 * tmp3; 2023-01-11T21:05:10.6229238Z auto tmp5 = tmp2 * tmp1; 2023-01-11T21:05:10.6229316Z auto tmp6 = tmp5 * tmp5; 2023-01-11T21:05:10.6229382Z auto tmp7 = tmp6 * tmp1; 2023-01-11T21:05:10.6229495Z auto tmp8 = tmp3 * tmp1; 2023-01-11T21:05:10.6229598Z auto tmp9 = static_cast(1); 2023-01-11T21:05:10.6229685Z auto tmp10 = tmp0 * tmp0; 2023-01-11T21:05:10.6229770Z auto tmp11 = tmp10 * tmp0; 2023-01-11T21:05:10.6229853Z auto tmp12 = tmp10 * tmp10; 2023-01-11T21:05:10.6229935Z auto tmp13 = tmp12 * tmp0; 2023-01-11T21:05:10.6230006Z auto tmp14 = tmp11 * tmp11; 2023-01-11T21:05:10.6230088Z auto tmp15 = tmp14 * tmp0; 2023-01-11T21:05:10.6230169Z auto tmp16 = tmp12 * tmp12; 2023-01-11T21:05:10.6230248Z out_ptr0[i0] = tmp4; 2023-01-11T21:05:10.6230323Z out_ptr1[i0] = tmp7; 2023-01-11T21:05:10.6230398Z out_ptr2[i0] = tmp6; 2023-01-11T21:05:10.6230472Z out_ptr3[i0] = tmp8; 2023-01-11T21:05:10.6230537Z out_ptr4[i0] = tmp3; 2023-01-11T21:05:10.6230610Z out_ptr5[i0] = tmp5; 2023-01-11T21:05:10.6230684Z out_ptr6[i0] = tmp2; 2023-01-11T21:05:10.6230761Z out_ptr7[i0] = tmp1; 2023-01-11T21:05:10.6230835Z out_ptr8[i0] = tmp9; 2023-01-11T21:05:10.6230912Z out_ptr9[i0] = tmp10; 2023-01-11T21:05:10.6230989Z out_ptr10[i0] = tmp11; 2023-01-11T21:05:10.6231052Z out_ptr11[i0] = tmp12; 2023-01-11T21:05:10.6231128Z out_ptr12[i0] = tmp13; 2023-01-11T21:05:10.6231202Z out_ptr13[i0] = tmp14; 2023-01-11T21:05:10.6231277Z out_ptr14[i0] = tmp15; 2023-01-11T21:05:10.6231353Z out_ptr15[i0] = tmp16; 2023-01-11T21:05:10.6231413Z } 2023-01-11T21:05:10.6231472Z } 2023-01-11T21:05:10.6231518Z } 2023-01-11T21:05:10.6231596Z ''') 2023-01-11T21:05:10.6231601Z 2023-01-11T21:05:10.6231606Z 2023-01-11T21:05:10.6231693Z async_compile.wait(globals()) 2023-01-11T21:05:10.6231767Z del async_compile 2023-01-11T21:05:10.6231772Z 2023-01-11T21:05:10.6231841Z def call(args): 2023-01-11T21:05:10.6231909Z arg0_1, = args 2023-01-11T21:05:10.6231979Z args.clear() 2023-01-11T21:05:10.6232171Z buf0 = empty_strided((16, 16), (16, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6232368Z buf1 = empty_strided((16, 16), (16, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6232562Z buf2 = empty_strided((16, 16), (16, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6232752Z buf3 = empty_strided((16, 16), (16, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6232943Z buf4 = empty_strided((16, 16), (16, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6233132Z buf5 = empty_strided((16, 16), (16, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6233321Z buf6 = empty_strided((16, 16), (16, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6233512Z buf7 = empty_strided((16, 16), (16, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6233721Z buf8 = empty_strided((16, 16), (16, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6233913Z buf9 = empty_strided((16, 16), (16, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6234110Z buf10 = empty_strided((16, 16), (16, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6234304Z buf11 = empty_strided((16, 16), (16, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6234497Z buf12 = empty_strided((16, 16), (16, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6234689Z buf13 = empty_strided((16, 16), (16, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6234877Z buf14 = empty_strided((16, 16), (16, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6235067Z buf15 = empty_strided((16, 16), (16, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6235583Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(buf0.data_ptr()), c_void_p(buf1.data_ptr()), c_void_p(buf2.data_ptr()), c_void_p(buf3.data_ptr()), c_void_p(buf4.data_ptr()), c_void_p(buf5.data_ptr()), c_void_p(buf6.data_ptr()), c_void_p(buf7.data_ptr()), c_void_p(buf8.data_ptr()), c_void_p(buf9.data_ptr()), c_void_p(buf10.data_ptr()), c_void_p(buf11.data_ptr()), c_void_p(buf12.data_ptr()), c_void_p(buf13.data_ptr()), c_void_p(buf14.data_ptr()), c_void_p(buf15.data_ptr())) 2023-01-11T21:05:10.6235751Z return (buf0, buf1, buf2, buf3, buf4, buf5, buf6, buf7, buf8, arg0_1, buf9, buf10, buf11, buf12, buf13, buf14, buf15, ) 2023-01-11T21:05:10.6235757Z 2023-01-11T21:05:10.6235762Z 2023-01-11T21:05:10.6235826Z if __name__ == "__main__": 2023-01-11T21:05:10.6235940Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.6236062Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.6236259Z arg0_1 = rand_strided((16, 16), (16, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6236364Z print_performance(lambda: call([arg0_1])) 2023-01-11T21:05:10.6236371Z 2023-01-11T21:05:10.6236437Z ok (3.101s) 2023-01-11T21:05:10.6236872Z test_pow2_cpu (__main__.CpuTests) ... inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.6237000Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.6237262Z [2023-01-11 20:57:36,979] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 369 2023-01-11T21:05:10.6237514Z [2023-01-11 20:57:39,640] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 369 2023-01-11T21:05:10.6237531Z 2023-01-11T21:05:10.6237611Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.6237679Z import torch 2023-01-11T21:05:10.6237750Z import random 2023-01-11T21:05:10.6237864Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.6237984Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.6237989Z 2023-01-11T21:05:10.6238067Z aten = torch.ops.aten 2023-01-11T21:05:10.6238200Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.6238277Z async_compile = AsyncCompile() 2023-01-11T21:05:10.6238282Z 2023-01-11T21:05:10.6238299Z 2023-01-11T21:05:10.6238418Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.6238622Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.6238741Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:05:10.6238842Z float* __restrict__ out_ptr0, 2023-01-11T21:05:10.6238940Z float* __restrict__ out_ptr1) 2023-01-11T21:05:10.6238999Z { 2023-01-11T21:05:10.6239095Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.6239173Z { 2023-01-11T21:05:10.6239248Z #pragma omp for 2023-01-11T21:05:10.6239329Z for(long i0=0; i0<16; i0+=1) 2023-01-11T21:05:10.6239390Z { 2023-01-11T21:05:10.6239526Z auto tmp1 = at::vec::Vectorized::loadu(in_ptr0 + 16*i0); 2023-01-11T21:05:10.6239662Z auto tmp0 = at::vec::Vectorized(static_cast(1000)); 2023-01-11T21:05:10.6239749Z auto tmp2 = tmp0.pow(tmp1); 2023-01-11T21:05:10.6239823Z auto tmp3 = tmp1.pow(tmp0); 2023-01-11T21:05:10.6239914Z tmp2.store(out_ptr0 + 16*i0); 2023-01-11T21:05:10.6240003Z tmp3.store(out_ptr1 + 16*i0); 2023-01-11T21:05:10.6240065Z } 2023-01-11T21:05:10.6240158Z #pragma omp for simd simdlen(8) 2023-01-11T21:05:10.6240238Z for(long i0=256; i0<256; i0+=1) 2023-01-11T21:05:10.6240300Z { 2023-01-11T21:05:10.6240369Z auto tmp1 = in_ptr0[i0]; 2023-01-11T21:05:10.6240469Z auto tmp0 = static_cast(1000); 2023-01-11T21:05:10.6240571Z auto tmp2 = std::pow(tmp0, tmp1); 2023-01-11T21:05:10.6240783Z auto tmp3 = std::pow(tmp1, tmp0); 2023-01-11T21:05:10.6240864Z out_ptr0[i0] = tmp2; 2023-01-11T21:05:10.6240996Z out_ptr1[i0] = tmp3; 2023-01-11T21:05:10.6241060Z } 2023-01-11T21:05:10.6241107Z } 2023-01-11T21:05:10.6241166Z } 2023-01-11T21:05:10.6241247Z ''') 2023-01-11T21:05:10.6241252Z 2023-01-11T21:05:10.6241257Z 2023-01-11T21:05:10.6241345Z async_compile.wait(globals()) 2023-01-11T21:05:10.6241422Z del async_compile 2023-01-11T21:05:10.6241427Z 2023-01-11T21:05:10.6241498Z def call(args): 2023-01-11T21:05:10.6241566Z arg0_1, = args 2023-01-11T21:05:10.6241623Z args.clear() 2023-01-11T21:05:10.6241827Z buf0 = empty_strided((16, 16), (16, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6242023Z buf1 = empty_strided((16, 16), (16, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6242191Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(buf0.data_ptr()), c_void_p(buf1.data_ptr())) 2023-01-11T21:05:10.6242258Z del arg0_1 2023-01-11T21:05:10.6242334Z return (buf0, buf1, ) 2023-01-11T21:05:10.6242339Z 2023-01-11T21:05:10.6242345Z 2023-01-11T21:05:10.6242420Z if __name__ == "__main__": 2023-01-11T21:05:10.6242533Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.6242641Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.6242836Z arg0_1 = rand_strided((16, 16), (16, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6242943Z print_performance(lambda: call([arg0_1])) 2023-01-11T21:05:10.6242948Z 2023-01-11T21:05:10.6243012Z ok (2.720s) 2023-01-11T21:05:10.6243328Z test_pow3_cpu (__main__.CpuTests) ... [2023-01-11 20:57:39,684] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 370 2023-01-11T21:05:10.6243593Z [2023-01-11 20:57:42,363] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 370 2023-01-11T21:05:10.6243601Z 2023-01-11T21:05:10.6243693Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.6243760Z import torch 2023-01-11T21:05:10.6243817Z import random 2023-01-11T21:05:10.6243933Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.6244052Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.6244056Z 2023-01-11T21:05:10.6244132Z aten = torch.ops.aten 2023-01-11T21:05:10.6244264Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.6244354Z async_compile = AsyncCompile() 2023-01-11T21:05:10.6244359Z 2023-01-11T21:05:10.6244363Z 2023-01-11T21:05:10.6244493Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.6244694Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.6244799Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:05:10.6244896Z float* __restrict__ out_ptr0) 2023-01-11T21:05:10.6245007Z { 2023-01-11T21:05:10.6245068Z { 2023-01-11T21:05:10.6245130Z { 2023-01-11T21:05:10.6245213Z auto tmp1 = in_ptr0[0]; 2023-01-11T21:05:10.6245323Z auto tmp0 = static_cast(0.12300000339746475); 2023-01-11T21:05:10.6245394Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:05:10.6245485Z auto tmp3 = std::sqrt(tmp2); 2023-01-11T21:05:10.6245561Z out_ptr0[0] = tmp3; 2023-01-11T21:05:10.6245623Z } 2023-01-11T21:05:10.6245683Z } 2023-01-11T21:05:10.6245740Z } 2023-01-11T21:05:10.6245818Z ''') 2023-01-11T21:05:10.6245823Z 2023-01-11T21:05:10.6245827Z 2023-01-11T21:05:10.6245902Z async_compile.wait(globals()) 2023-01-11T21:05:10.6245972Z del async_compile 2023-01-11T21:05:10.6245976Z 2023-01-11T21:05:10.6246044Z def call(args): 2023-01-11T21:05:10.6246112Z arg0_1, = args 2023-01-11T21:05:10.6246182Z args.clear() 2023-01-11T21:05:10.6246367Z buf0 = empty_strided((), (), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6246503Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:05:10.6246570Z del arg0_1 2023-01-11T21:05:10.6246627Z return (buf0, ) 2023-01-11T21:05:10.6246631Z 2023-01-11T21:05:10.6246702Z 2023-01-11T21:05:10.6246779Z if __name__ == "__main__": 2023-01-11T21:05:10.6246891Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.6247012Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.6247199Z arg0_1 = rand_strided((), (), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6247307Z print_performance(lambda: call([arg0_1])) 2023-01-11T21:05:10.6247312Z 2023-01-11T21:05:10.6247378Z ok (2.720s) 2023-01-11T21:05:10.6247719Z test_profiler_mark_wrapper_call_cpu (__main__.CpuTests) ... STAGE:2023-01-11 20:57:42 744:744 ActivityProfilerController.cpp:300] Completed Stage: Warm Up 2023-01-11T21:05:10.6247965Z [2023-01-11 20:57:42,390] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 371 2023-01-11T21:05:10.6248231Z [2023-01-11 20:57:45,124] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 371 2023-01-11T21:05:10.6248481Z STAGE:2023-01-11 20:57:45 744:744 ActivityProfilerController.cpp:306] Completed Stage: Collection 2023-01-11T21:05:10.6248740Z STAGE:2023-01-11 20:57:45 744:744 ActivityProfilerController.cpp:310] Completed Stage: Post Processing 2023-01-11T21:05:10.6248745Z 2023-01-11T21:05:10.6248840Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.6248910Z import torch 2023-01-11T21:05:10.6248981Z import random 2023-01-11T21:05:10.6249096Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.6249202Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.6249207Z 2023-01-11T21:05:10.6249284Z aten = torch.ops.aten 2023-01-11T21:05:10.6249416Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.6249506Z async_compile = AsyncCompile() 2023-01-11T21:05:10.6249514Z 2023-01-11T21:05:10.6249518Z 2023-01-11T21:05:10.6249648Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.6249851Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.6249970Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:05:10.6250073Z const float* __restrict__ in_ptr1, 2023-01-11T21:05:10.6250158Z float* __restrict__ out_ptr0) 2023-01-11T21:05:10.6250218Z { 2023-01-11T21:05:10.6250313Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.6250373Z { 2023-01-11T21:05:10.6250447Z #pragma omp for 2023-01-11T21:05:10.6250527Z for(long i0=0; i0<6; i0+=1) 2023-01-11T21:05:10.6250588Z { 2023-01-11T21:05:10.6250709Z auto tmp0 = at::vec::Vectorized::loadu(in_ptr0 + 16*i0); 2023-01-11T21:05:10.6250838Z auto tmp1 = at::vec::Vectorized::loadu(in_ptr1 + 16*i0); 2023-01-11T21:05:10.6250953Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:05:10.6251043Z tmp2.store(out_ptr0 + 16*i0); 2023-01-11T21:05:10.6251105Z } 2023-01-11T21:05:10.6251201Z #pragma omp for simd simdlen(8) 2023-01-11T21:05:10.6251284Z for(long i0=96; i0<100; i0+=1) 2023-01-11T21:05:10.6251333Z { 2023-01-11T21:05:10.6251414Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:05:10.6251494Z auto tmp1 = in_ptr1[i0]; 2023-01-11T21:05:10.6251574Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:05:10.6251652Z out_ptr0[i0] = tmp2; 2023-01-11T21:05:10.6251712Z } 2023-01-11T21:05:10.6251771Z } 2023-01-11T21:05:10.6251817Z } 2023-01-11T21:05:10.6251893Z ''') 2023-01-11T21:05:10.6251898Z 2023-01-11T21:05:10.6251902Z 2023-01-11T21:05:10.6251988Z async_compile.wait(globals()) 2023-01-11T21:05:10.6252060Z del async_compile 2023-01-11T21:05:10.6252065Z 2023-01-11T21:05:10.6252135Z def call(args): 2023-01-11T21:05:10.6252208Z arg0_1, arg1_1 = args 2023-01-11T21:05:10.6252279Z args.clear() 2023-01-11T21:05:10.6252378Z from torch.profiler import record_function 2023-01-11T21:05:10.6252535Z with record_function('inductor_wrapper_call'): 2023-01-11T21:05:10.6252774Z buf0 = empty_strided((100, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6252940Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(arg1_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:05:10.6253008Z del arg0_1 2023-01-11T21:05:10.6253073Z del arg1_1 2023-01-11T21:05:10.6253144Z return (buf0, ) 2023-01-11T21:05:10.6253148Z 2023-01-11T21:05:10.6253152Z 2023-01-11T21:05:10.6253226Z if __name__ == "__main__": 2023-01-11T21:05:10.6253325Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.6253447Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.6253641Z arg0_1 = rand_strided((100, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6253835Z arg1_1 = rand_strided((100, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6253951Z print_performance(lambda: call([arg0_1, arg1_1])) 2023-01-11T21:05:10.6253956Z 2023-01-11T21:05:10.6254020Z ok (2.773s) 2023-01-11T21:05:10.6254372Z test_rand_like_deterministic_cpu (__main__.CpuTests) ... [2023-01-11 20:57:45,272] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 372 2023-01-11T21:05:10.6254628Z [2023-01-11 20:57:45,273] torch._inductor.lowering: [WARNING] using triton random, expect difference from eager 2023-01-11T21:05:10.6254878Z [2023-01-11 20:57:47,982] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 372 2023-01-11T21:05:10.6254895Z 2023-01-11T21:05:10.6254976Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.6255046Z import torch 2023-01-11T21:05:10.6255117Z import random 2023-01-11T21:05:10.6255232Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.6255352Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.6255359Z 2023-01-11T21:05:10.6255436Z aten = torch.ops.aten 2023-01-11T21:05:10.6255574Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.6255654Z async_compile = AsyncCompile() 2023-01-11T21:05:10.6255814Z seed_cpu_None = None # 9130db9322feaa41c28986790b86d7dd047e77339ff46fce775dbaa5929b26ce 2023-01-11T21:05:10.6255820Z 2023-01-11T21:05:10.6255824Z 2023-01-11T21:05:10.6255955Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.6256158Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.6256272Z extern "C" void kernel(const long* __restrict__ seed0, 2023-01-11T21:05:10.6256369Z float* __restrict__ out_ptr0, 2023-01-11T21:05:10.6256465Z float* __restrict__ out_ptr1) 2023-01-11T21:05:10.6256526Z { 2023-01-11T21:05:10.6256608Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.6256667Z { 2023-01-11T21:05:10.6256775Z #pragma omp for 2023-01-11T21:05:10.6256856Z for(long i0=0; i0<1024; i0+=1) 2023-01-11T21:05:10.6256919Z { 2023-01-11T21:05:10.6256983Z { 2023-01-11T21:05:10.6257034Z { 2023-01-11T21:05:10.6257123Z auto tmp0 = seed0[0]; 2023-01-11T21:05:10.6257225Z auto tmp1 = static_cast(i0); 2023-01-11T21:05:10.6257362Z auto tmp2 = static_cast(normalized_rand_cpu(tmp0, tmp1));; 2023-01-11T21:05:10.6257468Z auto tmp3 = static_cast(1024 + i0); 2023-01-11T21:05:10.6257603Z auto tmp4 = static_cast(normalized_rand_cpu(tmp0, tmp3));; 2023-01-11T21:05:10.6257688Z out_ptr0[i0] = tmp2; 2023-01-11T21:05:10.6257773Z out_ptr1[i0] = tmp4; 2023-01-11T21:05:10.6257824Z } 2023-01-11T21:05:10.6257888Z } 2023-01-11T21:05:10.6257949Z } 2023-01-11T21:05:10.6258010Z } 2023-01-11T21:05:10.6258072Z } 2023-01-11T21:05:10.6258149Z ''') 2023-01-11T21:05:10.6258154Z 2023-01-11T21:05:10.6258157Z 2023-01-11T21:05:10.6258247Z async_compile.wait(globals()) 2023-01-11T21:05:10.6258303Z del async_compile 2023-01-11T21:05:10.6258336Z 2023-01-11T21:05:10.6258407Z def call(args): 2023-01-11T21:05:10.6258554Z arg0_1, = args 2023-01-11T21:05:10.6258631Z args.clear() 2023-01-11T21:05:10.6258765Z torch.randint(2**31, size=(), dtype=torch.int64, out=seed_cpu_None) 2023-01-11T21:05:10.6258967Z buf0 = empty_strided((1024, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6259162Z buf1 = empty_strided((1024, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6259320Z kernel_cpp_0(c_void_p(seed_cpu_None.data_ptr()), c_void_p(buf0.data_ptr()), c_void_p(buf1.data_ptr())) 2023-01-11T21:05:10.6259399Z return (buf0, buf1, ) 2023-01-11T21:05:10.6259403Z 2023-01-11T21:05:10.6259407Z 2023-01-11T21:05:10.6259483Z if __name__ == "__main__": 2023-01-11T21:05:10.6259599Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.6259725Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.6259921Z seed_cpu_None = rand_strided((), (), device='cpu', dtype=torch.int64) 2023-01-11T21:05:10.6260118Z arg0_1 = rand_strided((1024, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6260225Z print_performance(lambda: call([arg0_1])) 2023-01-11T21:05:10.6260230Z 2023-01-11T21:05:10.6260295Z ok (2.853s) 2023-01-11T21:05:10.6260723Z test_reduction1_cpu (__main__.CpuTests) ... inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.6260850Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.6261112Z [2023-01-11 20:57:48,031] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 373 2023-01-11T21:05:10.6261376Z [2023-01-11 20:57:50,773] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 373 2023-01-11T21:05:10.6261382Z 2023-01-11T21:05:10.6261475Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.6261546Z import torch 2023-01-11T21:05:10.6261616Z import random 2023-01-11T21:05:10.6261730Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.6261835Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.6261853Z 2023-01-11T21:05:10.6261918Z aten = torch.ops.aten 2023-01-11T21:05:10.6262050Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.6262141Z async_compile = AsyncCompile() 2023-01-11T21:05:10.6262146Z 2023-01-11T21:05:10.6262150Z 2023-01-11T21:05:10.6262282Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.6262485Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.6262638Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:05:10.6262736Z float* __restrict__ out_ptr0, 2023-01-11T21:05:10.6262835Z float* __restrict__ out_ptr1, 2023-01-11T21:05:10.6262915Z float* __restrict__ out_ptr2, 2023-01-11T21:05:10.6263008Z long* __restrict__ out_ptr3, 2023-01-11T21:05:10.6263101Z long* __restrict__ out_ptr4) 2023-01-11T21:05:10.6263160Z { 2023-01-11T21:05:10.6263221Z { 2023-01-11T21:05:10.6263281Z { 2023-01-11T21:05:10.6263344Z float tmp1 = 0; 2023-01-11T21:05:10.6263568Z float tmp2 = -std::numeric_limits::infinity(); 2023-01-11T21:05:10.6263688Z float tmp3 = std::numeric_limits::infinity(); 2023-01-11T21:05:10.6263805Z struct IndexValue_7 {size_t index; float value;}; 2023-01-11T21:05:10.6264024Z IndexValue_7 tmp4{0, -std::numeric_limits::infinity()}; 2023-01-11T21:05:10.6264160Z #pragma omp declare reduction(argmax : struct IndexValue_7 :\ 2023-01-11T21:05:10.6264338Z omp_out.value = omp_in.value < omp_out.value ? omp_out.value : omp_in.value,\ 2023-01-11T21:05:10.6264485Z omp_out.index = omp_in.value < omp_out.value ? omp_out.index : omp_in.index)\ 2023-01-11T21:05:10.6264715Z initializer(omp_priv = {0, -std::numeric_limits::infinity()}) 2023-01-11T21:05:10.6264818Z struct IndexValue_8 {size_t index; float value;}; 2023-01-11T21:05:10.6264948Z IndexValue_8 tmp5{0, std::numeric_limits::infinity()}; 2023-01-11T21:05:10.6265081Z #pragma omp declare reduction(argmin : struct IndexValue_8 :\ 2023-01-11T21:05:10.6265223Z omp_out.value = omp_in.value > omp_out.value ? omp_out.value : omp_in.value,\ 2023-01-11T21:05:10.6265365Z omp_out.index = omp_in.value > omp_out.value ? omp_out.index : omp_in.index)\ 2023-01-11T21:05:10.6265506Z initializer(omp_priv = {0, std::numeric_limits::infinity()}) 2023-01-11T21:05:10.6265589Z for(long i0=0; i0<3; i0+=1) 2023-01-11T21:05:10.6265653Z { 2023-01-11T21:05:10.6265704Z { 2023-01-11T21:05:10.6265796Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:05:10.6265873Z tmp1 += tmp0; 2023-01-11T21:05:10.6265972Z tmp2 = std::max(tmp2, tmp0); 2023-01-11T21:05:10.6266068Z tmp3 = std::min(tmp3, tmp0); 2023-01-11T21:05:10.6266159Z if (tmp4.value < tmp0) { 2023-01-11T21:05:10.6266265Z tmp4.index = i0; tmp4.value = tmp0; 2023-01-11T21:05:10.6266318Z } 2023-01-11T21:05:10.6266405Z if (tmp5.value > tmp0) { 2023-01-11T21:05:10.6266507Z tmp5.index = i0; tmp5.value = tmp0; 2023-01-11T21:05:10.6266573Z } 2023-01-11T21:05:10.6266636Z } 2023-01-11T21:05:10.6266697Z } 2023-01-11T21:05:10.6266775Z out_ptr0[0] = tmp1; 2023-01-11T21:05:10.6266837Z out_ptr1[0] = tmp2; 2023-01-11T21:05:10.6266913Z out_ptr2[0] = tmp3; 2023-01-11T21:05:10.6266997Z out_ptr3[0] = tmp4.index; 2023-01-11T21:05:10.6267078Z out_ptr4[0] = tmp5.index; 2023-01-11T21:05:10.6267139Z } 2023-01-11T21:05:10.6267199Z } 2023-01-11T21:05:10.6267257Z } 2023-01-11T21:05:10.6267321Z ''') 2023-01-11T21:05:10.6267326Z 2023-01-11T21:05:10.6267331Z 2023-01-11T21:05:10.6267419Z async_compile.wait(globals()) 2023-01-11T21:05:10.6267489Z del async_compile 2023-01-11T21:05:10.6267494Z 2023-01-11T21:05:10.6267562Z def call(args): 2023-01-11T21:05:10.6267629Z arg0_1, = args 2023-01-11T21:05:10.6267697Z args.clear() 2023-01-11T21:05:10.6267882Z buf0 = empty_strided((), (), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6268081Z buf1 = empty_strided((), (), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6268256Z buf2 = empty_strided((), (), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6268434Z buf3 = empty_strided((), (), device='cpu', dtype=torch.int64) 2023-01-11T21:05:10.6268607Z buf4 = empty_strided((), (), device='cpu', dtype=torch.int64) 2023-01-11T21:05:10.6268845Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(buf0.data_ptr()), c_void_p(buf1.data_ptr()), c_void_p(buf2.data_ptr()), c_void_p(buf3.data_ptr()), c_void_p(buf4.data_ptr())) 2023-01-11T21:05:10.6268913Z del arg0_1 2023-01-11T21:05:10.6269008Z return (buf0, buf1, buf2, buf3, buf4, ) 2023-01-11T21:05:10.6269013Z 2023-01-11T21:05:10.6269018Z 2023-01-11T21:05:10.6269092Z if __name__ == "__main__": 2023-01-11T21:05:10.6269192Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.6269314Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.6269503Z arg0_1 = rand_strided((3, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6269611Z print_performance(lambda: call([arg0_1])) 2023-01-11T21:05:10.6269616Z 2023-01-11T21:05:10.6269682Z ok (2.786s) 2023-01-11T21:05:10.6270151Z test_reduction2_cpu (__main__.CpuTests) ... inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.6270280Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.6270540Z [2023-01-11 20:57:50,813] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 374 2023-01-11T21:05:10.6270804Z [2023-01-11 20:57:53,521] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 374 2023-01-11T21:05:10.6270810Z 2023-01-11T21:05:10.6270903Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.6270958Z import torch 2023-01-11T21:05:10.6271028Z import random 2023-01-11T21:05:10.6271144Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.6271265Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.6271270Z 2023-01-11T21:05:10.6271346Z aten = torch.ops.aten 2023-01-11T21:05:10.6271477Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.6271566Z async_compile = AsyncCompile() 2023-01-11T21:05:10.6271571Z 2023-01-11T21:05:10.6271575Z 2023-01-11T21:05:10.6271706Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.6271895Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.6272013Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:05:10.6272110Z float* __restrict__ out_ptr0, 2023-01-11T21:05:10.6272204Z float* __restrict__ out_ptr1, 2023-01-11T21:05:10.6272297Z float* __restrict__ out_ptr2, 2023-01-11T21:05:10.6272390Z long* __restrict__ out_ptr3) 2023-01-11T21:05:10.6272450Z { 2023-01-11T21:05:10.6272497Z { 2023-01-11T21:05:10.6272560Z { 2023-01-11T21:05:10.6272636Z float tmp1 = 0; 2023-01-11T21:05:10.6272839Z float tmp2 = -std::numeric_limits::infinity(); 2023-01-11T21:05:10.6272961Z float tmp3 = std::numeric_limits::infinity(); 2023-01-11T21:05:10.6273077Z struct IndexValue_9 {size_t index; float value;}; 2023-01-11T21:05:10.6273208Z IndexValue_9 tmp4{0, std::numeric_limits::infinity()}; 2023-01-11T21:05:10.6273329Z #pragma omp declare reduction(argmin : struct IndexValue_9 :\ 2023-01-11T21:05:10.6273477Z omp_out.value = omp_in.value > omp_out.value ? omp_out.value : omp_in.value,\ 2023-01-11T21:05:10.6273620Z omp_out.index = omp_in.value > omp_out.value ? omp_out.index : omp_in.index)\ 2023-01-11T21:05:10.6273790Z initializer(omp_priv = {0, std::numeric_limits::infinity()}) 2023-01-11T21:05:10.6273895Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.6273960Z { 2023-01-11T21:05:10.6274132Z #pragma omp for reduction(+:tmp1) reduction(max:tmp2) reduction(min:tmp3) reduction(argmin:tmp4) 2023-01-11T21:05:10.6274221Z for(long i0=0; i0<4; i0+=1) 2023-01-11T21:05:10.6274272Z { 2023-01-11T21:05:10.6274336Z { 2023-01-11T21:05:10.6274430Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:05:10.6274507Z tmp1 += tmp0; 2023-01-11T21:05:10.6274607Z tmp2 = std::max(tmp2, tmp0); 2023-01-11T21:05:10.6274705Z tmp3 = std::min(tmp3, tmp0); 2023-01-11T21:05:10.6274799Z if (tmp4.value > tmp0) { 2023-01-11T21:05:10.6274906Z tmp4.index = i0; tmp4.value = tmp0; 2023-01-11T21:05:10.6274963Z } 2023-01-11T21:05:10.6275029Z } 2023-01-11T21:05:10.6275092Z } 2023-01-11T21:05:10.6275153Z } 2023-01-11T21:05:10.6275258Z out_ptr0[0] = tmp1; 2023-01-11T21:05:10.6275335Z out_ptr1[0] = tmp2; 2023-01-11T21:05:10.6275397Z out_ptr2[0] = tmp3; 2023-01-11T21:05:10.6275479Z out_ptr3[0] = tmp4.index; 2023-01-11T21:05:10.6275540Z } 2023-01-11T21:05:10.6275600Z } 2023-01-11T21:05:10.6275658Z } 2023-01-11T21:05:10.6275736Z ''') 2023-01-11T21:05:10.6275741Z 2023-01-11T21:05:10.6275746Z 2023-01-11T21:05:10.6275833Z async_compile.wait(globals()) 2023-01-11T21:05:10.6275890Z del async_compile 2023-01-11T21:05:10.6275907Z 2023-01-11T21:05:10.6275963Z def call(args): 2023-01-11T21:05:10.6276029Z arg0_1, = args 2023-01-11T21:05:10.6276098Z args.clear() 2023-01-11T21:05:10.6276284Z buf0 = empty_strided((), (), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6276465Z buf1 = empty_strided((), (), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6276641Z buf2 = empty_strided((), (), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6276818Z buf3 = empty_strided((), (), device='cpu', dtype=torch.int64) 2023-01-11T21:05:10.6277016Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(buf0.data_ptr()), c_void_p(buf1.data_ptr()), c_void_p(buf2.data_ptr()), c_void_p(buf3.data_ptr())) 2023-01-11T21:05:10.6277083Z del arg0_1 2023-01-11T21:05:10.6277168Z return (buf0, buf1, buf2, buf3, ) 2023-01-11T21:05:10.6277173Z 2023-01-11T21:05:10.6277177Z 2023-01-11T21:05:10.6277252Z if __name__ == "__main__": 2023-01-11T21:05:10.6277365Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.6277487Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.6277678Z arg0_1 = rand_strided((4, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6277786Z print_performance(lambda: call([arg0_1])) 2023-01-11T21:05:10.6277792Z 2023-01-11T21:05:10.6277844Z ok (2.748s) 2023-01-11T21:05:10.6278282Z test_reduction3_cpu (__main__.CpuTests) ... inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.6278406Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.6278667Z [2023-01-11 20:57:53,563] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 375 2023-01-11T21:05:10.6278930Z [2023-01-11 20:57:56,289] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 375 2023-01-11T21:05:10.6278935Z 2023-01-11T21:05:10.6279028Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.6279124Z import torch 2023-01-11T21:05:10.6279192Z import random 2023-01-11T21:05:10.6279306Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.6279413Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.6279421Z 2023-01-11T21:05:10.6279497Z aten = torch.ops.aten 2023-01-11T21:05:10.6279628Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.6279719Z async_compile = AsyncCompile() 2023-01-11T21:05:10.6279724Z 2023-01-11T21:05:10.6279728Z 2023-01-11T21:05:10.6279860Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.6280062Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.6280179Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:05:10.6280278Z float* __restrict__ out_ptr0, 2023-01-11T21:05:10.6280360Z float* __restrict__ out_ptr1, 2023-01-11T21:05:10.6280451Z float* __restrict__ out_ptr2, 2023-01-11T21:05:10.6280548Z long* __restrict__ out_ptr3) 2023-01-11T21:05:10.6280722Z { 2023-01-11T21:05:10.6280783Z { 2023-01-11T21:05:10.6280845Z { 2023-01-11T21:05:10.6280985Z float tmp1 = 0; 2023-01-11T21:05:10.6281182Z float tmp2 = -std::numeric_limits::infinity(); 2023-01-11T21:05:10.6281306Z float tmp3 = std::numeric_limits::infinity(); 2023-01-11T21:05:10.6281423Z struct IndexValue_10 {size_t index; float value;}; 2023-01-11T21:05:10.6281645Z IndexValue_10 tmp4{0, -std::numeric_limits::infinity()}; 2023-01-11T21:05:10.6281786Z #pragma omp declare reduction(argmax : struct IndexValue_10 :\ 2023-01-11T21:05:10.6281936Z omp_out.value = omp_in.value < omp_out.value ? omp_out.value : omp_in.value,\ 2023-01-11T21:05:10.6282081Z omp_out.index = omp_in.value < omp_out.value ? omp_out.index : omp_in.index)\ 2023-01-11T21:05:10.6282316Z initializer(omp_priv = {0, -std::numeric_limits::infinity()}) 2023-01-11T21:05:10.6282407Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.6282472Z { 2023-01-11T21:05:10.6282648Z #pragma omp for reduction(+:tmp1) reduction(max:tmp2) reduction(min:tmp3) reduction(argmax:tmp4) 2023-01-11T21:05:10.6282737Z for(long i0=0; i0<4; i0+=1) 2023-01-11T21:05:10.6282806Z { 2023-01-11T21:05:10.6282871Z { 2023-01-11T21:05:10.6282966Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:05:10.6283031Z tmp1 += tmp0; 2023-01-11T21:05:10.6283130Z tmp2 = std::max(tmp2, tmp0); 2023-01-11T21:05:10.6283227Z tmp3 = std::min(tmp3, tmp0); 2023-01-11T21:05:10.6283318Z if (tmp4.value < tmp0) { 2023-01-11T21:05:10.6283428Z tmp4.index = i0; tmp4.value = tmp0; 2023-01-11T21:05:10.6283499Z } 2023-01-11T21:05:10.6283565Z } 2023-01-11T21:05:10.6283628Z } 2023-01-11T21:05:10.6283676Z } 2023-01-11T21:05:10.6283753Z out_ptr0[0] = tmp1; 2023-01-11T21:05:10.6283829Z out_ptr1[0] = tmp2; 2023-01-11T21:05:10.6283903Z out_ptr2[0] = tmp3; 2023-01-11T21:05:10.6283986Z out_ptr3[0] = tmp4.index; 2023-01-11T21:05:10.6284047Z } 2023-01-11T21:05:10.6284094Z } 2023-01-11T21:05:10.6284152Z } 2023-01-11T21:05:10.6284228Z ''') 2023-01-11T21:05:10.6284234Z 2023-01-11T21:05:10.6284238Z 2023-01-11T21:05:10.6284325Z async_compile.wait(globals()) 2023-01-11T21:05:10.6284395Z del async_compile 2023-01-11T21:05:10.6284400Z 2023-01-11T21:05:10.6284468Z def call(args): 2023-01-11T21:05:10.6284534Z arg0_1, = args 2023-01-11T21:05:10.6284602Z args.clear() 2023-01-11T21:05:10.6284773Z buf0 = empty_strided((), (), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6284992Z buf1 = empty_strided((), (), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6285167Z buf2 = empty_strided((), (), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6285345Z buf3 = empty_strided((), (), device='cpu', dtype=torch.int64) 2023-01-11T21:05:10.6285557Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(buf0.data_ptr()), c_void_p(buf1.data_ptr()), c_void_p(buf2.data_ptr()), c_void_p(buf3.data_ptr())) 2023-01-11T21:05:10.6285624Z del arg0_1 2023-01-11T21:05:10.6285711Z return (buf0, buf1, buf2, buf3, ) 2023-01-11T21:05:10.6285716Z 2023-01-11T21:05:10.6285720Z 2023-01-11T21:05:10.6285794Z if __name__ == "__main__": 2023-01-11T21:05:10.6285894Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.6286016Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.6286205Z arg0_1 = rand_strided((4, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6286310Z print_performance(lambda: call([arg0_1])) 2023-01-11T21:05:10.6286318Z 2023-01-11T21:05:10.6286383Z ok (2.768s) 2023-01-11T21:05:10.6286615Z test_reduction4_cpu (__main__.CpuTests) ... skip: Non-deterministic CPU results (0.002s) 2023-01-11T21:05:10.6287107Z test_reflection_pad2d_backward_cpu (__main__.CpuTests) ... inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.6287234Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.6287494Z [2023-01-11 20:57:56,339] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 376 2023-01-11T21:05:10.6287744Z [2023-01-11 20:57:59,100] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 376 2023-01-11T21:05:10.6288143Z inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.6288269Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.6288524Z [2023-01-11 20:57:59,143] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 377 2023-01-11T21:05:10.6288785Z [2023-01-11 20:58:01,985] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 377 2023-01-11T21:05:10.6289178Z inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.6289305Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.6289560Z [2023-01-11 20:58:02,028] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 378 2023-01-11T21:05:10.6289566Z 2023-01-11T21:05:10.6289658Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.6289726Z import torch 2023-01-11T21:05:10.6289782Z import random 2023-01-11T21:05:10.6289894Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.6290013Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.6290018Z 2023-01-11T21:05:10.6290094Z aten = torch.ops.aten 2023-01-11T21:05:10.6290225Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.6290315Z async_compile = AsyncCompile() 2023-01-11T21:05:10.6290320Z 2023-01-11T21:05:10.6290323Z 2023-01-11T21:05:10.6290455Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.6290656Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.6290792Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:05:10.6290890Z float* __restrict__ out_ptr0) 2023-01-11T21:05:10.6290952Z { 2023-01-11T21:05:10.6291048Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.6291108Z { 2023-01-11T21:05:10.6291183Z #pragma omp for 2023-01-11T21:05:10.6291263Z for(long i0=0; i0<8; i0+=1) 2023-01-11T21:05:10.6291311Z { 2023-01-11T21:05:10.6291389Z #pragma GCC ivdep 2023-01-11T21:05:10.6291471Z for(long i1=0; i1<8; i1+=1) 2023-01-11T21:05:10.6291535Z { 2023-01-11T21:05:10.6291599Z { 2023-01-11T21:05:10.6291665Z { 2023-01-11T21:05:10.6291769Z auto tmp0 = static_cast(i0); 2023-01-11T21:05:10.6291857Z auto tmp1 = static_cast(i1); 2023-01-11T21:05:10.6291966Z auto tmp2 = in_ptr0[tmp1 + (8*tmp0)]; 2023-01-11T21:05:10.6292063Z out_ptr0[i1 + (8*i0)] = tmp2; 2023-01-11T21:05:10.6292128Z } 2023-01-11T21:05:10.6292193Z } 2023-01-11T21:05:10.6292297Z } 2023-01-11T21:05:10.6292359Z } 2023-01-11T21:05:10.6292405Z } 2023-01-11T21:05:10.6292466Z } 2023-01-11T21:05:10.6292544Z ''') 2023-01-11T21:05:10.6292549Z 2023-01-11T21:05:10.6292553Z 2023-01-11T21:05:10.6292642Z async_compile.wait(globals()) 2023-01-11T21:05:10.6292712Z del async_compile 2023-01-11T21:05:10.6292717Z 2023-01-11T21:05:10.6292786Z def call(args): 2023-01-11T21:05:10.6292861Z arg0_1, arg1_1 = args 2023-01-11T21:05:10.6292919Z args.clear() 2023-01-11T21:05:10.6293133Z buf0 = empty_strided((1, 1, 8, 8), (64, 64, 8, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6293266Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:05:10.6293333Z del arg0_1 2023-01-11T21:05:10.6293406Z return (buf0, ) 2023-01-11T21:05:10.6293411Z 2023-01-11T21:05:10.6293414Z 2023-01-11T21:05:10.6293489Z if __name__ == "__main__": 2023-01-11T21:05:10.6293606Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.6293731Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.6293930Z arg0_1 = rand_strided((1, 1, 8, 8), (64, 64, 8, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6294140Z arg1_1 = rand_strided((1, 1, 8, 8), (64, 64, 8, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6294253Z print_performance(lambda: call([arg0_1, arg1_1])) 2023-01-11T21:05:10.6294258Z 2023-01-11T21:05:10.6294262Z 2023-01-11T21:05:10.6294356Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.6294425Z import torch 2023-01-11T21:05:10.6294495Z import random 2023-01-11T21:05:10.6294613Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.6294733Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.6294739Z 2023-01-11T21:05:10.6294803Z aten = torch.ops.aten 2023-01-11T21:05:10.6294939Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.6295029Z async_compile = AsyncCompile() 2023-01-11T21:05:10.6295034Z 2023-01-11T21:05:10.6295040Z 2023-01-11T21:05:10.6295171Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.6295375Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.6295493Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:05:10.6295592Z float* __restrict__ out_ptr0) 2023-01-11T21:05:10.6295653Z { 2023-01-11T21:05:10.6295738Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.6295798Z { 2023-01-11T21:05:10.6295873Z #pragma omp for 2023-01-11T21:05:10.6295955Z for(long i0=0; i0<8; i0+=1) 2023-01-11T21:05:10.6296016Z { 2023-01-11T21:05:10.6296096Z #pragma GCC ivdep 2023-01-11T21:05:10.6296164Z for(long i1=0; i1<8; i1+=1) 2023-01-11T21:05:10.6296259Z { 2023-01-11T21:05:10.6296322Z { 2023-01-11T21:05:10.6296388Z { 2023-01-11T21:05:10.6296499Z auto tmp0 = static_cast(1 + i0); 2023-01-11T21:05:10.6296605Z auto tmp1 = static_cast(1 + i1); 2023-01-11T21:05:10.6296711Z auto tmp2 = in_ptr0[tmp1 + (10*tmp0)]; 2023-01-11T21:05:10.6296799Z auto tmp3 = static_cast(i1); 2023-01-11T21:05:10.6296891Z auto tmp4 = tmp3 >= 1; 2023-01-11T21:05:10.6296981Z auto tmp5 = tmp3 <= 1; 2023-01-11T21:05:10.6297073Z auto tmp6 = tmp4 & tmp5; 2023-01-11T21:05:10.6297157Z float tmp7 = 0.0; 2023-01-11T21:05:10.6297229Z if(tmp6) 2023-01-11T21:05:10.6297296Z { 2023-01-11T21:05:10.6297403Z auto tmp8 = static_cast(1 + i0); 2023-01-11T21:05:10.6297567Z auto tmp9 = static_cast(1 + ((-1)*i1)); 2023-01-11T21:05:10.6297675Z auto tmp10 = in_ptr0[tmp9 + (10*tmp8)]; 2023-01-11T21:05:10.6297782Z tmp7 = tmp10; 2023-01-11T21:05:10.6297850Z } 2023-01-11T21:05:10.6297943Z auto tmp11 = tmp2 + tmp7; 2023-01-11T21:05:10.6298035Z auto tmp12 = tmp3 >= 6; 2023-01-11T21:05:10.6298125Z auto tmp13 = tmp3 <= 6; 2023-01-11T21:05:10.6298207Z auto tmp14 = tmp12 & tmp13; 2023-01-11T21:05:10.6298290Z float tmp15 = 0.0; 2023-01-11T21:05:10.6298364Z if(tmp14) 2023-01-11T21:05:10.6298431Z { 2023-01-11T21:05:10.6298622Z auto tmp16 = static_cast(1 + i0); 2023-01-11T21:05:10.6298809Z auto tmp17 = static_cast(15 + ((-1)*i1)); 2023-01-11T21:05:10.6298924Z auto tmp18 = in_ptr0[tmp17 + (10*tmp16)]; 2023-01-11T21:05:10.6298993Z tmp15 = tmp18; 2023-01-11T21:05:10.6299066Z } 2023-01-11T21:05:10.6299162Z auto tmp19 = tmp11 + tmp15; 2023-01-11T21:05:10.6299266Z auto tmp20 = static_cast(i0); 2023-01-11T21:05:10.6299358Z auto tmp21 = tmp20 >= 1; 2023-01-11T21:05:10.6299450Z auto tmp22 = tmp20 <= 1; 2023-01-11T21:05:10.6299542Z auto tmp23 = tmp21 & tmp22; 2023-01-11T21:05:10.6299615Z float tmp24 = 0.0; 2023-01-11T21:05:10.6299690Z if(tmp23) 2023-01-11T21:05:10.6299757Z { 2023-01-11T21:05:10.6299935Z auto tmp25 = static_cast(1 + ((-1)*i0)); 2023-01-11T21:05:10.6300045Z auto tmp26 = static_cast(1 + i1); 2023-01-11T21:05:10.6300159Z auto tmp27 = in_ptr0[tmp26 + (10*tmp25)]; 2023-01-11T21:05:10.6300241Z tmp24 = tmp27; 2023-01-11T21:05:10.6300310Z } 2023-01-11T21:05:10.6300392Z auto tmp28 = tmp19 + tmp24; 2023-01-11T21:05:10.6300484Z auto tmp29 = tmp20 >= 6; 2023-01-11T21:05:10.6300574Z auto tmp30 = tmp20 <= 6; 2023-01-11T21:05:10.6300671Z auto tmp31 = tmp29 & tmp30; 2023-01-11T21:05:10.6300754Z float tmp32 = 0.0; 2023-01-11T21:05:10.6300828Z if(tmp31) 2023-01-11T21:05:10.6300893Z { 2023-01-11T21:05:10.6301054Z auto tmp33 = static_cast(15 + ((-1)*i0)); 2023-01-11T21:05:10.6301161Z auto tmp34 = static_cast(1 + i1); 2023-01-11T21:05:10.6301270Z auto tmp35 = in_ptr0[tmp34 + (10*tmp33)]; 2023-01-11T21:05:10.6301389Z tmp32 = tmp35; 2023-01-11T21:05:10.6301455Z } 2023-01-11T21:05:10.6301548Z auto tmp36 = tmp28 + tmp32; 2023-01-11T21:05:10.6301643Z auto tmp37 = tmp23 & tmp6; 2023-01-11T21:05:10.6301714Z float tmp38 = 0.0; 2023-01-11T21:05:10.6301787Z if(tmp37) 2023-01-11T21:05:10.6301851Z { 2023-01-11T21:05:10.6302025Z auto tmp39 = static_cast(1 + ((-1)*i0)); 2023-01-11T21:05:10.6302197Z auto tmp40 = static_cast(1 + ((-1)*i1)); 2023-01-11T21:05:10.6302305Z auto tmp41 = in_ptr0[tmp40 + (10*tmp39)]; 2023-01-11T21:05:10.6302384Z tmp38 = tmp41; 2023-01-11T21:05:10.6302437Z } 2023-01-11T21:05:10.6302529Z auto tmp42 = tmp36 + tmp38; 2023-01-11T21:05:10.6302622Z auto tmp43 = tmp23 & tmp14; 2023-01-11T21:05:10.6302706Z float tmp44 = 0.0; 2023-01-11T21:05:10.6302779Z if(tmp43) 2023-01-11T21:05:10.6302873Z { 2023-01-11T21:05:10.6303049Z auto tmp45 = static_cast(1 + ((-1)*i0)); 2023-01-11T21:05:10.6303227Z auto tmp46 = static_cast(15 + ((-1)*i1)); 2023-01-11T21:05:10.6303321Z auto tmp47 = in_ptr0[tmp46 + (10*tmp45)]; 2023-01-11T21:05:10.6303401Z tmp44 = tmp47; 2023-01-11T21:05:10.6303466Z } 2023-01-11T21:05:10.6303558Z auto tmp48 = tmp42 + tmp44; 2023-01-11T21:05:10.6303651Z auto tmp49 = tmp31 & tmp6; 2023-01-11T21:05:10.6303733Z float tmp50 = 0.0; 2023-01-11T21:05:10.6303806Z if(tmp49) 2023-01-11T21:05:10.6303862Z { 2023-01-11T21:05:10.6304038Z auto tmp51 = static_cast(15 + ((-1)*i0)); 2023-01-11T21:05:10.6304211Z auto tmp52 = static_cast(1 + ((-1)*i1)); 2023-01-11T21:05:10.6304319Z auto tmp53 = in_ptr0[tmp52 + (10*tmp51)]; 2023-01-11T21:05:10.6304401Z tmp50 = tmp53; 2023-01-11T21:05:10.6304467Z } 2023-01-11T21:05:10.6304558Z auto tmp54 = tmp48 + tmp50; 2023-01-11T21:05:10.6304636Z auto tmp55 = tmp31 & tmp14; 2023-01-11T21:05:10.6304718Z float tmp56 = 0.0; 2023-01-11T21:05:10.6304791Z if(tmp55) 2023-01-11T21:05:10.6304855Z { 2023-01-11T21:05:10.6305029Z auto tmp57 = static_cast(15 + ((-1)*i0)); 2023-01-11T21:05:10.6305202Z auto tmp58 = static_cast(15 + ((-1)*i1)); 2023-01-11T21:05:10.6305311Z auto tmp59 = in_ptr0[tmp58 + (10*tmp57)]; 2023-01-11T21:05:10.6305380Z tmp56 = tmp59; 2023-01-11T21:05:10.6305445Z } 2023-01-11T21:05:10.6305540Z auto tmp60 = tmp54 + tmp56; 2023-01-11T21:05:10.6305634Z out_ptr0[i1 + (8*i0)] = tmp60; 2023-01-11T21:05:10.6305699Z } 2023-01-11T21:05:10.6305764Z } 2023-01-11T21:05:10.6305826Z } 2023-01-11T21:05:10.6305874Z } 2023-01-11T21:05:10.6305934Z } 2023-01-11T21:05:10.6305992Z } 2023-01-11T21:05:10.6306068Z ''') 2023-01-11T21:05:10.6306074Z 2023-01-11T21:05:10.6306078Z 2023-01-11T21:05:10.6306167Z async_compile.wait(globals()) 2023-01-11T21:05:10.6306237Z del async_compile 2023-01-11T21:05:10.6306242Z 2023-01-11T21:05:10.6306310Z def call(args): 2023-01-11T21:05:10.6306382Z arg0_1, arg1_1 = args 2023-01-11T21:05:10.6306439Z args.clear() 2023-01-11T21:05:10.6306685Z buf0 = empty_strided((1, 1, 8, 8), (64, 64, 8, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6306817Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:05:10.6306885Z del arg0_1 2023-01-11T21:05:10.6306958Z return (buf0, ) 2023-01-11T21:05:10.6306963Z 2023-01-11T21:05:10.6306967Z 2023-01-11T21:05:10.6307040Z if __name__ == "__main__": 2023-01-11T21:05:10.6307153Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.6307263Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.6307480Z arg0_1 = rand_strided((1, 1, 10, 10), (100, 100, 10, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6307689Z arg1_1 = rand_strided((1, 1, 8, 8), (64, 64, 8, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6307802Z print_performance(lambda: call([arg0_1, arg1_1])) 2023-01-11T21:05:10.6307808Z 2023-01-11T21:05:10.6307811Z 2023-01-11T21:05:10.6307904Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.6307974Z import torch 2023-01-11T21:05:10.6308043Z import random 2023-01-11T21:05:10.6308155Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.6308289Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.6308295Z 2023-01-11T21:05:10.6308372Z aten = torch.ops.aten 2023-01-11T21:05:10.6308505Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.6308595Z async_compile = AsyncCompile() 2023-01-11T21:05:10.6308600Z 2023-01-11T21:05:10.6308604Z 2023-01-11T21:05:10.6308736Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.6308938Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.6309058Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:05:10.6309156Z float* __restrict__ out_ptr0) 2023-01-11T21:05:10.6309203Z { 2023-01-11T21:05:10.6309298Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.6309360Z { 2023-01-11T21:05:10.6309435Z #pragma omp for 2023-01-11T21:05:10.6309516Z for(long i0=0; i0<8; i0+=1) 2023-01-11T21:05:10.6309576Z { 2023-01-11T21:05:10.6309653Z #pragma GCC ivdep 2023-01-11T21:05:10.6309724Z for(long i1=0; i1<8; i1+=1) 2023-01-11T21:05:10.6309785Z { 2023-01-11T21:05:10.6309848Z { 2023-01-11T21:05:10.6309914Z { 2023-01-11T21:05:10.6310022Z auto tmp0 = static_cast(3 + i0); 2023-01-11T21:05:10.6310127Z auto tmp1 = static_cast(1 + i1); 2023-01-11T21:05:10.6310232Z auto tmp2 = in_ptr0[tmp1 + (11*tmp0)]; 2023-01-11T21:05:10.6310320Z auto tmp3 = static_cast(i1); 2023-01-11T21:05:10.6310409Z auto tmp4 = tmp3 >= 1; 2023-01-11T21:05:10.6310501Z auto tmp5 = tmp3 <= 1; 2023-01-11T21:05:10.6310592Z auto tmp6 = tmp4 & tmp5; 2023-01-11T21:05:10.6310678Z float tmp7 = 0.0; 2023-01-11T21:05:10.6310750Z if(tmp6) 2023-01-11T21:05:10.6310817Z { 2023-01-11T21:05:10.6310913Z auto tmp8 = static_cast(3 + i0); 2023-01-11T21:05:10.6311089Z auto tmp9 = static_cast(1 + ((-1)*i1)); 2023-01-11T21:05:10.6311195Z auto tmp10 = in_ptr0[tmp9 + (11*tmp8)]; 2023-01-11T21:05:10.6311276Z tmp7 = tmp10; 2023-01-11T21:05:10.6311343Z } 2023-01-11T21:05:10.6311438Z auto tmp11 = tmp2 + tmp7; 2023-01-11T21:05:10.6311529Z auto tmp12 = tmp3 >= 5; 2023-01-11T21:05:10.6311606Z auto tmp13 = tmp3 <= 6; 2023-01-11T21:05:10.6311699Z auto tmp14 = tmp12 & tmp13; 2023-01-11T21:05:10.6311782Z float tmp15 = 0.0; 2023-01-11T21:05:10.6311888Z if(tmp14) 2023-01-11T21:05:10.6311956Z { 2023-01-11T21:05:10.6312064Z auto tmp16 = static_cast(3 + i0); 2023-01-11T21:05:10.6312243Z auto tmp17 = static_cast(15 + ((-1)*i1)); 2023-01-11T21:05:10.6312351Z auto tmp18 = in_ptr0[tmp17 + (11*tmp16)]; 2023-01-11T21:05:10.6312420Z tmp15 = tmp18; 2023-01-11T21:05:10.6312489Z } 2023-01-11T21:05:10.6312580Z auto tmp19 = tmp11 + tmp15; 2023-01-11T21:05:10.6312683Z auto tmp20 = static_cast(i0); 2023-01-11T21:05:10.6312776Z auto tmp21 = tmp20 >= 1; 2023-01-11T21:05:10.6312865Z auto tmp22 = tmp20 <= 3; 2023-01-11T21:05:10.6312957Z auto tmp23 = tmp21 & tmp22; 2023-01-11T21:05:10.6313028Z float tmp24 = 0.0; 2023-01-11T21:05:10.6313104Z if(tmp23) 2023-01-11T21:05:10.6313170Z { 2023-01-11T21:05:10.6313345Z auto tmp25 = static_cast(3 + ((-1)*i0)); 2023-01-11T21:05:10.6313481Z auto tmp26 = static_cast(1 + i1); 2023-01-11T21:05:10.6313590Z auto tmp27 = in_ptr0[tmp26 + (11*tmp25)]; 2023-01-11T21:05:10.6313672Z tmp24 = tmp27; 2023-01-11T21:05:10.6313726Z } 2023-01-11T21:05:10.6313818Z auto tmp28 = tmp19 + tmp24; 2023-01-11T21:05:10.6313909Z auto tmp29 = tmp20 >= 3; 2023-01-11T21:05:10.6313998Z auto tmp30 = tmp20 <= 6; 2023-01-11T21:05:10.6314090Z auto tmp31 = tmp29 & tmp30; 2023-01-11T21:05:10.6314173Z float tmp32 = 0.0; 2023-01-11T21:05:10.6314247Z if(tmp31) 2023-01-11T21:05:10.6314301Z { 2023-01-11T21:05:10.6314480Z auto tmp33 = static_cast(17 + ((-1)*i0)); 2023-01-11T21:05:10.6314587Z auto tmp34 = static_cast(1 + i1); 2023-01-11T21:05:10.6314699Z auto tmp35 = in_ptr0[tmp34 + (11*tmp33)]; 2023-01-11T21:05:10.6314781Z tmp32 = tmp35; 2023-01-11T21:05:10.6314847Z } 2023-01-11T21:05:10.6314939Z auto tmp36 = tmp28 + tmp32; 2023-01-11T21:05:10.6315031Z auto tmp37 = tmp23 & tmp6; 2023-01-11T21:05:10.6315102Z float tmp38 = 0.0; 2023-01-11T21:05:10.6315175Z if(tmp37) 2023-01-11T21:05:10.6315240Z { 2023-01-11T21:05:10.6315414Z auto tmp39 = static_cast(3 + ((-1)*i0)); 2023-01-11T21:05:10.6315589Z auto tmp40 = static_cast(1 + ((-1)*i1)); 2023-01-11T21:05:10.6315700Z auto tmp41 = in_ptr0[tmp40 + (11*tmp39)]; 2023-01-11T21:05:10.6315780Z tmp38 = tmp41; 2023-01-11T21:05:10.6315833Z } 2023-01-11T21:05:10.6315929Z auto tmp42 = tmp36 + tmp38; 2023-01-11T21:05:10.6316019Z auto tmp43 = tmp23 & tmp14; 2023-01-11T21:05:10.6316103Z float tmp44 = 0.0; 2023-01-11T21:05:10.6316176Z if(tmp43) 2023-01-11T21:05:10.6316246Z { 2023-01-11T21:05:10.6316418Z auto tmp45 = static_cast(3 + ((-1)*i0)); 2023-01-11T21:05:10.6316582Z auto tmp46 = static_cast(15 + ((-1)*i1)); 2023-01-11T21:05:10.6316690Z auto tmp47 = in_ptr0[tmp46 + (11*tmp45)]; 2023-01-11T21:05:10.6316770Z tmp44 = tmp47; 2023-01-11T21:05:10.6316836Z } 2023-01-11T21:05:10.6316928Z auto tmp48 = tmp42 + tmp44; 2023-01-11T21:05:10.6317054Z auto tmp49 = tmp31 & tmp6; 2023-01-11T21:05:10.6317138Z float tmp50 = 0.0; 2023-01-11T21:05:10.6317201Z if(tmp49) 2023-01-11T21:05:10.6317267Z { 2023-01-11T21:05:10.6317443Z auto tmp51 = static_cast(17 + ((-1)*i0)); 2023-01-11T21:05:10.6317617Z auto tmp52 = static_cast(1 + ((-1)*i1)); 2023-01-11T21:05:10.6317721Z auto tmp53 = in_ptr0[tmp52 + (11*tmp51)]; 2023-01-11T21:05:10.6317801Z tmp50 = tmp53; 2023-01-11T21:05:10.6317869Z } 2023-01-11T21:05:10.6317961Z auto tmp54 = tmp48 + tmp50; 2023-01-11T21:05:10.6318039Z auto tmp55 = tmp31 & tmp14; 2023-01-11T21:05:10.6318120Z float tmp56 = 0.0; 2023-01-11T21:05:10.6318193Z if(tmp55) 2023-01-11T21:05:10.6318262Z { 2023-01-11T21:05:10.6318436Z auto tmp57 = static_cast(17 + ((-1)*i0)); 2023-01-11T21:05:10.6318645Z auto tmp58 = static_cast(15 + ((-1)*i1)); 2023-01-11T21:05:10.6318753Z auto tmp59 = in_ptr0[tmp58 + (11*tmp57)]; 2023-01-11T21:05:10.6318822Z tmp56 = tmp59; 2023-01-11T21:05:10.6318887Z } 2023-01-11T21:05:10.6318979Z auto tmp60 = tmp54 + tmp56; 2023-01-11T21:05:10.6319076Z out_ptr0[i1 + (8*i0)] = tmp60; 2023-01-11T21:05:10.6319142Z } 2023-01-11T21:05:10.6319206Z } 2023-01-11T21:05:10.6319269Z } 2023-01-11T21:05:10.6319318Z } 2023-01-11T21:05:10.6319378Z } 2023-01-11T21:05:10.6319437Z } 2023-01-11T21:05:10.6319513Z ''') 2023-01-11T21:05:10.6319519Z 2023-01-11T21:05:10.6319524Z 2023-01-11T21:05:10.6319614Z async_compile.wait(globals()) 2023-01-11T21:05:10.6319683Z del async_compile 2023-01-11T21:05:10.6319689Z 2023-01-11T21:05:10.6319758Z def call(args): 2023-01-11T21:05:10.6319818Z arg0_1, arg1_1 = args 2023-01-11T21:05:10.6319891Z args.clear() 2023-01-11T21:05:10.6320102Z buf0 = empty_strided((1, 1, 8, 8), (64, 64, 8, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6320236Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:05:10.6320304Z del arg0_1 2023-01-11T21:05:10.6320374Z return (buf0, ) 2023-01-11T21:05:10.6320379Z 2023-01-11T21:05:10.6320383Z 2023-01-11T21:05:10.6320458Z if __name__ == "__main__": 2023-01-11T21:05:10.6320570Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.6320803Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.6321027Z arg0_1 = rand_strided((1, 1, 15, 11), (165, 165, 11, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6321241Z arg1_1 = rand_strided((1, 1, 8, 8), (64, 64, 8, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6321357Z print_performance(lambda: call([arg0_1, arg1_1])) 2023-01-11T21:05:10.6321627Z [2023-01-11 20:58:04,891] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 378 2023-01-11T21:05:10.6321633Z 2023-01-11T21:05:10.6321701Z ok (8.600s) 2023-01-11T21:05:10.6322149Z test_reflection_pad2d_cpu (__main__.CpuTests) ... inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.6322275Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.6322534Z [2023-01-11 20:58:04,950] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 379 2023-01-11T21:05:10.6322843Z [2023-01-11 20:58:07,737] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 379 2023-01-11T21:05:10.6322862Z 2023-01-11T21:05:10.6322941Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.6323013Z import torch 2023-01-11T21:05:10.6323084Z import random 2023-01-11T21:05:10.6323198Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.6323317Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.6323322Z 2023-01-11T21:05:10.6323400Z aten = torch.ops.aten 2023-01-11T21:05:10.6323533Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.6323611Z async_compile = AsyncCompile() 2023-01-11T21:05:10.6323616Z 2023-01-11T21:05:10.6323621Z 2023-01-11T21:05:10.6323755Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.6323962Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.6324083Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:05:10.6324185Z float* __restrict__ out_ptr0, 2023-01-11T21:05:10.6324286Z float* __restrict__ out_ptr1) 2023-01-11T21:05:10.6324347Z { 2023-01-11T21:05:10.6324481Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.6324531Z { 2023-01-11T21:05:10.6324607Z #pragma omp for 2023-01-11T21:05:10.6324690Z for(long i0=0; i0<10; i0+=1) 2023-01-11T21:05:10.6324752Z { 2023-01-11T21:05:10.6324832Z #pragma GCC ivdep 2023-01-11T21:05:10.6324917Z for(long i1=0; i1<10; i1+=1) 2023-01-11T21:05:10.6324966Z { 2023-01-11T21:05:10.6325030Z { 2023-01-11T21:05:10.6325095Z { 2023-01-11T21:05:10.6325200Z auto tmp0 = static_cast(7); 2023-01-11T21:05:10.6325302Z auto tmp1 = static_cast(i0); 2023-01-11T21:05:10.6325403Z auto tmp2 = static_cast(1); 2023-01-11T21:05:10.6325547Z auto tmp3 = tmp1 - tmp2; 2023-01-11T21:05:10.6325641Z auto tmp4 = std::abs(tmp3); 2023-01-11T21:05:10.6325780Z auto tmp5 = tmp0 - tmp4; 2023-01-11T21:05:10.6325882Z auto tmp6 = std::abs(tmp5); 2023-01-11T21:05:10.6326023Z auto tmp7 = tmp0 - tmp6; 2023-01-11T21:05:10.6326126Z auto tmp8 = static_cast(i1); 2023-01-11T21:05:10.6326263Z auto tmp9 = tmp8 - tmp2; 2023-01-11T21:05:10.6326364Z auto tmp10 = std::abs(tmp9); 2023-01-11T21:05:10.6326506Z auto tmp11 = tmp0 - tmp10; 2023-01-11T21:05:10.6326594Z auto tmp12 = std::abs(tmp11); 2023-01-11T21:05:10.6326733Z auto tmp13 = tmp0 - tmp12; 2023-01-11T21:05:10.6326838Z auto tmp14 = in_ptr0[tmp13 + (8*tmp7)]; 2023-01-11T21:05:10.6326935Z out_ptr0[i1 + (10*i0)] = tmp14; 2023-01-11T21:05:10.6327000Z } 2023-01-11T21:05:10.6327063Z } 2023-01-11T21:05:10.6327123Z } 2023-01-11T21:05:10.6327171Z } 2023-01-11T21:05:10.6327248Z #pragma omp for 2023-01-11T21:05:10.6327330Z for(long i0=0; i0<15; i0+=1) 2023-01-11T21:05:10.6327393Z { 2023-01-11T21:05:10.6327470Z #pragma GCC ivdep 2023-01-11T21:05:10.6327554Z for(long i1=0; i1<11; i1+=1) 2023-01-11T21:05:10.6327617Z { 2023-01-11T21:05:10.6327667Z { 2023-01-11T21:05:10.6327730Z { 2023-01-11T21:05:10.6327830Z auto tmp0 = static_cast(7); 2023-01-11T21:05:10.6327932Z auto tmp1 = static_cast(i0); 2023-01-11T21:05:10.6328032Z auto tmp2 = static_cast(3); 2023-01-11T21:05:10.6328170Z auto tmp3 = tmp1 - tmp2; 2023-01-11T21:05:10.6328267Z auto tmp4 = std::abs(tmp3); 2023-01-11T21:05:10.6328429Z auto tmp5 = tmp0 - tmp4; 2023-01-11T21:05:10.6328527Z auto tmp6 = std::abs(tmp5); 2023-01-11T21:05:10.6328665Z auto tmp7 = tmp0 - tmp6; 2023-01-11T21:05:10.6328766Z auto tmp8 = static_cast(i1); 2023-01-11T21:05:10.6328866Z auto tmp9 = static_cast(1); 2023-01-11T21:05:10.6329006Z auto tmp10 = tmp8 - tmp9; 2023-01-11T21:05:10.6329106Z auto tmp11 = std::abs(tmp10); 2023-01-11T21:05:10.6329233Z auto tmp12 = tmp0 - tmp11; 2023-01-11T21:05:10.6329335Z auto tmp13 = std::abs(tmp12); 2023-01-11T21:05:10.6329474Z auto tmp14 = tmp0 - tmp13; 2023-01-11T21:05:10.6329579Z auto tmp15 = in_ptr0[tmp14 + (8*tmp7)]; 2023-01-11T21:05:10.6329675Z out_ptr1[i1 + (11*i0)] = tmp15; 2023-01-11T21:05:10.6329742Z } 2023-01-11T21:05:10.6329807Z } 2023-01-11T21:05:10.6329857Z } 2023-01-11T21:05:10.6329917Z } 2023-01-11T21:05:10.6329977Z } 2023-01-11T21:05:10.6330079Z } 2023-01-11T21:05:10.6330158Z ''') 2023-01-11T21:05:10.6330163Z 2023-01-11T21:05:10.6330167Z 2023-01-11T21:05:10.6330256Z async_compile.wait(globals()) 2023-01-11T21:05:10.6330326Z del async_compile 2023-01-11T21:05:10.6330331Z 2023-01-11T21:05:10.6330399Z def call(args): 2023-01-11T21:05:10.6330454Z arg0_1, = args 2023-01-11T21:05:10.6330523Z args.clear() 2023-01-11T21:05:10.6330742Z buf0 = empty_strided((1, 1, 10, 10), (100, 100, 10, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6330956Z buf1 = empty_strided((1, 1, 15, 11), (165, 165, 11, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6331145Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(buf0.data_ptr()), c_void_p(buf1.data_ptr())) 2023-01-11T21:05:10.6331245Z del arg0_1 2023-01-11T21:05:10.6331353Z return (buf0, buf1, ) 2023-01-11T21:05:10.6331361Z 2023-01-11T21:05:10.6331367Z 2023-01-11T21:05:10.6331443Z if __name__ == "__main__": 2023-01-11T21:05:10.6331562Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.6331686Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.6331901Z arg0_1 = rand_strided((1, 1, 8, 8), (64, 64, 8, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6332011Z print_performance(lambda: call([arg0_1])) 2023-01-11T21:05:10.6332016Z 2023-01-11T21:05:10.6332082Z ok (2.845s) 2023-01-11T21:05:10.6332520Z test_relu_cpu (__main__.CpuTests) ... inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.6332650Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.6332913Z [2023-01-11 20:58:07,789] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 380 2023-01-11T21:05:10.6333166Z [2023-01-11 20:58:10,526] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 380 2023-01-11T21:05:10.6333186Z 2023-01-11T21:05:10.6333266Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.6333335Z import torch 2023-01-11T21:05:10.6333406Z import random 2023-01-11T21:05:10.6333521Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.6333640Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.6333645Z 2023-01-11T21:05:10.6333721Z aten = torch.ops.aten 2023-01-11T21:05:10.6333853Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.6333932Z async_compile = AsyncCompile() 2023-01-11T21:05:10.6333937Z 2023-01-11T21:05:10.6333955Z 2023-01-11T21:05:10.6334157Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.6334359Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.6334480Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:05:10.6334584Z const float* __restrict__ in_ptr1, 2023-01-11T21:05:10.6334685Z float* __restrict__ out_ptr0, 2023-01-11T21:05:10.6334780Z float* __restrict__ out_ptr1) 2023-01-11T21:05:10.6334840Z { 2023-01-11T21:05:10.6334925Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.6334986Z { 2023-01-11T21:05:10.6335063Z #pragma omp for 2023-01-11T21:05:10.6335144Z for(long i0=0; i0<4; i0+=1) 2023-01-11T21:05:10.6335208Z { 2023-01-11T21:05:10.6335341Z auto tmp0 = at::vec::Vectorized::loadu(in_ptr0 + 16*i0); 2023-01-11T21:05:10.6335475Z auto tmp2 = at::vec::Vectorized::loadu(in_ptr1 + 16*i0); 2023-01-11T21:05:10.6335590Z auto tmp1 = at::vec::clamp_min(tmp0, decltype(tmp0)(0)); 2023-01-11T21:05:10.6335677Z auto tmp3 = tmp0 + tmp2; 2023-01-11T21:05:10.6335829Z auto tmp4 = at::vec::clamp_min(tmp3, decltype(tmp3)(0)); 2023-01-11T21:05:10.6335963Z auto tmp5 = at::vec::Vectorized(static_cast(10)); 2023-01-11T21:05:10.6336047Z auto tmp6 = tmp4 / tmp5; 2023-01-11T21:05:10.6336138Z tmp1.store(out_ptr0 + 16*i0); 2023-01-11T21:05:10.6336232Z tmp6.store(out_ptr1 + 16*i0); 2023-01-11T21:05:10.6336294Z } 2023-01-11T21:05:10.6336375Z #pragma omp for simd simdlen(8) 2023-01-11T21:05:10.6336454Z for(long i0=64; i0<64; i0+=1) 2023-01-11T21:05:10.6336517Z { 2023-01-11T21:05:10.6336598Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:05:10.6336676Z auto tmp2 = in_ptr1[i0]; 2023-01-11T21:05:10.6336762Z auto tmp1 = tmp0 * (tmp0>0); 2023-01-11T21:05:10.6336844Z auto tmp3 = tmp0 + tmp2; 2023-01-11T21:05:10.6336918Z auto tmp4 = tmp3 * (tmp3>0); 2023-01-11T21:05:10.6337017Z auto tmp5 = static_cast(10); 2023-01-11T21:05:10.6337101Z auto tmp6 = tmp4 / tmp5; 2023-01-11T21:05:10.6337177Z out_ptr0[i0] = tmp1; 2023-01-11T21:05:10.6337254Z out_ptr1[i0] = tmp6; 2023-01-11T21:05:10.6337315Z } 2023-01-11T21:05:10.6337363Z } 2023-01-11T21:05:10.6337421Z } 2023-01-11T21:05:10.6337497Z ''') 2023-01-11T21:05:10.6337502Z 2023-01-11T21:05:10.6337507Z 2023-01-11T21:05:10.6337594Z async_compile.wait(globals()) 2023-01-11T21:05:10.6337667Z del async_compile 2023-01-11T21:05:10.6337672Z 2023-01-11T21:05:10.6337741Z def call(args): 2023-01-11T21:05:10.6337815Z arg0_1, arg1_1 = args 2023-01-11T21:05:10.6337884Z args.clear() 2023-01-11T21:05:10.6338064Z buf0 = empty_strided((8, 8), (8, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6338253Z buf1 = empty_strided((8, 8), (8, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6338442Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(arg1_1.data_ptr()), c_void_p(buf0.data_ptr()), c_void_p(buf1.data_ptr())) 2023-01-11T21:05:10.6338587Z del arg0_1 2023-01-11T21:05:10.6338657Z del arg1_1 2023-01-11T21:05:10.6338735Z return (buf0, buf1, ) 2023-01-11T21:05:10.6338740Z 2023-01-11T21:05:10.6338744Z 2023-01-11T21:05:10.6338819Z if __name__ == "__main__": 2023-01-11T21:05:10.6338933Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.6339042Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.6339242Z arg0_1 = rand_strided((8, 8), (8, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6339433Z arg1_1 = rand_strided((8, 8), (8, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6339547Z print_performance(lambda: call([arg0_1, arg1_1])) 2023-01-11T21:05:10.6339552Z 2023-01-11T21:05:10.6339621Z ok (2.789s) 2023-01-11T21:05:10.6340065Z test_remainder_cpu (__main__.CpuTests) ... inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.6340229Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.6340488Z [2023-01-11 20:58:10,590] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 381 2023-01-11T21:05:10.6340750Z [2023-01-11 20:58:13,276] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 381 2023-01-11T21:05:10.6340756Z 2023-01-11T21:05:10.6340835Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.6340904Z import torch 2023-01-11T21:05:10.6340973Z import random 2023-01-11T21:05:10.6341086Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.6341207Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.6341212Z 2023-01-11T21:05:10.6341288Z aten = torch.ops.aten 2023-01-11T21:05:10.6341421Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.6341524Z async_compile = AsyncCompile() 2023-01-11T21:05:10.6341542Z 2023-01-11T21:05:10.6341546Z 2023-01-11T21:05:10.6341667Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.6341904Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.6342073Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:05:10.6342213Z const float* __restrict__ in_ptr1, 2023-01-11T21:05:10.6342312Z float* __restrict__ out_ptr0, 2023-01-11T21:05:10.6342409Z float* __restrict__ out_ptr1, 2023-01-11T21:05:10.6342502Z float* __restrict__ out_ptr2) 2023-01-11T21:05:10.6342548Z { 2023-01-11T21:05:10.6342647Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.6342707Z { 2023-01-11T21:05:10.6342781Z #pragma omp for 2023-01-11T21:05:10.6342861Z for(long i0=0; i0<64; i0+=1) 2023-01-11T21:05:10.6342922Z { 2023-01-11T21:05:10.6342988Z { 2023-01-11T21:05:10.6343038Z { 2023-01-11T21:05:10.6343132Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:05:10.6343222Z auto tmp1 = in_ptr1[i0]; 2023-01-11T21:05:10.6343320Z auto tmp2 = mod(tmp0, tmp1); 2023-01-11T21:05:10.6343409Z auto tmp3 = tmp2 + tmp1; 2023-01-11T21:05:10.6343532Z auto tmp4 = ((tmp2 != 0) & ((tmp2 < 0) != (tmp1 < 0))) ? tmp3 : tmp2; 2023-01-11T21:05:10.6343637Z auto tmp5 = static_cast(1); 2023-01-11T21:05:10.6343714Z auto tmp6 = tmp0 + tmp5; 2023-01-11T21:05:10.6343853Z auto tmp7 = tmp1 - tmp5; 2023-01-11T21:05:10.6343950Z auto tmp8 = mod(tmp6, tmp7); 2023-01-11T21:05:10.6344041Z auto tmp9 = tmp8 + tmp7; 2023-01-11T21:05:10.6344162Z auto tmp10 = ((tmp8 != 0) & ((tmp8 < 0) != (tmp7 < 0))) ? tmp9 : tmp8; 2023-01-11T21:05:10.6344300Z auto tmp11 = tmp0 - tmp5; 2023-01-11T21:05:10.6344390Z auto tmp12 = tmp1 + tmp5; 2023-01-11T21:05:10.6344474Z auto tmp13 = mod(tmp11, tmp12); 2023-01-11T21:05:10.6344566Z auto tmp14 = tmp13 + tmp12; 2023-01-11T21:05:10.6344692Z auto tmp15 = ((tmp13 != 0) & ((tmp13 < 0) != (tmp12 < 0))) ? tmp14 : tmp13; 2023-01-11T21:05:10.6344776Z out_ptr0[i0] = tmp4; 2023-01-11T21:05:10.6344859Z out_ptr1[i0] = tmp10; 2023-01-11T21:05:10.6344941Z out_ptr2[i0] = tmp15; 2023-01-11T21:05:10.6345005Z } 2023-01-11T21:05:10.6345067Z } 2023-01-11T21:05:10.6345116Z } 2023-01-11T21:05:10.6345218Z } 2023-01-11T21:05:10.6345275Z } 2023-01-11T21:05:10.6345354Z ''') 2023-01-11T21:05:10.6345359Z 2023-01-11T21:05:10.6345363Z 2023-01-11T21:05:10.6345452Z async_compile.wait(globals()) 2023-01-11T21:05:10.6345523Z del async_compile 2023-01-11T21:05:10.6345530Z 2023-01-11T21:05:10.6345598Z def call(args): 2023-01-11T21:05:10.6345658Z arg0_1, arg1_1 = args 2023-01-11T21:05:10.6345728Z args.clear() 2023-01-11T21:05:10.6345922Z buf0 = empty_strided((64, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6346111Z buf1 = empty_strided((64, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6346297Z buf2 = empty_strided((64, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6346509Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(arg1_1.data_ptr()), c_void_p(buf0.data_ptr()), c_void_p(buf1.data_ptr()), c_void_p(buf2.data_ptr())) 2023-01-11T21:05:10.6346578Z del arg0_1 2023-01-11T21:05:10.6346629Z del arg1_1 2023-01-11T21:05:10.6346712Z return (buf0, buf1, buf2, ) 2023-01-11T21:05:10.6346717Z 2023-01-11T21:05:10.6346721Z 2023-01-11T21:05:10.6346795Z if __name__ == "__main__": 2023-01-11T21:05:10.6346908Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.6347059Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.6347255Z arg0_1 = rand_strided((64, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6347447Z arg1_1 = rand_strided((64, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6347561Z print_performance(lambda: call([arg0_1, arg1_1])) 2023-01-11T21:05:10.6347566Z 2023-01-11T21:05:10.6347618Z ok (2.751s) 2023-01-11T21:05:10.6348055Z test_repeat_cpu (__main__.CpuTests) ... inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.6348184Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.6348443Z [2023-01-11 20:58:13,320] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 382 2023-01-11T21:05:10.6348707Z [2023-01-11 20:58:16,139] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 382 2023-01-11T21:05:10.6348712Z 2023-01-11T21:05:10.6348805Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.6348875Z import torch 2023-01-11T21:05:10.6348944Z import random 2023-01-11T21:05:10.6349056Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.6349162Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.6349180Z 2023-01-11T21:05:10.6349244Z aten = torch.ops.aten 2023-01-11T21:05:10.6349376Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.6349466Z async_compile = AsyncCompile() 2023-01-11T21:05:10.6349473Z 2023-01-11T21:05:10.6349478Z 2023-01-11T21:05:10.6349612Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.6349813Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.6349933Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:05:10.6350032Z float* __restrict__ out_ptr0, 2023-01-11T21:05:10.6350115Z float* __restrict__ out_ptr1, 2023-01-11T21:05:10.6350207Z float* __restrict__ out_ptr2) 2023-01-11T21:05:10.6350266Z { 2023-01-11T21:05:10.6350363Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.6350424Z { 2023-01-11T21:05:10.6350514Z #pragma omp for collapse(2) 2023-01-11T21:05:10.6350593Z for(long i0=0; i0<2; i0+=1) 2023-01-11T21:05:10.6350642Z { 2023-01-11T21:05:10.6350723Z for(long i1=0; i1<4; i1+=1) 2023-01-11T21:05:10.6350785Z { 2023-01-11T21:05:10.6350899Z #pragma GCC ivdep 2023-01-11T21:05:10.6350986Z for(long i2=0; i2<12; i2+=1) 2023-01-11T21:05:10.6351050Z { 2023-01-11T21:05:10.6351133Z #pragma GCC ivdep 2023-01-11T21:05:10.6351212Z for(long i3=0; i3<8; i3+=1) 2023-01-11T21:05:10.6351277Z { 2023-01-11T21:05:10.6351344Z { 2023-01-11T21:05:10.6351414Z { 2023-01-11T21:05:10.6351532Z auto tmp0 = in_ptr0[i3 + (8*(i2 % 4)) + (32*(i1 % 2))]; 2023-01-11T21:05:10.6351643Z out_ptr0[i3 + (8*i2) + (96*i1) + (384*i0)] = tmp0; 2023-01-11T21:05:10.6351710Z } 2023-01-11T21:05:10.6351763Z } 2023-01-11T21:05:10.6351828Z } 2023-01-11T21:05:10.6351889Z } 2023-01-11T21:05:10.6351951Z } 2023-01-11T21:05:10.6352011Z } 2023-01-11T21:05:10.6352085Z #pragma omp for 2023-01-11T21:05:10.6352166Z for(long i0=0; i0<8; i0+=1) 2023-01-11T21:05:10.6352215Z { 2023-01-11T21:05:10.6352297Z for(long i1=0; i1<4; i1+=1) 2023-01-11T21:05:10.6352359Z { 2023-01-11T21:05:10.6352525Z auto tmp0 = at::vec::Vectorized::loadu(in_ptr0 + 16*i1); 2023-01-11T21:05:10.6352632Z tmp0.store(out_ptr1 + (16*i1) + (64*i0)); 2023-01-11T21:05:10.6352694Z } 2023-01-11T21:05:10.6352786Z #pragma omp simd simdlen(8) 2023-01-11T21:05:10.6352857Z for(long i1=64; i1<64; i1+=1) 2023-01-11T21:05:10.6352920Z { 2023-01-11T21:05:10.6353005Z auto tmp0 = in_ptr0[i1]; 2023-01-11T21:05:10.6353096Z out_ptr1[i1 + (64*i0)] = tmp0; 2023-01-11T21:05:10.6353158Z } 2023-01-11T21:05:10.6353220Z } 2023-01-11T21:05:10.6353295Z #pragma omp for 2023-01-11T21:05:10.6353362Z for(long i0=0; i0<2; i0+=1) 2023-01-11T21:05:10.6353426Z { 2023-01-11T21:05:10.6353505Z for(long i1=0; i1<4; i1+=1) 2023-01-11T21:05:10.6353568Z { 2023-01-11T21:05:10.6353703Z auto tmp0 = at::vec::Vectorized::loadu(in_ptr0 + 16*i1); 2023-01-11T21:05:10.6353806Z tmp0.store(out_ptr2 + (16*i1) + (64*i0)); 2023-01-11T21:05:10.6353869Z } 2023-01-11T21:05:10.6353948Z #pragma omp simd simdlen(8) 2023-01-11T21:05:10.6354031Z for(long i1=64; i1<64; i1+=1) 2023-01-11T21:05:10.6354093Z { 2023-01-11T21:05:10.6354176Z auto tmp0 = in_ptr0[i1]; 2023-01-11T21:05:10.6354266Z out_ptr2[i1 + (64*i0)] = tmp0; 2023-01-11T21:05:10.6354329Z } 2023-01-11T21:05:10.6354377Z } 2023-01-11T21:05:10.6354438Z } 2023-01-11T21:05:10.6354497Z } 2023-01-11T21:05:10.6354575Z ''') 2023-01-11T21:05:10.6354581Z 2023-01-11T21:05:10.6354585Z 2023-01-11T21:05:10.6354673Z async_compile.wait(globals()) 2023-01-11T21:05:10.6354749Z del async_compile 2023-01-11T21:05:10.6354754Z 2023-01-11T21:05:10.6354824Z def call(args): 2023-01-11T21:05:10.6354892Z arg0_1, = args 2023-01-11T21:05:10.6354949Z args.clear() 2023-01-11T21:05:10.6355166Z buf0 = empty_strided((2, 4, 12, 8), (384, 96, 8, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6355376Z buf1 = empty_strided((8, 2, 4, 8), (64, 32, 8, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6355599Z buf2 = empty_strided((2, 1, 1, 2, 4, 8), (64, 64, 64, 32, 8, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6355788Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(buf0.data_ptr()), c_void_p(buf1.data_ptr()), c_void_p(buf2.data_ptr())) 2023-01-11T21:05:10.6355855Z del arg0_1 2023-01-11T21:05:10.6355938Z return (buf0, buf1, buf2, ) 2023-01-11T21:05:10.6355943Z 2023-01-11T21:05:10.6355947Z 2023-01-11T21:05:10.6356022Z if __name__ == "__main__": 2023-01-11T21:05:10.6356123Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.6356279Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.6356488Z arg0_1 = rand_strided((1, 2, 4, 8), (64, 32, 8, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6356598Z print_performance(lambda: call([arg0_1])) 2023-01-11T21:05:10.6356603Z 2023-01-11T21:05:10.6356670Z ok (2.865s) 2023-01-11T21:05:10.6356813Z test_roi_align_cpu (__main__.CpuTests) ... skip: requires torchvision (0.001s) 2023-01-11T21:05:10.6357248Z test_roll_cpu (__main__.CpuTests) ... inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.6357373Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.6357637Z [2023-01-11 20:58:16,235] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 383 2023-01-11T21:05:10.6357892Z [2023-01-11 20:58:19,215] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 383 2023-01-11T21:05:10.6357911Z 2023-01-11T21:05:10.6358026Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.6358097Z import torch 2023-01-11T21:05:10.6358169Z import random 2023-01-11T21:05:10.6358282Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.6358402Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.6358407Z 2023-01-11T21:05:10.6358484Z aten = torch.ops.aten 2023-01-11T21:05:10.6358617Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.6358695Z async_compile = AsyncCompile() 2023-01-11T21:05:10.6358700Z 2023-01-11T21:05:10.6358705Z 2023-01-11T21:05:10.6358839Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.6359043Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.6359166Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:05:10.6359265Z float* __restrict__ out_ptr0, 2023-01-11T21:05:10.6359361Z float* __restrict__ out_ptr1) 2023-01-11T21:05:10.6359421Z { 2023-01-11T21:05:10.6359504Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.6359564Z { 2023-01-11T21:05:10.6359653Z #pragma omp for collapse(2) 2023-01-11T21:05:10.6359733Z for(long i0=0; i0<2; i0+=1) 2023-01-11T21:05:10.6359794Z { 2023-01-11T21:05:10.6359878Z for(long i1=0; i1<56; i1+=1) 2023-01-11T21:05:10.6359940Z { 2023-01-11T21:05:10.6360007Z #pragma GCC ivdep 2023-01-11T21:05:10.6360096Z for(long i2=0; i2<56; i2+=1) 2023-01-11T21:05:10.6360158Z { 2023-01-11T21:05:10.6360249Z for(long i3=0; i3<1; i3+=1) 2023-01-11T21:05:10.6360314Z { 2023-01-11T21:05:10.6360484Z auto tmp0 = at::vec::Vectorized::loadu(in_ptr0 + (16*i3) + (16*((46 + i2) % 56)) + (896*((3 + i1) % 56)) + (50176*i0)); 2023-01-11T21:05:10.6360732Z tmp0.store(out_ptr0 + (16*i2) + (16*i3) + (896*i1) + (50176*i0)); 2023-01-11T21:05:10.6360802Z } 2023-01-11T21:05:10.6360889Z #pragma omp simd simdlen(8) 2023-01-11T21:05:10.6360981Z for(long i3=16; i3<16; i3+=1) 2023-01-11T21:05:10.6361049Z { 2023-01-11T21:05:10.6361175Z auto tmp0 = in_ptr0[i3 + (16*((46 + i2) % 56)) + (896*((3 + i1) % 56)) + (50176*i0)]; 2023-01-11T21:05:10.6361287Z out_ptr0[i3 + (16*i2) + (896*i1) + (50176*i0)] = tmp0; 2023-01-11T21:05:10.6361353Z } 2023-01-11T21:05:10.6361418Z } 2023-01-11T21:05:10.6361468Z } 2023-01-11T21:05:10.6361529Z } 2023-01-11T21:05:10.6361620Z #pragma omp for collapse(2) 2023-01-11T21:05:10.6361760Z for(long i0=0; i0<2; i0+=1) 2023-01-11T21:05:10.6361822Z { 2023-01-11T21:05:10.6361906Z for(long i1=0; i1<56; i1+=1) 2023-01-11T21:05:10.6361968Z { 2023-01-11T21:05:10.6362037Z #pragma GCC ivdep 2023-01-11T21:05:10.6362126Z for(long i2=0; i2<56; i2+=1) 2023-01-11T21:05:10.6362190Z { 2023-01-11T21:05:10.6362271Z #pragma GCC ivdep 2023-01-11T21:05:10.6362363Z for(long i3=0; i3<16; i3+=1) 2023-01-11T21:05:10.6362427Z { 2023-01-11T21:05:10.6362496Z { 2023-01-11T21:05:10.6362553Z { 2023-01-11T21:05:10.6362680Z auto tmp0 = in_ptr0[(100347 + i3 + (16*i2) + (896*i1) + (50176*i0)) % 100352]; 2023-01-11T21:05:10.6362793Z out_ptr1[i3 + (16*i2) + (896*i1) + (50176*i0)] = tmp0; 2023-01-11T21:05:10.6362863Z } 2023-01-11T21:05:10.6362935Z } 2023-01-11T21:05:10.6363001Z } 2023-01-11T21:05:10.6363066Z } 2023-01-11T21:05:10.6363114Z } 2023-01-11T21:05:10.6363174Z } 2023-01-11T21:05:10.6363267Z } 2023-01-11T21:05:10.6363327Z } 2023-01-11T21:05:10.6363408Z ''') 2023-01-11T21:05:10.6363414Z 2023-01-11T21:05:10.6363418Z 2023-01-11T21:05:10.6363505Z async_compile.wait(globals()) 2023-01-11T21:05:10.6363575Z del async_compile 2023-01-11T21:05:10.6363580Z 2023-01-11T21:05:10.6363636Z def call(args): 2023-01-11T21:05:10.6363703Z arg0_1, = args 2023-01-11T21:05:10.6363771Z args.clear() 2023-01-11T21:05:10.6363992Z buf0 = empty_strided((2, 56, 56, 16), (50176, 896, 16, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6364211Z buf1 = empty_strided((2, 56, 56, 16), (50176, 896, 16, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6364373Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(buf0.data_ptr()), c_void_p(buf1.data_ptr())) 2023-01-11T21:05:10.6364441Z del arg0_1 2023-01-11T21:05:10.6364504Z return (buf0, buf1, ) 2023-01-11T21:05:10.6364521Z 2023-01-11T21:05:10.6364526Z 2023-01-11T21:05:10.6364587Z if __name__ == "__main__": 2023-01-11T21:05:10.6364702Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.6364824Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.6365043Z arg0_1 = rand_strided((2, 56, 56, 16), (50176, 896, 16, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6365149Z print_performance(lambda: call([arg0_1])) 2023-01-11T21:05:10.6365154Z 2023-01-11T21:05:10.6365221Z ok (3.161s) 2023-01-11T21:05:10.6365669Z test_round_correctness_cpu (__main__.CpuTests) ... inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.6365794Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.6366055Z [2023-01-11 20:58:19,335] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 384 2023-01-11T21:05:10.6366304Z [2023-01-11 20:58:21,971] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 384 2023-01-11T21:05:10.6366309Z 2023-01-11T21:05:10.6366401Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.6366469Z import torch 2023-01-11T21:05:10.6366538Z import random 2023-01-11T21:05:10.6366651Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.6366770Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.6366775Z 2023-01-11T21:05:10.6366850Z aten = torch.ops.aten 2023-01-11T21:05:10.6366973Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.6367062Z async_compile = AsyncCompile() 2023-01-11T21:05:10.6367095Z 2023-01-11T21:05:10.6367099Z 2023-01-11T21:05:10.6367235Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.6367440Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.6367560Z extern "C" void kernel(const double* __restrict__ in_ptr0, 2023-01-11T21:05:10.6367659Z double* __restrict__ out_ptr0) 2023-01-11T21:05:10.6367720Z { 2023-01-11T21:05:10.6367816Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.6367863Z { 2023-01-11T21:05:10.6367939Z #pragma omp for 2023-01-11T21:05:10.6368020Z for(long i0=0; i0<200; i0+=1) 2023-01-11T21:05:10.6368082Z { 2023-01-11T21:05:10.6368143Z { 2023-01-11T21:05:10.6368206Z { 2023-01-11T21:05:10.6368297Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:05:10.6368392Z auto tmp1 = std::nearbyint(tmp0); 2023-01-11T21:05:10.6368475Z out_ptr0[i0] = tmp1; 2023-01-11T21:05:10.6368541Z } 2023-01-11T21:05:10.6368603Z } 2023-01-11T21:05:10.6368662Z } 2023-01-11T21:05:10.6368720Z } 2023-01-11T21:05:10.6368777Z } 2023-01-11T21:05:10.6368841Z ''') 2023-01-11T21:05:10.6368885Z 2023-01-11T21:05:10.6368890Z 2023-01-11T21:05:10.6368980Z async_compile.wait(globals()) 2023-01-11T21:05:10.6369053Z del async_compile 2023-01-11T21:05:10.6369058Z 2023-01-11T21:05:10.6369129Z def call(args): 2023-01-11T21:05:10.6369195Z arg0_1, = args 2023-01-11T21:05:10.6369264Z args.clear() 2023-01-11T21:05:10.6369459Z buf0 = empty_strided((200, ), (1, ), device='cpu', dtype=torch.float64) 2023-01-11T21:05:10.6369577Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:05:10.6369644Z del arg0_1 2023-01-11T21:05:10.6369713Z return (buf0, ) 2023-01-11T21:05:10.6369718Z 2023-01-11T21:05:10.6369722Z 2023-01-11T21:05:10.6369795Z if __name__ == "__main__": 2023-01-11T21:05:10.6369909Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.6370034Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.6370232Z arg0_1 = rand_strided((200, ), (1, ), device='cpu', dtype=torch.float64) 2023-01-11T21:05:10.6370341Z print_performance(lambda: call([arg0_1])) 2023-01-11T21:05:10.6370346Z 2023-01-11T21:05:10.6370398Z ok (2.664s) 2023-01-11T21:05:10.6370828Z test_round_cpu (__main__.CpuTests) ... inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.6370955Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.6371215Z [2023-01-11 20:58:22,020] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 385 2023-01-11T21:05:10.6371482Z [2023-01-11 20:58:24,711] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 385 2023-01-11T21:05:10.6371487Z 2023-01-11T21:05:10.6371580Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.6371650Z import torch 2023-01-11T21:05:10.6371720Z import random 2023-01-11T21:05:10.6371832Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.6371939Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.6371944Z 2023-01-11T21:05:10.6372019Z aten = torch.ops.aten 2023-01-11T21:05:10.6372151Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.6372240Z async_compile = AsyncCompile() 2023-01-11T21:05:10.6372245Z 2023-01-11T21:05:10.6372250Z 2023-01-11T21:05:10.6372381Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.6372583Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.6372702Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:05:10.6372832Z const float* __restrict__ in_ptr1, 2023-01-11T21:05:10.6372918Z float* __restrict__ out_ptr0, 2023-01-11T21:05:10.6373014Z float* __restrict__ out_ptr1, 2023-01-11T21:05:10.6373106Z float* __restrict__ out_ptr2) 2023-01-11T21:05:10.6373165Z { 2023-01-11T21:05:10.6373261Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.6373320Z { 2023-01-11T21:05:10.6373394Z #pragma omp for 2023-01-11T21:05:10.6373461Z for(long i0=0; i0<4; i0+=1) 2023-01-11T21:05:10.6373524Z { 2023-01-11T21:05:10.6373655Z auto tmp0 = at::vec::Vectorized::loadu(in_ptr0 + 16*i0); 2023-01-11T21:05:10.6373739Z auto tmp1 = tmp0.round(); 2023-01-11T21:05:10.6373873Z auto tmp2 = at::vec::Vectorized(static_cast(100.0)); 2023-01-11T21:05:10.6373955Z auto tmp3 = tmp0 * tmp2; 2023-01-11T21:05:10.6374044Z auto tmp4 = tmp3.round(); 2023-01-11T21:05:10.6374177Z auto tmp5 = at::vec::Vectorized(static_cast(0.01)); 2023-01-11T21:05:10.6374247Z auto tmp6 = tmp4 * tmp5; 2023-01-11T21:05:10.6374365Z tmp1.store(out_ptr0 + 16*i0); 2023-01-11T21:05:10.6374458Z tmp6.store(out_ptr1 + 16*i0); 2023-01-11T21:05:10.6374518Z } 2023-01-11T21:05:10.6374613Z #pragma omp for simd simdlen(8) 2023-01-11T21:05:10.6374694Z for(long i0=64; i0<64; i0+=1) 2023-01-11T21:05:10.6374742Z { 2023-01-11T21:05:10.6374823Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:05:10.6374921Z auto tmp1 = std::nearbyint(tmp0); 2023-01-11T21:05:10.6375021Z auto tmp2 = static_cast(100.0); 2023-01-11T21:05:10.6375102Z auto tmp3 = tmp0 * tmp2; 2023-01-11T21:05:10.6375201Z auto tmp4 = std::nearbyint(tmp3); 2023-01-11T21:05:10.6375302Z auto tmp5 = static_cast(0.01); 2023-01-11T21:05:10.6375387Z auto tmp6 = tmp4 * tmp5; 2023-01-11T21:05:10.6375453Z out_ptr0[i0] = tmp1; 2023-01-11T21:05:10.6375531Z out_ptr1[i0] = tmp6; 2023-01-11T21:05:10.6375593Z } 2023-01-11T21:05:10.6375668Z #pragma omp for 2023-01-11T21:05:10.6375750Z for(long i0=0; i0<4; i0+=1) 2023-01-11T21:05:10.6375811Z { 2023-01-11T21:05:10.6375928Z auto tmp0 = at::vec::Vectorized::loadu(in_ptr1 + 16*i0); 2023-01-11T21:05:10.6376060Z auto tmp1 = at::vec::Vectorized(static_cast(1)); 2023-01-11T21:05:10.6376142Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:05:10.6376225Z auto tmp3 = tmp2.round(); 2023-01-11T21:05:10.6376313Z tmp3.store(out_ptr2 + 16*i0); 2023-01-11T21:05:10.6376374Z } 2023-01-11T21:05:10.6376467Z #pragma omp for simd simdlen(8) 2023-01-11T21:05:10.6376547Z for(long i0=64; i0<64; i0+=1) 2023-01-11T21:05:10.6376595Z { 2023-01-11T21:05:10.6376678Z auto tmp0 = in_ptr1[i0]; 2023-01-11T21:05:10.6376774Z auto tmp1 = static_cast(1); 2023-01-11T21:05:10.6376856Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:05:10.6376958Z auto tmp3 = std::nearbyint(tmp2); 2023-01-11T21:05:10.6377036Z out_ptr2[i0] = tmp3; 2023-01-11T21:05:10.6377096Z } 2023-01-11T21:05:10.6377143Z } 2023-01-11T21:05:10.6377201Z } 2023-01-11T21:05:10.6377280Z ''') 2023-01-11T21:05:10.6377285Z 2023-01-11T21:05:10.6377290Z 2023-01-11T21:05:10.6377377Z async_compile.wait(globals()) 2023-01-11T21:05:10.6377448Z del async_compile 2023-01-11T21:05:10.6377453Z 2023-01-11T21:05:10.6377519Z def call(args): 2023-01-11T21:05:10.6377592Z arg0_1, arg1_1 = args 2023-01-11T21:05:10.6377649Z args.clear() 2023-01-11T21:05:10.6377840Z buf0 = empty_strided((8, 8), (8, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6378029Z buf2 = empty_strided((8, 8), (8, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6378247Z buf1 = empty_strided((8, 8), (8, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6378459Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(arg1_1.data_ptr()), c_void_p(buf0.data_ptr()), c_void_p(buf2.data_ptr()), c_void_p(buf1.data_ptr())) 2023-01-11T21:05:10.6378617Z del arg0_1 2023-01-11T21:05:10.6378684Z del arg1_1 2023-01-11T21:05:10.6378751Z return (buf0, buf1, buf2, ) 2023-01-11T21:05:10.6378771Z 2023-01-11T21:05:10.6378775Z 2023-01-11T21:05:10.6378837Z if __name__ == "__main__": 2023-01-11T21:05:10.6378953Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.6379077Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.6379275Z arg0_1 = rand_strided((8, 8), (8, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6379469Z arg1_1 = rand_strided((8, 8), (8, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6379584Z print_performance(lambda: call([arg0_1, arg1_1])) 2023-01-11T21:05:10.6379592Z 2023-01-11T21:05:10.6379658Z ok (2.743s) 2023-01-11T21:05:10.6380127Z test_rsqrt_cpu (__main__.CpuTests) ... inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.6380254Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.6380501Z [2023-01-11 20:58:24,756] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 386 2023-01-11T21:05:10.6380762Z [2023-01-11 20:58:27,432] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 386 2023-01-11T21:05:10.6380767Z 2023-01-11T21:05:10.6380859Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.6380928Z import torch 2023-01-11T21:05:10.6380996Z import random 2023-01-11T21:05:10.6381113Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.6381232Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.6381237Z 2023-01-11T21:05:10.6381313Z aten = torch.ops.aten 2023-01-11T21:05:10.6381435Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.6381525Z async_compile = AsyncCompile() 2023-01-11T21:05:10.6381530Z 2023-01-11T21:05:10.6381535Z 2023-01-11T21:05:10.6381666Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.6381868Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.6381984Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:05:10.6382082Z float* __restrict__ out_ptr0, 2023-01-11T21:05:10.6382177Z float* __restrict__ out_ptr1) 2023-01-11T21:05:10.6382236Z { 2023-01-11T21:05:10.6382319Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.6382379Z { 2023-01-11T21:05:10.6382456Z #pragma omp for 2023-01-11T21:05:10.6382536Z for(long i0=0; i0<4; i0+=1) 2023-01-11T21:05:10.6382597Z { 2023-01-11T21:05:10.6382733Z auto tmp0 = at::vec::Vectorized::loadu(in_ptr0 + 16*i0); 2023-01-11T21:05:10.6382805Z auto tmp1 = tmp0.rsqrt(); 2023-01-11T21:05:10.6382936Z auto tmp2 = at::vec::Vectorized(static_cast(1)); 2023-01-11T21:05:10.6383020Z auto tmp3 = tmp0 + tmp2; 2023-01-11T21:05:10.6383104Z auto tmp4 = tmp3.rsqrt(); 2023-01-11T21:05:10.6383234Z auto tmp5 = at::vec::Vectorized(static_cast(2)); 2023-01-11T21:05:10.6383356Z auto tmp6 = tmp4 - tmp5; 2023-01-11T21:05:10.6383445Z tmp1.store(out_ptr0 + 16*i0); 2023-01-11T21:05:10.6383536Z tmp6.store(out_ptr1 + 16*i0); 2023-01-11T21:05:10.6383585Z } 2023-01-11T21:05:10.6383679Z #pragma omp for simd simdlen(8) 2023-01-11T21:05:10.6383759Z for(long i0=64; i0<64; i0+=1) 2023-01-11T21:05:10.6383853Z { 2023-01-11T21:05:10.6383937Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:05:10.6384034Z auto tmp1 = 1 / std::sqrt(tmp0); 2023-01-11T21:05:10.6384136Z auto tmp2 = static_cast(1); 2023-01-11T21:05:10.6384206Z auto tmp3 = tmp0 + tmp2; 2023-01-11T21:05:10.6384300Z auto tmp4 = 1 / std::sqrt(tmp3); 2023-01-11T21:05:10.6384398Z auto tmp5 = static_cast(2); 2023-01-11T21:05:10.6384520Z auto tmp6 = tmp4 - tmp5; 2023-01-11T21:05:10.6384598Z out_ptr0[i0] = tmp1; 2023-01-11T21:05:10.6384674Z out_ptr1[i0] = tmp6; 2023-01-11T21:05:10.6384737Z } 2023-01-11T21:05:10.6384785Z } 2023-01-11T21:05:10.6384844Z } 2023-01-11T21:05:10.6384924Z ''') 2023-01-11T21:05:10.6384929Z 2023-01-11T21:05:10.6384933Z 2023-01-11T21:05:10.6385021Z async_compile.wait(globals()) 2023-01-11T21:05:10.6385093Z del async_compile 2023-01-11T21:05:10.6385098Z 2023-01-11T21:05:10.6385168Z def call(args): 2023-01-11T21:05:10.6385236Z arg0_1, = args 2023-01-11T21:05:10.6385293Z args.clear() 2023-01-11T21:05:10.6385486Z buf0 = empty_strided((64, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6385704Z buf1 = empty_strided((64, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6385870Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(buf0.data_ptr()), c_void_p(buf1.data_ptr())) 2023-01-11T21:05:10.6385938Z del arg0_1 2023-01-11T21:05:10.6386014Z return (buf0, buf1, ) 2023-01-11T21:05:10.6386019Z 2023-01-11T21:05:10.6386024Z 2023-01-11T21:05:10.6386098Z if __name__ == "__main__": 2023-01-11T21:05:10.6386212Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.6386322Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.6386514Z arg0_1 = rand_strided((64, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6386620Z print_performance(lambda: call([arg0_1])) 2023-01-11T21:05:10.6386626Z 2023-01-11T21:05:10.6386692Z ok (2.719s) 2023-01-11T21:05:10.6387132Z test_scatter1_cpu (__main__.CpuTests) ... inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.6387261Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.6387520Z [2023-01-11 20:58:27,488] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 387 2023-01-11T21:05:10.6387784Z [2023-01-11 20:58:30,131] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 387 2023-01-11T21:05:10.6387790Z 2023-01-11T21:05:10.6387883Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.6387938Z import torch 2023-01-11T21:05:10.6388007Z import random 2023-01-11T21:05:10.6388122Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.6388242Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.6388247Z 2023-01-11T21:05:10.6388327Z aten = torch.ops.aten 2023-01-11T21:05:10.6388458Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.6388548Z async_compile = AsyncCompile() 2023-01-11T21:05:10.6388554Z 2023-01-11T21:05:10.6388558Z 2023-01-11T21:05:10.6388692Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.6388882Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.6389001Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:05:10.6389105Z const long* __restrict__ in_ptr1, 2023-01-11T21:05:10.6389210Z const float* __restrict__ in_ptr2, 2023-01-11T21:05:10.6389307Z float* __restrict__ out_ptr0) 2023-01-11T21:05:10.6389401Z { 2023-01-11T21:05:10.6389497Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.6389545Z { 2023-01-11T21:05:10.6389620Z #pragma omp for 2023-01-11T21:05:10.6389699Z for(long i0=0; i0<6; i0+=1) 2023-01-11T21:05:10.6389765Z { 2023-01-11T21:05:10.6389827Z { 2023-01-11T21:05:10.6389889Z { 2023-01-11T21:05:10.6389982Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:05:10.6390054Z out_ptr0[i0] = tmp0; 2023-01-11T21:05:10.6390119Z } 2023-01-11T21:05:10.6390180Z } 2023-01-11T21:05:10.6390240Z } 2023-01-11T21:05:10.6390316Z #pragma omp single 2023-01-11T21:05:10.6390377Z { 2023-01-11T21:05:10.6390438Z { 2023-01-11T21:05:10.6390487Z { 2023-01-11T21:05:10.6390577Z auto tmp0 = in_ptr1[0]; 2023-01-11T21:05:10.6390664Z auto tmp1 = in_ptr2[0]; 2023-01-11T21:05:10.6390752Z out_ptr0[tmp0] = tmp1; 2023-01-11T21:05:10.6390817Z } 2023-01-11T21:05:10.6390878Z } 2023-01-11T21:05:10.6390925Z } 2023-01-11T21:05:10.6390984Z } 2023-01-11T21:05:10.6391043Z } 2023-01-11T21:05:10.6391121Z ''') 2023-01-11T21:05:10.6391161Z 2023-01-11T21:05:10.6391165Z 2023-01-11T21:05:10.6391254Z async_compile.wait(globals()) 2023-01-11T21:05:10.6391324Z del async_compile 2023-01-11T21:05:10.6391329Z 2023-01-11T21:05:10.6391397Z def call(args): 2023-01-11T21:05:10.6391474Z arg0_1, arg1_1, arg2_1 = args 2023-01-11T21:05:10.6391531Z args.clear() 2023-01-11T21:05:10.6391725Z buf0 = empty_strided((2, 3), (3, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6391909Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(arg1_1.data_ptr()), c_void_p(arg2_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:05:10.6391978Z del arg0_1 2023-01-11T21:05:10.6392043Z del arg1_1 2023-01-11T21:05:10.6392106Z del arg2_1 2023-01-11T21:05:10.6392179Z return (buf0, ) 2023-01-11T21:05:10.6392184Z 2023-01-11T21:05:10.6392188Z 2023-01-11T21:05:10.6392248Z if __name__ == "__main__": 2023-01-11T21:05:10.6392360Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.6392482Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.6392677Z arg0_1 = rand_strided((2, 3), (3, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6392870Z arg1_1 = rand_strided((1, 1), (1, 1), device='cpu', dtype=torch.int64) 2023-01-11T21:05:10.6393062Z arg2_1 = rand_strided((2, 3), (3, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6393189Z print_performance(lambda: call([arg0_1, arg1_1, arg2_1])) 2023-01-11T21:05:10.6393194Z 2023-01-11T21:05:10.6393260Z ok (2.699s) 2023-01-11T21:05:10.6393689Z test_scatter2_cpu (__main__.CpuTests) ... inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.6393817Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.6394078Z [2023-01-11 20:58:30,178] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 388 2023-01-11T21:05:10.6394340Z [2023-01-11 20:58:32,856] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 388 2023-01-11T21:05:10.6394345Z 2023-01-11T21:05:10.6394437Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.6394506Z import torch 2023-01-11T21:05:10.6394575Z import random 2023-01-11T21:05:10.6394689Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.6394807Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.6394812Z 2023-01-11T21:05:10.6394876Z aten = torch.ops.aten 2023-01-11T21:05:10.6395007Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.6395128Z async_compile = AsyncCompile() 2023-01-11T21:05:10.6395134Z 2023-01-11T21:05:10.6395138Z 2023-01-11T21:05:10.6395270Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.6395474Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.6395592Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:05:10.6395696Z const long* __restrict__ in_ptr1, 2023-01-11T21:05:10.6395798Z const float* __restrict__ in_ptr2, 2023-01-11T21:05:10.6395882Z float* __restrict__ out_ptr0) 2023-01-11T21:05:10.6395941Z { 2023-01-11T21:05:10.6396035Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.6396095Z { 2023-01-11T21:05:10.6396170Z #pragma omp for 2023-01-11T21:05:10.6396251Z for(long i0=0; i0<2048; i0+=1) 2023-01-11T21:05:10.6396312Z { 2023-01-11T21:05:10.6396431Z auto tmp0 = at::vec::Vectorized::loadu(in_ptr0 + 16*i0); 2023-01-11T21:05:10.6396524Z tmp0.store(out_ptr0 + 16*i0); 2023-01-11T21:05:10.6396584Z } 2023-01-11T21:05:10.6396678Z #pragma omp for simd simdlen(8) 2023-01-11T21:05:10.6396795Z for(long i0=32768; i0<32768; i0+=1) 2023-01-11T21:05:10.6396859Z { 2023-01-11T21:05:10.6396941Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:05:10.6397009Z out_ptr0[i0] = tmp0; 2023-01-11T21:05:10.6397068Z } 2023-01-11T21:05:10.6397141Z #pragma omp for 2023-01-11T21:05:10.6397219Z for(long i0=0; i0<64; i0+=1) 2023-01-11T21:05:10.6397280Z { 2023-01-11T21:05:10.6397357Z #pragma GCC ivdep 2023-01-11T21:05:10.6397429Z for(long i1=0; i1<512; i1+=1) 2023-01-11T21:05:10.6397494Z { 2023-01-11T21:05:10.6397556Z { 2023-01-11T21:05:10.6397621Z { 2023-01-11T21:05:10.6397722Z auto tmp0 = in_ptr1[i1 + (512*i0)]; 2023-01-11T21:05:10.6397825Z auto tmp1 = in_ptr2[i1 + (512*i0)]; 2023-01-11T21:05:10.6397939Z atomic_add(&out_ptr0[i1 + (512*tmp0)], tmp1); 2023-01-11T21:05:10.6397992Z } 2023-01-11T21:05:10.6398057Z } 2023-01-11T21:05:10.6398118Z } 2023-01-11T21:05:10.6398178Z } 2023-01-11T21:05:10.6398237Z } 2023-01-11T21:05:10.6398296Z } 2023-01-11T21:05:10.6398372Z ''') 2023-01-11T21:05:10.6398377Z 2023-01-11T21:05:10.6398381Z 2023-01-11T21:05:10.6398455Z async_compile.wait(globals()) 2023-01-11T21:05:10.6398525Z del async_compile 2023-01-11T21:05:10.6398531Z 2023-01-11T21:05:10.6398599Z def call(args): 2023-01-11T21:05:10.6398680Z arg0_1, arg1_1, arg2_1 = args 2023-01-11T21:05:10.6398749Z args.clear() 2023-01-11T21:05:10.6398952Z buf0 = empty_strided((64, 512), (512, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6399139Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(arg1_1.data_ptr()), c_void_p(arg2_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:05:10.6399208Z del arg0_1 2023-01-11T21:05:10.6399259Z del arg1_1 2023-01-11T21:05:10.6399323Z del arg2_1 2023-01-11T21:05:10.6399394Z return (buf0, ) 2023-01-11T21:05:10.6399399Z 2023-01-11T21:05:10.6399403Z 2023-01-11T21:05:10.6399481Z if __name__ == "__main__": 2023-01-11T21:05:10.6399594Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.6399715Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.6399917Z arg0_1 = rand_strided((64, 512), (512, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6400102Z arg1_1 = rand_strided((64, 512), (512, 1), device='cpu', dtype=torch.int64) 2023-01-11T21:05:10.6400301Z arg2_1 = rand_strided((64, 512), (512, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6400421Z print_performance(lambda: call([arg0_1, arg1_1, arg2_1])) 2023-01-11T21:05:10.6400426Z 2023-01-11T21:05:10.6400490Z ok (2.772s) 2023-01-11T21:05:10.6401182Z test_scatter3_cpu (__main__.CpuTests) ... inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.6401313Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.6401574Z [2023-01-11 20:58:32,949] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 389 2023-01-11T21:05:10.6401842Z [2023-01-11 20:58:35,609] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 389 2023-01-11T21:05:10.6401847Z 2023-01-11T21:05:10.6401939Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.6402010Z import torch 2023-01-11T21:05:10.6402067Z import random 2023-01-11T21:05:10.6402182Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.6402305Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.6402310Z 2023-01-11T21:05:10.6402389Z aten = torch.ops.aten 2023-01-11T21:05:10.6402572Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.6402663Z async_compile = AsyncCompile() 2023-01-11T21:05:10.6402668Z 2023-01-11T21:05:10.6402672Z 2023-01-11T21:05:10.6402807Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.6403010Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.6403116Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:05:10.6403220Z const long* __restrict__ in_ptr1, 2023-01-11T21:05:10.6403319Z float* __restrict__ out_ptr0) 2023-01-11T21:05:10.6403380Z { 2023-01-11T21:05:10.6403476Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.6403536Z { 2023-01-11T21:05:10.6403613Z #pragma omp for 2023-01-11T21:05:10.6403684Z for(long i0=0; i0<117; i0+=1) 2023-01-11T21:05:10.6403746Z { 2023-01-11T21:05:10.6403882Z auto tmp0 = at::vec::Vectorized::loadu(in_ptr0 + 16*i0); 2023-01-11T21:05:10.6403978Z tmp0.store(out_ptr0 + 16*i0); 2023-01-11T21:05:10.6404039Z } 2023-01-11T21:05:10.6404132Z #pragma omp for simd simdlen(8) 2023-01-11T21:05:10.6404217Z for(long i0=1872; i0<1885; i0+=1) 2023-01-11T21:05:10.6404266Z { 2023-01-11T21:05:10.6404351Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:05:10.6404429Z out_ptr0[i0] = tmp0; 2023-01-11T21:05:10.6404489Z } 2023-01-11T21:05:10.6404563Z #pragma omp for 2023-01-11T21:05:10.6404643Z for(long i0=0; i0<4; i0+=1) 2023-01-11T21:05:10.6404690Z { 2023-01-11T21:05:10.6404752Z { 2023-01-11T21:05:10.6404815Z { 2023-01-11T21:05:10.6404904Z auto tmp0 = in_ptr1[i0]; 2023-01-11T21:05:10.6405011Z auto tmp1 = static_cast(0.8); 2023-01-11T21:05:10.6405113Z atomic_add(&out_ptr0[tmp0], tmp1); 2023-01-11T21:05:10.6405175Z } 2023-01-11T21:05:10.6405224Z } 2023-01-11T21:05:10.6405287Z } 2023-01-11T21:05:10.6405346Z } 2023-01-11T21:05:10.6405405Z } 2023-01-11T21:05:10.6405483Z ''') 2023-01-11T21:05:10.6405488Z 2023-01-11T21:05:10.6405492Z 2023-01-11T21:05:10.6405579Z async_compile.wait(globals()) 2023-01-11T21:05:10.6405650Z del async_compile 2023-01-11T21:05:10.6405655Z 2023-01-11T21:05:10.6405711Z def call(args): 2023-01-11T21:05:10.6405784Z arg0_1, arg1_1 = args 2023-01-11T21:05:10.6405854Z args.clear() 2023-01-11T21:05:10.6406063Z buf0 = empty_strided((5, 29, 13), (377, 13, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6406224Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(arg1_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:05:10.6406291Z del arg0_1 2023-01-11T21:05:10.6406398Z del arg1_1 2023-01-11T21:05:10.6406467Z return (buf0, ) 2023-01-11T21:05:10.6406472Z 2023-01-11T21:05:10.6406476Z 2023-01-11T21:05:10.6406537Z if __name__ == "__main__": 2023-01-11T21:05:10.6406653Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.6406775Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.6406985Z arg0_1 = rand_strided((5, 29, 13), (377, 13, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6407182Z arg1_1 = rand_strided((1, 1, 4), (4, 4, 1), device='cpu', dtype=torch.int64) 2023-01-11T21:05:10.6407296Z print_performance(lambda: call([arg0_1, arg1_1])) 2023-01-11T21:05:10.6407300Z 2023-01-11T21:05:10.6407365Z ok (2.709s) 2023-01-11T21:05:10.6407802Z test_scatter4_cpu (__main__.CpuTests) ... inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.6407929Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.6408221Z [2023-01-11 20:58:35,684] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 390 2023-01-11T21:05:10.6408483Z [2023-01-11 20:58:38,341] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 390 2023-01-11T21:05:10.6408487Z 2023-01-11T21:05:10.6408579Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.6408647Z import torch 2023-01-11T21:05:10.6408717Z import random 2023-01-11T21:05:10.6408830Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.6408947Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.6408952Z 2023-01-11T21:05:10.6409029Z aten = torch.ops.aten 2023-01-11T21:05:10.6409147Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.6409238Z async_compile = AsyncCompile() 2023-01-11T21:05:10.6409242Z 2023-01-11T21:05:10.6409246Z 2023-01-11T21:05:10.6409377Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.6409582Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.6409700Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:05:10.6409803Z const long* __restrict__ in_ptr1, 2023-01-11T21:05:10.6409906Z const float* __restrict__ in_ptr2, 2023-01-11T21:05:10.6410006Z float* __restrict__ out_ptr0) 2023-01-11T21:05:10.6410054Z { 2023-01-11T21:05:10.6410150Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.6410212Z { 2023-01-11T21:05:10.6410290Z #pragma omp for 2023-01-11T21:05:10.6410373Z for(long i0=0; i0<12152; i0+=1) 2023-01-11T21:05:10.6410435Z { 2023-01-11T21:05:10.6410570Z auto tmp0 = at::vec::Vectorized::loadu(in_ptr0 + 16*i0); 2023-01-11T21:05:10.6410651Z tmp0.store(out_ptr0 + 16*i0); 2023-01-11T21:05:10.6410713Z } 2023-01-11T21:05:10.6410806Z #pragma omp for simd simdlen(8) 2023-01-11T21:05:10.6410896Z for(long i0=194432; i0<194432; i0+=1) 2023-01-11T21:05:10.6410957Z { 2023-01-11T21:05:10.6411039Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:05:10.6411118Z out_ptr0[i0] = tmp0; 2023-01-11T21:05:10.6411166Z } 2023-01-11T21:05:10.6411238Z #pragma omp for 2023-01-11T21:05:10.6411316Z for(long i0=0; i0<992; i0+=1) 2023-01-11T21:05:10.6411377Z { 2023-01-11T21:05:10.6411439Z { 2023-01-11T21:05:10.6411502Z { 2023-01-11T21:05:10.6411580Z auto tmp0 = in_ptr1[i0]; 2023-01-11T21:05:10.6411667Z auto tmp1 = in_ptr2[i0]; 2023-01-11T21:05:10.6411762Z out_ptr0[i0 + (992*tmp0)] = tmp1; 2023-01-11T21:05:10.6411825Z } 2023-01-11T21:05:10.6411917Z } 2023-01-11T21:05:10.6411983Z } 2023-01-11T21:05:10.6412042Z } 2023-01-11T21:05:10.6412087Z } 2023-01-11T21:05:10.6412165Z ''') 2023-01-11T21:05:10.6412170Z 2023-01-11T21:05:10.6412174Z 2023-01-11T21:05:10.6412264Z async_compile.wait(globals()) 2023-01-11T21:05:10.6412335Z del async_compile 2023-01-11T21:05:10.6412339Z 2023-01-11T21:05:10.6412408Z def call(args): 2023-01-11T21:05:10.6412487Z arg0_1, arg1_1, arg2_1 = args 2023-01-11T21:05:10.6412557Z args.clear() 2023-01-11T21:05:10.6412747Z buf0 = empty_strided((196, 992), (992, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6412934Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(arg1_1.data_ptr()), c_void_p(arg2_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:05:10.6413001Z del arg0_1 2023-01-11T21:05:10.6413066Z del arg1_1 2023-01-11T21:05:10.6413129Z del arg2_1 2023-01-11T21:05:10.6413200Z return (buf0, ) 2023-01-11T21:05:10.6413204Z 2023-01-11T21:05:10.6413211Z 2023-01-11T21:05:10.6413283Z if __name__ == "__main__": 2023-01-11T21:05:10.6413397Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.6413507Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.6413739Z arg0_1 = rand_strided((196, 992), (992, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6413937Z arg1_1 = rand_strided((1, 992), (992, 1), device='cpu', dtype=torch.int64) 2023-01-11T21:05:10.6414135Z arg2_1 = rand_strided((1, 992), (992, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6414257Z print_performance(lambda: call([arg0_1, arg1_1, arg2_1])) 2023-01-11T21:05:10.6414262Z 2023-01-11T21:05:10.6414327Z ok (2.856s) 2023-01-11T21:05:10.6414484Z test_scatter_add1_cpu (__main__.CpuTests) ... skip: Flaky test, needs debugging (0.001s) 2023-01-11T21:05:10.6414926Z test_scatter_add2_cpu (__main__.CpuTests) ... inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.6415057Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.6415304Z [2023-01-11 20:58:38,510] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 391 2023-01-11T21:05:10.6415567Z [2023-01-11 20:58:41,157] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 391 2023-01-11T21:05:10.6415572Z 2023-01-11T21:05:10.6415666Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.6415736Z import torch 2023-01-11T21:05:10.6415807Z import random 2023-01-11T21:05:10.6415924Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.6416044Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.6416049Z 2023-01-11T21:05:10.6416128Z aten = torch.ops.aten 2023-01-11T21:05:10.6416249Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.6416341Z async_compile = AsyncCompile() 2023-01-11T21:05:10.6416346Z 2023-01-11T21:05:10.6416350Z 2023-01-11T21:05:10.6416486Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.6416691Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.6416809Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:05:10.6416913Z const long* __restrict__ in_ptr1, 2023-01-11T21:05:10.6417016Z const float* __restrict__ in_ptr2, 2023-01-11T21:05:10.6417115Z float* __restrict__ out_ptr0) 2023-01-11T21:05:10.6417162Z { 2023-01-11T21:05:10.6417258Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.6417319Z { 2023-01-11T21:05:10.6417395Z #pragma omp for 2023-01-11T21:05:10.6417478Z for(long i0=0; i0<6; i0+=1) 2023-01-11T21:05:10.6417540Z { 2023-01-11T21:05:10.6417635Z { 2023-01-11T21:05:10.6417686Z { 2023-01-11T21:05:10.6417776Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:05:10.6417861Z out_ptr0[i0] = tmp0; 2023-01-11T21:05:10.6417928Z } 2023-01-11T21:05:10.6417992Z } 2023-01-11T21:05:10.6418052Z } 2023-01-11T21:05:10.6418113Z #pragma omp for 2023-01-11T21:05:10.6418192Z for(long i0=0; i0<2; i0+=1) 2023-01-11T21:05:10.6418253Z { 2023-01-11T21:05:10.6418331Z #pragma GCC ivdep 2023-01-11T21:05:10.6418416Z for(long i1=0; i1<3; i1+=1) 2023-01-11T21:05:10.6418563Z { 2023-01-11T21:05:10.6418632Z { 2023-01-11T21:05:10.6418684Z { 2023-01-11T21:05:10.6418788Z auto tmp0 = in_ptr1[i1 + (3*i0)]; 2023-01-11T21:05:10.6418887Z auto tmp1 = in_ptr2[i1 + (3*i0)]; 2023-01-11T21:05:10.6419000Z atomic_add(&out_ptr0[i1 + (3*tmp0)], tmp1); 2023-01-11T21:05:10.6419069Z } 2023-01-11T21:05:10.6419131Z } 2023-01-11T21:05:10.6419193Z } 2023-01-11T21:05:10.6419241Z } 2023-01-11T21:05:10.6419358Z } 2023-01-11T21:05:10.6419419Z } 2023-01-11T21:05:10.6419502Z ''') 2023-01-11T21:05:10.6419507Z 2023-01-11T21:05:10.6419511Z 2023-01-11T21:05:10.6419601Z async_compile.wait(globals()) 2023-01-11T21:05:10.6419673Z del async_compile 2023-01-11T21:05:10.6419677Z 2023-01-11T21:05:10.6419750Z def call(args): 2023-01-11T21:05:10.6419818Z arg0_1, arg1_1, arg2_1 = args 2023-01-11T21:05:10.6419889Z args.clear() 2023-01-11T21:05:10.6420085Z buf0 = empty_strided((2, 3), (3, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6420273Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(arg1_1.data_ptr()), c_void_p(arg2_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:05:10.6420343Z del arg0_1 2023-01-11T21:05:10.6420409Z del arg1_1 2023-01-11T21:05:10.6420477Z del arg2_1 2023-01-11T21:05:10.6420535Z return (buf0, ) 2023-01-11T21:05:10.6420554Z 2023-01-11T21:05:10.6420558Z 2023-01-11T21:05:10.6420622Z if __name__ == "__main__": 2023-01-11T21:05:10.6420738Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.6420863Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.6421058Z arg0_1 = rand_strided((2, 3), (3, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6421247Z arg1_1 = rand_strided((2, 3), (3, 1), device='cpu', dtype=torch.int64) 2023-01-11T21:05:10.6421439Z arg2_1 = rand_strided((2, 3), (3, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6421560Z print_performance(lambda: call([arg0_1, arg1_1, arg2_1])) 2023-01-11T21:05:10.6421565Z 2023-01-11T21:05:10.6421618Z ok (2.688s) 2023-01-11T21:05:10.6422059Z test_scatter_add3_cpu (__main__.CpuTests) ... inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.6422190Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.6422450Z [2023-01-11 20:58:41,199] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 392 2023-01-11T21:05:10.6422711Z [2023-01-11 20:58:43,860] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 392 2023-01-11T21:05:10.6422716Z 2023-01-11T21:05:10.6422807Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.6422876Z import torch 2023-01-11T21:05:10.6422946Z import random 2023-01-11T21:05:10.6423059Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.6423164Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.6423181Z 2023-01-11T21:05:10.6423244Z aten = torch.ops.aten 2023-01-11T21:05:10.6423403Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.6423494Z async_compile = AsyncCompile() 2023-01-11T21:05:10.6423499Z 2023-01-11T21:05:10.6423503Z 2023-01-11T21:05:10.6423637Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.6423839Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.6423957Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:05:10.6424060Z const long* __restrict__ in_ptr1, 2023-01-11T21:05:10.6424163Z const float* __restrict__ in_ptr2, 2023-01-11T21:05:10.6424248Z float* __restrict__ out_ptr0) 2023-01-11T21:05:10.6424307Z { 2023-01-11T21:05:10.6424403Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.6424464Z { 2023-01-11T21:05:10.6424539Z #pragma omp for 2023-01-11T21:05:10.6424620Z for(long i0=0; i0<117; i0+=1) 2023-01-11T21:05:10.6424671Z { 2023-01-11T21:05:10.6424804Z auto tmp0 = at::vec::Vectorized::loadu(in_ptr0 + 16*i0); 2023-01-11T21:05:10.6424895Z tmp0.store(out_ptr0 + 16*i0); 2023-01-11T21:05:10.6424956Z } 2023-01-11T21:05:10.6425077Z #pragma omp for simd simdlen(8) 2023-01-11T21:05:10.6425163Z for(long i0=1872; i0<1885; i0+=1) 2023-01-11T21:05:10.6425223Z { 2023-01-11T21:05:10.6425293Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:05:10.6425370Z out_ptr0[i0] = tmp0; 2023-01-11T21:05:10.6425430Z } 2023-01-11T21:05:10.6425503Z #pragma omp for 2023-01-11T21:05:10.6425582Z for(long i0=0; i0<4; i0+=1) 2023-01-11T21:05:10.6425641Z { 2023-01-11T21:05:10.6425703Z { 2023-01-11T21:05:10.6425753Z { 2023-01-11T21:05:10.6425843Z auto tmp0 = in_ptr1[i0]; 2023-01-11T21:05:10.6425931Z auto tmp1 = in_ptr2[i0]; 2023-01-11T21:05:10.6426034Z atomic_add(&out_ptr0[tmp0], tmp1); 2023-01-11T21:05:10.6426099Z } 2023-01-11T21:05:10.6426160Z } 2023-01-11T21:05:10.6426219Z } 2023-01-11T21:05:10.6426266Z } 2023-01-11T21:05:10.6426325Z } 2023-01-11T21:05:10.6426404Z ''') 2023-01-11T21:05:10.6426409Z 2023-01-11T21:05:10.6426413Z 2023-01-11T21:05:10.6426501Z async_compile.wait(globals()) 2023-01-11T21:05:10.6426571Z del async_compile 2023-01-11T21:05:10.6426575Z 2023-01-11T21:05:10.6426643Z def call(args): 2023-01-11T21:05:10.6426723Z arg0_1, arg1_1, arg2_1 = args 2023-01-11T21:05:10.6426779Z args.clear() 2023-01-11T21:05:10.6426990Z buf0 = empty_strided((5, 29, 13), (377, 13, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6427175Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(arg1_1.data_ptr()), c_void_p(arg2_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:05:10.6427245Z del arg0_1 2023-01-11T21:05:10.6427309Z del arg1_1 2023-01-11T21:05:10.6427374Z del arg2_1 2023-01-11T21:05:10.6427445Z return (buf0, ) 2023-01-11T21:05:10.6427449Z 2023-01-11T21:05:10.6427453Z 2023-01-11T21:05:10.6427526Z if __name__ == "__main__": 2023-01-11T21:05:10.6427628Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.6427748Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.6427957Z arg0_1 = rand_strided((5, 29, 13), (377, 13, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6428155Z arg1_1 = rand_strided((1, 1, 4), (4, 4, 1), device='cpu', dtype=torch.int64) 2023-01-11T21:05:10.6428358Z arg2_1 = rand_strided((1, 1, 10), (10, 10, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6428477Z print_performance(lambda: call([arg0_1, arg1_1, arg2_1])) 2023-01-11T21:05:10.6428482Z 2023-01-11T21:05:10.6428547Z ok (2.706s) 2023-01-11T21:05:10.6428802Z test_scatter_reduce1_cpu (__main__.CpuTests) ... [W TensorAdvancedIndexing.cpp:1739] Warning: scatter_reduce() is in beta and the API may change at any time. (function operator()) 2023-01-11T21:05:10.6429218Z inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.6429344Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.6429600Z [2023-01-11 20:58:43,908] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 393 2023-01-11T21:05:10.6429863Z [2023-01-11 20:58:43,925] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 393 2023-01-11T21:05:10.6429868Z 2023-01-11T21:05:10.6429960Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.6430028Z import torch 2023-01-11T21:05:10.6430095Z import random 2023-01-11T21:05:10.6430208Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.6430327Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.6430333Z 2023-01-11T21:05:10.6430397Z aten = torch.ops.aten 2023-01-11T21:05:10.6430555Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.6430647Z async_compile = AsyncCompile() 2023-01-11T21:05:10.6430652Z 2023-01-11T21:05:10.6430655Z 2023-01-11T21:05:10.6430787Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.6430989Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.6431107Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:05:10.6431210Z const long* __restrict__ in_ptr1, 2023-01-11T21:05:10.6431311Z const float* __restrict__ in_ptr2, 2023-01-11T21:05:10.6431397Z float* __restrict__ out_ptr0) 2023-01-11T21:05:10.6431456Z { 2023-01-11T21:05:10.6431551Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.6431614Z { 2023-01-11T21:05:10.6431689Z #pragma omp for 2023-01-11T21:05:10.6431769Z for(long i0=0; i0<117; i0+=1) 2023-01-11T21:05:10.6431831Z { 2023-01-11T21:05:10.6431953Z auto tmp0 = at::vec::Vectorized::loadu(in_ptr0 + 16*i0); 2023-01-11T21:05:10.6432043Z tmp0.store(out_ptr0 + 16*i0); 2023-01-11T21:05:10.6432107Z } 2023-01-11T21:05:10.6432200Z #pragma omp for simd simdlen(8) 2023-01-11T21:05:10.6432283Z for(long i0=1872; i0<1885; i0+=1) 2023-01-11T21:05:10.6432345Z { 2023-01-11T21:05:10.6432426Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:05:10.6432492Z out_ptr0[i0] = tmp0; 2023-01-11T21:05:10.6432551Z } 2023-01-11T21:05:10.6432625Z #pragma omp for 2023-01-11T21:05:10.6432703Z for(long i0=0; i0<4; i0+=1) 2023-01-11T21:05:10.6432763Z { 2023-01-11T21:05:10.6432825Z { 2023-01-11T21:05:10.6432875Z { 2023-01-11T21:05:10.6432967Z auto tmp0 = in_ptr1[i0]; 2023-01-11T21:05:10.6433055Z auto tmp1 = in_ptr2[i0]; 2023-01-11T21:05:10.6433158Z atomic_add(&out_ptr0[tmp0], tmp1); 2023-01-11T21:05:10.6433223Z } 2023-01-11T21:05:10.6433284Z } 2023-01-11T21:05:10.6433343Z } 2023-01-11T21:05:10.6433390Z } 2023-01-11T21:05:10.6433447Z } 2023-01-11T21:05:10.6433523Z ''') 2023-01-11T21:05:10.6433530Z 2023-01-11T21:05:10.6433533Z 2023-01-11T21:05:10.6433620Z async_compile.wait(globals()) 2023-01-11T21:05:10.6433690Z del async_compile 2023-01-11T21:05:10.6433695Z 2023-01-11T21:05:10.6433763Z def call(args): 2023-01-11T21:05:10.6433843Z arg0_1, arg1_1, arg2_1 = args 2023-01-11T21:05:10.6433900Z args.clear() 2023-01-11T21:05:10.6434112Z buf0 = empty_strided((5, 29, 13), (377, 13, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6434298Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(arg1_1.data_ptr()), c_void_p(arg2_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:05:10.6434393Z del arg0_1 2023-01-11T21:05:10.6434458Z del arg1_1 2023-01-11T21:05:10.6434522Z del arg2_1 2023-01-11T21:05:10.6434591Z return (buf0, ) 2023-01-11T21:05:10.6434595Z 2023-01-11T21:05:10.6434602Z 2023-01-11T21:05:10.6434678Z if __name__ == "__main__": 2023-01-11T21:05:10.6434777Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.6434898Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.6435105Z arg0_1 = rand_strided((5, 29, 13), (377, 13, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6435304Z arg1_1 = rand_strided((1, 1, 4), (4, 4, 1), device='cpu', dtype=torch.int64) 2023-01-11T21:05:10.6435506Z arg2_1 = rand_strided((1, 1, 10), (10, 10, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6435625Z print_performance(lambda: call([arg0_1, arg1_1, arg2_1])) 2023-01-11T21:05:10.6435630Z 2023-01-11T21:05:10.6435695Z ok (0.061s) 2023-01-11T21:05:10.6436173Z test_scatter_reduce2_cpu (__main__.CpuTests) ... inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.6436300Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.6436546Z [2023-01-11 20:58:43,962] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 394 2023-01-11T21:05:10.6436807Z [2023-01-11 20:58:46,623] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 394 2023-01-11T21:05:10.6436813Z 2023-01-11T21:05:10.6436905Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.6436976Z import torch 2023-01-11T21:05:10.6437045Z import random 2023-01-11T21:05:10.6437160Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.6437281Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.6437286Z 2023-01-11T21:05:10.6437361Z aten = torch.ops.aten 2023-01-11T21:05:10.6437483Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.6437572Z async_compile = AsyncCompile() 2023-01-11T21:05:10.6437578Z 2023-01-11T21:05:10.6437582Z 2023-01-11T21:05:10.6437712Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.6437911Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.6438028Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:05:10.6438130Z const long* __restrict__ in_ptr1, 2023-01-11T21:05:10.6438231Z const float* __restrict__ in_ptr2, 2023-01-11T21:05:10.6438328Z float* __restrict__ out_ptr0) 2023-01-11T21:05:10.6438375Z { 2023-01-11T21:05:10.6438470Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.6438532Z { 2023-01-11T21:05:10.6438607Z #pragma omp for 2023-01-11T21:05:10.6438686Z for(long i0=0; i0<6; i0+=1) 2023-01-11T21:05:10.6438747Z { 2023-01-11T21:05:10.6438809Z { 2023-01-11T21:05:10.6438862Z { 2023-01-11T21:05:10.6438952Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:05:10.6439035Z out_ptr0[i0] = tmp0; 2023-01-11T21:05:10.6439099Z } 2023-01-11T21:05:10.6439162Z } 2023-01-11T21:05:10.6439222Z } 2023-01-11T21:05:10.6439283Z #pragma omp for 2023-01-11T21:05:10.6439361Z for(long i0=0; i0<2; i0+=1) 2023-01-11T21:05:10.6439420Z { 2023-01-11T21:05:10.6439498Z #pragma GCC ivdep 2023-01-11T21:05:10.6439577Z for(long i1=0; i1<3; i1+=1) 2023-01-11T21:05:10.6439639Z { 2023-01-11T21:05:10.6439701Z { 2023-01-11T21:05:10.6439753Z { 2023-01-11T21:05:10.6439854Z auto tmp0 = in_ptr1[i1 + (3*i0)]; 2023-01-11T21:05:10.6439992Z auto tmp1 = static_cast(0); 2023-01-11T21:05:10.6440088Z out_ptr0[i1 + (3*tmp0)] = tmp1; 2023-01-11T21:05:10.6440155Z } 2023-01-11T21:05:10.6440218Z } 2023-01-11T21:05:10.6440278Z } 2023-01-11T21:05:10.6440326Z } 2023-01-11T21:05:10.6440400Z #pragma omp for 2023-01-11T21:05:10.6440478Z for(long i0=0; i0<2; i0+=1) 2023-01-11T21:05:10.6440539Z { 2023-01-11T21:05:10.6440737Z #pragma GCC ivdep 2023-01-11T21:05:10.6440820Z for(long i1=0; i1<3; i1+=1) 2023-01-11T21:05:10.6440887Z { 2023-01-11T21:05:10.6440937Z { 2023-01-11T21:05:10.6441001Z { 2023-01-11T21:05:10.6441104Z auto tmp0 = in_ptr1[i1 + (3*i0)]; 2023-01-11T21:05:10.6441203Z auto tmp1 = in_ptr2[i1 + (3*i0)]; 2023-01-11T21:05:10.6441315Z atomic_add(&out_ptr0[i1 + (3*tmp0)], tmp1); 2023-01-11T21:05:10.6441383Z } 2023-01-11T21:05:10.6441447Z } 2023-01-11T21:05:10.6441495Z } 2023-01-11T21:05:10.6441556Z } 2023-01-11T21:05:10.6441666Z } 2023-01-11T21:05:10.6441726Z } 2023-01-11T21:05:10.6441806Z ''') 2023-01-11T21:05:10.6441811Z 2023-01-11T21:05:10.6441815Z 2023-01-11T21:05:10.6441904Z async_compile.wait(globals()) 2023-01-11T21:05:10.6441961Z del async_compile 2023-01-11T21:05:10.6441979Z 2023-01-11T21:05:10.6442035Z def call(args): 2023-01-11T21:05:10.6442113Z arg0_1, arg1_1, arg2_1 = args 2023-01-11T21:05:10.6442184Z args.clear() 2023-01-11T21:05:10.6442384Z buf0 = empty_strided((2, 3), (3, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6442571Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(arg1_1.data_ptr()), c_void_p(arg2_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:05:10.6442640Z del arg0_1 2023-01-11T21:05:10.6442708Z del arg1_1 2023-01-11T21:05:10.6442759Z del arg2_1 2023-01-11T21:05:10.6442830Z return (buf0, ) 2023-01-11T21:05:10.6442835Z 2023-01-11T21:05:10.6442839Z 2023-01-11T21:05:10.6442915Z if __name__ == "__main__": 2023-01-11T21:05:10.6443031Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.6443155Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.6443350Z arg0_1 = rand_strided((2, 3), (3, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6443539Z arg1_1 = rand_strided((2, 3), (3, 1), device='cpu', dtype=torch.int64) 2023-01-11T21:05:10.6443728Z arg2_1 = rand_strided((2, 3), (3, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6443840Z print_performance(lambda: call([arg0_1, arg1_1, arg2_1])) 2023-01-11T21:05:10.6443845Z 2023-01-11T21:05:10.6443909Z ok (2.699s) 2023-01-11T21:05:10.6444365Z test_scheduler_vertical_fusion1_cpu (__main__.CpuTests) ... inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.6444495Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.6444753Z [2023-01-11 20:58:46,982] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 395 2023-01-11T21:05:10.6445017Z [2023-01-11 20:58:49,663] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 395 2023-01-11T21:05:10.6445022Z 2023-01-11T21:05:10.6445114Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.6445182Z import torch 2023-01-11T21:05:10.6445249Z import random 2023-01-11T21:05:10.6445349Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.6445468Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.6445473Z 2023-01-11T21:05:10.6445586Z aten = torch.ops.aten 2023-01-11T21:05:10.6445716Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.6445807Z async_compile = AsyncCompile() 2023-01-11T21:05:10.6445812Z 2023-01-11T21:05:10.6445818Z 2023-01-11T21:05:10.6445952Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.6446157Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.6446273Z extern "C" void kernel(float* __restrict__ in_out_ptr0, 2023-01-11T21:05:10.6446362Z float* __restrict__ in_out_ptr1, 2023-01-11T21:05:10.6446465Z const float* __restrict__ in_ptr0, 2023-01-11T21:05:10.6446567Z const float* __restrict__ in_ptr1, 2023-01-11T21:05:10.6446669Z const float* __restrict__ in_ptr2) 2023-01-11T21:05:10.6446728Z { 2023-01-11T21:05:10.6446813Z auto out_ptr1 = in_out_ptr1; 2023-01-11T21:05:10.6446908Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.6446958Z { 2023-01-11T21:05:10.6447034Z #pragma omp for 2023-01-11T21:05:10.6447115Z for(long i0=0; i0<67626; i0+=1) 2023-01-11T21:05:10.6447179Z { 2023-01-11T21:05:10.6447354Z auto tmp0 = at::vec::Vectorized::loadu(in_ptr0 + 16*i0); 2023-01-11T21:05:10.6447488Z auto tmp8 = at::vec::Vectorized::loadu(in_ptr1 + 16*i0); 2023-01-11T21:05:10.6447712Z auto tmp1 = at::vec::Vectorized(static_cast(-1.061519070296458e-11)); 2023-01-11T21:05:10.6447797Z auto tmp2 = tmp0 * tmp1; 2023-01-11T21:05:10.6448006Z auto tmp3 = at::vec::Vectorized(static_cast(-1.988366587925593e-08)); 2023-01-11T21:05:10.6448088Z auto tmp4 = tmp2 + tmp3; 2023-01-11T21:05:10.6448170Z auto tmp5 = tmp0 * tmp4; 2023-01-11T21:05:10.6448388Z auto tmp6 = at::vec::Vectorized(static_cast(-3.087032500374211e-07)); 2023-01-11T21:05:10.6448475Z auto tmp7 = tmp5 + tmp6; 2023-01-11T21:05:10.6448696Z auto tmp9 = at::vec::Vectorized(static_cast(1.55093272922008e-10)); 2023-01-11T21:05:10.6448781Z auto tmp10 = tmp8 * tmp9; 2023-01-11T21:05:10.6448866Z auto tmp11 = tmp7 + tmp10; 2023-01-11T21:05:10.6448952Z auto tmp12 = tmp11.reciprocal(); 2023-01-11T21:05:10.6449086Z auto tmp13 = at::vec::Vectorized(static_cast(1.0)); 2023-01-11T21:05:10.6449172Z auto tmp14 = tmp12 * tmp13; 2023-01-11T21:05:10.6449269Z tmp11.store(in_out_ptr0 + 16*i0); 2023-01-11T21:05:10.6449361Z tmp14.store(out_ptr1 + 16*i0); 2023-01-11T21:05:10.6449423Z } 2023-01-11T21:05:10.6449518Z #pragma omp for simd simdlen(8) 2023-01-11T21:05:10.6449596Z for(long i0=1082016; i0<1082016; i0+=1) 2023-01-11T21:05:10.6449658Z { 2023-01-11T21:05:10.6449740Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:05:10.6449825Z auto tmp8 = in_ptr1[i0]; 2023-01-11T21:05:10.6450001Z auto tmp1 = static_cast(-1.061519070296458e-11); 2023-01-11T21:05:10.6450082Z auto tmp2 = tmp0 * tmp1; 2023-01-11T21:05:10.6450254Z auto tmp3 = static_cast(-1.988366587925593e-08); 2023-01-11T21:05:10.6450322Z auto tmp4 = tmp2 + tmp3; 2023-01-11T21:05:10.6450402Z auto tmp5 = tmp0 * tmp4; 2023-01-11T21:05:10.6450569Z auto tmp6 = static_cast(-3.087032500374211e-07); 2023-01-11T21:05:10.6450649Z auto tmp7 = tmp5 + tmp6; 2023-01-11T21:05:10.6450818Z auto tmp9 = static_cast(1.55093272922008e-10); 2023-01-11T21:05:10.6450901Z auto tmp10 = tmp8 * tmp9; 2023-01-11T21:05:10.6450985Z auto tmp11 = tmp7 + tmp10; 2023-01-11T21:05:10.6451051Z auto tmp12 = 1 / tmp11; 2023-01-11T21:05:10.6451151Z auto tmp13 = static_cast(1.0); 2023-01-11T21:05:10.6451235Z auto tmp14 = tmp12 * tmp13; 2023-01-11T21:05:10.6451344Z in_out_ptr0[i0] = tmp11; 2023-01-11T21:05:10.6451422Z out_ptr1[i0] = tmp14; 2023-01-11T21:05:10.6451483Z } 2023-01-11T21:05:10.6451558Z #pragma omp for 2023-01-11T21:05:10.6451628Z for(long i0=0; i0<41616; i0+=1) 2023-01-11T21:05:10.6451689Z { 2023-01-11T21:05:10.6451768Z for(long i1=0; i1<1; i1+=1) 2023-01-11T21:05:10.6451832Z { 2023-01-11T21:05:10.6451980Z auto tmp0 = at::vec::Vectorized::loadu(in_out_ptr0 + (16*i1) + (26*i0)); 2023-01-11T21:05:10.6452114Z auto tmp1 = at::vec::Vectorized::loadu(in_ptr2 + 16*i1); 2023-01-11T21:05:10.6452202Z auto tmp2 = tmp0 * tmp1; 2023-01-11T21:05:10.6452294Z tmp2.store(in_out_ptr0 + (16*i1) + (26*i0)); 2023-01-11T21:05:10.6452356Z } 2023-01-11T21:05:10.6452446Z #pragma omp simd simdlen(8) 2023-01-11T21:05:10.6452534Z for(long i1=16; i1<26; i1+=1) 2023-01-11T21:05:10.6452598Z { 2023-01-11T21:05:10.6452697Z auto tmp0 = in_out_ptr0[i1 + (26*i0)]; 2023-01-11T21:05:10.6452783Z auto tmp1 = in_ptr2[i1]; 2023-01-11T21:05:10.6452882Z auto tmp2 = tmp0 * tmp1; 2023-01-11T21:05:10.6452977Z in_out_ptr0[i1 + (26*i0)] = tmp2; 2023-01-11T21:05:10.6453039Z } 2023-01-11T21:05:10.6453099Z } 2023-01-11T21:05:10.6453173Z #pragma omp for 2023-01-11T21:05:10.6453252Z for(long i0=0; i0<67626; i0+=1) 2023-01-11T21:05:10.6453312Z { 2023-01-11T21:05:10.6453433Z auto tmp0 = at::vec::Vectorized::loadu(out_ptr1 + 16*i0); 2023-01-11T21:05:10.6453567Z auto tmp1 = at::vec::Vectorized::loadu(in_out_ptr0 + 16*i0); 2023-01-11T21:05:10.6453649Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:05:10.6453745Z tmp2.store(in_out_ptr1 + 16*i0); 2023-01-11T21:05:10.6453805Z } 2023-01-11T21:05:10.6453896Z #pragma omp for simd simdlen(8) 2023-01-11T21:05:10.6453989Z for(long i0=1082016; i0<1082016; i0+=1) 2023-01-11T21:05:10.6454048Z { 2023-01-11T21:05:10.6454118Z auto tmp0 = out_ptr1[i0]; 2023-01-11T21:05:10.6454206Z auto tmp1 = in_out_ptr0[i0]; 2023-01-11T21:05:10.6454288Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:05:10.6454367Z in_out_ptr1[i0] = tmp2; 2023-01-11T21:05:10.6454430Z } 2023-01-11T21:05:10.6454491Z } 2023-01-11T21:05:10.6454538Z } 2023-01-11T21:05:10.6454615Z ''') 2023-01-11T21:05:10.6454620Z 2023-01-11T21:05:10.6454625Z 2023-01-11T21:05:10.6454711Z async_compile.wait(globals()) 2023-01-11T21:05:10.6454784Z del async_compile 2023-01-11T21:05:10.6454789Z 2023-01-11T21:05:10.6454858Z def call(args): 2023-01-11T21:05:10.6454938Z arg0_1, arg1_1, arg2_1 = args 2023-01-11T21:05:10.6455007Z args.clear() 2023-01-11T21:05:10.6455220Z buf0 = empty_strided((204, 204, 26), (5304, 26, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6455293Z buf1 = buf0; del buf0 # reuse 2023-01-11T21:05:10.6455503Z buf2 = empty_strided((204, 204, 26), (5304, 26, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6455583Z buf3 = buf1; del buf1 # reuse 2023-01-11T21:05:10.6455664Z buf4 = buf2; del buf2 # reuse 2023-01-11T21:05:10.6455872Z kernel_cpp_0(c_void_p(buf3.data_ptr()), c_void_p(buf4.data_ptr()), c_void_p(arg1_1.data_ptr()), c_void_p(arg0_1.data_ptr()), c_void_p(arg2_1.data_ptr())) 2023-01-11T21:05:10.6455938Z del arg0_1 2023-01-11T21:05:10.6456002Z del arg1_1 2023-01-11T21:05:10.6456054Z del arg2_1 2023-01-11T21:05:10.6456123Z return (buf4, ) 2023-01-11T21:05:10.6456128Z 2023-01-11T21:05:10.6456132Z 2023-01-11T21:05:10.6456206Z if __name__ == "__main__": 2023-01-11T21:05:10.6456319Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.6456441Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.6456654Z arg0_1 = rand_strided((204, 204, 26), (5304, 26, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6456897Z arg1_1 = rand_strided((204, 204, 26), (5304, 26, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6457087Z arg2_1 = rand_strided((26, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6457196Z print_performance(lambda: call([arg0_1, arg1_1, arg2_1])) 2023-01-11T21:05:10.6457213Z 2023-01-11T21:05:10.6457265Z ok (3.589s) 2023-01-11T21:05:10.6457707Z test_select_scatter_cpu (__main__.CpuTests) ... inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.6457831Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.6458087Z [2023-01-11 20:58:50,270] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 396 2023-01-11T21:05:10.6458351Z [2023-01-11 20:58:52,919] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 396 2023-01-11T21:05:10.6458356Z 2023-01-11T21:05:10.6463442Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.6463557Z import torch 2023-01-11T21:05:10.6463616Z import random 2023-01-11T21:05:10.6463738Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.6463860Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.6463867Z 2023-01-11T21:05:10.6463943Z aten = torch.ops.aten 2023-01-11T21:05:10.6464079Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.6464173Z async_compile = AsyncCompile() 2023-01-11T21:05:10.6464178Z 2023-01-11T21:05:10.6464182Z 2023-01-11T21:05:10.6464339Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.6464534Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.6464658Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:05:10.6464760Z const float* __restrict__ in_ptr1, 2023-01-11T21:05:10.6464864Z const float* __restrict__ in_ptr2, 2023-01-11T21:05:10.6464959Z float* __restrict__ out_ptr0, 2023-01-11T21:05:10.6465054Z float* __restrict__ out_ptr1) 2023-01-11T21:05:10.6465115Z { 2023-01-11T21:05:10.6465211Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.6465260Z { 2023-01-11T21:05:10.6465333Z #pragma omp for 2023-01-11T21:05:10.6465412Z for(long i0=0; i0<8; i0+=1) 2023-01-11T21:05:10.6465472Z { 2023-01-11T21:05:10.6465548Z #pragma GCC ivdep 2023-01-11T21:05:10.6465633Z for(long i1=0; i1<197; i1+=1) 2023-01-11T21:05:10.6465683Z { 2023-01-11T21:05:10.6465762Z #pragma GCC ivdep 2023-01-11T21:05:10.6465849Z for(long i2=0; i2<38; i2+=1) 2023-01-11T21:05:10.6465915Z { 2023-01-11T21:05:10.6465978Z { 2023-01-11T21:05:10.6466044Z { 2023-01-11T21:05:10.6466151Z auto tmp3 = in_ptr0[i2 + (38*i0)]; 2023-01-11T21:05:10.6466249Z auto tmp4 = in_ptr1[i2 + (38*i1) + (7486*i0)]; 2023-01-11T21:05:10.6466355Z auto tmp0 = static_cast(i1); 2023-01-11T21:05:10.6466455Z auto tmp1 = static_cast(0); 2023-01-11T21:05:10.6466550Z auto tmp2 = tmp0 == tmp1; 2023-01-11T21:05:10.6466650Z auto tmp5 = tmp2 ? tmp3 : tmp4; 2023-01-11T21:05:10.6466752Z out_ptr0[i2 + (38*i1) + (7486*i0)] = tmp5; 2023-01-11T21:05:10.6466818Z } 2023-01-11T21:05:10.6466882Z } 2023-01-11T21:05:10.6466933Z } 2023-01-11T21:05:10.6466991Z } 2023-01-11T21:05:10.6467093Z } 2023-01-11T21:05:10.6467170Z #pragma omp for 2023-01-11T21:05:10.6467249Z for(long i0=0; i0<8; i0+=1) 2023-01-11T21:05:10.6467307Z { 2023-01-11T21:05:10.6467373Z #pragma GCC ivdep 2023-01-11T21:05:10.6467459Z for(long i1=0; i1<7486; i1+=1) 2023-01-11T21:05:10.6467519Z { 2023-01-11T21:05:10.6467580Z { 2023-01-11T21:05:10.6467642Z { 2023-01-11T21:05:10.6467734Z auto tmp3 = in_ptr2[i1]; 2023-01-11T21:05:10.6467827Z auto tmp4 = in_ptr1[i1 + (7486*i0)]; 2023-01-11T21:05:10.6467931Z auto tmp0 = static_cast(i0); 2023-01-11T21:05:10.6468034Z auto tmp1 = static_cast(1); 2023-01-11T21:05:10.6468114Z auto tmp2 = tmp0 == tmp1; 2023-01-11T21:05:10.6468214Z auto tmp5 = tmp2 ? tmp3 : tmp4; 2023-01-11T21:05:10.6468310Z out_ptr1[i1 + (7486*i0)] = tmp5; 2023-01-11T21:05:10.6468381Z } 2023-01-11T21:05:10.6468445Z } 2023-01-11T21:05:10.6468507Z } 2023-01-11T21:05:10.6468570Z } 2023-01-11T21:05:10.6468617Z } 2023-01-11T21:05:10.6468706Z } 2023-01-11T21:05:10.6468790Z ''') 2023-01-11T21:05:10.6468795Z 2023-01-11T21:05:10.6468799Z 2023-01-11T21:05:10.6468888Z async_compile.wait(globals()) 2023-01-11T21:05:10.6468957Z del async_compile 2023-01-11T21:05:10.6468962Z 2023-01-11T21:05:10.6469031Z def call(args): 2023-01-11T21:05:10.6469110Z arg0_1, arg1_1, arg2_1 = args 2023-01-11T21:05:10.6469167Z args.clear() 2023-01-11T21:05:10.6469382Z buf0 = empty_strided((8, 197, 38), (7486, 38, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6469591Z buf1 = empty_strided((8, 197, 38), (7486, 38, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6469806Z kernel_cpp_0(c_void_p(arg1_1.data_ptr()), c_void_p(arg0_1.data_ptr()), c_void_p(arg2_1.data_ptr()), c_void_p(buf0.data_ptr()), c_void_p(buf1.data_ptr())) 2023-01-11T21:05:10.6469876Z del arg0_1 2023-01-11T21:05:10.6469940Z del arg1_1 2023-01-11T21:05:10.6470004Z del arg2_1 2023-01-11T21:05:10.6470078Z return (buf0, buf1, ) 2023-01-11T21:05:10.6470086Z 2023-01-11T21:05:10.6470090Z 2023-01-11T21:05:10.6470152Z if __name__ == "__main__": 2023-01-11T21:05:10.6470266Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.6470388Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.6470598Z arg0_1 = rand_strided((8, 197, 38), (7486, 38, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6470792Z arg1_1 = rand_strided((8, 38), (38, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6470990Z arg2_1 = rand_strided((197, 38), (38, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6471113Z print_performance(lambda: call([arg0_1, arg1_1, arg2_1])) 2023-01-11T21:05:10.6471118Z 2023-01-11T21:05:10.6471184Z ok (2.827s) 2023-01-11T21:05:10.6471623Z test_sgn_cpu (__main__.CpuTests) ... inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.6471736Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.6471996Z [2023-01-11 20:58:53,082] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 397 2023-01-11T21:05:10.6472262Z [2023-01-11 20:58:55,763] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 397 2023-01-11T21:05:10.6472268Z 2023-01-11T21:05:10.6472361Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.6472429Z import torch 2023-01-11T21:05:10.6472497Z import random 2023-01-11T21:05:10.6472611Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.6472768Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.6472774Z 2023-01-11T21:05:10.6472838Z aten = torch.ops.aten 2023-01-11T21:05:10.6472972Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.6473061Z async_compile = AsyncCompile() 2023-01-11T21:05:10.6473066Z 2023-01-11T21:05:10.6473070Z 2023-01-11T21:05:10.6473203Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.6473405Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.6473522Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:05:10.6473620Z float* __restrict__ out_ptr0, 2023-01-11T21:05:10.6473714Z float* __restrict__ out_ptr1) 2023-01-11T21:05:10.6473761Z { 2023-01-11T21:05:10.6473857Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.6473917Z { 2023-01-11T21:05:10.6473994Z #pragma omp for 2023-01-11T21:05:10.6474077Z for(long i0=0; i0<2; i0+=1) 2023-01-11T21:05:10.6474139Z { 2023-01-11T21:05:10.6474278Z auto tmp0 = at::vec::Vectorized::loadu(in_ptr0 + 16*i0); 2023-01-11T21:05:10.6474461Z auto tmp1 = decltype(tmp0)::blendv(decltype(tmp0)(0), decltype(tmp0)(1), decltype(tmp0)(0) < tmp0); 2023-01-11T21:05:10.6474632Z auto tmp2 = decltype(tmp0)::blendv(decltype(tmp0)(0), decltype(tmp0)(1), tmp0 < decltype(tmp0)(0)); 2023-01-11T21:05:10.6474756Z auto tmp3 = tmp1 - tmp2; 2023-01-11T21:05:10.6474887Z auto tmp4 = at::vec::Vectorized(static_cast(1)); 2023-01-11T21:05:10.6474970Z auto tmp5 = tmp0 + tmp4; 2023-01-11T21:05:10.6475130Z auto tmp6 = decltype(tmp5)::blendv(decltype(tmp5)(0), decltype(tmp5)(1), decltype(tmp5)(0) < tmp5); 2023-01-11T21:05:10.6475294Z auto tmp7 = decltype(tmp5)::blendv(decltype(tmp5)(0), decltype(tmp5)(1), tmp5 < decltype(tmp5)(0)); 2023-01-11T21:05:10.6475417Z auto tmp8 = tmp6 - tmp7; 2023-01-11T21:05:10.6475535Z auto tmp9 = tmp8 - tmp4; 2023-01-11T21:05:10.6475614Z tmp3.store(out_ptr0 + 16*i0); 2023-01-11T21:05:10.6475705Z tmp9.store(out_ptr1 + 16*i0); 2023-01-11T21:05:10.6475770Z } 2023-01-11T21:05:10.6475864Z #pragma omp for simd simdlen(8) 2023-01-11T21:05:10.6475943Z for(long i0=32; i0<41; i0+=1) 2023-01-11T21:05:10.6476004Z { 2023-01-11T21:05:10.6476085Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:05:10.6476158Z auto tmp1 = tmp0 > 0 ? 1 : 0; 2023-01-11T21:05:10.6476241Z auto tmp2 = tmp0 < 0 ? 1 : 0; 2023-01-11T21:05:10.6476361Z auto tmp3 = tmp1 - tmp2; 2023-01-11T21:05:10.6476459Z auto tmp4 = static_cast(1); 2023-01-11T21:05:10.6476539Z auto tmp5 = tmp0 + tmp4; 2023-01-11T21:05:10.6476622Z auto tmp6 = tmp5 > 0 ? 1 : 0; 2023-01-11T21:05:10.6476704Z auto tmp7 = tmp5 < 0 ? 1 : 0; 2023-01-11T21:05:10.6476813Z auto tmp8 = tmp6 - tmp7; 2023-01-11T21:05:10.6476929Z auto tmp9 = tmp8 - tmp4; 2023-01-11T21:05:10.6477008Z out_ptr0[i0] = tmp3; 2023-01-11T21:05:10.6477084Z out_ptr1[i0] = tmp9; 2023-01-11T21:05:10.6477145Z } 2023-01-11T21:05:10.6477206Z } 2023-01-11T21:05:10.6477252Z } 2023-01-11T21:05:10.6477327Z ''') 2023-01-11T21:05:10.6477332Z 2023-01-11T21:05:10.6477336Z 2023-01-11T21:05:10.6477423Z async_compile.wait(globals()) 2023-01-11T21:05:10.6477494Z del async_compile 2023-01-11T21:05:10.6477498Z 2023-01-11T21:05:10.6477567Z def call(args): 2023-01-11T21:05:10.6477634Z arg0_1, = args 2023-01-11T21:05:10.6477704Z args.clear() 2023-01-11T21:05:10.6477895Z buf0 = empty_strided((41, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6478072Z buf1 = empty_strided((41, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6478235Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(buf0.data_ptr()), c_void_p(buf1.data_ptr())) 2023-01-11T21:05:10.6478330Z del arg0_1 2023-01-11T21:05:10.6478405Z return (buf0, buf1, ) 2023-01-11T21:05:10.6478411Z 2023-01-11T21:05:10.6478415Z 2023-01-11T21:05:10.6478495Z if __name__ == "__main__": 2023-01-11T21:05:10.6478608Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.6478732Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.6478924Z arg0_1 = rand_strided((41, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6479018Z print_performance(lambda: call([arg0_1])) 2023-01-11T21:05:10.6479022Z 2023-01-11T21:05:10.6479086Z ok (2.724s) 2023-01-11T21:05:10.6479528Z test_sgn_extremal_cpu (__main__.CpuTests) ... inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.6479654Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.6479942Z [2023-01-11 20:58:55,792] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 398 2023-01-11T21:05:10.6480209Z [2023-01-11 20:58:58,461] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 398 2023-01-11T21:05:10.6480214Z 2023-01-11T21:05:10.6480306Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.6480375Z import torch 2023-01-11T21:05:10.6480443Z import random 2023-01-11T21:05:10.6480544Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.6480810Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.6480815Z 2023-01-11T21:05:10.6480892Z aten = torch.ops.aten 2023-01-11T21:05:10.6481027Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.6481119Z async_compile = AsyncCompile() 2023-01-11T21:05:10.6481126Z 2023-01-11T21:05:10.6481130Z 2023-01-11T21:05:10.6481265Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.6481470Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.6481591Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:05:10.6481677Z float* __restrict__ out_ptr0) 2023-01-11T21:05:10.6481738Z { 2023-01-11T21:05:10.6481837Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.6481897Z { 2023-01-11T21:05:10.6481974Z #pragma omp for 2023-01-11T21:05:10.6482055Z for(long i0=0; i0<4; i0+=1) 2023-01-11T21:05:10.6482118Z { 2023-01-11T21:05:10.6482167Z { 2023-01-11T21:05:10.6482230Z { 2023-01-11T21:05:10.6482323Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:05:10.6482416Z auto tmp1 = tmp0 > 0 ? 1 : 0; 2023-01-11T21:05:10.6482509Z auto tmp2 = tmp0 < 0 ? 1 : 0; 2023-01-11T21:05:10.6482645Z auto tmp3 = tmp1 - tmp2; 2023-01-11T21:05:10.6482730Z out_ptr0[i0] = tmp3; 2023-01-11T21:05:10.6482782Z } 2023-01-11T21:05:10.6482844Z } 2023-01-11T21:05:10.6482907Z } 2023-01-11T21:05:10.6482966Z } 2023-01-11T21:05:10.6483025Z } 2023-01-11T21:05:10.6483102Z ''') 2023-01-11T21:05:10.6483107Z 2023-01-11T21:05:10.6483111Z 2023-01-11T21:05:10.6483200Z async_compile.wait(globals()) 2023-01-11T21:05:10.6483258Z del async_compile 2023-01-11T21:05:10.6483262Z 2023-01-11T21:05:10.6483331Z def call(args): 2023-01-11T21:05:10.6483398Z arg0_1, = args 2023-01-11T21:05:10.6483467Z args.clear() 2023-01-11T21:05:10.6483658Z buf0 = empty_strided((4, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6483790Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:05:10.6483856Z del arg0_1 2023-01-11T21:05:10.6483912Z return (buf0, ) 2023-01-11T21:05:10.6483974Z 2023-01-11T21:05:10.6483978Z 2023-01-11T21:05:10.6484053Z if __name__ == "__main__": 2023-01-11T21:05:10.6484169Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.6484294Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.6484488Z arg0_1 = rand_strided((4, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6484595Z print_performance(lambda: call([arg0_1])) 2023-01-11T21:05:10.6484600Z 2023-01-11T21:05:10.6484666Z ok (2.697s) 2023-01-11T21:05:10.6485121Z test_shape_prop_torch_ones_cpu (__main__.CpuTests) ... inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.6485247Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.6485495Z [2023-01-11 20:58:59,339] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 399 2023-01-11T21:05:10.6485807Z [2023-01-11 20:59:01,982] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 399 2023-01-11T21:05:10.6485813Z 2023-01-11T21:05:10.6485910Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.6485978Z import torch 2023-01-11T21:05:10.6486045Z import random 2023-01-11T21:05:10.6486157Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.6486274Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.6486279Z 2023-01-11T21:05:10.6486356Z aten = torch.ops.aten 2023-01-11T21:05:10.6486475Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.6486566Z async_compile = AsyncCompile() 2023-01-11T21:05:10.6486570Z 2023-01-11T21:05:10.6486574Z 2023-01-11T21:05:10.6486709Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.6486910Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.6487029Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:05:10.6487127Z float* __restrict__ out_ptr0) 2023-01-11T21:05:10.6487188Z { 2023-01-11T21:05:10.6487283Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.6487330Z { 2023-01-11T21:05:10.6487404Z #pragma omp for 2023-01-11T21:05:10.6487490Z for(long i0=0; i0<1572864; i0+=1) 2023-01-11T21:05:10.6487552Z { 2023-01-11T21:05:10.6487689Z auto tmp0 = at::vec::Vectorized::loadu(in_ptr0 + 16*i0); 2023-01-11T21:05:10.6487823Z auto tmp1 = at::vec::Vectorized(static_cast(1)); 2023-01-11T21:05:10.6487907Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:05:10.6487985Z tmp2.store(out_ptr0 + 16*i0); 2023-01-11T21:05:10.6488047Z } 2023-01-11T21:05:10.6488139Z #pragma omp for simd simdlen(8) 2023-01-11T21:05:10.6488231Z for(long i0=25165824; i0<25165824; i0+=1) 2023-01-11T21:05:10.6488292Z { 2023-01-11T21:05:10.6488373Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:05:10.6488469Z auto tmp1 = static_cast(1); 2023-01-11T21:05:10.6488541Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:05:10.6488618Z out_ptr0[i0] = tmp2; 2023-01-11T21:05:10.6488677Z } 2023-01-11T21:05:10.6488737Z } 2023-01-11T21:05:10.6488794Z } 2023-01-11T21:05:10.6488870Z ''') 2023-01-11T21:05:10.6488875Z 2023-01-11T21:05:10.6488879Z 2023-01-11T21:05:10.6488965Z async_compile.wait(globals()) 2023-01-11T21:05:10.6489022Z del async_compile 2023-01-11T21:05:10.6489027Z 2023-01-11T21:05:10.6489096Z def call(args): 2023-01-11T21:05:10.6489162Z arg0_1, = args 2023-01-11T21:05:10.6489230Z args.clear() 2023-01-11T21:05:10.6489462Z buf0 = empty_strided((8, 12, 512, 512), (3145728, 262144, 512, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6489594Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:05:10.6489693Z del arg0_1 2023-01-11T21:05:10.6489749Z return (buf0, ) 2023-01-11T21:05:10.6489754Z 2023-01-11T21:05:10.6489770Z 2023-01-11T21:05:10.6489833Z if __name__ == "__main__": 2023-01-11T21:05:10.6489945Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.6490065Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.6490297Z arg0_1 = rand_strided((8, 12, 512, 512), (3145728, 262144, 512, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6490403Z print_performance(lambda: call([arg0_1])) 2023-01-11T21:05:10.6490408Z 2023-01-11T21:05:10.6490471Z ok (10.326s) 2023-01-11T21:05:10.6490906Z test_sigmoid_cpu (__main__.CpuTests) ... inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.6491032Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.6491329Z [2023-01-11 20:59:08,830] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 400 2023-01-11T21:05:10.6491584Z [2023-01-11 20:59:11,466] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 400 2023-01-11T21:05:10.6491589Z 2023-01-11T21:05:10.6491680Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.6491748Z import torch 2023-01-11T21:05:10.6491816Z import random 2023-01-11T21:05:10.6491928Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.6492047Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.6492052Z 2023-01-11T21:05:10.6492128Z aten = torch.ops.aten 2023-01-11T21:05:10.6492248Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.6492339Z async_compile = AsyncCompile() 2023-01-11T21:05:10.6492346Z 2023-01-11T21:05:10.6492350Z 2023-01-11T21:05:10.6492481Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.6492686Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.6492804Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:05:10.6492906Z const float* __restrict__ in_ptr1, 2023-01-11T21:05:10.6493004Z float* __restrict__ out_ptr0, 2023-01-11T21:05:10.6493099Z float* __restrict__ out_ptr1) 2023-01-11T21:05:10.6493146Z { 2023-01-11T21:05:10.6493242Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.6493302Z { 2023-01-11T21:05:10.6493375Z #pragma omp for 2023-01-11T21:05:10.6493453Z for(long i0=0; i0<4; i0+=1) 2023-01-11T21:05:10.6493515Z { 2023-01-11T21:05:10.6493648Z auto tmp0 = at::vec::Vectorized::loadu(in_ptr0 + 16*i0); 2023-01-11T21:05:10.6493768Z auto tmp2 = at::vec::Vectorized::loadu(in_ptr1 + 16*i0); 2023-01-11T21:05:10.6493902Z auto tmp1 = decltype(tmp0)(1)/(decltype(tmp0)(1) + tmp0.neg().exp()); 2023-01-11T21:05:10.6493987Z auto tmp3 = tmp0 + tmp2; 2023-01-11T21:05:10.6494117Z auto tmp4 = decltype(tmp3)(1)/(decltype(tmp3)(1) + tmp3.neg().exp()); 2023-01-11T21:05:10.6494208Z tmp1.store(out_ptr0 + 16*i0); 2023-01-11T21:05:10.6494297Z tmp4.store(out_ptr1 + 16*i0); 2023-01-11T21:05:10.6494357Z } 2023-01-11T21:05:10.6494450Z #pragma omp for simd simdlen(8) 2023-01-11T21:05:10.6494518Z for(long i0=64; i0<64; i0+=1) 2023-01-11T21:05:10.6494579Z { 2023-01-11T21:05:10.6494663Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:05:10.6494742Z auto tmp3 = in_ptr1[i0]; 2023-01-11T21:05:10.6494875Z auto tmp1 = std::exp(-tmp0); 2023-01-11T21:05:10.6494957Z auto tmp2 = 1 / (1 + tmp1); 2023-01-11T21:05:10.6495076Z auto tmp4 = tmp0 + tmp3; 2023-01-11T21:05:10.6495196Z auto tmp5 = std::exp(-tmp4); 2023-01-11T21:05:10.6495276Z auto tmp6 = 1 / (1 + tmp5); 2023-01-11T21:05:10.6495354Z out_ptr0[i0] = tmp2; 2023-01-11T21:05:10.6495431Z out_ptr1[i0] = tmp6; 2023-01-11T21:05:10.6495493Z } 2023-01-11T21:05:10.6495552Z } 2023-01-11T21:05:10.6495597Z } 2023-01-11T21:05:10.6495672Z ''') 2023-01-11T21:05:10.6495677Z 2023-01-11T21:05:10.6495681Z 2023-01-11T21:05:10.6495769Z async_compile.wait(globals()) 2023-01-11T21:05:10.6495839Z del async_compile 2023-01-11T21:05:10.6495844Z 2023-01-11T21:05:10.6495912Z def call(args): 2023-01-11T21:05:10.6495986Z arg0_1, arg1_1 = args 2023-01-11T21:05:10.6496056Z args.clear() 2023-01-11T21:05:10.6496250Z buf0 = empty_strided((8, 8), (8, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6496428Z buf1 = empty_strided((8, 8), (8, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6496615Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(arg1_1.data_ptr()), c_void_p(buf0.data_ptr()), c_void_p(buf1.data_ptr())) 2023-01-11T21:05:10.6496682Z del arg0_1 2023-01-11T21:05:10.6496746Z del arg1_1 2023-01-11T21:05:10.6496849Z return (buf0, buf1, ) 2023-01-11T21:05:10.6496855Z 2023-01-11T21:05:10.6496859Z 2023-01-11T21:05:10.6496935Z if __name__ == "__main__": 2023-01-11T21:05:10.6497049Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.6497171Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.6497351Z arg0_1 = rand_strided((8, 8), (8, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6497543Z arg1_1 = rand_strided((8, 8), (8, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6497655Z print_performance(lambda: call([arg0_1, arg1_1])) 2023-01-11T21:05:10.6497659Z 2023-01-11T21:05:10.6497724Z ok (2.681s) 2023-01-11T21:05:10.6498163Z test_signbit_cpu (__main__.CpuTests) ... inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.6498288Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.6498645Z [2023-01-11 20:59:11,517] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 401 2023-01-11T21:05:10.6498919Z [2023-01-11 20:59:14,170] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 401 2023-01-11T21:05:10.6498924Z 2023-01-11T21:05:10.6499018Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.6499075Z import torch 2023-01-11T21:05:10.6499145Z import random 2023-01-11T21:05:10.6499260Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.6499380Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.6499387Z 2023-01-11T21:05:10.6499465Z aten = torch.ops.aten 2023-01-11T21:05:10.6499598Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.6499689Z async_compile = AsyncCompile() 2023-01-11T21:05:10.6499695Z 2023-01-11T21:05:10.6499700Z 2023-01-11T21:05:10.6499832Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.6500021Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.6500140Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:05:10.6500238Z bool* __restrict__ out_ptr0, 2023-01-11T21:05:10.6500333Z long* __restrict__ out_ptr1) 2023-01-11T21:05:10.6500396Z { 2023-01-11T21:05:10.6500494Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.6500554Z { 2023-01-11T21:05:10.6500617Z #pragma omp for 2023-01-11T21:05:10.6500699Z for(long i0=0; i0<72; i0+=1) 2023-01-11T21:05:10.6500760Z { 2023-01-11T21:05:10.6500856Z { 2023-01-11T21:05:10.6500921Z { 2023-01-11T21:05:10.6501013Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:05:10.6501120Z auto tmp1 = std::signbit(tmp0); 2023-01-11T21:05:10.6501231Z auto tmp2 = -tmp0; 2023-01-11T21:05:10.6501332Z auto tmp3 = std::signbit(tmp2); 2023-01-11T21:05:10.6501418Z auto tmp4 = tmp3 == 0; 2023-01-11T21:05:10.6501522Z auto tmp5 = static_cast(tmp4); 2023-01-11T21:05:10.6501623Z auto tmp6 = static_cast(1); 2023-01-11T21:05:10.6501715Z auto tmp7 = tmp5 & tmp6; 2023-01-11T21:05:10.6501799Z out_ptr0[i0] = tmp1; 2023-01-11T21:05:10.6501869Z out_ptr1[i0] = tmp7; 2023-01-11T21:05:10.6501931Z } 2023-01-11T21:05:10.6501993Z } 2023-01-11T21:05:10.6502053Z } 2023-01-11T21:05:10.6502113Z } 2023-01-11T21:05:10.6502173Z } 2023-01-11T21:05:10.6502249Z ''') 2023-01-11T21:05:10.6502254Z 2023-01-11T21:05:10.6502258Z 2023-01-11T21:05:10.6502333Z async_compile.wait(globals()) 2023-01-11T21:05:10.6502404Z del async_compile 2023-01-11T21:05:10.6502409Z 2023-01-11T21:05:10.6502512Z def call(args): 2023-01-11T21:05:10.6502581Z arg0_1, = args 2023-01-11T21:05:10.6502650Z args.clear() 2023-01-11T21:05:10.6502856Z buf0 = empty_strided((1, 2, 6, 6), (72, 36, 6, 1), device='cpu', dtype=torch.bool) 2023-01-11T21:05:10.6503060Z buf1 = empty_strided((1, 2, 6, 6), (72, 36, 6, 1), device='cpu', dtype=torch.int64) 2023-01-11T21:05:10.6503222Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(buf0.data_ptr()), c_void_p(buf1.data_ptr())) 2023-01-11T21:05:10.6503277Z del arg0_1 2023-01-11T21:05:10.6503352Z return (buf0, buf1, ) 2023-01-11T21:05:10.6503356Z 2023-01-11T21:05:10.6503360Z 2023-01-11T21:05:10.6503434Z if __name__ == "__main__": 2023-01-11T21:05:10.6503545Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.6503668Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.6503877Z arg0_1 = rand_strided((1, 2, 6, 6), (72, 36, 6, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6503985Z print_performance(lambda: call([arg0_1])) 2023-01-11T21:05:10.6503990Z 2023-01-11T21:05:10.6504054Z ok (2.701s) 2023-01-11T21:05:10.6504472Z test_silu_cpu (__main__.CpuTests) ... inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.6504598Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.6504854Z [2023-01-11 20:59:14,208] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 402 2023-01-11T21:05:10.6505118Z [2023-01-11 20:59:16,861] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 402 2023-01-11T21:05:10.6505123Z 2023-01-11T21:05:10.6505216Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.6505287Z import torch 2023-01-11T21:05:10.6505356Z import random 2023-01-11T21:05:10.6505470Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.6505576Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.6505594Z 2023-01-11T21:05:10.6505658Z aten = torch.ops.aten 2023-01-11T21:05:10.6505789Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.6505879Z async_compile = AsyncCompile() 2023-01-11T21:05:10.6505884Z 2023-01-11T21:05:10.6505889Z 2023-01-11T21:05:10.6506018Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.6506223Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.6506341Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:05:10.6506470Z float* __restrict__ out_ptr0) 2023-01-11T21:05:10.6506530Z { 2023-01-11T21:05:10.6506614Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.6506673Z { 2023-01-11T21:05:10.6506750Z #pragma omp for 2023-01-11T21:05:10.6506831Z for(long i0=0; i0<4; i0+=1) 2023-01-11T21:05:10.6506891Z { 2023-01-11T21:05:10.6507025Z auto tmp0 = at::vec::Vectorized::loadu(in_ptr0 + 16*i0); 2023-01-11T21:05:10.6507157Z auto tmp1 = decltype(tmp0)(1)/(decltype(tmp0)(1) + tmp0.neg().exp()); 2023-01-11T21:05:10.6507227Z auto tmp2 = tmp0 * tmp1; 2023-01-11T21:05:10.6507318Z tmp2.store(out_ptr0 + 16*i0); 2023-01-11T21:05:10.6507378Z } 2023-01-11T21:05:10.6507470Z #pragma omp for simd simdlen(8) 2023-01-11T21:05:10.6507551Z for(long i0=64; i0<64; i0+=1) 2023-01-11T21:05:10.6507610Z { 2023-01-11T21:05:10.6507679Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:05:10.6507814Z auto tmp1 = std::exp(-tmp0); 2023-01-11T21:05:10.6507896Z auto tmp2 = 1 / (1 + tmp1); 2023-01-11T21:05:10.6507977Z auto tmp3 = tmp0 * tmp2; 2023-01-11T21:05:10.6508081Z out_ptr0[i0] = tmp3; 2023-01-11T21:05:10.6508143Z } 2023-01-11T21:05:10.6508200Z } 2023-01-11T21:05:10.6508246Z } 2023-01-11T21:05:10.6508322Z ''') 2023-01-11T21:05:10.6508327Z 2023-01-11T21:05:10.6508331Z 2023-01-11T21:05:10.6508419Z async_compile.wait(globals()) 2023-01-11T21:05:10.6508488Z del async_compile 2023-01-11T21:05:10.6508493Z 2023-01-11T21:05:10.6508562Z def call(args): 2023-01-11T21:05:10.6508629Z arg0_1, = args 2023-01-11T21:05:10.6508698Z args.clear() 2023-01-11T21:05:10.6508890Z buf0 = empty_strided((8, 8), (8, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6509009Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:05:10.6509077Z del arg0_1 2023-01-11T21:05:10.6509146Z return (buf0, ) 2023-01-11T21:05:10.6509153Z 2023-01-11T21:05:10.6509157Z 2023-01-11T21:05:10.6509230Z if __name__ == "__main__": 2023-01-11T21:05:10.6509343Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.6509466Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.6509662Z arg0_1 = rand_strided((8, 8), (8, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6509755Z print_performance(lambda: call([arg0_1])) 2023-01-11T21:05:10.6509773Z 2023-01-11T21:05:10.6509825Z ok (2.692s) 2023-01-11T21:05:10.6510269Z test_simplify_loops_cpu (__main__.CpuTests) ... inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.6510395Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.6510657Z [2023-01-11 20:59:16,892] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 403 2023-01-11T21:05:10.6510921Z [2023-01-11 20:59:19,532] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 403 2023-01-11T21:05:10.6510926Z 2023-01-11T21:05:10.6511016Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.6511084Z import torch 2023-01-11T21:05:10.6511152Z import random 2023-01-11T21:05:10.6511253Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.6511372Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.6511377Z 2023-01-11T21:05:10.6511453Z aten = torch.ops.aten 2023-01-11T21:05:10.6511584Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.6511674Z async_compile = AsyncCompile() 2023-01-11T21:05:10.6511679Z 2023-01-11T21:05:10.6511683Z 2023-01-11T21:05:10.6511813Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.6512086Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.6512205Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:05:10.6512312Z const float* __restrict__ in_ptr1, 2023-01-11T21:05:10.6512399Z float* __restrict__ out_ptr0) 2023-01-11T21:05:10.6512460Z { 2023-01-11T21:05:10.6512556Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.6512617Z { 2023-01-11T21:05:10.6512703Z #pragma omp for collapse(2) 2023-01-11T21:05:10.6512783Z for(long i0=0; i0<6; i0+=1) 2023-01-11T21:05:10.6512832Z { 2023-01-11T21:05:10.6512914Z for(long i1=0; i1<4; i1+=1) 2023-01-11T21:05:10.6512977Z { 2023-01-11T21:05:10.6513069Z for(long i2=0; i2<1; i2+=1) 2023-01-11T21:05:10.6513133Z { 2023-01-11T21:05:10.6513284Z auto tmp0 = at::vec::Vectorized::loadu(in_ptr0 + (16*i2) + (30*i1) + (120*i0)); 2023-01-11T21:05:10.6513435Z auto tmp1 = at::vec::Vectorized::loadu(in_ptr1 + (16*i2) + (30*i0) + (180*i1)); 2023-01-11T21:05:10.6513529Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:05:10.6513655Z tmp2.store(out_ptr0 + (16*i2) + (30*i1) + (120*i0)); 2023-01-11T21:05:10.6513721Z } 2023-01-11T21:05:10.6513816Z #pragma omp simd simdlen(8) 2023-01-11T21:05:10.6513907Z for(long i2=16; i2<30; i2+=1) 2023-01-11T21:05:10.6513971Z { 2023-01-11T21:05:10.6514078Z auto tmp0 = in_ptr0[i2 + (30*i1) + (120*i0)]; 2023-01-11T21:05:10.6514182Z auto tmp1 = in_ptr1[i2 + (30*i0) + (180*i1)]; 2023-01-11T21:05:10.6514260Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:05:10.6514360Z out_ptr0[i2 + (30*i1) + (120*i0)] = tmp2; 2023-01-11T21:05:10.6514424Z } 2023-01-11T21:05:10.6514487Z } 2023-01-11T21:05:10.6514552Z } 2023-01-11T21:05:10.6514613Z } 2023-01-11T21:05:10.6514673Z } 2023-01-11T21:05:10.6514738Z ''') 2023-01-11T21:05:10.6514742Z 2023-01-11T21:05:10.6514746Z 2023-01-11T21:05:10.6514837Z async_compile.wait(globals()) 2023-01-11T21:05:10.6514910Z del async_compile 2023-01-11T21:05:10.6514915Z 2023-01-11T21:05:10.6514984Z def call(args): 2023-01-11T21:05:10.6515058Z arg0_1, arg1_1 = args 2023-01-11T21:05:10.6515127Z args.clear() 2023-01-11T21:05:10.6515350Z buf0 = empty_strided((2, 3, 4, 5, 6), (360, 120, 30, 6, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6515510Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(arg1_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:05:10.6515564Z del arg0_1 2023-01-11T21:05:10.6515631Z del arg1_1 2023-01-11T21:05:10.6515701Z return (buf0, ) 2023-01-11T21:05:10.6515706Z 2023-01-11T21:05:10.6515710Z 2023-01-11T21:05:10.6515787Z if __name__ == "__main__": 2023-01-11T21:05:10.6515901Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.6516026Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.6516251Z arg0_1 = rand_strided((2, 3, 4, 5, 6), (360, 120, 30, 6, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6516456Z arg1_1 = rand_strided((2, 3, 4, 5, 6), (90, 30, 180, 6, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6516570Z print_performance(lambda: call([arg0_1, arg1_1])) 2023-01-11T21:05:10.6516575Z 2023-01-11T21:05:10.6516641Z ok (2.673s) 2023-01-11T21:05:10.6517073Z test_sin_cpu (__main__.CpuTests) ... inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.6517200Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.6517488Z [2023-01-11 20:59:19,598] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 404 2023-01-11T21:05:10.6517755Z [2023-01-11 20:59:22,256] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 404 2023-01-11T21:05:10.6517760Z 2023-01-11T21:05:10.6517854Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.6517923Z import torch 2023-01-11T21:05:10.6517992Z import random 2023-01-11T21:05:10.6518091Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.6518210Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.6518215Z 2023-01-11T21:05:10.6518291Z aten = torch.ops.aten 2023-01-11T21:05:10.6518425Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.6518513Z async_compile = AsyncCompile() 2023-01-11T21:05:10.6518519Z 2023-01-11T21:05:10.6518523Z 2023-01-11T21:05:10.6518654Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.6518857Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.6518978Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:05:10.6519090Z float* __restrict__ out_ptr0, 2023-01-11T21:05:10.6519191Z float* __restrict__ out_ptr1) 2023-01-11T21:05:10.6519249Z { 2023-01-11T21:05:10.6519345Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.6519404Z { 2023-01-11T21:05:10.6519479Z #pragma omp for 2023-01-11T21:05:10.6519559Z for(long i0=0; i0<16; i0+=1) 2023-01-11T21:05:10.6519608Z { 2023-01-11T21:05:10.6519740Z auto tmp0 = at::vec::Vectorized::loadu(in_ptr0 + 16*i0); 2023-01-11T21:05:10.6519822Z auto tmp1 = tmp0.sin(); 2023-01-11T21:05:10.6519954Z auto tmp2 = at::vec::Vectorized(static_cast(2)); 2023-01-11T21:05:10.6520036Z auto tmp3 = tmp1 + tmp2; 2023-01-11T21:05:10.6520167Z auto tmp4 = at::vec::Vectorized(static_cast(1)); 2023-01-11T21:05:10.6520251Z auto tmp5 = tmp0 + tmp4; 2023-01-11T21:05:10.6520319Z auto tmp6 = tmp5.sin(); 2023-01-11T21:05:10.6520411Z tmp3.store(out_ptr0 + 16*i0); 2023-01-11T21:05:10.6520500Z tmp6.store(out_ptr1 + 16*i0); 2023-01-11T21:05:10.6520562Z } 2023-01-11T21:05:10.6520777Z #pragma omp for simd simdlen(8) 2023-01-11T21:05:10.6520859Z for(long i0=256; i0<256; i0+=1) 2023-01-11T21:05:10.6520921Z { 2023-01-11T21:05:10.6520990Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:05:10.6521077Z auto tmp1 = std::sin(tmp0); 2023-01-11T21:05:10.6521174Z auto tmp2 = static_cast(2); 2023-01-11T21:05:10.6521256Z auto tmp3 = tmp1 + tmp2; 2023-01-11T21:05:10.6521354Z auto tmp4 = static_cast(1); 2023-01-11T21:05:10.6521438Z auto tmp5 = tmp0 + tmp4; 2023-01-11T21:05:10.6521525Z auto tmp6 = std::sin(tmp5); 2023-01-11T21:05:10.6521593Z out_ptr0[i0] = tmp3; 2023-01-11T21:05:10.6521670Z out_ptr1[i0] = tmp6; 2023-01-11T21:05:10.6521733Z } 2023-01-11T21:05:10.6521794Z } 2023-01-11T21:05:10.6521854Z } 2023-01-11T21:05:10.6521938Z ''') 2023-01-11T21:05:10.6521945Z 2023-01-11T21:05:10.6521949Z 2023-01-11T21:05:10.6522036Z async_compile.wait(globals()) 2023-01-11T21:05:10.6522094Z del async_compile 2023-01-11T21:05:10.6522112Z 2023-01-11T21:05:10.6522168Z def call(args): 2023-01-11T21:05:10.6522234Z arg0_1, = args 2023-01-11T21:05:10.6522302Z args.clear() 2023-01-11T21:05:10.6522501Z buf0 = empty_strided((16, 16), (16, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6522696Z buf1 = empty_strided((16, 16), (16, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6522855Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(buf0.data_ptr()), c_void_p(buf1.data_ptr())) 2023-01-11T21:05:10.6522922Z del arg0_1 2023-01-11T21:05:10.6523040Z return (buf0, buf1, ) 2023-01-11T21:05:10.6523045Z 2023-01-11T21:05:10.6523050Z 2023-01-11T21:05:10.6523124Z if __name__ == "__main__": 2023-01-11T21:05:10.6523239Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.6523365Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.6523567Z arg0_1 = rand_strided((16, 16), (16, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6523674Z print_performance(lambda: call([arg0_1])) 2023-01-11T21:05:10.6523679Z 2023-01-11T21:05:10.6523745Z ok (2.725s) 2023-01-11T21:05:10.6524186Z test_sizehint_issue1_cpu (__main__.CpuTests) ... inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.6524313Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.6524559Z [2023-01-11 20:59:22,522] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 405 2023-01-11T21:05:10.6524858Z [2023-01-11 20:59:25,264] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 405 2023-01-11T21:05:10.6524864Z 2023-01-11T21:05:10.6524959Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.6525028Z import torch 2023-01-11T21:05:10.6525099Z import random 2023-01-11T21:05:10.6525215Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.6525336Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.6525341Z 2023-01-11T21:05:10.6525419Z aten = torch.ops.aten 2023-01-11T21:05:10.6525538Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.6525628Z async_compile = AsyncCompile() 2023-01-11T21:05:10.6525634Z 2023-01-11T21:05:10.6525638Z 2023-01-11T21:05:10.6525771Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.6525976Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.6526095Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:05:10.6526195Z float* __restrict__ out_ptr0) 2023-01-11T21:05:10.6526255Z { 2023-01-11T21:05:10.6526350Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.6526397Z { 2023-01-11T21:05:10.6526486Z #pragma omp for collapse(2) 2023-01-11T21:05:10.6526566Z for(long i0=0; i0<2; i0+=1) 2023-01-11T21:05:10.6526625Z { 2023-01-11T21:05:10.6526711Z for(long i1=0; i1<384; i1+=1) 2023-01-11T21:05:10.6526774Z { 2023-01-11T21:05:10.6526842Z #pragma GCC ivdep 2023-01-11T21:05:10.6526931Z for(long i2=0; i2<196; i2+=1) 2023-01-11T21:05:10.6526993Z { 2023-01-11T21:05:10.6527058Z { 2023-01-11T21:05:10.6527124Z { 2023-01-11T21:05:10.6527240Z auto tmp0 = static_cast(4*(i2 / 14)); 2023-01-11T21:05:10.6527351Z auto tmp1 = static_cast((i1 / 4) % 4); 2023-01-11T21:05:10.6527438Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:05:10.6527549Z auto tmp3 = static_cast(4*(i2 % 14)); 2023-01-11T21:05:10.6527658Z auto tmp4 = static_cast(i1 % 4); 2023-01-11T21:05:10.6527750Z auto tmp5 = tmp3 + tmp4; 2023-01-11T21:05:10.6527874Z auto tmp6 = in_ptr0[tmp5 + (56*tmp2) + (3136*(i1 / 16)) + (75264*i0)]; 2023-01-11T21:05:10.6527978Z out_ptr0[i2 + (196*i1) + (75264*i0)] = tmp6; 2023-01-11T21:05:10.6528043Z } 2023-01-11T21:05:10.6528108Z } 2023-01-11T21:05:10.6528158Z } 2023-01-11T21:05:10.6528220Z } 2023-01-11T21:05:10.6528282Z } 2023-01-11T21:05:10.6528375Z } 2023-01-11T21:05:10.6528434Z } 2023-01-11T21:05:10.6528510Z ''') 2023-01-11T21:05:10.6528515Z 2023-01-11T21:05:10.6528520Z 2023-01-11T21:05:10.6528608Z async_compile.wait(globals()) 2023-01-11T21:05:10.6528669Z del async_compile 2023-01-11T21:05:10.6528674Z 2023-01-11T21:05:10.6528742Z def call(args): 2023-01-11T21:05:10.6528808Z arg0_1, = args 2023-01-11T21:05:10.6528879Z args.clear() 2023-01-11T21:05:10.6529093Z buf0 = empty_strided((2, 384, 196), (75264, 196, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6529222Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:05:10.6529288Z del arg0_1 2023-01-11T21:05:10.6529345Z return (buf0, ) 2023-01-11T21:05:10.6529350Z 2023-01-11T21:05:10.6529367Z 2023-01-11T21:05:10.6529428Z if __name__ == "__main__": 2023-01-11T21:05:10.6529541Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.6529663Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.6529887Z arg0_1 = rand_strided((2, 24, 56, 56), (75264, 3136, 56, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6529992Z print_performance(lambda: call([arg0_1])) 2023-01-11T21:05:10.6529997Z 2023-01-11T21:05:10.6530105Z ok (3.083s) 2023-01-11T21:05:10.6530540Z test_slice1_cpu (__main__.CpuTests) ... inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.6530665Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.6530907Z [2023-01-11 20:59:25,436] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 406 2023-01-11T21:05:10.6531169Z [2023-01-11 20:59:28,068] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 406 2023-01-11T21:05:10.6531176Z 2023-01-11T21:05:10.6531267Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.6531335Z import torch 2023-01-11T21:05:10.6531404Z import random 2023-01-11T21:05:10.6531519Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.6531638Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.6531643Z 2023-01-11T21:05:10.6531720Z aten = torch.ops.aten 2023-01-11T21:05:10.6531840Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.6531930Z async_compile = AsyncCompile() 2023-01-11T21:05:10.6531935Z 2023-01-11T21:05:10.6531939Z 2023-01-11T21:05:10.6532068Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.6532271Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.6532391Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:05:10.6532493Z float* __restrict__ out_ptr0, 2023-01-11T21:05:10.6532590Z float* __restrict__ out_ptr1) 2023-01-11T21:05:10.6532650Z { 2023-01-11T21:05:10.6532733Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.6532793Z { 2023-01-11T21:05:10.6532885Z #pragma omp for collapse(2) 2023-01-11T21:05:10.6532966Z for(long i0=0; i0<2; i0+=1) 2023-01-11T21:05:10.6533026Z { 2023-01-11T21:05:10.6533109Z for(long i1=0; i1<10; i1+=1) 2023-01-11T21:05:10.6533171Z { 2023-01-11T21:05:10.6533221Z { 2023-01-11T21:05:10.6533285Z { 2023-01-11T21:05:10.6533388Z auto tmp0 = in_ptr0[(2*i1) + (40*i0)]; 2023-01-11T21:05:10.6533494Z auto tmp1 = in_ptr0[20 + (2*i1) + (40*i0)]; 2023-01-11T21:05:10.6533587Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:05:10.6533691Z auto tmp3 = static_cast(1); 2023-01-11T21:05:10.6533782Z auto tmp4 = tmp0 + tmp3; 2023-01-11T21:05:10.6533894Z auto tmp5 = tmp1 + tmp3; 2023-01-11T21:05:10.6533983Z auto tmp6 = tmp4 + tmp5; 2023-01-11T21:05:10.6534078Z out_ptr0[i1 + (10*i0)] = tmp2; 2023-01-11T21:05:10.6534173Z out_ptr1[i1 + (10*i0)] = tmp6; 2023-01-11T21:05:10.6534238Z } 2023-01-11T21:05:10.6534301Z } 2023-01-11T21:05:10.6534362Z } 2023-01-11T21:05:10.6534411Z } 2023-01-11T21:05:10.6534470Z } 2023-01-11T21:05:10.6534528Z } 2023-01-11T21:05:10.6534605Z ''') 2023-01-11T21:05:10.6534610Z 2023-01-11T21:05:10.6534614Z 2023-01-11T21:05:10.6534702Z async_compile.wait(globals()) 2023-01-11T21:05:10.6534772Z del async_compile 2023-01-11T21:05:10.6534777Z 2023-01-11T21:05:10.6534845Z def call(args): 2023-01-11T21:05:10.6534899Z arg0_1, = args 2023-01-11T21:05:10.6534969Z args.clear() 2023-01-11T21:05:10.6535165Z buf0 = empty_strided((2, 10), (10, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6535361Z buf1 = empty_strided((2, 10), (10, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6535553Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(buf0.data_ptr()), c_void_p(buf1.data_ptr())) 2023-01-11T21:05:10.6535622Z del arg0_1 2023-01-11T21:05:10.6535698Z return (buf0, buf1, ) 2023-01-11T21:05:10.6535703Z 2023-01-11T21:05:10.6535707Z 2023-01-11T21:05:10.6535779Z if __name__ == "__main__": 2023-01-11T21:05:10.6535880Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.6536002Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.6536205Z arg0_1 = rand_strided((2, 20, 2), (40, 2, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6536310Z print_performance(lambda: call([arg0_1])) 2023-01-11T21:05:10.6536315Z 2023-01-11T21:05:10.6536379Z ok (2.726s) 2023-01-11T21:05:10.6536817Z test_slice2_cpu (__main__.CpuTests) ... inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.6536945Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.6537201Z [2023-01-11 20:59:28,158] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 407 2023-01-11T21:05:10.6537461Z [2023-01-11 20:59:30,813] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 407 2023-01-11T21:05:10.6537467Z 2023-01-11T21:05:10.6537546Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.6537614Z import torch 2023-01-11T21:05:10.6537682Z import random 2023-01-11T21:05:10.6537795Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.6537914Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.6537921Z 2023-01-11T21:05:10.6537997Z aten = torch.ops.aten 2023-01-11T21:05:10.6538128Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.6538205Z async_compile = AsyncCompile() 2023-01-11T21:05:10.6538223Z 2023-01-11T21:05:10.6538229Z 2023-01-11T21:05:10.6538347Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.6538651Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.6538775Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:05:10.6538873Z float* __restrict__ out_ptr0, 2023-01-11T21:05:10.6538968Z float* __restrict__ out_ptr1) 2023-01-11T21:05:10.6539029Z { 2023-01-11T21:05:10.6539128Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.6539175Z { 2023-01-11T21:05:10.6539251Z #pragma omp for 2023-01-11T21:05:10.6539332Z for(long i0=0; i0<10; i0+=1) 2023-01-11T21:05:10.6539394Z { 2023-01-11T21:05:10.6539492Z { 2023-01-11T21:05:10.6539555Z { 2023-01-11T21:05:10.6539651Z auto tmp0 = in_ptr0[1 + (4*i0)]; 2023-01-11T21:05:10.6539735Z auto tmp1 = in_ptr0[42 + (4*i0)]; 2023-01-11T21:05:10.6539830Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:05:10.6539932Z auto tmp3 = static_cast(1); 2023-01-11T21:05:10.6540022Z auto tmp4 = tmp0 + tmp3; 2023-01-11T21:05:10.6540121Z auto tmp5 = static_cast(2); 2023-01-11T21:05:10.6540209Z auto tmp6 = tmp1 + tmp5; 2023-01-11T21:05:10.6540297Z auto tmp7 = tmp4 + tmp6; 2023-01-11T21:05:10.6540366Z out_ptr0[i0] = tmp2; 2023-01-11T21:05:10.6540447Z out_ptr1[i0] = tmp7; 2023-01-11T21:05:10.6540509Z } 2023-01-11T21:05:10.6540570Z } 2023-01-11T21:05:10.6540630Z } 2023-01-11T21:05:10.6540690Z } 2023-01-11T21:05:10.6540749Z } 2023-01-11T21:05:10.6540815Z ''') 2023-01-11T21:05:10.6540821Z 2023-01-11T21:05:10.6540825Z 2023-01-11T21:05:10.6540912Z async_compile.wait(globals()) 2023-01-11T21:05:10.6540982Z del async_compile 2023-01-11T21:05:10.6540987Z 2023-01-11T21:05:10.6541087Z def call(args): 2023-01-11T21:05:10.6541156Z arg0_1, = args 2023-01-11T21:05:10.6541225Z args.clear() 2023-01-11T21:05:10.6541423Z buf0 = empty_strided((1, 10), (10, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6541605Z buf1 = empty_strided((1, 10), (10, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6541767Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(buf0.data_ptr()), c_void_p(buf1.data_ptr())) 2023-01-11T21:05:10.6541834Z del arg0_1 2023-01-11T21:05:10.6541909Z return (buf0, buf1, ) 2023-01-11T21:05:10.6541914Z 2023-01-11T21:05:10.6541919Z 2023-01-11T21:05:10.6541992Z if __name__ == "__main__": 2023-01-11T21:05:10.6542104Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.6542228Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.6542431Z arg0_1 = rand_strided((2, 20, 2), (40, 2, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6542526Z print_performance(lambda: call([arg0_1])) 2023-01-11T21:05:10.6542531Z 2023-01-11T21:05:10.6542598Z ok (2.745s) 2023-01-11T21:05:10.6543038Z test_slice_mutation1_cpu (__main__.CpuTests) ... inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.6543162Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.6543421Z [2023-01-11 20:59:30,918] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 408 2023-01-11T21:05:10.6543684Z [2023-01-11 20:59:33,650] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 408 2023-01-11T21:05:10.6543693Z 2023-01-11T21:05:10.6543785Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.6543854Z import torch 2023-01-11T21:05:10.6543924Z import random 2023-01-11T21:05:10.6544028Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.6544146Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.6544151Z 2023-01-11T21:05:10.6544228Z aten = torch.ops.aten 2023-01-11T21:05:10.6544361Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.6544452Z async_compile = AsyncCompile() 2023-01-11T21:05:10.6544457Z 2023-01-11T21:05:10.6544461Z 2023-01-11T21:05:10.6544594Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.6544797Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.6544909Z extern "C" void kernel(float* __restrict__ out_ptr0, 2023-01-11T21:05:10.6545023Z float* __restrict__ out_ptr1, 2023-01-11T21:05:10.6545117Z float* __restrict__ out_ptr2, 2023-01-11T21:05:10.6545210Z float* __restrict__ out_ptr3) 2023-01-11T21:05:10.6545272Z { 2023-01-11T21:05:10.6545370Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.6545431Z { 2023-01-11T21:05:10.6545507Z #pragma omp for 2023-01-11T21:05:10.6545574Z for(long i0=0; i0<4; i0+=1) 2023-01-11T21:05:10.6545635Z { 2023-01-11T21:05:10.6545775Z auto tmp0 = at::vec::Vectorized(static_cast(0)); 2023-01-11T21:05:10.6545908Z auto tmp1 = at::vec::Vectorized(static_cast(1)); 2023-01-11T21:05:10.6545993Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:05:10.6546085Z tmp0.store(out_ptr0 + 16*i0); 2023-01-11T21:05:10.6546175Z tmp2.store(out_ptr1 + 16*i0); 2023-01-11T21:05:10.6546237Z } 2023-01-11T21:05:10.6546318Z #pragma omp for simd simdlen(8) 2023-01-11T21:05:10.6546401Z for(long i0=64; i0<64; i0+=1) 2023-01-11T21:05:10.6546463Z { 2023-01-11T21:05:10.6546560Z auto tmp0 = static_cast(0); 2023-01-11T21:05:10.6546685Z auto tmp1 = static_cast(1); 2023-01-11T21:05:10.6546769Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:05:10.6546835Z out_ptr0[i0] = tmp0; 2023-01-11T21:05:10.6546911Z out_ptr1[i0] = tmp2; 2023-01-11T21:05:10.6546972Z } 2023-01-11T21:05:10.6547046Z #pragma omp for 2023-01-11T21:05:10.6547127Z for(long i0=0; i0<8; i0+=1) 2023-01-11T21:05:10.6547188Z { 2023-01-11T21:05:10.6547253Z { 2023-01-11T21:05:10.6547304Z { 2023-01-11T21:05:10.6547411Z auto tmp0 = static_cast(3.0); 2023-01-11T21:05:10.6547502Z out_ptr0[3 + (8*i0)] = tmp0; 2023-01-11T21:05:10.6547566Z } 2023-01-11T21:05:10.6547628Z } 2023-01-11T21:05:10.6547692Z } 2023-01-11T21:05:10.6547767Z #pragma omp for 2023-01-11T21:05:10.6547833Z for(long i0=0; i0<4; i0+=1) 2023-01-11T21:05:10.6547893Z { 2023-01-11T21:05:10.6548032Z auto tmp0 = at::vec::Vectorized::loadu(out_ptr0 + 16*i0); 2023-01-11T21:05:10.6548124Z tmp0.store(out_ptr2 + 16*i0); 2023-01-11T21:05:10.6548186Z } 2023-01-11T21:05:10.6548278Z #pragma omp for simd simdlen(8) 2023-01-11T21:05:10.6548358Z for(long i0=64; i0<64; i0+=1) 2023-01-11T21:05:10.6548406Z { 2023-01-11T21:05:10.6548490Z auto tmp0 = out_ptr0[i0]; 2023-01-11T21:05:10.6548568Z out_ptr2[i0] = tmp0; 2023-01-11T21:05:10.6548629Z } 2023-01-11T21:05:10.6548704Z #pragma omp for 2023-01-11T21:05:10.6548783Z for(long i0=0; i0<8; i0+=1) 2023-01-11T21:05:10.6548830Z { 2023-01-11T21:05:10.6548892Z { 2023-01-11T21:05:10.6548956Z { 2023-01-11T21:05:10.6549062Z auto tmp0 = static_cast(4.0); 2023-01-11T21:05:10.6549149Z out_ptr0[32 + i0] = tmp0; 2023-01-11T21:05:10.6549213Z } 2023-01-11T21:05:10.6549274Z } 2023-01-11T21:05:10.6549324Z } 2023-01-11T21:05:10.6549396Z #pragma omp for 2023-01-11T21:05:10.6549473Z for(long i0=0; i0<4; i0+=1) 2023-01-11T21:05:10.6549534Z { 2023-01-11T21:05:10.6549663Z auto tmp0 = at::vec::Vectorized::loadu(out_ptr0 + 16*i0); 2023-01-11T21:05:10.6549795Z auto tmp1 = at::vec::Vectorized(static_cast(1)); 2023-01-11T21:05:10.6549877Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:05:10.6549954Z tmp2.store(out_ptr3 + 16*i0); 2023-01-11T21:05:10.6550015Z } 2023-01-11T21:05:10.6550107Z #pragma omp for simd simdlen(8) 2023-01-11T21:05:10.6550188Z for(long i0=64; i0<64; i0+=1) 2023-01-11T21:05:10.6550249Z { 2023-01-11T21:05:10.6550330Z auto tmp0 = out_ptr0[i0]; 2023-01-11T21:05:10.6550454Z auto tmp1 = static_cast(1); 2023-01-11T21:05:10.6550525Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:05:10.6550602Z out_ptr3[i0] = tmp2; 2023-01-11T21:05:10.6550664Z } 2023-01-11T21:05:10.6550723Z } 2023-01-11T21:05:10.6550781Z } 2023-01-11T21:05:10.6550859Z ''') 2023-01-11T21:05:10.6550864Z 2023-01-11T21:05:10.6550869Z 2023-01-11T21:05:10.6550956Z async_compile.wait(globals()) 2023-01-11T21:05:10.6551014Z del async_compile 2023-01-11T21:05:10.6551033Z 2023-01-11T21:05:10.6551089Z def call(args): 2023-01-11T21:05:10.6551156Z arg0_1, = args 2023-01-11T21:05:10.6551226Z args.clear() 2023-01-11T21:05:10.6551420Z buf0 = empty_strided((8, 8), (8, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6551611Z buf1 = empty_strided((8, 8), (8, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6551799Z buf3 = empty_strided((8, 8), (8, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6551987Z buf5 = empty_strided((8, 8), (8, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6552191Z kernel_cpp_0(c_void_p(buf0.data_ptr()), c_void_p(buf1.data_ptr()), c_void_p(buf3.data_ptr()), c_void_p(buf5.data_ptr())) 2023-01-11T21:05:10.6552279Z return (buf0, buf1, buf3, buf5, ) 2023-01-11T21:05:10.6552283Z 2023-01-11T21:05:10.6552288Z 2023-01-11T21:05:10.6552362Z if __name__ == "__main__": 2023-01-11T21:05:10.6552474Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.6552598Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.6552793Z arg0_1 = rand_strided((8, 8), (8, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6552898Z print_performance(lambda: call([arg0_1])) 2023-01-11T21:05:10.6552903Z 2023-01-11T21:05:10.6552967Z ok (2.840s) 2023-01-11T21:05:10.6553287Z test_slice_mutation2_cpu (__main__.CpuTests) ... [2023-01-11 20:59:33,732] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 409 2023-01-11T21:05:10.6553551Z [2023-01-11 20:59:36,448] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 409 2023-01-11T21:05:10.6553556Z 2023-01-11T21:05:10.6553650Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.6553718Z import torch 2023-01-11T21:05:10.6553787Z import random 2023-01-11T21:05:10.6553903Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.6554021Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.6554026Z 2023-01-11T21:05:10.6554102Z aten = torch.ops.aten 2023-01-11T21:05:10.6554221Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.6554309Z async_compile = AsyncCompile() 2023-01-11T21:05:10.6554313Z 2023-01-11T21:05:10.6554318Z 2023-01-11T21:05:10.6554448Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.6554651Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.6554768Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:05:10.6554868Z float* __restrict__ out_ptr0, 2023-01-11T21:05:10.6554963Z float* __restrict__ out_ptr1, 2023-01-11T21:05:10.6555057Z float* __restrict__ out_ptr2) 2023-01-11T21:05:10.6555103Z { 2023-01-11T21:05:10.6555200Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.6555260Z { 2023-01-11T21:05:10.6555337Z #pragma omp for 2023-01-11T21:05:10.6555417Z for(long i0=0; i0<1; i0+=1) 2023-01-11T21:05:10.6555479Z { 2023-01-11T21:05:10.6555616Z auto tmp0 = at::vec::Vectorized::loadu(in_ptr0 + 20 + (16*i0)); 2023-01-11T21:05:10.6555734Z auto tmp1 = at::vec::Vectorized(static_cast(1)); 2023-01-11T21:05:10.6555817Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:05:10.6555905Z tmp2.store(out_ptr0 + 16*i0); 2023-01-11T21:05:10.6555967Z } 2023-01-11T21:05:10.6556060Z #pragma omp for simd simdlen(8) 2023-01-11T21:05:10.6556174Z for(long i0=16; i0<20; i0+=1) 2023-01-11T21:05:10.6556237Z { 2023-01-11T21:05:10.6556310Z auto tmp0 = in_ptr0[20 + i0]; 2023-01-11T21:05:10.6556409Z auto tmp1 = static_cast(1); 2023-01-11T21:05:10.6556490Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:05:10.6556568Z out_ptr0[i0] = tmp2; 2023-01-11T21:05:10.6556628Z } 2023-01-11T21:05:10.6556699Z #pragma omp for 2023-01-11T21:05:10.6556778Z for(long i0=0; i0<1; i0+=1) 2023-01-11T21:05:10.6556825Z { 2023-01-11T21:05:10.6556957Z auto tmp0 = at::vec::Vectorized::loadu(out_ptr0 + 16*i0); 2023-01-11T21:05:10.6557054Z tmp0.store(out_ptr1 + 20 + (16*i0)); 2023-01-11T21:05:10.6557113Z } 2023-01-11T21:05:10.6557205Z #pragma omp for simd simdlen(8) 2023-01-11T21:05:10.6557284Z for(long i0=16; i0<20; i0+=1) 2023-01-11T21:05:10.6557344Z { 2023-01-11T21:05:10.6557415Z auto tmp0 = out_ptr0[i0]; 2023-01-11T21:05:10.6557494Z out_ptr1[20 + i0] = tmp0; 2023-01-11T21:05:10.6557552Z } 2023-01-11T21:05:10.6557625Z #pragma omp for 2023-01-11T21:05:10.6557732Z for(long i0=0; i0<9; i0+=1) 2023-01-11T21:05:10.6557791Z { 2023-01-11T21:05:10.6557853Z { 2023-01-11T21:05:10.6557903Z { 2023-01-11T21:05:10.6557999Z auto tmp0 = out_ptr1[1 + i0]; 2023-01-11T21:05:10.6558102Z auto tmp1 = static_cast(2); 2023-01-11T21:05:10.6558191Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:05:10.6558272Z out_ptr2[i0] = tmp2; 2023-01-11T21:05:10.6558335Z } 2023-01-11T21:05:10.6558384Z } 2023-01-11T21:05:10.6558444Z } 2023-01-11T21:05:10.6558518Z #pragma omp for 2023-01-11T21:05:10.6558600Z for(long i0=0; i0<9; i0+=1) 2023-01-11T21:05:10.6558660Z { 2023-01-11T21:05:10.6558722Z { 2023-01-11T21:05:10.6558784Z { 2023-01-11T21:05:10.6558864Z auto tmp0 = out_ptr2[i0]; 2023-01-11T21:05:10.6558949Z out_ptr1[2 + i0] = tmp0; 2023-01-11T21:05:10.6559014Z } 2023-01-11T21:05:10.6559076Z } 2023-01-11T21:05:10.6559136Z } 2023-01-11T21:05:10.6559195Z } 2023-01-11T21:05:10.6559253Z } 2023-01-11T21:05:10.6559317Z ''') 2023-01-11T21:05:10.6559323Z 2023-01-11T21:05:10.6559328Z 2023-01-11T21:05:10.6559415Z async_compile.wait(globals()) 2023-01-11T21:05:10.6559483Z del async_compile 2023-01-11T21:05:10.6559488Z 2023-01-11T21:05:10.6559557Z def call(args): 2023-01-11T21:05:10.6559627Z arg0_1, = args 2023-01-11T21:05:10.6559696Z args.clear() 2023-01-11T21:05:10.6559893Z buf0 = empty_strided((1, 20), (20, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6560072Z buf2 = empty_strided((1, 9), (9, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6560258Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(buf0.data_ptr()), c_void_p(arg0_1.data_ptr()), c_void_p(buf2.data_ptr())) 2023-01-11T21:05:10.6560327Z del arg0_1 2023-01-11T21:05:10.6560391Z return () 2023-01-11T21:05:10.6560396Z 2023-01-11T21:05:10.6560402Z 2023-01-11T21:05:10.6560476Z if __name__ == "__main__": 2023-01-11T21:05:10.6560705Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.6560828Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.6561028Z arg0_1 = rand_strided((1, 64), (64, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6561122Z print_performance(lambda: call([arg0_1])) 2023-01-11T21:05:10.6561141Z 2023-01-11T21:05:10.6561193Z ok (2.792s) 2023-01-11T21:05:10.6561639Z test_slice_scatter2_cpu (__main__.CpuTests) ... inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.6561831Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.6562096Z [2023-01-11 20:59:36,526] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 410 2023-01-11T21:05:10.6562359Z [2023-01-11 20:59:39,154] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 410 2023-01-11T21:05:10.6562364Z 2023-01-11T21:05:10.6562460Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.6562529Z import torch 2023-01-11T21:05:10.6562600Z import random 2023-01-11T21:05:10.6562701Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.6562822Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.6562827Z 2023-01-11T21:05:10.6562904Z aten = torch.ops.aten 2023-01-11T21:05:10.6563038Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.6563133Z async_compile = AsyncCompile() 2023-01-11T21:05:10.6563138Z 2023-01-11T21:05:10.6563142Z 2023-01-11T21:05:10.6563276Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.6563516Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.6563638Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:05:10.6563725Z float* __restrict__ out_ptr0) 2023-01-11T21:05:10.6563784Z { 2023-01-11T21:05:10.6563880Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.6563941Z { 2023-01-11T21:05:10.6564016Z #pragma omp for 2023-01-11T21:05:10.6564098Z for(long i0=0; i0<37824; i0+=1) 2023-01-11T21:05:10.6564158Z { 2023-01-11T21:05:10.6564278Z auto tmp0 = at::vec::Vectorized::loadu(in_ptr0 + 16*i0); 2023-01-11T21:05:10.6564370Z tmp0.store(out_ptr0 + 16*i0); 2023-01-11T21:05:10.6564431Z } 2023-01-11T21:05:10.6564526Z #pragma omp for simd simdlen(8) 2023-01-11T21:05:10.6564615Z for(long i0=605184; i0<605184; i0+=1) 2023-01-11T21:05:10.6564675Z { 2023-01-11T21:05:10.6564757Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:05:10.6564825Z out_ptr0[i0] = tmp0; 2023-01-11T21:05:10.6564886Z } 2023-01-11T21:05:10.6564945Z } 2023-01-11T21:05:10.6565003Z } 2023-01-11T21:05:10.6565079Z ''') 2023-01-11T21:05:10.6565084Z 2023-01-11T21:05:10.6565089Z 2023-01-11T21:05:10.6565176Z async_compile.wait(globals()) 2023-01-11T21:05:10.6565247Z del async_compile 2023-01-11T21:05:10.6565252Z 2023-01-11T21:05:10.6565308Z def call(args): 2023-01-11T21:05:10.6565380Z arg0_1, arg1_1 = args 2023-01-11T21:05:10.6565449Z args.clear() 2023-01-11T21:05:10.6565663Z buf0 = empty_strided((8, 197, 384), (75648, 384, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6565795Z kernel_cpp_0(c_void_p(arg1_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:05:10.6565864Z del arg1_1 2023-01-11T21:05:10.6565936Z return (buf0, ) 2023-01-11T21:05:10.6565941Z 2023-01-11T21:05:10.6565945Z 2023-01-11T21:05:10.6566018Z if __name__ == "__main__": 2023-01-11T21:05:10.6566119Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.6566239Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.6566454Z arg0_1 = rand_strided((8, 197, 384), (75648, 384, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6566668Z arg1_1 = rand_strided((8, 197, 384), (75648, 384, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6566781Z print_performance(lambda: call([arg0_1, arg1_1])) 2023-01-11T21:05:10.6566786Z 2023-01-11T21:05:10.6566851Z ok (3.079s) 2023-01-11T21:05:10.6567295Z test_slice_scatter_cpu (__main__.CpuTests) ... inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.6567459Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.6567719Z [2023-01-11 20:59:39,595] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 411 2023-01-11T21:05:10.6567969Z [2023-01-11 20:59:42,256] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 411 2023-01-11T21:05:10.6567987Z 2023-01-11T21:05:10.6568067Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.6568135Z import torch 2023-01-11T21:05:10.6568203Z import random 2023-01-11T21:05:10.6568318Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.6568438Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.6568443Z 2023-01-11T21:05:10.6568520Z aten = torch.ops.aten 2023-01-11T21:05:10.6568650Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.6568730Z async_compile = AsyncCompile() 2023-01-11T21:05:10.6568734Z 2023-01-11T21:05:10.6568750Z 2023-01-11T21:05:10.6568869Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.6569112Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.6569235Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:05:10.6569336Z const float* __restrict__ in_ptr1, 2023-01-11T21:05:10.6569433Z float* __restrict__ out_ptr0, 2023-01-11T21:05:10.6569529Z float* __restrict__ out_ptr1) 2023-01-11T21:05:10.6569591Z { 2023-01-11T21:05:10.6569675Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.6569735Z { 2023-01-11T21:05:10.6569810Z #pragma omp for 2023-01-11T21:05:10.6569891Z for(long i0=0; i0<32; i0+=1) 2023-01-11T21:05:10.6569951Z { 2023-01-11T21:05:10.6570030Z #pragma GCC ivdep 2023-01-11T21:05:10.6570103Z for(long i1=0; i1<100; i1+=1) 2023-01-11T21:05:10.6570168Z { 2023-01-11T21:05:10.6570232Z { 2023-01-11T21:05:10.6570296Z { 2023-01-11T21:05:10.6570402Z auto tmp8 = in_ptr1[i1 + (100*i0)]; 2023-01-11T21:05:10.6570506Z auto tmp0 = static_cast(i1); 2023-01-11T21:05:10.6570609Z auto tmp1 = static_cast(10); 2023-01-11T21:05:10.6570689Z auto tmp2 = tmp0 >= tmp1; 2023-01-11T21:05:10.6570789Z auto tmp3 = static_cast(90); 2023-01-11T21:05:10.6570882Z auto tmp4 = tmp0 < tmp3; 2023-01-11T21:05:10.6570975Z auto tmp5 = tmp2 & tmp4; 2023-01-11T21:05:10.6571059Z float tmp6 = 0.0; 2023-01-11T21:05:10.6571134Z if(tmp5) 2023-01-11T21:05:10.6571200Z { 2023-01-11T21:05:10.6571370Z auto tmp7 = in_ptr0[(-10) + i1 + (80*i0)]; 2023-01-11T21:05:10.6571440Z tmp6 = tmp7; 2023-01-11T21:05:10.6571506Z } 2023-01-11T21:05:10.6571606Z auto tmp9 = tmp5 ? tmp6 : tmp8; 2023-01-11T21:05:10.6571716Z auto tmp10 = static_cast(i1 % 2); 2023-01-11T21:05:10.6571817Z auto tmp11 = static_cast(0); 2023-01-11T21:05:10.6571911Z auto tmp12 = tmp10 == tmp11; 2023-01-11T21:05:10.6572004Z auto tmp13 = tmp5 & tmp12; 2023-01-11T21:05:10.6572076Z float tmp14 = 0.0; 2023-01-11T21:05:10.6572150Z if(tmp13) 2023-01-11T21:05:10.6572216Z { 2023-01-11T21:05:10.6572390Z auto tmp15 = in_ptr0[(-5) + (80*i0) + (i1 / 2)]; 2023-01-11T21:05:10.6572469Z tmp14 = tmp15; 2023-01-11T21:05:10.6572536Z } 2023-01-11T21:05:10.6572667Z auto tmp16 = tmp13 ? tmp14 : tmp8; 2023-01-11T21:05:10.6572749Z out_ptr0[i1 + (100*i0)] = tmp9; 2023-01-11T21:05:10.6572842Z out_ptr1[i1 + (100*i0)] = tmp16; 2023-01-11T21:05:10.6572909Z } 2023-01-11T21:05:10.6572972Z } 2023-01-11T21:05:10.6573037Z } 2023-01-11T21:05:10.6573096Z } 2023-01-11T21:05:10.6573154Z } 2023-01-11T21:05:10.6573200Z } 2023-01-11T21:05:10.6573277Z ''') 2023-01-11T21:05:10.6573282Z 2023-01-11T21:05:10.6573286Z 2023-01-11T21:05:10.6573377Z async_compile.wait(globals()) 2023-01-11T21:05:10.6573448Z del async_compile 2023-01-11T21:05:10.6573453Z 2023-01-11T21:05:10.6573522Z def call(args): 2023-01-11T21:05:10.6573597Z arg0_1, arg1_1 = args 2023-01-11T21:05:10.6573667Z args.clear() 2023-01-11T21:05:10.6573862Z buf0 = empty_strided((4, 8, 100), (800, 100, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6574070Z buf1 = empty_strided((4, 8, 100), (800, 100, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6574261Z kernel_cpp_0(c_void_p(arg1_1.data_ptr()), c_void_p(arg0_1.data_ptr()), c_void_p(buf0.data_ptr()), c_void_p(buf1.data_ptr())) 2023-01-11T21:05:10.6574356Z del arg0_1 2023-01-11T21:05:10.6574425Z del arg1_1 2023-01-11T21:05:10.6574502Z return (buf0, buf1, ) 2023-01-11T21:05:10.6574507Z 2023-01-11T21:05:10.6574511Z 2023-01-11T21:05:10.6574584Z if __name__ == "__main__": 2023-01-11T21:05:10.6574697Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.6574806Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.6575013Z arg0_1 = rand_strided((4, 8, 100), (800, 100, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6575218Z arg1_1 = rand_strided((4, 8, 80), (640, 80, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6575333Z print_performance(lambda: call([arg0_1, arg1_1])) 2023-01-11T21:05:10.6575338Z 2023-01-11T21:05:10.6575406Z ok (2.740s) 2023-01-11T21:05:10.6575847Z test_softmax_cpu (__main__.CpuTests) ... inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.6575974Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.6576236Z [2023-01-11 20:59:42,356] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 412 2023-01-11T21:05:10.6576498Z [2023-01-11 20:59:45,487] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 412 2023-01-11T21:05:10.6576504Z 2023-01-11T21:05:10.6576597Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.6576653Z import torch 2023-01-11T21:05:10.6576722Z import random 2023-01-11T21:05:10.6576836Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.6576959Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.6576964Z 2023-01-11T21:05:10.6577041Z aten = torch.ops.aten 2023-01-11T21:05:10.6577175Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.6577266Z async_compile = AsyncCompile() 2023-01-11T21:05:10.6577271Z 2023-01-11T21:05:10.6577275Z 2023-01-11T21:05:10.6577393Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.6577598Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.6577712Z extern "C" void kernel(float* __restrict__ in_out_ptr0, 2023-01-11T21:05:10.6577813Z float* __restrict__ in_out_ptr1, 2023-01-11T21:05:10.6577913Z float* __restrict__ in_out_ptr2, 2023-01-11T21:05:10.6578017Z const float* __restrict__ in_ptr0, 2023-01-11T21:05:10.6578119Z const float* __restrict__ in_ptr1, 2023-01-11T21:05:10.6578248Z float* __restrict__ out_ptr0, 2023-01-11T21:05:10.6578331Z float* __restrict__ out_ptr1, 2023-01-11T21:05:10.6578423Z float* __restrict__ out_ptr2, 2023-01-11T21:05:10.6578615Z float* __restrict__ out_ptr6, 2023-01-11T21:05:10.6578714Z float* __restrict__ out_ptr7, 2023-01-11T21:05:10.6578805Z float* __restrict__ out_ptr8) 2023-01-11T21:05:10.6578866Z { 2023-01-11T21:05:10.6578951Z auto out_ptr3 = in_out_ptr0; 2023-01-11T21:05:10.6579021Z auto out_ptr4 = in_out_ptr1; 2023-01-11T21:05:10.6579105Z auto out_ptr5 = in_out_ptr2; 2023-01-11T21:05:10.6579202Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.6579263Z { 2023-01-11T21:05:10.6579338Z #pragma omp for 2023-01-11T21:05:10.6579419Z for(long i0=0; i0<8; i0+=1) 2023-01-11T21:05:10.6579485Z { 2023-01-11T21:05:10.6579535Z { 2023-01-11T21:05:10.6579602Z { 2023-01-11T21:05:10.6579850Z float tmp3 = -std::numeric_limits::infinity(); 2023-01-11T21:05:10.6580058Z float tmp4 = -std::numeric_limits::infinity(); 2023-01-11T21:05:10.6580183Z for(long i1=0; i1<8; i1+=1) 2023-01-11T21:05:10.6580250Z { 2023-01-11T21:05:10.6580317Z { 2023-01-11T21:05:10.6580408Z auto tmp0 = in_ptr0[i1 + (8*i0)]; 2023-01-11T21:05:10.6580512Z auto tmp1 = in_ptr1[i1 + (8*i0)]; 2023-01-11T21:05:10.6580609Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:05:10.6580711Z tmp3 = std::max(tmp3, tmp2); 2023-01-11T21:05:10.6580811Z tmp4 = std::max(tmp4, tmp1); 2023-01-11T21:05:10.6580878Z } 2023-01-11T21:05:10.6580945Z } 2023-01-11T21:05:10.6581016Z out_ptr0[i0] = tmp3; 2023-01-11T21:05:10.6581102Z out_ptr1[i0] = tmp4; 2023-01-11T21:05:10.6581167Z } 2023-01-11T21:05:10.6581230Z } 2023-01-11T21:05:10.6581291Z } 2023-01-11T21:05:10.6581368Z #pragma omp for 2023-01-11T21:05:10.6581448Z for(long i0=0; i0<8; i0+=1) 2023-01-11T21:05:10.6581496Z { 2023-01-11T21:05:10.6581559Z { 2023-01-11T21:05:10.6581622Z { 2023-01-11T21:05:10.6581833Z float tmp1 = -std::numeric_limits::infinity(); 2023-01-11T21:05:10.6581925Z for(long i1=0; i1<8; i1+=1) 2023-01-11T21:05:10.6581991Z { 2023-01-11T21:05:10.6582057Z { 2023-01-11T21:05:10.6582147Z auto tmp0 = in_ptr0[i0 + (8*i1)]; 2023-01-11T21:05:10.6582246Z tmp1 = std::max(tmp1, tmp0); 2023-01-11T21:05:10.6582311Z } 2023-01-11T21:05:10.6582375Z } 2023-01-11T21:05:10.6582459Z out_ptr2[i0] = tmp1; 2023-01-11T21:05:10.6582521Z } 2023-01-11T21:05:10.6582584Z } 2023-01-11T21:05:10.6582631Z } 2023-01-11T21:05:10.6582706Z #pragma omp for 2023-01-11T21:05:10.6582785Z for(long i0=0; i0<8; i0+=1) 2023-01-11T21:05:10.6582846Z { 2023-01-11T21:05:10.6582907Z { 2023-01-11T21:05:10.6582970Z { 2023-01-11T21:05:10.6583038Z float tmp12 = 0; 2023-01-11T21:05:10.6583126Z for(long i1=0; i1<8; i1+=1) 2023-01-11T21:05:10.6583190Z { 2023-01-11T21:05:10.6583255Z { 2023-01-11T21:05:10.6583357Z auto tmp0 = in_ptr0[i1 + (8*i0)]; 2023-01-11T21:05:10.6583454Z auto tmp1 = in_ptr1[i1 + (8*i0)]; 2023-01-11T21:05:10.6583549Z auto tmp3 = out_ptr0[i0]; 2023-01-11T21:05:10.6583642Z auto tmp6 = out_ptr2[i1]; 2023-01-11T21:05:10.6583754Z auto tmp9 = out_ptr1[i0]; 2023-01-11T21:05:10.6583848Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:05:10.6583992Z auto tmp4 = tmp2 - tmp3; 2023-01-11T21:05:10.6584092Z auto tmp5 = std::exp(tmp4); 2023-01-11T21:05:10.6584234Z auto tmp7 = tmp0 - tmp6; 2023-01-11T21:05:10.6584332Z auto tmp8 = std::exp(tmp7); 2023-01-11T21:05:10.6584474Z auto tmp10 = tmp1 - tmp9; 2023-01-11T21:05:10.6584564Z auto tmp11 = std::exp(tmp10); 2023-01-11T21:05:10.6584658Z out_ptr3[i1 + (8*i0)] = tmp5; 2023-01-11T21:05:10.6584751Z out_ptr4[i1 + (8*i0)] = tmp8; 2023-01-11T21:05:10.6584847Z out_ptr5[i1 + (8*i0)] = tmp11; 2023-01-11T21:05:10.6584928Z tmp12 += tmp5; 2023-01-11T21:05:10.6584998Z } 2023-01-11T21:05:10.6585062Z } 2023-01-11T21:05:10.6585134Z out_ptr6[i0] = tmp12; 2023-01-11T21:05:10.6585197Z } 2023-01-11T21:05:10.6585291Z } 2023-01-11T21:05:10.6585352Z } 2023-01-11T21:05:10.6585426Z #pragma omp for 2023-01-11T21:05:10.6585505Z for(long i0=0; i0<8; i0+=1) 2023-01-11T21:05:10.6585566Z { 2023-01-11T21:05:10.6585633Z #pragma GCC ivdep 2023-01-11T21:05:10.6585712Z for(long i1=0; i1<8; i1+=1) 2023-01-11T21:05:10.6585774Z { 2023-01-11T21:05:10.6585836Z { 2023-01-11T21:05:10.6585901Z { 2023-01-11T21:05:10.6586001Z auto tmp0 = out_ptr3[i1 + (8*i0)]; 2023-01-11T21:05:10.6586094Z auto tmp1 = out_ptr6[i0]; 2023-01-11T21:05:10.6586176Z auto tmp2 = tmp0 / tmp1; 2023-01-11T21:05:10.6586274Z in_out_ptr0[i1 + (8*i0)] = tmp2; 2023-01-11T21:05:10.6586341Z } 2023-01-11T21:05:10.6586405Z } 2023-01-11T21:05:10.6586467Z } 2023-01-11T21:05:10.6586528Z } 2023-01-11T21:05:10.6586592Z #pragma omp for 2023-01-11T21:05:10.6586672Z for(long i0=0; i0<8; i0+=1) 2023-01-11T21:05:10.6586731Z { 2023-01-11T21:05:10.6586793Z { 2023-01-11T21:05:10.6586855Z { 2023-01-11T21:05:10.6586932Z float tmp1 = 0; 2023-01-11T21:05:10.6587020Z for(long i1=0; i1<8; i1+=1) 2023-01-11T21:05:10.6587072Z { 2023-01-11T21:05:10.6587138Z { 2023-01-11T21:05:10.6587241Z auto tmp0 = out_ptr4[i0 + (8*i1)]; 2023-01-11T21:05:10.6587323Z tmp1 += tmp0; 2023-01-11T21:05:10.6587389Z } 2023-01-11T21:05:10.6587452Z } 2023-01-11T21:05:10.6587534Z out_ptr7[i0] = tmp1; 2023-01-11T21:05:10.6587587Z } 2023-01-11T21:05:10.6587649Z } 2023-01-11T21:05:10.6587708Z } 2023-01-11T21:05:10.6587781Z #pragma omp for 2023-01-11T21:05:10.6587862Z for(long i0=0; i0<8; i0+=1) 2023-01-11T21:05:10.6587922Z { 2023-01-11T21:05:10.6588000Z #pragma GCC ivdep 2023-01-11T21:05:10.6588069Z for(long i1=0; i1<8; i1+=1) 2023-01-11T21:05:10.6588129Z { 2023-01-11T21:05:10.6588191Z { 2023-01-11T21:05:10.6588256Z { 2023-01-11T21:05:10.6588356Z auto tmp0 = out_ptr4[i1 + (8*i0)]; 2023-01-11T21:05:10.6588449Z auto tmp1 = out_ptr7[i1]; 2023-01-11T21:05:10.6588541Z auto tmp2 = tmp0 / tmp1; 2023-01-11T21:05:10.6588626Z in_out_ptr1[i1 + (8*i0)] = tmp2; 2023-01-11T21:05:10.6588689Z } 2023-01-11T21:05:10.6588750Z } 2023-01-11T21:05:10.6588843Z } 2023-01-11T21:05:10.6588904Z } 2023-01-11T21:05:10.6588978Z #pragma omp for 2023-01-11T21:05:10.6589044Z for(long i0=0; i0<8; i0+=1) 2023-01-11T21:05:10.6589104Z { 2023-01-11T21:05:10.6589168Z { 2023-01-11T21:05:10.6589231Z { 2023-01-11T21:05:10.6589308Z float tmp1 = 0; 2023-01-11T21:05:10.6589396Z for(long i1=0; i1<8; i1+=1) 2023-01-11T21:05:10.6589460Z { 2023-01-11T21:05:10.6589513Z { 2023-01-11T21:05:10.6589615Z auto tmp0 = out_ptr5[i1 + (8*i0)]; 2023-01-11T21:05:10.6589695Z tmp1 += tmp0; 2023-01-11T21:05:10.6589760Z } 2023-01-11T21:05:10.6589824Z } 2023-01-11T21:05:10.6589907Z out_ptr8[i0] = tmp1; 2023-01-11T21:05:10.6589969Z } 2023-01-11T21:05:10.6590018Z } 2023-01-11T21:05:10.6590080Z } 2023-01-11T21:05:10.6590153Z #pragma omp for 2023-01-11T21:05:10.6590231Z for(long i0=0; i0<8; i0+=1) 2023-01-11T21:05:10.6590291Z { 2023-01-11T21:05:10.6590370Z #pragma GCC ivdep 2023-01-11T21:05:10.6590470Z for(long i1=0; i1<8; i1+=1) 2023-01-11T21:05:10.6590531Z { 2023-01-11T21:05:10.6590594Z { 2023-01-11T21:05:10.6590659Z { 2023-01-11T21:05:10.6590758Z auto tmp0 = out_ptr5[i1 + (8*i0)]; 2023-01-11T21:05:10.6590851Z auto tmp1 = out_ptr8[i0]; 2023-01-11T21:05:10.6590941Z auto tmp2 = tmp0 / tmp1; 2023-01-11T21:05:10.6591024Z in_out_ptr2[i1 + (8*i0)] = tmp2; 2023-01-11T21:05:10.6591088Z } 2023-01-11T21:05:10.6591150Z } 2023-01-11T21:05:10.6591210Z } 2023-01-11T21:05:10.6591270Z } 2023-01-11T21:05:10.6591329Z } 2023-01-11T21:05:10.6591387Z } 2023-01-11T21:05:10.6591454Z ''') 2023-01-11T21:05:10.6591461Z 2023-01-11T21:05:10.6591465Z 2023-01-11T21:05:10.6591554Z async_compile.wait(globals()) 2023-01-11T21:05:10.6591624Z del async_compile 2023-01-11T21:05:10.6591629Z 2023-01-11T21:05:10.6591700Z def call(args): 2023-01-11T21:05:10.6591774Z arg0_1, arg1_1 = args 2023-01-11T21:05:10.6591843Z args.clear() 2023-01-11T21:05:10.6592039Z buf0 = empty_strided((8, 1), (1, 8), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6592229Z buf8 = empty_strided((8, 1), (1, 8), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6592405Z buf4 = empty_strided((1, 8), (8, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6592590Z buf1 = empty_strided((8, 8), (8, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6592773Z buf5 = empty_strided((8, 8), (8, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6592957Z buf9 = empty_strided((8, 8), (8, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6593143Z buf2 = empty_strided((8, 1), (1, 8), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6593225Z buf3 = buf1; del buf1 # reuse 2023-01-11T21:05:10.6593410Z buf6 = empty_strided((1, 8), (8, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6593480Z buf7 = buf5; del buf5 # reuse 2023-01-11T21:05:10.6593673Z buf10 = empty_strided((8, 1), (1, 8), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6593755Z buf11 = buf9; del buf9 # reuse 2023-01-11T21:05:10.6594111Z kernel_cpp_0(c_void_p(buf3.data_ptr()), c_void_p(buf7.data_ptr()), c_void_p(buf11.data_ptr()), c_void_p(arg0_1.data_ptr()), c_void_p(arg1_1.data_ptr()), c_void_p(buf0.data_ptr()), c_void_p(buf8.data_ptr()), c_void_p(buf4.data_ptr()), c_void_p(buf2.data_ptr()), c_void_p(buf6.data_ptr()), c_void_p(buf10.data_ptr())) 2023-01-11T21:05:10.6594178Z del arg0_1 2023-01-11T21:05:10.6594242Z del arg1_1 2023-01-11T21:05:10.6594325Z return (buf3, buf7, buf11, ) 2023-01-11T21:05:10.6594330Z 2023-01-11T21:05:10.6594362Z 2023-01-11T21:05:10.6594438Z if __name__ == "__main__": 2023-01-11T21:05:10.6594552Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.6594662Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.6594858Z arg0_1 = rand_strided((8, 8), (8, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6595049Z arg1_1 = rand_strided((8, 8), (8, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6595161Z print_performance(lambda: call([arg0_1, arg1_1])) 2023-01-11T21:05:10.6595167Z 2023-01-11T21:05:10.6595230Z ok (3.225s) 2023-01-11T21:05:10.6595683Z test_softmax_one_kernel_cpu (__main__.CpuTests) ... inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.6595809Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.6596067Z [2023-01-11 20:59:45,539] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 413 2023-01-11T21:05:10.6596399Z [2023-01-11 20:59:48,242] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 413 2023-01-11T21:05:10.6596405Z 2023-01-11T21:05:10.6596486Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.6596554Z import torch 2023-01-11T21:05:10.6596623Z import random 2023-01-11T21:05:10.6596738Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.6596859Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.6596863Z 2023-01-11T21:05:10.6596941Z aten = torch.ops.aten 2023-01-11T21:05:10.6597074Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.6597165Z async_compile = AsyncCompile() 2023-01-11T21:05:10.6597170Z 2023-01-11T21:05:10.6597174Z 2023-01-11T21:05:10.6597295Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.6597502Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.6597620Z extern "C" void kernel(float* __restrict__ in_out_ptr0, 2023-01-11T21:05:10.6597725Z const float* __restrict__ in_ptr0, 2023-01-11T21:05:10.6597825Z float* __restrict__ out_ptr0, 2023-01-11T21:05:10.6597921Z float* __restrict__ out_ptr2) 2023-01-11T21:05:10.6597982Z { 2023-01-11T21:05:10.6598053Z auto out_ptr1 = in_out_ptr0; 2023-01-11T21:05:10.6598148Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.6598207Z { 2023-01-11T21:05:10.6598281Z #pragma omp for 2023-01-11T21:05:10.6598361Z for(long i0=0; i0<16; i0+=1) 2023-01-11T21:05:10.6598422Z { 2023-01-11T21:05:10.6598483Z { 2023-01-11T21:05:10.6598859Z #pragma omp declare reduction(max:at::vec::Vectorized:omp_out = at::vec::maximum(omp_out, omp_in)) initializer(omp_priv={{-std::numeric_limits::infinity()}}) 2023-01-11T21:05:10.6599063Z float tmp1 = -std::numeric_limits::infinity(); 2023-01-11T21:05:10.6599184Z auto tmp1_vec = at::vec::Vectorized(tmp1); 2023-01-11T21:05:10.6599271Z for(long i1=0; i1<2; i1+=1) 2023-01-11T21:05:10.6599335Z { 2023-01-11T21:05:10.6599477Z auto tmp0 = at::vec::Vectorized::loadu(in_ptr0 + (16*i1) + (32*i0)); 2023-01-11T21:05:10.6599592Z tmp1_vec = at::vec::maximum(tmp1_vec, tmp0); 2023-01-11T21:05:10.6599655Z } 2023-01-11T21:05:10.6599863Z tmp1 = at::vec::vec_reduce_all([](at::vec::Vectorized& x, at::vec::Vectorized&y) {return at::vec::maximum(x, y);}, tmp1_vec); 2023-01-11T21:05:10.6599970Z #pragma omp simd simdlen(8) reduction(max:tmp1) 2023-01-11T21:05:10.6600057Z for(long i1=32; i1<32; i1+=1) 2023-01-11T21:05:10.6600151Z { 2023-01-11T21:05:10.6600251Z auto tmp0 = in_ptr0[i1 + (32*i0)]; 2023-01-11T21:05:10.6600348Z tmp1 = std::max(tmp1, tmp0); 2023-01-11T21:05:10.6600414Z } 2023-01-11T21:05:10.6600493Z out_ptr0[i0] = tmp1; 2023-01-11T21:05:10.6600544Z } 2023-01-11T21:05:10.6600724Z } 2023-01-11T21:05:10.6600801Z #pragma omp for 2023-01-11T21:05:10.6600881Z for(long i0=0; i0<16; i0+=1) 2023-01-11T21:05:10.6600943Z { 2023-01-11T21:05:10.6601004Z { 2023-01-11T21:05:10.6601192Z #pragma omp declare reduction(+:at::vec::Vectorized:omp_out += omp_in) initializer(omp_priv={{0}}) 2023-01-11T21:05:10.6601256Z float tmp4 = 0; 2023-01-11T21:05:10.6601376Z auto tmp4_vec = at::vec::Vectorized(tmp4); 2023-01-11T21:05:10.6601465Z for(long i1=0; i1<2; i1+=1) 2023-01-11T21:05:10.6601531Z { 2023-01-11T21:05:10.6601673Z auto tmp0 = at::vec::Vectorized::loadu(in_ptr0 + (16*i1) + (32*i0)); 2023-01-11T21:05:10.6601850Z auto tmp1 = at::vec::Vectorized(out_ptr0[i0]); 2023-01-11T21:05:10.6601945Z auto tmp2 = tmp0 * tmp1; 2023-01-11T21:05:10.6602037Z auto tmp3 = tmp2.exp(); 2023-01-11T21:05:10.6602128Z tmp3.store(out_ptr1 + (16*i1) + (32*i0)); 2023-01-11T21:05:10.6602210Z tmp4_vec += tmp3; 2023-01-11T21:05:10.6602274Z } 2023-01-11T21:05:10.6602471Z tmp4 = at::vec::vec_reduce_all([](at::vec::Vectorized& x, at::vec::Vectorized&y) {return x + y;}, tmp4_vec); 2023-01-11T21:05:10.6602593Z #pragma omp simd simdlen(8) reduction(+:tmp4) 2023-01-11T21:05:10.6602683Z for(long i1=32; i1<32; i1+=1) 2023-01-11T21:05:10.6602747Z { 2023-01-11T21:05:10.6602850Z auto tmp0 = in_ptr0[i1 + (32*i0)]; 2023-01-11T21:05:10.6602929Z auto tmp1 = out_ptr0[i0]; 2023-01-11T21:05:10.6603019Z auto tmp2 = tmp0 * tmp1; 2023-01-11T21:05:10.6603120Z auto tmp3 = std::exp(tmp2); 2023-01-11T21:05:10.6603213Z out_ptr1[i1 + (32*i0)] = tmp3; 2023-01-11T21:05:10.6603289Z tmp4 += tmp3; 2023-01-11T21:05:10.6603352Z } 2023-01-11T21:05:10.6603432Z out_ptr2[i0] = tmp4; 2023-01-11T21:05:10.6603481Z } 2023-01-11T21:05:10.6603544Z } 2023-01-11T21:05:10.6603622Z #pragma omp for 2023-01-11T21:05:10.6603702Z for(long i0=0; i0<16; i0+=1) 2023-01-11T21:05:10.6603764Z { 2023-01-11T21:05:10.6603845Z for(long i1=0; i1<2; i1+=1) 2023-01-11T21:05:10.6603910Z { 2023-01-11T21:05:10.6604036Z auto tmp0 = at::vec::Vectorized::loadu(out_ptr1 + (16*i1) + (32*i0)); 2023-01-11T21:05:10.6604161Z auto tmp1 = at::vec::Vectorized(out_ptr2[i0]); 2023-01-11T21:05:10.6604248Z auto tmp2 = tmp0 / tmp1; 2023-01-11T21:05:10.6604356Z tmp2.store(in_out_ptr0 + (16*i1) + (32*i0)); 2023-01-11T21:05:10.6604419Z } 2023-01-11T21:05:10.6604510Z #pragma omp simd simdlen(8) 2023-01-11T21:05:10.6604596Z for(long i1=32; i1<32; i1+=1) 2023-01-11T21:05:10.6604644Z { 2023-01-11T21:05:10.6604743Z auto tmp0 = out_ptr1[i1 + (32*i0)]; 2023-01-11T21:05:10.6604828Z auto tmp1 = out_ptr2[i0]; 2023-01-11T21:05:10.6604914Z auto tmp2 = tmp0 / tmp1; 2023-01-11T21:05:10.6605006Z in_out_ptr0[i1 + (32*i0)] = tmp2; 2023-01-11T21:05:10.6605068Z } 2023-01-11T21:05:10.6605130Z } 2023-01-11T21:05:10.6605176Z } 2023-01-11T21:05:10.6605236Z } 2023-01-11T21:05:10.6605317Z ''') 2023-01-11T21:05:10.6605323Z 2023-01-11T21:05:10.6605364Z 2023-01-11T21:05:10.6605458Z async_compile.wait(globals()) 2023-01-11T21:05:10.6605527Z del async_compile 2023-01-11T21:05:10.6605532Z 2023-01-11T21:05:10.6605601Z def call(args): 2023-01-11T21:05:10.6605670Z arg0_1, = args 2023-01-11T21:05:10.6605729Z args.clear() 2023-01-11T21:05:10.6605929Z buf0 = empty_strided((16, 1), (1, 16), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6606127Z buf1 = empty_strided((16, 32), (32, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6606321Z buf2 = empty_strided((16, 1), (1, 16), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6606404Z buf3 = buf1; del buf1 # reuse 2023-01-11T21:05:10.6606592Z kernel_cpp_0(c_void_p(buf3.data_ptr()), c_void_p(arg0_1.data_ptr()), c_void_p(buf0.data_ptr()), c_void_p(buf2.data_ptr())) 2023-01-11T21:05:10.6606660Z del arg0_1 2023-01-11T21:05:10.6606733Z return (buf3, ) 2023-01-11T21:05:10.6606738Z 2023-01-11T21:05:10.6606742Z 2023-01-11T21:05:10.6606803Z if __name__ == "__main__": 2023-01-11T21:05:10.6606918Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.6607041Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.6607282Z arg0_1 = rand_strided((16, 32), (32, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6607391Z print_performance(lambda: call([arg0_1])) 2023-01-11T21:05:10.6607396Z 2023-01-11T21:05:10.6607462Z ok (2.753s) 2023-01-11T21:05:10.6607896Z test_sort_cpu (__main__.CpuTests) ... inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.6608022Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.6608281Z [2023-01-11 20:59:48,277] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 414 2023-01-11T21:05:10.6608485Z [2023-01-11 20:59:48,288] torch._inductor.ir: [WARNING] Using FallbackKernel: aten.sort 2023-01-11T21:05:10.6608747Z [2023-01-11 20:59:48,292] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 414 2023-01-11T21:05:10.6608753Z 2023-01-11T21:05:10.6608844Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.6608912Z import torch 2023-01-11T21:05:10.6608983Z import random 2023-01-11T21:05:10.6609096Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.6609215Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.6609220Z 2023-01-11T21:05:10.6609295Z aten = torch.ops.aten 2023-01-11T21:05:10.6609414Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.6609504Z async_compile = AsyncCompile() 2023-01-11T21:05:10.6609509Z 2023-01-11T21:05:10.6609514Z 2023-01-11T21:05:10.6609599Z async_compile.wait(globals()) 2023-01-11T21:05:10.6609670Z del async_compile 2023-01-11T21:05:10.6609677Z 2023-01-11T21:05:10.6609747Z def call(args): 2023-01-11T21:05:10.6609814Z arg0_1, = args 2023-01-11T21:05:10.6609884Z args.clear() 2023-01-11T21:05:10.6609962Z buf0 = aten.sort(arg0_1) 2023-01-11T21:05:10.6610017Z del arg0_1 2023-01-11T21:05:10.6610083Z buf1 = buf0[0] 2023-01-11T21:05:10.6610188Z assert_size_stride(buf1, (1, 1, 8, 8), (64, 64, 8, 1)) 2023-01-11T21:05:10.6610254Z buf2 = buf0[1] 2023-01-11T21:05:10.6610357Z assert_size_stride(buf2, (1, 1, 8, 8), (64, 64, 8, 1)) 2023-01-11T21:05:10.6610420Z del buf0 2023-01-11T21:05:10.6610482Z return (buf1, buf2, ) 2023-01-11T21:05:10.6610499Z 2023-01-11T21:05:10.6610503Z 2023-01-11T21:05:10.6610564Z if __name__ == "__main__": 2023-01-11T21:05:10.6610676Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.6610795Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.6611006Z arg0_1 = rand_strided((1, 1, 8, 8), (64, 64, 8, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6611138Z print_performance(lambda: call([arg0_1])) 2023-01-11T21:05:10.6611143Z 2023-01-11T21:05:10.6611207Z ok (0.046s) 2023-01-11T21:05:10.6611641Z test_split_cpu (__main__.CpuTests) ... inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.6611767Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.6612023Z [2023-01-11 20:59:48,333] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 415 2023-01-11T21:05:10.6612271Z [2023-01-11 20:59:48,337] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 415 2023-01-11T21:05:10.6612697Z inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.6612824Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.6613079Z [2023-01-11 20:59:48,383] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 416 2023-01-11T21:05:10.6613340Z [2023-01-11 20:59:51,070] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 416 2023-01-11T21:05:10.6613346Z 2023-01-11T21:05:10.6613436Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.6613504Z import torch 2023-01-11T21:05:10.6613572Z import random 2023-01-11T21:05:10.6613686Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.6613792Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.6613799Z 2023-01-11T21:05:10.6613876Z aten = torch.ops.aten 2023-01-11T21:05:10.6614008Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.6614098Z async_compile = AsyncCompile() 2023-01-11T21:05:10.6614103Z 2023-01-11T21:05:10.6614110Z 2023-01-11T21:05:10.6614196Z async_compile.wait(globals()) 2023-01-11T21:05:10.6614267Z del async_compile 2023-01-11T21:05:10.6614272Z 2023-01-11T21:05:10.6614339Z def call(args): 2023-01-11T21:05:10.6614405Z arg0_1, = args 2023-01-11T21:05:10.6614462Z args.clear() 2023-01-11T21:05:10.6614656Z return (as_strided(arg0_1, (2, 2, 3), (20, 10, 1)), as_strided(arg0_1, (2, 2, 3), (20, 10, 1), 3), as_strided(arg0_1, (2, 2, 3), (20, 10, 1), 6), as_strided(arg0_1, (2, 2, 1), (20, 10, 1), 9), ) 2023-01-11T21:05:10.6614661Z 2023-01-11T21:05:10.6614666Z 2023-01-11T21:05:10.6614740Z if __name__ == "__main__": 2023-01-11T21:05:10.6614850Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.6614970Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.6615178Z arg0_1 = rand_strided((2, 2, 10), (20, 10, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6615283Z print_performance(lambda: call([arg0_1])) 2023-01-11T21:05:10.6615290Z 2023-01-11T21:05:10.6615295Z 2023-01-11T21:05:10.6615386Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.6615453Z import torch 2023-01-11T21:05:10.6615508Z import random 2023-01-11T21:05:10.6615620Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.6615737Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.6615742Z 2023-01-11T21:05:10.6615819Z aten = torch.ops.aten 2023-01-11T21:05:10.6615951Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.6616039Z async_compile = AsyncCompile() 2023-01-11T21:05:10.6616044Z 2023-01-11T21:05:10.6616048Z 2023-01-11T21:05:10.6616177Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.6616369Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.6616516Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:05:10.6616613Z float* __restrict__ out_ptr0) 2023-01-11T21:05:10.6616673Z { 2023-01-11T21:05:10.6616768Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.6616828Z { 2023-01-11T21:05:10.6616902Z #pragma omp for 2023-01-11T21:05:10.6616969Z for(long i0=0; i0<2; i0+=1) 2023-01-11T21:05:10.6617028Z { 2023-01-11T21:05:10.6617161Z auto tmp0 = at::vec::Vectorized::loadu(in_ptr0 + 16*i0); 2023-01-11T21:05:10.6617293Z auto tmp1 = at::vec::Vectorized(static_cast(1)); 2023-01-11T21:05:10.6617377Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:05:10.6617468Z tmp2.store(out_ptr0 + 16*i0); 2023-01-11T21:05:10.6617529Z } 2023-01-11T21:05:10.6617622Z #pragma omp for simd simdlen(8) 2023-01-11T21:05:10.6617690Z for(long i0=32; i0<40; i0+=1) 2023-01-11T21:05:10.6617752Z { 2023-01-11T21:05:10.6617832Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:05:10.6617929Z auto tmp1 = static_cast(1); 2023-01-11T21:05:10.6618038Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:05:10.6618119Z out_ptr0[i0] = tmp2; 2023-01-11T21:05:10.6618179Z } 2023-01-11T21:05:10.6618224Z } 2023-01-11T21:05:10.6618282Z } 2023-01-11T21:05:10.6618359Z ''') 2023-01-11T21:05:10.6618364Z 2023-01-11T21:05:10.6618369Z 2023-01-11T21:05:10.6618455Z async_compile.wait(globals()) 2023-01-11T21:05:10.6618600Z del async_compile 2023-01-11T21:05:10.6618607Z 2023-01-11T21:05:10.6618678Z def call(args): 2023-01-11T21:05:10.6618747Z arg0_1, = args 2023-01-11T21:05:10.6618803Z args.clear() 2023-01-11T21:05:10.6619010Z buf0 = empty_strided((2, 2, 10), (20, 10, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6619145Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:05:10.6619217Z del arg0_1 2023-01-11T21:05:10.6619409Z return (as_strided(buf0, (2, 2, 3), (20, 10, 1)), as_strided(buf0, (2, 2, 3), (20, 10, 1), 3), as_strided(buf0, (2, 2, 3), (20, 10, 1), 6), as_strided(buf0, (2, 2, 1), (20, 10, 0), 9), ) 2023-01-11T21:05:10.6619415Z 2023-01-11T21:05:10.6619419Z 2023-01-11T21:05:10.6619495Z if __name__ == "__main__": 2023-01-11T21:05:10.6619609Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.6619733Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.6619926Z arg0_1 = rand_strided((2, 2, 10), (20, 10, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6620033Z print_performance(lambda: call([arg0_1])) 2023-01-11T21:05:10.6620039Z 2023-01-11T21:05:10.6620105Z ok (2.784s) 2023-01-11T21:05:10.6620550Z test_split_with_sizes_cpu (__main__.CpuTests) ... inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.6620680Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.6620942Z [2023-01-11 20:59:51,140] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 417 2023-01-11T21:05:10.6621202Z [2023-01-11 20:59:53,965] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 417 2023-01-11T21:05:10.6621603Z inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.6621725Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.6622012Z [2023-01-11 20:59:54,033] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 418 2023-01-11T21:05:10.6622274Z [2023-01-11 20:59:56,817] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 418 2023-01-11T21:05:10.6622657Z inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.6622780Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.6623031Z [2023-01-11 20:59:56,896] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 419 2023-01-11T21:05:10.6623037Z 2023-01-11T21:05:10.6623128Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.6623197Z import torch 2023-01-11T21:05:10.6623271Z import random 2023-01-11T21:05:10.6623384Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.6623502Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.6623507Z 2023-01-11T21:05:10.6623599Z aten = torch.ops.aten 2023-01-11T21:05:10.6623734Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.6623825Z async_compile = AsyncCompile() 2023-01-11T21:05:10.6623830Z 2023-01-11T21:05:10.6623834Z 2023-01-11T21:05:10.6623967Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.6624171Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.6624290Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:05:10.6624388Z float* __restrict__ out_ptr0, 2023-01-11T21:05:10.6624485Z float* __restrict__ out_ptr1, 2023-01-11T21:05:10.6624565Z float* __restrict__ out_ptr2) 2023-01-11T21:05:10.6624631Z { 2023-01-11T21:05:10.6624726Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.6624786Z { 2023-01-11T21:05:10.6624860Z #pragma omp for 2023-01-11T21:05:10.6624941Z for(long i0=0; i0<4; i0+=1) 2023-01-11T21:05:10.6625003Z { 2023-01-11T21:05:10.6625069Z #pragma GCC ivdep 2023-01-11T21:05:10.6625150Z for(long i1=0; i1<3; i1+=1) 2023-01-11T21:05:10.6625213Z { 2023-01-11T21:05:10.6625275Z { 2023-01-11T21:05:10.6625340Z { 2023-01-11T21:05:10.6625442Z auto tmp0 = in_ptr0[i1 + (10*i0)]; 2023-01-11T21:05:10.6625548Z auto tmp1 = static_cast(2.0); 2023-01-11T21:05:10.6625628Z auto tmp2 = tmp0 * tmp1; 2023-01-11T21:05:10.6625735Z auto tmp3 = static_cast(1.0); 2023-01-11T21:05:10.6625828Z auto tmp4 = tmp2 + tmp3; 2023-01-11T21:05:10.6625923Z out_ptr0[i1 + (3*i0)] = tmp4; 2023-01-11T21:05:10.6625990Z } 2023-01-11T21:05:10.6626052Z } 2023-01-11T21:05:10.6626113Z } 2023-01-11T21:05:10.6626161Z } 2023-01-11T21:05:10.6626238Z #pragma omp for 2023-01-11T21:05:10.6626318Z for(long i0=0; i0<4; i0+=1) 2023-01-11T21:05:10.6626378Z { 2023-01-11T21:05:10.6626456Z #pragma GCC ivdep 2023-01-11T21:05:10.6626537Z for(long i1=0; i1<3; i1+=1) 2023-01-11T21:05:10.6626597Z { 2023-01-11T21:05:10.6626647Z { 2023-01-11T21:05:10.6626710Z { 2023-01-11T21:05:10.6626814Z auto tmp0 = in_ptr0[3 + i1 + (10*i0)]; 2023-01-11T21:05:10.6626925Z auto tmp1 = static_cast(2.0); 2023-01-11T21:05:10.6627016Z auto tmp2 = tmp0 * tmp1; 2023-01-11T21:05:10.6627119Z auto tmp3 = static_cast(1.0); 2023-01-11T21:05:10.6627208Z auto tmp4 = tmp2 + tmp3; 2023-01-11T21:05:10.6627320Z out_ptr1[i1 + (3*i0)] = tmp4; 2023-01-11T21:05:10.6627384Z } 2023-01-11T21:05:10.6627446Z } 2023-01-11T21:05:10.6627510Z } 2023-01-11T21:05:10.6627570Z } 2023-01-11T21:05:10.6627645Z #pragma omp for 2023-01-11T21:05:10.6627712Z for(long i0=0; i0<4; i0+=1) 2023-01-11T21:05:10.6627772Z { 2023-01-11T21:05:10.6627848Z #pragma GCC ivdep 2023-01-11T21:05:10.6627927Z for(long i1=0; i1<4; i1+=1) 2023-01-11T21:05:10.6627989Z { 2023-01-11T21:05:10.6628052Z { 2023-01-11T21:05:10.6628115Z { 2023-01-11T21:05:10.6628206Z auto tmp0 = in_ptr0[6 + i1 + (10*i0)]; 2023-01-11T21:05:10.6628311Z auto tmp1 = static_cast(2.0); 2023-01-11T21:05:10.6628402Z auto tmp2 = tmp0 * tmp1; 2023-01-11T21:05:10.6628507Z auto tmp3 = static_cast(1.0); 2023-01-11T21:05:10.6628599Z auto tmp4 = tmp2 + tmp3; 2023-01-11T21:05:10.6628694Z out_ptr2[i1 + (4*i0)] = tmp4; 2023-01-11T21:05:10.6628787Z } 2023-01-11T21:05:10.6628838Z } 2023-01-11T21:05:10.6628899Z } 2023-01-11T21:05:10.6628958Z } 2023-01-11T21:05:10.6629017Z } 2023-01-11T21:05:10.6629075Z } 2023-01-11T21:05:10.6629153Z ''') 2023-01-11T21:05:10.6629158Z 2023-01-11T21:05:10.6629162Z 2023-01-11T21:05:10.6629249Z async_compile.wait(globals()) 2023-01-11T21:05:10.6629308Z del async_compile 2023-01-11T21:05:10.6629323Z 2023-01-11T21:05:10.6629379Z def call(args): 2023-01-11T21:05:10.6629447Z arg0_1, = args 2023-01-11T21:05:10.6629516Z args.clear() 2023-01-11T21:05:10.6629717Z buf0 = empty_strided((2, 2, 3), (6, 3, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6629916Z buf1 = empty_strided((2, 2, 3), (6, 3, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6630115Z buf2 = empty_strided((2, 2, 4), (8, 4, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6630303Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(buf0.data_ptr()), c_void_p(buf1.data_ptr()), c_void_p(buf2.data_ptr())) 2023-01-11T21:05:10.6630359Z del arg0_1 2023-01-11T21:05:10.6630440Z return (buf0, buf1, buf2, ) 2023-01-11T21:05:10.6630446Z 2023-01-11T21:05:10.6630450Z 2023-01-11T21:05:10.6630522Z if __name__ == "__main__": 2023-01-11T21:05:10.6630636Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.6630757Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.6630961Z arg0_1 = rand_strided((2, 2, 10), (20, 10, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6631068Z print_performance(lambda: call([arg0_1])) 2023-01-11T21:05:10.6631073Z 2023-01-11T21:05:10.6631077Z 2023-01-11T21:05:10.6631169Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.6631224Z import torch 2023-01-11T21:05:10.6631295Z import random 2023-01-11T21:05:10.6631408Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.6631526Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.6631531Z 2023-01-11T21:05:10.6631610Z aten = torch.ops.aten 2023-01-11T21:05:10.6631744Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.6631835Z async_compile = AsyncCompile() 2023-01-11T21:05:10.6631840Z 2023-01-11T21:05:10.6631844Z 2023-01-11T21:05:10.6631975Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.6632166Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.6632283Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:05:10.6632381Z float* __restrict__ out_ptr0, 2023-01-11T21:05:10.6632477Z float* __restrict__ out_ptr1, 2023-01-11T21:05:10.6632569Z float* __restrict__ out_ptr2) 2023-01-11T21:05:10.6632661Z { 2023-01-11T21:05:10.6632758Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.6632805Z { 2023-01-11T21:05:10.6632881Z #pragma omp for 2023-01-11T21:05:10.6632963Z for(long i0=0; i0<4; i0+=1) 2023-01-11T21:05:10.6633024Z { 2023-01-11T21:05:10.6633102Z #pragma GCC ivdep 2023-01-11T21:05:10.6633181Z for(long i1=0; i1<4; i1+=1) 2023-01-11T21:05:10.6633244Z { 2023-01-11T21:05:10.6633294Z { 2023-01-11T21:05:10.6633359Z { 2023-01-11T21:05:10.6633462Z auto tmp0 = in_ptr0[i1 + (10*i0)]; 2023-01-11T21:05:10.6633568Z auto tmp1 = static_cast(2.0); 2023-01-11T21:05:10.6633660Z auto tmp2 = tmp0 * tmp1; 2023-01-11T21:05:10.6633766Z auto tmp3 = static_cast(1.0); 2023-01-11T21:05:10.6633856Z auto tmp4 = tmp2 + tmp3; 2023-01-11T21:05:10.6633941Z out_ptr0[i1 + (4*i0)] = tmp4; 2023-01-11T21:05:10.6634006Z } 2023-01-11T21:05:10.6634067Z } 2023-01-11T21:05:10.6634129Z } 2023-01-11T21:05:10.6634189Z } 2023-01-11T21:05:10.6634298Z #pragma omp for 2023-01-11T21:05:10.6634379Z for(long i0=0; i0<4; i0+=1) 2023-01-11T21:05:10.6634428Z { 2023-01-11T21:05:10.6634508Z #pragma GCC ivdep 2023-01-11T21:05:10.6634590Z for(long i1=0; i1<3; i1+=1) 2023-01-11T21:05:10.6634652Z { 2023-01-11T21:05:10.6634718Z { 2023-01-11T21:05:10.6634784Z { 2023-01-11T21:05:10.6634875Z auto tmp0 = in_ptr0[4 + i1 + (10*i0)]; 2023-01-11T21:05:10.6634981Z auto tmp1 = static_cast(2.0); 2023-01-11T21:05:10.6635073Z auto tmp2 = tmp0 * tmp1; 2023-01-11T21:05:10.6635180Z auto tmp3 = static_cast(1.0); 2023-01-11T21:05:10.6635275Z auto tmp4 = tmp2 + tmp3; 2023-01-11T21:05:10.6635371Z out_ptr1[i1 + (3*i0)] = tmp4; 2023-01-11T21:05:10.6635438Z } 2023-01-11T21:05:10.6635503Z } 2023-01-11T21:05:10.6635554Z } 2023-01-11T21:05:10.6635617Z } 2023-01-11T21:05:10.6635691Z #pragma omp for 2023-01-11T21:05:10.6635772Z for(long i0=0; i0<4; i0+=1) 2023-01-11T21:05:10.6635833Z { 2023-01-11T21:05:10.6635911Z #pragma GCC ivdep 2023-01-11T21:05:10.6635979Z for(long i1=0; i1<3; i1+=1) 2023-01-11T21:05:10.6636041Z { 2023-01-11T21:05:10.6636104Z { 2023-01-11T21:05:10.6636168Z { 2023-01-11T21:05:10.6636270Z auto tmp0 = in_ptr0[7 + i1 + (10*i0)]; 2023-01-11T21:05:10.6636375Z auto tmp1 = static_cast(2.0); 2023-01-11T21:05:10.6636466Z auto tmp2 = tmp0 * tmp1; 2023-01-11T21:05:10.6636561Z auto tmp3 = static_cast(1.0); 2023-01-11T21:05:10.6636653Z auto tmp4 = tmp2 + tmp3; 2023-01-11T21:05:10.6636749Z out_ptr2[i1 + (3*i0)] = tmp4; 2023-01-11T21:05:10.6636816Z } 2023-01-11T21:05:10.6636880Z } 2023-01-11T21:05:10.6636942Z } 2023-01-11T21:05:10.6637004Z } 2023-01-11T21:05:10.6637050Z } 2023-01-11T21:05:10.6637110Z } 2023-01-11T21:05:10.6637188Z ''') 2023-01-11T21:05:10.6637194Z 2023-01-11T21:05:10.6637198Z 2023-01-11T21:05:10.6637285Z async_compile.wait(globals()) 2023-01-11T21:05:10.6637355Z del async_compile 2023-01-11T21:05:10.6637360Z 2023-01-11T21:05:10.6637429Z def call(args): 2023-01-11T21:05:10.6637497Z arg0_1, = args 2023-01-11T21:05:10.6637553Z args.clear() 2023-01-11T21:05:10.6637757Z buf0 = empty_strided((2, 2, 4), (8, 4, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6637955Z buf1 = empty_strided((2, 2, 3), (6, 3, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6638179Z buf2 = empty_strided((2, 2, 3), (6, 3, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6638369Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(buf0.data_ptr()), c_void_p(buf1.data_ptr()), c_void_p(buf2.data_ptr())) 2023-01-11T21:05:10.6638438Z del arg0_1 2023-01-11T21:05:10.6638518Z return (buf0, buf1, buf2, ) 2023-01-11T21:05:10.6638523Z 2023-01-11T21:05:10.6638527Z 2023-01-11T21:05:10.6638602Z if __name__ == "__main__": 2023-01-11T21:05:10.6638703Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.6638826Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.6639032Z arg0_1 = rand_strided((2, 2, 10), (20, 10, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6639140Z print_performance(lambda: call([arg0_1])) 2023-01-11T21:05:10.6639145Z 2023-01-11T21:05:10.6639149Z 2023-01-11T21:05:10.6639241Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.6639314Z import torch 2023-01-11T21:05:10.6639385Z import random 2023-01-11T21:05:10.6639502Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.6639609Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.6639654Z 2023-01-11T21:05:10.6639720Z aten = torch.ops.aten 2023-01-11T21:05:10.6639852Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.6639942Z async_compile = AsyncCompile() 2023-01-11T21:05:10.6639948Z 2023-01-11T21:05:10.6639952Z 2023-01-11T21:05:10.6640083Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.6640285Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.6640402Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:05:10.6640501Z float* __restrict__ out_ptr0, 2023-01-11T21:05:10.6640699Z float* __restrict__ out_ptr1, 2023-01-11T21:05:10.6640794Z float* __restrict__ out_ptr2, 2023-01-11T21:05:10.6640890Z float* __restrict__ out_ptr3) 2023-01-11T21:05:10.6640951Z { 2023-01-11T21:05:10.6641049Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.6641115Z { 2023-01-11T21:05:10.6641192Z #pragma omp for 2023-01-11T21:05:10.6641260Z for(long i0=0; i0<4; i0+=1) 2023-01-11T21:05:10.6641324Z { 2023-01-11T21:05:10.6641386Z { 2023-01-11T21:05:10.6641449Z { 2023-01-11T21:05:10.6641542Z auto tmp0 = in_ptr0[10*i0]; 2023-01-11T21:05:10.6641646Z auto tmp1 = static_cast(2.0); 2023-01-11T21:05:10.6641738Z auto tmp2 = tmp0 * tmp1; 2023-01-11T21:05:10.6641829Z auto tmp3 = static_cast(1.0); 2023-01-11T21:05:10.6641920Z auto tmp4 = tmp2 + tmp3; 2023-01-11T21:05:10.6642004Z out_ptr0[i0] = tmp4; 2023-01-11T21:05:10.6642068Z } 2023-01-11T21:05:10.6642132Z } 2023-01-11T21:05:10.6642193Z } 2023-01-11T21:05:10.6642267Z #pragma omp for 2023-01-11T21:05:10.6642335Z for(long i0=0; i0<4; i0+=1) 2023-01-11T21:05:10.6642395Z { 2023-01-11T21:05:10.6642478Z #pragma GCC ivdep 2023-01-11T21:05:10.6642558Z for(long i1=0; i1<2; i1+=1) 2023-01-11T21:05:10.6642621Z { 2023-01-11T21:05:10.6642683Z { 2023-01-11T21:05:10.6642735Z { 2023-01-11T21:05:10.6642837Z auto tmp0 = in_ptr0[1 + i1 + (10*i0)]; 2023-01-11T21:05:10.6642945Z auto tmp1 = static_cast(2.0); 2023-01-11T21:05:10.6643035Z auto tmp2 = tmp0 * tmp1; 2023-01-11T21:05:10.6643141Z auto tmp3 = static_cast(1.0); 2023-01-11T21:05:10.6643232Z auto tmp4 = tmp2 + tmp3; 2023-01-11T21:05:10.6643325Z out_ptr1[i1 + (2*i0)] = tmp4; 2023-01-11T21:05:10.6643444Z } 2023-01-11T21:05:10.6643493Z } 2023-01-11T21:05:10.6643556Z } 2023-01-11T21:05:10.6643617Z } 2023-01-11T21:05:10.6643696Z #pragma omp for 2023-01-11T21:05:10.6643779Z for(long i0=0; i0<4; i0+=1) 2023-01-11T21:05:10.6643840Z { 2023-01-11T21:05:10.6643905Z #pragma GCC ivdep 2023-01-11T21:05:10.6643990Z for(long i1=0; i1<3; i1+=1) 2023-01-11T21:05:10.6644053Z { 2023-01-11T21:05:10.6644115Z { 2023-01-11T21:05:10.6644180Z { 2023-01-11T21:05:10.6644284Z auto tmp0 = in_ptr0[3 + i1 + (10*i0)]; 2023-01-11T21:05:10.6644391Z auto tmp1 = static_cast(2.0); 2023-01-11T21:05:10.6644470Z auto tmp2 = tmp0 * tmp1; 2023-01-11T21:05:10.6644575Z auto tmp3 = static_cast(1.0); 2023-01-11T21:05:10.6644666Z auto tmp4 = tmp2 + tmp3; 2023-01-11T21:05:10.6644765Z out_ptr2[i1 + (3*i0)] = tmp4; 2023-01-11T21:05:10.6644831Z } 2023-01-11T21:05:10.6644894Z } 2023-01-11T21:05:10.6644956Z } 2023-01-11T21:05:10.6645054Z } 2023-01-11T21:05:10.6645132Z #pragma omp for 2023-01-11T21:05:10.6645210Z for(long i0=0; i0<4; i0+=1) 2023-01-11T21:05:10.6645271Z { 2023-01-11T21:05:10.6645347Z #pragma GCC ivdep 2023-01-11T21:05:10.6645427Z for(long i1=0; i1<4; i1+=1) 2023-01-11T21:05:10.6645489Z { 2023-01-11T21:05:10.6645539Z { 2023-01-11T21:05:10.6645602Z { 2023-01-11T21:05:10.6645703Z auto tmp0 = in_ptr0[6 + i1 + (10*i0)]; 2023-01-11T21:05:10.6645806Z auto tmp1 = static_cast(2.0); 2023-01-11T21:05:10.6645896Z auto tmp2 = tmp0 * tmp1; 2023-01-11T21:05:10.6646002Z auto tmp3 = static_cast(1.0); 2023-01-11T21:05:10.6646096Z auto tmp4 = tmp2 + tmp3; 2023-01-11T21:05:10.6646177Z out_ptr3[i1 + (4*i0)] = tmp4; 2023-01-11T21:05:10.6646242Z } 2023-01-11T21:05:10.6646305Z } 2023-01-11T21:05:10.6646367Z } 2023-01-11T21:05:10.6646429Z } 2023-01-11T21:05:10.6646489Z } 2023-01-11T21:05:10.6646535Z } 2023-01-11T21:05:10.6646616Z ''') 2023-01-11T21:05:10.6646622Z 2023-01-11T21:05:10.6646626Z 2023-01-11T21:05:10.6646713Z async_compile.wait(globals()) 2023-01-11T21:05:10.6646783Z del async_compile 2023-01-11T21:05:10.6646789Z 2023-01-11T21:05:10.6646857Z def call(args): 2023-01-11T21:05:10.6646924Z arg0_1, = args 2023-01-11T21:05:10.6646993Z args.clear() 2023-01-11T21:05:10.6647195Z buf0 = empty_strided((2, 2, 1), (2, 1, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6647380Z buf1 = empty_strided((2, 2, 2), (4, 2, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6647578Z buf2 = empty_strided((2, 2, 3), (6, 3, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6647773Z buf3 = empty_strided((2, 2, 4), (8, 4, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6647984Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(buf0.data_ptr()), c_void_p(buf1.data_ptr()), c_void_p(buf2.data_ptr()), c_void_p(buf3.data_ptr())) 2023-01-11T21:05:10.6648053Z del arg0_1 2023-01-11T21:05:10.6648138Z return (buf0, buf1, buf2, buf3, ) 2023-01-11T21:05:10.6648143Z 2023-01-11T21:05:10.6648147Z 2023-01-11T21:05:10.6648221Z if __name__ == "__main__": 2023-01-11T21:05:10.6648336Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.6648444Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.6648646Z arg0_1 = rand_strided((2, 2, 10), (20, 10, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6648752Z print_performance(lambda: call([arg0_1])) 2023-01-11T21:05:10.6649021Z [2023-01-11 20:59:59,728] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 419 2023-01-11T21:05:10.6649056Z 2023-01-11T21:05:10.6649123Z ok (8.658s) 2023-01-11T21:05:10.6649560Z test_squeeze1_cpu (__main__.CpuTests) ... inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.6649685Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.6649942Z [2023-01-11 20:59:59,825] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 420 2023-01-11T21:05:10.6650203Z [2023-01-11 21:00:02,495] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 420 2023-01-11T21:05:10.6650208Z 2023-01-11T21:05:10.6650303Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.6650361Z import torch 2023-01-11T21:05:10.6650429Z import random 2023-01-11T21:05:10.6650541Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.6650691Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.6650696Z 2023-01-11T21:05:10.6650775Z aten = torch.ops.aten 2023-01-11T21:05:10.6650908Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.6650998Z async_compile = AsyncCompile() 2023-01-11T21:05:10.6651003Z 2023-01-11T21:05:10.6651007Z 2023-01-11T21:05:10.6651139Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.6651332Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.6651449Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:05:10.6651548Z float* __restrict__ out_ptr0, 2023-01-11T21:05:10.6651643Z float* __restrict__ out_ptr1) 2023-01-11T21:05:10.6651705Z { 2023-01-11T21:05:10.6651801Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.6651862Z { 2023-01-11T21:05:10.6651923Z #pragma omp for 2023-01-11T21:05:10.6652003Z for(long i0=0; i0<8; i0+=1) 2023-01-11T21:05:10.6652065Z { 2023-01-11T21:05:10.6652126Z { 2023-01-11T21:05:10.6652190Z { 2023-01-11T21:05:10.6652281Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:05:10.6652385Z auto tmp1 = static_cast(1); 2023-01-11T21:05:10.6652464Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:05:10.6652566Z auto tmp3 = static_cast(2); 2023-01-11T21:05:10.6652654Z auto tmp4 = tmp2 + tmp3; 2023-01-11T21:05:10.6652740Z auto tmp5 = tmp0 + tmp3; 2023-01-11T21:05:10.6652822Z out_ptr0[i0] = tmp4; 2023-01-11T21:05:10.6652907Z out_ptr1[i0] = tmp5; 2023-01-11T21:05:10.6652973Z } 2023-01-11T21:05:10.6653023Z } 2023-01-11T21:05:10.6653084Z } 2023-01-11T21:05:10.6653143Z } 2023-01-11T21:05:10.6653202Z } 2023-01-11T21:05:10.6653277Z ''') 2023-01-11T21:05:10.6653282Z 2023-01-11T21:05:10.6653286Z 2023-01-11T21:05:10.6653377Z async_compile.wait(globals()) 2023-01-11T21:05:10.6653448Z del async_compile 2023-01-11T21:05:10.6653453Z 2023-01-11T21:05:10.6653509Z def call(args): 2023-01-11T21:05:10.6653575Z arg0_1, = args 2023-01-11T21:05:10.6653643Z args.clear() 2023-01-11T21:05:10.6653844Z buf0 = empty_strided((2, 2, 2), (4, 2, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6654043Z buf1 = empty_strided((2, 2, 2), (4, 2, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6654204Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(buf0.data_ptr()), c_void_p(buf1.data_ptr())) 2023-01-11T21:05:10.6654270Z del arg0_1 2023-01-11T21:05:10.6654334Z return (buf0, buf1, ) 2023-01-11T21:05:10.6654339Z 2023-01-11T21:05:10.6654356Z 2023-01-11T21:05:10.6654449Z if __name__ == "__main__": 2023-01-11T21:05:10.6654561Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.6654680Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.6654908Z arg0_1 = rand_strided((1, 2, 1, 2, 2, 1, 1), (8, 4, 4, 2, 1, 1, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6655013Z print_performance(lambda: call([arg0_1])) 2023-01-11T21:05:10.6655018Z 2023-01-11T21:05:10.6655082Z ok (2.764s) 2023-01-11T21:05:10.6655519Z test_squeeze2_cpu (__main__.CpuTests) ... inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.6655643Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.6655890Z [2023-01-11 21:00:02,548] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 421 2023-01-11T21:05:10.6656185Z [2023-01-11 21:00:05,196] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 421 2023-01-11T21:05:10.6656191Z 2023-01-11T21:05:10.6656283Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.6656350Z import torch 2023-01-11T21:05:10.6656420Z import random 2023-01-11T21:05:10.6656533Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.6656652Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.6656657Z 2023-01-11T21:05:10.6656733Z aten = torch.ops.aten 2023-01-11T21:05:10.6656854Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.6656944Z async_compile = AsyncCompile() 2023-01-11T21:05:10.6656949Z 2023-01-11T21:05:10.6656953Z 2023-01-11T21:05:10.6657085Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.6657287Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.6657408Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:05:10.6657507Z float* __restrict__ out_ptr0, 2023-01-11T21:05:10.6657604Z float* __restrict__ out_ptr1) 2023-01-11T21:05:10.6657663Z { 2023-01-11T21:05:10.6657747Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.6657808Z { 2023-01-11T21:05:10.6657883Z #pragma omp for 2023-01-11T21:05:10.6657963Z for(long i0=0; i0<1; i0+=1) 2023-01-11T21:05:10.6658025Z { 2023-01-11T21:05:10.6658162Z auto tmp0 = at::vec::Vectorized::loadu(in_ptr0 + 16*i0); 2023-01-11T21:05:10.6658294Z auto tmp1 = at::vec::Vectorized(static_cast(1)); 2023-01-11T21:05:10.6658365Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:05:10.6658588Z auto tmp3 = at::vec::Vectorized(static_cast(2)); 2023-01-11T21:05:10.6658676Z auto tmp4 = tmp2 + tmp3; 2023-01-11T21:05:10.6658760Z auto tmp5 = tmp0 + tmp3; 2023-01-11T21:05:10.6658853Z tmp4.store(out_ptr0 + 16*i0); 2023-01-11T21:05:10.6658944Z tmp5.store(out_ptr1 + 16*i0); 2023-01-11T21:05:10.6659007Z } 2023-01-11T21:05:10.6659088Z #pragma omp for simd simdlen(8) 2023-01-11T21:05:10.6659169Z for(long i0=16; i0<16; i0+=1) 2023-01-11T21:05:10.6659231Z { 2023-01-11T21:05:10.6659315Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:05:10.6659414Z auto tmp1 = static_cast(1); 2023-01-11T21:05:10.6659494Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:05:10.6659594Z auto tmp3 = static_cast(2); 2023-01-11T21:05:10.6659663Z auto tmp4 = tmp2 + tmp3; 2023-01-11T21:05:10.6659744Z auto tmp5 = tmp0 + tmp3; 2023-01-11T21:05:10.6659824Z out_ptr0[i0] = tmp4; 2023-01-11T21:05:10.6659902Z out_ptr1[i0] = tmp5; 2023-01-11T21:05:10.6659964Z } 2023-01-11T21:05:10.6660063Z } 2023-01-11T21:05:10.6660121Z } 2023-01-11T21:05:10.6660187Z ''') 2023-01-11T21:05:10.6660192Z 2023-01-11T21:05:10.6660209Z 2023-01-11T21:05:10.6660285Z async_compile.wait(globals()) 2023-01-11T21:05:10.6660357Z del async_compile 2023-01-11T21:05:10.6660361Z 2023-01-11T21:05:10.6660429Z def call(args): 2023-01-11T21:05:10.6660496Z arg0_1, = args 2023-01-11T21:05:10.6660567Z args.clear() 2023-01-11T21:05:10.6660784Z buf0 = empty_strided((1, 2, 2, 2, 2), (16, 8, 4, 2, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6661003Z buf1 = empty_strided((2, 1, 2, 2, 2, 1), (8, 8, 4, 2, 1, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6661147Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(buf0.data_ptr()), c_void_p(buf1.data_ptr())) 2023-01-11T21:05:10.6661213Z del arg0_1 2023-01-11T21:05:10.6661288Z return (buf0, buf1, ) 2023-01-11T21:05:10.6661293Z 2023-01-11T21:05:10.6661297Z 2023-01-11T21:05:10.6661374Z if __name__ == "__main__": 2023-01-11T21:05:10.6661486Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.6661606Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.6661863Z arg0_1 = rand_strided((1, 2, 1, 2, 2, 2, 1), (16, 8, 8, 4, 2, 1, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6661970Z print_performance(lambda: call([arg0_1])) 2023-01-11T21:05:10.6661975Z 2023-01-11T21:05:10.6662027Z ok (2.701s) 2023-01-11T21:05:10.6662458Z test_stack_cpu (__main__.CpuTests) ... inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.6662583Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.6662842Z [2023-01-11 21:00:05,243] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 422 2023-01-11T21:05:10.6663105Z [2023-01-11 21:00:08,074] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 422 2023-01-11T21:05:10.6663111Z 2023-01-11T21:05:10.6663204Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.6663274Z import torch 2023-01-11T21:05:10.6663342Z import random 2023-01-11T21:05:10.6663454Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.6663560Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.6663565Z 2023-01-11T21:05:10.6663640Z aten = torch.ops.aten 2023-01-11T21:05:10.6663770Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.6663860Z async_compile = AsyncCompile() 2023-01-11T21:05:10.6663866Z 2023-01-11T21:05:10.6663870Z 2023-01-11T21:05:10.6664001Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.6664203Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.6664323Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:05:10.6664427Z const float* __restrict__ in_ptr1, 2023-01-11T21:05:10.6664514Z float* __restrict__ out_ptr0, 2023-01-11T21:05:10.6664609Z float* __restrict__ out_ptr1) 2023-01-11T21:05:10.6664668Z { 2023-01-11T21:05:10.6664763Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.6664823Z { 2023-01-11T21:05:10.6664898Z #pragma omp for 2023-01-11T21:05:10.6664980Z for(long i0=0; i0<12; i0+=1) 2023-01-11T21:05:10.6665028Z { 2023-01-11T21:05:10.6665107Z #pragma GCC ivdep 2023-01-11T21:05:10.6665191Z for(long i1=0; i1<16; i1+=1) 2023-01-11T21:05:10.6665254Z { 2023-01-11T21:05:10.6665318Z { 2023-01-11T21:05:10.6665386Z { 2023-01-11T21:05:10.6665481Z auto tmp0 = in_ptr0[i1]; 2023-01-11T21:05:10.6665566Z out_ptr0[(2*i1) + (32*i0)] = tmp0; 2023-01-11T21:05:10.6665672Z } 2023-01-11T21:05:10.6665735Z } 2023-01-11T21:05:10.6665798Z } 2023-01-11T21:05:10.6665859Z } 2023-01-11T21:05:10.6665937Z #pragma omp for 2023-01-11T21:05:10.6666005Z for(long i0=0; i0<12; i0+=1) 2023-01-11T21:05:10.6666065Z { 2023-01-11T21:05:10.6666143Z #pragma GCC ivdep 2023-01-11T21:05:10.6666226Z for(long i1=0; i1<16; i1+=1) 2023-01-11T21:05:10.6666289Z { 2023-01-11T21:05:10.6666352Z { 2023-01-11T21:05:10.6666416Z { 2023-01-11T21:05:10.6666496Z auto tmp0 = in_ptr1[i0]; 2023-01-11T21:05:10.6666596Z out_ptr1[(2*i1) + (32*i0)] = tmp0; 2023-01-11T21:05:10.6666661Z } 2023-01-11T21:05:10.6666724Z } 2023-01-11T21:05:10.6666786Z } 2023-01-11T21:05:10.6666846Z } 2023-01-11T21:05:10.6666908Z } 2023-01-11T21:05:10.6666953Z } 2023-01-11T21:05:10.6667032Z ''') 2023-01-11T21:05:10.6667037Z 2023-01-11T21:05:10.6667041Z 2023-01-11T21:05:10.6667130Z async_compile.wait(globals()) 2023-01-11T21:05:10.6667228Z del async_compile 2023-01-11T21:05:10.6667233Z 2023-01-11T21:05:10.6667303Z def call(args): 2023-01-11T21:05:10.6667375Z arg0_1, arg1_1 = args 2023-01-11T21:05:10.6667443Z args.clear() 2023-01-11T21:05:10.6667636Z buf2 = empty_strided((12, 16, 2), (32, 2, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6667746Z buf0 = as_strided(buf2, (12, 16, 1), (32, 2, 1)) # alias 2023-01-11T21:05:10.6667849Z buf1 = as_strided(buf2, (12, 16, 1), (32, 2, 1), 1) # alias 2023-01-11T21:05:10.6668041Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(arg1_1.data_ptr()), c_void_p(buf0.data_ptr()), c_void_p(buf1.data_ptr())) 2023-01-11T21:05:10.6668109Z del arg0_1 2023-01-11T21:05:10.6668175Z del arg1_1 2023-01-11T21:05:10.6668244Z return (buf2, ) 2023-01-11T21:05:10.6668251Z 2023-01-11T21:05:10.6668255Z 2023-01-11T21:05:10.6668330Z if __name__ == "__main__": 2023-01-11T21:05:10.6668429Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.6668553Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.6668750Z arg0_1 = rand_strided((1, 16), (16, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6668946Z arg1_1 = rand_strided((12, 1), (1, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6669060Z print_performance(lambda: call([arg0_1, arg1_1])) 2023-01-11T21:05:10.6669065Z 2023-01-11T21:05:10.6669130Z ok (2.878s) 2023-01-11T21:05:10.6669558Z test_std_cpu (__main__.CpuTests) ... inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.6669687Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.6669945Z [2023-01-11 21:00:08,166] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 423 2023-01-11T21:05:10.6669951Z 2023-01-11T21:05:10.6670030Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.6670097Z import torch 2023-01-11T21:05:10.6670165Z import random 2023-01-11T21:05:10.6670278Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.6670396Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.6670401Z 2023-01-11T21:05:10.6670477Z aten = torch.ops.aten 2023-01-11T21:05:10.6670609Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.6670685Z async_compile = AsyncCompile() 2023-01-11T21:05:10.6670702Z 2023-01-11T21:05:10.6670706Z 2023-01-11T21:05:10.6670826Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.6671028Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.6671174Z extern "C" void kernel(float* __restrict__ in_out_ptr0, 2023-01-11T21:05:10.6671274Z float* __restrict__ in_out_ptr1, 2023-01-11T21:05:10.6671375Z float* __restrict__ in_out_ptr2, 2023-01-11T21:05:10.6671472Z float* __restrict__ in_out_ptr3, 2023-01-11T21:05:10.6671569Z float* __restrict__ in_out_ptr4, 2023-01-11T21:05:10.6671653Z float* __restrict__ in_out_ptr5, 2023-01-11T21:05:10.6671750Z float* __restrict__ in_out_ptr6, 2023-01-11T21:05:10.6671852Z const float* __restrict__ in_ptr0, 2023-01-11T21:05:10.6671948Z float* __restrict__ out_ptr0, 2023-01-11T21:05:10.6672042Z float* __restrict__ out_ptr2, 2023-01-11T21:05:10.6672134Z float* __restrict__ out_ptr4, 2023-01-11T21:05:10.6672225Z float* __restrict__ out_ptr5, 2023-01-11T21:05:10.6672317Z float* __restrict__ out_ptr7, 2023-01-11T21:05:10.6672402Z float* __restrict__ out_ptr10, 2023-01-11T21:05:10.6672524Z float* __restrict__ out_ptr12, 2023-01-11T21:05:10.6672621Z float* __restrict__ out_ptr14) 2023-01-11T21:05:10.6672679Z { 2023-01-11T21:05:10.6672762Z auto out_ptr6 = in_out_ptr0; 2023-01-11T21:05:10.6672843Z auto out_ptr8 = in_out_ptr1; 2023-01-11T21:05:10.6672925Z auto out_ptr11 = in_out_ptr2; 2023-01-11T21:05:10.6672993Z auto out_ptr13 = in_out_ptr3; 2023-01-11T21:05:10.6673074Z auto out_ptr1 = in_out_ptr4; 2023-01-11T21:05:10.6673153Z auto out_ptr3 = in_out_ptr5; 2023-01-11T21:05:10.6673232Z auto out_ptr9 = in_out_ptr6; 2023-01-11T21:05:10.6673291Z { 2023-01-11T21:05:10.6673480Z #pragma omp declare reduction(+:at::vec::Vectorized:omp_out += omp_in) initializer(omp_priv={{0}}) 2023-01-11T21:05:10.6673555Z float tmp1 = 0; 2023-01-11T21:05:10.6673658Z auto tmp1_vec = at::vec::Vectorized(tmp1); 2023-01-11T21:05:10.6673760Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.6673820Z { 2023-01-11T21:05:10.6673928Z #pragma omp for reduction(+:tmp1_vec) 2023-01-11T21:05:10.6674011Z for(long i0=0; i0<16; i0+=1) 2023-01-11T21:05:10.6674074Z { 2023-01-11T21:05:10.6674207Z auto tmp0 = at::vec::Vectorized::loadu(in_ptr0 + 16*i0); 2023-01-11T21:05:10.6674272Z tmp1_vec += tmp0; 2023-01-11T21:05:10.6674334Z } 2023-01-11T21:05:10.6674526Z tmp1 = at::vec::vec_reduce_all([](at::vec::Vectorized& x, at::vec::Vectorized&y) {return x + y;}, tmp1_vec); 2023-01-11T21:05:10.6674647Z #pragma omp for simd simdlen(8) reduction(+:tmp1) 2023-01-11T21:05:10.6674734Z for(long i0=256; i0<256; i0+=1) 2023-01-11T21:05:10.6674795Z { 2023-01-11T21:05:10.6674884Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:05:10.6674957Z tmp1 += tmp0; 2023-01-11T21:05:10.6675006Z } 2023-01-11T21:05:10.6675064Z } 2023-01-11T21:05:10.6675141Z out_ptr0[0] = tmp1; 2023-01-11T21:05:10.6675200Z } 2023-01-11T21:05:10.6675258Z { 2023-01-11T21:05:10.6675441Z #pragma omp declare reduction(+:at::vec::Vectorized:omp_out += omp_in) initializer(omp_priv={{0}}) 2023-01-11T21:05:10.6675514Z float tmp6 = 0; 2023-01-11T21:05:10.6675616Z auto tmp6_vec = at::vec::Vectorized(tmp6); 2023-01-11T21:05:10.6675688Z float tmp7 = 0; 2023-01-11T21:05:10.6675800Z auto tmp7_vec = at::vec::Vectorized(tmp7); 2023-01-11T21:05:10.6675902Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.6675964Z { 2023-01-11T21:05:10.6676093Z #pragma omp for reduction(+:tmp6_vec) reduction(+:tmp7_vec) 2023-01-11T21:05:10.6676178Z for(long i0=0; i0<16; i0+=1) 2023-01-11T21:05:10.6676254Z { 2023-01-11T21:05:10.6676386Z auto tmp0 = at::vec::Vectorized::loadu(in_ptr0 + 16*i0); 2023-01-11T21:05:10.6676511Z auto tmp1 = at::vec::Vectorized(out_ptr0[0]); 2023-01-11T21:05:10.6676645Z auto tmp2 = at::vec::Vectorized(static_cast(256)); 2023-01-11T21:05:10.6676732Z auto tmp3 = tmp1 / tmp2; 2023-01-11T21:05:10.6676866Z auto tmp4 = tmp0 - tmp3; 2023-01-11T21:05:10.6676951Z auto tmp5 = tmp4.pow(2); 2023-01-11T21:05:10.6677029Z tmp6_vec += tmp5; 2023-01-11T21:05:10.6677093Z tmp7_vec += tmp0; 2023-01-11T21:05:10.6677154Z } 2023-01-11T21:05:10.6677398Z tmp6 = at::vec::vec_reduce_all([](at::vec::Vectorized& x, at::vec::Vectorized&y) {return x + y;}, tmp6_vec); 2023-01-11T21:05:10.6677587Z tmp7 = at::vec::vec_reduce_all([](at::vec::Vectorized& x, at::vec::Vectorized&y) {return x + y;}, tmp7_vec); 2023-01-11T21:05:10.6677731Z #pragma omp for simd simdlen(8) reduction(+:tmp6) reduction(+:tmp7) 2023-01-11T21:05:10.6677852Z for(long i0=256; i0<256; i0+=1) 2023-01-11T21:05:10.6677915Z { 2023-01-11T21:05:10.6678000Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:05:10.6678073Z auto tmp1 = out_ptr0[0]; 2023-01-11T21:05:10.6678173Z auto tmp2 = static_cast(256); 2023-01-11T21:05:10.6678258Z auto tmp3 = tmp1 / tmp2; 2023-01-11T21:05:10.6678385Z auto tmp4 = tmp0 - tmp3; 2023-01-11T21:05:10.6678467Z auto tmp5 = tmp4 * tmp4; 2023-01-11T21:05:10.6678540Z tmp6 += tmp5; 2023-01-11T21:05:10.6678612Z tmp7 += tmp0; 2023-01-11T21:05:10.6678663Z } 2023-01-11T21:05:10.6678725Z } 2023-01-11T21:05:10.6678799Z out_ptr1[0] = tmp6; 2023-01-11T21:05:10.6678876Z out_ptr2[0] = tmp7; 2023-01-11T21:05:10.6678937Z } 2023-01-11T21:05:10.6678994Z { 2023-01-11T21:05:10.6679179Z #pragma omp declare reduction(+:at::vec::Vectorized:omp_out += omp_in) initializer(omp_priv={{0}}) 2023-01-11T21:05:10.6679243Z float tmp6 = 0; 2023-01-11T21:05:10.6679358Z auto tmp6_vec = at::vec::Vectorized(tmp6); 2023-01-11T21:05:10.6679430Z float tmp7 = 0; 2023-01-11T21:05:10.6679543Z auto tmp7_vec = at::vec::Vectorized(tmp7); 2023-01-11T21:05:10.6679646Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.6679707Z { 2023-01-11T21:05:10.6679838Z #pragma omp for reduction(+:tmp6_vec) reduction(+:tmp7_vec) 2023-01-11T21:05:10.6679909Z for(long i0=0; i0<16; i0+=1) 2023-01-11T21:05:10.6679971Z { 2023-01-11T21:05:10.6680101Z auto tmp0 = at::vec::Vectorized::loadu(in_ptr0 + 16*i0); 2023-01-11T21:05:10.6680221Z auto tmp1 = at::vec::Vectorized(out_ptr2[0]); 2023-01-11T21:05:10.6680357Z auto tmp2 = at::vec::Vectorized(static_cast(256)); 2023-01-11T21:05:10.6680442Z auto tmp3 = tmp1 / tmp2; 2023-01-11T21:05:10.6680575Z auto tmp4 = tmp0 - tmp3; 2023-01-11T21:05:10.6680792Z auto tmp5 = tmp4.pow(2); 2023-01-11T21:05:10.6680859Z tmp6_vec += tmp5; 2023-01-11T21:05:10.6680935Z tmp7_vec += tmp0; 2023-01-11T21:05:10.6681000Z } 2023-01-11T21:05:10.6681193Z tmp6 = at::vec::vec_reduce_all([](at::vec::Vectorized& x, at::vec::Vectorized&y) {return x + y;}, tmp6_vec); 2023-01-11T21:05:10.6681379Z tmp7 = at::vec::vec_reduce_all([](at::vec::Vectorized& x, at::vec::Vectorized&y) {return x + y;}, tmp7_vec); 2023-01-11T21:05:10.6681519Z #pragma omp for simd simdlen(8) reduction(+:tmp6) reduction(+:tmp7) 2023-01-11T21:05:10.6681612Z for(long i0=256; i0<256; i0+=1) 2023-01-11T21:05:10.6681758Z { 2023-01-11T21:05:10.6681830Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:05:10.6681913Z auto tmp1 = out_ptr2[0]; 2023-01-11T21:05:10.6682017Z auto tmp2 = static_cast(256); 2023-01-11T21:05:10.6682102Z auto tmp3 = tmp1 / tmp2; 2023-01-11T21:05:10.6682232Z auto tmp4 = tmp0 - tmp3; 2023-01-11T21:05:10.6682315Z auto tmp5 = tmp4 * tmp4; 2023-01-11T21:05:10.6682392Z tmp6 += tmp5; 2023-01-11T21:05:10.6682450Z tmp7 += tmp0; 2023-01-11T21:05:10.6682512Z } 2023-01-11T21:05:10.6682575Z } 2023-01-11T21:05:10.6682651Z out_ptr3[0] = tmp6; 2023-01-11T21:05:10.6682724Z out_ptr4[0] = tmp7; 2023-01-11T21:05:10.6682786Z } 2023-01-11T21:05:10.6682868Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.6682929Z { 2023-01-11T21:05:10.6683005Z #pragma omp for 2023-01-11T21:05:10.6683089Z for(long i0=0; i0<32; i0+=1) 2023-01-11T21:05:10.6683151Z { 2023-01-11T21:05:10.6683215Z { 2023-01-11T21:05:10.6683278Z { 2023-01-11T21:05:10.6683344Z float tmp1 = 0; 2023-01-11T21:05:10.6683486Z for(long i1=0; i1<8; i1+=1) 2023-01-11T21:05:10.6683553Z { 2023-01-11T21:05:10.6683620Z { 2023-01-11T21:05:10.6683727Z auto tmp0 = in_ptr0[i1 + (8*i0)]; 2023-01-11T21:05:10.6683807Z tmp1 += tmp0; 2023-01-11T21:05:10.6683872Z } 2023-01-11T21:05:10.6683924Z } 2023-01-11T21:05:10.6684007Z out_ptr5[i0] = tmp1; 2023-01-11T21:05:10.6684069Z } 2023-01-11T21:05:10.6684131Z } 2023-01-11T21:05:10.6684190Z } 2023-01-11T21:05:10.6684264Z #pragma omp for 2023-01-11T21:05:10.6684399Z for(long i0=0; i0<32; i0+=1) 2023-01-11T21:05:10.6684449Z { 2023-01-11T21:05:10.6684510Z { 2023-01-11T21:05:10.6684573Z { 2023-01-11T21:05:10.6684651Z float tmp6 = 0; 2023-01-11T21:05:10.6684731Z float tmp7 = 0; 2023-01-11T21:05:10.6684823Z for(long i1=0; i1<8; i1+=1) 2023-01-11T21:05:10.6684874Z { 2023-01-11T21:05:10.6684942Z { 2023-01-11T21:05:10.6685048Z auto tmp0 = in_ptr0[i1 + (8*i0)]; 2023-01-11T21:05:10.6685145Z auto tmp1 = out_ptr5[i0]; 2023-01-11T21:05:10.6685254Z auto tmp2 = static_cast(8); 2023-01-11T21:05:10.6685349Z auto tmp3 = tmp1 / tmp2; 2023-01-11T21:05:10.6685491Z auto tmp4 = tmp0 - tmp3; 2023-01-11T21:05:10.6685583Z auto tmp5 = tmp4 * tmp4; 2023-01-11T21:05:10.6685650Z tmp6 += tmp5; 2023-01-11T21:05:10.6685732Z tmp7 += tmp0; 2023-01-11T21:05:10.6685798Z } 2023-01-11T21:05:10.6685862Z } 2023-01-11T21:05:10.6685945Z out_ptr6[i0] = tmp6; 2023-01-11T21:05:10.6686028Z out_ptr7[i0] = tmp7; 2023-01-11T21:05:10.6686078Z } 2023-01-11T21:05:10.6686138Z } 2023-01-11T21:05:10.6686197Z } 2023-01-11T21:05:10.6686272Z #pragma omp for 2023-01-11T21:05:10.6686352Z for(long i0=0; i0<2; i0+=1) 2023-01-11T21:05:10.6686413Z { 2023-01-11T21:05:10.6686546Z auto tmp0 = at::vec::Vectorized::loadu(out_ptr6 + 16*i0); 2023-01-11T21:05:10.6686666Z auto tmp1 = at::vec::Vectorized(static_cast(7)); 2023-01-11T21:05:10.6686748Z auto tmp2 = tmp0 / tmp1; 2023-01-11T21:05:10.6686842Z tmp2.store(in_out_ptr0 + 16*i0); 2023-01-11T21:05:10.6686902Z } 2023-01-11T21:05:10.6686994Z #pragma omp for simd simdlen(8) 2023-01-11T21:05:10.6687102Z for(long i0=32; i0<32; i0+=1) 2023-01-11T21:05:10.6687162Z { 2023-01-11T21:05:10.6687232Z auto tmp0 = out_ptr6[i0]; 2023-01-11T21:05:10.6687331Z auto tmp1 = static_cast(7); 2023-01-11T21:05:10.6687412Z auto tmp2 = tmp0 / tmp1; 2023-01-11T21:05:10.6687492Z in_out_ptr0[i0] = tmp2; 2023-01-11T21:05:10.6687552Z } 2023-01-11T21:05:10.6687625Z #pragma omp for 2023-01-11T21:05:10.6687705Z for(long i0=0; i0<32; i0+=1) 2023-01-11T21:05:10.6687753Z { 2023-01-11T21:05:10.6687814Z { 2023-01-11T21:05:10.6687878Z { 2023-01-11T21:05:10.6687954Z float tmp6 = 0; 2023-01-11T21:05:10.6688042Z for(long i1=0; i1<8; i1+=1) 2023-01-11T21:05:10.6688107Z { 2023-01-11T21:05:10.6688172Z { 2023-01-11T21:05:10.6688262Z auto tmp0 = in_ptr0[i1 + (8*i0)]; 2023-01-11T21:05:10.6688361Z auto tmp1 = out_ptr7[i0]; 2023-01-11T21:05:10.6688466Z auto tmp2 = static_cast(8); 2023-01-11T21:05:10.6688592Z auto tmp3 = tmp1 / tmp2; 2023-01-11T21:05:10.6688736Z auto tmp4 = tmp0 - tmp3; 2023-01-11T21:05:10.6688826Z auto tmp5 = tmp4 * tmp4; 2023-01-11T21:05:10.6688905Z tmp6 += tmp5; 2023-01-11T21:05:10.6688959Z } 2023-01-11T21:05:10.6689027Z } 2023-01-11T21:05:10.6689110Z out_ptr8[i0] = tmp6; 2023-01-11T21:05:10.6689172Z } 2023-01-11T21:05:10.6689233Z } 2023-01-11T21:05:10.6689294Z } 2023-01-11T21:05:10.6689366Z #pragma omp for 2023-01-11T21:05:10.6689431Z for(long i0=0; i0<2; i0+=1) 2023-01-11T21:05:10.6689492Z { 2023-01-11T21:05:10.6689628Z auto tmp0 = at::vec::Vectorized::loadu(out_ptr8 + 16*i0); 2023-01-11T21:05:10.6689760Z auto tmp1 = at::vec::Vectorized(static_cast(8)); 2023-01-11T21:05:10.6689843Z auto tmp2 = tmp0 / tmp1; 2023-01-11T21:05:10.6689940Z tmp2.store(in_out_ptr1 + 16*i0); 2023-01-11T21:05:10.6690000Z } 2023-01-11T21:05:10.6690079Z #pragma omp for simd simdlen(8) 2023-01-11T21:05:10.6690158Z for(long i0=32; i0<32; i0+=1) 2023-01-11T21:05:10.6690218Z { 2023-01-11T21:05:10.6690300Z auto tmp0 = out_ptr8[i0]; 2023-01-11T21:05:10.6690394Z auto tmp1 = static_cast(8); 2023-01-11T21:05:10.6690476Z auto tmp2 = tmp0 / tmp1; 2023-01-11T21:05:10.6690556Z in_out_ptr1[i0] = tmp2; 2023-01-11T21:05:10.6690604Z } 2023-01-11T21:05:10.6690663Z } 2023-01-11T21:05:10.6690721Z { 2023-01-11T21:05:10.6690904Z #pragma omp declare reduction(+:at::vec::Vectorized:omp_out += omp_in) initializer(omp_priv={{0}}) 2023-01-11T21:05:10.6690979Z float tmp6 = 0; 2023-01-11T21:05:10.6691094Z auto tmp6_vec = at::vec::Vectorized(tmp6); 2023-01-11T21:05:10.6691195Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.6691244Z { 2023-01-11T21:05:10.6691348Z #pragma omp for reduction(+:tmp6_vec) 2023-01-11T21:05:10.6691431Z for(long i0=0; i0<16; i0+=1) 2023-01-11T21:05:10.6691494Z { 2023-01-11T21:05:10.6691628Z auto tmp0 = at::vec::Vectorized::loadu(in_ptr0 + 16*i0); 2023-01-11T21:05:10.6691751Z auto tmp1 = at::vec::Vectorized(out_ptr4[0]); 2023-01-11T21:05:10.6691885Z auto tmp2 = at::vec::Vectorized(static_cast(256)); 2023-01-11T21:05:10.6691972Z auto tmp3 = tmp1 / tmp2; 2023-01-11T21:05:10.6692086Z auto tmp4 = tmp0 - tmp3; 2023-01-11T21:05:10.6692172Z auto tmp5 = tmp4.pow(2); 2023-01-11T21:05:10.6692252Z tmp6_vec += tmp5; 2023-01-11T21:05:10.6692362Z } 2023-01-11T21:05:10.6692555Z tmp6 = at::vec::vec_reduce_all([](at::vec::Vectorized& x, at::vec::Vectorized&y) {return x + y;}, tmp6_vec); 2023-01-11T21:05:10.6692679Z #pragma omp for simd simdlen(8) reduction(+:tmp6) 2023-01-11T21:05:10.6692768Z for(long i0=256; i0<256; i0+=1) 2023-01-11T21:05:10.6692818Z { 2023-01-11T21:05:10.6692902Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:05:10.6692986Z auto tmp1 = out_ptr4[0]; 2023-01-11T21:05:10.6693087Z auto tmp2 = static_cast(256); 2023-01-11T21:05:10.6693172Z auto tmp3 = tmp1 / tmp2; 2023-01-11T21:05:10.6693299Z auto tmp4 = tmp0 - tmp3; 2023-01-11T21:05:10.6693386Z auto tmp5 = tmp4 * tmp4; 2023-01-11T21:05:10.6693447Z tmp6 += tmp5; 2023-01-11T21:05:10.6693511Z } 2023-01-11T21:05:10.6693572Z } 2023-01-11T21:05:10.6693651Z out_ptr9[0] = tmp6; 2023-01-11T21:05:10.6693713Z } 2023-01-11T21:05:10.6693810Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.6693870Z { 2023-01-11T21:05:10.6693931Z #pragma omp for 2023-01-11T21:05:10.6694040Z for(long i0=0; i0<32; i0+=1) 2023-01-11T21:05:10.6694103Z { 2023-01-11T21:05:10.6694164Z { 2023-01-11T21:05:10.6694229Z { 2023-01-11T21:05:10.6694308Z float tmp1 = 0; 2023-01-11T21:05:10.6694399Z for(long i1=0; i1<8; i1+=1) 2023-01-11T21:05:10.6694452Z { 2023-01-11T21:05:10.6694519Z { 2023-01-11T21:05:10.6694622Z auto tmp0 = in_ptr0[i0 + (32*i1)]; 2023-01-11T21:05:10.6694703Z tmp1 += tmp0; 2023-01-11T21:05:10.6694772Z } 2023-01-11T21:05:10.6694835Z } 2023-01-11T21:05:10.6694918Z out_ptr10[i0] = tmp1; 2023-01-11T21:05:10.6694971Z } 2023-01-11T21:05:10.6695034Z } 2023-01-11T21:05:10.6695095Z } 2023-01-11T21:05:10.6695170Z #pragma omp for 2023-01-11T21:05:10.6695253Z for(long i0=0; i0<32; i0+=1) 2023-01-11T21:05:10.6695316Z { 2023-01-11T21:05:10.6695365Z { 2023-01-11T21:05:10.6695427Z { 2023-01-11T21:05:10.6695505Z float tmp6 = 0; 2023-01-11T21:05:10.6695583Z float tmp7 = 0; 2023-01-11T21:05:10.6695674Z for(long i1=0; i1<8; i1+=1) 2023-01-11T21:05:10.6695739Z { 2023-01-11T21:05:10.6695805Z { 2023-01-11T21:05:10.6695894Z auto tmp0 = in_ptr0[i0 + (32*i1)]; 2023-01-11T21:05:10.6695993Z auto tmp1 = out_ptr10[i0]; 2023-01-11T21:05:10.6696097Z auto tmp2 = static_cast(8); 2023-01-11T21:05:10.6696191Z auto tmp3 = tmp1 / tmp2; 2023-01-11T21:05:10.6696334Z auto tmp4 = tmp0 - tmp3; 2023-01-11T21:05:10.6696427Z auto tmp5 = tmp4 * tmp4; 2023-01-11T21:05:10.6696508Z tmp6 += tmp5; 2023-01-11T21:05:10.6696576Z tmp7 += tmp0; 2023-01-11T21:05:10.6696642Z } 2023-01-11T21:05:10.6696706Z } 2023-01-11T21:05:10.6696787Z out_ptr11[i0] = tmp6; 2023-01-11T21:05:10.6696866Z out_ptr12[i0] = tmp7; 2023-01-11T21:05:10.6696928Z } 2023-01-11T21:05:10.6696990Z } 2023-01-11T21:05:10.6697037Z } 2023-01-11T21:05:10.6697111Z #pragma omp for 2023-01-11T21:05:10.6697189Z for(long i0=0; i0<2; i0+=1) 2023-01-11T21:05:10.6697249Z { 2023-01-11T21:05:10.6697382Z auto tmp0 = at::vec::Vectorized::loadu(out_ptr11 + 16*i0); 2023-01-11T21:05:10.6697513Z auto tmp1 = at::vec::Vectorized(static_cast(7)); 2023-01-11T21:05:10.6697628Z auto tmp2 = tmp0 / tmp1; 2023-01-11T21:05:10.6697697Z auto tmp3 = tmp2.sqrt(); 2023-01-11T21:05:10.6697793Z tmp3.store(in_out_ptr2 + 16*i0); 2023-01-11T21:05:10.6697853Z } 2023-01-11T21:05:10.6697946Z #pragma omp for simd simdlen(8) 2023-01-11T21:05:10.6698026Z for(long i0=32; i0<32; i0+=1) 2023-01-11T21:05:10.6698086Z { 2023-01-11T21:05:10.6698169Z auto tmp0 = out_ptr11[i0]; 2023-01-11T21:05:10.6698254Z auto tmp1 = static_cast(7); 2023-01-11T21:05:10.6698336Z auto tmp2 = tmp0 / tmp1; 2023-01-11T21:05:10.6698425Z auto tmp3 = std::sqrt(tmp2); 2023-01-11T21:05:10.6698599Z in_out_ptr2[i0] = tmp3; 2023-01-11T21:05:10.6698666Z } 2023-01-11T21:05:10.6698741Z #pragma omp for 2023-01-11T21:05:10.6698820Z for(long i0=0; i0<32; i0+=1) 2023-01-11T21:05:10.6698868Z { 2023-01-11T21:05:10.6698933Z { 2023-01-11T21:05:10.6698998Z { 2023-01-11T21:05:10.6699079Z float tmp6 = 0; 2023-01-11T21:05:10.6699169Z for(long i1=0; i1<8; i1+=1) 2023-01-11T21:05:10.6699275Z { 2023-01-11T21:05:10.6699344Z { 2023-01-11T21:05:10.6699434Z auto tmp0 = in_ptr0[i0 + (32*i1)]; 2023-01-11T21:05:10.6699534Z auto tmp1 = out_ptr12[i0]; 2023-01-11T21:05:10.6699637Z auto tmp2 = static_cast(8); 2023-01-11T21:05:10.6699732Z auto tmp3 = tmp1 / tmp2; 2023-01-11T21:05:10.6699876Z auto tmp4 = tmp0 - tmp3; 2023-01-11T21:05:10.6699967Z auto tmp5 = tmp4 * tmp4; 2023-01-11T21:05:10.6700046Z tmp6 += tmp5; 2023-01-11T21:05:10.6700101Z } 2023-01-11T21:05:10.6700166Z } 2023-01-11T21:05:10.6700249Z out_ptr13[i0] = tmp6; 2023-01-11T21:05:10.6700312Z } 2023-01-11T21:05:10.6700373Z } 2023-01-11T21:05:10.6700433Z } 2023-01-11T21:05:10.6700506Z #pragma omp for 2023-01-11T21:05:10.6700574Z for(long i0=0; i0<2; i0+=1) 2023-01-11T21:05:10.6700633Z { 2023-01-11T21:05:10.6700767Z auto tmp0 = at::vec::Vectorized::loadu(out_ptr13 + 16*i0); 2023-01-11T21:05:10.6700900Z auto tmp1 = at::vec::Vectorized(static_cast(8)); 2023-01-11T21:05:10.6700982Z auto tmp2 = tmp0 / tmp1; 2023-01-11T21:05:10.6701063Z auto tmp3 = tmp2.sqrt(); 2023-01-11T21:05:10.6701158Z tmp3.store(in_out_ptr3 + 16*i0); 2023-01-11T21:05:10.6701205Z } 2023-01-11T21:05:10.6701297Z #pragma omp for simd simdlen(8) 2023-01-11T21:05:10.6701376Z for(long i0=32; i0<32; i0+=1) 2023-01-11T21:05:10.6701435Z { 2023-01-11T21:05:10.6701520Z auto tmp0 = out_ptr13[i0]; 2023-01-11T21:05:10.6701619Z auto tmp1 = static_cast(8); 2023-01-11T21:05:10.6701700Z auto tmp2 = tmp0 / tmp1; 2023-01-11T21:05:10.6701777Z auto tmp3 = std::sqrt(tmp2); 2023-01-11T21:05:10.6701858Z in_out_ptr3[i0] = tmp3; 2023-01-11T21:05:10.6701918Z } 2023-01-11T21:05:10.6701992Z #pragma omp for 2023-01-11T21:05:10.6702069Z for(long i0=0; i0<8; i0+=1) 2023-01-11T21:05:10.6702128Z { 2023-01-11T21:05:10.6702205Z #pragma GCC ivdep 2023-01-11T21:05:10.6702272Z for(long i1=0; i1<8; i1+=1) 2023-01-11T21:05:10.6702334Z { 2023-01-11T21:05:10.6702395Z { 2023-01-11T21:05:10.6702460Z { 2023-01-11T21:05:10.6702562Z auto tmp0 = in_ptr0[i1 + (32*i0)]; 2023-01-11T21:05:10.6702697Z auto tmp1 = in_ptr0[8 + i1 + (32*i0)]; 2023-01-11T21:05:10.6702831Z auto tmp3 = in_ptr0[16 + i1 + (32*i0)]; 2023-01-11T21:05:10.6703016Z auto tmp5 = in_ptr0[24 + i1 + (32*i0)]; 2023-01-11T21:05:10.6703111Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:05:10.6703208Z auto tmp4 = tmp2 + tmp3; 2023-01-11T21:05:10.6703301Z auto tmp6 = tmp4 + tmp5; 2023-01-11T21:05:10.6703407Z auto tmp7 = static_cast(4); 2023-01-11T21:05:10.6703498Z auto tmp8 = tmp6 / tmp7; 2023-01-11T21:05:10.6703640Z auto tmp9 = tmp0 - tmp8; 2023-01-11T21:05:10.6703721Z auto tmp10 = tmp9 * tmp9; 2023-01-11T21:05:10.6703860Z auto tmp11 = tmp1 - tmp8; 2023-01-11T21:05:10.6703959Z auto tmp12 = tmp11 * tmp11; 2023-01-11T21:05:10.6704051Z auto tmp13 = tmp10 + tmp12; 2023-01-11T21:05:10.6704192Z auto tmp14 = tmp3 - tmp8; 2023-01-11T21:05:10.6704286Z auto tmp15 = tmp14 * tmp14; 2023-01-11T21:05:10.6704380Z auto tmp16 = tmp13 + tmp15; 2023-01-11T21:05:10.6704505Z auto tmp17 = tmp5 - tmp8; 2023-01-11T21:05:10.6704634Z auto tmp18 = tmp17 * tmp17; 2023-01-11T21:05:10.6704729Z auto tmp19 = tmp16 + tmp18; 2023-01-11T21:05:10.6704833Z auto tmp20 = static_cast(3); 2023-01-11T21:05:10.6704925Z auto tmp21 = tmp19 / tmp20; 2023-01-11T21:05:10.6705027Z auto tmp22 = std::sqrt(tmp21); 2023-01-11T21:05:10.6705122Z out_ptr14[i1 + (8*i0)] = tmp22; 2023-01-11T21:05:10.6705175Z } 2023-01-11T21:05:10.6705237Z } 2023-01-11T21:05:10.6705298Z } 2023-01-11T21:05:10.6705359Z } 2023-01-11T21:05:10.6705436Z #pragma omp single 2023-01-11T21:05:10.6705497Z { 2023-01-11T21:05:10.6705558Z { 2023-01-11T21:05:10.6705609Z { 2023-01-11T21:05:10.6705701Z auto tmp0 = out_ptr1[0]; 2023-01-11T21:05:10.6705803Z auto tmp1 = static_cast(255); 2023-01-11T21:05:10.6705895Z auto tmp2 = tmp0 / tmp1; 2023-01-11T21:05:10.6705980Z in_out_ptr4[0] = tmp2; 2023-01-11T21:05:10.6706044Z } 2023-01-11T21:05:10.6706107Z } 2023-01-11T21:05:10.6706154Z } 2023-01-11T21:05:10.6706233Z #pragma omp single 2023-01-11T21:05:10.6706295Z { 2023-01-11T21:05:10.6706359Z { 2023-01-11T21:05:10.6706423Z { 2023-01-11T21:05:10.6706511Z auto tmp0 = out_ptr3[0]; 2023-01-11T21:05:10.6706615Z auto tmp1 = static_cast(256); 2023-01-11T21:05:10.6706691Z auto tmp2 = tmp0 / tmp1; 2023-01-11T21:05:10.6706778Z in_out_ptr5[0] = tmp2; 2023-01-11T21:05:10.6706840Z } 2023-01-11T21:05:10.6706903Z } 2023-01-11T21:05:10.6706963Z } 2023-01-11T21:05:10.6707039Z #pragma omp single 2023-01-11T21:05:10.6707087Z { 2023-01-11T21:05:10.6707148Z { 2023-01-11T21:05:10.6707213Z { 2023-01-11T21:05:10.6707301Z auto tmp0 = out_ptr9[0]; 2023-01-11T21:05:10.6707406Z auto tmp1 = static_cast(256); 2023-01-11T21:05:10.6707493Z auto tmp2 = tmp0 / tmp1; 2023-01-11T21:05:10.6707589Z auto tmp3 = std::sqrt(tmp2); 2023-01-11T21:05:10.6707661Z in_out_ptr6[0] = tmp3; 2023-01-11T21:05:10.6707724Z } 2023-01-11T21:05:10.6707784Z } 2023-01-11T21:05:10.6707844Z } 2023-01-11T21:05:10.6707903Z } 2023-01-11T21:05:10.6707961Z } 2023-01-11T21:05:10.6708038Z ''') 2023-01-11T21:05:10.6708044Z 2023-01-11T21:05:10.6708048Z 2023-01-11T21:05:10.6708126Z async_compile.wait(globals()) 2023-01-11T21:05:10.6708228Z del async_compile 2023-01-11T21:05:10.6708233Z 2023-01-11T21:05:10.6708301Z def call(args): 2023-01-11T21:05:10.6708367Z arg0_1, = args 2023-01-11T21:05:10.6708437Z args.clear() 2023-01-11T21:05:10.6708650Z buf0 = empty_strided((1, 1, 1, 1), (1, 1, 1, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6708833Z buf1 = empty_strided((), (), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6709024Z buf2 = empty_strided((1, 1, 1, 1), (1, 1, 1, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6709206Z buf3 = empty_strided((), (), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6709412Z buf10 = empty_strided((1, 1, 1, 1), (1, 1, 1, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6709621Z buf4 = empty_strided((2, 4, 4, 1), (16, 4, 1, 32), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6709819Z buf5 = empty_strided((2, 4, 4), (16, 4, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6710024Z buf7 = empty_strided((2, 4, 4, 1), (16, 4, 1, 32), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6710111Z buf6 = buf5; del buf5 # reuse 2023-01-11T21:05:10.6710310Z buf8 = empty_strided((2, 4, 4), (16, 4, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6710406Z buf9 = buf8; del buf8 # reuse 2023-01-11T21:05:10.6710588Z buf11 = empty_strided((), (), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6710794Z buf12 = empty_strided((1, 1, 4, 8), (32, 32, 8, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6710985Z buf13 = empty_strided((4, 8), (8, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6711187Z buf15 = empty_strided((1, 1, 4, 8), (32, 32, 8, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6711271Z buf14 = buf13; del buf13 # reuse 2023-01-11T21:05:10.6711459Z buf16 = empty_strided((4, 8), (8, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6711540Z buf17 = buf16; del buf16 # reuse 2023-01-11T21:05:10.6711731Z buf18 = empty_strided((2, 4, 1, 8), (32, 8, 8, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6711817Z buf19 = buf1; del buf1 # reuse 2023-01-11T21:05:10.6711897Z buf20 = buf3; del buf3 # reuse 2023-01-11T21:05:10.6711982Z buf21 = buf11; del buf11 # reuse 2023-01-11T21:05:10.6712449Z kernel_cpp_0(c_void_p(buf6.data_ptr()), c_void_p(buf9.data_ptr()), c_void_p(buf14.data_ptr()), c_void_p(buf17.data_ptr()), c_void_p(buf19.data_ptr()), c_void_p(buf20.data_ptr()), c_void_p(buf21.data_ptr()), c_void_p(arg0_1.data_ptr()), c_void_p(buf0.data_ptr()), c_void_p(buf2.data_ptr()), c_void_p(buf10.data_ptr()), c_void_p(buf4.data_ptr()), c_void_p(buf7.data_ptr()), c_void_p(buf12.data_ptr()), c_void_p(buf15.data_ptr()), c_void_p(buf18.data_ptr())) 2023-01-11T21:05:10.6712517Z del arg0_1 2023-01-11T21:05:10.6712636Z return (buf19, buf20, buf6, buf9, buf21, buf14, buf17, buf18, ) 2023-01-11T21:05:10.6712641Z 2023-01-11T21:05:10.6712645Z 2023-01-11T21:05:10.6712720Z if __name__ == "__main__": 2023-01-11T21:05:10.6712836Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.6712946Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.6713160Z arg0_1 = rand_strided((2, 4, 4, 8), (128, 32, 8, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6713268Z print_performance(lambda: call([arg0_1])) 2023-01-11T21:05:10.6713618Z [2023-01-11 21:00:11,449] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 423 2023-01-11T21:05:10.6713627Z 2023-01-11T21:05:10.6713713Z ok (3.380s) 2023-01-11T21:05:10.6714120Z test_strided_inputs_cpu (__main__.CpuTests) ... [2023-01-11 21:00:11,485] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 424 2023-01-11T21:05:10.6714385Z [2023-01-11 21:00:14,113] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 424 2023-01-11T21:05:10.6714391Z 2023-01-11T21:05:10.6714484Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.6714593Z import torch 2023-01-11T21:05:10.6714649Z import random 2023-01-11T21:05:10.6714763Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.6714882Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.6714889Z 2023-01-11T21:05:10.6714966Z aten = torch.ops.aten 2023-01-11T21:05:10.6715100Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.6715190Z async_compile = AsyncCompile() 2023-01-11T21:05:10.6715196Z 2023-01-11T21:05:10.6715200Z 2023-01-11T21:05:10.6715332Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.6715534Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.6715641Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:05:10.6715742Z const float* __restrict__ in_ptr1, 2023-01-11T21:05:10.6715840Z float* __restrict__ out_ptr0) 2023-01-11T21:05:10.6715901Z { 2023-01-11T21:05:10.6715999Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.6716058Z { 2023-01-11T21:05:10.6716133Z #pragma omp for 2023-01-11T21:05:10.6716202Z for(long i0=0; i0<128; i0+=1) 2023-01-11T21:05:10.6716266Z { 2023-01-11T21:05:10.6716357Z { 2023-01-11T21:05:10.6716421Z { 2023-01-11T21:05:10.6716514Z auto tmp0 = in_ptr0[2*i0]; 2023-01-11T21:05:10.6716604Z auto tmp1 = in_ptr1[i0]; 2023-01-11T21:05:10.6716694Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:05:10.6716765Z out_ptr0[i0] = tmp2; 2023-01-11T21:05:10.6716827Z } 2023-01-11T21:05:10.6716888Z } 2023-01-11T21:05:10.6716949Z } 2023-01-11T21:05:10.6717008Z } 2023-01-11T21:05:10.6717066Z } 2023-01-11T21:05:10.6717130Z ''') 2023-01-11T21:05:10.6717135Z 2023-01-11T21:05:10.6717151Z 2023-01-11T21:05:10.6717227Z async_compile.wait(globals()) 2023-01-11T21:05:10.6717297Z del async_compile 2023-01-11T21:05:10.6717304Z 2023-01-11T21:05:10.6717372Z def call(args): 2023-01-11T21:05:10.6717446Z arg0_1, arg1_1 = args 2023-01-11T21:05:10.6717515Z args.clear() 2023-01-11T21:05:10.6717714Z buf0 = empty_strided((8, 16), (16, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6717876Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(arg1_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:05:10.6717930Z del arg0_1 2023-01-11T21:05:10.6717994Z del arg1_1 2023-01-11T21:05:10.6718064Z return (buf0, ) 2023-01-11T21:05:10.6718069Z 2023-01-11T21:05:10.6718073Z 2023-01-11T21:05:10.6718147Z if __name__ == "__main__": 2023-01-11T21:05:10.6718259Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.6718381Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.6718578Z arg0_1 = rand_strided((8, 16), (32, 2), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6718775Z arg1_1 = rand_strided((8, 16), (16, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6718880Z print_performance(lambda: call([arg0_1, arg1_1])) 2023-01-11T21:05:10.6718885Z 2023-01-11T21:05:10.6718949Z ok (2.655s) 2023-01-11T21:05:10.6719382Z test_sum1_cpu (__main__.CpuTests) ... inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.6719509Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.6719766Z [2023-01-11 21:00:14,155] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 425 2023-01-11T21:05:10.6720026Z [2023-01-11 21:00:16,815] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 425 2023-01-11T21:05:10.6720031Z 2023-01-11T21:05:10.6720122Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.6720219Z import torch 2023-01-11T21:05:10.6720286Z import random 2023-01-11T21:05:10.6720387Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.6720507Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.6720512Z 2023-01-11T21:05:10.6720760Z aten = torch.ops.aten 2023-01-11T21:05:10.6720898Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.6720988Z async_compile = AsyncCompile() 2023-01-11T21:05:10.6720992Z 2023-01-11T21:05:10.6720996Z 2023-01-11T21:05:10.6721132Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.6721340Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.6721459Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:05:10.6721548Z const float* __restrict__ in_ptr1, 2023-01-11T21:05:10.6721648Z float* __restrict__ out_ptr0) 2023-01-11T21:05:10.6721713Z { 2023-01-11T21:05:10.6721811Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.6721873Z { 2023-01-11T21:05:10.6721949Z #pragma omp for 2023-01-11T21:05:10.6722029Z for(long i0=0; i0<8; i0+=1) 2023-01-11T21:05:10.6722147Z { 2023-01-11T21:05:10.6722213Z { 2023-01-11T21:05:10.6722278Z { 2023-01-11T21:05:10.6722358Z float tmp3 = 0; 2023-01-11T21:05:10.6722450Z for(long i1=0; i1<8; i1+=1) 2023-01-11T21:05:10.6722516Z { 2023-01-11T21:05:10.6722570Z { 2023-01-11T21:05:10.6722676Z auto tmp0 = in_ptr0[i1 + (8*i0)]; 2023-01-11T21:05:10.6722779Z auto tmp1 = in_ptr1[i1 + (8*i0)]; 2023-01-11T21:05:10.6722874Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:05:10.6722957Z tmp3 += tmp2; 2023-01-11T21:05:10.6723025Z } 2023-01-11T21:05:10.6723094Z } 2023-01-11T21:05:10.6723164Z out_ptr0[i0] = tmp3; 2023-01-11T21:05:10.6723228Z } 2023-01-11T21:05:10.6723290Z } 2023-01-11T21:05:10.6723352Z } 2023-01-11T21:05:10.6723415Z } 2023-01-11T21:05:10.6723476Z } 2023-01-11T21:05:10.6723553Z ''') 2023-01-11T21:05:10.6723559Z 2023-01-11T21:05:10.6723563Z 2023-01-11T21:05:10.6723638Z async_compile.wait(globals()) 2023-01-11T21:05:10.6723709Z del async_compile 2023-01-11T21:05:10.6723714Z 2023-01-11T21:05:10.6723783Z def call(args): 2023-01-11T21:05:10.6723855Z arg0_1, arg1_1 = args 2023-01-11T21:05:10.6723925Z args.clear() 2023-01-11T21:05:10.6724118Z buf0 = empty_strided((8, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6724279Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(arg1_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:05:10.6724350Z del arg0_1 2023-01-11T21:05:10.6724402Z del arg1_1 2023-01-11T21:05:10.6724474Z return (buf0, ) 2023-01-11T21:05:10.6724479Z 2023-01-11T21:05:10.6724483Z 2023-01-11T21:05:10.6724557Z if __name__ == "__main__": 2023-01-11T21:05:10.6724671Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.6724796Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.6724991Z arg0_1 = rand_strided((8, 8), (8, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6725184Z arg1_1 = rand_strided((8, 8), (8, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6725286Z print_performance(lambda: call([arg0_1, arg1_1])) 2023-01-11T21:05:10.6725303Z 2023-01-11T21:05:10.6725355Z ok (2.705s) 2023-01-11T21:05:10.6725788Z test_sum2_cpu (__main__.CpuTests) ... inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.6725958Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.6726221Z [2023-01-11 21:00:16,892] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 426 2023-01-11T21:05:10.6726483Z [2023-01-11 21:00:19,579] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 426 2023-01-11T21:05:10.6726487Z 2023-01-11T21:05:10.6726580Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.6726650Z import torch 2023-01-11T21:05:10.6726719Z import random 2023-01-11T21:05:10.6726833Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.6726939Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.6726944Z 2023-01-11T21:05:10.6727020Z aten = torch.ops.aten 2023-01-11T21:05:10.6727151Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.6727240Z async_compile = AsyncCompile() 2023-01-11T21:05:10.6727248Z 2023-01-11T21:05:10.6727252Z 2023-01-11T21:05:10.6727383Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.6727586Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.6727730Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:05:10.6727835Z const float* __restrict__ in_ptr1, 2023-01-11T21:05:10.6727919Z float* __restrict__ out_ptr0, 2023-01-11T21:05:10.6728012Z float* __restrict__ out_ptr1) 2023-01-11T21:05:10.6728072Z { 2023-01-11T21:05:10.6728168Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.6728232Z { 2023-01-11T21:05:10.6728307Z #pragma omp for 2023-01-11T21:05:10.6728386Z for(long i0=0; i0<8; i0+=1) 2023-01-11T21:05:10.6728434Z { 2023-01-11T21:05:10.6728512Z #pragma GCC ivdep 2023-01-11T21:05:10.6728597Z for(long i1=0; i1<21; i1+=1) 2023-01-11T21:05:10.6728659Z { 2023-01-11T21:05:10.6728723Z { 2023-01-11T21:05:10.6728788Z { 2023-01-11T21:05:10.6728855Z float tmp3 = 0; 2023-01-11T21:05:10.6728949Z for(long i2=0; i2<27; i2+=1) 2023-01-11T21:05:10.6729016Z { 2023-01-11T21:05:10.6729084Z { 2023-01-11T21:05:10.6729197Z auto tmp0 = in_ptr0[i1 + (21*i2) + (567*i0)]; 2023-01-11T21:05:10.6729306Z auto tmp1 = in_ptr1[i1 + (21*i2) + (567*i0)]; 2023-01-11T21:05:10.6729405Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:05:10.6729490Z tmp3 += tmp2; 2023-01-11T21:05:10.6729545Z } 2023-01-11T21:05:10.6729610Z } 2023-01-11T21:05:10.6729704Z out_ptr0[i1 + (21*i0)] = tmp3; 2023-01-11T21:05:10.6729769Z } 2023-01-11T21:05:10.6729832Z } 2023-01-11T21:05:10.6729896Z } 2023-01-11T21:05:10.6729944Z } 2023-01-11T21:05:10.6730020Z #pragma omp for 2023-01-11T21:05:10.6730100Z for(long i0=0; i0<216; i0+=1) 2023-01-11T21:05:10.6730163Z { 2023-01-11T21:05:10.6730225Z { 2023-01-11T21:05:10.6730416Z #pragma omp declare reduction(+:at::vec::Vectorized:omp_out += omp_in) initializer(omp_priv={{0}}) 2023-01-11T21:05:10.6730492Z float tmp3 = 0; 2023-01-11T21:05:10.6730610Z auto tmp3_vec = at::vec::Vectorized(tmp3); 2023-01-11T21:05:10.6730686Z for(long i1=0; i1<1; i1+=1) 2023-01-11T21:05:10.6730749Z { 2023-01-11T21:05:10.6730890Z auto tmp0 = at::vec::Vectorized::loadu(in_ptr0 + (16*i1) + (21*i0)); 2023-01-11T21:05:10.6731030Z auto tmp1 = at::vec::Vectorized::loadu(in_ptr1 + (16*i1) + (21*i0)); 2023-01-11T21:05:10.6731121Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:05:10.6731229Z tmp3_vec += tmp2; 2023-01-11T21:05:10.6731293Z } 2023-01-11T21:05:10.6731491Z tmp3 = at::vec::vec_reduce_all([](at::vec::Vectorized& x, at::vec::Vectorized&y) {return x + y;}, tmp3_vec); 2023-01-11T21:05:10.6731597Z #pragma omp simd simdlen(8) reduction(+:tmp3) 2023-01-11T21:05:10.6731685Z for(long i1=16; i1<21; i1+=1) 2023-01-11T21:05:10.6731748Z { 2023-01-11T21:05:10.6731846Z auto tmp0 = in_ptr0[i1 + (21*i0)]; 2023-01-11T21:05:10.6731943Z auto tmp1 = in_ptr1[i1 + (21*i0)]; 2023-01-11T21:05:10.6732032Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:05:10.6732107Z tmp3 += tmp2; 2023-01-11T21:05:10.6732158Z } 2023-01-11T21:05:10.6732238Z out_ptr1[i0] = tmp3; 2023-01-11T21:05:10.6732299Z } 2023-01-11T21:05:10.6732358Z } 2023-01-11T21:05:10.6732421Z } 2023-01-11T21:05:10.6732479Z } 2023-01-11T21:05:10.6732545Z ''') 2023-01-11T21:05:10.6732555Z 2023-01-11T21:05:10.6732559Z 2023-01-11T21:05:10.6737468Z async_compile.wait(globals()) 2023-01-11T21:05:10.6737628Z del async_compile 2023-01-11T21:05:10.6737635Z 2023-01-11T21:05:10.6737707Z def call(args): 2023-01-11T21:05:10.6737784Z arg0_1, arg1_1 = args 2023-01-11T21:05:10.6737854Z args.clear() 2023-01-11T21:05:10.6738064Z buf0 = empty_strided((8, 21), (21, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6738271Z buf1 = empty_strided((8, 9, 3), (27, 3, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6738553Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(arg1_1.data_ptr()), c_void_p(buf0.data_ptr()), c_void_p(buf1.data_ptr())) 2023-01-11T21:05:10.6738627Z del arg0_1 2023-01-11T21:05:10.6738691Z del arg1_1 2023-01-11T21:05:10.6738766Z return (buf0, buf1, ) 2023-01-11T21:05:10.6738773Z 2023-01-11T21:05:10.6738782Z 2023-01-11T21:05:10.6738857Z if __name__ == "__main__": 2023-01-11T21:05:10.6738971Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.6739083Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.6739303Z arg0_1 = rand_strided((8, 9, 3, 21), (567, 63, 21, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6739515Z arg1_1 = rand_strided((8, 9, 3, 21), (567, 63, 21, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6739630Z print_performance(lambda: call([arg0_1, arg1_1])) 2023-01-11T21:05:10.6739635Z 2023-01-11T21:05:10.6739700Z ok (2.769s) 2023-01-11T21:05:10.6740135Z test_sum3_cpu (__main__.CpuTests) ... inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.6740263Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.6740525Z [2023-01-11 21:00:19,631] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 427 2023-01-11T21:05:10.6740793Z [2023-01-11 21:00:22,281] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 427 2023-01-11T21:05:10.6740799Z 2023-01-11T21:05:10.6740893Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.6740949Z import torch 2023-01-11T21:05:10.6741017Z import random 2023-01-11T21:05:10.6741136Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.6741255Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.6741262Z 2023-01-11T21:05:10.6741337Z aten = torch.ops.aten 2023-01-11T21:05:10.6741470Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.6741559Z async_compile = AsyncCompile() 2023-01-11T21:05:10.6741564Z 2023-01-11T21:05:10.6741568Z 2023-01-11T21:05:10.6741737Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.6741938Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.6742058Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:05:10.6742160Z const float* __restrict__ in_ptr1, 2023-01-11T21:05:10.6742257Z float* __restrict__ out_ptr0, 2023-01-11T21:05:10.6742351Z float* __restrict__ out_ptr1, 2023-01-11T21:05:10.6742442Z float* __restrict__ out_ptr2) 2023-01-11T21:05:10.6742500Z { 2023-01-11T21:05:10.6742584Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.6742644Z { 2023-01-11T21:05:10.6742720Z #pragma omp for 2023-01-11T21:05:10.6742802Z for(long i0=0; i0<10; i0+=1) 2023-01-11T21:05:10.6742864Z { 2023-01-11T21:05:10.6742926Z { 2023-01-11T21:05:10.6742975Z { 2023-01-11T21:05:10.6743053Z float tmp3 = 0; 2023-01-11T21:05:10.6743146Z for(long i1=0; i1<10; i1+=1) 2023-01-11T21:05:10.6743211Z { 2023-01-11T21:05:10.6743277Z { 2023-01-11T21:05:10.6743401Z auto tmp0 = in_ptr0[i1 + (10*i0)]; 2023-01-11T21:05:10.6743502Z auto tmp1 = in_ptr1[i1]; 2023-01-11T21:05:10.6743596Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:05:10.6743692Z out_ptr0[i1 + (10*i0)] = tmp2; 2023-01-11T21:05:10.6743761Z tmp3 += tmp2; 2023-01-11T21:05:10.6743828Z } 2023-01-11T21:05:10.6743892Z } 2023-01-11T21:05:10.6743975Z out_ptr1[i0] = tmp3; 2023-01-11T21:05:10.6744039Z } 2023-01-11T21:05:10.6744099Z } 2023-01-11T21:05:10.6744159Z } 2023-01-11T21:05:10.6744221Z #pragma omp for 2023-01-11T21:05:10.6744300Z for(long i0=0; i0<10; i0+=1) 2023-01-11T21:05:10.6744362Z { 2023-01-11T21:05:10.6744424Z { 2023-01-11T21:05:10.6744486Z { 2023-01-11T21:05:10.6744575Z auto tmp0 = in_ptr1[i0]; 2023-01-11T21:05:10.6744679Z auto tmp1 = static_cast(10); 2023-01-11T21:05:10.6744756Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:05:10.6744837Z out_ptr2[i0] = tmp2; 2023-01-11T21:05:10.6744899Z } 2023-01-11T21:05:10.6744962Z } 2023-01-11T21:05:10.6745022Z } 2023-01-11T21:05:10.6745082Z } 2023-01-11T21:05:10.6745127Z } 2023-01-11T21:05:10.6745205Z ''') 2023-01-11T21:05:10.6745210Z 2023-01-11T21:05:10.6745215Z 2023-01-11T21:05:10.6745303Z async_compile.wait(globals()) 2023-01-11T21:05:10.6745372Z del async_compile 2023-01-11T21:05:10.6745377Z 2023-01-11T21:05:10.6745445Z def call(args): 2023-01-11T21:05:10.6745517Z arg0_1, arg1_1 = args 2023-01-11T21:05:10.6745587Z args.clear() 2023-01-11T21:05:10.6745789Z buf0 = empty_strided((10, 10), (10, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6745969Z buf1 = empty_strided((10, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6746159Z buf2 = empty_strided((10, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6746372Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(arg1_1.data_ptr()), c_void_p(buf0.data_ptr()), c_void_p(buf1.data_ptr()), c_void_p(buf2.data_ptr())) 2023-01-11T21:05:10.6746439Z del arg0_1 2023-01-11T21:05:10.6746504Z del arg1_1 2023-01-11T21:05:10.6746584Z return (buf0, buf1, buf2, ) 2023-01-11T21:05:10.6746589Z 2023-01-11T21:05:10.6746593Z 2023-01-11T21:05:10.6746667Z if __name__ == "__main__": 2023-01-11T21:05:10.6746779Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.6746887Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.6747084Z arg0_1 = rand_strided((10, 10), (10, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6747311Z arg1_1 = rand_strided((1, 10), (10, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6747426Z print_performance(lambda: call([arg0_1, arg1_1])) 2023-01-11T21:05:10.6747431Z 2023-01-11T21:05:10.6747498Z ok (2.698s) 2023-01-11T21:05:10.6747931Z test_sum4_cpu (__main__.CpuTests) ... inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.6748056Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.6748313Z [2023-01-11 21:00:22,331] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 428 2023-01-11T21:05:10.6748574Z [2023-01-11 21:00:25,145] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 428 2023-01-11T21:05:10.6748582Z 2023-01-11T21:05:10.6748674Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.6748730Z import torch 2023-01-11T21:05:10.6748800Z import random 2023-01-11T21:05:10.6748940Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.6749062Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.6749067Z 2023-01-11T21:05:10.6749145Z aten = torch.ops.aten 2023-01-11T21:05:10.6749277Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.6749367Z async_compile = AsyncCompile() 2023-01-11T21:05:10.6749372Z 2023-01-11T21:05:10.6749377Z 2023-01-11T21:05:10.6749496Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.6749698Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.6749817Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:05:10.6749916Z float* __restrict__ out_ptr0, 2023-01-11T21:05:10.6750014Z float* __restrict__ out_ptr1, 2023-01-11T21:05:10.6750107Z float* __restrict__ out_ptr2, 2023-01-11T21:05:10.6750200Z float* __restrict__ out_ptr3, 2023-01-11T21:05:10.6750290Z float* __restrict__ out_ptr4) 2023-01-11T21:05:10.6750337Z { 2023-01-11T21:05:10.6750434Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.6750494Z { 2023-01-11T21:05:10.6750569Z #pragma omp for 2023-01-11T21:05:10.6750650Z for(long i0=0; i0<64; i0+=1) 2023-01-11T21:05:10.6750711Z { 2023-01-11T21:05:10.6750849Z auto tmp0 = at::vec::Vectorized::loadu(in_ptr0 + 16*i0); 2023-01-11T21:05:10.6750970Z auto tmp1 = at::vec::Vectorized(static_cast(1)); 2023-01-11T21:05:10.6751053Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:05:10.6751144Z tmp2.store(out_ptr0 + 16*i0); 2023-01-11T21:05:10.6751205Z } 2023-01-11T21:05:10.6751300Z #pragma omp for simd simdlen(8) 2023-01-11T21:05:10.6751384Z for(long i0=1024; i0<1024; i0+=1) 2023-01-11T21:05:10.6751445Z { 2023-01-11T21:05:10.6751514Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:05:10.6751615Z auto tmp1 = static_cast(1); 2023-01-11T21:05:10.6751698Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:05:10.6751776Z out_ptr0[i0] = tmp2; 2023-01-11T21:05:10.6751837Z } 2023-01-11T21:05:10.6751910Z #pragma omp for 2023-01-11T21:05:10.6751990Z for(long i0=0; i0<128; i0+=1) 2023-01-11T21:05:10.6752038Z { 2023-01-11T21:05:10.6752100Z { 2023-01-11T21:05:10.6752162Z { 2023-01-11T21:05:10.6752241Z float tmp1 = 0; 2023-01-11T21:05:10.6752330Z for(long i1=0; i1<8; i1+=1) 2023-01-11T21:05:10.6752396Z { 2023-01-11T21:05:10.6752450Z { 2023-01-11T21:05:10.6752555Z auto tmp0 = out_ptr0[i1 + (8*i0)]; 2023-01-11T21:05:10.6752670Z tmp1 += tmp0; 2023-01-11T21:05:10.6752737Z } 2023-01-11T21:05:10.6752803Z } 2023-01-11T21:05:10.6752890Z out_ptr1[i0] = tmp1; 2023-01-11T21:05:10.6752952Z } 2023-01-11T21:05:10.6753003Z } 2023-01-11T21:05:10.6753062Z } 2023-01-11T21:05:10.6753135Z #pragma omp for 2023-01-11T21:05:10.6753215Z for(long i0=0; i0<8; i0+=1) 2023-01-11T21:05:10.6753275Z { 2023-01-11T21:05:10.6753408Z auto tmp0 = at::vec::Vectorized::loadu(out_ptr1 + 16*i0); 2023-01-11T21:05:10.6753537Z auto tmp1 = at::vec::Vectorized(static_cast(3)); 2023-01-11T21:05:10.6753608Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:05:10.6753696Z tmp2.store(out_ptr2 + 16*i0); 2023-01-11T21:05:10.6753757Z } 2023-01-11T21:05:10.6753852Z #pragma omp for simd simdlen(8) 2023-01-11T21:05:10.6753936Z for(long i0=128; i0<128; i0+=1) 2023-01-11T21:05:10.6753997Z { 2023-01-11T21:05:10.6754080Z auto tmp0 = out_ptr1[i0]; 2023-01-11T21:05:10.6754194Z auto tmp1 = static_cast(3); 2023-01-11T21:05:10.6754279Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:05:10.6754358Z out_ptr2[i0] = tmp2; 2023-01-11T21:05:10.6754419Z } 2023-01-11T21:05:10.6754493Z #pragma omp for 2023-01-11T21:05:10.6754573Z for(long i0=0; i0<16; i0+=1) 2023-01-11T21:05:10.6754636Z { 2023-01-11T21:05:10.6754686Z { 2023-01-11T21:05:10.6754750Z { 2023-01-11T21:05:10.6754828Z float tmp1 = 0; 2023-01-11T21:05:10.6754919Z for(long i1=0; i1<8; i1+=1) 2023-01-11T21:05:10.6754985Z { 2023-01-11T21:05:10.6755052Z { 2023-01-11T21:05:10.6755157Z auto tmp0 = out_ptr2[i1 + (8*i0)]; 2023-01-11T21:05:10.6755228Z tmp1 += tmp0; 2023-01-11T21:05:10.6755293Z } 2023-01-11T21:05:10.6755358Z } 2023-01-11T21:05:10.6755441Z out_ptr3[i0] = tmp1; 2023-01-11T21:05:10.6755507Z } 2023-01-11T21:05:10.6755569Z } 2023-01-11T21:05:10.6755617Z } 2023-01-11T21:05:10.6755691Z #pragma omp for 2023-01-11T21:05:10.6755771Z for(long i0=0; i0<1; i0+=1) 2023-01-11T21:05:10.6755834Z { 2023-01-11T21:05:10.6755966Z auto tmp0 = at::vec::Vectorized::loadu(out_ptr3 + 16*i0); 2023-01-11T21:05:10.6756097Z auto tmp1 = at::vec::Vectorized(static_cast(5)); 2023-01-11T21:05:10.6756179Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:05:10.6756269Z tmp2.store(out_ptr4 + 16*i0); 2023-01-11T21:05:10.6756317Z } 2023-01-11T21:05:10.6756409Z #pragma omp for simd simdlen(8) 2023-01-11T21:05:10.6756490Z for(long i0=16; i0<16; i0+=1) 2023-01-11T21:05:10.6756554Z { 2023-01-11T21:05:10.6756636Z auto tmp0 = out_ptr3[i0]; 2023-01-11T21:05:10.6756733Z auto tmp1 = static_cast(5); 2023-01-11T21:05:10.6756804Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:05:10.6756883Z out_ptr4[i0] = tmp2; 2023-01-11T21:05:10.6756942Z } 2023-01-11T21:05:10.6757003Z } 2023-01-11T21:05:10.6757062Z } 2023-01-11T21:05:10.6757143Z ''') 2023-01-11T21:05:10.6757149Z 2023-01-11T21:05:10.6757153Z 2023-01-11T21:05:10.6757241Z async_compile.wait(globals()) 2023-01-11T21:05:10.6757299Z del async_compile 2023-01-11T21:05:10.6757316Z 2023-01-11T21:05:10.6757372Z def call(args): 2023-01-11T21:05:10.6757439Z arg0_1, = args 2023-01-11T21:05:10.6757509Z args.clear() 2023-01-11T21:05:10.6757727Z buf0 = empty_strided((1, 16, 8, 8), (1024, 64, 8, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6757936Z buf1 = empty_strided((1, 16, 8), (128, 8, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6758169Z buf2 = empty_strided((1, 16, 8), (128, 8, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6758363Z buf3 = empty_strided((1, 16), (16, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6758545Z buf4 = empty_strided((1, 16), (16, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6758780Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(buf0.data_ptr()), c_void_p(buf1.data_ptr()), c_void_p(buf2.data_ptr()), c_void_p(buf3.data_ptr()), c_void_p(buf4.data_ptr())) 2023-01-11T21:05:10.6758849Z del arg0_1 2023-01-11T21:05:10.6758945Z return (buf4, buf3, buf2, buf1, buf0, ) 2023-01-11T21:05:10.6758950Z 2023-01-11T21:05:10.6758955Z 2023-01-11T21:05:10.6759031Z if __name__ == "__main__": 2023-01-11T21:05:10.6759146Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.6759269Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.6759483Z arg0_1 = rand_strided((1, 16, 8, 8), (1024, 64, 8, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6759593Z print_performance(lambda: call([arg0_1])) 2023-01-11T21:05:10.6759598Z 2023-01-11T21:05:10.6759651Z ok (2.866s) 2023-01-11T21:05:10.6760108Z test_sum5_cpu (__main__.CpuTests) ... inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.6760235Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.6760496Z [2023-01-11 21:00:25,199] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 429 2023-01-11T21:05:10.6760895Z [2023-01-11 21:00:27,910] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 429 2023-01-11T21:05:10.6760901Z 2023-01-11T21:05:10.6760996Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.6761068Z import torch 2023-01-11T21:05:10.6761140Z import random 2023-01-11T21:05:10.6761256Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.6761365Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.6761371Z 2023-01-11T21:05:10.6761449Z aten = torch.ops.aten 2023-01-11T21:05:10.6761582Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.6761674Z async_compile = AsyncCompile() 2023-01-11T21:05:10.6761680Z 2023-01-11T21:05:10.6761684Z 2023-01-11T21:05:10.6761822Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.6762025Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.6762142Z extern "C" void kernel(float* __restrict__ in_out_ptr0, 2023-01-11T21:05:10.6762248Z const float* __restrict__ in_ptr0, 2023-01-11T21:05:10.6762334Z float* __restrict__ out_ptr0) 2023-01-11T21:05:10.6762398Z { 2023-01-11T21:05:10.6762484Z auto out_ptr1 = in_out_ptr0; 2023-01-11T21:05:10.6762581Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.6762641Z { 2023-01-11T21:05:10.6762716Z #pragma omp for 2023-01-11T21:05:10.6762797Z for(long i0=0; i0<136; i0+=1) 2023-01-11T21:05:10.6762845Z { 2023-01-11T21:05:10.6762907Z { 2023-01-11T21:05:10.6762969Z { 2023-01-11T21:05:10.6763046Z float tmp3 = 0; 2023-01-11T21:05:10.6763137Z for(long i1=0; i1<9; i1+=1) 2023-01-11T21:05:10.6763202Z { 2023-01-11T21:05:10.6763256Z { 2023-01-11T21:05:10.6763358Z auto tmp0 = in_ptr0[i1 + (9*i0)]; 2023-01-11T21:05:10.6763466Z auto tmp1 = static_cast(1); 2023-01-11T21:05:10.6763561Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:05:10.6763641Z tmp3 += tmp2; 2023-01-11T21:05:10.6763766Z } 2023-01-11T21:05:10.6763832Z } 2023-01-11T21:05:10.6763903Z out_ptr0[i0] = tmp3; 2023-01-11T21:05:10.6763967Z } 2023-01-11T21:05:10.6764032Z } 2023-01-11T21:05:10.6764095Z } 2023-01-11T21:05:10.6764170Z #pragma omp for 2023-01-11T21:05:10.6764250Z for(long i0=0; i0<17; i0+=1) 2023-01-11T21:05:10.6764313Z { 2023-01-11T21:05:10.6764361Z { 2023-01-11T21:05:10.6764425Z { 2023-01-11T21:05:10.6764505Z float tmp3 = 0; 2023-01-11T21:05:10.6764595Z for(long i1=0; i1<8; i1+=1) 2023-01-11T21:05:10.6764661Z { 2023-01-11T21:05:10.6764727Z { 2023-01-11T21:05:10.6764831Z auto tmp0 = out_ptr0[i1 + (8*i0)]; 2023-01-11T21:05:10.6764923Z auto tmp1 = static_cast(3); 2023-01-11T21:05:10.6765025Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:05:10.6765107Z tmp3 += tmp2; 2023-01-11T21:05:10.6765177Z } 2023-01-11T21:05:10.6765242Z } 2023-01-11T21:05:10.6765380Z out_ptr1[i0] = tmp3; 2023-01-11T21:05:10.6765449Z } 2023-01-11T21:05:10.6765499Z } 2023-01-11T21:05:10.6765557Z } 2023-01-11T21:05:10.6765632Z #pragma omp for 2023-01-11T21:05:10.6765711Z for(long i0=0; i0<1; i0+=1) 2023-01-11T21:05:10.6765773Z { 2023-01-11T21:05:10.6765913Z auto tmp0 = at::vec::Vectorized::loadu(out_ptr1 + 16*i0); 2023-01-11T21:05:10.6766047Z auto tmp1 = at::vec::Vectorized(static_cast(5)); 2023-01-11T21:05:10.6766118Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:05:10.6766214Z tmp2.store(in_out_ptr0 + 16*i0); 2023-01-11T21:05:10.6766276Z } 2023-01-11T21:05:10.6766369Z #pragma omp for simd simdlen(8) 2023-01-11T21:05:10.6766454Z for(long i0=16; i0<17; i0+=1) 2023-01-11T21:05:10.6766516Z { 2023-01-11T21:05:10.6766600Z auto tmp0 = out_ptr1[i0]; 2023-01-11T21:05:10.6766686Z auto tmp1 = static_cast(5); 2023-01-11T21:05:10.6766769Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:05:10.6766851Z in_out_ptr0[i0] = tmp2; 2023-01-11T21:05:10.6766912Z } 2023-01-11T21:05:10.6766973Z } 2023-01-11T21:05:10.6767031Z } 2023-01-11T21:05:10.6767098Z ''') 2023-01-11T21:05:10.6767116Z 2023-01-11T21:05:10.6767120Z 2023-01-11T21:05:10.6767196Z async_compile.wait(globals()) 2023-01-11T21:05:10.6767266Z del async_compile 2023-01-11T21:05:10.6767271Z 2023-01-11T21:05:10.6767338Z def call(args): 2023-01-11T21:05:10.6767408Z arg0_1, = args 2023-01-11T21:05:10.6767477Z args.clear() 2023-01-11T21:05:10.6767683Z buf0 = empty_strided((1, 17, 8), (136, 8, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6767880Z buf1 = empty_strided((1, 17), (17, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6767950Z buf2 = buf1; del buf1 # reuse 2023-01-11T21:05:10.6768112Z kernel_cpp_0(c_void_p(buf2.data_ptr()), c_void_p(arg0_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:05:10.6768179Z del arg0_1 2023-01-11T21:05:10.6768249Z return (buf2, ) 2023-01-11T21:05:10.6768254Z 2023-01-11T21:05:10.6768258Z 2023-01-11T21:05:10.6768332Z if __name__ == "__main__": 2023-01-11T21:05:10.6768445Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.6768567Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.6768779Z arg0_1 = rand_strided((1, 17, 8, 9), (1224, 72, 9, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6768873Z print_performance(lambda: call([arg0_1])) 2023-01-11T21:05:10.6768878Z 2023-01-11T21:05:10.6768941Z ok (2.761s) 2023-01-11T21:05:10.6769380Z test_sum_dtype_cpu (__main__.CpuTests) ... inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.6769536Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.6769796Z [2023-01-11 21:00:27,958] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 430 2023-01-11T21:05:10.6770058Z [2023-01-11 21:00:30,627] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 430 2023-01-11T21:05:10.6770064Z 2023-01-11T21:05:10.6770156Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.6770225Z import torch 2023-01-11T21:05:10.6770292Z import random 2023-01-11T21:05:10.6770392Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.6770511Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.6770518Z 2023-01-11T21:05:10.6770595Z aten = torch.ops.aten 2023-01-11T21:05:10.6770728Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.6770819Z async_compile = AsyncCompile() 2023-01-11T21:05:10.6770888Z 2023-01-11T21:05:10.6770892Z 2023-01-11T21:05:10.6771026Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.6771231Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.6771352Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:05:10.6771439Z double* __restrict__ out_ptr0, 2023-01-11T21:05:10.6771537Z double* __restrict__ out_ptr1, 2023-01-11T21:05:10.6771630Z double* __restrict__ out_ptr2) 2023-01-11T21:05:10.6771691Z { 2023-01-11T21:05:10.6771789Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.6771856Z { 2023-01-11T21:05:10.6771932Z #pragma omp for 2023-01-11T21:05:10.6772002Z for(long i0=0; i0<32; i0+=1) 2023-01-11T21:05:10.6772066Z { 2023-01-11T21:05:10.6772129Z { 2023-01-11T21:05:10.6772195Z { 2023-01-11T21:05:10.6772275Z double tmp2 = 0; 2023-01-11T21:05:10.6772370Z for(long i1=0; i1<32; i1+=1) 2023-01-11T21:05:10.6772437Z { 2023-01-11T21:05:10.6772491Z { 2023-01-11T21:05:10.6772596Z auto tmp0 = in_ptr0[i1 + (32*i0)]; 2023-01-11T21:05:10.6772711Z auto tmp1 = static_cast(tmp0); 2023-01-11T21:05:10.6772793Z tmp2 += tmp1; 2023-01-11T21:05:10.6772861Z } 2023-01-11T21:05:10.6772926Z } 2023-01-11T21:05:10.6773012Z out_ptr0[i0] = tmp2; 2023-01-11T21:05:10.6773063Z } 2023-01-11T21:05:10.6773124Z } 2023-01-11T21:05:10.6773184Z } 2023-01-11T21:05:10.6773244Z } 2023-01-11T21:05:10.6773305Z { 2023-01-11T21:05:10.6773365Z { 2023-01-11T21:05:10.6773430Z double tmp2 = 0; 2023-01-11T21:05:10.6773532Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.6773596Z { 2023-01-11T21:05:10.6773700Z #pragma omp for reduction(+:tmp2) 2023-01-11T21:05:10.6773789Z for(long i0=0; i0<1024; i0+=1) 2023-01-11T21:05:10.6773853Z { 2023-01-11T21:05:10.6773916Z { 2023-01-11T21:05:10.6773996Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:05:10.6774105Z auto tmp1 = static_cast(tmp0); 2023-01-11T21:05:10.6774182Z tmp2 += tmp1; 2023-01-11T21:05:10.6774246Z } 2023-01-11T21:05:10.6774307Z } 2023-01-11T21:05:10.6774369Z } 2023-01-11T21:05:10.6774443Z out_ptr1[0] = tmp2; 2023-01-11T21:05:10.6774492Z } 2023-01-11T21:05:10.6774552Z } 2023-01-11T21:05:10.6774678Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.6774737Z { 2023-01-11T21:05:10.6774811Z #pragma omp for 2023-01-11T21:05:10.6774894Z for(long i0=0; i0<32; i0+=1) 2023-01-11T21:05:10.6774943Z { 2023-01-11T21:05:10.6775023Z #pragma GCC ivdep 2023-01-11T21:05:10.6775105Z for(long i1=0; i1<32; i1+=1) 2023-01-11T21:05:10.6775167Z { 2023-01-11T21:05:10.6775228Z { 2023-01-11T21:05:10.6775292Z { 2023-01-11T21:05:10.6775392Z auto tmp0 = in_ptr0[i1 + (32*i0)]; 2023-01-11T21:05:10.6775473Z auto tmp2 = out_ptr0[i1]; 2023-01-11T21:05:10.6775566Z auto tmp4 = out_ptr1[0]; 2023-01-11T21:05:10.6775674Z auto tmp1 = static_cast(tmp0); 2023-01-11T21:05:10.6775765Z auto tmp3 = tmp1 * tmp2; 2023-01-11T21:05:10.6775855Z auto tmp5 = tmp3 + tmp4; 2023-01-11T21:05:10.6775954Z out_ptr2[i1 + (32*i0)] = tmp5; 2023-01-11T21:05:10.6776019Z } 2023-01-11T21:05:10.6776069Z } 2023-01-11T21:05:10.6776130Z } 2023-01-11T21:05:10.6776216Z } 2023-01-11T21:05:10.6776277Z } 2023-01-11T21:05:10.6776334Z } 2023-01-11T21:05:10.6776412Z ''') 2023-01-11T21:05:10.6776417Z 2023-01-11T21:05:10.6776421Z 2023-01-11T21:05:10.6776509Z async_compile.wait(globals()) 2023-01-11T21:05:10.6776567Z del async_compile 2023-01-11T21:05:10.6776584Z 2023-01-11T21:05:10.6776640Z def call(args): 2023-01-11T21:05:10.6776708Z arg0_1, = args 2023-01-11T21:05:10.6776779Z args.clear() 2023-01-11T21:05:10.6776971Z buf0 = empty_strided((32, ), (1, ), device='cpu', dtype=torch.float64) 2023-01-11T21:05:10.6777153Z buf1 = empty_strided((), (), device='cpu', dtype=torch.float64) 2023-01-11T21:05:10.6777348Z buf2 = empty_strided((32, 32), (32, 1), device='cpu', dtype=torch.float64) 2023-01-11T21:05:10.6777537Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(buf0.data_ptr()), c_void_p(buf1.data_ptr()), c_void_p(buf2.data_ptr())) 2023-01-11T21:05:10.6777592Z del arg0_1 2023-01-11T21:05:10.6777661Z return (buf2, ) 2023-01-11T21:05:10.6777668Z 2023-01-11T21:05:10.6777673Z 2023-01-11T21:05:10.6777746Z if __name__ == "__main__": 2023-01-11T21:05:10.6777859Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.6777981Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.6778178Z arg0_1 = rand_strided((32, 32), (32, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6778283Z print_performance(lambda: call([arg0_1])) 2023-01-11T21:05:10.6778288Z 2023-01-11T21:05:10.6778352Z ok (2.718s) 2023-01-11T21:05:10.6778862Z test_sum_int_cpu (__main__.CpuTests) ... inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.6778996Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.6779264Z [2023-01-11 21:00:30,673] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 431 2023-01-11T21:05:10.6779532Z [2023-01-11 21:00:33,299] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 431 2023-01-11T21:05:10.6779931Z inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.6780058Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.6780312Z [2023-01-11 21:00:33,341] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 432 2023-01-11T21:05:10.6780609Z [2023-01-11 21:00:36,007] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 432 2023-01-11T21:05:10.6781010Z inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.6781133Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.6781385Z [2023-01-11 21:00:36,048] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 433 2023-01-11T21:05:10.6781644Z [2023-01-11 21:00:38,669] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 433 2023-01-11T21:05:10.6781650Z 2023-01-11T21:05:10.6781733Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.6781802Z import torch 2023-01-11T21:05:10.6781870Z import random 2023-01-11T21:05:10.6781984Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.6782130Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.6782136Z 2023-01-11T21:05:10.6782217Z aten = torch.ops.aten 2023-01-11T21:05:10.6782349Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.6782427Z async_compile = AsyncCompile() 2023-01-11T21:05:10.6782445Z 2023-01-11T21:05:10.6782449Z 2023-01-11T21:05:10.6782570Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.6782774Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.6782889Z extern "C" void kernel(long* __restrict__ in_out_ptr0, 2023-01-11T21:05:10.6782991Z const bool* __restrict__ in_ptr0, 2023-01-11T21:05:10.6783087Z long* __restrict__ out_ptr1) 2023-01-11T21:05:10.6783149Z { 2023-01-11T21:05:10.6783232Z auto out_ptr0 = in_out_ptr0; 2023-01-11T21:05:10.6783279Z { 2023-01-11T21:05:10.6783341Z { 2023-01-11T21:05:10.6783415Z long tmp2 = 0; 2023-01-11T21:05:10.6783490Z long tmp3 = 0; 2023-01-11T21:05:10.6783593Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.6783655Z { 2023-01-11T21:05:10.6783783Z #pragma omp for reduction(+:tmp2) reduction(+:tmp3) 2023-01-11T21:05:10.6783857Z for(long i0=0; i0<64; i0+=1) 2023-01-11T21:05:10.6783922Z { 2023-01-11T21:05:10.6783987Z { 2023-01-11T21:05:10.6784079Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:05:10.6784190Z auto tmp1 = static_cast(tmp0); 2023-01-11T21:05:10.6784267Z tmp2 += tmp1; 2023-01-11T21:05:10.6784344Z tmp3 += tmp1; 2023-01-11T21:05:10.6784394Z } 2023-01-11T21:05:10.6784460Z } 2023-01-11T21:05:10.6784522Z } 2023-01-11T21:05:10.6784601Z out_ptr0[0] = tmp2; 2023-01-11T21:05:10.6784677Z out_ptr1[0] = tmp3; 2023-01-11T21:05:10.6784738Z } 2023-01-11T21:05:10.6784786Z } 2023-01-11T21:05:10.6784846Z { 2023-01-11T21:05:10.6784906Z { 2023-01-11T21:05:10.6784989Z auto tmp0 = out_ptr0[0]; 2023-01-11T21:05:10.6785070Z auto tmp3 = out_ptr1[0]; 2023-01-11T21:05:10.6785167Z auto tmp1 = static_cast(2); 2023-01-11T21:05:10.6785249Z auto tmp2 = tmp0 * tmp1; 2023-01-11T21:05:10.6785316Z auto tmp4 = tmp2 + tmp3; 2023-01-11T21:05:10.6785395Z in_out_ptr0[0] = tmp4; 2023-01-11T21:05:10.6785455Z } 2023-01-11T21:05:10.6785514Z } 2023-01-11T21:05:10.6785573Z } 2023-01-11T21:05:10.6785650Z ''') 2023-01-11T21:05:10.6785655Z 2023-01-11T21:05:10.6785660Z 2023-01-11T21:05:10.6785749Z async_compile.wait(globals()) 2023-01-11T21:05:10.6785844Z del async_compile 2023-01-11T21:05:10.6785849Z 2023-01-11T21:05:10.6785918Z def call(args): 2023-01-11T21:05:10.6785984Z arg0_1, = args 2023-01-11T21:05:10.6786055Z args.clear() 2023-01-11T21:05:10.6786237Z buf0 = empty_strided((), (), device='cpu', dtype=torch.int64) 2023-01-11T21:05:10.6786415Z buf1 = empty_strided((), (), device='cpu', dtype=torch.int64) 2023-01-11T21:05:10.6786498Z buf2 = buf0; del buf0 # reuse 2023-01-11T21:05:10.6786645Z kernel_cpp_0(c_void_p(buf2.data_ptr()), c_void_p(arg0_1.data_ptr()), c_void_p(buf1.data_ptr())) 2023-01-11T21:05:10.6786712Z del arg0_1 2023-01-11T21:05:10.6786782Z return (buf2, ) 2023-01-11T21:05:10.6786787Z 2023-01-11T21:05:10.6786791Z 2023-01-11T21:05:10.6786866Z if __name__ == "__main__": 2023-01-11T21:05:10.6786978Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.6787101Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.6787288Z arg0_1 = rand_strided((64, ), (1, ), device='cpu', dtype=torch.bool) 2023-01-11T21:05:10.6787397Z print_performance(lambda: call([arg0_1])) 2023-01-11T21:05:10.6787402Z 2023-01-11T21:05:10.6787406Z 2023-01-11T21:05:10.6787498Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.6787580Z import torch 2023-01-11T21:05:10.6787653Z import random 2023-01-11T21:05:10.6787766Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.6787885Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.6787889Z 2023-01-11T21:05:10.6787967Z aten = torch.ops.aten 2023-01-11T21:05:10.6788099Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.6788190Z async_compile = AsyncCompile() 2023-01-11T21:05:10.6788195Z 2023-01-11T21:05:10.6788198Z 2023-01-11T21:05:10.6788318Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.6788524Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.6788637Z extern "C" void kernel(long* __restrict__ in_out_ptr0, 2023-01-11T21:05:10.6788753Z const unsigned char* __restrict__ in_ptr0, 2023-01-11T21:05:10.6788849Z long* __restrict__ out_ptr1) 2023-01-11T21:05:10.6788910Z { 2023-01-11T21:05:10.6788996Z auto out_ptr0 = in_out_ptr0; 2023-01-11T21:05:10.6789058Z { 2023-01-11T21:05:10.6789107Z { 2023-01-11T21:05:10.6789179Z long tmp2 = 0; 2023-01-11T21:05:10.6789251Z long tmp3 = 0; 2023-01-11T21:05:10.6789355Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.6789417Z { 2023-01-11T21:05:10.6789543Z #pragma omp for reduction(+:tmp2) reduction(+:tmp3) 2023-01-11T21:05:10.6789618Z for(long i0=0; i0<64; i0+=1) 2023-01-11T21:05:10.6789682Z { 2023-01-11T21:05:10.6789745Z { 2023-01-11T21:05:10.6789839Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:05:10.6789945Z auto tmp1 = static_cast(tmp0); 2023-01-11T21:05:10.6790026Z tmp2 += tmp1; 2023-01-11T21:05:10.6790101Z tmp3 += tmp1; 2023-01-11T21:05:10.6790152Z } 2023-01-11T21:05:10.6790217Z } 2023-01-11T21:05:10.6790278Z } 2023-01-11T21:05:10.6790355Z out_ptr0[0] = tmp2; 2023-01-11T21:05:10.6790430Z out_ptr1[0] = tmp3; 2023-01-11T21:05:10.6790490Z } 2023-01-11T21:05:10.6790548Z } 2023-01-11T21:05:10.6790594Z { 2023-01-11T21:05:10.6790653Z { 2023-01-11T21:05:10.6790736Z auto tmp0 = out_ptr0[0]; 2023-01-11T21:05:10.6790816Z auto tmp3 = out_ptr1[0]; 2023-01-11T21:05:10.6790911Z auto tmp1 = static_cast(2); 2023-01-11T21:05:10.6790992Z auto tmp2 = tmp0 * tmp1; 2023-01-11T21:05:10.6791070Z auto tmp4 = tmp2 + tmp3; 2023-01-11T21:05:10.6791136Z in_out_ptr0[0] = tmp4; 2023-01-11T21:05:10.6791196Z } 2023-01-11T21:05:10.6791283Z } 2023-01-11T21:05:10.6791342Z } 2023-01-11T21:05:10.6791419Z ''') 2023-01-11T21:05:10.6791424Z 2023-01-11T21:05:10.6791428Z 2023-01-11T21:05:10.6791515Z async_compile.wait(globals()) 2023-01-11T21:05:10.6791588Z del async_compile 2023-01-11T21:05:10.6791593Z 2023-01-11T21:05:10.6791649Z def call(args): 2023-01-11T21:05:10.6791716Z arg0_1, = args 2023-01-11T21:05:10.6791785Z args.clear() 2023-01-11T21:05:10.6791964Z buf0 = empty_strided((), (), device='cpu', dtype=torch.int64) 2023-01-11T21:05:10.6792139Z buf1 = empty_strided((), (), device='cpu', dtype=torch.int64) 2023-01-11T21:05:10.6792220Z buf2 = buf0; del buf0 # reuse 2023-01-11T21:05:10.6792380Z kernel_cpp_0(c_void_p(buf2.data_ptr()), c_void_p(arg0_1.data_ptr()), c_void_p(buf1.data_ptr())) 2023-01-11T21:05:10.6792434Z del arg0_1 2023-01-11T21:05:10.6792504Z return (buf2, ) 2023-01-11T21:05:10.6792508Z 2023-01-11T21:05:10.6792513Z 2023-01-11T21:05:10.6792585Z if __name__ == "__main__": 2023-01-11T21:05:10.6792698Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.6792818Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.6793035Z arg0_1 = rand_strided((64, ), (1, ), device='cpu', dtype=torch.uint8) 2023-01-11T21:05:10.6793142Z print_performance(lambda: call([arg0_1])) 2023-01-11T21:05:10.6793147Z 2023-01-11T21:05:10.6793151Z 2023-01-11T21:05:10.6793241Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.6793296Z import torch 2023-01-11T21:05:10.6793365Z import random 2023-01-11T21:05:10.6793478Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.6793596Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.6793601Z 2023-01-11T21:05:10.6793676Z aten = torch.ops.aten 2023-01-11T21:05:10.6793806Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.6793896Z async_compile = AsyncCompile() 2023-01-11T21:05:10.6793901Z 2023-01-11T21:05:10.6793905Z 2023-01-11T21:05:10.6794038Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.6794226Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.6794341Z extern "C" void kernel(long* __restrict__ in_out_ptr0, 2023-01-11T21:05:10.6794441Z const int* __restrict__ in_ptr0, 2023-01-11T21:05:10.6794537Z long* __restrict__ out_ptr1) 2023-01-11T21:05:10.6794596Z { 2023-01-11T21:05:10.6794679Z auto out_ptr0 = in_out_ptr0; 2023-01-11T21:05:10.6794738Z { 2023-01-11T21:05:10.6794786Z { 2023-01-11T21:05:10.6794859Z long tmp2 = 0; 2023-01-11T21:05:10.6794930Z long tmp3 = 0; 2023-01-11T21:05:10.6795035Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.6795097Z { 2023-01-11T21:05:10.6795221Z #pragma omp for reduction(+:tmp2) reduction(+:tmp3) 2023-01-11T21:05:10.6795308Z for(long i0=0; i0<64; i0+=1) 2023-01-11T21:05:10.6795360Z { 2023-01-11T21:05:10.6795426Z { 2023-01-11T21:05:10.6795519Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:05:10.6795625Z auto tmp1 = static_cast(tmp0); 2023-01-11T21:05:10.6795704Z tmp2 += tmp1; 2023-01-11T21:05:10.6795780Z tmp3 += tmp1; 2023-01-11T21:05:10.6795843Z } 2023-01-11T21:05:10.6795892Z } 2023-01-11T21:05:10.6795953Z } 2023-01-11T21:05:10.6796030Z out_ptr0[0] = tmp2; 2023-01-11T21:05:10.6796103Z out_ptr1[0] = tmp3; 2023-01-11T21:05:10.6796163Z } 2023-01-11T21:05:10.6796223Z } 2023-01-11T21:05:10.6796268Z { 2023-01-11T21:05:10.6796327Z { 2023-01-11T21:05:10.6796409Z auto tmp0 = out_ptr0[0]; 2023-01-11T21:05:10.6796489Z auto tmp3 = out_ptr1[0]; 2023-01-11T21:05:10.6796584Z auto tmp1 = static_cast(2); 2023-01-11T21:05:10.6796666Z auto tmp2 = tmp0 * tmp1; 2023-01-11T21:05:10.6796774Z auto tmp4 = tmp2 + tmp3; 2023-01-11T21:05:10.6796841Z in_out_ptr0[0] = tmp4; 2023-01-11T21:05:10.6796900Z } 2023-01-11T21:05:10.6796959Z } 2023-01-11T21:05:10.6797020Z } 2023-01-11T21:05:10.6797097Z ''') 2023-01-11T21:05:10.6797102Z 2023-01-11T21:05:10.6797106Z 2023-01-11T21:05:10.6797193Z async_compile.wait(globals()) 2023-01-11T21:05:10.6797265Z del async_compile 2023-01-11T21:05:10.6797271Z 2023-01-11T21:05:10.6797339Z def call(args): 2023-01-11T21:05:10.6797394Z arg0_1, = args 2023-01-11T21:05:10.6797464Z args.clear() 2023-01-11T21:05:10.6797642Z buf0 = empty_strided((), (), device='cpu', dtype=torch.int64) 2023-01-11T21:05:10.6797818Z buf1 = empty_strided((), (), device='cpu', dtype=torch.int64) 2023-01-11T21:05:10.6797900Z buf2 = buf0; del buf0 # reuse 2023-01-11T21:05:10.6798064Z kernel_cpp_0(c_void_p(buf2.data_ptr()), c_void_p(arg0_1.data_ptr()), c_void_p(buf1.data_ptr())) 2023-01-11T21:05:10.6798133Z del arg0_1 2023-01-11T21:05:10.6798191Z return (buf2, ) 2023-01-11T21:05:10.6798196Z 2023-01-11T21:05:10.6798200Z 2023-01-11T21:05:10.6798273Z if __name__ == "__main__": 2023-01-11T21:05:10.6798411Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.6798533Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.6798724Z arg0_1 = rand_strided((64, ), (1, ), device='cpu', dtype=torch.int32) 2023-01-11T21:05:10.6798830Z print_performance(lambda: call([arg0_1])) 2023-01-11T21:05:10.6798835Z 2023-01-11T21:05:10.6798904Z ok (8.038s) 2023-01-11T21:05:10.6799344Z test_sum_keepdims_cpu (__main__.CpuTests) ... inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.6799472Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.6799718Z [2023-01-11 21:00:38,704] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 434 2023-01-11T21:05:10.6799984Z [2023-01-11 21:00:38,718] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 434 2023-01-11T21:05:10.6799990Z 2023-01-11T21:05:10.6800080Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.6800147Z import torch 2023-01-11T21:05:10.6800215Z import random 2023-01-11T21:05:10.6800329Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.6800448Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.6800453Z 2023-01-11T21:05:10.6800529Z aten = torch.ops.aten 2023-01-11T21:05:10.6800767Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.6800858Z async_compile = AsyncCompile() 2023-01-11T21:05:10.6800863Z 2023-01-11T21:05:10.6800867Z 2023-01-11T21:05:10.6801003Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.6801208Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.6801330Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:05:10.6801433Z const float* __restrict__ in_ptr1, 2023-01-11T21:05:10.6801533Z float* __restrict__ out_ptr0) 2023-01-11T21:05:10.6801594Z { 2023-01-11T21:05:10.6801677Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.6801737Z { 2023-01-11T21:05:10.6801813Z #pragma omp for 2023-01-11T21:05:10.6801895Z for(long i0=0; i0<8; i0+=1) 2023-01-11T21:05:10.6801958Z { 2023-01-11T21:05:10.6802023Z { 2023-01-11T21:05:10.6802074Z { 2023-01-11T21:05:10.6802153Z float tmp3 = 0; 2023-01-11T21:05:10.6802246Z for(long i1=0; i1<8; i1+=1) 2023-01-11T21:05:10.6802313Z { 2023-01-11T21:05:10.6802441Z { 2023-01-11T21:05:10.6802546Z auto tmp0 = in_ptr0[i1 + (8*i0)]; 2023-01-11T21:05:10.6802649Z auto tmp1 = in_ptr1[i1 + (8*i0)]; 2023-01-11T21:05:10.6802733Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:05:10.6802816Z tmp3 += tmp2; 2023-01-11T21:05:10.6802884Z } 2023-01-11T21:05:10.6802949Z } 2023-01-11T21:05:10.6803031Z out_ptr0[i0] = tmp3; 2023-01-11T21:05:10.6803094Z } 2023-01-11T21:05:10.6803157Z } 2023-01-11T21:05:10.6803206Z } 2023-01-11T21:05:10.6803266Z } 2023-01-11T21:05:10.6803326Z } 2023-01-11T21:05:10.6803405Z ''') 2023-01-11T21:05:10.6803410Z 2023-01-11T21:05:10.6803414Z 2023-01-11T21:05:10.6803502Z async_compile.wait(globals()) 2023-01-11T21:05:10.6803572Z del async_compile 2023-01-11T21:05:10.6803578Z 2023-01-11T21:05:10.6803647Z def call(args): 2023-01-11T21:05:10.6803710Z arg0_1, arg1_1 = args 2023-01-11T21:05:10.6803781Z args.clear() 2023-01-11T21:05:10.6803978Z buf0 = empty_strided((8, 1), (1, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6804189Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(arg1_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:05:10.6804258Z del arg0_1 2023-01-11T21:05:10.6804322Z del arg1_1 2023-01-11T21:05:10.6804392Z return (buf0, ) 2023-01-11T21:05:10.6804397Z 2023-01-11T21:05:10.6804401Z 2023-01-11T21:05:10.6804475Z if __name__ == "__main__": 2023-01-11T21:05:10.6804575Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.6804694Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.6804891Z arg0_1 = rand_strided((8, 8), (8, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6805081Z arg1_1 = rand_strided((8, 8), (8, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6805194Z print_performance(lambda: call([arg0_1, arg1_1])) 2023-01-11T21:05:10.6805202Z 2023-01-11T21:05:10.6805268Z ok (0.047s) 2023-01-11T21:05:10.6805702Z test_tanh_cpu (__main__.CpuTests) ... inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.6805830Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.6806086Z [2023-01-11 21:00:38,771] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 435 2023-01-11T21:05:10.6806336Z [2023-01-11 21:00:41,448] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 435 2023-01-11T21:05:10.6806355Z 2023-01-11T21:05:10.6806434Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.6806502Z import torch 2023-01-11T21:05:10.6806574Z import random 2023-01-11T21:05:10.6806687Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.6806806Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.6806811Z 2023-01-11T21:05:10.6806888Z aten = torch.ops.aten 2023-01-11T21:05:10.6807023Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.6807100Z async_compile = AsyncCompile() 2023-01-11T21:05:10.6807105Z 2023-01-11T21:05:10.6807109Z 2023-01-11T21:05:10.6807241Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.6807442Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.6807558Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:05:10.6807656Z float* __restrict__ out_ptr0, 2023-01-11T21:05:10.6807752Z float* __restrict__ out_ptr1) 2023-01-11T21:05:10.6807811Z { 2023-01-11T21:05:10.6807894Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.6807982Z { 2023-01-11T21:05:10.6808056Z #pragma omp for 2023-01-11T21:05:10.6808138Z for(long i0=0; i0<16; i0+=1) 2023-01-11T21:05:10.6808200Z { 2023-01-11T21:05:10.6808342Z auto tmp0 = at::vec::Vectorized::loadu(in_ptr0 + 16*i0); 2023-01-11T21:05:10.6808428Z auto tmp1 = tmp0.tanh(); 2023-01-11T21:05:10.6808559Z auto tmp2 = at::vec::Vectorized(static_cast(2)); 2023-01-11T21:05:10.6808629Z auto tmp3 = tmp1 + tmp2; 2023-01-11T21:05:10.6808758Z auto tmp4 = at::vec::Vectorized(static_cast(1)); 2023-01-11T21:05:10.6808840Z auto tmp5 = tmp0 + tmp4; 2023-01-11T21:05:10.6808919Z auto tmp6 = tmp5.tanh(); 2023-01-11T21:05:10.6809009Z tmp3.store(out_ptr0 + 16*i0); 2023-01-11T21:05:10.6809098Z tmp6.store(out_ptr1 + 16*i0); 2023-01-11T21:05:10.6809158Z } 2023-01-11T21:05:10.6809240Z #pragma omp for simd simdlen(8) 2023-01-11T21:05:10.6809322Z for(long i0=256; i0<256; i0+=1) 2023-01-11T21:05:10.6809383Z { 2023-01-11T21:05:10.6809464Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:05:10.6809554Z auto tmp1 = std::tanh(tmp0); 2023-01-11T21:05:10.6809680Z auto tmp2 = static_cast(2); 2023-01-11T21:05:10.6809763Z auto tmp3 = tmp1 + tmp2; 2023-01-11T21:05:10.6809847Z auto tmp4 = static_cast(1); 2023-01-11T21:05:10.6809930Z auto tmp5 = tmp0 + tmp4; 2023-01-11T21:05:10.6810019Z auto tmp6 = std::tanh(tmp5); 2023-01-11T21:05:10.6810097Z out_ptr0[i0] = tmp3; 2023-01-11T21:05:10.6810172Z out_ptr1[i0] = tmp6; 2023-01-11T21:05:10.6810234Z } 2023-01-11T21:05:10.6810294Z } 2023-01-11T21:05:10.6810339Z } 2023-01-11T21:05:10.6810417Z ''') 2023-01-11T21:05:10.6810422Z 2023-01-11T21:05:10.6810427Z 2023-01-11T21:05:10.6810512Z async_compile.wait(globals()) 2023-01-11T21:05:10.6810583Z del async_compile 2023-01-11T21:05:10.6810590Z 2023-01-11T21:05:10.6810658Z def call(args): 2023-01-11T21:05:10.6810726Z arg0_1, = args 2023-01-11T21:05:10.6810795Z args.clear() 2023-01-11T21:05:10.6810986Z buf0 = empty_strided((16, 16), (16, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6811184Z buf1 = empty_strided((16, 16), (16, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6811344Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(buf0.data_ptr()), c_void_p(buf1.data_ptr())) 2023-01-11T21:05:10.6811412Z del arg0_1 2023-01-11T21:05:10.6811487Z return (buf0, buf1, ) 2023-01-11T21:05:10.6811492Z 2023-01-11T21:05:10.6811496Z 2023-01-11T21:05:10.6811571Z if __name__ == "__main__": 2023-01-11T21:05:10.6811683Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.6811804Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.6811988Z arg0_1 = rand_strided((16, 16), (16, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6812096Z print_performance(lambda: call([arg0_1])) 2023-01-11T21:05:10.6812102Z 2023-01-11T21:05:10.6812166Z ok (2.734s) 2023-01-11T21:05:10.6812603Z test_tensor1_cpu (__main__.CpuTests) ... inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.6812727Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.6812987Z [2023-01-11 21:00:41,489] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 436 2023-01-11T21:05:10.6813248Z [2023-01-11 21:00:44,119] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 436 2023-01-11T21:05:10.6813254Z 2023-01-11T21:05:10.6813346Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.6813446Z import torch 2023-01-11T21:05:10.6813501Z import random 2023-01-11T21:05:10.6813614Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.6813737Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.6813742Z 2023-01-11T21:05:10.6813822Z aten = torch.ops.aten 2023-01-11T21:05:10.6813953Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.6814045Z async_compile = AsyncCompile() 2023-01-11T21:05:10.6814049Z 2023-01-11T21:05:10.6814053Z 2023-01-11T21:05:10.6814186Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.6814389Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.6814495Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:05:10.6814595Z float* __restrict__ out_ptr0, 2023-01-11T21:05:10.6814695Z long* __restrict__ out_ptr1) 2023-01-11T21:05:10.6814753Z { 2023-01-11T21:05:10.6814850Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.6814914Z { 2023-01-11T21:05:10.6814990Z #pragma omp for 2023-01-11T21:05:10.6815058Z for(long i0=0; i0<10; i0+=1) 2023-01-11T21:05:10.6815121Z { 2023-01-11T21:05:10.6815211Z { 2023-01-11T21:05:10.6815277Z { 2023-01-11T21:05:10.6815369Z auto tmp2 = in_ptr0[i0]; 2023-01-11T21:05:10.6815472Z auto tmp0 = static_cast(1); 2023-01-11T21:05:10.6815577Z auto tmp1 = static_cast(tmp0); 2023-01-11T21:05:10.6815654Z auto tmp3 = tmp1 + tmp2; 2023-01-11T21:05:10.6815738Z out_ptr0[i0] = tmp3; 2023-01-11T21:05:10.6815802Z } 2023-01-11T21:05:10.6815864Z } 2023-01-11T21:05:10.6815925Z } 2023-01-11T21:05:10.6816004Z #pragma omp single 2023-01-11T21:05:10.6816066Z { 2023-01-11T21:05:10.6816114Z { 2023-01-11T21:05:10.6816177Z { 2023-01-11T21:05:10.6816281Z auto tmp0 = static_cast(5); 2023-01-11T21:05:10.6816361Z out_ptr1[0] = tmp0; 2023-01-11T21:05:10.6816425Z } 2023-01-11T21:05:10.6816487Z } 2023-01-11T21:05:10.6816537Z } 2023-01-11T21:05:10.6816598Z } 2023-01-11T21:05:10.6816656Z } 2023-01-11T21:05:10.6816734Z ''') 2023-01-11T21:05:10.6816739Z 2023-01-11T21:05:10.6816743Z 2023-01-11T21:05:10.6816831Z async_compile.wait(globals()) 2023-01-11T21:05:10.6816904Z del async_compile 2023-01-11T21:05:10.6816909Z 2023-01-11T21:05:10.6816978Z def call(args): 2023-01-11T21:05:10.6817033Z arg0_1, = args 2023-01-11T21:05:10.6817103Z args.clear() 2023-01-11T21:05:10.6817295Z buf0 = empty_strided((10, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6817473Z buf1 = empty_strided((), (), device='cpu', dtype=torch.int64) 2023-01-11T21:05:10.6817635Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(buf0.data_ptr()), c_void_p(buf1.data_ptr())) 2023-01-11T21:05:10.6817706Z del arg0_1 2023-01-11T21:05:10.6817781Z return (buf0, buf1, ) 2023-01-11T21:05:10.6817786Z 2023-01-11T21:05:10.6817791Z 2023-01-11T21:05:10.6817866Z if __name__ == "__main__": 2023-01-11T21:05:10.6817967Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.6818088Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.6818278Z arg0_1 = rand_strided((10, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6818384Z print_performance(lambda: call([arg0_1])) 2023-01-11T21:05:10.6818388Z 2023-01-11T21:05:10.6818454Z ok (2.670s) 2023-01-11T21:05:10.6819002Z test_tensor2_cpu (__main__.CpuTests) ... inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.6819165Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.6819430Z [2023-01-11 21:00:44,158] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 437 2023-01-11T21:05:10.6819694Z [2023-01-11 21:00:46,762] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 437 2023-01-11T21:05:10.6819699Z 2023-01-11T21:05:10.6819793Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.6819849Z import torch 2023-01-11T21:05:10.6819920Z import random 2023-01-11T21:05:10.6820035Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.6820156Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.6820161Z 2023-01-11T21:05:10.6820240Z aten = torch.ops.aten 2023-01-11T21:05:10.6820372Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.6820464Z async_compile = AsyncCompile() 2023-01-11T21:05:10.6820612Z constant0 = None # 4ebd4ff1c68a89413a036eaaf84436373c4ec2939ac1d7f84e9908772a109281 2023-01-11T21:05:10.6820619Z 2023-01-11T21:05:10.6820637Z 2023-01-11T21:05:10.6820756Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.6820989Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.6821110Z extern "C" void kernel(const long* __restrict__ in_ptr0, 2023-01-11T21:05:10.6821211Z const float* __restrict__ in_ptr1, 2023-01-11T21:05:10.6821310Z float* __restrict__ out_ptr0) 2023-01-11T21:05:10.6821369Z { 2023-01-11T21:05:10.6821464Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.6821512Z { 2023-01-11T21:05:10.6821588Z #pragma omp for 2023-01-11T21:05:10.6821668Z for(long i0=0; i0<19; i0+=1) 2023-01-11T21:05:10.6821731Z { 2023-01-11T21:05:10.6821792Z { 2023-01-11T21:05:10.6821854Z { 2023-01-11T21:05:10.6821932Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:05:10.6822025Z auto tmp2 = in_ptr1[0]; 2023-01-11T21:05:10.6822129Z auto tmp1 = static_cast(tmp0); 2023-01-11T21:05:10.6822219Z auto tmp3 = tmp1 + tmp2; 2023-01-11T21:05:10.6822303Z out_ptr0[i0] = tmp3; 2023-01-11T21:05:10.6822368Z } 2023-01-11T21:05:10.6822430Z } 2023-01-11T21:05:10.6822478Z } 2023-01-11T21:05:10.6822536Z } 2023-01-11T21:05:10.6822595Z } 2023-01-11T21:05:10.6822673Z ''') 2023-01-11T21:05:10.6822678Z 2023-01-11T21:05:10.6822682Z 2023-01-11T21:05:10.6822767Z async_compile.wait(globals()) 2023-01-11T21:05:10.6822838Z del async_compile 2023-01-11T21:05:10.6822843Z 2023-01-11T21:05:10.6822911Z def call(args): 2023-01-11T21:05:10.6822977Z arg0_1, = args 2023-01-11T21:05:10.6823033Z args.clear() 2023-01-11T21:05:10.6823225Z buf0 = empty_strided((19, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6823392Z kernel_cpp_0(c_void_p(constant0.data_ptr()), c_void_p(arg0_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:05:10.6823461Z del arg0_1 2023-01-11T21:05:10.6823530Z return (buf0, ) 2023-01-11T21:05:10.6823535Z 2023-01-11T21:05:10.6823539Z 2023-01-11T21:05:10.6823614Z if __name__ == "__main__": 2023-01-11T21:05:10.6823726Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.6823833Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.6824031Z constant0 = rand_strided((19, ), (1, ), device='cpu', dtype=torch.int64) 2023-01-11T21:05:10.6824221Z arg0_1 = rand_strided((1, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6824326Z print_performance(lambda: call([arg0_1])) 2023-01-11T21:05:10.6824331Z 2023-01-11T21:05:10.6824395Z ok (2.643s) 2023-01-11T21:05:10.6824830Z test_tensor3_cpu (__main__.CpuTests) ... inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.6824992Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.6825250Z [2023-01-11 21:00:46,821] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 438 2023-01-11T21:05:10.6825510Z [2023-01-11 21:00:49,493] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 438 2023-01-11T21:05:10.6825515Z 2023-01-11T21:05:10.6825608Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.6825664Z import torch 2023-01-11T21:05:10.6825732Z import random 2023-01-11T21:05:10.6825849Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.6825968Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.6825973Z 2023-01-11T21:05:10.6826052Z aten = torch.ops.aten 2023-01-11T21:05:10.6826186Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.6826275Z async_compile = AsyncCompile() 2023-01-11T21:05:10.6826280Z 2023-01-11T21:05:10.6826284Z 2023-01-11T21:05:10.6826401Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.6826634Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.6826754Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:05:10.6826849Z long* __restrict__ out_ptr0, 2023-01-11T21:05:10.6826944Z long* __restrict__ out_ptr1, 2023-01-11T21:05:10.6827040Z float* __restrict__ out_ptr2) 2023-01-11T21:05:10.6827099Z { 2023-01-11T21:05:10.6827173Z #pragma GCC ivdep 2023-01-11T21:05:10.6827240Z for(long i0=0; i0<2; i0+=1) 2023-01-11T21:05:10.6827299Z { 2023-01-11T21:05:10.6827362Z { 2023-01-11T21:05:10.6827423Z { 2023-01-11T21:05:10.6827521Z auto tmp0 = static_cast(i0); 2023-01-11T21:05:10.6827619Z auto tmp1 = static_cast(1); 2023-01-11T21:05:10.6827693Z auto tmp2 = tmp0 < tmp1; 2023-01-11T21:05:10.6827789Z auto tmp3 = static_cast(2); 2023-01-11T21:05:10.6827884Z auto tmp4 = tmp2 ? tmp1 : tmp3; 2023-01-11T21:05:10.6827970Z auto tmp5 = tmp4 + tmp1; 2023-01-11T21:05:10.6828050Z out_ptr0[i0] = tmp5; 2023-01-11T21:05:10.6828111Z } 2023-01-11T21:05:10.6828172Z } 2023-01-11T21:05:10.6828219Z } 2023-01-11T21:05:10.6828293Z #pragma GCC ivdep 2023-01-11T21:05:10.6828369Z for(long i0=0; i0<3; i0+=1) 2023-01-11T21:05:10.6828428Z { 2023-01-11T21:05:10.6828487Z { 2023-01-11T21:05:10.6828548Z { 2023-01-11T21:05:10.6828646Z auto tmp0 = static_cast(i0); 2023-01-11T21:05:10.6828730Z auto tmp1 = static_cast(1); 2023-01-11T21:05:10.6828813Z auto tmp2 = tmp0 < tmp1; 2023-01-11T21:05:10.6828908Z auto tmp3 = static_cast(2); 2023-01-11T21:05:10.6828990Z auto tmp4 = tmp0 < tmp3; 2023-01-11T21:05:10.6829082Z auto tmp5 = static_cast(3); 2023-01-11T21:05:10.6829178Z auto tmp6 = tmp4 ? tmp3 : tmp5; 2023-01-11T21:05:10.6829271Z auto tmp7 = tmp2 ? tmp1 : tmp6; 2023-01-11T21:05:10.6829344Z auto tmp8 = tmp7 + tmp3; 2023-01-11T21:05:10.6829424Z out_ptr1[i0] = tmp8; 2023-01-11T21:05:10.6829485Z } 2023-01-11T21:05:10.6829544Z } 2023-01-11T21:05:10.6829604Z } 2023-01-11T21:05:10.6829699Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.6829759Z { 2023-01-11T21:05:10.6829821Z #pragma omp for 2023-01-11T21:05:10.6829900Z for(long i0=0; i0<4; i0+=1) 2023-01-11T21:05:10.6829961Z { 2023-01-11T21:05:10.6830021Z { 2023-01-11T21:05:10.6830084Z { 2023-01-11T21:05:10.6830205Z auto tmp12 = in_ptr0[i0]; 2023-01-11T21:05:10.6830295Z auto tmp0 = static_cast(i0); 2023-01-11T21:05:10.6830395Z auto tmp1 = static_cast(2); 2023-01-11T21:05:10.6830487Z auto tmp2 = tmp0 < tmp1; 2023-01-11T21:05:10.6830586Z auto tmp3 = static_cast(1); 2023-01-11T21:05:10.6830674Z auto tmp4 = tmp0 < tmp3; 2023-01-11T21:05:10.6830766Z auto tmp5 = tmp4 ? tmp3 : tmp1; 2023-01-11T21:05:10.6830862Z auto tmp6 = static_cast(3); 2023-01-11T21:05:10.6830950Z auto tmp7 = tmp0 < tmp6; 2023-01-11T21:05:10.6831034Z auto tmp8 = static_cast(4); 2023-01-11T21:05:10.6831128Z auto tmp9 = tmp7 ? tmp6 : tmp8; 2023-01-11T21:05:10.6831223Z auto tmp10 = tmp2 ? tmp5 : tmp9; 2023-01-11T21:05:10.6831330Z auto tmp11 = static_cast(tmp10); 2023-01-11T21:05:10.6831423Z auto tmp13 = tmp11 + tmp12; 2023-01-11T21:05:10.6831506Z out_ptr2[i0] = tmp13; 2023-01-11T21:05:10.6831570Z } 2023-01-11T21:05:10.6831618Z } 2023-01-11T21:05:10.6831706Z } 2023-01-11T21:05:10.6831767Z } 2023-01-11T21:05:10.6831825Z } 2023-01-11T21:05:10.6831902Z ''') 2023-01-11T21:05:10.6831908Z 2023-01-11T21:05:10.6831912Z 2023-01-11T21:05:10.6831999Z async_compile.wait(globals()) 2023-01-11T21:05:10.6832069Z del async_compile 2023-01-11T21:05:10.6832074Z 2023-01-11T21:05:10.6832130Z def call(args): 2023-01-11T21:05:10.6832197Z arg0_1, = args 2023-01-11T21:05:10.6832265Z args.clear() 2023-01-11T21:05:10.6832453Z buf0 = empty_strided((2, ), (1, ), device='cpu', dtype=torch.int64) 2023-01-11T21:05:10.6832639Z buf1 = empty_strided((3, ), (1, ), device='cpu', dtype=torch.int64) 2023-01-11T21:05:10.6832826Z buf2 = empty_strided((4, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6833016Z buf3 = empty_strided((0, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6833190Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(buf0.data_ptr()), c_void_p(buf1.data_ptr()), c_void_p(buf2.data_ptr())) 2023-01-11T21:05:10.6833258Z del arg0_1 2023-01-11T21:05:10.6833345Z return (buf3, buf0, buf1, buf2, ) 2023-01-11T21:05:10.6833350Z 2023-01-11T21:05:10.6833354Z 2023-01-11T21:05:10.6833428Z if __name__ == "__main__": 2023-01-11T21:05:10.6833540Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.6833661Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.6833852Z arg0_1 = rand_strided((4, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6833957Z print_performance(lambda: call([arg0_1])) 2023-01-11T21:05:10.6833962Z 2023-01-11T21:05:10.6834026Z ok (2.733s) 2023-01-11T21:05:10.6834471Z test_tmp_not_defined_issue1_cpu (__main__.CpuTests) ... inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.6834599Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.6834966Z Failed to collect metadata on function, produced code may be suboptimal. Known situations this can occur are inference mode only compilation involving resize_ or prims (!schema.hasAnyAliasInfo() INTERNAL ASSERT FAILED); if your situation looks different please file a bug to PyTorch. 2023-01-11T21:05:10.6835059Z Traceback (most recent call last): 2023-01-11T21:05:10.6835329Z File "/opt/conda/lib/python3.7/site-packages/torch/_functorch/aot_autograd.py", line 1275, in aot_wrapper_dedupe 2023-01-11T21:05:10.6835397Z )(*flat_args) 2023-01-11T21:05:10.6835643Z File "/opt/conda/lib/python3.7/site-packages/torch/_functorch/aot_autograd.py", line 289, in inner 2023-01-11T21:05:10.6835743Z outs = f(*f_args) 2023-01-11T21:05:10.6836005Z File "/opt/conda/lib/python3.7/site-packages/torch/_functorch/aot_autograd.py", line 2327, in functional_call 2023-01-11T21:05:10.6836116Z out = Interpreter(mod).run(*args[params_len:], **kwargs) 2023-01-11T21:05:10.6836341Z File "/opt/conda/lib/python3.7/site-packages/torch/fx/interpreter.py", line 136, in run 2023-01-11T21:05:10.6836436Z self.env[node] = self.run_node(node) 2023-01-11T21:05:10.6836666Z File "/opt/conda/lib/python3.7/site-packages/torch/fx/interpreter.py", line 177, in run_node 2023-01-11T21:05:10.6836780Z return getattr(self, n.op)(n.target, args, kwargs) 2023-01-11T21:05:10.6837019Z File "/opt/conda/lib/python3.7/site-packages/torch/fx/interpreter.py", line 249, in call_function 2023-01-11T21:05:10.6837104Z return target(*args, **kwargs) 2023-01-11T21:05:10.6837313Z File "/opt/conda/lib/python3.7/site-packages/torch/_ops.py", line 284, in __call__ 2023-01-11T21:05:10.6837400Z return self._op(*args, **kwargs or {}) 2023-01-11T21:05:10.6837657Z File "/opt/conda/lib/python3.7/site-packages/torch/_inductor/overrides.py", line 36, in __torch_function__ 2023-01-11T21:05:10.6837767Z return func(*args, **kwargs) 2023-01-11T21:05:10.6837982Z File "/opt/conda/lib/python3.7/site-packages/torch/_ops.py", line 284, in __call__ 2023-01-11T21:05:10.6838078Z return self._op(*args, **kwargs or {}) 2023-01-11T21:05:10.6838318Z File "/opt/conda/lib/python3.7/site-packages/torch/_prims/__init__.py", line 285, in _autograd_impl 2023-01-11T21:05:10.6838437Z return backwards_not_supported(_prim)(*args, **kwargs) 2023-01-11T21:05:10.6838695Z File "/opt/conda/lib/python3.7/site-packages/torch/_prims_common/wrappers.py", line 309, in _autograd_impl 2023-01-11T21:05:10.6838780Z return redispatch_prim(args, kwargs) 2023-01-11T21:05:10.6839038Z File "/opt/conda/lib/python3.7/site-packages/torch/_prims_common/wrappers.py", line 279, in redispatch_prim 2023-01-11T21:05:10.6839126Z return prim(*args, **kwargs) 2023-01-11T21:05:10.6839336Z File "/opt/conda/lib/python3.7/site-packages/torch/_ops.py", line 284, in __call__ 2023-01-11T21:05:10.6839435Z return self._op(*args, **kwargs or {}) 2023-01-11T21:05:10.6839930Z RuntimeError: !schema.hasAnyAliasInfo() INTERNAL ASSERT FAILED at "/var/lib/jenkins/workspace/aten/src/ATen/FunctionalizeFallbackKernel.cpp":32, please report a bug to PyTorch. mutating and aliasing ops should all have codegen'd kernels 2023-01-11T21:05:10.6839936Z 2023-01-11T21:05:10.6840181Z While executing %broadcast_in_dim_default : [#users=1] = call_function[target=torch.ops.prims.broadcast_in_dim.default](args = (%var_default_1, [1, 512, 1], [0, 1]), kwargs = {}) 2023-01-11T21:05:10.6840259Z Original traceback: 2023-01-11T21:05:10.6840329Z Module stack: {} 2023-01-11T21:05:10.6840442Z File "inductor/test_torchinductor.py", line 4724, in forward 2023-01-11T21:05:10.6840525Z var_default_1, [1, 512, 1], [0, 1] 2023-01-11T21:05:10.6840774Z | File "inductor/test_torchinductor.py", line 318, in run 2023-01-11T21:05:10.6840857Z return model(*ex, **kwargs) 2023-01-11T21:05:10.6840861Z 2023-01-11T21:05:10.6841124Z [2023-01-11 21:00:49,944] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 439 2023-01-11T21:05:10.6841130Z 2023-01-11T21:05:10.6841222Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.6841294Z import torch 2023-01-11T21:05:10.6841350Z import random 2023-01-11T21:05:10.6841467Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.6841588Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.6841593Z 2023-01-11T21:05:10.6841671Z aten = torch.ops.aten 2023-01-11T21:05:10.6841806Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.6841897Z async_compile = AsyncCompile() 2023-01-11T21:05:10.6841902Z 2023-01-11T21:05:10.6841906Z 2023-01-11T21:05:10.6842039Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.6842295Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.6842398Z extern "C" void kernel(float* __restrict__ in_out_ptr0, 2023-01-11T21:05:10.6842503Z float* __restrict__ in_out_ptr1, 2023-01-11T21:05:10.6842608Z const float* __restrict__ in_ptr0, 2023-01-11T21:05:10.6842710Z const float* __restrict__ in_ptr1, 2023-01-11T21:05:10.6842813Z const float* __restrict__ in_ptr2, 2023-01-11T21:05:10.6842915Z const float* __restrict__ in_ptr3, 2023-01-11T21:05:10.6843018Z const float* __restrict__ in_ptr4, 2023-01-11T21:05:10.6843118Z const float* __restrict__ in_ptr5, 2023-01-11T21:05:10.6843204Z float* __restrict__ out_ptr0, 2023-01-11T21:05:10.6843301Z float* __restrict__ out_ptr2, 2023-01-11T21:05:10.6843395Z float* __restrict__ out_ptr3, 2023-01-11T21:05:10.6843492Z float* __restrict__ out_ptr5) 2023-01-11T21:05:10.6843553Z { 2023-01-11T21:05:10.6843638Z auto out_ptr1 = in_out_ptr0; 2023-01-11T21:05:10.6843785Z auto out_ptr4 = in_out_ptr1; 2023-01-11T21:05:10.6843875Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.6843935Z { 2023-01-11T21:05:10.6844010Z #pragma omp for 2023-01-11T21:05:10.6844091Z for(long i0=0; i0<512; i0+=1) 2023-01-11T21:05:10.6844155Z { 2023-01-11T21:05:10.6844218Z { 2023-01-11T21:05:10.6844413Z #pragma omp declare reduction(+:at::vec::Vectorized:omp_out += omp_in) initializer(omp_priv={{0}}) 2023-01-11T21:05:10.6844478Z float tmp1 = 0; 2023-01-11T21:05:10.6844599Z auto tmp1_vec = at::vec::Vectorized(tmp1); 2023-01-11T21:05:10.6844690Z for(long i1=0; i1<64; i1+=1) 2023-01-11T21:05:10.6844756Z { 2023-01-11T21:05:10.6844904Z auto tmp0 = at::vec::Vectorized::loadu(in_ptr0 + (16*i1) + (1024*i0)); 2023-01-11T21:05:10.6844998Z tmp1_vec += tmp0; 2023-01-11T21:05:10.6845090Z } 2023-01-11T21:05:10.6845327Z tmp1 = at::vec::vec_reduce_all([](at::vec::Vectorized& x, at::vec::Vectorized&y) {return x + y;}, tmp1_vec); 2023-01-11T21:05:10.6845435Z #pragma omp simd simdlen(8) reduction(+:tmp1) 2023-01-11T21:05:10.6845525Z for(long i1=1024; i1<1024; i1+=1) 2023-01-11T21:05:10.6845587Z { 2023-01-11T21:05:10.6845687Z auto tmp0 = in_ptr0[i1 + (1024*i0)]; 2023-01-11T21:05:10.6845763Z tmp1 += tmp0; 2023-01-11T21:05:10.6845825Z } 2023-01-11T21:05:10.6845905Z out_ptr0[i0] = tmp1; 2023-01-11T21:05:10.6845954Z } 2023-01-11T21:05:10.6846015Z } 2023-01-11T21:05:10.6846090Z #pragma omp for 2023-01-11T21:05:10.6846174Z for(long i0=0; i0<512; i0+=1) 2023-01-11T21:05:10.6846236Z { 2023-01-11T21:05:10.6846299Z { 2023-01-11T21:05:10.6846488Z #pragma omp declare reduction(+:at::vec::Vectorized:omp_out += omp_in) initializer(omp_priv={{0}}) 2023-01-11T21:05:10.6846552Z float tmp6 = 0; 2023-01-11T21:05:10.6846674Z auto tmp6_vec = at::vec::Vectorized(tmp6); 2023-01-11T21:05:10.6846762Z for(long i1=0; i1<64; i1+=1) 2023-01-11T21:05:10.6846826Z { 2023-01-11T21:05:10.6846967Z auto tmp0 = at::vec::Vectorized::loadu(in_ptr0 + (16*i1) + (1024*i0)); 2023-01-11T21:05:10.6847092Z auto tmp1 = at::vec::Vectorized(out_ptr0[i0]); 2023-01-11T21:05:10.6847229Z auto tmp2 = at::vec::Vectorized(static_cast(1024)); 2023-01-11T21:05:10.6847320Z auto tmp3 = tmp1 / tmp2; 2023-01-11T21:05:10.6847449Z auto tmp4 = tmp0 - tmp3; 2023-01-11T21:05:10.6847577Z auto tmp5 = tmp4.pow(2); 2023-01-11T21:05:10.6847658Z tmp6_vec += tmp5; 2023-01-11T21:05:10.6847721Z } 2023-01-11T21:05:10.6847919Z tmp6 = at::vec::vec_reduce_all([](at::vec::Vectorized& x, at::vec::Vectorized&y) {return x + y;}, tmp6_vec); 2023-01-11T21:05:10.6848041Z #pragma omp simd simdlen(8) reduction(+:tmp6) 2023-01-11T21:05:10.6848132Z for(long i1=1024; i1<1024; i1+=1) 2023-01-11T21:05:10.6848196Z { 2023-01-11T21:05:10.6848282Z auto tmp0 = in_ptr0[i1 + (1024*i0)]; 2023-01-11T21:05:10.6848374Z auto tmp1 = out_ptr0[i0]; 2023-01-11T21:05:10.6848477Z auto tmp2 = static_cast(1024); 2023-01-11T21:05:10.6848567Z auto tmp3 = tmp1 / tmp2; 2023-01-11T21:05:10.6848702Z auto tmp4 = tmp0 - tmp3; 2023-01-11T21:05:10.6848793Z auto tmp5 = tmp4 * tmp4; 2023-01-11T21:05:10.6848870Z tmp6 += tmp5; 2023-01-11T21:05:10.6848920Z } 2023-01-11T21:05:10.6848999Z out_ptr1[i0] = tmp6; 2023-01-11T21:05:10.6849094Z } 2023-01-11T21:05:10.6849157Z } 2023-01-11T21:05:10.6849233Z #pragma omp for 2023-01-11T21:05:10.6849311Z for(long i0=0; i0<32; i0+=1) 2023-01-11T21:05:10.6849376Z { 2023-01-11T21:05:10.6849498Z auto tmp0 = at::vec::Vectorized::loadu(out_ptr1 + 16*i0); 2023-01-11T21:05:10.6849633Z auto tmp1 = at::vec::Vectorized(static_cast(1024)); 2023-01-11T21:05:10.6849717Z auto tmp2 = tmp0 / tmp1; 2023-01-11T21:05:10.6849812Z tmp2.store(in_out_ptr0 + 16*i0); 2023-01-11T21:05:10.6849873Z } 2023-01-11T21:05:10.6849966Z #pragma omp for simd simdlen(8) 2023-01-11T21:05:10.6850047Z for(long i0=512; i0<512; i0+=1) 2023-01-11T21:05:10.6850097Z { 2023-01-11T21:05:10.6850181Z auto tmp0 = out_ptr1[i0]; 2023-01-11T21:05:10.6850282Z auto tmp1 = static_cast(1024); 2023-01-11T21:05:10.6850365Z auto tmp2 = tmp0 / tmp1; 2023-01-11T21:05:10.6850448Z in_out_ptr0[i0] = tmp2; 2023-01-11T21:05:10.6850509Z } 2023-01-11T21:05:10.6850583Z #pragma omp for 2023-01-11T21:05:10.6850651Z for(long i0=0; i0<512; i0+=1) 2023-01-11T21:05:10.6850711Z { 2023-01-11T21:05:10.6850777Z { 2023-01-11T21:05:10.6850961Z #pragma omp declare reduction(+:at::vec::Vectorized:omp_out += omp_in) initializer(omp_priv={{0}}) 2023-01-11T21:05:10.6851039Z float tmp9 = 0; 2023-01-11T21:05:10.6851159Z auto tmp9_vec = at::vec::Vectorized(tmp9); 2023-01-11T21:05:10.6851247Z for(long i1=0; i1<64; i1+=1) 2023-01-11T21:05:10.6851297Z { 2023-01-11T21:05:10.6851441Z auto tmp0 = at::vec::Vectorized::loadu(in_ptr1 + (16*i1) + (1024*i0)); 2023-01-11T21:05:10.6851567Z auto tmp1 = at::vec::Vectorized(in_ptr2[i0]); 2023-01-11T21:05:10.6851693Z auto tmp3 = at::vec::Vectorized(in_ptr3[i0]); 2023-01-11T21:05:10.6851827Z auto tmp5 = at::vec::Vectorized::loadu(in_ptr4 + 16*i1); 2023-01-11T21:05:10.6851956Z auto tmp7 = at::vec::Vectorized::loadu(in_ptr5 + 16*i1); 2023-01-11T21:05:10.6852091Z auto tmp2 = tmp0 - tmp1; 2023-01-11T21:05:10.6852180Z auto tmp4 = tmp2 * tmp3; 2023-01-11T21:05:10.6852254Z auto tmp6 = tmp4 * tmp5; 2023-01-11T21:05:10.6852339Z auto tmp8 = tmp6 + tmp7; 2023-01-11T21:05:10.6852443Z tmp8.store(out_ptr2 + (16*i1) + (1024*i0)); 2023-01-11T21:05:10.6852525Z tmp9_vec += tmp8; 2023-01-11T21:05:10.6852589Z } 2023-01-11T21:05:10.6852824Z tmp9 = at::vec::vec_reduce_all([](at::vec::Vectorized& x, at::vec::Vectorized&y) {return x + y;}, tmp9_vec); 2023-01-11T21:05:10.6852946Z #pragma omp simd simdlen(8) reduction(+:tmp9) 2023-01-11T21:05:10.6853037Z for(long i1=1024; i1<1024; i1+=1) 2023-01-11T21:05:10.6853088Z { 2023-01-11T21:05:10.6853184Z auto tmp0 = in_ptr1[i1 + (1024*i0)]; 2023-01-11T21:05:10.6853273Z auto tmp1 = in_ptr2[i0]; 2023-01-11T21:05:10.6853360Z auto tmp3 = in_ptr3[i0]; 2023-01-11T21:05:10.6853446Z auto tmp5 = in_ptr4[i1]; 2023-01-11T21:05:10.6853532Z auto tmp7 = in_ptr5[i1]; 2023-01-11T21:05:10.6853663Z auto tmp2 = tmp0 - tmp1; 2023-01-11T21:05:10.6853737Z auto tmp4 = tmp2 * tmp3; 2023-01-11T21:05:10.6853823Z auto tmp6 = tmp4 * tmp5; 2023-01-11T21:05:10.6853909Z auto tmp8 = tmp6 + tmp7; 2023-01-11T21:05:10.6854006Z out_ptr2[i1 + (1024*i0)] = tmp8; 2023-01-11T21:05:10.6854082Z tmp9 += tmp8; 2023-01-11T21:05:10.6854148Z } 2023-01-11T21:05:10.6854254Z out_ptr3[i0] = tmp9; 2023-01-11T21:05:10.6854305Z } 2023-01-11T21:05:10.6854365Z } 2023-01-11T21:05:10.6854440Z #pragma omp for 2023-01-11T21:05:10.6854521Z for(long i0=0; i0<512; i0+=1) 2023-01-11T21:05:10.6854583Z { 2023-01-11T21:05:10.6854645Z { 2023-01-11T21:05:10.6854835Z #pragma omp declare reduction(+:at::vec::Vectorized:omp_out += omp_in) initializer(omp_priv={{0}}) 2023-01-11T21:05:10.6854899Z float tmp6 = 0; 2023-01-11T21:05:10.6855017Z auto tmp6_vec = at::vec::Vectorized(tmp6); 2023-01-11T21:05:10.6855092Z float tmp7 = 0; 2023-01-11T21:05:10.6855208Z auto tmp7_vec = at::vec::Vectorized(tmp7); 2023-01-11T21:05:10.6855298Z for(long i1=0; i1<64; i1+=1) 2023-01-11T21:05:10.6855361Z { 2023-01-11T21:05:10.6855506Z auto tmp0 = at::vec::Vectorized::loadu(out_ptr2 + (16*i1) + (1024*i0)); 2023-01-11T21:05:10.6855629Z auto tmp1 = at::vec::Vectorized(out_ptr3[i0]); 2023-01-11T21:05:10.6855753Z auto tmp2 = at::vec::Vectorized(static_cast(1024)); 2023-01-11T21:05:10.6855842Z auto tmp3 = tmp1 / tmp2; 2023-01-11T21:05:10.6855975Z auto tmp4 = tmp0 - tmp3; 2023-01-11T21:05:10.6856063Z auto tmp5 = tmp4.pow(2); 2023-01-11T21:05:10.6856141Z tmp6_vec += tmp5; 2023-01-11T21:05:10.6856217Z tmp7_vec += tmp0; 2023-01-11T21:05:10.6856280Z } 2023-01-11T21:05:10.6856471Z tmp6 = at::vec::vec_reduce_all([](at::vec::Vectorized& x, at::vec::Vectorized&y) {return x + y;}, tmp6_vec); 2023-01-11T21:05:10.6856667Z tmp7 = at::vec::vec_reduce_all([](at::vec::Vectorized& x, at::vec::Vectorized&y) {return x + y;}, tmp7_vec); 2023-01-11T21:05:10.6856795Z #pragma omp simd simdlen(8) reduction(+:tmp6) reduction(+:tmp7) 2023-01-11T21:05:10.6856886Z for(long i1=1024; i1<1024; i1+=1) 2023-01-11T21:05:10.6856949Z { 2023-01-11T21:05:10.6857049Z auto tmp0 = out_ptr2[i1 + (1024*i0)]; 2023-01-11T21:05:10.6857140Z auto tmp1 = out_ptr3[i0]; 2023-01-11T21:05:10.6857242Z auto tmp2 = static_cast(1024); 2023-01-11T21:05:10.6857330Z auto tmp3 = tmp1 / tmp2; 2023-01-11T21:05:10.6857451Z auto tmp4 = tmp0 - tmp3; 2023-01-11T21:05:10.6857538Z auto tmp5 = tmp4 * tmp4; 2023-01-11T21:05:10.6857612Z tmp6 += tmp5; 2023-01-11T21:05:10.6857685Z tmp7 += tmp0; 2023-01-11T21:05:10.6857811Z } 2023-01-11T21:05:10.6857892Z out_ptr4[i0] = tmp6; 2023-01-11T21:05:10.6857971Z out_ptr5[i0] = tmp7; 2023-01-11T21:05:10.6858021Z } 2023-01-11T21:05:10.6858084Z } 2023-01-11T21:05:10.6858162Z #pragma omp for 2023-01-11T21:05:10.6858243Z for(long i0=0; i0<32; i0+=1) 2023-01-11T21:05:10.6858306Z { 2023-01-11T21:05:10.6858441Z auto tmp0 = at::vec::Vectorized::loadu(out_ptr4 + 16*i0); 2023-01-11T21:05:10.6858669Z auto tmp1 = at::vec::Vectorized(static_cast(1024)); 2023-01-11T21:05:10.6858739Z auto tmp2 = tmp0 / tmp1; 2023-01-11T21:05:10.6858943Z auto tmp3 = at::vec::Vectorized(static_cast(1e-05)); 2023-01-11T21:05:10.6859024Z auto tmp4 = tmp2 + tmp3; 2023-01-11T21:05:10.6859121Z tmp4.store(in_out_ptr1 + 16*i0); 2023-01-11T21:05:10.6859186Z } 2023-01-11T21:05:10.6859283Z #pragma omp for simd simdlen(8) 2023-01-11T21:05:10.6859367Z for(long i0=512; i0<512; i0+=1) 2023-01-11T21:05:10.6859415Z { 2023-01-11T21:05:10.6859498Z auto tmp0 = out_ptr4[i0]; 2023-01-11T21:05:10.6859635Z auto tmp1 = static_cast(1024); 2023-01-11T21:05:10.6859719Z auto tmp2 = tmp0 / tmp1; 2023-01-11T21:05:10.6859868Z auto tmp3 = static_cast(1e-05); 2023-01-11T21:05:10.6859948Z auto tmp4 = tmp2 + tmp3; 2023-01-11T21:05:10.6860027Z in_out_ptr1[i0] = tmp4; 2023-01-11T21:05:10.6860074Z } 2023-01-11T21:05:10.6860134Z } 2023-01-11T21:05:10.6860192Z } 2023-01-11T21:05:10.6860268Z ''') 2023-01-11T21:05:10.6860274Z 2023-01-11T21:05:10.6860278Z 2023-01-11T21:05:10.6860365Z async_compile.wait(globals()) 2023-01-11T21:05:10.6860438Z del async_compile 2023-01-11T21:05:10.6860443Z 2023-01-11T21:05:10.6860511Z def call(args): 2023-01-11T21:05:10.6860603Z arg0_1, arg1_1, arg2_1, arg3_1, arg4_1, arg5_1 = args 2023-01-11T21:05:10.6860675Z args.clear() 2023-01-11T21:05:10.6860885Z buf0 = empty_strided((1, 512, 1), (512, 1, 512), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6861087Z buf1 = empty_strided((1, 512), (512, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6861170Z buf2 = buf1; del buf1 # reuse 2023-01-11T21:05:10.6861388Z buf3 = empty_strided((1, 512, 1024), (524288, 1024, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6861595Z buf4 = empty_strided((1, 512, 1), (512, 1, 512), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6861789Z buf5 = empty_strided((1, 512), (512, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6861969Z buf6 = empty_strided((1, 512), (512, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6862082Z buf7 = as_strided(buf5, (1, 512, 1), (512, 1, 1)); del buf5 # reuse 2023-01-11T21:05:10.6862454Z kernel_cpp_0(c_void_p(buf2.data_ptr()), c_void_p(buf7.data_ptr()), c_void_p(arg3_1.data_ptr()), c_void_p(arg2_1.data_ptr()), c_void_p(arg4_1.data_ptr()), c_void_p(arg5_1.data_ptr()), c_void_p(arg0_1.data_ptr()), c_void_p(arg1_1.data_ptr()), c_void_p(buf0.data_ptr()), c_void_p(buf3.data_ptr()), c_void_p(buf4.data_ptr()), c_void_p(buf6.data_ptr())) 2023-01-11T21:05:10.6862524Z del arg0_1 2023-01-11T21:05:10.6862589Z del arg1_1 2023-01-11T21:05:10.6862652Z del arg2_1 2023-01-11T21:05:10.6862714Z del arg3_1 2023-01-11T21:05:10.6862778Z del arg4_1 2023-01-11T21:05:10.6862829Z del arg5_1 2023-01-11T21:05:10.6862909Z return (buf2, buf6, buf7, ) 2023-01-11T21:05:10.6862914Z 2023-01-11T21:05:10.6862918Z 2023-01-11T21:05:10.6862992Z if __name__ == "__main__": 2023-01-11T21:05:10.6863105Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.6863228Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.6863425Z arg0_1 = rand_strided((1024, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6863618Z arg1_1 = rand_strided((1024, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6863864Z arg2_1 = rand_strided((1, 512, 1024), (524288, 1024, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6864068Z arg3_1 = rand_strided((1, 512, 1024), (524288, 1024, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6864273Z arg4_1 = rand_strided((1, 512, 1), (512, 1, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6864476Z arg5_1 = rand_strided((1, 512, 1), (512, 1, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6864615Z print_performance(lambda: call([arg0_1, arg1_1, arg2_1, arg3_1, arg4_1, arg5_1])) 2023-01-11T21:05:10.6864882Z [2023-01-11 21:00:52,725] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 439 2023-01-11T21:05:10.6864888Z 2023-01-11T21:05:10.6864954Z ok (3.491s) 2023-01-11T21:05:10.6865117Z test_tmp_not_defined_issue2_cpu (__main__.CpuTests) ... skip: TODO: debug this with asan (0.002s) 2023-01-11T21:05:10.6865263Z test_to_device_constant_cpu (__main__.CpuTests) ... skip: requires cuda (0.001s) 2023-01-11T21:05:10.6865394Z test_to_device_cpu (__main__.CpuTests) ... skip: requires cuda (0.001s) 2023-01-11T21:05:10.6865848Z test_to_dtype_cpu (__main__.CpuTests) ... inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.6865976Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.6866235Z [2023-01-11 21:00:53,166] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 440 2023-01-11T21:05:10.6866498Z [2023-01-11 21:00:55,822] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 440 2023-01-11T21:05:10.6866503Z 2023-01-11T21:05:10.6866598Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.6866666Z import torch 2023-01-11T21:05:10.6866735Z import random 2023-01-11T21:05:10.6866850Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.6866970Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.6866975Z 2023-01-11T21:05:10.6867040Z aten = torch.ops.aten 2023-01-11T21:05:10.6867172Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.6867260Z async_compile = AsyncCompile() 2023-01-11T21:05:10.6867265Z 2023-01-11T21:05:10.6867269Z 2023-01-11T21:05:10.6867402Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.6867603Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.6867723Z extern "C" void kernel(const double* __restrict__ in_ptr0, 2023-01-11T21:05:10.6867820Z float* __restrict__ out_ptr0, 2023-01-11T21:05:10.6867915Z bool* __restrict__ out_ptr1) 2023-01-11T21:05:10.6867965Z { 2023-01-11T21:05:10.6868059Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.6868119Z { 2023-01-11T21:05:10.6868195Z #pragma omp for 2023-01-11T21:05:10.6868278Z for(long i0=0; i0<40; i0+=1) 2023-01-11T21:05:10.6868338Z { 2023-01-11T21:05:10.6868388Z { 2023-01-11T21:05:10.6868452Z { 2023-01-11T21:05:10.6868541Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:05:10.6868643Z auto tmp1 = static_cast(1); 2023-01-11T21:05:10.6868733Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:05:10.6868839Z auto tmp3 = static_cast(tmp2); 2023-01-11T21:05:10.6868941Z auto tmp4 = static_cast(tmp0); 2023-01-11T21:05:10.6869013Z out_ptr0[i0] = tmp3; 2023-01-11T21:05:10.6869095Z out_ptr1[i0] = tmp4; 2023-01-11T21:05:10.6869155Z } 2023-01-11T21:05:10.6869243Z } 2023-01-11T21:05:10.6869304Z } 2023-01-11T21:05:10.6869363Z } 2023-01-11T21:05:10.6869421Z } 2023-01-11T21:05:10.6869486Z ''') 2023-01-11T21:05:10.6869491Z 2023-01-11T21:05:10.6869496Z 2023-01-11T21:05:10.6869586Z async_compile.wait(globals()) 2023-01-11T21:05:10.6869658Z del async_compile 2023-01-11T21:05:10.6869663Z 2023-01-11T21:05:10.6869732Z def call(args): 2023-01-11T21:05:10.6869804Z arg0_1, arg1_1 = args 2023-01-11T21:05:10.6869873Z args.clear() 2023-01-11T21:05:10.6870076Z buf0 = empty_strided((2, 2, 10), (20, 10, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6870271Z buf1 = empty_strided((2, 2, 10), (20, 10, 1), device='cpu', dtype=torch.bool) 2023-01-11T21:05:10.6870419Z kernel_cpp_0(c_void_p(arg1_1.data_ptr()), c_void_p(buf0.data_ptr()), c_void_p(buf1.data_ptr())) 2023-01-11T21:05:10.6870511Z return (arg0_1, buf0, arg1_1, buf1, ) 2023-01-11T21:05:10.6870516Z 2023-01-11T21:05:10.6870520Z 2023-01-11T21:05:10.6870594Z if __name__ == "__main__": 2023-01-11T21:05:10.6870710Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.6870830Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.6871061Z arg0_1 = rand_strided((2, 2, 10), (20, 10, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6871260Z arg1_1 = rand_strided((2, 2, 10), (20, 10, 1), device='cpu', dtype=torch.float64) 2023-01-11T21:05:10.6871373Z print_performance(lambda: call([arg0_1, arg1_1])) 2023-01-11T21:05:10.6871378Z 2023-01-11T21:05:10.6871431Z ok (2.835s) 2023-01-11T21:05:10.6871865Z test_topk_cpu (__main__.CpuTests) ... inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.6871991Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.6872252Z [2023-01-11 21:00:55,857] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 441 2023-01-11T21:05:10.6872469Z [2023-01-11 21:00:55,867] torch._inductor.ir: [WARNING] Using FallbackKernel: aten.topk 2023-01-11T21:05:10.6872728Z [2023-01-11 21:00:55,871] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 441 2023-01-11T21:05:10.6872733Z 2023-01-11T21:05:10.6872823Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.6872892Z import torch 2023-01-11T21:05:10.6872960Z import random 2023-01-11T21:05:10.6873062Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.6873181Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.6873186Z 2023-01-11T21:05:10.6873262Z aten = torch.ops.aten 2023-01-11T21:05:10.6873394Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.6873483Z async_compile = AsyncCompile() 2023-01-11T21:05:10.6873490Z 2023-01-11T21:05:10.6873494Z 2023-01-11T21:05:10.6873580Z async_compile.wait(globals()) 2023-01-11T21:05:10.6873649Z del async_compile 2023-01-11T21:05:10.6873653Z 2023-01-11T21:05:10.6873721Z def call(args): 2023-01-11T21:05:10.6873778Z arg0_1, = args 2023-01-11T21:05:10.6873845Z args.clear() 2023-01-11T21:05:10.6873928Z buf0 = aten.topk(arg0_1, 2) 2023-01-11T21:05:10.6873992Z del arg0_1 2023-01-11T21:05:10.6874058Z buf1 = buf0[0] 2023-01-11T21:05:10.6874163Z assert_size_stride(buf1, (1, 1, 8, 2), (16, 16, 2, 1)) 2023-01-11T21:05:10.6874230Z buf2 = buf0[1] 2023-01-11T21:05:10.6874320Z assert_size_stride(buf2, (1, 1, 8, 2), (16, 16, 2, 1)) 2023-01-11T21:05:10.6874383Z del buf0 2023-01-11T21:05:10.6874457Z return (buf1, buf2, ) 2023-01-11T21:05:10.6874462Z 2023-01-11T21:05:10.6874466Z 2023-01-11T21:05:10.6874539Z if __name__ == "__main__": 2023-01-11T21:05:10.6874652Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.6874771Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.6875012Z arg0_1 = rand_strided((1, 1, 8, 8), (64, 64, 8, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6875119Z print_performance(lambda: call([arg0_1])) 2023-01-11T21:05:10.6875126Z 2023-01-11T21:05:10.6875179Z ok (0.043s) 2023-01-11T21:05:10.6875620Z test_transpose_add_cpu (__main__.CpuTests) ... inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.6875745Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.6876000Z [2023-01-11 21:00:55,898] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 442 2023-01-11T21:05:10.6876262Z [2023-01-11 21:00:58,530] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 442 2023-01-11T21:05:10.6876270Z 2023-01-11T21:05:10.6876359Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.6876427Z import torch 2023-01-11T21:05:10.6876522Z import random 2023-01-11T21:05:10.6876636Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.6876744Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.6876749Z 2023-01-11T21:05:10.6876824Z aten = torch.ops.aten 2023-01-11T21:05:10.6876955Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.6877043Z async_compile = AsyncCompile() 2023-01-11T21:05:10.6877048Z 2023-01-11T21:05:10.6877053Z 2023-01-11T21:05:10.6877184Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.6877386Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.6877504Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:05:10.6877605Z const float* __restrict__ in_ptr1, 2023-01-11T21:05:10.6877693Z float* __restrict__ out_ptr0) 2023-01-11T21:05:10.6877753Z { 2023-01-11T21:05:10.6877849Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.6877911Z { 2023-01-11T21:05:10.6877988Z #pragma omp for 2023-01-11T21:05:10.6878068Z for(long i0=0; i0<32; i0+=1) 2023-01-11T21:05:10.6878130Z { 2023-01-11T21:05:10.6878196Z #pragma GCC ivdep 2023-01-11T21:05:10.6878280Z for(long i1=0; i1<16; i1+=1) 2023-01-11T21:05:10.6878343Z { 2023-01-11T21:05:10.6878409Z { 2023-01-11T21:05:10.6878475Z { 2023-01-11T21:05:10.6878577Z auto tmp0 = in_ptr0[i0 + (32*i1)]; 2023-01-11T21:05:10.6878665Z auto tmp1 = in_ptr1[i1 + (16*i0)]; 2023-01-11T21:05:10.6878758Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:05:10.6878854Z out_ptr0[i0 + (32*i1)] = tmp2; 2023-01-11T21:05:10.6878924Z } 2023-01-11T21:05:10.6878987Z } 2023-01-11T21:05:10.6879051Z } 2023-01-11T21:05:10.6879111Z } 2023-01-11T21:05:10.6879158Z } 2023-01-11T21:05:10.6879219Z } 2023-01-11T21:05:10.6879297Z ''') 2023-01-11T21:05:10.6879302Z 2023-01-11T21:05:10.6879306Z 2023-01-11T21:05:10.6879396Z async_compile.wait(globals()) 2023-01-11T21:05:10.6879466Z del async_compile 2023-01-11T21:05:10.6879471Z 2023-01-11T21:05:10.6879541Z def call(args): 2023-01-11T21:05:10.6879618Z arg0_1, arg1_1 = args 2023-01-11T21:05:10.6879674Z args.clear() 2023-01-11T21:05:10.6879874Z buf0 = empty_strided((32, 16), (1, 32), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6880034Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(arg1_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:05:10.6880101Z del arg0_1 2023-01-11T21:05:10.6880165Z del arg1_1 2023-01-11T21:05:10.6880236Z return (buf0, ) 2023-01-11T21:05:10.6880271Z 2023-01-11T21:05:10.6880275Z 2023-01-11T21:05:10.6880350Z if __name__ == "__main__": 2023-01-11T21:05:10.6880462Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.6880573Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.6880895Z arg0_1 = rand_strided((16, 32), (32, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6881094Z arg1_1 = rand_strided((32, 16), (16, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6881209Z print_performance(lambda: call([arg0_1, arg1_1])) 2023-01-11T21:05:10.6881214Z 2023-01-11T21:05:10.6881281Z ok (2.664s) 2023-01-11T21:05:10.6881716Z test_transpose_cpu (__main__.CpuTests) ... inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.6881846Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.6882177Z [2023-01-11 21:00:58,584] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 443 2023-01-11T21:05:10.6882443Z [2023-01-11 21:01:01,308] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 443 2023-01-11T21:05:10.6882448Z 2023-01-11T21:05:10.6882542Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.6882599Z import torch 2023-01-11T21:05:10.6882668Z import random 2023-01-11T21:05:10.6882782Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.6882902Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.6882907Z 2023-01-11T21:05:10.6882987Z aten = torch.ops.aten 2023-01-11T21:05:10.6883120Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.6883211Z async_compile = AsyncCompile() 2023-01-11T21:05:10.6883215Z 2023-01-11T21:05:10.6883222Z 2023-01-11T21:05:10.6883355Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.6883548Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.6883671Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:05:10.6883775Z const float* __restrict__ in_ptr1, 2023-01-11T21:05:10.6883875Z float* __restrict__ out_ptr0, 2023-01-11T21:05:10.6883971Z float* __restrict__ out_ptr1) 2023-01-11T21:05:10.6884031Z { 2023-01-11T21:05:10.6884129Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.6884176Z { 2023-01-11T21:05:10.6884252Z #pragma omp for 2023-01-11T21:05:10.6884333Z for(long i0=0; i0<8; i0+=1) 2023-01-11T21:05:10.6884394Z { 2023-01-11T21:05:10.6884473Z #pragma GCC ivdep 2023-01-11T21:05:10.6884555Z for(long i1=0; i1<8; i1+=1) 2023-01-11T21:05:10.6884605Z { 2023-01-11T21:05:10.6884672Z { 2023-01-11T21:05:10.6884735Z { 2023-01-11T21:05:10.6884837Z auto tmp0 = in_ptr0[i0 + (8*i1)]; 2023-01-11T21:05:10.6884937Z auto tmp1 = in_ptr1[i1 + (8*i0)]; 2023-01-11T21:05:10.6885033Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:05:10.6885125Z out_ptr0[i0 + (8*i1)] = tmp2; 2023-01-11T21:05:10.6885178Z } 2023-01-11T21:05:10.6885241Z } 2023-01-11T21:05:10.6885302Z } 2023-01-11T21:05:10.6885363Z } 2023-01-11T21:05:10.6885438Z #pragma omp for 2023-01-11T21:05:10.6885516Z for(long i0=0; i0<4; i0+=1) 2023-01-11T21:05:10.6885575Z { 2023-01-11T21:05:10.6885700Z auto tmp0 = at::vec::Vectorized::loadu(in_ptr1 + 16*i0); 2023-01-11T21:05:10.6885834Z auto tmp1 = at::vec::Vectorized(static_cast(2)); 2023-01-11T21:05:10.6885916Z auto tmp2 = tmp0 * tmp1; 2023-01-11T21:05:10.6886088Z auto tmp3 = at::vec::Vectorized(static_cast(10)); 2023-01-11T21:05:10.6886171Z auto tmp4 = tmp2 + tmp3; 2023-01-11T21:05:10.6886260Z tmp4.store(out_ptr1 + 16*i0); 2023-01-11T21:05:10.6886323Z } 2023-01-11T21:05:10.6886417Z #pragma omp for simd simdlen(8) 2023-01-11T21:05:10.6886484Z for(long i0=64; i0<64; i0+=1) 2023-01-11T21:05:10.6886544Z { 2023-01-11T21:05:10.6886626Z auto tmp0 = in_ptr1[i0]; 2023-01-11T21:05:10.6886721Z auto tmp1 = static_cast(2); 2023-01-11T21:05:10.6886803Z auto tmp2 = tmp0 * tmp1; 2023-01-11T21:05:10.6886900Z auto tmp3 = static_cast(10); 2023-01-11T21:05:10.6886981Z auto tmp4 = tmp2 + tmp3; 2023-01-11T21:05:10.6887045Z out_ptr1[i0] = tmp4; 2023-01-11T21:05:10.6887105Z } 2023-01-11T21:05:10.6887165Z } 2023-01-11T21:05:10.6887223Z } 2023-01-11T21:05:10.6887302Z ''') 2023-01-11T21:05:10.6887309Z 2023-01-11T21:05:10.6887313Z 2023-01-11T21:05:10.6887400Z async_compile.wait(globals()) 2023-01-11T21:05:10.6887470Z del async_compile 2023-01-11T21:05:10.6887475Z 2023-01-11T21:05:10.6887531Z def call(args): 2023-01-11T21:05:10.6887631Z arg0_1, arg1_1 = args 2023-01-11T21:05:10.6887702Z args.clear() 2023-01-11T21:05:10.6887896Z buf0 = empty_strided((8, 8), (1, 8), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6888087Z buf1 = empty_strided((8, 8), (1, 8), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6888272Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(arg1_1.data_ptr()), c_void_p(buf0.data_ptr()), c_void_p(buf1.data_ptr())) 2023-01-11T21:05:10.6888340Z del arg0_1 2023-01-11T21:05:10.6888392Z del arg1_1 2023-01-11T21:05:10.6888467Z return (buf0, buf1, ) 2023-01-11T21:05:10.6888472Z 2023-01-11T21:05:10.6888476Z 2023-01-11T21:05:10.6888551Z if __name__ == "__main__": 2023-01-11T21:05:10.6888663Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.6888788Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.6888980Z arg0_1 = rand_strided((8, 8), (8, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6889175Z arg1_1 = rand_strided((8, 8), (8, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6889288Z print_performance(lambda: call([arg0_1, arg1_1])) 2023-01-11T21:05:10.6889293Z 2023-01-11T21:05:10.6889345Z ok (2.778s) 2023-01-11T21:05:10.6889694Z test_transposed_propagates_cpu (__main__.CpuTests) ... [2023-01-11 21:01:01,342] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 444 2023-01-11T21:05:10.6889956Z [2023-01-11 21:01:03,985] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 444 2023-01-11T21:05:10.6889961Z 2023-01-11T21:05:10.6890052Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.6890121Z import torch 2023-01-11T21:05:10.6890190Z import random 2023-01-11T21:05:10.6890301Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.6890422Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.6890427Z 2023-01-11T21:05:10.6890491Z aten = torch.ops.aten 2023-01-11T21:05:10.6890622Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.6890710Z async_compile = AsyncCompile() 2023-01-11T21:05:10.6890715Z 2023-01-11T21:05:10.6890720Z 2023-01-11T21:05:10.6890851Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.6891053Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.6891171Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:05:10.6891272Z const float* __restrict__ in_ptr1, 2023-01-11T21:05:10.6891370Z float* __restrict__ out_ptr0) 2023-01-11T21:05:10.6891417Z { 2023-01-11T21:05:10.6891510Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.6891570Z { 2023-01-11T21:05:10.6891673Z #pragma omp for 2023-01-11T21:05:10.6891753Z for(long i0=0; i0<4; i0+=1) 2023-01-11T21:05:10.6891813Z { 2023-01-11T21:05:10.6891943Z auto tmp0 = at::vec::Vectorized::loadu(in_ptr0 + 16*i0); 2023-01-11T21:05:10.6892064Z auto tmp1 = at::vec::Vectorized::loadu(in_ptr1 + 16*i0); 2023-01-11T21:05:10.6892148Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:05:10.6892237Z tmp2.store(out_ptr0 + 16*i0); 2023-01-11T21:05:10.6892298Z } 2023-01-11T21:05:10.6892392Z #pragma omp for simd simdlen(8) 2023-01-11T21:05:10.6892473Z for(long i0=64; i0<64; i0+=1) 2023-01-11T21:05:10.6892532Z { 2023-01-11T21:05:10.6892602Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:05:10.6892680Z auto tmp1 = in_ptr1[i0]; 2023-01-11T21:05:10.6892759Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:05:10.6892839Z out_ptr0[i0] = tmp2; 2023-01-11T21:05:10.6892899Z } 2023-01-11T21:05:10.6892961Z } 2023-01-11T21:05:10.6893019Z } 2023-01-11T21:05:10.6893083Z ''') 2023-01-11T21:05:10.6893089Z 2023-01-11T21:05:10.6893092Z 2023-01-11T21:05:10.6893177Z async_compile.wait(globals()) 2023-01-11T21:05:10.6893248Z del async_compile 2023-01-11T21:05:10.6893282Z 2023-01-11T21:05:10.6893352Z def call(args): 2023-01-11T21:05:10.6893425Z arg0_1, arg1_1 = args 2023-01-11T21:05:10.6893494Z args.clear() 2023-01-11T21:05:10.6893706Z buf0 = empty_strided((1, 4, 4, 4), (64, 4, 1, 16), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6893856Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(arg1_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:05:10.6893922Z del arg0_1 2023-01-11T21:05:10.6893986Z del arg1_1 2023-01-11T21:05:10.6894055Z return (buf0, ) 2023-01-11T21:05:10.6894060Z 2023-01-11T21:05:10.6894064Z 2023-01-11T21:05:10.6894137Z if __name__ == "__main__": 2023-01-11T21:05:10.6894248Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.6894374Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.6894584Z arg0_1 = rand_strided((1, 4, 4, 4), (64, 4, 1, 16), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6894776Z arg1_1 = rand_strided((4, 4, 4), (4, 1, 16), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6894889Z print_performance(lambda: call([arg0_1, arg1_1])) 2023-01-11T21:05:10.6894894Z 2023-01-11T21:05:10.6894957Z ok (2.672s) 2023-01-11T21:05:10.6895091Z test_triton_conv_cpu (__main__.CpuTests) ... skip: requires cuda (0.002s) 2023-01-11T21:05:10.6895416Z test_triton_mm2_cpu (__main__.CpuTests) ... [2023-01-11 21:01:04,132] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 445 2023-01-11T21:05:10.6895676Z [2023-01-11 21:01:06,747] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 445 2023-01-11T21:05:10.6895681Z 2023-01-11T21:05:10.6895772Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.6895839Z import torch 2023-01-11T21:05:10.6895909Z import random 2023-01-11T21:05:10.6896010Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.6896127Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.6896132Z 2023-01-11T21:05:10.6896210Z aten = torch.ops.aten 2023-01-11T21:05:10.6896342Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.6896431Z async_compile = AsyncCompile() 2023-01-11T21:05:10.6896436Z 2023-01-11T21:05:10.6896440Z 2023-01-11T21:05:10.6896571Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.6896772Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.6896887Z extern "C" void kernel(float* __restrict__ in_out_ptr0) 2023-01-11T21:05:10.6896934Z { 2023-01-11T21:05:10.6897030Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.6897089Z { 2023-01-11T21:05:10.6897163Z #pragma omp for 2023-01-11T21:05:10.6897244Z for(long i0=0; i0<65536; i0+=1) 2023-01-11T21:05:10.6897334Z { 2023-01-11T21:05:10.6897458Z auto tmp0 = at::vec::Vectorized::loadu(in_out_ptr0 + 16*i0); 2023-01-11T21:05:10.6897584Z auto tmp1 = at::vec::clamp_min(tmp0, decltype(tmp0)(0)); 2023-01-11T21:05:10.6897679Z tmp1.store(in_out_ptr0 + 16*i0); 2023-01-11T21:05:10.6897740Z } 2023-01-11T21:05:10.6897835Z #pragma omp for simd simdlen(8) 2023-01-11T21:05:10.6897925Z for(long i0=1048576; i0<1048576; i0+=1) 2023-01-11T21:05:10.6897986Z { 2023-01-11T21:05:10.6898072Z auto tmp0 = in_out_ptr0[i0]; 2023-01-11T21:05:10.6898145Z auto tmp1 = tmp0 * (tmp0>0); 2023-01-11T21:05:10.6898226Z in_out_ptr0[i0] = tmp1; 2023-01-11T21:05:10.6898286Z } 2023-01-11T21:05:10.6898345Z } 2023-01-11T21:05:10.6898403Z } 2023-01-11T21:05:10.6898571Z ''') 2023-01-11T21:05:10.6898579Z 2023-01-11T21:05:10.6898585Z 2023-01-11T21:05:10.6898675Z async_compile.wait(globals()) 2023-01-11T21:05:10.6898736Z del async_compile 2023-01-11T21:05:10.6898741Z 2023-01-11T21:05:10.6898815Z def call(args): 2023-01-11T21:05:10.6898888Z arg0_1, arg1_1 = args 2023-01-11T21:05:10.6898960Z args.clear() 2023-01-11T21:05:10.6899206Z buf0 = empty_strided((1024, 1024), (1024, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6899302Z aten.mm.out(arg0_1, arg1_1, out=buf0) 2023-01-11T21:05:10.6899370Z del arg0_1 2023-01-11T21:05:10.6899422Z del arg1_1 2023-01-11T21:05:10.6899509Z buf1 = buf0; del buf0 # reuse 2023-01-11T21:05:10.6899609Z kernel_cpp_0(c_void_p(buf1.data_ptr())) 2023-01-11T21:05:10.6899679Z return (buf1, ) 2023-01-11T21:05:10.6899684Z 2023-01-11T21:05:10.6899688Z 2023-01-11T21:05:10.6899760Z if __name__ == "__main__": 2023-01-11T21:05:10.6899872Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.6899992Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.6900186Z arg0_1 = rand_strided((1024, 1024), (1024, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6900388Z arg1_1 = rand_strided((1024, 1024), (1024, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6900499Z print_performance(lambda: call([arg0_1, arg1_1])) 2023-01-11T21:05:10.6900507Z 2023-01-11T21:05:10.6900574Z ok (2.953s) 2023-01-11T21:05:10.6901007Z test_triu_cpu (__main__.CpuTests) ... inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.6901133Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.6901387Z [2023-01-11 21:01:07,021] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 446 2023-01-11T21:05:10.6901649Z [2023-01-11 21:01:09,697] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 446 2023-01-11T21:05:10.6901656Z 2023-01-11T21:05:10.6901749Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.6901817Z import torch 2023-01-11T21:05:10.6901872Z import random 2023-01-11T21:05:10.6901987Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.6902106Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.6902111Z 2023-01-11T21:05:10.6902187Z aten = torch.ops.aten 2023-01-11T21:05:10.6902319Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.6902408Z async_compile = AsyncCompile() 2023-01-11T21:05:10.6902413Z 2023-01-11T21:05:10.6902417Z 2023-01-11T21:05:10.6902548Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.6902749Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.6902855Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:05:10.6902952Z float* __restrict__ out_ptr0, 2023-01-11T21:05:10.6903077Z float* __restrict__ out_ptr1, 2023-01-11T21:05:10.6903170Z float* __restrict__ out_ptr2) 2023-01-11T21:05:10.6903230Z { 2023-01-11T21:05:10.6903326Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.6903387Z { 2023-01-11T21:05:10.6903464Z #pragma omp for collapse(2) 2023-01-11T21:05:10.6903546Z for(long i0=0; i0<2; i0+=1) 2023-01-11T21:05:10.6903606Z { 2023-01-11T21:05:10.6903691Z for(long i1=0; i1<10; i1+=1) 2023-01-11T21:05:10.6903753Z { 2023-01-11T21:05:10.6903832Z #pragma GCC ivdep 2023-01-11T21:05:10.6903921Z for(long i2=0; i2<10; i2+=1) 2023-01-11T21:05:10.6903972Z { 2023-01-11T21:05:10.6904037Z { 2023-01-11T21:05:10.6904102Z { 2023-01-11T21:05:10.6904211Z auto tmp3 = in_ptr0[i2 + (10*i1) + (100*i0)]; 2023-01-11T21:05:10.6904396Z auto tmp0 = static_cast((-1) + i2 + ((-1)*i1)); 2023-01-11T21:05:10.6904501Z auto tmp1 = static_cast(0); 2023-01-11T21:05:10.6904629Z auto tmp2 = tmp0 >= tmp1; 2023-01-11T21:05:10.6904724Z auto tmp4 = static_cast(0); 2023-01-11T21:05:10.6904826Z auto tmp5 = tmp2 ? tmp3 : tmp4; 2023-01-11T21:05:10.6905000Z auto tmp6 = static_cast(i2 + ((-1)*i1)); 2023-01-11T21:05:10.6905095Z auto tmp7 = tmp6 >= tmp1; 2023-01-11T21:05:10.6905195Z auto tmp8 = tmp7 ? tmp3 : tmp4; 2023-01-11T21:05:10.6905377Z auto tmp9 = static_cast((-2) + i2 + ((-1)*i1)); 2023-01-11T21:05:10.6905473Z auto tmp10 = tmp9 >= tmp1; 2023-01-11T21:05:10.6905565Z auto tmp11 = tmp10 ? tmp3 : tmp4; 2023-01-11T21:05:10.6905669Z out_ptr0[i2 + (10*i1) + (100*i0)] = tmp5; 2023-01-11T21:05:10.6905768Z out_ptr1[i2 + (10*i1) + (100*i0)] = tmp8; 2023-01-11T21:05:10.6905872Z out_ptr2[i2 + (10*i1) + (100*i0)] = tmp11; 2023-01-11T21:05:10.6905938Z } 2023-01-11T21:05:10.6906003Z } 2023-01-11T21:05:10.6906065Z } 2023-01-11T21:05:10.6906127Z } 2023-01-11T21:05:10.6906174Z } 2023-01-11T21:05:10.6906235Z } 2023-01-11T21:05:10.6906292Z } 2023-01-11T21:05:10.6906368Z ''') 2023-01-11T21:05:10.6906373Z 2023-01-11T21:05:10.6906377Z 2023-01-11T21:05:10.6906467Z async_compile.wait(globals()) 2023-01-11T21:05:10.6906540Z del async_compile 2023-01-11T21:05:10.6906545Z 2023-01-11T21:05:10.6906613Z def call(args): 2023-01-11T21:05:10.6906669Z arg0_1, = args 2023-01-11T21:05:10.6906739Z args.clear() 2023-01-11T21:05:10.6906947Z buf0 = empty_strided((2, 10, 10), (100, 10, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6907154Z buf1 = empty_strided((2, 10, 10), (100, 10, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6907358Z buf2 = empty_strided((2, 10, 10), (100, 10, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6907546Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(buf0.data_ptr()), c_void_p(buf1.data_ptr()), c_void_p(buf2.data_ptr())) 2023-01-11T21:05:10.6907612Z del arg0_1 2023-01-11T21:05:10.6907681Z return (buf0, buf1, buf2, ) 2023-01-11T21:05:10.6907697Z 2023-01-11T21:05:10.6907701Z 2023-01-11T21:05:10.6907764Z if __name__ == "__main__": 2023-01-11T21:05:10.6907876Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.6907998Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.6908205Z arg0_1 = rand_strided((2, 10, 10), (100, 10, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6908312Z print_performance(lambda: call([arg0_1])) 2023-01-11T21:05:10.6908347Z 2023-01-11T21:05:10.6908413Z ok (2.763s) 2023-01-11T21:05:10.6908850Z test_unbind_cpu (__main__.CpuTests) ... inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.6908975Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.6909232Z [2023-01-11 21:01:09,811] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 447 2023-01-11T21:05:10.6909482Z [2023-01-11 21:01:09,822] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 447 2023-01-11T21:05:10.6909487Z 2023-01-11T21:05:10.6909580Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.6909647Z import torch 2023-01-11T21:05:10.6909714Z import random 2023-01-11T21:05:10.6909829Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.6909950Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.6909955Z 2023-01-11T21:05:10.6910033Z aten = torch.ops.aten 2023-01-11T21:05:10.6910179Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.6910272Z async_compile = AsyncCompile() 2023-01-11T21:05:10.6910276Z 2023-01-11T21:05:10.6910280Z 2023-01-11T21:05:10.6910366Z async_compile.wait(globals()) 2023-01-11T21:05:10.6910436Z del async_compile 2023-01-11T21:05:10.6910441Z 2023-01-11T21:05:10.6910511Z def call(args): 2023-01-11T21:05:10.6910579Z arg0_1, = args 2023-01-11T21:05:10.6910650Z args.clear() 2023-01-11T21:05:10.6910926Z return (as_strided(arg0_1, (4, 4), (4, 1)), as_strided(arg0_1, (4, 4), (4, 1), 16), as_strided(arg0_1, (4, 4), (4, 1), 32), as_strided(arg0_1, (4, 4), (4, 1), 48), as_strided(arg0_1, (4, 4), (16, 4)), as_strided(arg0_1, (4, 4), (16, 4), 1), as_strided(arg0_1, (4, 4), (16, 4), 2), as_strided(arg0_1, (4, 4), (16, 4), 3), ) 2023-01-11T21:05:10.6910934Z 2023-01-11T21:05:10.6910938Z 2023-01-11T21:05:10.6911012Z if __name__ == "__main__": 2023-01-11T21:05:10.6911123Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.6911233Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.6911438Z arg0_1 = rand_strided((4, 4, 4), (16, 4, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6911546Z print_performance(lambda: call([arg0_1])) 2023-01-11T21:05:10.6911550Z 2023-01-11T21:05:10.6911615Z ok (0.121s) 2023-01-11T21:05:10.6912067Z test_unroll_small_reduction_cpu (__main__.CpuTests) ... inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.6912196Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.6912456Z [2023-01-11 21:01:09,918] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 448 2023-01-11T21:05:10.6912719Z [2023-01-11 21:01:12,624] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 448 2023-01-11T21:05:10.6913118Z inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.6913239Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.6913481Z [2023-01-11 21:01:12,707] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 449 2023-01-11T21:05:10.6913499Z 2023-01-11T21:05:10.6913579Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.6913677Z import torch 2023-01-11T21:05:10.6913745Z import random 2023-01-11T21:05:10.6913858Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.6913979Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.6913984Z 2023-01-11T21:05:10.6914062Z aten = torch.ops.aten 2023-01-11T21:05:10.6914195Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.6914273Z async_compile = AsyncCompile() 2023-01-11T21:05:10.6914278Z 2023-01-11T21:05:10.6914282Z 2023-01-11T21:05:10.6914421Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.6914623Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.6914745Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:05:10.6914844Z float* __restrict__ out_ptr0, 2023-01-11T21:05:10.6914939Z long* __restrict__ out_ptr1, 2023-01-11T21:05:10.6915037Z float* __restrict__ out_ptr2, 2023-01-11T21:05:10.6915130Z long* __restrict__ out_ptr3, 2023-01-11T21:05:10.6915210Z float* __restrict__ out_ptr4, 2023-01-11T21:05:10.6915329Z bool* __restrict__ out_ptr5, 2023-01-11T21:05:10.6915421Z bool* __restrict__ out_ptr6, 2023-01-11T21:05:10.6915512Z long* __restrict__ out_ptr7, 2023-01-11T21:05:10.6915602Z long* __restrict__ out_ptr8, 2023-01-11T21:05:10.6915695Z float* __restrict__ out_ptr9, 2023-01-11T21:05:10.6915794Z float* __restrict__ out_ptr10) 2023-01-11T21:05:10.6915842Z { 2023-01-11T21:05:10.6915938Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.6915999Z { 2023-01-11T21:05:10.6916074Z #pragma omp for 2023-01-11T21:05:10.6916155Z for(long i0=0; i0<8; i0+=1) 2023-01-11T21:05:10.6916217Z { 2023-01-11T21:05:10.6916268Z { 2023-01-11T21:05:10.6916332Z { 2023-01-11T21:05:10.6916427Z auto tmp0 = in_ptr0[3*i0]; 2023-01-11T21:05:10.6916524Z auto tmp1 = in_ptr0[1 + (3*i0)]; 2023-01-11T21:05:10.6916619Z auto tmp3 = in_ptr0[2 + (3*i0)]; 2023-01-11T21:05:10.6916750Z auto tmp2 = (tmp1 != tmp1) ? tmp1 : std::min(tmp0, tmp1); 2023-01-11T21:05:10.6916874Z auto tmp4 = (tmp3 != tmp3) ? tmp3 : std::min(tmp2, tmp3); 2023-01-11T21:05:10.6916974Z auto tmp5 = static_cast(0); 2023-01-11T21:05:10.6917058Z auto tmp6 = static_cast(1); 2023-01-11T21:05:10.6917153Z auto tmp7 = tmp1 < tmp0; 2023-01-11T21:05:10.6917247Z auto tmp8 = tmp7 ? tmp6 : tmp5; 2023-01-11T21:05:10.6917346Z auto tmp9 = static_cast(2); 2023-01-11T21:05:10.6917441Z auto tmp10 = tmp3 < tmp2; 2023-01-11T21:05:10.6917538Z auto tmp11 = tmp10 ? tmp9 : tmp8; 2023-01-11T21:05:10.6917661Z auto tmp12 = (tmp1 != tmp1) ? tmp1 : std::max(tmp0, tmp1); 2023-01-11T21:05:10.6917787Z auto tmp13 = (tmp3 != tmp3) ? tmp3 : std::max(tmp12, tmp3); 2023-01-11T21:05:10.6917865Z auto tmp14 = tmp1 > tmp0; 2023-01-11T21:05:10.6917960Z auto tmp15 = tmp14 ? tmp6 : tmp5; 2023-01-11T21:05:10.6918049Z auto tmp16 = tmp3 > tmp12; 2023-01-11T21:05:10.6918148Z auto tmp17 = tmp16 ? tmp9 : tmp15; 2023-01-11T21:05:10.6918238Z auto tmp18 = tmp0 + tmp1; 2023-01-11T21:05:10.6918327Z auto tmp19 = tmp18 + tmp3; 2023-01-11T21:05:10.6918429Z auto tmp20 = static_cast(1); 2023-01-11T21:05:10.6918505Z auto tmp21 = tmp0 > tmp20; 2023-01-11T21:05:10.6918610Z auto tmp22 = static_cast(tmp21); 2023-01-11T21:05:10.6918743Z auto tmp23 = static_cast(tmp22); 2023-01-11T21:05:10.6918832Z auto tmp24 = tmp1 > tmp20; 2023-01-11T21:05:10.6918936Z auto tmp25 = static_cast(tmp24); 2023-01-11T21:05:10.6919041Z auto tmp26 = static_cast(tmp25); 2023-01-11T21:05:10.6919132Z auto tmp27 = tmp23 || tmp26; 2023-01-11T21:05:10.6919209Z auto tmp28 = tmp3 > tmp20; 2023-01-11T21:05:10.6919311Z auto tmp29 = static_cast(tmp28); 2023-01-11T21:05:10.6919413Z auto tmp30 = static_cast(tmp29); 2023-01-11T21:05:10.6919503Z auto tmp31 = tmp27 || tmp30; 2023-01-11T21:05:10.6919606Z auto tmp32 = static_cast(0); 2023-01-11T21:05:10.6919695Z auto tmp33 = tmp0 > tmp32; 2023-01-11T21:05:10.6919784Z auto tmp34 = tmp33 == 0; 2023-01-11T21:05:10.6919888Z auto tmp35 = static_cast(tmp34); 2023-01-11T21:05:10.6919981Z auto tmp36 = static_cast(tmp35); 2023-01-11T21:05:10.6920069Z auto tmp37 = tmp1 > tmp32; 2023-01-11T21:05:10.6920199Z auto tmp38 = tmp37 == 0; 2023-01-11T21:05:10.6920302Z auto tmp39 = static_cast(tmp38); 2023-01-11T21:05:10.6920401Z auto tmp40 = static_cast(tmp39); 2023-01-11T21:05:10.6920492Z auto tmp41 = tmp36 || tmp40; 2023-01-11T21:05:10.6920580Z auto tmp42 = tmp3 > tmp32; 2023-01-11T21:05:10.6920770Z auto tmp43 = tmp42 == 0; 2023-01-11T21:05:10.6920873Z auto tmp44 = static_cast(tmp43); 2023-01-11T21:05:10.6920975Z auto tmp45 = static_cast(tmp44); 2023-01-11T21:05:10.6921067Z auto tmp46 = tmp41 || tmp45; 2023-01-11T21:05:10.6921156Z auto tmp47 = tmp46 == 0; 2023-01-11T21:05:10.6921245Z out_ptr0[i0] = tmp4; 2023-01-11T21:05:10.6921330Z out_ptr1[i0] = tmp11; 2023-01-11T21:05:10.6921401Z out_ptr2[i0] = tmp13; 2023-01-11T21:05:10.6921486Z out_ptr3[i0] = tmp17; 2023-01-11T21:05:10.6921568Z out_ptr4[i0] = tmp19; 2023-01-11T21:05:10.6921648Z out_ptr5[i0] = tmp31; 2023-01-11T21:05:10.6921729Z out_ptr6[i0] = tmp47; 2023-01-11T21:05:10.6921812Z out_ptr7[i0] = tmp11; 2023-01-11T21:05:10.6921894Z out_ptr8[i0] = tmp17; 2023-01-11T21:05:10.6921963Z out_ptr9[i0] = tmp4; 2023-01-11T21:05:10.6922049Z out_ptr10[i0] = tmp13; 2023-01-11T21:05:10.6922114Z } 2023-01-11T21:05:10.6922176Z } 2023-01-11T21:05:10.6922237Z } 2023-01-11T21:05:10.6922296Z } 2023-01-11T21:05:10.6922355Z } 2023-01-11T21:05:10.6922425Z ''') 2023-01-11T21:05:10.6922431Z 2023-01-11T21:05:10.6922437Z 2023-01-11T21:05:10.6922527Z async_compile.wait(globals()) 2023-01-11T21:05:10.6922597Z del async_compile 2023-01-11T21:05:10.6922602Z 2023-01-11T21:05:10.6922670Z def call(args): 2023-01-11T21:05:10.6922738Z arg0_1, = args 2023-01-11T21:05:10.6922811Z args.clear() 2023-01-11T21:05:10.6923005Z buf0 = empty_strided((8, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6923178Z buf1 = empty_strided((8, ), (1, ), device='cpu', dtype=torch.int64) 2023-01-11T21:05:10.6923367Z buf2 = empty_strided((8, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6923550Z buf3 = empty_strided((8, ), (1, ), device='cpu', dtype=torch.int64) 2023-01-11T21:05:10.6923734Z buf4 = empty_strided((8, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6923913Z buf5 = empty_strided((8, ), (1, ), device='cpu', dtype=torch.bool) 2023-01-11T21:05:10.6924091Z buf6 = empty_strided((8, ), (1, ), device='cpu', dtype=torch.bool) 2023-01-11T21:05:10.6924325Z buf7 = empty_strided((8, ), (1, ), device='cpu', dtype=torch.int64) 2023-01-11T21:05:10.6924506Z buf8 = empty_strided((8, ), (1, ), device='cpu', dtype=torch.int64) 2023-01-11T21:05:10.6924680Z buf9 = empty_strided((8, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6924870Z buf10 = empty_strided((8, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6925246Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(buf0.data_ptr()), c_void_p(buf1.data_ptr()), c_void_p(buf2.data_ptr()), c_void_p(buf3.data_ptr()), c_void_p(buf4.data_ptr()), c_void_p(buf5.data_ptr()), c_void_p(buf6.data_ptr()), c_void_p(buf7.data_ptr()), c_void_p(buf8.data_ptr()), c_void_p(buf9.data_ptr()), c_void_p(buf10.data_ptr())) 2023-01-11T21:05:10.6925317Z del arg0_1 2023-01-11T21:05:10.6925446Z return (buf0, buf1, buf2, buf3, buf4, buf5, buf6, buf7, buf8, buf9, buf10, ) 2023-01-11T21:05:10.6925451Z 2023-01-11T21:05:10.6925455Z 2023-01-11T21:05:10.6925532Z if __name__ == "__main__": 2023-01-11T21:05:10.6925648Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.6925770Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.6926000Z arg0_1 = rand_strided((8, 3), (3, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6926096Z print_performance(lambda: call([arg0_1])) 2023-01-11T21:05:10.6926114Z 2023-01-11T21:05:10.6926118Z 2023-01-11T21:05:10.6926198Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.6926267Z import torch 2023-01-11T21:05:10.6926336Z import random 2023-01-11T21:05:10.6926449Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.6926568Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.6926573Z 2023-01-11T21:05:10.6926648Z aten = torch.ops.aten 2023-01-11T21:05:10.6926780Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.6926858Z async_compile = AsyncCompile() 2023-01-11T21:05:10.6926876Z 2023-01-11T21:05:10.6926880Z 2023-01-11T21:05:10.6927001Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.6927202Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.6927318Z extern "C" void kernel(bool* __restrict__ in_out_ptr0, 2023-01-11T21:05:10.6927421Z const float* __restrict__ in_ptr0, 2023-01-11T21:05:10.6927518Z float* __restrict__ out_ptr0, 2023-01-11T21:05:10.6927611Z long* __restrict__ out_ptr1, 2023-01-11T21:05:10.6927703Z float* __restrict__ out_ptr2, 2023-01-11T21:05:10.6927784Z long* __restrict__ out_ptr3, 2023-01-11T21:05:10.6927876Z float* __restrict__ out_ptr4, 2023-01-11T21:05:10.6927968Z bool* __restrict__ out_ptr5, 2023-01-11T21:05:10.6928059Z long* __restrict__ out_ptr7, 2023-01-11T21:05:10.6928148Z long* __restrict__ out_ptr8, 2023-01-11T21:05:10.6928241Z float* __restrict__ out_ptr9, 2023-01-11T21:05:10.6928340Z float* __restrict__ out_ptr10) 2023-01-11T21:05:10.6928386Z { 2023-01-11T21:05:10.6928470Z auto out_ptr6 = in_out_ptr0; 2023-01-11T21:05:10.6928570Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.6928631Z { 2023-01-11T21:05:10.6928706Z #pragma omp for 2023-01-11T21:05:10.6928786Z for(long i0=0; i0<8; i0+=1) 2023-01-11T21:05:10.6928847Z { 2023-01-11T21:05:10.6928896Z { 2023-01-11T21:05:10.6928958Z { 2023-01-11T21:05:10.6929088Z float tmp1 = std::numeric_limits::infinity(); 2023-01-11T21:05:10.6929210Z struct IndexValue_11 {size_t index; float value;}; 2023-01-11T21:05:10.6929347Z IndexValue_11 tmp2{0, std::numeric_limits::infinity()}; 2023-01-11T21:05:10.6929485Z #pragma omp declare reduction(argmin : struct IndexValue_11 :\ 2023-01-11T21:05:10.6929667Z omp_out.value = omp_in.value > omp_out.value ? omp_out.value : omp_in.value,\ 2023-01-11T21:05:10.6929813Z omp_out.index = omp_in.value > omp_out.value ? omp_out.index : omp_in.index)\ 2023-01-11T21:05:10.6929945Z initializer(omp_priv = {0, std::numeric_limits::infinity()}) 2023-01-11T21:05:10.6930185Z float tmp3 = -std::numeric_limits::infinity(); 2023-01-11T21:05:10.6930305Z struct IndexValue_12 {size_t index; float value;}; 2023-01-11T21:05:10.6930534Z IndexValue_12 tmp4{0, -std::numeric_limits::infinity()}; 2023-01-11T21:05:10.6930673Z #pragma omp declare reduction(argmax : struct IndexValue_12 :\ 2023-01-11T21:05:10.6930821Z omp_out.value = omp_in.value < omp_out.value ? omp_out.value : omp_in.value,\ 2023-01-11T21:05:10.6930966Z omp_out.index = omp_in.value < omp_out.value ? omp_out.index : omp_in.index)\ 2023-01-11T21:05:10.6931206Z initializer(omp_priv = {0, -std::numeric_limits::infinity()}) 2023-01-11T21:05:10.6931286Z float tmp5 = 0; 2023-01-11T21:05:10.6931379Z bool tmp10 = 0; 2023-01-11T21:05:10.6931457Z bool tmp16 = 0; 2023-01-11T21:05:10.6931576Z struct IndexValue_13 {size_t index; float value;}; 2023-01-11T21:05:10.6931714Z IndexValue_13 tmp17{0, std::numeric_limits::infinity()}; 2023-01-11T21:05:10.6931852Z #pragma omp declare reduction(argmin : struct IndexValue_13 :\ 2023-01-11T21:05:10.6932002Z omp_out.value = omp_in.value > omp_out.value ? omp_out.value : omp_in.value,\ 2023-01-11T21:05:10.6932146Z omp_out.index = omp_in.value > omp_out.value ? omp_out.index : omp_in.index)\ 2023-01-11T21:05:10.6932289Z initializer(omp_priv = {0, std::numeric_limits::infinity()}) 2023-01-11T21:05:10.6932398Z struct IndexValue_14 {size_t index; float value;}; 2023-01-11T21:05:10.6932632Z IndexValue_14 tmp18{0, -std::numeric_limits::infinity()}; 2023-01-11T21:05:10.6932771Z #pragma omp declare reduction(argmax : struct IndexValue_14 :\ 2023-01-11T21:05:10.6932916Z omp_out.value = omp_in.value < omp_out.value ? omp_out.value : omp_in.value,\ 2023-01-11T21:05:10.6933058Z omp_out.index = omp_in.value < omp_out.value ? omp_out.index : omp_in.index)\ 2023-01-11T21:05:10.6933295Z initializer(omp_priv = {0, -std::numeric_limits::infinity()}) 2023-01-11T21:05:10.6933418Z float tmp19 = std::numeric_limits::infinity(); 2023-01-11T21:05:10.6933625Z float tmp20 = -std::numeric_limits::infinity(); 2023-01-11T21:05:10.6933713Z for(long i1=0; i1<3; i1+=1) 2023-01-11T21:05:10.6933769Z { 2023-01-11T21:05:10.6933836Z { 2023-01-11T21:05:10.6933938Z auto tmp0 = in_ptr0[i1 + (3*i0)]; 2023-01-11T21:05:10.6934046Z auto tmp6 = static_cast(1); 2023-01-11T21:05:10.6934141Z auto tmp7 = tmp0 > tmp6; 2023-01-11T21:05:10.6934249Z auto tmp8 = static_cast(tmp7); 2023-01-11T21:05:10.6934355Z auto tmp9 = static_cast(tmp8); 2023-01-11T21:05:10.6934450Z auto tmp11 = static_cast(0); 2023-01-11T21:05:10.6934547Z auto tmp12 = tmp0 > tmp11; 2023-01-11T21:05:10.6934639Z auto tmp13 = tmp12 == 0; 2023-01-11T21:05:10.6934748Z auto tmp14 = static_cast(tmp13); 2023-01-11T21:05:10.6934853Z auto tmp15 = static_cast(tmp14); 2023-01-11T21:05:10.6934987Z tmp1 = std::min(tmp1, tmp0); 2023-01-11T21:05:10.6935082Z if (tmp2.value > tmp0) { 2023-01-11T21:05:10.6935194Z tmp2.index = i1; tmp2.value = tmp0; 2023-01-11T21:05:10.6935252Z } 2023-01-11T21:05:10.6935354Z tmp3 = std::max(tmp3, tmp0); 2023-01-11T21:05:10.6935448Z if (tmp4.value < tmp0) { 2023-01-11T21:05:10.6935557Z tmp4.index = i1; tmp4.value = tmp0; 2023-01-11T21:05:10.6935625Z } 2023-01-11T21:05:10.6935706Z tmp5 += tmp0; 2023-01-11T21:05:10.6935801Z tmp10 = tmp10 || tmp9; 2023-01-11T21:05:10.6935879Z tmp16 = tmp16 || tmp15; 2023-01-11T21:05:10.6935973Z if (tmp17.value > tmp0) { 2023-01-11T21:05:10.6936084Z tmp17.index = i1; tmp17.value = tmp0; 2023-01-11T21:05:10.6936155Z } 2023-01-11T21:05:10.6936250Z if (tmp18.value < tmp0) { 2023-01-11T21:05:10.6936387Z tmp18.index = i1; tmp18.value = tmp0; 2023-01-11T21:05:10.6936456Z } 2023-01-11T21:05:10.6936561Z tmp19 = std::min(tmp19, tmp0); 2023-01-11T21:05:10.6936651Z tmp20 = std::max(tmp20, tmp0); 2023-01-11T21:05:10.6936717Z } 2023-01-11T21:05:10.6936781Z } 2023-01-11T21:05:10.6936865Z out_ptr0[i0] = tmp1; 2023-01-11T21:05:10.6936956Z out_ptr1[i0] = tmp2.index; 2023-01-11T21:05:10.6937037Z out_ptr2[i0] = tmp3; 2023-01-11T21:05:10.6937125Z out_ptr3[i0] = tmp4.index; 2023-01-11T21:05:10.6937194Z out_ptr4[i0] = tmp5; 2023-01-11T21:05:10.6937276Z out_ptr5[i0] = tmp10; 2023-01-11T21:05:10.6937359Z out_ptr6[i0] = tmp16; 2023-01-11T21:05:10.6937452Z out_ptr7[i0] = tmp17.index; 2023-01-11T21:05:10.6937543Z out_ptr8[i0] = tmp18.index; 2023-01-11T21:05:10.6937626Z out_ptr9[i0] = tmp19; 2023-01-11T21:05:10.6937710Z out_ptr10[i0] = tmp20; 2023-01-11T21:05:10.6937761Z } 2023-01-11T21:05:10.6937823Z } 2023-01-11T21:05:10.6937887Z } 2023-01-11T21:05:10.6937962Z #pragma omp for 2023-01-11T21:05:10.6938041Z for(long i0=0; i0<8; i0+=1) 2023-01-11T21:05:10.6938103Z { 2023-01-11T21:05:10.6938152Z { 2023-01-11T21:05:10.6938214Z { 2023-01-11T21:05:10.6938304Z auto tmp0 = out_ptr6[i0]; 2023-01-11T21:05:10.6938391Z auto tmp1 = tmp0 == 0; 2023-01-11T21:05:10.6938562Z in_out_ptr0[i0] = tmp1; 2023-01-11T21:05:10.6938628Z } 2023-01-11T21:05:10.6938692Z } 2023-01-11T21:05:10.6938739Z } 2023-01-11T21:05:10.6938800Z } 2023-01-11T21:05:10.6938860Z } 2023-01-11T21:05:10.6938942Z ''') 2023-01-11T21:05:10.6938948Z 2023-01-11T21:05:10.6938953Z 2023-01-11T21:05:10.6939045Z async_compile.wait(globals()) 2023-01-11T21:05:10.6939116Z del async_compile 2023-01-11T21:05:10.6939121Z 2023-01-11T21:05:10.6939188Z def call(args): 2023-01-11T21:05:10.6939242Z arg0_1, = args 2023-01-11T21:05:10.6939313Z args.clear() 2023-01-11T21:05:10.6939505Z buf0 = empty_strided((8, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6939694Z buf1 = empty_strided((8, ), (1, ), device='cpu', dtype=torch.int64) 2023-01-11T21:05:10.6939884Z buf2 = empty_strided((8, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6940067Z buf3 = empty_strided((8, ), (1, ), device='cpu', dtype=torch.int64) 2023-01-11T21:05:10.6940250Z buf4 = empty_strided((8, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6940468Z buf5 = empty_strided((8, ), (1, ), device='cpu', dtype=torch.bool) 2023-01-11T21:05:10.6940635Z buf6 = empty_strided((8, ), (1, ), device='cpu', dtype=torch.bool) 2023-01-11T21:05:10.6940814Z buf8 = empty_strided((8, ), (1, ), device='cpu', dtype=torch.int64) 2023-01-11T21:05:10.6940998Z buf9 = empty_strided((8, ), (1, ), device='cpu', dtype=torch.int64) 2023-01-11T21:05:10.6941188Z buf10 = empty_strided((8, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6941375Z buf11 = empty_strided((8, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6941459Z buf7 = buf6; del buf6 # reuse 2023-01-11T21:05:10.6941832Z kernel_cpp_0(c_void_p(buf7.data_ptr()), c_void_p(arg0_1.data_ptr()), c_void_p(buf0.data_ptr()), c_void_p(buf1.data_ptr()), c_void_p(buf2.data_ptr()), c_void_p(buf3.data_ptr()), c_void_p(buf4.data_ptr()), c_void_p(buf5.data_ptr()), c_void_p(buf8.data_ptr()), c_void_p(buf9.data_ptr()), c_void_p(buf10.data_ptr()), c_void_p(buf11.data_ptr())) 2023-01-11T21:05:10.6941902Z del arg0_1 2023-01-11T21:05:10.6942018Z return (buf0, buf1, buf2, buf3, buf4, buf5, buf7, buf8, buf9, buf10, buf11, ) 2023-01-11T21:05:10.6942036Z 2023-01-11T21:05:10.6942040Z 2023-01-11T21:05:10.6942158Z if __name__ == "__main__": 2023-01-11T21:05:10.6942273Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.6942395Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.6942593Z arg0_1 = rand_strided((8, 3), (3, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6942701Z print_performance(lambda: call([arg0_1])) 2023-01-11T21:05:10.6942969Z [2023-01-11 21:01:15,390] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 449 2023-01-11T21:05:10.6942974Z 2023-01-11T21:05:10.6943041Z ok (5.572s) 2023-01-11T21:05:10.6943184Z test_unspec_inputs_cpu (__main__.CpuTests) ... skip: requires cuda (0.001s) 2023-01-11T21:05:10.6943613Z test_unsqueeze_cpu (__main__.CpuTests) ... inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.6943740Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.6943998Z [2023-01-11 21:01:15,466] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 450 2023-01-11T21:05:10.6944259Z [2023-01-11 21:01:18,238] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 450 2023-01-11T21:05:10.6944264Z 2023-01-11T21:05:10.6944356Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.6944426Z import torch 2023-01-11T21:05:10.6944496Z import random 2023-01-11T21:05:10.6944612Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.6944736Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.6944741Z 2023-01-11T21:05:10.6944805Z aten = torch.ops.aten 2023-01-11T21:05:10.6944938Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.6945032Z async_compile = AsyncCompile() 2023-01-11T21:05:10.6945037Z 2023-01-11T21:05:10.6945042Z 2023-01-11T21:05:10.6945174Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.6945377Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.6945496Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:05:10.6945597Z float* __restrict__ out_ptr0, 2023-01-11T21:05:10.6945697Z float* __restrict__ out_ptr1, 2023-01-11T21:05:10.6945776Z float* __restrict__ out_ptr2, 2023-01-11T21:05:10.6945868Z float* __restrict__ out_ptr3) 2023-01-11T21:05:10.6945927Z { 2023-01-11T21:05:10.6946023Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.6946112Z { 2023-01-11T21:05:10.6946188Z #pragma omp for 2023-01-11T21:05:10.6946270Z for(long i0=0; i0<1; i0+=1) 2023-01-11T21:05:10.6946319Z { 2023-01-11T21:05:10.6946455Z auto tmp0 = at::vec::Vectorized::loadu(in_ptr0 + 16*i0); 2023-01-11T21:05:10.6946586Z auto tmp1 = at::vec::Vectorized(static_cast(1)); 2023-01-11T21:05:10.6946670Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:05:10.6946799Z auto tmp3 = at::vec::Vectorized(static_cast(2)); 2023-01-11T21:05:10.6946881Z auto tmp4 = tmp2 + tmp3; 2023-01-11T21:05:10.6946961Z auto tmp5 = tmp0 + tmp3; 2023-01-11T21:05:10.6947038Z tmp4.store(out_ptr0 + 16*i0); 2023-01-11T21:05:10.6947128Z tmp5.store(out_ptr1 + 16*i0); 2023-01-11T21:05:10.6947217Z tmp4.store(out_ptr2 + 16*i0); 2023-01-11T21:05:10.6947305Z tmp5.store(out_ptr3 + 16*i0); 2023-01-11T21:05:10.6947371Z } 2023-01-11T21:05:10.6947466Z #pragma omp for simd simdlen(8) 2023-01-11T21:05:10.6947548Z for(long i0=16; i0<16; i0+=1) 2023-01-11T21:05:10.6947596Z { 2023-01-11T21:05:10.6947709Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:05:10.6947808Z auto tmp1 = static_cast(1); 2023-01-11T21:05:10.6947890Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:05:10.6947987Z auto tmp3 = static_cast(2); 2023-01-11T21:05:10.6948069Z auto tmp4 = tmp2 + tmp3; 2023-01-11T21:05:10.6948150Z auto tmp5 = tmp0 + tmp3; 2023-01-11T21:05:10.6948216Z out_ptr0[i0] = tmp4; 2023-01-11T21:05:10.6948291Z out_ptr1[i0] = tmp5; 2023-01-11T21:05:10.6948367Z out_ptr2[i0] = tmp4; 2023-01-11T21:05:10.6948441Z out_ptr3[i0] = tmp5; 2023-01-11T21:05:10.6948502Z } 2023-01-11T21:05:10.6948563Z } 2023-01-11T21:05:10.6948622Z } 2023-01-11T21:05:10.6948686Z ''') 2023-01-11T21:05:10.6948693Z 2023-01-11T21:05:10.6948697Z 2023-01-11T21:05:10.6948786Z async_compile.wait(globals()) 2023-01-11T21:05:10.6948857Z del async_compile 2023-01-11T21:05:10.6948862Z 2023-01-11T21:05:10.6948930Z def call(args): 2023-01-11T21:05:10.6949002Z arg0_1, = args 2023-01-11T21:05:10.6949074Z args.clear() 2023-01-11T21:05:10.6949289Z buf0 = empty_strided((2, 2, 2, 2, 1), (8, 4, 2, 1, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6949498Z buf1 = empty_strided((2, 2, 1, 2, 2), (8, 4, 4, 2, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6949697Z buf2 = empty_strided((1, 2, 2, 2, 2), (16, 8, 4, 2, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6949904Z buf3 = empty_strided((2, 2, 2, 1, 2), (8, 4, 2, 2, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6950117Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(buf0.data_ptr()), c_void_p(buf1.data_ptr()), c_void_p(buf2.data_ptr()), c_void_p(buf3.data_ptr())) 2023-01-11T21:05:10.6950189Z del arg0_1 2023-01-11T21:05:10.6950275Z return (buf0, buf1, buf2, buf3, ) 2023-01-11T21:05:10.6950280Z 2023-01-11T21:05:10.6950284Z 2023-01-11T21:05:10.6950359Z if __name__ == "__main__": 2023-01-11T21:05:10.6950474Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.6950596Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.6950789Z arg0_1 = rand_strided((2, 2, 2, 2), (8, 4, 2, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6950895Z print_performance(lambda: call([arg0_1])) 2023-01-11T21:05:10.6950900Z 2023-01-11T21:05:10.6950966Z ok (2.846s) 2023-01-11T21:05:10.6951413Z test_unsqueeze_inplace_cpu (__main__.CpuTests) ... inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.6951568Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.6951828Z [2023-01-11 21:01:18,317] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 451 2023-01-11T21:05:10.6952093Z [2023-01-11 21:01:20,962] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 451 2023-01-11T21:05:10.6952099Z 2023-01-11T21:05:10.6952190Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.6952257Z import torch 2023-01-11T21:05:10.6952313Z import random 2023-01-11T21:05:10.6952426Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.6952545Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.6952550Z 2023-01-11T21:05:10.6952626Z aten = torch.ops.aten 2023-01-11T21:05:10.6952758Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.6952846Z async_compile = AsyncCompile() 2023-01-11T21:05:10.6952852Z 2023-01-11T21:05:10.6952859Z 2023-01-11T21:05:10.6952990Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.6953193Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.6953323Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:05:10.6953422Z float* __restrict__ out_ptr0, 2023-01-11T21:05:10.6953516Z float* __restrict__ out_ptr1) 2023-01-11T21:05:10.6953575Z { 2023-01-11T21:05:10.6953670Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.6953729Z { 2023-01-11T21:05:10.6953804Z #pragma omp for 2023-01-11T21:05:10.6953871Z for(long i0=0; i0<1; i0+=1) 2023-01-11T21:05:10.6953933Z { 2023-01-11T21:05:10.6954064Z auto tmp0 = at::vec::Vectorized::loadu(in_ptr0 + 16*i0); 2023-01-11T21:05:10.6954194Z auto tmp1 = at::vec::Vectorized(static_cast(1)); 2023-01-11T21:05:10.6954276Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:05:10.6954408Z auto tmp3 = at::vec::Vectorized(static_cast(2)); 2023-01-11T21:05:10.6954489Z auto tmp4 = tmp2 + tmp3; 2023-01-11T21:05:10.6954580Z tmp2.store(out_ptr0 + 16*i0); 2023-01-11T21:05:10.6954658Z tmp4.store(out_ptr1 + 16*i0); 2023-01-11T21:05:10.6954719Z } 2023-01-11T21:05:10.6954811Z #pragma omp for simd simdlen(8) 2023-01-11T21:05:10.6954891Z for(long i0=16; i0<16; i0+=1) 2023-01-11T21:05:10.6954954Z { 2023-01-11T21:05:10.6955036Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:05:10.6955131Z auto tmp1 = static_cast(1); 2023-01-11T21:05:10.6955199Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:05:10.6955296Z auto tmp3 = static_cast(2); 2023-01-11T21:05:10.6955378Z auto tmp4 = tmp2 + tmp3; 2023-01-11T21:05:10.6955457Z out_ptr0[i0] = tmp2; 2023-01-11T21:05:10.6955532Z out_ptr1[i0] = tmp4; 2023-01-11T21:05:10.6955593Z } 2023-01-11T21:05:10.6955645Z } 2023-01-11T21:05:10.6955703Z } 2023-01-11T21:05:10.6955780Z ''') 2023-01-11T21:05:10.6955785Z 2023-01-11T21:05:10.6955789Z 2023-01-11T21:05:10.6955878Z async_compile.wait(globals()) 2023-01-11T21:05:10.6955949Z del async_compile 2023-01-11T21:05:10.6955954Z 2023-01-11T21:05:10.6956023Z def call(args): 2023-01-11T21:05:10.6956090Z arg0_1, = args 2023-01-11T21:05:10.6956160Z args.clear() 2023-01-11T21:05:10.6956363Z buf0 = empty_strided((2, 2, 1, 2, 2), (8, 4, 4, 2, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6956578Z buf1 = empty_strided((1, 2, 2, 2, 2), (16, 8, 4, 2, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6956741Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(buf0.data_ptr()), c_void_p(buf1.data_ptr())) 2023-01-11T21:05:10.6956807Z del arg0_1 2023-01-11T21:05:10.6956882Z return (buf0, buf1, ) 2023-01-11T21:05:10.6956887Z 2023-01-11T21:05:10.6956892Z 2023-01-11T21:05:10.6956965Z if __name__ == "__main__": 2023-01-11T21:05:10.6957110Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.6957229Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.6957428Z arg0_1 = rand_strided((2, 2, 2, 2), (8, 4, 2, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6957534Z print_performance(lambda: call([arg0_1])) 2023-01-11T21:05:10.6957539Z 2023-01-11T21:05:10.6957604Z ok (2.721s) 2023-01-11T21:05:10.6958052Z test_upsample_bicubic2d_cpu (__main__.CpuTests) ... inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.6958177Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.6958431Z [2023-01-11 21:01:23,817] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 452 2023-01-11T21:05:10.6958439Z 2023-01-11T21:05:10.6958530Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.6958598Z import torch 2023-01-11T21:05:10.6958666Z import random 2023-01-11T21:05:10.6958810Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.6958930Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.6958935Z 2023-01-11T21:05:10.6959011Z aten = torch.ops.aten 2023-01-11T21:05:10.6959144Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.6959233Z async_compile = AsyncCompile() 2023-01-11T21:05:10.6959238Z 2023-01-11T21:05:10.6959242Z 2023-01-11T21:05:10.6959373Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.6959577Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.6959696Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:05:10.6959782Z float* __restrict__ out_ptr0, 2023-01-11T21:05:10.6959878Z float* __restrict__ out_ptr1) 2023-01-11T21:05:10.6959936Z { 2023-01-11T21:05:10.6960032Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.6960093Z { 2023-01-11T21:05:10.6960171Z #pragma omp for 2023-01-11T21:05:10.6960251Z for(long i0=0; i0<12; i0+=1) 2023-01-11T21:05:10.6960300Z { 2023-01-11T21:05:10.6960377Z #pragma GCC ivdep 2023-01-11T21:05:10.6960462Z for(long i1=0; i1<128; i1+=1) 2023-01-11T21:05:10.6960525Z { 2023-01-11T21:05:10.6960715Z #pragma GCC ivdep 2023-01-11T21:05:10.6960807Z for(long i2=0; i2<128; i2+=1) 2023-01-11T21:05:10.6960873Z { 2023-01-11T21:05:10.6960927Z { 2023-01-11T21:05:10.6960994Z { 2023-01-11T21:05:10.6961108Z auto tmp0 = static_cast(i2); 2023-01-11T21:05:10.6961212Z auto tmp1 = 0.2440944881889764 * tmp0; 2023-01-11T21:05:10.6961320Z auto tmp2 = std::floor(tmp1); 2023-01-11T21:05:10.6961466Z auto tmp3 = tmp1 - tmp2; 2023-01-11T21:05:10.6961576Z auto tmp4 = static_cast(i1); 2023-01-11T21:05:10.6961664Z auto tmp5 = 0.49606299212598426 * tmp4; 2023-01-11T21:05:10.6961765Z auto tmp6 = std::floor(tmp5); 2023-01-11T21:05:10.6961908Z auto tmp7 = tmp5 - tmp6; 2023-01-11T21:05:10.6962015Z auto tmp8 = static_cast(tmp6); 2023-01-11T21:05:10.6962124Z auto tmp9 = static_cast(tmp2); 2023-01-11T21:05:10.6962265Z auto tmp10 = tmp8 + -1; 2023-01-11T21:05:10.6962356Z auto tmp11 = tmp8 + 0; 2023-01-11T21:05:10.6962432Z auto tmp12 = tmp8 + 1; 2023-01-11T21:05:10.6962519Z auto tmp13 = tmp8 + 2; 2023-01-11T21:05:10.6962711Z auto tmp14 = tmp9 + -1; 2023-01-11T21:05:10.6962798Z auto tmp15 = tmp9 + 0; 2023-01-11T21:05:10.6962890Z auto tmp16 = tmp9 + 1; 2023-01-11T21:05:10.6962977Z auto tmp17 = tmp9 + 2; 2023-01-11T21:05:10.6963107Z auto tmp18 = (tmp10 != tmp10) ? tmp10 : std::min(63, tmp10); 2023-01-11T21:05:10.6963235Z auto tmp19 = (tmp18 != tmp18) ? tmp18 : std::max(0, tmp18); 2023-01-11T21:05:10.6963348Z auto tmp20 = (tmp14 != tmp14) ? tmp14 : std::min(31, tmp14); 2023-01-11T21:05:10.6963474Z auto tmp21 = (tmp20 != tmp20) ? tmp20 : std::max(0, tmp20); 2023-01-11T21:05:10.6963592Z auto tmp22 = in_ptr0[tmp21 + (32*tmp19) + (2048*i0)]; 2023-01-11T21:05:10.6963716Z auto tmp23 = (tmp15 != tmp15) ? tmp15 : std::min(31, tmp15); 2023-01-11T21:05:10.6963843Z auto tmp24 = (tmp23 != tmp23) ? tmp23 : std::max(0, tmp23); 2023-01-11T21:05:10.6963993Z auto tmp25 = in_ptr0[tmp24 + (32*tmp19) + (2048*i0)]; 2023-01-11T21:05:10.6964120Z auto tmp26 = (tmp16 != tmp16) ? tmp16 : std::min(31, tmp16); 2023-01-11T21:05:10.6964242Z auto tmp27 = (tmp26 != tmp26) ? tmp26 : std::max(0, tmp26); 2023-01-11T21:05:10.6964359Z auto tmp28 = in_ptr0[tmp27 + (32*tmp19) + (2048*i0)]; 2023-01-11T21:05:10.6964482Z auto tmp29 = (tmp17 != tmp17) ? tmp17 : std::min(31, tmp17); 2023-01-11T21:05:10.6964592Z auto tmp30 = (tmp29 != tmp29) ? tmp29 : std::max(0, tmp29); 2023-01-11T21:05:10.6964708Z auto tmp31 = in_ptr0[tmp30 + (32*tmp19) + (2048*i0)]; 2023-01-11T21:05:10.6964802Z auto tmp32 = tmp3 + 1.0; 2023-01-11T21:05:10.6964951Z auto tmp33 = -0.75 * tmp32; 2023-01-11T21:05:10.6965101Z auto tmp34 = tmp33 - -3.75; 2023-01-11T21:05:10.6965197Z auto tmp35 = tmp34 * tmp32; 2023-01-11T21:05:10.6965345Z auto tmp36 = tmp35 + -6.0; 2023-01-11T21:05:10.6965427Z auto tmp37 = tmp36 * tmp32; 2023-01-11T21:05:10.6965571Z auto tmp38 = tmp37 - -3.0; 2023-01-11T21:05:10.6965664Z auto tmp39 = 1.25 * tmp3; 2023-01-11T21:05:10.6965807Z auto tmp40 = tmp39 - 2.25; 2023-01-11T21:05:10.6965899Z auto tmp41 = tmp40 * tmp3; 2023-01-11T21:05:10.6965992Z auto tmp42 = tmp41 * tmp3; 2023-01-11T21:05:10.6966086Z auto tmp43 = tmp42 + 1.0; 2023-01-11T21:05:10.6966226Z auto tmp44 = 1.0 - tmp3; 2023-01-11T21:05:10.6966307Z auto tmp45 = 1.25 * tmp44; 2023-01-11T21:05:10.6966450Z auto tmp46 = tmp45 - 2.25; 2023-01-11T21:05:10.6966547Z auto tmp47 = tmp46 * tmp44; 2023-01-11T21:05:10.6966639Z auto tmp48 = tmp47 * tmp44; 2023-01-11T21:05:10.6966732Z auto tmp49 = tmp48 + 1.0; 2023-01-11T21:05:10.6966820Z auto tmp50 = tmp44 + 1.0; 2023-01-11T21:05:10.6966960Z auto tmp51 = -0.75 * tmp50; 2023-01-11T21:05:10.6967091Z auto tmp52 = tmp51 - -3.75; 2023-01-11T21:05:10.6967184Z auto tmp53 = tmp52 * tmp50; 2023-01-11T21:05:10.6967327Z auto tmp54 = tmp53 + -6.0; 2023-01-11T21:05:10.6967419Z auto tmp55 = tmp54 * tmp50; 2023-01-11T21:05:10.6967562Z auto tmp56 = tmp55 - -3.0; 2023-01-11T21:05:10.6967684Z auto tmp57 = tmp22 * tmp38; 2023-01-11T21:05:10.6967776Z auto tmp58 = tmp25 * tmp43; 2023-01-11T21:05:10.6967866Z auto tmp59 = tmp28 * tmp49; 2023-01-11T21:05:10.6967949Z auto tmp60 = tmp31 * tmp56; 2023-01-11T21:05:10.6968040Z auto tmp61 = tmp59 + tmp60; 2023-01-11T21:05:10.6968132Z auto tmp62 = tmp58 + tmp61; 2023-01-11T21:05:10.6968223Z auto tmp63 = tmp57 + tmp62; 2023-01-11T21:05:10.6968349Z auto tmp64 = (tmp11 != tmp11) ? tmp11 : std::min(63, tmp11); 2023-01-11T21:05:10.6968473Z auto tmp65 = (tmp64 != tmp64) ? tmp64 : std::max(0, tmp64); 2023-01-11T21:05:10.6968590Z auto tmp66 = in_ptr0[tmp21 + (32*tmp65) + (2048*i0)]; 2023-01-11T21:05:10.6968703Z auto tmp67 = in_ptr0[tmp24 + (32*tmp65) + (2048*i0)]; 2023-01-11T21:05:10.6968807Z auto tmp68 = in_ptr0[tmp27 + (32*tmp65) + (2048*i0)]; 2023-01-11T21:05:10.6968918Z auto tmp69 = in_ptr0[tmp30 + (32*tmp65) + (2048*i0)]; 2023-01-11T21:05:10.6969040Z auto tmp70 = tmp66 * tmp38; 2023-01-11T21:05:10.6969134Z auto tmp71 = tmp67 * tmp43; 2023-01-11T21:05:10.6969227Z auto tmp72 = tmp68 * tmp49; 2023-01-11T21:05:10.6969319Z auto tmp73 = tmp69 * tmp56; 2023-01-11T21:05:10.6969410Z auto tmp74 = tmp72 + tmp73; 2023-01-11T21:05:10.6969489Z auto tmp75 = tmp71 + tmp74; 2023-01-11T21:05:10.6969580Z auto tmp76 = tmp70 + tmp75; 2023-01-11T21:05:10.6969704Z auto tmp77 = (tmp12 != tmp12) ? tmp12 : std::min(63, tmp12); 2023-01-11T21:05:10.6969830Z auto tmp78 = (tmp77 != tmp77) ? tmp77 : std::max(0, tmp77); 2023-01-11T21:05:10.6969945Z auto tmp79 = in_ptr0[tmp21 + (32*tmp78) + (2048*i0)]; 2023-01-11T21:05:10.6970059Z auto tmp80 = in_ptr0[tmp24 + (32*tmp78) + (2048*i0)]; 2023-01-11T21:05:10.6970173Z auto tmp81 = in_ptr0[tmp27 + (32*tmp78) + (2048*i0)]; 2023-01-11T21:05:10.6970285Z auto tmp82 = in_ptr0[tmp30 + (32*tmp78) + (2048*i0)]; 2023-01-11T21:05:10.6970377Z auto tmp83 = tmp79 * tmp38; 2023-01-11T21:05:10.6970458Z auto tmp84 = tmp80 * tmp43; 2023-01-11T21:05:10.6970550Z auto tmp85 = tmp81 * tmp49; 2023-01-11T21:05:10.6970642Z auto tmp86 = tmp82 * tmp56; 2023-01-11T21:05:10.6970732Z auto tmp87 = tmp85 + tmp86; 2023-01-11T21:05:10.6970823Z auto tmp88 = tmp84 + tmp87; 2023-01-11T21:05:10.6970915Z auto tmp89 = tmp83 + tmp88; 2023-01-11T21:05:10.6971043Z auto tmp90 = (tmp13 != tmp13) ? tmp13 : std::min(63, tmp13); 2023-01-11T21:05:10.6971157Z auto tmp91 = (tmp90 != tmp90) ? tmp90 : std::max(0, tmp90); 2023-01-11T21:05:10.6971272Z auto tmp92 = in_ptr0[tmp21 + (32*tmp91) + (2048*i0)]; 2023-01-11T21:05:10.6971384Z auto tmp93 = in_ptr0[tmp24 + (32*tmp91) + (2048*i0)]; 2023-01-11T21:05:10.6971497Z auto tmp94 = in_ptr0[tmp27 + (32*tmp91) + (2048*i0)]; 2023-01-11T21:05:10.6971608Z auto tmp95 = in_ptr0[tmp30 + (32*tmp91) + (2048*i0)]; 2023-01-11T21:05:10.6971701Z auto tmp96 = tmp92 * tmp38; 2023-01-11T21:05:10.6971793Z auto tmp97 = tmp93 * tmp43; 2023-01-11T21:05:10.6971885Z auto tmp98 = tmp94 * tmp49; 2023-01-11T21:05:10.6971993Z auto tmp99 = tmp95 * tmp56; 2023-01-11T21:05:10.6972092Z auto tmp100 = tmp98 + tmp99; 2023-01-11T21:05:10.6972188Z auto tmp101 = tmp97 + tmp100; 2023-01-11T21:05:10.6972284Z auto tmp102 = tmp96 + tmp101; 2023-01-11T21:05:10.6972378Z auto tmp103 = tmp7 + 1.0; 2023-01-11T21:05:10.6972529Z auto tmp104 = -0.75 * tmp103; 2023-01-11T21:05:10.6972679Z auto tmp105 = tmp104 - -3.75; 2023-01-11T21:05:10.6972779Z auto tmp106 = tmp105 * tmp103; 2023-01-11T21:05:10.6972915Z auto tmp107 = tmp106 + -6.0; 2023-01-11T21:05:10.6973011Z auto tmp108 = tmp107 * tmp103; 2023-01-11T21:05:10.6973158Z auto tmp109 = tmp108 - -3.0; 2023-01-11T21:05:10.6973251Z auto tmp110 = 1.25 * tmp7; 2023-01-11T21:05:10.6973402Z auto tmp111 = tmp110 - 2.25; 2023-01-11T21:05:10.6973495Z auto tmp112 = tmp111 * tmp7; 2023-01-11T21:05:10.6973589Z auto tmp113 = tmp112 * tmp7; 2023-01-11T21:05:10.6973699Z auto tmp114 = tmp113 + 1.0; 2023-01-11T21:05:10.6973844Z auto tmp115 = 1.0 - tmp7; 2023-01-11T21:05:10.6973935Z auto tmp116 = 1.25 * tmp115; 2023-01-11T21:05:10.6974080Z auto tmp117 = tmp116 - 2.25; 2023-01-11T21:05:10.6974178Z auto tmp118 = tmp117 * tmp115; 2023-01-11T21:05:10.6974274Z auto tmp119 = tmp118 * tmp115; 2023-01-11T21:05:10.6974367Z auto tmp120 = tmp119 + 1.0; 2023-01-11T21:05:10.6974460Z auto tmp121 = tmp115 + 1.0; 2023-01-11T21:05:10.6974596Z auto tmp122 = -0.75 * tmp121; 2023-01-11T21:05:10.6974746Z auto tmp123 = tmp122 - -3.75; 2023-01-11T21:05:10.6974841Z auto tmp124 = tmp123 * tmp121; 2023-01-11T21:05:10.6974990Z auto tmp125 = tmp124 + -6.0; 2023-01-11T21:05:10.6975086Z auto tmp126 = tmp125 * tmp121; 2023-01-11T21:05:10.6975234Z auto tmp127 = tmp126 - -3.0; 2023-01-11T21:05:10.6975329Z auto tmp128 = tmp63 * tmp109; 2023-01-11T21:05:10.6975412Z auto tmp129 = tmp76 * tmp114; 2023-01-11T21:05:10.6975506Z auto tmp130 = tmp89 * tmp120; 2023-01-11T21:05:10.6975602Z auto tmp131 = tmp102 * tmp127; 2023-01-11T21:05:10.6975697Z auto tmp132 = tmp130 + tmp131; 2023-01-11T21:05:10.6975794Z auto tmp133 = tmp129 + tmp132; 2023-01-11T21:05:10.6975888Z auto tmp134 = tmp128 + tmp133; 2023-01-11T21:05:10.6975997Z out_ptr0[i2 + (128*i1) + (16384*i0)] = tmp134; 2023-01-11T21:05:10.6976064Z } 2023-01-11T21:05:10.6976116Z } 2023-01-11T21:05:10.6976181Z } 2023-01-11T21:05:10.6976242Z } 2023-01-11T21:05:10.6976304Z } 2023-01-11T21:05:10.6976381Z #pragma omp for 2023-01-11T21:05:10.6976461Z for(long i0=0; i0<12; i0+=1) 2023-01-11T21:05:10.6976508Z { 2023-01-11T21:05:10.6976589Z #pragma GCC ivdep 2023-01-11T21:05:10.6976674Z for(long i1=0; i1<128; i1+=1) 2023-01-11T21:05:10.6976738Z { 2023-01-11T21:05:10.6976819Z #pragma GCC ivdep 2023-01-11T21:05:10.6976909Z for(long i2=0; i2<256; i2+=1) 2023-01-11T21:05:10.6976975Z { 2023-01-11T21:05:10.6977026Z { 2023-01-11T21:05:10.6977092Z { 2023-01-11T21:05:10.6977202Z auto tmp0 = static_cast(i2); 2023-01-11T21:05:10.6977325Z auto tmp1 = tmp0 + 0.5; 2023-01-11T21:05:10.6977416Z auto tmp2 = 0.125 * tmp1; 2023-01-11T21:05:10.6977560Z auto tmp3 = tmp2 - 0.5; 2023-01-11T21:05:10.6977664Z auto tmp4 = std::floor(tmp3); 2023-01-11T21:05:10.6977795Z auto tmp5 = tmp3 - tmp4; 2023-01-11T21:05:10.6977902Z auto tmp6 = static_cast(i1); 2023-01-11T21:05:10.6977993Z auto tmp7 = tmp6 + 0.5; 2023-01-11T21:05:10.6978082Z auto tmp8 = 0.5 * tmp7; 2023-01-11T21:05:10.6978218Z auto tmp9 = tmp8 - 0.5; 2023-01-11T21:05:10.6978322Z auto tmp10 = std::floor(tmp9); 2023-01-11T21:05:10.6978559Z auto tmp11 = tmp9 - tmp10; 2023-01-11T21:05:10.6978672Z auto tmp12 = static_cast(tmp10); 2023-01-11T21:05:10.6978770Z auto tmp13 = static_cast(tmp4); 2023-01-11T21:05:10.6978916Z auto tmp14 = tmp12 + -1; 2023-01-11T21:05:10.6979043Z auto tmp15 = tmp12 + 0; 2023-01-11T21:05:10.6979136Z auto tmp16 = tmp12 + 1; 2023-01-11T21:05:10.6979224Z auto tmp17 = tmp12 + 2; 2023-01-11T21:05:10.6979365Z auto tmp18 = tmp13 + -1; 2023-01-11T21:05:10.6979454Z auto tmp19 = tmp13 + 0; 2023-01-11T21:05:10.6979528Z auto tmp20 = tmp13 + 1; 2023-01-11T21:05:10.6979619Z auto tmp21 = tmp13 + 2; 2023-01-11T21:05:10.6979749Z auto tmp22 = (tmp14 != tmp14) ? tmp14 : std::min(63, tmp14); 2023-01-11T21:05:10.6979874Z auto tmp23 = (tmp22 != tmp22) ? tmp22 : std::max(0, tmp22); 2023-01-11T21:05:10.6980003Z auto tmp24 = (tmp18 != tmp18) ? tmp18 : std::min(31, tmp18); 2023-01-11T21:05:10.6980126Z auto tmp25 = (tmp24 != tmp24) ? tmp24 : std::max(0, tmp24); 2023-01-11T21:05:10.6980246Z auto tmp26 = in_ptr0[tmp25 + (32*tmp23) + (2048*i0)]; 2023-01-11T21:05:10.6980370Z auto tmp27 = (tmp19 != tmp19) ? tmp19 : std::min(31, tmp19); 2023-01-11T21:05:10.6980494Z auto tmp28 = (tmp27 != tmp27) ? tmp27 : std::max(0, tmp27); 2023-01-11T21:05:10.6980595Z auto tmp29 = in_ptr0[tmp28 + (32*tmp23) + (2048*i0)]; 2023-01-11T21:05:10.6980718Z auto tmp30 = (tmp20 != tmp20) ? tmp20 : std::min(31, tmp20); 2023-01-11T21:05:10.6980840Z auto tmp31 = (tmp30 != tmp30) ? tmp30 : std::max(0, tmp30); 2023-01-11T21:05:10.6980957Z auto tmp32 = in_ptr0[tmp31 + (32*tmp23) + (2048*i0)]; 2023-01-11T21:05:10.6981081Z auto tmp33 = (tmp21 != tmp21) ? tmp21 : std::min(31, tmp21); 2023-01-11T21:05:10.6981206Z auto tmp34 = (tmp33 != tmp33) ? tmp33 : std::max(0, tmp33); 2023-01-11T21:05:10.6981323Z auto tmp35 = in_ptr0[tmp34 + (32*tmp23) + (2048*i0)]; 2023-01-11T21:05:10.6981420Z auto tmp36 = tmp5 + 1.0; 2023-01-11T21:05:10.6981566Z auto tmp37 = -0.75 * tmp36; 2023-01-11T21:05:10.6981699Z auto tmp38 = tmp37 - -3.75; 2023-01-11T21:05:10.6981795Z auto tmp39 = tmp38 * tmp36; 2023-01-11T21:05:10.6981940Z auto tmp40 = tmp39 + -6.0; 2023-01-11T21:05:10.6982033Z auto tmp41 = tmp40 * tmp36; 2023-01-11T21:05:10.6982178Z auto tmp42 = tmp41 - -3.0; 2023-01-11T21:05:10.6982269Z auto tmp43 = 1.25 * tmp5; 2023-01-11T21:05:10.6982444Z auto tmp44 = tmp43 - 2.25; 2023-01-11T21:05:10.6982525Z auto tmp45 = tmp44 * tmp5; 2023-01-11T21:05:10.6982620Z auto tmp46 = tmp45 * tmp5; 2023-01-11T21:05:10.6982713Z auto tmp47 = tmp46 + 1.0; 2023-01-11T21:05:10.6982855Z auto tmp48 = 1.0 - tmp5; 2023-01-11T21:05:10.6982946Z auto tmp49 = 1.25 * tmp48; 2023-01-11T21:05:10.6983089Z auto tmp50 = tmp49 - 2.25; 2023-01-11T21:05:10.6983182Z auto tmp51 = tmp50 * tmp48; 2023-01-11T21:05:10.6983263Z auto tmp52 = tmp51 * tmp48; 2023-01-11T21:05:10.6983356Z auto tmp53 = tmp52 + 1.0; 2023-01-11T21:05:10.6983446Z auto tmp54 = tmp48 + 1.0; 2023-01-11T21:05:10.6983587Z auto tmp55 = -0.75 * tmp54; 2023-01-11T21:05:10.6983735Z auto tmp56 = tmp55 - -3.75; 2023-01-11T21:05:10.6983826Z auto tmp57 = tmp56 * tmp54; 2023-01-11T21:05:10.6983970Z auto tmp58 = tmp57 + -6.0; 2023-01-11T21:05:10.6984086Z auto tmp59 = tmp58 * tmp54; 2023-01-11T21:05:10.6984219Z auto tmp60 = tmp59 - -3.0; 2023-01-11T21:05:10.6984311Z auto tmp61 = tmp26 * tmp42; 2023-01-11T21:05:10.6984403Z auto tmp62 = tmp29 * tmp47; 2023-01-11T21:05:10.6984492Z auto tmp63 = tmp32 * tmp53; 2023-01-11T21:05:10.6984584Z auto tmp64 = tmp35 * tmp60; 2023-01-11T21:05:10.6984674Z auto tmp65 = tmp63 + tmp64; 2023-01-11T21:05:10.6984765Z auto tmp66 = tmp62 + tmp65; 2023-01-11T21:05:10.6984843Z auto tmp67 = tmp61 + tmp66; 2023-01-11T21:05:10.6984972Z auto tmp68 = (tmp15 != tmp15) ? tmp15 : std::min(63, tmp15); 2023-01-11T21:05:10.6985094Z auto tmp69 = (tmp68 != tmp68) ? tmp68 : std::max(0, tmp68); 2023-01-11T21:05:10.6985212Z auto tmp70 = in_ptr0[tmp25 + (32*tmp69) + (2048*i0)]; 2023-01-11T21:05:10.6985329Z auto tmp71 = in_ptr0[tmp28 + (32*tmp69) + (2048*i0)]; 2023-01-11T21:05:10.6985443Z auto tmp72 = in_ptr0[tmp31 + (32*tmp69) + (2048*i0)]; 2023-01-11T21:05:10.6985555Z auto tmp73 = in_ptr0[tmp34 + (32*tmp69) + (2048*i0)]; 2023-01-11T21:05:10.6985650Z auto tmp74 = tmp70 * tmp42; 2023-01-11T21:05:10.6985730Z auto tmp75 = tmp71 * tmp47; 2023-01-11T21:05:10.6985822Z auto tmp76 = tmp72 * tmp53; 2023-01-11T21:05:10.6985916Z auto tmp77 = tmp73 * tmp60; 2023-01-11T21:05:10.6986010Z auto tmp78 = tmp76 + tmp77; 2023-01-11T21:05:10.6986099Z auto tmp79 = tmp75 + tmp78; 2023-01-11T21:05:10.6986189Z auto tmp80 = tmp74 + tmp79; 2023-01-11T21:05:10.6986360Z auto tmp81 = (tmp16 != tmp16) ? tmp16 : std::min(63, tmp16); 2023-01-11T21:05:10.6986540Z auto tmp82 = (tmp81 != tmp81) ? tmp81 : std::max(0, tmp81); 2023-01-11T21:05:10.6986657Z auto tmp83 = in_ptr0[tmp25 + (32*tmp82) + (2048*i0)]; 2023-01-11T21:05:10.6986775Z auto tmp84 = in_ptr0[tmp28 + (32*tmp82) + (2048*i0)]; 2023-01-11T21:05:10.6986887Z auto tmp85 = in_ptr0[tmp31 + (32*tmp82) + (2048*i0)]; 2023-01-11T21:05:10.6987000Z auto tmp86 = in_ptr0[tmp34 + (32*tmp82) + (2048*i0)]; 2023-01-11T21:05:10.6987091Z auto tmp87 = tmp83 * tmp42; 2023-01-11T21:05:10.6987185Z auto tmp88 = tmp84 * tmp47; 2023-01-11T21:05:10.6987314Z auto tmp89 = tmp85 * tmp53; 2023-01-11T21:05:10.6987407Z auto tmp90 = tmp86 * tmp60; 2023-01-11T21:05:10.6987487Z auto tmp91 = tmp89 + tmp90; 2023-01-11T21:05:10.6987579Z auto tmp92 = tmp88 + tmp91; 2023-01-11T21:05:10.6987670Z auto tmp93 = tmp87 + tmp92; 2023-01-11T21:05:10.6987799Z auto tmp94 = (tmp17 != tmp17) ? tmp17 : std::min(63, tmp17); 2023-01-11T21:05:10.6987923Z auto tmp95 = (tmp94 != tmp94) ? tmp94 : std::max(0, tmp94); 2023-01-11T21:05:10.6988038Z auto tmp96 = in_ptr0[tmp25 + (32*tmp95) + (2048*i0)]; 2023-01-11T21:05:10.6988150Z auto tmp97 = in_ptr0[tmp28 + (32*tmp95) + (2048*i0)]; 2023-01-11T21:05:10.6988263Z auto tmp98 = in_ptr0[tmp31 + (32*tmp95) + (2048*i0)]; 2023-01-11T21:05:10.6988365Z auto tmp99 = in_ptr0[tmp34 + (32*tmp95) + (2048*i0)]; 2023-01-11T21:05:10.6988463Z auto tmp100 = tmp96 * tmp42; 2023-01-11T21:05:10.6988588Z auto tmp101 = tmp97 * tmp47; 2023-01-11T21:05:10.6988686Z auto tmp102 = tmp98 * tmp53; 2023-01-11T21:05:10.6988780Z auto tmp103 = tmp99 * tmp60; 2023-01-11T21:05:10.6988878Z auto tmp104 = tmp102 + tmp103; 2023-01-11T21:05:10.6988975Z auto tmp105 = tmp101 + tmp104; 2023-01-11T21:05:10.6989071Z auto tmp106 = tmp100 + tmp105; 2023-01-11T21:05:10.6989153Z auto tmp107 = tmp11 + 1.0; 2023-01-11T21:05:10.6989309Z auto tmp108 = -0.75 * tmp107; 2023-01-11T21:05:10.6989460Z auto tmp109 = tmp108 - -3.75; 2023-01-11T21:05:10.6989561Z auto tmp110 = tmp109 * tmp107; 2023-01-11T21:05:10.6989707Z auto tmp111 = tmp110 + -6.0; 2023-01-11T21:05:10.6989802Z auto tmp112 = tmp111 * tmp107; 2023-01-11T21:05:10.6989951Z auto tmp113 = tmp112 - -3.0; 2023-01-11T21:05:10.6990031Z auto tmp114 = 1.25 * tmp11; 2023-01-11T21:05:10.6990177Z auto tmp115 = tmp114 - 2.25; 2023-01-11T21:05:10.6990274Z auto tmp116 = tmp115 * tmp11; 2023-01-11T21:05:10.6990371Z auto tmp117 = tmp116 * tmp11; 2023-01-11T21:05:10.6990465Z auto tmp118 = tmp117 + 1.0; 2023-01-11T21:05:10.6990610Z auto tmp119 = 1.0 - tmp11; 2023-01-11T21:05:10.6990704Z auto tmp120 = 1.25 * tmp119; 2023-01-11T21:05:10.6990852Z auto tmp121 = tmp120 - 2.25; 2023-01-11T21:05:10.6990939Z auto tmp122 = tmp121 * tmp119; 2023-01-11T21:05:10.6991034Z auto tmp123 = tmp122 * tmp119; 2023-01-11T21:05:10.6991125Z auto tmp124 = tmp123 + 1.0; 2023-01-11T21:05:10.6991221Z auto tmp125 = tmp119 + 1.0; 2023-01-11T21:05:10.6991367Z auto tmp126 = -0.75 * tmp125; 2023-01-11T21:05:10.6991513Z auto tmp127 = tmp126 - -3.75; 2023-01-11T21:05:10.6991610Z auto tmp128 = tmp127 * tmp125; 2023-01-11T21:05:10.6991744Z auto tmp129 = tmp128 + -6.0; 2023-01-11T21:05:10.6991840Z auto tmp130 = tmp129 * tmp125; 2023-01-11T21:05:10.6991986Z auto tmp131 = tmp130 - -3.0; 2023-01-11T21:05:10.6992082Z auto tmp132 = tmp67 * tmp113; 2023-01-11T21:05:10.6992176Z auto tmp133 = tmp80 * tmp118; 2023-01-11T21:05:10.6992303Z auto tmp134 = tmp93 * tmp124; 2023-01-11T21:05:10.6992401Z auto tmp135 = tmp106 * tmp131; 2023-01-11T21:05:10.6992497Z auto tmp136 = tmp134 + tmp135; 2023-01-11T21:05:10.6992579Z auto tmp137 = tmp133 + tmp136; 2023-01-11T21:05:10.6992674Z auto tmp138 = tmp132 + tmp137; 2023-01-11T21:05:10.6992781Z out_ptr1[i2 + (256*i1) + (32768*i0)] = tmp138; 2023-01-11T21:05:10.6992851Z } 2023-01-11T21:05:10.6992917Z } 2023-01-11T21:05:10.6992980Z } 2023-01-11T21:05:10.6993042Z } 2023-01-11T21:05:10.6993090Z } 2023-01-11T21:05:10.6993149Z } 2023-01-11T21:05:10.6993209Z } 2023-01-11T21:05:10.6993285Z ''') 2023-01-11T21:05:10.6993292Z 2023-01-11T21:05:10.6993296Z 2023-01-11T21:05:10.6993386Z async_compile.wait(globals()) 2023-01-11T21:05:10.6993459Z del async_compile 2023-01-11T21:05:10.6993465Z 2023-01-11T21:05:10.6993532Z def call(args): 2023-01-11T21:05:10.6993587Z arg0_1, = args 2023-01-11T21:05:10.6993657Z args.clear() 2023-01-11T21:05:10.6993933Z buf0 = empty_strided((4, 3, 128, 128), (49152, 16384, 128, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6994158Z buf1 = empty_strided((4, 3, 128, 256), (98304, 32768, 256, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6994319Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(buf0.data_ptr()), c_void_p(buf1.data_ptr())) 2023-01-11T21:05:10.6994385Z del arg0_1 2023-01-11T21:05:10.6994461Z return (buf0, buf1, ) 2023-01-11T21:05:10.6994465Z 2023-01-11T21:05:10.6994470Z 2023-01-11T21:05:10.6994544Z if __name__ == "__main__": 2023-01-11T21:05:10.6994645Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.6994768Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.6994987Z arg0_1 = rand_strided((4, 3, 64, 32), (6144, 2048, 32, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.6995095Z print_performance(lambda: call([arg0_1])) 2023-01-11T21:05:10.6995366Z [2023-01-11 21:01:26,827] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 452 2023-01-11T21:05:10.6995371Z 2023-01-11T21:05:10.6995438Z ok (6.030s) 2023-01-11T21:05:10.6995894Z test_upsample_bilinear2d_a_cpu (__main__.CpuTests) ... inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.6996022Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.6996281Z [2023-01-11 21:01:28,083] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 453 2023-01-11T21:05:10.6996289Z 2023-01-11T21:05:10.6996383Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.6996440Z import torch 2023-01-11T21:05:10.6996511Z import random 2023-01-11T21:05:10.6996624Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.6996744Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.6996749Z 2023-01-11T21:05:10.6996827Z aten = torch.ops.aten 2023-01-11T21:05:10.6996959Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.6997050Z async_compile = AsyncCompile() 2023-01-11T21:05:10.6997055Z 2023-01-11T21:05:10.6997059Z 2023-01-11T21:05:10.6997179Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.6997383Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.6997497Z extern "C" void kernel(float* __restrict__ in_out_ptr0, 2023-01-11T21:05:10.6997597Z float* __restrict__ in_out_ptr1, 2023-01-11T21:05:10.6997699Z const float* __restrict__ in_ptr0, 2023-01-11T21:05:10.6997825Z float* __restrict__ out_ptr1, 2023-01-11T21:05:10.6997919Z float* __restrict__ out_ptr3) 2023-01-11T21:05:10.6997979Z { 2023-01-11T21:05:10.6998053Z auto out_ptr0 = in_out_ptr0; 2023-01-11T21:05:10.6998134Z auto out_ptr2 = in_out_ptr1; 2023-01-11T21:05:10.6998230Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.6998291Z { 2023-01-11T21:05:10.6998367Z #pragma omp for 2023-01-11T21:05:10.6998447Z for(long i0=0; i0<8; i0+=1) 2023-01-11T21:05:10.6998495Z { 2023-01-11T21:05:10.6998573Z #pragma GCC ivdep 2023-01-11T21:05:10.6998656Z for(long i1=0; i1<45; i1+=1) 2023-01-11T21:05:10.6998717Z { 2023-01-11T21:05:10.6998796Z #pragma GCC ivdep 2023-01-11T21:05:10.6998883Z for(long i2=0; i2<45; i2+=1) 2023-01-11T21:05:10.6998946Z { 2023-01-11T21:05:10.6998998Z { 2023-01-11T21:05:10.6999066Z { 2023-01-11T21:05:10.6999173Z auto tmp0 = static_cast(i1); 2023-01-11T21:05:10.6999281Z auto tmp1 = static_cast(0.5); 2023-01-11T21:05:10.6999402Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:05:10.6999519Z auto tmp3 = static_cast(0.8222222222222222); 2023-01-11T21:05:10.6999614Z auto tmp4 = tmp2 * tmp3; 2023-01-11T21:05:10.6999744Z auto tmp5 = tmp4 - tmp1; 2023-01-11T21:05:10.6999855Z auto tmp6 = static_cast(0.0); 2023-01-11T21:05:10.6999985Z auto tmp7 = (tmp6 != tmp6) ? tmp6 : std::max(tmp5, tmp6); 2023-01-11T21:05:10.7000088Z auto tmp8 = std::floor(tmp7); 2023-01-11T21:05:10.7000194Z auto tmp9 = static_cast(tmp8); 2023-01-11T21:05:10.7000301Z auto tmp10 = static_cast(i2); 2023-01-11T21:05:10.7000398Z auto tmp11 = tmp10 + tmp1; 2023-01-11T21:05:10.7000517Z auto tmp12 = static_cast(0.8444444444444444); 2023-01-11T21:05:10.7000734Z auto tmp13 = tmp11 * tmp12; 2023-01-11T21:05:10.7000882Z auto tmp14 = tmp13 - tmp1; 2023-01-11T21:05:10.7001012Z auto tmp15 = (tmp6 != tmp6) ? tmp6 : std::max(tmp14, tmp6); 2023-01-11T21:05:10.7001118Z auto tmp16 = std::floor(tmp15); 2023-01-11T21:05:10.7001228Z auto tmp17 = static_cast(tmp16); 2023-01-11T21:05:10.7001346Z auto tmp18 = in_ptr0[tmp17 + (38*tmp9) + (1406*i0)]; 2023-01-11T21:05:10.7001455Z auto tmp19 = static_cast(1.0); 2023-01-11T21:05:10.7001568Z auto tmp20 = static_cast(tmp9); 2023-01-11T21:05:10.7001704Z auto tmp21 = tmp7 - tmp20; 2023-01-11T21:05:10.7001852Z auto tmp22 = tmp19 - tmp21; 2023-01-11T21:05:10.7001951Z auto tmp23 = tmp18 * tmp22; 2023-01-11T21:05:10.7002058Z auto tmp24 = std::ceil(tmp7); 2023-01-11T21:05:10.7002167Z auto tmp25 = static_cast(36.0); 2023-01-11T21:05:10.7002298Z auto tmp26 = (tmp25 != tmp25) ? tmp25 : std::min(tmp24, tmp25); 2023-01-11T21:05:10.7002407Z auto tmp27 = static_cast(tmp26); 2023-01-11T21:05:10.7002527Z auto tmp28 = in_ptr0[tmp17 + (38*tmp27) + (1406*i0)]; 2023-01-11T21:05:10.7002609Z auto tmp29 = tmp28 * tmp21; 2023-01-11T21:05:10.7002704Z auto tmp30 = tmp23 + tmp29; 2023-01-11T21:05:10.7002808Z out_ptr0[i2 + (45*i1) + (2025*i0)] = tmp30; 2023-01-11T21:05:10.7002932Z } 2023-01-11T21:05:10.7003000Z } 2023-01-11T21:05:10.7003064Z } 2023-01-11T21:05:10.7003127Z } 2023-01-11T21:05:10.7003178Z } 2023-01-11T21:05:10.7003257Z #pragma omp for 2023-01-11T21:05:10.7003338Z for(long i0=0; i0<8; i0+=1) 2023-01-11T21:05:10.7003400Z { 2023-01-11T21:05:10.7003479Z #pragma GCC ivdep 2023-01-11T21:05:10.7003564Z for(long i1=0; i1<45; i1+=1) 2023-01-11T21:05:10.7003628Z { 2023-01-11T21:05:10.7003697Z #pragma GCC ivdep 2023-01-11T21:05:10.7003786Z for(long i2=0; i2<45; i2+=1) 2023-01-11T21:05:10.7003851Z { 2023-01-11T21:05:10.7003918Z { 2023-01-11T21:05:10.7003989Z { 2023-01-11T21:05:10.7004097Z auto tmp0 = static_cast(i1); 2023-01-11T21:05:10.7004207Z auto tmp1 = static_cast(0.5); 2023-01-11T21:05:10.7004292Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:05:10.7004405Z auto tmp3 = static_cast(0.8222222222222222); 2023-01-11T21:05:10.7004533Z auto tmp4 = tmp2 * tmp3; 2023-01-11T21:05:10.7004677Z auto tmp5 = tmp4 - tmp1; 2023-01-11T21:05:10.7004786Z auto tmp6 = static_cast(0.0); 2023-01-11T21:05:10.7004916Z auto tmp7 = (tmp6 != tmp6) ? tmp6 : std::max(tmp5, tmp6); 2023-01-11T21:05:10.7005018Z auto tmp8 = std::floor(tmp7); 2023-01-11T21:05:10.7005125Z auto tmp9 = static_cast(tmp8); 2023-01-11T21:05:10.7005219Z auto tmp10 = static_cast(i2); 2023-01-11T21:05:10.7005315Z auto tmp11 = tmp10 + tmp1; 2023-01-11T21:05:10.7005434Z auto tmp12 = static_cast(0.8444444444444444); 2023-01-11T21:05:10.7005531Z auto tmp13 = tmp11 * tmp12; 2023-01-11T21:05:10.7005678Z auto tmp14 = tmp13 - tmp1; 2023-01-11T21:05:10.7005810Z auto tmp15 = (tmp6 != tmp6) ? tmp6 : std::max(tmp14, tmp6); 2023-01-11T21:05:10.7005914Z auto tmp16 = std::ceil(tmp15); 2023-01-11T21:05:10.7006009Z auto tmp17 = static_cast(37.0); 2023-01-11T21:05:10.7006139Z auto tmp18 = (tmp17 != tmp17) ? tmp17 : std::min(tmp16, tmp17); 2023-01-11T21:05:10.7006249Z auto tmp19 = static_cast(tmp18); 2023-01-11T21:05:10.7006365Z auto tmp20 = in_ptr0[tmp19 + (38*tmp9) + (1406*i0)]; 2023-01-11T21:05:10.7006473Z auto tmp21 = static_cast(1.0); 2023-01-11T21:05:10.7006582Z auto tmp22 = static_cast(tmp9); 2023-01-11T21:05:10.7006732Z auto tmp23 = tmp7 - tmp22; 2023-01-11T21:05:10.7006878Z auto tmp24 = tmp21 - tmp23; 2023-01-11T21:05:10.7006962Z auto tmp25 = tmp20 * tmp24; 2023-01-11T21:05:10.7007064Z auto tmp26 = std::ceil(tmp7); 2023-01-11T21:05:10.7007171Z auto tmp27 = static_cast(36.0); 2023-01-11T21:05:10.7007300Z auto tmp28 = (tmp27 != tmp27) ? tmp27 : std::min(tmp26, tmp27); 2023-01-11T21:05:10.7007407Z auto tmp29 = static_cast(tmp28); 2023-01-11T21:05:10.7007523Z auto tmp30 = in_ptr0[tmp19 + (38*tmp29) + (1406*i0)]; 2023-01-11T21:05:10.7007620Z auto tmp31 = tmp30 * tmp23; 2023-01-11T21:05:10.7007713Z auto tmp32 = tmp25 + tmp31; 2023-01-11T21:05:10.7007805Z out_ptr1[i2 + (45*i1) + (2025*i0)] = tmp32; 2023-01-11T21:05:10.7007909Z } 2023-01-11T21:05:10.7007973Z } 2023-01-11T21:05:10.7008036Z } 2023-01-11T21:05:10.7008101Z } 2023-01-11T21:05:10.7008165Z } 2023-01-11T21:05:10.7008239Z #pragma omp for 2023-01-11T21:05:10.7008308Z for(long i0=0; i0<360; i0+=1) 2023-01-11T21:05:10.7008369Z { 2023-01-11T21:05:10.7008448Z #pragma GCC ivdep 2023-01-11T21:05:10.7008533Z for(long i1=0; i1<45; i1+=1) 2023-01-11T21:05:10.7008597Z { 2023-01-11T21:05:10.7008660Z { 2023-01-11T21:05:10.7008726Z { 2023-01-11T21:05:10.7008816Z auto tmp0 = out_ptr0[i1 + (45*i0)]; 2023-01-11T21:05:10.7008919Z auto tmp16 = out_ptr1[i1 + (45*i0)]; 2023-01-11T21:05:10.7009026Z auto tmp1 = static_cast(1.0); 2023-01-11T21:05:10.7009133Z auto tmp2 = static_cast(i1); 2023-01-11T21:05:10.7009241Z auto tmp3 = static_cast(0.5); 2023-01-11T21:05:10.7009333Z auto tmp4 = tmp2 + tmp3; 2023-01-11T21:05:10.7009474Z auto tmp5 = static_cast(0.8444444444444444); 2023-01-11T21:05:10.7009555Z auto tmp6 = tmp4 * tmp5; 2023-01-11T21:05:10.7009694Z auto tmp7 = tmp6 - tmp3; 2023-01-11T21:05:10.7009797Z auto tmp8 = static_cast(0.0); 2023-01-11T21:05:10.7009925Z auto tmp9 = (tmp8 != tmp8) ? tmp8 : std::max(tmp7, tmp8); 2023-01-11T21:05:10.7010030Z auto tmp10 = std::floor(tmp9); 2023-01-11T21:05:10.7010140Z auto tmp11 = static_cast(tmp10); 2023-01-11T21:05:10.7010250Z auto tmp12 = static_cast(tmp11); 2023-01-11T21:05:10.7010394Z auto tmp13 = tmp9 - tmp12; 2023-01-11T21:05:10.7010521Z auto tmp14 = tmp1 - tmp13; 2023-01-11T21:05:10.7010610Z auto tmp15 = tmp0 * tmp14; 2023-01-11T21:05:10.7010703Z auto tmp17 = tmp16 * tmp13; 2023-01-11T21:05:10.7010796Z auto tmp18 = tmp15 + tmp17; 2023-01-11T21:05:10.7010893Z in_out_ptr0[i1 + (45*i0)] = tmp18; 2023-01-11T21:05:10.7010959Z } 2023-01-11T21:05:10.7011024Z } 2023-01-11T21:05:10.7011074Z } 2023-01-11T21:05:10.7011134Z } 2023-01-11T21:05:10.7011209Z #pragma omp for 2023-01-11T21:05:10.7011290Z for(long i0=0; i0<8; i0+=1) 2023-01-11T21:05:10.7011351Z { 2023-01-11T21:05:10.7011430Z #pragma GCC ivdep 2023-01-11T21:05:10.7011514Z for(long i1=0; i1<74; i1+=1) 2023-01-11T21:05:10.7011564Z { 2023-01-11T21:05:10.7011644Z #pragma GCC ivdep 2023-01-11T21:05:10.7011732Z for(long i2=0; i2<76; i2+=1) 2023-01-11T21:05:10.7011798Z { 2023-01-11T21:05:10.7011863Z { 2023-01-11T21:05:10.7011929Z { 2023-01-11T21:05:10.7012024Z auto tmp0 = static_cast(i1); 2023-01-11T21:05:10.7012140Z auto tmp1 = static_cast(0.4931506849315068); 2023-01-11T21:05:10.7012234Z auto tmp2 = tmp0 * tmp1; 2023-01-11T21:05:10.7012336Z auto tmp3 = std::floor(tmp2); 2023-01-11T21:05:10.7012443Z auto tmp4 = static_cast(tmp3); 2023-01-11T21:05:10.7012549Z auto tmp5 = static_cast(i2); 2023-01-11T21:05:10.7012666Z auto tmp6 = static_cast(0.49333333333333335); 2023-01-11T21:05:10.7012761Z auto tmp7 = tmp5 * tmp6; 2023-01-11T21:05:10.7012849Z auto tmp8 = std::floor(tmp7); 2023-01-11T21:05:10.7012988Z auto tmp9 = static_cast(tmp8); 2023-01-11T21:05:10.7013101Z auto tmp10 = in_ptr0[tmp9 + (38*tmp4) + (1406*i0)]; 2023-01-11T21:05:10.7013210Z auto tmp11 = static_cast(1.0); 2023-01-11T21:05:10.7013320Z auto tmp12 = static_cast(tmp4); 2023-01-11T21:05:10.7013466Z auto tmp13 = tmp2 - tmp12; 2023-01-11T21:05:10.7013617Z auto tmp14 = tmp11 - tmp13; 2023-01-11T21:05:10.7013711Z auto tmp15 = tmp10 * tmp14; 2023-01-11T21:05:10.7013801Z auto tmp16 = std::ceil(tmp2); 2023-01-11T21:05:10.7013908Z auto tmp17 = static_cast(36.0); 2023-01-11T21:05:10.7014037Z auto tmp18 = (tmp17 != tmp17) ? tmp17 : std::min(tmp16, tmp17); 2023-01-11T21:05:10.7014148Z auto tmp19 = static_cast(tmp18); 2023-01-11T21:05:10.7014265Z auto tmp20 = in_ptr0[tmp9 + (38*tmp19) + (1406*i0)]; 2023-01-11T21:05:10.7014358Z auto tmp21 = tmp20 * tmp13; 2023-01-11T21:05:10.7014478Z auto tmp22 = tmp15 + tmp21; 2023-01-11T21:05:10.7014589Z auto tmp23 = static_cast(tmp9); 2023-01-11T21:05:10.7014723Z auto tmp24 = tmp7 - tmp23; 2023-01-11T21:05:10.7014867Z auto tmp25 = tmp11 - tmp24; 2023-01-11T21:05:10.7014961Z auto tmp26 = tmp22 * tmp25; 2023-01-11T21:05:10.7015065Z out_ptr2[i2 + (76*i1) + (5624*i0)] = tmp26; 2023-01-11T21:05:10.7015134Z } 2023-01-11T21:05:10.7015198Z } 2023-01-11T21:05:10.7015262Z } 2023-01-11T21:05:10.7015310Z } 2023-01-11T21:05:10.7015370Z } 2023-01-11T21:05:10.7015445Z #pragma omp for 2023-01-11T21:05:10.7015527Z for(long i0=0; i0<8; i0+=1) 2023-01-11T21:05:10.7015589Z { 2023-01-11T21:05:10.7015668Z #pragma GCC ivdep 2023-01-11T21:05:10.7015740Z for(long i1=0; i1<74; i1+=1) 2023-01-11T21:05:10.7015804Z { 2023-01-11T21:05:10.7015883Z #pragma GCC ivdep 2023-01-11T21:05:10.7015972Z for(long i2=0; i2<76; i2+=1) 2023-01-11T21:05:10.7016035Z { 2023-01-11T21:05:10.7016098Z { 2023-01-11T21:05:10.7016163Z { 2023-01-11T21:05:10.7016257Z auto tmp0 = static_cast(i1); 2023-01-11T21:05:10.7016370Z auto tmp1 = static_cast(0.4931506849315068); 2023-01-11T21:05:10.7016464Z auto tmp2 = tmp0 * tmp1; 2023-01-11T21:05:10.7016567Z auto tmp3 = std::floor(tmp2); 2023-01-11T21:05:10.7016674Z auto tmp4 = static_cast(tmp3); 2023-01-11T21:05:10.7016782Z auto tmp5 = static_cast(i2); 2023-01-11T21:05:10.7016897Z auto tmp6 = static_cast(0.49333333333333335); 2023-01-11T21:05:10.7016994Z auto tmp7 = tmp5 * tmp6; 2023-01-11T21:05:10.7017081Z auto tmp8 = std::ceil(tmp7); 2023-01-11T21:05:10.7017189Z auto tmp9 = static_cast(37.0); 2023-01-11T21:05:10.7017317Z auto tmp10 = (tmp9 != tmp9) ? tmp9 : std::min(tmp8, tmp9); 2023-01-11T21:05:10.7017426Z auto tmp11 = static_cast(tmp10); 2023-01-11T21:05:10.7017541Z auto tmp12 = in_ptr0[tmp11 + (38*tmp4) + (1406*i0)]; 2023-01-11T21:05:10.7017650Z auto tmp13 = static_cast(1.0); 2023-01-11T21:05:10.7017758Z auto tmp14 = static_cast(tmp4); 2023-01-11T21:05:10.7017903Z auto tmp15 = tmp2 - tmp14; 2023-01-11T21:05:10.7018069Z auto tmp16 = tmp13 - tmp15; 2023-01-11T21:05:10.7018166Z auto tmp17 = tmp12 * tmp16; 2023-01-11T21:05:10.7018270Z auto tmp18 = std::ceil(tmp2); 2023-01-11T21:05:10.7018377Z auto tmp19 = static_cast(36.0); 2023-01-11T21:05:10.7018596Z auto tmp20 = (tmp19 != tmp19) ? tmp19 : std::min(tmp18, tmp19); 2023-01-11T21:05:10.7018706Z auto tmp21 = static_cast(tmp20); 2023-01-11T21:05:10.7018823Z auto tmp22 = in_ptr0[tmp11 + (38*tmp21) + (1406*i0)]; 2023-01-11T21:05:10.7018914Z auto tmp23 = tmp22 * tmp15; 2023-01-11T21:05:10.7023832Z auto tmp24 = tmp17 + tmp23; 2023-01-11T21:05:10.7023969Z auto tmp25 = std::floor(tmp7); 2023-01-11T21:05:10.7024084Z auto tmp26 = static_cast(tmp25); 2023-01-11T21:05:10.7024203Z auto tmp27 = static_cast(tmp26); 2023-01-11T21:05:10.7024373Z auto tmp28 = tmp7 - tmp27; 2023-01-11T21:05:10.7024525Z auto tmp29 = tmp24 * tmp28; 2023-01-11T21:05:10.7024632Z out_ptr3[i2 + (76*i1) + (5624*i0)] = tmp29; 2023-01-11T21:05:10.7024701Z } 2023-01-11T21:05:10.7024766Z } 2023-01-11T21:05:10.7024829Z } 2023-01-11T21:05:10.7024892Z } 2023-01-11T21:05:10.7024953Z } 2023-01-11T21:05:10.7025019Z #pragma omp for 2023-01-11T21:05:10.7025100Z for(long i0=0; i0<2812; i0+=1) 2023-01-11T21:05:10.7025162Z { 2023-01-11T21:05:10.7025300Z auto tmp0 = at::vec::Vectorized::loadu(out_ptr2 + 16*i0); 2023-01-11T21:05:10.7025432Z auto tmp1 = at::vec::Vectorized::loadu(out_ptr3 + 16*i0); 2023-01-11T21:05:10.7025517Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:05:10.7025613Z tmp2.store(in_out_ptr1 + 16*i0); 2023-01-11T21:05:10.7025661Z } 2023-01-11T21:05:10.7025755Z #pragma omp for simd simdlen(8) 2023-01-11T21:05:10.7025843Z for(long i0=44992; i0<44992; i0+=1) 2023-01-11T21:05:10.7025904Z { 2023-01-11T21:05:10.7025987Z auto tmp0 = out_ptr2[i0]; 2023-01-11T21:05:10.7026068Z auto tmp1 = out_ptr3[i0]; 2023-01-11T21:05:10.7026150Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:05:10.7026219Z in_out_ptr1[i0] = tmp2; 2023-01-11T21:05:10.7026279Z } 2023-01-11T21:05:10.7026339Z } 2023-01-11T21:05:10.7026397Z } 2023-01-11T21:05:10.7026477Z ''') 2023-01-11T21:05:10.7026484Z 2023-01-11T21:05:10.7026489Z 2023-01-11T21:05:10.7026576Z async_compile.wait(globals()) 2023-01-11T21:05:10.7026646Z del async_compile 2023-01-11T21:05:10.7026651Z 2023-01-11T21:05:10.7026720Z def call(args): 2023-01-11T21:05:10.7026779Z arg0_1, = args 2023-01-11T21:05:10.7026848Z args.clear() 2023-01-11T21:05:10.7027072Z buf0 = empty_strided((2, 4, 45, 45), (8100, 2025, 45, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.7027293Z buf1 = empty_strided((2, 4, 45, 45), (8100, 2025, 45, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.7027374Z buf2 = buf0; del buf0 # reuse 2023-01-11T21:05:10.7027592Z buf3 = empty_strided((2, 4, 74, 76), (22496, 5624, 76, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.7027808Z buf4 = empty_strided((2, 4, 74, 76), (22496, 5624, 76, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.7027877Z buf5 = buf3; del buf3 # reuse 2023-01-11T21:05:10.7028089Z kernel_cpp_0(c_void_p(buf2.data_ptr()), c_void_p(buf5.data_ptr()), c_void_p(arg0_1.data_ptr()), c_void_p(buf1.data_ptr()), c_void_p(buf4.data_ptr())) 2023-01-11T21:05:10.7028156Z del arg0_1 2023-01-11T21:05:10.7028231Z return (buf2, buf5, ) 2023-01-11T21:05:10.7028236Z 2023-01-11T21:05:10.7028310Z 2023-01-11T21:05:10.7028384Z if __name__ == "__main__": 2023-01-11T21:05:10.7028497Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.7028620Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.7028840Z arg0_1 = rand_strided((2, 4, 37, 38), (5624, 1406, 38, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.7028935Z print_performance(lambda: call([arg0_1])) 2023-01-11T21:05:10.7029213Z [2023-01-11 21:01:31,118] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 453 2023-01-11T21:05:10.7029218Z 2023-01-11T21:05:10.7029285Z ok (4.188s) 2023-01-11T21:05:10.7029724Z test_upsample_bilinear2d_b_cpu (__main__.CpuTests) ... inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.7029853Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.7030146Z [2023-01-11 21:01:31,731] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 454 2023-01-11T21:05:10.7030412Z [2023-01-11 21:01:34,500] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 454 2023-01-11T21:05:10.7030417Z 2023-01-11T21:05:10.7030514Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.7030584Z import torch 2023-01-11T21:05:10.7030653Z import random 2023-01-11T21:05:10.7030767Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.7030885Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.7030891Z 2023-01-11T21:05:10.7030955Z aten = torch.ops.aten 2023-01-11T21:05:10.7031087Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.7031177Z async_compile = AsyncCompile() 2023-01-11T21:05:10.7031185Z 2023-01-11T21:05:10.7031189Z 2023-01-11T21:05:10.7031321Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.7031524Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.7031640Z extern "C" void kernel(float* __restrict__ in_out_ptr0, 2023-01-11T21:05:10.7031745Z const float* __restrict__ in_ptr0, 2023-01-11T21:05:10.7031843Z float* __restrict__ out_ptr1) 2023-01-11T21:05:10.7031890Z { 2023-01-11T21:05:10.7031973Z auto out_ptr0 = in_out_ptr0; 2023-01-11T21:05:10.7032069Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.7032130Z { 2023-01-11T21:05:10.7032216Z #pragma omp for collapse(2) 2023-01-11T21:05:10.7032295Z for(long i0=0; i0<2; i0+=1) 2023-01-11T21:05:10.7032355Z { 2023-01-11T21:05:10.7032426Z for(long i1=0; i1<80; i1+=1) 2023-01-11T21:05:10.7032489Z { 2023-01-11T21:05:10.7032569Z #pragma GCC ivdep 2023-01-11T21:05:10.7032661Z for(long i2=0; i2<118; i2+=1) 2023-01-11T21:05:10.7032723Z { 2023-01-11T21:05:10.7032789Z { 2023-01-11T21:05:10.7032843Z { 2023-01-11T21:05:10.7032953Z auto tmp0 = static_cast(i1); 2023-01-11T21:05:10.7033069Z auto tmp1 = static_cast(0.4936708860759494); 2023-01-11T21:05:10.7033166Z auto tmp2 = tmp0 * tmp1; 2023-01-11T21:05:10.7033268Z auto tmp3 = std::floor(tmp2); 2023-01-11T21:05:10.7033376Z auto tmp4 = static_cast(tmp3); 2023-01-11T21:05:10.7033482Z auto tmp5 = static_cast(i2); 2023-01-11T21:05:10.7033597Z auto tmp6 = static_cast(0.49572649572649574); 2023-01-11T21:05:10.7033680Z auto tmp7 = tmp5 * tmp6; 2023-01-11T21:05:10.7033782Z auto tmp8 = std::floor(tmp7); 2023-01-11T21:05:10.7033923Z auto tmp9 = static_cast(tmp8); 2023-01-11T21:05:10.7034040Z auto tmp10 = in_ptr0[tmp9 + (59*tmp4) + (2360*i0)]; 2023-01-11T21:05:10.7034148Z auto tmp11 = static_cast(1.0); 2023-01-11T21:05:10.7034259Z auto tmp12 = static_cast(tmp4); 2023-01-11T21:05:10.7034408Z auto tmp13 = tmp2 - tmp12; 2023-01-11T21:05:10.7034556Z auto tmp14 = tmp11 - tmp13; 2023-01-11T21:05:10.7034639Z auto tmp15 = tmp10 * tmp14; 2023-01-11T21:05:10.7034740Z auto tmp16 = std::ceil(tmp2); 2023-01-11T21:05:10.7034848Z auto tmp17 = static_cast(39.0); 2023-01-11T21:05:10.7034981Z auto tmp18 = (tmp17 != tmp17) ? tmp17 : std::min(tmp16, tmp17); 2023-01-11T21:05:10.7035091Z auto tmp19 = static_cast(tmp18); 2023-01-11T21:05:10.7035207Z auto tmp20 = in_ptr0[tmp9 + (59*tmp19) + (2360*i0)]; 2023-01-11T21:05:10.7035350Z auto tmp21 = tmp20 * tmp13; 2023-01-11T21:05:10.7035445Z auto tmp22 = tmp15 + tmp21; 2023-01-11T21:05:10.7035541Z auto tmp23 = static_cast(tmp9); 2023-01-11T21:05:10.7035690Z auto tmp24 = tmp7 - tmp23; 2023-01-11T21:05:10.7035836Z auto tmp25 = tmp11 - tmp24; 2023-01-11T21:05:10.7035931Z auto tmp26 = tmp22 * tmp25; 2023-01-11T21:05:10.7036037Z out_ptr0[i2 + (118*i1) + (9440*i0)] = tmp26; 2023-01-11T21:05:10.7036104Z } 2023-01-11T21:05:10.7036169Z } 2023-01-11T21:05:10.7036219Z } 2023-01-11T21:05:10.7036280Z } 2023-01-11T21:05:10.7036343Z } 2023-01-11T21:05:10.7036434Z #pragma omp for collapse(2) 2023-01-11T21:05:10.7036516Z for(long i0=0; i0<2; i0+=1) 2023-01-11T21:05:10.7036580Z { 2023-01-11T21:05:10.7036668Z for(long i1=0; i1<80; i1+=1) 2023-01-11T21:05:10.7036718Z { 2023-01-11T21:05:10.7036799Z #pragma GCC ivdep 2023-01-11T21:05:10.7036888Z for(long i2=0; i2<118; i2+=1) 2023-01-11T21:05:10.7036953Z { 2023-01-11T21:05:10.7037018Z { 2023-01-11T21:05:10.7037084Z { 2023-01-11T21:05:10.7037179Z auto tmp0 = static_cast(i1); 2023-01-11T21:05:10.7037294Z auto tmp1 = static_cast(0.4936708860759494); 2023-01-11T21:05:10.7037387Z auto tmp2 = tmp0 * tmp1; 2023-01-11T21:05:10.7037491Z auto tmp3 = std::floor(tmp2); 2023-01-11T21:05:10.7037598Z auto tmp4 = static_cast(tmp3); 2023-01-11T21:05:10.7037706Z auto tmp5 = static_cast(i2); 2023-01-11T21:05:10.7037823Z auto tmp6 = static_cast(0.49572649572649574); 2023-01-11T21:05:10.7037919Z auto tmp7 = tmp5 * tmp6; 2023-01-11T21:05:10.7038007Z auto tmp8 = std::ceil(tmp7); 2023-01-11T21:05:10.7038116Z auto tmp9 = static_cast(58.0); 2023-01-11T21:05:10.7038245Z auto tmp10 = (tmp9 != tmp9) ? tmp9 : std::min(tmp8, tmp9); 2023-01-11T21:05:10.7038353Z auto tmp11 = static_cast(tmp10); 2023-01-11T21:05:10.7038467Z auto tmp12 = in_ptr0[tmp11 + (59*tmp4) + (2360*i0)]; 2023-01-11T21:05:10.7038575Z auto tmp13 = static_cast(1.0); 2023-01-11T21:05:10.7038684Z auto tmp14 = static_cast(tmp4); 2023-01-11T21:05:10.7038863Z auto tmp15 = tmp2 - tmp14; 2023-01-11T21:05:10.7038997Z auto tmp16 = tmp13 - tmp15; 2023-01-11T21:05:10.7039090Z auto tmp17 = tmp12 * tmp16; 2023-01-11T21:05:10.7039196Z auto tmp18 = std::ceil(tmp2); 2023-01-11T21:05:10.7039303Z auto tmp19 = static_cast(39.0); 2023-01-11T21:05:10.7039433Z auto tmp20 = (tmp19 != tmp19) ? tmp19 : std::min(tmp18, tmp19); 2023-01-11T21:05:10.7039545Z auto tmp21 = static_cast(tmp20); 2023-01-11T21:05:10.7039663Z auto tmp22 = in_ptr0[tmp11 + (59*tmp21) + (2360*i0)]; 2023-01-11T21:05:10.7039757Z auto tmp23 = tmp22 * tmp15; 2023-01-11T21:05:10.7039839Z auto tmp24 = tmp17 + tmp23; 2023-01-11T21:05:10.7039943Z auto tmp25 = std::floor(tmp7); 2023-01-11T21:05:10.7040051Z auto tmp26 = static_cast(tmp25); 2023-01-11T21:05:10.7040161Z auto tmp27 = static_cast(tmp26); 2023-01-11T21:05:10.7040337Z auto tmp28 = tmp7 - tmp27; 2023-01-11T21:05:10.7040434Z auto tmp29 = tmp24 * tmp28; 2023-01-11T21:05:10.7040540Z out_ptr1[i2 + (118*i1) + (9440*i0)] = tmp29; 2023-01-11T21:05:10.7040747Z } 2023-01-11T21:05:10.7040801Z } 2023-01-11T21:05:10.7040865Z } 2023-01-11T21:05:10.7040928Z } 2023-01-11T21:05:10.7040989Z } 2023-01-11T21:05:10.7041067Z #pragma omp for 2023-01-11T21:05:10.7041149Z for(long i0=0; i0<1180; i0+=1) 2023-01-11T21:05:10.7041198Z { 2023-01-11T21:05:10.7041334Z auto tmp0 = at::vec::Vectorized::loadu(out_ptr0 + 16*i0); 2023-01-11T21:05:10.7041470Z auto tmp1 = at::vec::Vectorized::loadu(out_ptr1 + 16*i0); 2023-01-11T21:05:10.7041558Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:05:10.7041655Z tmp2.store(in_out_ptr0 + 16*i0); 2023-01-11T21:05:10.7041717Z } 2023-01-11T21:05:10.7041814Z #pragma omp for simd simdlen(8) 2023-01-11T21:05:10.7041888Z for(long i0=18880; i0<18880; i0+=1) 2023-01-11T21:05:10.7041951Z { 2023-01-11T21:05:10.7042036Z auto tmp0 = out_ptr0[i0]; 2023-01-11T21:05:10.7042118Z auto tmp1 = out_ptr1[i0]; 2023-01-11T21:05:10.7042201Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:05:10.7042282Z in_out_ptr0[i0] = tmp2; 2023-01-11T21:05:10.7042343Z } 2023-01-11T21:05:10.7042390Z } 2023-01-11T21:05:10.7042451Z } 2023-01-11T21:05:10.7042530Z ''') 2023-01-11T21:05:10.7042536Z 2023-01-11T21:05:10.7042540Z 2023-01-11T21:05:10.7042629Z async_compile.wait(globals()) 2023-01-11T21:05:10.7042701Z del async_compile 2023-01-11T21:05:10.7042707Z 2023-01-11T21:05:10.7042778Z def call(args): 2023-01-11T21:05:10.7042846Z arg0_1, = args 2023-01-11T21:05:10.7042903Z args.clear() 2023-01-11T21:05:10.7043129Z buf0 = empty_strided((1, 2, 80, 118), (18880, 9440, 118, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.7043351Z buf1 = empty_strided((1, 2, 80, 118), (18880, 9440, 118, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.7043435Z buf2 = buf0; del buf0 # reuse 2023-01-11T21:05:10.7043594Z kernel_cpp_0(c_void_p(buf2.data_ptr()), c_void_p(arg0_1.data_ptr()), c_void_p(buf1.data_ptr())) 2023-01-11T21:05:10.7043662Z del arg0_1 2023-01-11T21:05:10.7043732Z return (buf2, ) 2023-01-11T21:05:10.7043738Z 2023-01-11T21:05:10.7043742Z 2023-01-11T21:05:10.7043816Z if __name__ == "__main__": 2023-01-11T21:05:10.7043917Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.7044039Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.7044260Z arg0_1 = rand_strided((1, 2, 40, 59), (4720, 2360, 59, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.7044425Z print_performance(lambda: call([arg0_1])) 2023-01-11T21:05:10.7044430Z 2023-01-11T21:05:10.7044497Z ok (3.330s) 2023-01-11T21:05:10.7044949Z test_upsample_nearest1d_cpu (__main__.CpuTests) ... inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.7045075Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.7045340Z [2023-01-11 21:01:35,051] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 455 2023-01-11T21:05:10.7045608Z [2023-01-11 21:01:37,736] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 455 2023-01-11T21:05:10.7045613Z 2023-01-11T21:05:10.7045712Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.7045768Z import torch 2023-01-11T21:05:10.7045839Z import random 2023-01-11T21:05:10.7045954Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.7046113Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.7046119Z 2023-01-11T21:05:10.7046198Z aten = torch.ops.aten 2023-01-11T21:05:10.7046332Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.7046422Z async_compile = AsyncCompile() 2023-01-11T21:05:10.7046428Z 2023-01-11T21:05:10.7046432Z 2023-01-11T21:05:10.7046563Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.7046758Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.7046877Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:05:10.7046978Z float* __restrict__ out_ptr0, 2023-01-11T21:05:10.7047073Z float* __restrict__ out_ptr1, 2023-01-11T21:05:10.7047169Z float* __restrict__ out_ptr2, 2023-01-11T21:05:10.7047261Z float* __restrict__ out_ptr3, 2023-01-11T21:05:10.7047355Z float* __restrict__ out_ptr4) 2023-01-11T21:05:10.7047402Z { 2023-01-11T21:05:10.7047499Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.7047558Z { 2023-01-11T21:05:10.7047633Z #pragma omp for 2023-01-11T21:05:10.7047714Z for(long i0=0; i0<8; i0+=1) 2023-01-11T21:05:10.7047774Z { 2023-01-11T21:05:10.7047852Z #pragma GCC ivdep 2023-01-11T21:05:10.7047924Z for(long i1=0; i1<74; i1+=1) 2023-01-11T21:05:10.7047986Z { 2023-01-11T21:05:10.7048048Z { 2023-01-11T21:05:10.7048112Z { 2023-01-11T21:05:10.7048219Z auto tmp0 = static_cast(i1); 2023-01-11T21:05:10.7048327Z auto tmp1 = static_cast(0.5); 2023-01-11T21:05:10.7048421Z auto tmp2 = tmp0 * tmp1; 2023-01-11T21:05:10.7048514Z auto tmp3 = static_cast(tmp2); 2023-01-11T21:05:10.7048617Z auto tmp4 = in_ptr0[tmp3 + (37*i0)]; 2023-01-11T21:05:10.7048713Z out_ptr0[i1 + (74*i0)] = tmp4; 2023-01-11T21:05:10.7048807Z out_ptr1[i1 + (74*i0)] = tmp4; 2023-01-11T21:05:10.7048871Z } 2023-01-11T21:05:10.7048934Z } 2023-01-11T21:05:10.7048996Z } 2023-01-11T21:05:10.7049044Z } 2023-01-11T21:05:10.7049118Z #pragma omp for 2023-01-11T21:05:10.7049198Z for(long i0=0; i0<8; i0+=1) 2023-01-11T21:05:10.7049258Z { 2023-01-11T21:05:10.7049335Z #pragma GCC ivdep 2023-01-11T21:05:10.7049420Z for(long i1=0; i1<70; i1+=1) 2023-01-11T21:05:10.7049469Z { 2023-01-11T21:05:10.7049530Z { 2023-01-11T21:05:10.7049594Z { 2023-01-11T21:05:10.7049750Z auto tmp0 = static_cast(i1); 2023-01-11T21:05:10.7049864Z auto tmp1 = static_cast(0.5285714285714286); 2023-01-11T21:05:10.7049959Z auto tmp2 = tmp0 * tmp1; 2023-01-11T21:05:10.7050066Z auto tmp3 = static_cast(tmp2); 2023-01-11T21:05:10.7050169Z auto tmp4 = in_ptr0[tmp3 + (37*i0)]; 2023-01-11T21:05:10.7050250Z out_ptr2[i1 + (70*i0)] = tmp4; 2023-01-11T21:05:10.7050315Z } 2023-01-11T21:05:10.7050378Z } 2023-01-11T21:05:10.7050439Z } 2023-01-11T21:05:10.7050499Z } 2023-01-11T21:05:10.7050574Z #pragma omp for 2023-01-11T21:05:10.7050640Z for(long i0=0; i0<8; i0+=1) 2023-01-11T21:05:10.7050702Z { 2023-01-11T21:05:10.7050782Z #pragma GCC ivdep 2023-01-11T21:05:10.7050867Z for(long i1=0; i1<45; i1+=1) 2023-01-11T21:05:10.7050931Z { 2023-01-11T21:05:10.7050997Z { 2023-01-11T21:05:10.7051062Z { 2023-01-11T21:05:10.7051153Z auto tmp0 = static_cast(i1); 2023-01-11T21:05:10.7051293Z auto tmp1 = static_cast(0.8222222222222222); 2023-01-11T21:05:10.7051389Z auto tmp2 = tmp0 * tmp1; 2023-01-11T21:05:10.7051495Z auto tmp3 = static_cast(tmp2); 2023-01-11T21:05:10.7051598Z auto tmp4 = in_ptr0[tmp3 + (37*i0)]; 2023-01-11T21:05:10.7051694Z out_ptr3[i1 + (45*i0)] = tmp4; 2023-01-11T21:05:10.7051759Z } 2023-01-11T21:05:10.7051809Z } 2023-01-11T21:05:10.7051870Z } 2023-01-11T21:05:10.7051929Z } 2023-01-11T21:05:10.7052004Z #pragma omp for 2023-01-11T21:05:10.7052082Z for(long i0=0; i0<8; i0+=1) 2023-01-11T21:05:10.7052141Z { 2023-01-11T21:05:10.7052218Z #pragma GCC ivdep 2023-01-11T21:05:10.7052292Z for(long i1=0; i1<36; i1+=1) 2023-01-11T21:05:10.7052356Z { 2023-01-11T21:05:10.7052419Z { 2023-01-11T21:05:10.7052483Z { 2023-01-11T21:05:10.7052591Z auto tmp0 = static_cast(i1); 2023-01-11T21:05:10.7052703Z auto tmp1 = static_cast(1.0277777777777777); 2023-01-11T21:05:10.7052795Z auto tmp2 = tmp0 * tmp1; 2023-01-11T21:05:10.7052887Z auto tmp3 = static_cast(tmp2); 2023-01-11T21:05:10.7052988Z auto tmp4 = in_ptr0[tmp3 + (37*i0)]; 2023-01-11T21:05:10.7053082Z out_ptr4[i1 + (36*i0)] = tmp4; 2023-01-11T21:05:10.7053147Z } 2023-01-11T21:05:10.7053209Z } 2023-01-11T21:05:10.7053271Z } 2023-01-11T21:05:10.7053331Z } 2023-01-11T21:05:10.7053379Z } 2023-01-11T21:05:10.7053437Z } 2023-01-11T21:05:10.7053517Z ''') 2023-01-11T21:05:10.7053522Z 2023-01-11T21:05:10.7053526Z 2023-01-11T21:05:10.7053615Z async_compile.wait(globals()) 2023-01-11T21:05:10.7053686Z del async_compile 2023-01-11T21:05:10.7053691Z 2023-01-11T21:05:10.7053762Z def call(args): 2023-01-11T21:05:10.7053829Z arg0_1, = args 2023-01-11T21:05:10.7053887Z args.clear() 2023-01-11T21:05:10.7054094Z buf0 = empty_strided((2, 4, 74), (296, 74, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.7054293Z buf4 = empty_strided((2, 4, 74), (296, 74, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.7054488Z buf1 = empty_strided((2, 4, 70), (280, 70, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.7054679Z buf2 = empty_strided((2, 4, 45), (180, 45, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.7054869Z buf3 = empty_strided((2, 4, 36), (144, 36, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.7055105Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(buf0.data_ptr()), c_void_p(buf4.data_ptr()), c_void_p(buf1.data_ptr()), c_void_p(buf2.data_ptr()), c_void_p(buf3.data_ptr())) 2023-01-11T21:05:10.7055203Z del arg0_1 2023-01-11T21:05:10.7055286Z return (buf0, buf1, buf2, buf3, buf4, ) 2023-01-11T21:05:10.7055304Z 2023-01-11T21:05:10.7055309Z 2023-01-11T21:05:10.7055372Z if __name__ == "__main__": 2023-01-11T21:05:10.7055484Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.7055604Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.7055813Z arg0_1 = rand_strided((2, 4, 37), (148, 37, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.7055917Z print_performance(lambda: call([arg0_1])) 2023-01-11T21:05:10.7055923Z 2023-01-11T21:05:10.7055987Z ok (3.229s) 2023-01-11T21:05:10.7056444Z test_upsample_nearest2d_backward_cpu (__main__.CpuTests) ... inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.7056599Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.7056862Z [2023-01-11 21:01:37,793] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 456 2023-01-11T21:05:10.7056868Z 2023-01-11T21:05:10.7056947Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.7057014Z import torch 2023-01-11T21:05:10.7057083Z import random 2023-01-11T21:05:10.7057197Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.7057316Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.7057322Z 2023-01-11T21:05:10.7057397Z aten = torch.ops.aten 2023-01-11T21:05:10.7057530Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.7057608Z async_compile = AsyncCompile() 2023-01-11T21:05:10.7057625Z 2023-01-11T21:05:10.7057632Z 2023-01-11T21:05:10.7057750Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.7057955Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.7058075Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:05:10.7058173Z float* __restrict__ out_ptr0, 2023-01-11T21:05:10.7058269Z float* __restrict__ out_ptr1, 2023-01-11T21:05:10.7058361Z float* __restrict__ out_ptr2, 2023-01-11T21:05:10.7058452Z float* __restrict__ out_ptr3, 2023-01-11T21:05:10.7058619Z float* __restrict__ out_ptr4) 2023-01-11T21:05:10.7058679Z { 2023-01-11T21:05:10.7058781Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.7058845Z { 2023-01-11T21:05:10.7058922Z #pragma omp for 2023-01-11T21:05:10.7059004Z for(long i0=0; i0<27; i0+=1) 2023-01-11T21:05:10.7059066Z { 2023-01-11T21:05:10.7059130Z #pragma GCC ivdep 2023-01-11T21:05:10.7059215Z for(long i1=0; i1<6; i1+=1) 2023-01-11T21:05:10.7059279Z { 2023-01-11T21:05:10.7059343Z { 2023-01-11T21:05:10.7059411Z { 2023-01-11T21:05:10.7059518Z auto tmp0 = in_ptr0[(2*i1) + (24*i0)]; 2023-01-11T21:05:10.7059626Z auto tmp1 = in_ptr0[1 + (2*i1) + (24*i0)]; 2023-01-11T21:05:10.7059719Z auto tmp3 = in_ptr0[12 + (2*i1) + (24*i0)]; 2023-01-11T21:05:10.7059820Z auto tmp5 = in_ptr0[13 + (2*i1) + (24*i0)]; 2023-01-11T21:05:10.7059913Z auto tmp2 = tmp1 + tmp0; 2023-01-11T21:05:10.7060004Z auto tmp4 = tmp3 + tmp2; 2023-01-11T21:05:10.7060094Z auto tmp6 = tmp5 + tmp4; 2023-01-11T21:05:10.7060202Z auto tmp7 = static_cast(1.0); 2023-01-11T21:05:10.7060292Z auto tmp8 = tmp6 * tmp7; 2023-01-11T21:05:10.7060415Z out_ptr0[i1 + (6*i0)] = tmp8; 2023-01-11T21:05:10.7060480Z } 2023-01-11T21:05:10.7060542Z } 2023-01-11T21:05:10.7060603Z } 2023-01-11T21:05:10.7060666Z } 2023-01-11T21:05:10.7060742Z #pragma omp for 2023-01-11T21:05:10.7060822Z for(long i0=0; i0<9; i0+=1) 2023-01-11T21:05:10.7060869Z { 2023-01-11T21:05:10.7060947Z #pragma GCC ivdep 2023-01-11T21:05:10.7061028Z for(long i1=0; i1<4; i1+=1) 2023-01-11T21:05:10.7061090Z { 2023-01-11T21:05:10.7061168Z #pragma GCC ivdep 2023-01-11T21:05:10.7061255Z for(long i2=0; i2<5; i2+=1) 2023-01-11T21:05:10.7061316Z { 2023-01-11T21:05:10.7061367Z { 2023-01-11T21:05:10.7061433Z { 2023-01-11T21:05:10.7061550Z auto tmp0 = static_cast(((3 + (6*i1)) / 4)); 2023-01-11T21:05:10.7061664Z auto tmp1 = static_cast(((9 + (6*i1)) / 4)); 2023-01-11T21:05:10.7061762Z auto tmp2 = tmp0 < tmp1; 2023-01-11T21:05:10.7061907Z auto tmp3 = static_cast(((4 + (12*i2)) / 5)); 2023-01-11T21:05:10.7062025Z auto tmp4 = static_cast(((16 + (12*i2)) / 5)); 2023-01-11T21:05:10.7062107Z auto tmp5 = tmp3 < tmp4; 2023-01-11T21:05:10.7062197Z auto tmp6 = tmp2 & tmp5; 2023-01-11T21:05:10.7062284Z float tmp7 = 0.0; 2023-01-11T21:05:10.7062359Z if(tmp6) 2023-01-11T21:05:10.7062427Z { 2023-01-11T21:05:10.7062551Z auto tmp8 = in_ptr0[(12*(((3 + (6*i1)) / 4))) + (72*i0) + (((4 + (12*i2)) / 5))]; 2023-01-11T21:05:10.7062637Z tmp7 = tmp8; 2023-01-11T21:05:10.7062693Z } 2023-01-11T21:05:10.7062812Z auto tmp9 = static_cast(1 + (((4 + (12*i2)) / 5))); 2023-01-11T21:05:10.7062906Z auto tmp10 = tmp9 < tmp4; 2023-01-11T21:05:10.7063003Z auto tmp11 = tmp2 & tmp10; 2023-01-11T21:05:10.7063092Z float tmp12 = 0.0; 2023-01-11T21:05:10.7063166Z if(tmp11) 2023-01-11T21:05:10.7063234Z { 2023-01-11T21:05:10.7063358Z auto tmp13 = in_ptr0[1 + (12*(((3 + (6*i1)) / 4))) + (72*i0) + (((4 + (12*i2)) / 5))]; 2023-01-11T21:05:10.7063432Z tmp12 = tmp13; 2023-01-11T21:05:10.7063500Z } 2023-01-11T21:05:10.7063594Z auto tmp14 = tmp12 + tmp7; 2023-01-11T21:05:10.7063712Z auto tmp15 = static_cast(2 + (((4 + (12*i2)) / 5))); 2023-01-11T21:05:10.7063807Z auto tmp16 = tmp15 < tmp4; 2023-01-11T21:05:10.7063903Z auto tmp17 = tmp2 & tmp16; 2023-01-11T21:05:10.7063990Z float tmp18 = 0.0; 2023-01-11T21:05:10.7064052Z if(tmp17) 2023-01-11T21:05:10.7064121Z { 2023-01-11T21:05:10.7064247Z auto tmp19 = in_ptr0[2 + (12*(((3 + (6*i1)) / 4))) + (72*i0) + (((4 + (12*i2)) / 5))]; 2023-01-11T21:05:10.7064333Z tmp18 = tmp19; 2023-01-11T21:05:10.7064399Z } 2023-01-11T21:05:10.7064494Z auto tmp20 = tmp18 + tmp14; 2023-01-11T21:05:10.7064611Z auto tmp21 = static_cast(1 + (((3 + (6*i1)) / 4))); 2023-01-11T21:05:10.7064705Z auto tmp22 = tmp21 < tmp1; 2023-01-11T21:05:10.7064788Z auto tmp23 = tmp22 & tmp5; 2023-01-11T21:05:10.7064874Z float tmp24 = 0.0; 2023-01-11T21:05:10.7064979Z if(tmp23) 2023-01-11T21:05:10.7065047Z { 2023-01-11T21:05:10.7065177Z auto tmp25 = in_ptr0[12 + (12*(((3 + (6*i1)) / 4))) + (72*i0) + (((4 + (12*i2)) / 5))]; 2023-01-11T21:05:10.7065262Z tmp24 = tmp25; 2023-01-11T21:05:10.7065328Z } 2023-01-11T21:05:10.7065411Z auto tmp26 = tmp24 + tmp20; 2023-01-11T21:05:10.7065504Z auto tmp27 = tmp22 & tmp10; 2023-01-11T21:05:10.7065591Z float tmp28 = 0.0; 2023-01-11T21:05:10.7065666Z if(tmp27) 2023-01-11T21:05:10.7065733Z { 2023-01-11T21:05:10.7065861Z auto tmp29 = in_ptr0[13 + (12*(((3 + (6*i1)) / 4))) + (72*i0) + (((4 + (12*i2)) / 5))]; 2023-01-11T21:05:10.7065946Z tmp28 = tmp29; 2023-01-11T21:05:10.7066003Z } 2023-01-11T21:05:10.7066097Z auto tmp30 = tmp28 + tmp26; 2023-01-11T21:05:10.7066192Z auto tmp31 = tmp22 & tmp16; 2023-01-11T21:05:10.7066307Z float tmp32 = 0.0; 2023-01-11T21:05:10.7066384Z if(tmp31) 2023-01-11T21:05:10.7066451Z { 2023-01-11T21:05:10.7066577Z auto tmp33 = in_ptr0[14 + (12*(((3 + (6*i1)) / 4))) + (72*i0) + (((4 + (12*i2)) / 5))]; 2023-01-11T21:05:10.7066662Z tmp32 = tmp33; 2023-01-11T21:05:10.7066716Z } 2023-01-11T21:05:10.7066810Z auto tmp34 = tmp32 + tmp30; 2023-01-11T21:05:10.7066913Z out_ptr1[i2 + (5*i1) + (20*i0)] = tmp34; 2023-01-11T21:05:10.7066980Z } 2023-01-11T21:05:10.7067045Z } 2023-01-11T21:05:10.7067108Z } 2023-01-11T21:05:10.7067172Z } 2023-01-11T21:05:10.7067220Z } 2023-01-11T21:05:10.7067295Z #pragma omp for 2023-01-11T21:05:10.7067377Z for(long i0=0; i0<9; i0+=1) 2023-01-11T21:05:10.7067439Z { 2023-01-11T21:05:10.7067517Z #pragma GCC ivdep 2023-01-11T21:05:10.7067599Z for(long i1=0; i1<2; i1+=1) 2023-01-11T21:05:10.7067647Z { 2023-01-11T21:05:10.7067727Z #pragma GCC ivdep 2023-01-11T21:05:10.7067814Z for(long i2=0; i2<8; i2+=1) 2023-01-11T21:05:10.7067880Z { 2023-01-11T21:05:10.7067944Z { 2023-01-11T21:05:10.7068010Z { 2023-01-11T21:05:10.7068117Z auto tmp0 = static_cast(3*i1); 2023-01-11T21:05:10.7068218Z auto tmp1 = static_cast(3 + (3*i1)); 2023-01-11T21:05:10.7068312Z auto tmp2 = tmp0 < tmp1; 2023-01-11T21:05:10.7068426Z auto tmp3 = static_cast(((7 + (12*i2)) / 8)); 2023-01-11T21:05:10.7068543Z auto tmp4 = static_cast(((19 + (12*i2)) / 8)); 2023-01-11T21:05:10.7068640Z auto tmp5 = tmp3 < tmp4; 2023-01-11T21:05:10.7068737Z auto tmp6 = tmp2 & tmp5; 2023-01-11T21:05:10.7068824Z float tmp7 = 0.0; 2023-01-11T21:05:10.7068900Z if(tmp6) 2023-01-11T21:05:10.7068957Z { 2023-01-11T21:05:10.7069076Z auto tmp8 = in_ptr0[(36*i1) + (72*i0) + (((7 + (12*i2)) / 8))]; 2023-01-11T21:05:10.7069163Z tmp7 = tmp8; 2023-01-11T21:05:10.7069231Z } 2023-01-11T21:05:10.7069348Z auto tmp9 = static_cast(1 + (((7 + (12*i2)) / 8))); 2023-01-11T21:05:10.7069445Z auto tmp10 = tmp9 < tmp4; 2023-01-11T21:05:10.7069572Z auto tmp11 = tmp2 & tmp10; 2023-01-11T21:05:10.7069647Z float tmp12 = 0.0; 2023-01-11T21:05:10.7069723Z if(tmp11) 2023-01-11T21:05:10.7069793Z { 2023-01-11T21:05:10.7069917Z auto tmp13 = in_ptr0[1 + (36*i1) + (72*i0) + (((7 + (12*i2)) / 8))]; 2023-01-11T21:05:10.7070002Z tmp12 = tmp13; 2023-01-11T21:05:10.7070070Z } 2023-01-11T21:05:10.7070165Z auto tmp14 = tmp12 + tmp7; 2023-01-11T21:05:10.7070265Z auto tmp15 = static_cast(1 + (3*i1)); 2023-01-11T21:05:10.7070362Z auto tmp16 = tmp15 < tmp1; 2023-01-11T21:05:10.7070456Z auto tmp17 = tmp16 & tmp5; 2023-01-11T21:05:10.7070547Z float tmp18 = 0.0; 2023-01-11T21:05:10.7070623Z if(tmp17) 2023-01-11T21:05:10.7070696Z { 2023-01-11T21:05:10.7070817Z auto tmp19 = in_ptr0[12 + (36*i1) + (72*i0) + (((7 + (12*i2)) / 8))]; 2023-01-11T21:05:10.7070944Z tmp18 = tmp19; 2023-01-11T21:05:10.7071000Z } 2023-01-11T21:05:10.7071098Z auto tmp20 = tmp18 + tmp14; 2023-01-11T21:05:10.7071194Z auto tmp21 = tmp16 & tmp10; 2023-01-11T21:05:10.7071281Z float tmp22 = 0.0; 2023-01-11T21:05:10.7071357Z if(tmp21) 2023-01-11T21:05:10.7071425Z { 2023-01-11T21:05:10.7071547Z auto tmp23 = in_ptr0[13 + (36*i1) + (72*i0) + (((7 + (12*i2)) / 8))]; 2023-01-11T21:05:10.7071620Z tmp22 = tmp23; 2023-01-11T21:05:10.7071687Z } 2023-01-11T21:05:10.7071783Z auto tmp24 = tmp22 + tmp20; 2023-01-11T21:05:10.7071897Z auto tmp25 = static_cast(2 + (3*i1)); 2023-01-11T21:05:10.7071991Z auto tmp26 = tmp25 < tmp1; 2023-01-11T21:05:10.7072090Z auto tmp27 = tmp26 & tmp5; 2023-01-11T21:05:10.7072178Z float tmp28 = 0.0; 2023-01-11T21:05:10.7072240Z if(tmp27) 2023-01-11T21:05:10.7072313Z { 2023-01-11T21:05:10.7072433Z auto tmp29 = in_ptr0[24 + (36*i1) + (72*i0) + (((7 + (12*i2)) / 8))]; 2023-01-11T21:05:10.7072519Z tmp28 = tmp29; 2023-01-11T21:05:10.7072587Z } 2023-01-11T21:05:10.7072683Z auto tmp30 = tmp28 + tmp24; 2023-01-11T21:05:10.7072777Z auto tmp31 = tmp26 & tmp10; 2023-01-11T21:05:10.7072865Z float tmp32 = 0.0; 2023-01-11T21:05:10.7072929Z if(tmp31) 2023-01-11T21:05:10.7072996Z { 2023-01-11T21:05:10.7073116Z auto tmp33 = in_ptr0[25 + (36*i1) + (72*i0) + (((7 + (12*i2)) / 8))]; 2023-01-11T21:05:10.7073205Z tmp32 = tmp33; 2023-01-11T21:05:10.7073273Z } 2023-01-11T21:05:10.7073368Z auto tmp34 = tmp32 + tmp30; 2023-01-11T21:05:10.7073454Z float tmp35 = 0.0; 2023-01-11T21:05:10.7073516Z if(tmp6) 2023-01-11T21:05:10.7073584Z { 2023-01-11T21:05:10.7073701Z auto tmp36 = in_ptr0[(36*i1) + (72*i0) + (((7 + (12*i2)) / 8))]; 2023-01-11T21:05:10.7073784Z tmp35 = tmp36; 2023-01-11T21:05:10.7073851Z } 2023-01-11T21:05:10.7073938Z float tmp37 = 0.0; 2023-01-11T21:05:10.7074044Z if(tmp11) 2023-01-11T21:05:10.7074098Z { 2023-01-11T21:05:10.7074216Z auto tmp38 = in_ptr0[1 + (36*i1) + (72*i0) + (((7 + (12*i2)) / 8))]; 2023-01-11T21:05:10.7074300Z tmp37 = tmp38; 2023-01-11T21:05:10.7074367Z } 2023-01-11T21:05:10.7074462Z auto tmp39 = tmp37 + tmp35; 2023-01-11T21:05:10.7074547Z float tmp40 = 0.0; 2023-01-11T21:05:10.7074622Z if(tmp17) 2023-01-11T21:05:10.7074676Z { 2023-01-11T21:05:10.7074795Z auto tmp41 = in_ptr0[12 + (36*i1) + (72*i0) + (((7 + (12*i2)) / 8))]; 2023-01-11T21:05:10.7074877Z tmp40 = tmp41; 2023-01-11T21:05:10.7074943Z } 2023-01-11T21:05:10.7075038Z auto tmp42 = tmp40 + tmp39; 2023-01-11T21:05:10.7075126Z float tmp43 = 0.0; 2023-01-11T21:05:10.7075200Z if(tmp21) 2023-01-11T21:05:10.7075266Z { 2023-01-11T21:05:10.7075406Z auto tmp44 = in_ptr0[13 + (36*i1) + (72*i0) + (((7 + (12*i2)) / 8))]; 2023-01-11T21:05:10.7075491Z tmp43 = tmp44; 2023-01-11T21:05:10.7075559Z } 2023-01-11T21:05:10.7075654Z auto tmp45 = tmp43 + tmp42; 2023-01-11T21:05:10.7075739Z float tmp46 = 0.0; 2023-01-11T21:05:10.7075812Z if(tmp27) 2023-01-11T21:05:10.7075880Z { 2023-01-11T21:05:10.7075986Z auto tmp47 = in_ptr0[24 + (36*i1) + (72*i0) + (((7 + (12*i2)) / 8))]; 2023-01-11T21:05:10.7076068Z tmp46 = tmp47; 2023-01-11T21:05:10.7076134Z } 2023-01-11T21:05:10.7076231Z auto tmp48 = tmp46 + tmp45; 2023-01-11T21:05:10.7076318Z float tmp49 = 0.0; 2023-01-11T21:05:10.7076392Z if(tmp31) 2023-01-11T21:05:10.7076461Z { 2023-01-11T21:05:10.7076567Z auto tmp50 = in_ptr0[25 + (36*i1) + (72*i0) + (((7 + (12*i2)) / 8))]; 2023-01-11T21:05:10.7076650Z tmp49 = tmp50; 2023-01-11T21:05:10.7076717Z } 2023-01-11T21:05:10.7076810Z auto tmp51 = tmp49 + tmp48; 2023-01-11T21:05:10.7076913Z out_ptr2[i2 + (8*i1) + (16*i0)] = tmp34; 2023-01-11T21:05:10.7077015Z out_ptr3[i2 + (8*i1) + (16*i0)] = tmp51; 2023-01-11T21:05:10.7077080Z } 2023-01-11T21:05:10.7077144Z } 2023-01-11T21:05:10.7077196Z } 2023-01-11T21:05:10.7077256Z } 2023-01-11T21:05:10.7077318Z } 2023-01-11T21:05:10.7077393Z #pragma omp for 2023-01-11T21:05:10.7077472Z for(long i0=0; i0<9; i0+=1) 2023-01-11T21:05:10.7077533Z { 2023-01-11T21:05:10.7077597Z #pragma GCC ivdep 2023-01-11T21:05:10.7077682Z for(long i1=0; i1<4; i1+=1) 2023-01-11T21:05:10.7077743Z { 2023-01-11T21:05:10.7077822Z #pragma GCC ivdep 2023-01-11T21:05:10.7077909Z for(long i2=0; i2<7; i2+=1) 2023-01-11T21:05:10.7077972Z { 2023-01-11T21:05:10.7078036Z { 2023-01-11T21:05:10.7078089Z { 2023-01-11T21:05:10.7078203Z auto tmp0 = static_cast(((3 + (6*i1)) / 4)); 2023-01-11T21:05:10.7078319Z auto tmp1 = static_cast(((9 + (6*i1)) / 4)); 2023-01-11T21:05:10.7078414Z auto tmp2 = tmp0 < tmp1; 2023-01-11T21:05:10.7078529Z auto tmp3 = static_cast(((6 + (12*i2)) / 7)); 2023-01-11T21:05:10.7078676Z auto tmp4 = static_cast(((18 + (12*i2)) / 7)); 2023-01-11T21:05:10.7078770Z auto tmp5 = tmp3 < tmp4; 2023-01-11T21:05:10.7078864Z auto tmp6 = tmp2 & tmp5; 2023-01-11T21:05:10.7078939Z float tmp7 = 0.0; 2023-01-11T21:05:10.7079014Z if(tmp6) 2023-01-11T21:05:10.7079081Z { 2023-01-11T21:05:10.7079206Z auto tmp8 = in_ptr0[(12*(((3 + (6*i1)) / 4))) + (72*i0) + (((6 + (12*i2)) / 7))]; 2023-01-11T21:05:10.7079291Z tmp7 = tmp8; 2023-01-11T21:05:10.7079358Z } 2023-01-11T21:05:10.7079476Z auto tmp9 = static_cast(1 + (((6 + (12*i2)) / 7))); 2023-01-11T21:05:10.7079558Z auto tmp10 = tmp9 < tmp4; 2023-01-11T21:05:10.7079653Z auto tmp11 = tmp2 & tmp10; 2023-01-11T21:05:10.7079743Z float tmp12 = 0.0; 2023-01-11T21:05:10.7079816Z if(tmp11) 2023-01-11T21:05:10.7079882Z { 2023-01-11T21:05:10.7080034Z auto tmp13 = in_ptr0[1 + (12*(((3 + (6*i1)) / 4))) + (72*i0) + (((6 + (12*i2)) / 7))]; 2023-01-11T21:05:10.7080121Z tmp12 = tmp13; 2023-01-11T21:05:10.7080175Z } 2023-01-11T21:05:10.7080271Z auto tmp14 = tmp12 + tmp7; 2023-01-11T21:05:10.7080390Z auto tmp15 = static_cast(1 + (((3 + (6*i1)) / 4))); 2023-01-11T21:05:10.7080484Z auto tmp16 = tmp15 < tmp1; 2023-01-11T21:05:10.7080579Z auto tmp17 = tmp16 & tmp5; 2023-01-11T21:05:10.7080787Z float tmp18 = 0.0; 2023-01-11T21:05:10.7080863Z if(tmp17) 2023-01-11T21:05:10.7080935Z { 2023-01-11T21:05:10.7081051Z auto tmp19 = in_ptr0[12 + (12*(((3 + (6*i1)) / 4))) + (72*i0) + (((6 + (12*i2)) / 7))]; 2023-01-11T21:05:10.7081139Z tmp18 = tmp19; 2023-01-11T21:05:10.7081208Z } 2023-01-11T21:05:10.7081307Z auto tmp20 = tmp18 + tmp14; 2023-01-11T21:05:10.7081403Z auto tmp21 = tmp16 & tmp10; 2023-01-11T21:05:10.7081493Z float tmp22 = 0.0; 2023-01-11T21:05:10.7081568Z if(tmp21) 2023-01-11T21:05:10.7081622Z { 2023-01-11T21:05:10.7081750Z auto tmp23 = in_ptr0[13 + (12*(((3 + (6*i1)) / 4))) + (72*i0) + (((6 + (12*i2)) / 7))]; 2023-01-11T21:05:10.7081837Z tmp22 = tmp23; 2023-01-11T21:05:10.7081910Z } 2023-01-11T21:05:10.7082008Z auto tmp24 = tmp22 + tmp20; 2023-01-11T21:05:10.7082115Z out_ptr4[i2 + (7*i1) + (28*i0)] = tmp24; 2023-01-11T21:05:10.7082183Z } 2023-01-11T21:05:10.7082237Z } 2023-01-11T21:05:10.7082301Z } 2023-01-11T21:05:10.7082364Z } 2023-01-11T21:05:10.7082425Z } 2023-01-11T21:05:10.7082487Z } 2023-01-11T21:05:10.7082545Z } 2023-01-11T21:05:10.7082643Z ''') 2023-01-11T21:05:10.7082651Z 2023-01-11T21:05:10.7082655Z 2023-01-11T21:05:10.7082731Z async_compile.wait(globals()) 2023-01-11T21:05:10.7082805Z del async_compile 2023-01-11T21:05:10.7082811Z 2023-01-11T21:05:10.7082880Z def call(args): 2023-01-11T21:05:10.7082950Z arg0_1, = args 2023-01-11T21:05:10.7083022Z args.clear() 2023-01-11T21:05:10.7083238Z buf0 = empty_strided((3, 3, 3, 6), (54, 18, 6, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.7083449Z buf1 = empty_strided((3, 3, 4, 5), (60, 20, 5, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.7083709Z buf2 = empty_strided((3, 3, 2, 8), (48, 16, 8, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.7083904Z buf3 = empty_strided((3, 3, 2, 8), (48, 16, 8, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.7084108Z buf4 = empty_strided((3, 3, 4, 7), (84, 28, 7, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.7084343Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(buf0.data_ptr()), c_void_p(buf1.data_ptr()), c_void_p(buf2.data_ptr()), c_void_p(buf3.data_ptr()), c_void_p(buf4.data_ptr())) 2023-01-11T21:05:10.7084414Z del arg0_1 2023-01-11T21:05:10.7084512Z return (buf0, buf1, buf2, buf3, buf4, ) 2023-01-11T21:05:10.7084517Z 2023-01-11T21:05:10.7084522Z 2023-01-11T21:05:10.7084603Z if __name__ == "__main__": 2023-01-11T21:05:10.7084719Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.7084842Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.7085042Z arg0_1 = rand_strided((3, 3, 6, 12), (216, 72, 12, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.7085150Z print_performance(lambda: call([arg0_1])) 2023-01-11T21:05:10.7085455Z [2023-01-11 21:01:41,101] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 456 2023-01-11T21:05:10.7085461Z 2023-01-11T21:05:10.7085532Z ok (3.365s) 2023-01-11T21:05:10.7085980Z test_upsample_nearest2d_cpu (__main__.CpuTests) ... inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.7086106Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.7086364Z [2023-01-11 21:01:41,927] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 457 2023-01-11T21:05:10.7086629Z [2023-01-11 21:01:44,705] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 457 2023-01-11T21:05:10.7086635Z 2023-01-11T21:05:10.7086730Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.7086800Z import torch 2023-01-11T21:05:10.7086856Z import random 2023-01-11T21:05:10.7086969Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.7087088Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.7087093Z 2023-01-11T21:05:10.7087169Z aten = torch.ops.aten 2023-01-11T21:05:10.7087302Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.7087392Z async_compile = AsyncCompile() 2023-01-11T21:05:10.7087397Z 2023-01-11T21:05:10.7087401Z 2023-01-11T21:05:10.7087532Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.7087736Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.7087841Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:05:10.7087941Z float* __restrict__ out_ptr0, 2023-01-11T21:05:10.7088038Z float* __restrict__ out_ptr1, 2023-01-11T21:05:10.7088135Z float* __restrict__ out_ptr2, 2023-01-11T21:05:10.7088228Z float* __restrict__ out_ptr3, 2023-01-11T21:05:10.7088320Z float* __restrict__ out_ptr4) 2023-01-11T21:05:10.7088380Z { 2023-01-11T21:05:10.7088464Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.7088525Z { 2023-01-11T21:05:10.7088600Z #pragma omp for 2023-01-11T21:05:10.7088680Z for(long i0=0; i0<8; i0+=1) 2023-01-11T21:05:10.7088741Z { 2023-01-11T21:05:10.7088818Z #pragma GCC ivdep 2023-01-11T21:05:10.7088903Z for(long i1=0; i1<74; i1+=1) 2023-01-11T21:05:10.7088953Z { 2023-01-11T21:05:10.7089032Z #pragma GCC ivdep 2023-01-11T21:05:10.7089121Z for(long i2=0; i2<76; i2+=1) 2023-01-11T21:05:10.7089214Z { 2023-01-11T21:05:10.7089281Z { 2023-01-11T21:05:10.7089348Z { 2023-01-11T21:05:10.7089457Z auto tmp0 = static_cast(i1); 2023-01-11T21:05:10.7089554Z auto tmp1 = static_cast(0.5); 2023-01-11T21:05:10.7089649Z auto tmp2 = tmp0 * tmp1; 2023-01-11T21:05:10.7089756Z auto tmp3 = static_cast(tmp2); 2023-01-11T21:05:10.7089861Z auto tmp4 = static_cast(i2); 2023-01-11T21:05:10.7089954Z auto tmp5 = tmp4 * tmp1; 2023-01-11T21:05:10.7090057Z auto tmp6 = static_cast(tmp5); 2023-01-11T21:05:10.7090172Z auto tmp7 = in_ptr0[tmp6 + (38*tmp3) + (1406*i0)]; 2023-01-11T21:05:10.7090264Z out_ptr0[i2 + (76*i1) + (5624*i0)] = tmp7; 2023-01-11T21:05:10.7090368Z out_ptr1[i2 + (76*i1) + (5624*i0)] = tmp7; 2023-01-11T21:05:10.7090434Z } 2023-01-11T21:05:10.7090499Z } 2023-01-11T21:05:10.7090587Z } 2023-01-11T21:05:10.7090650Z } 2023-01-11T21:05:10.7090710Z } 2023-01-11T21:05:10.7090774Z #pragma omp for 2023-01-11T21:05:10.7090853Z for(long i0=0; i0<8; i0+=1) 2023-01-11T21:05:10.7090914Z { 2023-01-11T21:05:10.7090993Z #pragma GCC ivdep 2023-01-11T21:05:10.7091076Z for(long i1=0; i1<70; i1+=1) 2023-01-11T21:05:10.7091138Z { 2023-01-11T21:05:10.7091216Z #pragma GCC ivdep 2023-01-11T21:05:10.7091292Z for(long i2=0; i2<75; i2+=1) 2023-01-11T21:05:10.7091356Z { 2023-01-11T21:05:10.7091419Z { 2023-01-11T21:05:10.7091485Z { 2023-01-11T21:05:10.7091593Z auto tmp0 = static_cast(i1); 2023-01-11T21:05:10.7091711Z auto tmp1 = static_cast(0.5285714285714286); 2023-01-11T21:05:10.7091805Z auto tmp2 = tmp0 * tmp1; 2023-01-11T21:05:10.7091900Z auto tmp3 = static_cast(tmp2); 2023-01-11T21:05:10.7092007Z auto tmp4 = static_cast(i2); 2023-01-11T21:05:10.7092121Z auto tmp5 = static_cast(0.5066666666666667); 2023-01-11T21:05:10.7092216Z auto tmp6 = tmp4 * tmp5; 2023-01-11T21:05:10.7092321Z auto tmp7 = static_cast(tmp6); 2023-01-11T21:05:10.7092437Z auto tmp8 = in_ptr0[tmp7 + (38*tmp3) + (1406*i0)]; 2023-01-11T21:05:10.7092539Z out_ptr2[i2 + (75*i1) + (5250*i0)] = tmp8; 2023-01-11T21:05:10.7092594Z } 2023-01-11T21:05:10.7092657Z } 2023-01-11T21:05:10.7092722Z } 2023-01-11T21:05:10.7092783Z } 2023-01-11T21:05:10.7092845Z } 2023-01-11T21:05:10.7092919Z #pragma omp for 2023-01-11T21:05:10.7092998Z for(long i0=0; i0<8; i0+=1) 2023-01-11T21:05:10.7093048Z { 2023-01-11T21:05:10.7093125Z #pragma GCC ivdep 2023-01-11T21:05:10.7093209Z for(long i1=0; i1<45; i1+=1) 2023-01-11T21:05:10.7093272Z { 2023-01-11T21:05:10.7093351Z #pragma GCC ivdep 2023-01-11T21:05:10.7093437Z for(long i2=0; i2<74; i2+=1) 2023-01-11T21:05:10.7093501Z { 2023-01-11T21:05:10.7093552Z { 2023-01-11T21:05:10.7093618Z { 2023-01-11T21:05:10.7093723Z auto tmp0 = static_cast(i1); 2023-01-11T21:05:10.7093837Z auto tmp1 = static_cast(0.8222222222222222); 2023-01-11T21:05:10.7093931Z auto tmp2 = tmp0 * tmp1; 2023-01-11T21:05:10.7094068Z auto tmp3 = static_cast(tmp2); 2023-01-11T21:05:10.7094174Z auto tmp4 = static_cast(i2); 2023-01-11T21:05:10.7094277Z auto tmp5 = static_cast(0.5135135135135135); 2023-01-11T21:05:10.7094372Z auto tmp6 = tmp4 * tmp5; 2023-01-11T21:05:10.7094476Z auto tmp7 = static_cast(tmp6); 2023-01-11T21:05:10.7094590Z auto tmp8 = in_ptr0[tmp7 + (38*tmp3) + (1406*i0)]; 2023-01-11T21:05:10.7094691Z out_ptr3[i2 + (74*i1) + (3330*i0)] = tmp8; 2023-01-11T21:05:10.7094758Z } 2023-01-11T21:05:10.7094822Z } 2023-01-11T21:05:10.7094871Z } 2023-01-11T21:05:10.7094934Z } 2023-01-11T21:05:10.7094995Z } 2023-01-11T21:05:10.7095070Z #pragma omp for 2023-01-11T21:05:10.7095151Z for(long i0=0; i0<8; i0+=1) 2023-01-11T21:05:10.7095214Z { 2023-01-11T21:05:10.7095292Z #pragma GCC ivdep 2023-01-11T21:05:10.7095362Z for(long i1=0; i1<36; i1+=1) 2023-01-11T21:05:10.7095423Z { 2023-01-11T21:05:10.7095529Z #pragma GCC ivdep 2023-01-11T21:05:10.7095617Z for(long i2=0; i2<39; i2+=1) 2023-01-11T21:05:10.7095681Z { 2023-01-11T21:05:10.7095746Z { 2023-01-11T21:05:10.7095813Z { 2023-01-11T21:05:10.7095905Z auto tmp0 = static_cast(i1); 2023-01-11T21:05:10.7096019Z auto tmp1 = static_cast(1.0277777777777777); 2023-01-11T21:05:10.7096116Z auto tmp2 = tmp0 * tmp1; 2023-01-11T21:05:10.7096222Z auto tmp3 = static_cast(tmp2); 2023-01-11T21:05:10.7096326Z auto tmp4 = static_cast(i2); 2023-01-11T21:05:10.7096441Z auto tmp5 = static_cast(0.9743589743589743); 2023-01-11T21:05:10.7096537Z auto tmp6 = tmp4 * tmp5; 2023-01-11T21:05:10.7096628Z auto tmp7 = static_cast(tmp6); 2023-01-11T21:05:10.7096745Z auto tmp8 = in_ptr0[tmp7 + (38*tmp3) + (1406*i0)]; 2023-01-11T21:05:10.7096849Z out_ptr4[i2 + (39*i1) + (1404*i0)] = tmp8; 2023-01-11T21:05:10.7096918Z } 2023-01-11T21:05:10.7096983Z } 2023-01-11T21:05:10.7097047Z } 2023-01-11T21:05:10.7097109Z } 2023-01-11T21:05:10.7097157Z } 2023-01-11T21:05:10.7097218Z } 2023-01-11T21:05:10.7097276Z } 2023-01-11T21:05:10.7097359Z ''') 2023-01-11T21:05:10.7097365Z 2023-01-11T21:05:10.7097369Z 2023-01-11T21:05:10.7097459Z async_compile.wait(globals()) 2023-01-11T21:05:10.7097531Z del async_compile 2023-01-11T21:05:10.7097535Z 2023-01-11T21:05:10.7097605Z def call(args): 2023-01-11T21:05:10.7097675Z arg0_1, = args 2023-01-11T21:05:10.7097735Z args.clear() 2023-01-11T21:05:10.7097961Z buf0 = empty_strided((2, 4, 74, 76), (22496, 5624, 76, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.7098179Z buf4 = empty_strided((2, 4, 74, 76), (22496, 5624, 76, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.7098396Z buf1 = empty_strided((2, 4, 70, 75), (21000, 5250, 75, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.7098704Z buf2 = empty_strided((2, 4, 45, 74), (13320, 3330, 74, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.7098927Z buf3 = empty_strided((2, 4, 36, 39), (5616, 1404, 39, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.7099164Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(buf0.data_ptr()), c_void_p(buf4.data_ptr()), c_void_p(buf1.data_ptr()), c_void_p(buf2.data_ptr()), c_void_p(buf3.data_ptr())) 2023-01-11T21:05:10.7099233Z del arg0_1 2023-01-11T21:05:10.7099317Z return (buf0, buf1, buf2, buf3, buf4, ) 2023-01-11T21:05:10.7099358Z 2023-01-11T21:05:10.7099376Z 2023-01-11T21:05:10.7099439Z if __name__ == "__main__": 2023-01-11T21:05:10.7099555Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.7099681Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.7099901Z arg0_1 = rand_strided((2, 4, 37, 38), (5624, 1406, 38, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.7100010Z print_performance(lambda: call([arg0_1])) 2023-01-11T21:05:10.7100015Z 2023-01-11T21:05:10.7100083Z ok (3.721s) 2023-01-11T21:05:10.7100533Z test_upsample_nearest3d_cpu (__main__.CpuTests) ... inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.7100664Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.7100915Z [2023-01-11 21:01:46,049] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 458 2023-01-11T21:05:10.7101208Z [2023-01-11 21:01:48,868] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 458 2023-01-11T21:05:10.7101214Z 2023-01-11T21:05:10.7101308Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.7101377Z import torch 2023-01-11T21:05:10.7101447Z import random 2023-01-11T21:05:10.7101562Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.7101680Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.7101685Z 2023-01-11T21:05:10.7101761Z aten = torch.ops.aten 2023-01-11T21:05:10.7101879Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.7101969Z async_compile = AsyncCompile() 2023-01-11T21:05:10.7101974Z 2023-01-11T21:05:10.7101978Z 2023-01-11T21:05:10.7102112Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.7102319Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.7102434Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:05:10.7102534Z float* __restrict__ out_ptr0, 2023-01-11T21:05:10.7102631Z float* __restrict__ out_ptr1, 2023-01-11T21:05:10.7102724Z float* __restrict__ out_ptr2, 2023-01-11T21:05:10.7102802Z float* __restrict__ out_ptr3, 2023-01-11T21:05:10.7102894Z float* __restrict__ out_ptr4) 2023-01-11T21:05:10.7102954Z { 2023-01-11T21:05:10.7103049Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.7103109Z { 2023-01-11T21:05:10.7103185Z #pragma omp for 2023-01-11T21:05:10.7103264Z for(long i0=0; i0<8; i0+=1) 2023-01-11T21:05:10.7103312Z { 2023-01-11T21:05:10.7103389Z #pragma GCC ivdep 2023-01-11T21:05:10.7103475Z for(long i1=0; i1<74; i1+=1) 2023-01-11T21:05:10.7103537Z { 2023-01-11T21:05:10.7103615Z #pragma GCC ivdep 2023-01-11T21:05:10.7103702Z for(long i2=0; i2<76; i2+=1) 2023-01-11T21:05:10.7103767Z { 2023-01-11T21:05:10.7103836Z #pragma GCC ivdep 2023-01-11T21:05:10.7103924Z for(long i3=0; i3<78; i3+=1) 2023-01-11T21:05:10.7103988Z { 2023-01-11T21:05:10.7104055Z { 2023-01-11T21:05:10.7104123Z { 2023-01-11T21:05:10.7104231Z auto tmp0 = static_cast(i1); 2023-01-11T21:05:10.7104342Z auto tmp1 = static_cast(0.5); 2023-01-11T21:05:10.7104426Z auto tmp2 = tmp0 * tmp1; 2023-01-11T21:05:10.7104534Z auto tmp3 = static_cast(tmp2); 2023-01-11T21:05:10.7104641Z auto tmp4 = static_cast(i2); 2023-01-11T21:05:10.7104765Z auto tmp5 = tmp4 * tmp1; 2023-01-11T21:05:10.7104872Z auto tmp6 = static_cast(tmp5); 2023-01-11T21:05:10.7104979Z auto tmp7 = static_cast(i3); 2023-01-11T21:05:10.7105075Z auto tmp8 = tmp7 * tmp1; 2023-01-11T21:05:10.7105170Z auto tmp9 = static_cast(tmp8); 2023-01-11T21:05:10.7105298Z auto tmp10 = in_ptr0[tmp9 + (39*tmp6) + (1482*tmp3) + (54834*i0)]; 2023-01-11T21:05:10.7105410Z out_ptr0[i3 + (78*i2) + (5928*i1) + (438672*i0)] = tmp10; 2023-01-11T21:05:10.7105521Z out_ptr1[i3 + (78*i2) + (5928*i1) + (438672*i0)] = tmp10; 2023-01-11T21:05:10.7105590Z } 2023-01-11T21:05:10.7105656Z } 2023-01-11T21:05:10.7105720Z } 2023-01-11T21:05:10.7105785Z } 2023-01-11T21:05:10.7105834Z } 2023-01-11T21:05:10.7105894Z } 2023-01-11T21:05:10.7105969Z #pragma omp for 2023-01-11T21:05:10.7106049Z for(long i0=0; i0<8; i0+=1) 2023-01-11T21:05:10.7106183Z { 2023-01-11T21:05:10.7106263Z #pragma GCC ivdep 2023-01-11T21:05:10.7106334Z for(long i1=0; i1<70; i1+=1) 2023-01-11T21:05:10.7106399Z { 2023-01-11T21:05:10.7106480Z #pragma GCC ivdep 2023-01-11T21:05:10.7106569Z for(long i2=0; i2<75; i2+=1) 2023-01-11T21:05:10.7106633Z { 2023-01-11T21:05:10.7106715Z #pragma GCC ivdep 2023-01-11T21:05:10.7106806Z for(long i3=0; i3<80; i3+=1) 2023-01-11T21:05:10.7106858Z { 2023-01-11T21:05:10.7106924Z { 2023-01-11T21:05:10.7106993Z { 2023-01-11T21:05:10.7107102Z auto tmp0 = static_cast(i1); 2023-01-11T21:05:10.7107222Z auto tmp1 = static_cast(0.5285714285714286); 2023-01-11T21:05:10.7107321Z auto tmp2 = tmp0 * tmp1; 2023-01-11T21:05:10.7107434Z auto tmp3 = static_cast(tmp2); 2023-01-11T21:05:10.7107541Z auto tmp4 = static_cast(i2); 2023-01-11T21:05:10.7107646Z auto tmp5 = static_cast(0.5066666666666667); 2023-01-11T21:05:10.7107746Z auto tmp6 = tmp4 * tmp5; 2023-01-11T21:05:10.7107856Z auto tmp7 = static_cast(tmp6); 2023-01-11T21:05:10.7107961Z auto tmp8 = static_cast(i3); 2023-01-11T21:05:10.7108073Z auto tmp9 = static_cast(0.4875); 2023-01-11T21:05:10.7108173Z auto tmp10 = tmp8 * tmp9; 2023-01-11T21:05:10.7108285Z auto tmp11 = static_cast(tmp10); 2023-01-11T21:05:10.7108399Z auto tmp12 = in_ptr0[tmp11 + (39*tmp7) + (1482*tmp3) + (54834*i0)]; 2023-01-11T21:05:10.7108512Z out_ptr2[i3 + (80*i2) + (6000*i1) + (420000*i0)] = tmp12; 2023-01-11T21:05:10.7108582Z } 2023-01-11T21:05:10.7108648Z } 2023-01-11T21:05:10.7108712Z } 2023-01-11T21:05:10.7108774Z } 2023-01-11T21:05:10.7108836Z } 2023-01-11T21:05:10.7108883Z } 2023-01-11T21:05:10.7108958Z #pragma omp for 2023-01-11T21:05:10.7109036Z for(long i0=0; i0<8; i0+=1) 2023-01-11T21:05:10.7109097Z { 2023-01-11T21:05:10.7109174Z #pragma GCC ivdep 2023-01-11T21:05:10.7109256Z for(long i1=0; i1<45; i1+=1) 2023-01-11T21:05:10.7109318Z { 2023-01-11T21:05:10.7109385Z #pragma GCC ivdep 2023-01-11T21:05:10.7109501Z for(long i2=0; i2<74; i2+=1) 2023-01-11T21:05:10.7109564Z { 2023-01-11T21:05:10.7109645Z #pragma GCC ivdep 2023-01-11T21:05:10.7109734Z for(long i3=0; i3<103; i3+=1) 2023-01-11T21:05:10.7109800Z { 2023-01-11T21:05:10.7109865Z { 2023-01-11T21:05:10.7109919Z { 2023-01-11T21:05:10.7110027Z auto tmp0 = static_cast(i1); 2023-01-11T21:05:10.7110142Z auto tmp1 = static_cast(0.8222222222222222); 2023-01-11T21:05:10.7110239Z auto tmp2 = tmp0 * tmp1; 2023-01-11T21:05:10.7110345Z auto tmp3 = static_cast(tmp2); 2023-01-11T21:05:10.7110453Z auto tmp4 = static_cast(i2); 2023-01-11T21:05:10.7110567Z auto tmp5 = static_cast(0.5135135135135135); 2023-01-11T21:05:10.7110665Z auto tmp6 = tmp4 * tmp5; 2023-01-11T21:05:10.7110758Z auto tmp7 = static_cast(tmp6); 2023-01-11T21:05:10.7110888Z auto tmp8 = static_cast(i3); 2023-01-11T21:05:10.7111003Z auto tmp9 = static_cast(0.3786407766990291); 2023-01-11T21:05:10.7111100Z auto tmp10 = tmp8 * tmp9; 2023-01-11T21:05:10.7111210Z auto tmp11 = static_cast(tmp10); 2023-01-11T21:05:10.7111337Z auto tmp12 = in_ptr0[tmp11 + (39*tmp7) + (1482*tmp3) + (54834*i0)]; 2023-01-11T21:05:10.7111450Z out_ptr3[i3 + (103*i2) + (7622*i1) + (342990*i0)] = tmp12; 2023-01-11T21:05:10.7111518Z } 2023-01-11T21:05:10.7111572Z } 2023-01-11T21:05:10.7111637Z } 2023-01-11T21:05:10.7111698Z } 2023-01-11T21:05:10.7111762Z } 2023-01-11T21:05:10.7111822Z } 2023-01-11T21:05:10.7111897Z #pragma omp for 2023-01-11T21:05:10.7111963Z for(long i0=0; i0<8; i0+=1) 2023-01-11T21:05:10.7112026Z { 2023-01-11T21:05:10.7112101Z #pragma GCC ivdep 2023-01-11T21:05:10.7112188Z for(long i1=0; i1<36; i1+=1) 2023-01-11T21:05:10.7112250Z { 2023-01-11T21:05:10.7112328Z #pragma GCC ivdep 2023-01-11T21:05:10.7112415Z for(long i2=0; i2<39; i2+=1) 2023-01-11T21:05:10.7112465Z { 2023-01-11T21:05:10.7112546Z #pragma GCC ivdep 2023-01-11T21:05:10.7112634Z for(long i3=0; i3<40; i3+=1) 2023-01-11T21:05:10.7112698Z { 2023-01-11T21:05:10.7112765Z { 2023-01-11T21:05:10.7112832Z { 2023-01-11T21:05:10.7112942Z auto tmp0 = static_cast(i1); 2023-01-11T21:05:10.7113049Z auto tmp1 = static_cast(1.0277777777777777); 2023-01-11T21:05:10.7113144Z auto tmp2 = tmp0 * tmp1; 2023-01-11T21:05:10.7113254Z auto tmp3 = static_cast(tmp2); 2023-01-11T21:05:10.7113360Z auto tmp4 = static_cast(i2); 2023-01-11T21:05:10.7113475Z auto tmp5 = static_cast(0.9743589743589743); 2023-01-11T21:05:10.7113571Z auto tmp6 = tmp4 * tmp5; 2023-01-11T21:05:10.7113678Z auto tmp7 = static_cast(tmp6); 2023-01-11T21:05:10.7113782Z auto tmp8 = static_cast(i3); 2023-01-11T21:05:10.7113880Z auto tmp9 = static_cast(0.975); 2023-01-11T21:05:10.7113976Z auto tmp10 = tmp8 * tmp9; 2023-01-11T21:05:10.7114087Z auto tmp11 = static_cast(tmp10); 2023-01-11T21:05:10.7114243Z auto tmp12 = in_ptr0[tmp11 + (39*tmp7) + (1482*tmp3) + (54834*i0)]; 2023-01-11T21:05:10.7114358Z out_ptr4[i3 + (40*i2) + (1560*i1) + (56160*i0)] = tmp12; 2023-01-11T21:05:10.7114431Z } 2023-01-11T21:05:10.7114497Z } 2023-01-11T21:05:10.7114549Z } 2023-01-11T21:05:10.7114610Z } 2023-01-11T21:05:10.7114671Z } 2023-01-11T21:05:10.7114732Z } 2023-01-11T21:05:10.7114793Z } 2023-01-11T21:05:10.7114851Z } 2023-01-11T21:05:10.7114934Z ''') 2023-01-11T21:05:10.7114940Z 2023-01-11T21:05:10.7114945Z 2023-01-11T21:05:10.7115020Z async_compile.wait(globals()) 2023-01-11T21:05:10.7115089Z del async_compile 2023-01-11T21:05:10.7115094Z 2023-01-11T21:05:10.7115161Z def call(args): 2023-01-11T21:05:10.7115228Z arg0_1, = args 2023-01-11T21:05:10.7115297Z args.clear() 2023-01-11T21:05:10.7115534Z buf0 = empty_strided((2, 4, 74, 76, 78), (1754688, 438672, 5928, 78, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.7115800Z buf4 = empty_strided((2, 4, 74, 76, 78), (1754688, 438672, 5928, 78, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.7116034Z buf1 = empty_strided((2, 4, 70, 75, 80), (1680000, 420000, 6000, 80, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.7116257Z buf2 = empty_strided((2, 4, 45, 74, 103), (1371960, 342990, 7622, 103, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.7116487Z buf3 = empty_strided((2, 4, 36, 39, 40), (224640, 56160, 1560, 40, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.7116720Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(buf0.data_ptr()), c_void_p(buf4.data_ptr()), c_void_p(buf1.data_ptr()), c_void_p(buf2.data_ptr()), c_void_p(buf3.data_ptr())) 2023-01-11T21:05:10.7116792Z del arg0_1 2023-01-11T21:05:10.7116888Z return (buf0, buf1, buf2, buf3, buf4, ) 2023-01-11T21:05:10.7116895Z 2023-01-11T21:05:10.7116900Z 2023-01-11T21:05:10.7116974Z if __name__ == "__main__": 2023-01-11T21:05:10.7117089Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.7117211Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.7117429Z arg0_1 = rand_strided((2, 4, 37, 38, 39), (219336, 54834, 1482, 39, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.7117535Z print_performance(lambda: call([arg0_1])) 2023-01-11T21:05:10.7117540Z 2023-01-11T21:05:10.7117604Z ok (6.146s) 2023-01-11T21:05:10.7118037Z test_var_mean_cpu (__main__.CpuTests) ... inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.7118161Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.7118423Z [2023-01-11 21:01:51,017] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 459 2023-01-11T21:05:10.7118687Z [2023-01-11 21:01:53,941] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 459 2023-01-11T21:05:10.7118693Z 2023-01-11T21:05:10.7118784Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.7118852Z import torch 2023-01-11T21:05:10.7118920Z import random 2023-01-11T21:05:10.7119020Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.7119141Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.7119146Z 2023-01-11T21:05:10.7119223Z aten = torch.ops.aten 2023-01-11T21:05:10.7119359Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.7119447Z async_compile = AsyncCompile() 2023-01-11T21:05:10.7119452Z 2023-01-11T21:05:10.7119457Z 2023-01-11T21:05:10.7119589Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.7119821Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.7119939Z extern "C" void kernel(float* __restrict__ in_out_ptr0, 2023-01-11T21:05:10.7120029Z float* __restrict__ in_out_ptr1, 2023-01-11T21:05:10.7120127Z float* __restrict__ in_out_ptr2, 2023-01-11T21:05:10.7120224Z float* __restrict__ in_out_ptr3, 2023-01-11T21:05:10.7120325Z const float* __restrict__ in_ptr0, 2023-01-11T21:05:10.7120424Z float* __restrict__ out_ptr0, 2023-01-11T21:05:10.7120518Z float* __restrict__ out_ptr3) 2023-01-11T21:05:10.7120576Z { 2023-01-11T21:05:10.7120760Z auto out_ptr1 = in_out_ptr0; 2023-01-11T21:05:10.7120842Z auto out_ptr2 = in_out_ptr1; 2023-01-11T21:05:10.7120924Z auto out_ptr4 = in_out_ptr2; 2023-01-11T21:05:10.7121007Z auto out_ptr5 = in_out_ptr3; 2023-01-11T21:05:10.7121107Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.7121169Z { 2023-01-11T21:05:10.7121246Z #pragma omp for 2023-01-11T21:05:10.7121314Z for(long i0=0; i0<8; i0+=1) 2023-01-11T21:05:10.7121376Z { 2023-01-11T21:05:10.7121492Z { 2023-01-11T21:05:10.7121559Z { 2023-01-11T21:05:10.7121642Z float tmp1 = 0; 2023-01-11T21:05:10.7121734Z for(long i1=0; i1<8; i1+=1) 2023-01-11T21:05:10.7121786Z { 2023-01-11T21:05:10.7121856Z { 2023-01-11T21:05:10.7121960Z auto tmp0 = in_ptr0[i1 + (8*i0)]; 2023-01-11T21:05:10.7122044Z tmp1 += tmp0; 2023-01-11T21:05:10.7122112Z } 2023-01-11T21:05:10.7122179Z } 2023-01-11T21:05:10.7122264Z out_ptr0[i0] = tmp1; 2023-01-11T21:05:10.7122315Z } 2023-01-11T21:05:10.7122377Z } 2023-01-11T21:05:10.7122441Z } 2023-01-11T21:05:10.7122517Z #pragma omp for 2023-01-11T21:05:10.7122597Z for(long i0=0; i0<8; i0+=1) 2023-01-11T21:05:10.7122661Z { 2023-01-11T21:05:10.7122722Z { 2023-01-11T21:05:10.7122774Z { 2023-01-11T21:05:10.7122853Z float tmp6 = 0; 2023-01-11T21:05:10.7122931Z float tmp7 = 0; 2023-01-11T21:05:10.7123021Z for(long i1=0; i1<8; i1+=1) 2023-01-11T21:05:10.7123087Z { 2023-01-11T21:05:10.7123153Z { 2023-01-11T21:05:10.7123253Z auto tmp0 = in_ptr0[i1 + (8*i0)]; 2023-01-11T21:05:10.7123337Z auto tmp1 = out_ptr0[i0]; 2023-01-11T21:05:10.7123442Z auto tmp2 = static_cast(8); 2023-01-11T21:05:10.7123538Z auto tmp3 = tmp1 / tmp2; 2023-01-11T21:05:10.7123683Z auto tmp4 = tmp0 - tmp3; 2023-01-11T21:05:10.7123776Z auto tmp5 = tmp4 * tmp4; 2023-01-11T21:05:10.7123858Z tmp6 += tmp5; 2023-01-11T21:05:10.7123937Z tmp7 += tmp0; 2023-01-11T21:05:10.7123993Z } 2023-01-11T21:05:10.7124057Z } 2023-01-11T21:05:10.7124139Z out_ptr1[i0] = tmp6; 2023-01-11T21:05:10.7124221Z out_ptr2[i0] = tmp7; 2023-01-11T21:05:10.7124285Z } 2023-01-11T21:05:10.7124346Z } 2023-01-11T21:05:10.7124405Z } 2023-01-11T21:05:10.7124467Z #pragma omp for 2023-01-11T21:05:10.7124544Z for(long i0=0; i0<8; i0+=1) 2023-01-11T21:05:10.7124603Z { 2023-01-11T21:05:10.7124664Z { 2023-01-11T21:05:10.7124726Z { 2023-01-11T21:05:10.7124817Z auto tmp0 = out_ptr1[i0]; 2023-01-11T21:05:10.7124907Z auto tmp1 = static_cast(7); 2023-01-11T21:05:10.7124996Z auto tmp2 = tmp0 / tmp1; 2023-01-11T21:05:10.7125121Z in_out_ptr0[i0] = tmp2; 2023-01-11T21:05:10.7125184Z } 2023-01-11T21:05:10.7125245Z } 2023-01-11T21:05:10.7125306Z } 2023-01-11T21:05:10.7125383Z #pragma omp for 2023-01-11T21:05:10.7125450Z for(long i0=0; i0<8; i0+=1) 2023-01-11T21:05:10.7125510Z { 2023-01-11T21:05:10.7125571Z { 2023-01-11T21:05:10.7125635Z { 2023-01-11T21:05:10.7125727Z auto tmp0 = out_ptr2[i0]; 2023-01-11T21:05:10.7125828Z auto tmp1 = static_cast(8); 2023-01-11T21:05:10.7125917Z auto tmp2 = tmp0 / tmp1; 2023-01-11T21:05:10.7125991Z in_out_ptr1[i0] = tmp2; 2023-01-11T21:05:10.7126053Z } 2023-01-11T21:05:10.7126113Z } 2023-01-11T21:05:10.7126173Z } 2023-01-11T21:05:10.7126247Z #pragma omp for 2023-01-11T21:05:10.7126326Z for(long i0=0; i0<4; i0+=1) 2023-01-11T21:05:10.7126390Z { 2023-01-11T21:05:10.7126438Z { 2023-01-11T21:05:10.7126500Z { 2023-01-11T21:05:10.7126579Z float tmp1 = 0; 2023-01-11T21:05:10.7126696Z for(long i1=0; i1<2; i1+=1) 2023-01-11T21:05:10.7126763Z { 2023-01-11T21:05:10.7126854Z for(long i2=0; i2<8; i2+=1) 2023-01-11T21:05:10.7126907Z { 2023-01-11T21:05:10.7126976Z { 2023-01-11T21:05:10.7127086Z auto tmp0 = in_ptr0[i2 + (8*i0) + (32*i1)]; 2023-01-11T21:05:10.7127171Z tmp1 += tmp0; 2023-01-11T21:05:10.7127241Z } 2023-01-11T21:05:10.7127306Z } 2023-01-11T21:05:10.7127372Z } 2023-01-11T21:05:10.7127442Z out_ptr3[i0] = tmp1; 2023-01-11T21:05:10.7127505Z } 2023-01-11T21:05:10.7127573Z } 2023-01-11T21:05:10.7127633Z } 2023-01-11T21:05:10.7127707Z #pragma omp for 2023-01-11T21:05:10.7127787Z for(long i0=0; i0<4; i0+=1) 2023-01-11T21:05:10.7127847Z { 2023-01-11T21:05:10.7127898Z { 2023-01-11T21:05:10.7127961Z { 2023-01-11T21:05:10.7128039Z float tmp6 = 0; 2023-01-11T21:05:10.7128116Z float tmp7 = 0; 2023-01-11T21:05:10.7128206Z for(long i1=0; i1<2; i1+=1) 2023-01-11T21:05:10.7128272Z { 2023-01-11T21:05:10.7128363Z for(long i2=0; i2<8; i2+=1) 2023-01-11T21:05:10.7128416Z { 2023-01-11T21:05:10.7128485Z { 2023-01-11T21:05:10.7128595Z auto tmp0 = in_ptr0[i2 + (8*i0) + (32*i1)]; 2023-01-11T21:05:10.7128693Z auto tmp1 = out_ptr3[i0]; 2023-01-11T21:05:10.7128802Z auto tmp2 = static_cast(16); 2023-01-11T21:05:10.7128902Z auto tmp3 = tmp1 / tmp2; 2023-01-11T21:05:10.7129053Z auto tmp4 = tmp0 - tmp3; 2023-01-11T21:05:10.7129138Z auto tmp5 = tmp4 * tmp4; 2023-01-11T21:05:10.7129222Z tmp6 += tmp5; 2023-01-11T21:05:10.7129307Z tmp7 += tmp0; 2023-01-11T21:05:10.7129376Z } 2023-01-11T21:05:10.7129444Z } 2023-01-11T21:05:10.7129510Z } 2023-01-11T21:05:10.7129592Z out_ptr4[i0] = tmp6; 2023-01-11T21:05:10.7129662Z out_ptr5[i0] = tmp7; 2023-01-11T21:05:10.7129724Z } 2023-01-11T21:05:10.7129785Z } 2023-01-11T21:05:10.7129847Z } 2023-01-11T21:05:10.7129923Z #pragma omp for 2023-01-11T21:05:10.7130002Z for(long i0=0; i0<4; i0+=1) 2023-01-11T21:05:10.7130063Z { 2023-01-11T21:05:10.7130143Z { 2023-01-11T21:05:10.7130206Z { 2023-01-11T21:05:10.7130294Z auto tmp0 = out_ptr4[i0]; 2023-01-11T21:05:10.7130396Z auto tmp1 = static_cast(15); 2023-01-11T21:05:10.7130489Z auto tmp2 = tmp0 / tmp1; 2023-01-11T21:05:10.7130576Z in_out_ptr2[i0] = tmp2; 2023-01-11T21:05:10.7130638Z } 2023-01-11T21:05:10.7130687Z } 2023-01-11T21:05:10.7130749Z } 2023-01-11T21:05:10.7130823Z #pragma omp for 2023-01-11T21:05:10.7130901Z for(long i0=0; i0<4; i0+=1) 2023-01-11T21:05:10.7130961Z { 2023-01-11T21:05:10.7131021Z { 2023-01-11T21:05:10.7131071Z { 2023-01-11T21:05:10.7131160Z auto tmp0 = out_ptr5[i0]; 2023-01-11T21:05:10.7131260Z auto tmp1 = static_cast(16); 2023-01-11T21:05:10.7131348Z auto tmp2 = tmp0 / tmp1; 2023-01-11T21:05:10.7131437Z in_out_ptr3[i0] = tmp2; 2023-01-11T21:05:10.7131499Z } 2023-01-11T21:05:10.7131562Z } 2023-01-11T21:05:10.7131609Z } 2023-01-11T21:05:10.7131669Z } 2023-01-11T21:05:10.7131728Z } 2023-01-11T21:05:10.7131834Z ''') 2023-01-11T21:05:10.7131840Z 2023-01-11T21:05:10.7131844Z 2023-01-11T21:05:10.7131935Z async_compile.wait(globals()) 2023-01-11T21:05:10.7132006Z del async_compile 2023-01-11T21:05:10.7132010Z 2023-01-11T21:05:10.7132080Z def call(args): 2023-01-11T21:05:10.7132134Z arg0_1, = args 2023-01-11T21:05:10.7132204Z args.clear() 2023-01-11T21:05:10.7132414Z buf0 = empty_strided((1, 2, 4, 1), (8, 4, 1, 8), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.7132618Z buf1 = empty_strided((1, 2, 4), (8, 4, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.7132814Z buf2 = empty_strided((1, 2, 4), (8, 4, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.7132900Z buf3 = buf1; del buf1 # reuse 2023-01-11T21:05:10.7132983Z buf4 = buf2; del buf2 # reuse 2023-01-11T21:05:10.7133187Z buf5 = empty_strided((1, 1, 4, 1), (4, 4, 1, 4), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.7133366Z buf6 = empty_strided((1, 4), (4, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.7133553Z buf7 = empty_strided((1, 4), (4, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.7133633Z buf8 = buf6; del buf6 # reuse 2023-01-11T21:05:10.7133712Z buf9 = buf7; del buf7 # reuse 2023-01-11T21:05:10.7133967Z kernel_cpp_0(c_void_p(buf3.data_ptr()), c_void_p(buf4.data_ptr()), c_void_p(buf8.data_ptr()), c_void_p(buf9.data_ptr()), c_void_p(arg0_1.data_ptr()), c_void_p(buf0.data_ptr()), c_void_p(buf5.data_ptr())) 2023-01-11T21:05:10.7134035Z del arg0_1 2023-01-11T21:05:10.7134120Z return (buf3, buf4, buf8, buf9, ) 2023-01-11T21:05:10.7134125Z 2023-01-11T21:05:10.7134129Z 2023-01-11T21:05:10.7134202Z if __name__ == "__main__": 2023-01-11T21:05:10.7134304Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.7134426Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.7134636Z arg0_1 = rand_strided((1, 2, 4, 8), (64, 32, 8, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.7134743Z print_performance(lambda: call([arg0_1])) 2023-01-11T21:05:10.7134748Z 2023-01-11T21:05:10.7134813Z ok (2.970s) 2023-01-11T21:05:10.7135249Z test_vdd_clamp_cpu (__main__.CpuTests) ... inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.7135374Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.7135634Z [2023-01-11 21:01:54,012] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 460 2023-01-11T21:05:10.7135927Z [2023-01-11 21:01:56,710] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 460 2023-01-11T21:05:10.7135932Z 2023-01-11T21:05:10.7136024Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.7136082Z import torch 2023-01-11T21:05:10.7136150Z import random 2023-01-11T21:05:10.7136263Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.7136382Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.7136386Z 2023-01-11T21:05:10.7136463Z aten = torch.ops.aten 2023-01-11T21:05:10.7136595Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.7136685Z async_compile = AsyncCompile() 2023-01-11T21:05:10.7136690Z 2023-01-11T21:05:10.7136694Z 2023-01-11T21:05:10.7136813Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.7137015Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.7137130Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:05:10.7137231Z float* __restrict__ out_ptr0, 2023-01-11T21:05:10.7137326Z bool* __restrict__ out_ptr1) 2023-01-11T21:05:10.7137385Z { 2023-01-11T21:05:10.7137508Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.7137557Z { 2023-01-11T21:05:10.7137631Z #pragma omp for 2023-01-11T21:05:10.7137711Z for(long i0=0; i0<16; i0+=1) 2023-01-11T21:05:10.7137772Z { 2023-01-11T21:05:10.7137836Z { 2023-01-11T21:05:10.7137898Z { 2023-01-11T21:05:10.7137989Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:05:10.7138081Z auto tmp1 = static_cast(3.0); 2023-01-11T21:05:10.7138216Z auto tmp2 = (tmp1 != tmp1) ? tmp1 : std::max(tmp0, tmp1); 2023-01-11T21:05:10.7138317Z auto tmp3 = static_cast(3); 2023-01-11T21:05:10.7138407Z auto tmp4 = tmp0 >= tmp3; 2023-01-11T21:05:10.7138578Z out_ptr0[i0] = tmp2; 2023-01-11T21:05:10.7138665Z out_ptr1[i0] = tmp4; 2023-01-11T21:05:10.7138729Z } 2023-01-11T21:05:10.7138779Z } 2023-01-11T21:05:10.7138842Z } 2023-01-11T21:05:10.7138903Z } 2023-01-11T21:05:10.7138963Z } 2023-01-11T21:05:10.7139043Z ''') 2023-01-11T21:05:10.7139048Z 2023-01-11T21:05:10.7139052Z 2023-01-11T21:05:10.7139144Z async_compile.wait(globals()) 2023-01-11T21:05:10.7139215Z del async_compile 2023-01-11T21:05:10.7139220Z 2023-01-11T21:05:10.7139289Z def call(args): 2023-01-11T21:05:10.7139350Z primals_1, = args 2023-01-11T21:05:10.7139419Z args.clear() 2023-01-11T21:05:10.7139618Z buf0 = empty_strided((16, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.7139803Z buf1 = empty_strided((16, ), (1, ), device='cpu', dtype=torch.bool) 2023-01-11T21:05:10.7139971Z kernel_cpp_0(c_void_p(primals_1.data_ptr()), c_void_p(buf0.data_ptr()), c_void_p(buf1.data_ptr())) 2023-01-11T21:05:10.7140042Z del primals_1 2023-01-11T21:05:10.7140117Z return (buf0, buf1, ) 2023-01-11T21:05:10.7140122Z 2023-01-11T21:05:10.7140126Z 2023-01-11T21:05:10.7140188Z if __name__ == "__main__": 2023-01-11T21:05:10.7140300Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.7140419Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.7140615Z primals_1 = rand_strided((16, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.7140726Z print_performance(lambda: call([primals_1])) 2023-01-11T21:05:10.7140731Z 2023-01-11T21:05:10.7140796Z ok (2.767s) 2023-01-11T21:05:10.7141241Z test_vertical_fusion1_cpu (__main__.CpuTests) ... inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.7141403Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.7141663Z [2023-01-11 21:01:56,935] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 461 2023-01-11T21:05:10.7141916Z [2023-01-11 21:01:59,613] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 461 2023-01-11T21:05:10.7141934Z 2023-01-11T21:05:10.7142014Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.7142081Z import torch 2023-01-11T21:05:10.7142151Z import random 2023-01-11T21:05:10.7142269Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.7142388Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.7142393Z 2023-01-11T21:05:10.7142468Z aten = torch.ops.aten 2023-01-11T21:05:10.7142600Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.7142677Z async_compile = AsyncCompile() 2023-01-11T21:05:10.7142682Z 2023-01-11T21:05:10.7142701Z 2023-01-11T21:05:10.7142820Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.7143022Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.7143183Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:05:10.7143288Z const float* __restrict__ in_ptr1, 2023-01-11T21:05:10.7143387Z const float* __restrict__ in_ptr2, 2023-01-11T21:05:10.7143486Z float* __restrict__ out_ptr0) 2023-01-11T21:05:10.7143545Z { 2023-01-11T21:05:10.7143628Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.7143688Z { 2023-01-11T21:05:10.7143762Z #pragma omp for 2023-01-11T21:05:10.7143844Z for(long i0=0; i0<41616; i0+=1) 2023-01-11T21:05:10.7143906Z { 2023-01-11T21:05:10.7143986Z for(long i1=0; i1<1; i1+=1) 2023-01-11T21:05:10.7144049Z { 2023-01-11T21:05:10.7144179Z auto tmp0 = at::vec::Vectorized::loadu(in_ptr0 + (16*i1) + (26*i0)); 2023-01-11T21:05:10.7144318Z auto tmp8 = at::vec::Vectorized::loadu(in_ptr1 + (16*i1) + (26*i0)); 2023-01-11T21:05:10.7144454Z auto tmp15 = at::vec::Vectorized::loadu(in_ptr2 + 16*i1); 2023-01-11T21:05:10.7144684Z auto tmp1 = at::vec::Vectorized(static_cast(-1.061519070296458e-11)); 2023-01-11T21:05:10.7144771Z auto tmp2 = tmp0 * tmp1; 2023-01-11T21:05:10.7144994Z auto tmp3 = at::vec::Vectorized(static_cast(-1.988366587925593e-08)); 2023-01-11T21:05:10.7145083Z auto tmp4 = tmp2 + tmp3; 2023-01-11T21:05:10.7145172Z auto tmp5 = tmp0 * tmp4; 2023-01-11T21:05:10.7145382Z auto tmp6 = at::vec::Vectorized(static_cast(-3.087032500374211e-07)); 2023-01-11T21:05:10.7145468Z auto tmp7 = tmp5 + tmp6; 2023-01-11T21:05:10.7145689Z auto tmp9 = at::vec::Vectorized(static_cast(1.55093272922008e-10)); 2023-01-11T21:05:10.7145778Z auto tmp10 = tmp8 * tmp9; 2023-01-11T21:05:10.7145866Z auto tmp11 = tmp7 + tmp10; 2023-01-11T21:05:10.7145968Z auto tmp12 = tmp11.reciprocal(); 2023-01-11T21:05:10.7146102Z auto tmp13 = at::vec::Vectorized(static_cast(1.0)); 2023-01-11T21:05:10.7146192Z auto tmp14 = tmp12 * tmp13; 2023-01-11T21:05:10.7146268Z auto tmp16 = tmp11 * tmp15; 2023-01-11T21:05:10.7146355Z auto tmp17 = tmp14 + tmp16; 2023-01-11T21:05:10.7146458Z tmp17.store(out_ptr0 + (16*i1) + (26*i0)); 2023-01-11T21:05:10.7146521Z } 2023-01-11T21:05:10.7146612Z #pragma omp simd simdlen(8) 2023-01-11T21:05:10.7146696Z for(long i1=16; i1<26; i1+=1) 2023-01-11T21:05:10.7146758Z { 2023-01-11T21:05:10.7146840Z auto tmp0 = in_ptr0[i1 + (26*i0)]; 2023-01-11T21:05:10.7146963Z auto tmp8 = in_ptr1[i1 + (26*i0)]; 2023-01-11T21:05:10.7147049Z auto tmp15 = in_ptr2[i1]; 2023-01-11T21:05:10.7147226Z auto tmp1 = static_cast(-1.061519070296458e-11); 2023-01-11T21:05:10.7147314Z auto tmp2 = tmp0 * tmp1; 2023-01-11T21:05:10.7147490Z auto tmp3 = static_cast(-1.988366587925593e-08); 2023-01-11T21:05:10.7147576Z auto tmp4 = tmp2 + tmp3; 2023-01-11T21:05:10.7147648Z auto tmp5 = tmp0 * tmp4; 2023-01-11T21:05:10.7147824Z auto tmp6 = static_cast(-3.087032500374211e-07); 2023-01-11T21:05:10.7147906Z auto tmp7 = tmp5 + tmp6; 2023-01-11T21:05:10.7148080Z auto tmp9 = static_cast(1.55093272922008e-10); 2023-01-11T21:05:10.7148165Z auto tmp10 = tmp8 * tmp9; 2023-01-11T21:05:10.7148252Z auto tmp11 = tmp7 + tmp10; 2023-01-11T21:05:10.7148333Z auto tmp12 = 1 / tmp11; 2023-01-11T21:05:10.7148438Z auto tmp13 = static_cast(1.0); 2023-01-11T21:05:10.7148514Z auto tmp14 = tmp12 * tmp13; 2023-01-11T21:05:10.7148602Z auto tmp16 = tmp11 * tmp15; 2023-01-11T21:05:10.7148720Z auto tmp17 = tmp14 + tmp16; 2023-01-11T21:05:10.7148811Z out_ptr0[i1 + (26*i0)] = tmp17; 2023-01-11T21:05:10.7148874Z } 2023-01-11T21:05:10.7148936Z } 2023-01-11T21:05:10.7148996Z } 2023-01-11T21:05:10.7149042Z } 2023-01-11T21:05:10.7149118Z ''') 2023-01-11T21:05:10.7149124Z 2023-01-11T21:05:10.7149129Z 2023-01-11T21:05:10.7149218Z async_compile.wait(globals()) 2023-01-11T21:05:10.7149289Z del async_compile 2023-01-11T21:05:10.7149294Z 2023-01-11T21:05:10.7149362Z def call(args): 2023-01-11T21:05:10.7149442Z arg0_1, arg1_1, arg2_1 = args 2023-01-11T21:05:10.7149513Z args.clear() 2023-01-11T21:05:10.7149714Z buf0 = empty_strided((204, 204, 26), (5304, 26, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.7149903Z kernel_cpp_0(c_void_p(arg1_1.data_ptr()), c_void_p(arg0_1.data_ptr()), c_void_p(arg2_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:05:10.7149970Z del arg0_1 2023-01-11T21:05:10.7150037Z del arg1_1 2023-01-11T21:05:10.7150102Z del arg2_1 2023-01-11T21:05:10.7150171Z return (buf0, ) 2023-01-11T21:05:10.7150177Z 2023-01-11T21:05:10.7150181Z 2023-01-11T21:05:10.7150255Z if __name__ == "__main__": 2023-01-11T21:05:10.7150367Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.7150476Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.7150688Z arg0_1 = rand_strided((204, 204, 26), (5304, 26, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.7150898Z arg1_1 = rand_strided((204, 204, 26), (5304, 26, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.7151088Z arg2_1 = rand_strided((26, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.7151209Z print_performance(lambda: call([arg0_1, arg1_1, arg2_1])) 2023-01-11T21:05:10.7151215Z 2023-01-11T21:05:10.7151280Z ok (3.473s) 2023-01-11T21:05:10.7151719Z test_views1_cpu (__main__.CpuTests) ... inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.7151847Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.7152106Z [2023-01-11 21:02:00,218] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 462 2023-01-11T21:05:10.7152356Z [2023-01-11 21:02:02,840] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 462 2023-01-11T21:05:10.7152757Z inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.7152913Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.7153168Z [2023-01-11 21:02:02,880] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 463 2023-01-11T21:05:10.7153429Z [2023-01-11 21:02:05,517] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 463 2023-01-11T21:05:10.7153826Z inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.7153950Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.7154204Z [2023-01-11 21:02:05,555] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 464 2023-01-11T21:05:10.7154491Z [2023-01-11 21:02:08,213] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 464 2023-01-11T21:05:10.7154887Z inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.7155011Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.7155266Z [2023-01-11 21:02:08,264] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 465 2023-01-11T21:05:10.7155512Z [2023-01-11 21:02:10,957] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 465 2023-01-11T21:05:10.7155911Z inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.7156036Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.7156287Z [2023-01-11 21:02:11,003] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 466 2023-01-11T21:05:10.7156293Z 2023-01-11T21:05:10.7156385Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.7156454Z import torch 2023-01-11T21:05:10.7156523Z import random 2023-01-11T21:05:10.7156636Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.7156743Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.7156760Z 2023-01-11T21:05:10.7156828Z aten = torch.ops.aten 2023-01-11T21:05:10.7156960Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.7157051Z async_compile = AsyncCompile() 2023-01-11T21:05:10.7157056Z 2023-01-11T21:05:10.7157060Z 2023-01-11T21:05:10.7157195Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.7157397Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.7157513Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:05:10.7157616Z const float* __restrict__ in_ptr1, 2023-01-11T21:05:10.7157714Z float* __restrict__ out_ptr0) 2023-01-11T21:05:10.7157761Z { 2023-01-11T21:05:10.7157856Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.7157918Z { 2023-01-11T21:05:10.7157992Z #pragma omp for 2023-01-11T21:05:10.7158073Z for(long i0=0; i0<2; i0+=1) 2023-01-11T21:05:10.7158136Z { 2023-01-11T21:05:10.7158256Z auto tmp0 = at::vec::Vectorized::loadu(in_ptr0 + 16*i0); 2023-01-11T21:05:10.7158416Z auto tmp1 = at::vec::Vectorized::loadu(in_ptr1 + 16*i0); 2023-01-11T21:05:10.7158502Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:05:10.7158594Z tmp2.store(out_ptr0 + 16*i0); 2023-01-11T21:05:10.7158657Z } 2023-01-11T21:05:10.7158752Z #pragma omp for simd simdlen(8) 2023-01-11T21:05:10.7158834Z for(long i0=32; i0<35; i0+=1) 2023-01-11T21:05:10.7158895Z { 2023-01-11T21:05:10.7158963Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:05:10.7159042Z auto tmp1 = in_ptr1[i0]; 2023-01-11T21:05:10.7159122Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:05:10.7159201Z out_ptr0[i0] = tmp2; 2023-01-11T21:05:10.7159262Z } 2023-01-11T21:05:10.7159322Z } 2023-01-11T21:05:10.7159368Z } 2023-01-11T21:05:10.7159445Z ''') 2023-01-11T21:05:10.7159450Z 2023-01-11T21:05:10.7159454Z 2023-01-11T21:05:10.7159545Z async_compile.wait(globals()) 2023-01-11T21:05:10.7159619Z del async_compile 2023-01-11T21:05:10.7159624Z 2023-01-11T21:05:10.7159694Z def call(args): 2023-01-11T21:05:10.7159768Z arg0_1, arg1_1 = args 2023-01-11T21:05:10.7159837Z args.clear() 2023-01-11T21:05:10.7160058Z buf0 = empty_strided((5, 7), (7, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.7160207Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(arg1_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:05:10.7160274Z del arg0_1 2023-01-11T21:05:10.7160339Z del arg1_1 2023-01-11T21:05:10.7160409Z return (buf0, ) 2023-01-11T21:05:10.7160414Z 2023-01-11T21:05:10.7160419Z 2023-01-11T21:05:10.7160494Z if __name__ == "__main__": 2023-01-11T21:05:10.7160728Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.7160854Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.7161035Z arg0_1 = rand_strided((35, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.7161234Z arg1_1 = rand_strided((5, 7), (7, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.7161348Z print_performance(lambda: call([arg0_1, arg1_1])) 2023-01-11T21:05:10.7161353Z 2023-01-11T21:05:10.7161357Z 2023-01-11T21:05:10.7161451Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.7161523Z import torch 2023-01-11T21:05:10.7161591Z import random 2023-01-11T21:05:10.7161704Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.7161824Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.7161829Z 2023-01-11T21:05:10.7161893Z aten = torch.ops.aten 2023-01-11T21:05:10.7162025Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.7162115Z async_compile = AsyncCompile() 2023-01-11T21:05:10.7162120Z 2023-01-11T21:05:10.7162124Z 2023-01-11T21:05:10.7162259Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.7162463Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.7162586Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:05:10.7162690Z const float* __restrict__ in_ptr1, 2023-01-11T21:05:10.7162790Z float* __restrict__ out_ptr0) 2023-01-11T21:05:10.7162838Z { 2023-01-11T21:05:10.7162937Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.7162998Z { 2023-01-11T21:05:10.7163075Z #pragma omp for 2023-01-11T21:05:10.7163156Z for(long i0=0; i0<2; i0+=1) 2023-01-11T21:05:10.7163219Z { 2023-01-11T21:05:10.7163351Z auto tmp0 = at::vec::Vectorized::loadu(in_ptr0 + 16*i0); 2023-01-11T21:05:10.7163466Z auto tmp3 = at::vec::Vectorized::loadu(in_ptr1 + 16*i0); 2023-01-11T21:05:10.7163596Z auto tmp1 = at::vec::Vectorized(static_cast(1)); 2023-01-11T21:05:10.7163680Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:05:10.7163759Z auto tmp4 = tmp2 + tmp3; 2023-01-11T21:05:10.7163849Z tmp4.store(out_ptr0 + 16*i0); 2023-01-11T21:05:10.7163965Z } 2023-01-11T21:05:10.7164059Z #pragma omp for simd simdlen(8) 2023-01-11T21:05:10.7164140Z for(long i0=32; i0<35; i0+=1) 2023-01-11T21:05:10.7164188Z { 2023-01-11T21:05:10.7164271Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:05:10.7164350Z auto tmp3 = in_ptr1[i0]; 2023-01-11T21:05:10.7164449Z auto tmp1 = static_cast(1); 2023-01-11T21:05:10.7164530Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:05:10.7164612Z auto tmp4 = tmp2 + tmp3; 2023-01-11T21:05:10.7164677Z out_ptr0[i0] = tmp4; 2023-01-11T21:05:10.7164739Z } 2023-01-11T21:05:10.7164800Z } 2023-01-11T21:05:10.7164860Z } 2023-01-11T21:05:10.7164938Z ''') 2023-01-11T21:05:10.7164943Z 2023-01-11T21:05:10.7164947Z 2023-01-11T21:05:10.7165034Z async_compile.wait(globals()) 2023-01-11T21:05:10.7165106Z del async_compile 2023-01-11T21:05:10.7165111Z 2023-01-11T21:05:10.7165180Z def call(args): 2023-01-11T21:05:10.7165243Z arg0_1, arg1_1 = args 2023-01-11T21:05:10.7165312Z args.clear() 2023-01-11T21:05:10.7165503Z buf0 = empty_strided((5, 7), (7, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.7165700Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(arg1_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:05:10.7165767Z del arg0_1 2023-01-11T21:05:10.7165830Z del arg1_1 2023-01-11T21:05:10.7165898Z return (buf0, ) 2023-01-11T21:05:10.7165903Z 2023-01-11T21:05:10.7165907Z 2023-01-11T21:05:10.7165968Z if __name__ == "__main__": 2023-01-11T21:05:10.7166079Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.7166200Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.7166394Z arg0_1 = rand_strided((35, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.7166586Z arg1_1 = rand_strided((5, 7), (7, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.7166699Z print_performance(lambda: call([arg0_1, arg1_1])) 2023-01-11T21:05:10.7166706Z 2023-01-11T21:05:10.7166710Z 2023-01-11T21:05:10.7166801Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.7166868Z import torch 2023-01-11T21:05:10.7166924Z import random 2023-01-11T21:05:10.7167038Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.7167157Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.7167162Z 2023-01-11T21:05:10.7167523Z aten = torch.ops.aten 2023-01-11T21:05:10.7167847Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.7167952Z async_compile = AsyncCompile() 2023-01-11T21:05:10.7167960Z 2023-01-11T21:05:10.7167965Z 2023-01-11T21:05:10.7168175Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.7168387Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.7168495Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:05:10.7168598Z const float* __restrict__ in_ptr1, 2023-01-11T21:05:10.7168710Z float* __restrict__ out_ptr0) 2023-01-11T21:05:10.7168773Z { 2023-01-11T21:05:10.7168873Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.7168940Z { 2023-01-11T21:05:10.7169016Z #pragma omp for 2023-01-11T21:05:10.7169086Z for(long i0=0; i0<315; i0+=1) 2023-01-11T21:05:10.7169148Z { 2023-01-11T21:05:10.7169296Z auto tmp0 = at::vec::Vectorized::loadu(in_ptr0 + 16*i0); 2023-01-11T21:05:10.7169426Z auto tmp1 = at::vec::Vectorized::loadu(in_ptr1 + 16*i0); 2023-01-11T21:05:10.7169510Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:05:10.7169601Z tmp2.store(out_ptr0 + 16*i0); 2023-01-11T21:05:10.7169663Z } 2023-01-11T21:05:10.7169743Z #pragma omp for simd simdlen(8) 2023-01-11T21:05:10.7169831Z for(long i0=5040; i0<5040; i0+=1) 2023-01-11T21:05:10.7169892Z { 2023-01-11T21:05:10.7169974Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:05:10.7170212Z auto tmp1 = in_ptr1[i0]; 2023-01-11T21:05:10.7170294Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:05:10.7170376Z out_ptr0[i0] = tmp2; 2023-01-11T21:05:10.7170426Z } 2023-01-11T21:05:10.7170486Z } 2023-01-11T21:05:10.7170547Z } 2023-01-11T21:05:10.7170632Z ''') 2023-01-11T21:05:10.7170637Z 2023-01-11T21:05:10.7170642Z 2023-01-11T21:05:10.7170730Z async_compile.wait(globals()) 2023-01-11T21:05:10.7170802Z del async_compile 2023-01-11T21:05:10.7170807Z 2023-01-11T21:05:10.7170878Z def call(args): 2023-01-11T21:05:10.7170939Z arg0_1, arg1_1 = args 2023-01-11T21:05:10.7171012Z args.clear() 2023-01-11T21:05:10.7171374Z buf0 = empty_strided((2, 3, 4, 5, 6, 7), (2520, 840, 210, 42, 7, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.7171540Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(arg1_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:05:10.7171608Z del arg0_1 2023-01-11T21:05:10.7171677Z del arg1_1 2023-01-11T21:05:10.7171748Z return (buf0, ) 2023-01-11T21:05:10.7171753Z 2023-01-11T21:05:10.7171757Z 2023-01-11T21:05:10.7171832Z if __name__ == "__main__": 2023-01-11T21:05:10.7171981Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.7172107Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.7172308Z arg0_1 = rand_strided((5040, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.7172543Z arg1_1 = rand_strided((2, 3, 4, 5, 6, 7), (2520, 840, 210, 42, 7, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.7172656Z print_performance(lambda: call([arg0_1, arg1_1])) 2023-01-11T21:05:10.7172661Z 2023-01-11T21:05:10.7172666Z 2023-01-11T21:05:10.7172757Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.7172825Z import torch 2023-01-11T21:05:10.7172893Z import random 2023-01-11T21:05:10.7172995Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.7173111Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.7173119Z 2023-01-11T21:05:10.7173195Z aten = torch.ops.aten 2023-01-11T21:05:10.7173328Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.7173420Z async_compile = AsyncCompile() 2023-01-11T21:05:10.7173425Z 2023-01-11T21:05:10.7173429Z 2023-01-11T21:05:10.7173559Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.7173763Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.7173879Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:05:10.7173971Z const float* __restrict__ in_ptr1, 2023-01-11T21:05:10.7174069Z float* __restrict__ out_ptr0) 2023-01-11T21:05:10.7174128Z { 2023-01-11T21:05:10.7174225Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.7174284Z { 2023-01-11T21:05:10.7174358Z #pragma omp for 2023-01-11T21:05:10.7174438Z for(long i0=0; i0<315; i0+=1) 2023-01-11T21:05:10.7174490Z { 2023-01-11T21:05:10.7174626Z auto tmp0 = at::vec::Vectorized::loadu(in_ptr0 + 16*i0); 2023-01-11T21:05:10.7174760Z auto tmp3 = at::vec::Vectorized::loadu(in_ptr1 + 16*i0); 2023-01-11T21:05:10.7174892Z auto tmp1 = at::vec::Vectorized(static_cast(1)); 2023-01-11T21:05:10.7174975Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:05:10.7175055Z auto tmp4 = tmp2 + tmp3; 2023-01-11T21:05:10.7175145Z tmp4.store(out_ptr0 + 16*i0); 2023-01-11T21:05:10.7175206Z } 2023-01-11T21:05:10.7175286Z #pragma omp for simd simdlen(8) 2023-01-11T21:05:10.7175368Z for(long i0=5040; i0<5040; i0+=1) 2023-01-11T21:05:10.7175427Z { 2023-01-11T21:05:10.7175510Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:05:10.7175588Z auto tmp3 = in_ptr1[i0]; 2023-01-11T21:05:10.7175685Z auto tmp1 = static_cast(1); 2023-01-11T21:05:10.7175754Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:05:10.7175871Z auto tmp4 = tmp2 + tmp3; 2023-01-11T21:05:10.7175947Z out_ptr0[i0] = tmp4; 2023-01-11T21:05:10.7176008Z } 2023-01-11T21:05:10.7176067Z } 2023-01-11T21:05:10.7176127Z } 2023-01-11T21:05:10.7176206Z ''') 2023-01-11T21:05:10.7176212Z 2023-01-11T21:05:10.7176216Z 2023-01-11T21:05:10.7176304Z async_compile.wait(globals()) 2023-01-11T21:05:10.7176362Z del async_compile 2023-01-11T21:05:10.7176366Z 2023-01-11T21:05:10.7176434Z def call(args): 2023-01-11T21:05:10.7176507Z arg0_1, arg1_1 = args 2023-01-11T21:05:10.7176577Z args.clear() 2023-01-11T21:05:10.7176810Z buf0 = empty_strided((2, 3, 4, 5, 6, 7), (2520, 840, 210, 42, 7, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.7176970Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(arg1_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:05:10.7177036Z del arg0_1 2023-01-11T21:05:10.7177087Z del arg1_1 2023-01-11T21:05:10.7177160Z return (buf0, ) 2023-01-11T21:05:10.7177166Z 2023-01-11T21:05:10.7177170Z 2023-01-11T21:05:10.7177245Z if __name__ == "__main__": 2023-01-11T21:05:10.7177358Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.7177510Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.7177796Z arg0_1 = rand_strided((5040, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.7178089Z arg1_1 = rand_strided((2, 3, 4, 5, 6, 7), (2520, 840, 210, 42, 7, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.7178262Z print_performance(lambda: call([arg0_1, arg1_1])) 2023-01-11T21:05:10.7178271Z 2023-01-11T21:05:10.7178277Z 2023-01-11T21:05:10.7178409Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.7178537Z import torch 2023-01-11T21:05:10.7178611Z import random 2023-01-11T21:05:10.7178727Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.7178849Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.7178857Z 2023-01-11T21:05:10.7178936Z aten = torch.ops.aten 2023-01-11T21:05:10.7179070Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.7179163Z async_compile = AsyncCompile() 2023-01-11T21:05:10.7179169Z 2023-01-11T21:05:10.7179175Z 2023-01-11T21:05:10.7179300Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.7179506Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.7179627Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:05:10.7179730Z const float* __restrict__ in_ptr1, 2023-01-11T21:05:10.7179829Z float* __restrict__ out_ptr0) 2023-01-11T21:05:10.7179890Z { 2023-01-11T21:05:10.7179987Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.7180034Z { 2023-01-11T21:05:10.7180112Z #pragma omp for 2023-01-11T21:05:10.7180195Z for(long i0=0; i0<315; i0+=1) 2023-01-11T21:05:10.7180257Z { 2023-01-11T21:05:10.7180393Z auto tmp0 = at::vec::Vectorized::loadu(in_ptr0 + 16*i0); 2023-01-11T21:05:10.7180522Z auto tmp1 = at::vec::Vectorized::loadu(in_ptr1 + 16*i0); 2023-01-11T21:05:10.7180608Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:05:10.7180698Z tmp2.store(out_ptr0 + 16*i0); 2023-01-11T21:05:10.7180746Z } 2023-01-11T21:05:10.7180840Z #pragma omp for simd simdlen(8) 2023-01-11T21:05:10.7180923Z for(long i0=5040; i0<5040; i0+=1) 2023-01-11T21:05:10.7180982Z { 2023-01-11T21:05:10.7181064Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:05:10.7181143Z auto tmp1 = in_ptr1[i0]; 2023-01-11T21:05:10.7181210Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:05:10.7181288Z out_ptr0[i0] = tmp2; 2023-01-11T21:05:10.7181347Z } 2023-01-11T21:05:10.7181407Z } 2023-01-11T21:05:10.7181465Z } 2023-01-11T21:05:10.7181541Z ''') 2023-01-11T21:05:10.7181546Z 2023-01-11T21:05:10.7181550Z 2023-01-11T21:05:10.7181699Z async_compile.wait(globals()) 2023-01-11T21:05:10.7181757Z del async_compile 2023-01-11T21:05:10.7181774Z 2023-01-11T21:05:10.7181830Z def call(args): 2023-01-11T21:05:10.7181903Z arg0_1, arg1_1 = args 2023-01-11T21:05:10.7181974Z args.clear() 2023-01-11T21:05:10.7182212Z buf0 = empty_strided((2, 3, 4, 5, 6, 7), (2520, 840, 210, 42, 7, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.7182375Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(arg1_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:05:10.7182442Z del arg0_1 2023-01-11T21:05:10.7182507Z del arg1_1 2023-01-11T21:05:10.7182564Z return (buf0, ) 2023-01-11T21:05:10.7182569Z 2023-01-11T21:05:10.7182573Z 2023-01-11T21:05:10.7182648Z if __name__ == "__main__": 2023-01-11T21:05:10.7182763Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.7182887Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.7183102Z arg0_1 = rand_strided((6, 4, 5, 42), (840, 210, 42, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.7183339Z arg1_1 = rand_strided((2, 3, 4, 5, 6, 7), (2520, 840, 210, 42, 7, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.7183487Z print_performance(lambda: call([arg0_1, arg1_1])) 2023-01-11T21:05:10.7183764Z [2023-01-11 21:02:11,019] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 466 2023-01-11T21:05:10.7184166Z inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.7184280Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.7184540Z [2023-01-11 21:02:11,062] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 467 2023-01-11T21:05:10.7184808Z [2023-01-11 21:02:11,081] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 467 2023-01-11T21:05:10.7185205Z inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.7185328Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.7185584Z [2023-01-11 21:02:11,122] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 468 2023-01-11T21:05:10.7185846Z [2023-01-11 21:02:13,781] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 468 2023-01-11T21:05:10.7186245Z inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.7186375Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.7186629Z [2023-01-11 21:02:13,825] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 469 2023-01-11T21:05:10.7186890Z [2023-01-11 21:02:16,472] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 469 2023-01-11T21:05:10.7187276Z inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.7187399Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.7187688Z [2023-01-11 21:02:16,510] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 470 2023-01-11T21:05:10.7187950Z [2023-01-11 21:02:19,160] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 470 2023-01-11T21:05:10.7188346Z inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.7188470Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.7188722Z [2023-01-11 21:02:19,202] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 471 2023-01-11T21:05:10.7188728Z 2023-01-11T21:05:10.7188732Z 2023-01-11T21:05:10.7188827Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.7188899Z import torch 2023-01-11T21:05:10.7188967Z import random 2023-01-11T21:05:10.7189070Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.7189191Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.7189234Z 2023-01-11T21:05:10.7189314Z aten = torch.ops.aten 2023-01-11T21:05:10.7189448Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.7189539Z async_compile = AsyncCompile() 2023-01-11T21:05:10.7189543Z 2023-01-11T21:05:10.7189548Z 2023-01-11T21:05:10.7189681Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.7189883Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.7190001Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:05:10.7190094Z const float* __restrict__ in_ptr1, 2023-01-11T21:05:10.7190192Z float* __restrict__ out_ptr0) 2023-01-11T21:05:10.7190258Z { 2023-01-11T21:05:10.7190357Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.7190422Z { 2023-01-11T21:05:10.7190497Z #pragma omp for 2023-01-11T21:05:10.7190579Z for(long i0=0; i0<315; i0+=1) 2023-01-11T21:05:10.7190627Z { 2023-01-11T21:05:10.7190765Z auto tmp0 = at::vec::Vectorized::loadu(in_ptr0 + 16*i0); 2023-01-11T21:05:10.7190895Z auto tmp3 = at::vec::Vectorized::loadu(in_ptr1 + 16*i0); 2023-01-11T21:05:10.7191025Z auto tmp1 = at::vec::Vectorized(static_cast(1)); 2023-01-11T21:05:10.7191109Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:05:10.7191190Z auto tmp4 = tmp2 + tmp3; 2023-01-11T21:05:10.7191281Z tmp4.store(out_ptr0 + 16*i0); 2023-01-11T21:05:10.7191342Z } 2023-01-11T21:05:10.7191423Z #pragma omp for simd simdlen(8) 2023-01-11T21:05:10.7191507Z for(long i0=5040; i0<5040; i0+=1) 2023-01-11T21:05:10.7191567Z { 2023-01-11T21:05:10.7191651Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:05:10.7191736Z auto tmp3 = in_ptr1[i0]; 2023-01-11T21:05:10.7191835Z auto tmp1 = static_cast(1); 2023-01-11T21:05:10.7191918Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:05:10.7191989Z auto tmp4 = tmp2 + tmp3; 2023-01-11T21:05:10.7192066Z out_ptr0[i0] = tmp4; 2023-01-11T21:05:10.7192129Z } 2023-01-11T21:05:10.7192189Z } 2023-01-11T21:05:10.7192249Z } 2023-01-11T21:05:10.7192330Z ''') 2023-01-11T21:05:10.7192335Z 2023-01-11T21:05:10.7192339Z 2023-01-11T21:05:10.7192428Z async_compile.wait(globals()) 2023-01-11T21:05:10.7192486Z del async_compile 2023-01-11T21:05:10.7192491Z 2023-01-11T21:05:10.7192559Z def call(args): 2023-01-11T21:05:10.7192632Z arg0_1, arg1_1 = args 2023-01-11T21:05:10.7192703Z args.clear() 2023-01-11T21:05:10.7192942Z buf0 = empty_strided((2, 3, 4, 5, 6, 7), (2520, 840, 210, 42, 7, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.7193104Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(arg1_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:05:10.7193226Z del arg0_1 2023-01-11T21:05:10.7193278Z del arg1_1 2023-01-11T21:05:10.7193348Z return (buf0, ) 2023-01-11T21:05:10.7193355Z 2023-01-11T21:05:10.7193359Z 2023-01-11T21:05:10.7193432Z if __name__ == "__main__": 2023-01-11T21:05:10.7193547Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.7193671Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.7193894Z arg0_1 = rand_strided((6, 4, 5, 42), (840, 210, 42, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.7194126Z arg1_1 = rand_strided((2, 3, 4, 5, 6, 7), (2520, 840, 210, 42, 7, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.7194241Z print_performance(lambda: call([arg0_1, arg1_1])) 2023-01-11T21:05:10.7194246Z 2023-01-11T21:05:10.7194250Z 2023-01-11T21:05:10.7194343Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.7194398Z import torch 2023-01-11T21:05:10.7194473Z import random 2023-01-11T21:05:10.7194588Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.7194710Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.7194714Z 2023-01-11T21:05:10.7194825Z aten = torch.ops.aten 2023-01-11T21:05:10.7194961Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.7195049Z async_compile = AsyncCompile() 2023-01-11T21:05:10.7195054Z 2023-01-11T21:05:10.7195058Z 2023-01-11T21:05:10.7195178Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.7195379Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.7195498Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:05:10.7195601Z const float* __restrict__ in_ptr1, 2023-01-11T21:05:10.7195700Z float* __restrict__ out_ptr0) 2023-01-11T21:05:10.7195761Z { 2023-01-11T21:05:10.7195856Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.7195906Z { 2023-01-11T21:05:10.7195981Z #pragma omp for 2023-01-11T21:05:10.7196063Z for(long i0=0; i0<62; i0+=1) 2023-01-11T21:05:10.7196125Z { 2023-01-11T21:05:10.7196262Z auto tmp0 = at::vec::Vectorized::loadu(in_ptr0 + 16*i0); 2023-01-11T21:05:10.7196393Z auto tmp1 = at::vec::Vectorized::loadu(in_ptr1 + 16*i0); 2023-01-11T21:05:10.7196478Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:05:10.7196569Z tmp2.store(out_ptr0 + 16*i0); 2023-01-11T21:05:10.7196618Z } 2023-01-11T21:05:10.7196712Z #pragma omp for simd simdlen(8) 2023-01-11T21:05:10.7196794Z for(long i0=992; i0<1000; i0+=1) 2023-01-11T21:05:10.7196857Z { 2023-01-11T21:05:10.7196940Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:05:10.7197024Z auto tmp1 = in_ptr1[i0]; 2023-01-11T21:05:10.7197106Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:05:10.7197171Z out_ptr0[i0] = tmp2; 2023-01-11T21:05:10.7197234Z } 2023-01-11T21:05:10.7197294Z } 2023-01-11T21:05:10.7197352Z } 2023-01-11T21:05:10.7197431Z ''') 2023-01-11T21:05:10.7197435Z 2023-01-11T21:05:10.7197440Z 2023-01-11T21:05:10.7197529Z async_compile.wait(globals()) 2023-01-11T21:05:10.7197599Z del async_compile 2023-01-11T21:05:10.7197604Z 2023-01-11T21:05:10.7197662Z def call(args): 2023-01-11T21:05:10.7197735Z arg0_1, arg1_1 = args 2023-01-11T21:05:10.7197808Z args.clear() 2023-01-11T21:05:10.7198015Z buf0 = empty_strided((10, 5, 20), (100, 20, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.7198177Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(arg1_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:05:10.7198243Z del arg0_1 2023-01-11T21:05:10.7198307Z del arg1_1 2023-01-11T21:05:10.7198365Z return (buf0, ) 2023-01-11T21:05:10.7198371Z 2023-01-11T21:05:10.7198375Z 2023-01-11T21:05:10.7198450Z if __name__ == "__main__": 2023-01-11T21:05:10.7198563Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.7198720Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.7198920Z arg0_1 = rand_strided((50, 20), (20, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.7199130Z arg1_1 = rand_strided((10, 5, 20), (100, 20, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.7199244Z print_performance(lambda: call([arg0_1, arg1_1])) 2023-01-11T21:05:10.7199249Z 2023-01-11T21:05:10.7199253Z 2023-01-11T21:05:10.7199345Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.7199401Z import torch 2023-01-11T21:05:10.7199469Z import random 2023-01-11T21:05:10.7199581Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.7199699Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.7199703Z 2023-01-11T21:05:10.7199780Z aten = torch.ops.aten 2023-01-11T21:05:10.7199909Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.7199998Z async_compile = AsyncCompile() 2023-01-11T21:05:10.7200006Z 2023-01-11T21:05:10.7200010Z 2023-01-11T21:05:10.7200141Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.7200364Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.7200487Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:05:10.7200589Z const float* __restrict__ in_ptr1, 2023-01-11T21:05:10.7200983Z float* __restrict__ out_ptr0) 2023-01-11T21:05:10.7201045Z { 2023-01-11T21:05:10.7201142Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.7201204Z { 2023-01-11T21:05:10.7201270Z #pragma omp for 2023-01-11T21:05:10.7201353Z for(long i0=0; i0<62; i0+=1) 2023-01-11T21:05:10.7201416Z { 2023-01-11T21:05:10.7201554Z auto tmp0 = at::vec::Vectorized::loadu(in_ptr0 + 16*i0); 2023-01-11T21:05:10.7201685Z auto tmp3 = at::vec::Vectorized::loadu(in_ptr1 + 16*i0); 2023-01-11T21:05:10.7201818Z auto tmp1 = at::vec::Vectorized(static_cast(1)); 2023-01-11T21:05:10.7201905Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:05:10.7201988Z auto tmp4 = tmp2 + tmp3; 2023-01-11T21:05:10.7202069Z tmp4.store(out_ptr0 + 16*i0); 2023-01-11T21:05:10.7202130Z } 2023-01-11T21:05:10.7202224Z #pragma omp for simd simdlen(8) 2023-01-11T21:05:10.7202306Z for(long i0=992; i0<1000; i0+=1) 2023-01-11T21:05:10.7202366Z { 2023-01-11T21:05:10.7202449Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:05:10.7202528Z auto tmp3 = in_ptr1[i0]; 2023-01-11T21:05:10.7202613Z auto tmp1 = static_cast(1); 2023-01-11T21:05:10.7202694Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:05:10.7202775Z auto tmp4 = tmp2 + tmp3; 2023-01-11T21:05:10.7202854Z out_ptr0[i0] = tmp4; 2023-01-11T21:05:10.7202913Z } 2023-01-11T21:05:10.7202972Z } 2023-01-11T21:05:10.7203020Z } 2023-01-11T21:05:10.7203101Z ''') 2023-01-11T21:05:10.7203106Z 2023-01-11T21:05:10.7203110Z 2023-01-11T21:05:10.7203199Z async_compile.wait(globals()) 2023-01-11T21:05:10.7203271Z del async_compile 2023-01-11T21:05:10.7203275Z 2023-01-11T21:05:10.7203346Z def call(args): 2023-01-11T21:05:10.7203420Z arg0_1, arg1_1 = args 2023-01-11T21:05:10.7203490Z args.clear() 2023-01-11T21:05:10.7203700Z buf0 = empty_strided((10, 5, 20), (100, 20, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.7203850Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(arg1_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:05:10.7203915Z del arg0_1 2023-01-11T21:05:10.7203980Z del arg1_1 2023-01-11T21:05:10.7204048Z return (buf0, ) 2023-01-11T21:05:10.7204054Z 2023-01-11T21:05:10.7204057Z 2023-01-11T21:05:10.7204130Z if __name__ == "__main__": 2023-01-11T21:05:10.7204242Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.7204364Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.7204654Z arg0_1 = rand_strided((50, 20), (20, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.7204852Z arg1_1 = rand_strided((10, 5, 20), (100, 20, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.7204968Z print_performance(lambda: call([arg0_1, arg1_1])) 2023-01-11T21:05:10.7204973Z 2023-01-11T21:05:10.7204977Z 2023-01-11T21:05:10.7205069Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.7205139Z import torch 2023-01-11T21:05:10.7205208Z import random 2023-01-11T21:05:10.7205322Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.7205442Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.7205446Z 2023-01-11T21:05:10.7205526Z aten = torch.ops.aten 2023-01-11T21:05:10.7205650Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.7205744Z async_compile = AsyncCompile() 2023-01-11T21:05:10.7205750Z 2023-01-11T21:05:10.7205754Z 2023-01-11T21:05:10.7205895Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.7206099Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.7206264Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:05:10.7206369Z const float* __restrict__ in_ptr1, 2023-01-11T21:05:10.7206467Z float* __restrict__ out_ptr0) 2023-01-11T21:05:10.7206517Z { 2023-01-11T21:05:10.7206615Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.7206675Z { 2023-01-11T21:05:10.7206750Z #pragma omp for 2023-01-11T21:05:10.7206832Z for(long i0=0; i0<10; i0+=1) 2023-01-11T21:05:10.7206893Z { 2023-01-11T21:05:10.7206955Z { 2023-01-11T21:05:10.7207006Z { 2023-01-11T21:05:10.7207100Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:05:10.7207188Z auto tmp1 = in_ptr1[i0]; 2023-01-11T21:05:10.7207275Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:05:10.7207363Z out_ptr0[i0] = tmp2; 2023-01-11T21:05:10.7207427Z } 2023-01-11T21:05:10.7207490Z } 2023-01-11T21:05:10.7207537Z } 2023-01-11T21:05:10.7207596Z } 2023-01-11T21:05:10.7207658Z } 2023-01-11T21:05:10.7207740Z ''') 2023-01-11T21:05:10.7207746Z 2023-01-11T21:05:10.7207750Z 2023-01-11T21:05:10.7207839Z async_compile.wait(globals()) 2023-01-11T21:05:10.7207907Z del async_compile 2023-01-11T21:05:10.7207912Z 2023-01-11T21:05:10.7207979Z def call(args): 2023-01-11T21:05:10.7208039Z arg0_1, arg1_1 = args 2023-01-11T21:05:10.7208108Z args.clear() 2023-01-11T21:05:10.7208305Z buf0 = empty_strided((10, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.7208468Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(arg1_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:05:10.7208537Z del arg0_1 2023-01-11T21:05:10.7208604Z del arg1_1 2023-01-11T21:05:10.7208674Z return (buf0, ) 2023-01-11T21:05:10.7208682Z 2023-01-11T21:05:10.7208686Z 2023-01-11T21:05:10.7208759Z if __name__ == "__main__": 2023-01-11T21:05:10.7208860Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.7208984Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.7209194Z arg0_1 = rand_strided((1, 10, 1), (10, 1, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.7209391Z arg1_1 = rand_strided((10, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.7209507Z print_performance(lambda: call([arg0_1, arg1_1])) 2023-01-11T21:05:10.7209513Z 2023-01-11T21:05:10.7209517Z 2023-01-11T21:05:10.7209608Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.7209675Z import torch 2023-01-11T21:05:10.7209731Z import random 2023-01-11T21:05:10.7209845Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.7209966Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.7209971Z 2023-01-11T21:05:10.7210050Z aten = torch.ops.aten 2023-01-11T21:05:10.7210223Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.7210312Z async_compile = AsyncCompile() 2023-01-11T21:05:10.7210317Z 2023-01-11T21:05:10.7210321Z 2023-01-11T21:05:10.7210458Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.7210663Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.7210779Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:05:10.7210869Z const float* __restrict__ in_ptr1, 2023-01-11T21:05:10.7210968Z float* __restrict__ out_ptr0) 2023-01-11T21:05:10.7211028Z { 2023-01-11T21:05:10.7211123Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.7211188Z { 2023-01-11T21:05:10.7211261Z #pragma omp for 2023-01-11T21:05:10.7211329Z for(long i0=0; i0<10; i0+=1) 2023-01-11T21:05:10.7211392Z { 2023-01-11T21:05:10.7211455Z { 2023-01-11T21:05:10.7211520Z { 2023-01-11T21:05:10.7211613Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:05:10.7211704Z auto tmp3 = in_ptr1[i0]; 2023-01-11T21:05:10.7211840Z auto tmp1 = static_cast(1); 2023-01-11T21:05:10.7211918Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:05:10.7212006Z auto tmp4 = tmp2 + tmp3; 2023-01-11T21:05:10.7212089Z out_ptr0[i0] = tmp4; 2023-01-11T21:05:10.7212150Z } 2023-01-11T21:05:10.7212211Z } 2023-01-11T21:05:10.7212271Z } 2023-01-11T21:05:10.7212330Z } 2023-01-11T21:05:10.7212376Z } 2023-01-11T21:05:10.7212453Z ''') 2023-01-11T21:05:10.7212457Z 2023-01-11T21:05:10.7212461Z 2023-01-11T21:05:10.7212550Z async_compile.wait(globals()) 2023-01-11T21:05:10.7212620Z del async_compile 2023-01-11T21:05:10.7212625Z 2023-01-11T21:05:10.7212694Z def call(args): 2023-01-11T21:05:10.7212767Z arg0_1, arg1_1 = args 2023-01-11T21:05:10.7212839Z args.clear() 2023-01-11T21:05:10.7213019Z buf0 = empty_strided((10, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.7213181Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(arg1_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:05:10.7213250Z del arg0_1 2023-01-11T21:05:10.7213316Z del arg1_1 2023-01-11T21:05:10.7213387Z return (buf0, ) 2023-01-11T21:05:10.7213391Z 2023-01-11T21:05:10.7213395Z 2023-01-11T21:05:10.7213470Z if __name__ == "__main__": 2023-01-11T21:05:10.7213582Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.7213703Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.7213899Z arg0_1 = rand_strided((1, 10, 1), (10, 1, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.7214094Z arg1_1 = rand_strided((10, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.7214209Z print_performance(lambda: call([arg0_1, arg1_1])) 2023-01-11T21:05:10.7214477Z [2023-01-11 21:02:21,805] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 471 2023-01-11T21:05:10.7214880Z inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.7215005Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.7215262Z [2023-01-11 21:02:21,841] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 472 2023-01-11T21:05:10.7215527Z [2023-01-11 21:02:21,856] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 472 2023-01-11T21:05:10.7215926Z inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.7216089Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.7216334Z [2023-01-11 21:02:21,891] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 473 2023-01-11T21:05:10.7216595Z [2023-01-11 21:02:21,923] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 473 2023-01-11T21:05:10.7216997Z inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.7217121Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.7217379Z [2023-01-11 21:02:21,953] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 474 2023-01-11T21:05:10.7217677Z [2023-01-11 21:02:24,594] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 474 2023-01-11T21:05:10.7218074Z inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.7218198Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.7218453Z [2023-01-11 21:02:24,643] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 475 2023-01-11T21:05:10.7218802Z [2023-01-11 21:02:27,339] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 475 2023-01-11T21:05:10.7219207Z inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.7219333Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.7219575Z [2023-01-11 21:02:27,375] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 476 2023-01-11T21:05:10.7219595Z 2023-01-11T21:05:10.7219599Z 2023-01-11T21:05:10.7219679Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.7219751Z import torch 2023-01-11T21:05:10.7219824Z import random 2023-01-11T21:05:10.7219939Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.7220062Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.7220067Z 2023-01-11T21:05:10.7220144Z aten = torch.ops.aten 2023-01-11T21:05:10.7220281Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.7220360Z async_compile = AsyncCompile() 2023-01-11T21:05:10.7220365Z 2023-01-11T21:05:10.7220383Z 2023-01-11T21:05:10.7220504Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.7220708Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.7220829Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:05:10.7220932Z const float* __restrict__ in_ptr1, 2023-01-11T21:05:10.7221031Z float* __restrict__ out_ptr0) 2023-01-11T21:05:10.7221091Z { 2023-01-11T21:05:10.7221188Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.7221236Z { 2023-01-11T21:05:10.7221310Z #pragma omp for 2023-01-11T21:05:10.7221391Z for(long i0=0; i0<62; i0+=1) 2023-01-11T21:05:10.7221452Z { 2023-01-11T21:05:10.7221590Z auto tmp0 = at::vec::Vectorized::loadu(in_ptr0 + 16*i0); 2023-01-11T21:05:10.7221762Z auto tmp1 = at::vec::Vectorized::loadu(in_ptr1 + 16*i0); 2023-01-11T21:05:10.7221844Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:05:10.7221924Z tmp2.store(out_ptr0 + 16*i0); 2023-01-11T21:05:10.7221985Z } 2023-01-11T21:05:10.7222078Z #pragma omp for simd simdlen(8) 2023-01-11T21:05:10.7222160Z for(long i0=992; i0<1000; i0+=1) 2023-01-11T21:05:10.7222222Z { 2023-01-11T21:05:10.7222307Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:05:10.7222385Z auto tmp1 = in_ptr1[i0]; 2023-01-11T21:05:10.7222452Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:05:10.7222530Z out_ptr0[i0] = tmp2; 2023-01-11T21:05:10.7222589Z } 2023-01-11T21:05:10.7222650Z } 2023-01-11T21:05:10.7222710Z } 2023-01-11T21:05:10.7222792Z ''') 2023-01-11T21:05:10.7222797Z 2023-01-11T21:05:10.7222801Z 2023-01-11T21:05:10.7222888Z async_compile.wait(globals()) 2023-01-11T21:05:10.7222949Z del async_compile 2023-01-11T21:05:10.7222954Z 2023-01-11T21:05:10.7223023Z def call(args): 2023-01-11T21:05:10.7223096Z arg0_1, arg1_1 = args 2023-01-11T21:05:10.7223166Z args.clear() 2023-01-11T21:05:10.7223432Z buf0 = empty_strided((10, 100), (100, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.7223596Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(arg1_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:05:10.7223667Z del arg0_1 2023-01-11T21:05:10.7223721Z del arg1_1 2023-01-11T21:05:10.7223793Z return (buf0, ) 2023-01-11T21:05:10.7223797Z 2023-01-11T21:05:10.7223801Z 2023-01-11T21:05:10.7223875Z if __name__ == "__main__": 2023-01-11T21:05:10.7223990Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.7224115Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.7224343Z arg0_1 = rand_strided((10, 1, 10, 1, 10), (100, 100, 10, 10, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.7224545Z arg1_1 = rand_strided((10, 100), (100, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.7224659Z print_performance(lambda: call([arg0_1, arg1_1])) 2023-01-11T21:05:10.7224664Z 2023-01-11T21:05:10.7224668Z 2023-01-11T21:05:10.7224762Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.7224817Z import torch 2023-01-11T21:05:10.7224887Z import random 2023-01-11T21:05:10.7225000Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.7225118Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.7225123Z 2023-01-11T21:05:10.7225202Z aten = torch.ops.aten 2023-01-11T21:05:10.7225336Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.7225425Z async_compile = AsyncCompile() 2023-01-11T21:05:10.7225430Z 2023-01-11T21:05:10.7225434Z 2023-01-11T21:05:10.7225555Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.7225758Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.7225878Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:05:10.7225979Z const float* __restrict__ in_ptr1, 2023-01-11T21:05:10.7226080Z float* __restrict__ out_ptr0) 2023-01-11T21:05:10.7226142Z { 2023-01-11T21:05:10.7226242Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.7226304Z { 2023-01-11T21:05:10.7226366Z #pragma omp for 2023-01-11T21:05:10.7226449Z for(long i0=0; i0<62; i0+=1) 2023-01-11T21:05:10.7226510Z { 2023-01-11T21:05:10.7226644Z auto tmp0 = at::vec::Vectorized::loadu(in_ptr0 + 16*i0); 2023-01-11T21:05:10.7226774Z auto tmp3 = at::vec::Vectorized::loadu(in_ptr1 + 16*i0); 2023-01-11T21:05:10.7226906Z auto tmp1 = at::vec::Vectorized(static_cast(1)); 2023-01-11T21:05:10.7226989Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:05:10.7227057Z auto tmp4 = tmp2 + tmp3; 2023-01-11T21:05:10.7227179Z tmp4.store(out_ptr0 + 16*i0); 2023-01-11T21:05:10.7227240Z } 2023-01-11T21:05:10.7227335Z #pragma omp for simd simdlen(8) 2023-01-11T21:05:10.7227418Z for(long i0=992; i0<1000; i0+=1) 2023-01-11T21:05:10.7227482Z { 2023-01-11T21:05:10.7227564Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:05:10.7227632Z auto tmp3 = in_ptr1[i0]; 2023-01-11T21:05:10.7227729Z auto tmp1 = static_cast(1); 2023-01-11T21:05:10.7227811Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:05:10.7227893Z auto tmp4 = tmp2 + tmp3; 2023-01-11T21:05:10.7227973Z out_ptr0[i0] = tmp4; 2023-01-11T21:05:10.7228034Z } 2023-01-11T21:05:10.7228093Z } 2023-01-11T21:05:10.7228138Z } 2023-01-11T21:05:10.7228222Z ''') 2023-01-11T21:05:10.7228228Z 2023-01-11T21:05:10.7228232Z 2023-01-11T21:05:10.7228319Z async_compile.wait(globals()) 2023-01-11T21:05:10.7228392Z del async_compile 2023-01-11T21:05:10.7228397Z 2023-01-11T21:05:10.7228468Z def call(args): 2023-01-11T21:05:10.7228539Z arg0_1, arg1_1 = args 2023-01-11T21:05:10.7228608Z args.clear() 2023-01-11T21:05:10.7228798Z buf0 = empty_strided((10, 100), (100, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.7228990Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(arg1_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:05:10.7229058Z del arg0_1 2023-01-11T21:05:10.7229122Z del arg1_1 2023-01-11T21:05:10.7229192Z return (buf0, ) 2023-01-11T21:05:10.7229197Z 2023-01-11T21:05:10.7229200Z 2023-01-11T21:05:10.7229274Z if __name__ == "__main__": 2023-01-11T21:05:10.7229390Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.7229513Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.7229729Z arg0_1 = rand_strided((10, 1, 10, 1, 10), (100, 100, 10, 10, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.7229930Z arg1_1 = rand_strided((10, 100), (100, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.7230046Z print_performance(lambda: call([arg0_1, arg1_1])) 2023-01-11T21:05:10.7230051Z 2023-01-11T21:05:10.7230055Z 2023-01-11T21:05:10.7230145Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.7230218Z import torch 2023-01-11T21:05:10.7230291Z import random 2023-01-11T21:05:10.7230406Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.7230525Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.7230530Z 2023-01-11T21:05:10.7230593Z aten = torch.ops.aten 2023-01-11T21:05:10.7230726Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.7230819Z async_compile = AsyncCompile() 2023-01-11T21:05:10.7230824Z 2023-01-11T21:05:10.7230828Z 2023-01-11T21:05:10.7230962Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.7231165Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.7231283Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:05:10.7231392Z const float* __restrict__ in_ptr1, 2023-01-11T21:05:10.7231491Z float* __restrict__ out_ptr0) 2023-01-11T21:05:10.7231537Z { 2023-01-11T21:05:10.7231635Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.7231694Z { 2023-01-11T21:05:10.7231769Z #pragma omp for 2023-01-11T21:05:10.7231848Z for(long i0=0; i0<1; i0+=1) 2023-01-11T21:05:10.7231908Z { 2023-01-11T21:05:10.7232041Z auto tmp0 = at::vec::Vectorized::loadu(in_ptr0 + 16*i0); 2023-01-11T21:05:10.7232157Z auto tmp1 = at::vec::Vectorized::loadu(in_ptr1 + 16*i0); 2023-01-11T21:05:10.7232243Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:05:10.7232332Z tmp2.store(out_ptr0 + 16*i0); 2023-01-11T21:05:10.7232394Z } 2023-01-11T21:05:10.7232489Z #pragma omp for simd simdlen(8) 2023-01-11T21:05:10.7232569Z for(long i0=16; i0<16; i0+=1) 2023-01-11T21:05:10.7232684Z { 2023-01-11T21:05:10.7232753Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:05:10.7232835Z auto tmp1 = in_ptr1[i0]; 2023-01-11T21:05:10.7232917Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:05:10.7232997Z out_ptr0[i0] = tmp2; 2023-01-11T21:05:10.7233058Z } 2023-01-11T21:05:10.7233118Z } 2023-01-11T21:05:10.7233164Z } 2023-01-11T21:05:10.7233245Z ''') 2023-01-11T21:05:10.7233250Z 2023-01-11T21:05:10.7233253Z 2023-01-11T21:05:10.7233341Z async_compile.wait(globals()) 2023-01-11T21:05:10.7233412Z del async_compile 2023-01-11T21:05:10.7233416Z 2023-01-11T21:05:10.7233486Z def call(args): 2023-01-11T21:05:10.7233564Z arg0_1, arg1_1 = args 2023-01-11T21:05:10.7233635Z args.clear() 2023-01-11T21:05:10.7233832Z buf0 = empty_strided((4, 4), (4, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.7233978Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(arg1_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:05:10.7234046Z del arg0_1 2023-01-11T21:05:10.7234119Z del arg1_1 2023-01-11T21:05:10.7234189Z return (buf0, ) 2023-01-11T21:05:10.7234194Z 2023-01-11T21:05:10.7234198Z 2023-01-11T21:05:10.7234272Z if __name__ == "__main__": 2023-01-11T21:05:10.7234428Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.7234553Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.7234767Z arg0_1 = rand_strided((2, 2, 2, 2), (8, 4, 2, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.7234950Z arg1_1 = rand_strided((4, 4), (4, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.7235062Z print_performance(lambda: call([arg0_1, arg1_1])) 2023-01-11T21:05:10.7235068Z 2023-01-11T21:05:10.7235072Z 2023-01-11T21:05:10.7235166Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.7235236Z import torch 2023-01-11T21:05:10.7235304Z import random 2023-01-11T21:05:10.7235416Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.7235536Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.7235544Z 2023-01-11T21:05:10.7235619Z aten = torch.ops.aten 2023-01-11T21:05:10.7235740Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.7235833Z async_compile = AsyncCompile() 2023-01-11T21:05:10.7235838Z 2023-01-11T21:05:10.7235842Z 2023-01-11T21:05:10.7235974Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.7236175Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.7236294Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:05:10.7236397Z const float* __restrict__ in_ptr1, 2023-01-11T21:05:10.7236498Z float* __restrict__ out_ptr0) 2023-01-11T21:05:10.7236557Z { 2023-01-11T21:05:10.7236639Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.7236699Z { 2023-01-11T21:05:10.7236775Z #pragma omp for 2023-01-11T21:05:10.7236856Z for(long i0=0; i0<1; i0+=1) 2023-01-11T21:05:10.7236922Z { 2023-01-11T21:05:10.7237055Z auto tmp0 = at::vec::Vectorized::loadu(in_ptr0 + 16*i0); 2023-01-11T21:05:10.7237187Z auto tmp3 = at::vec::Vectorized::loadu(in_ptr1 + 16*i0); 2023-01-11T21:05:10.7237306Z auto tmp1 = at::vec::Vectorized(static_cast(1)); 2023-01-11T21:05:10.7237390Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:05:10.7237470Z auto tmp4 = tmp2 + tmp3; 2023-01-11T21:05:10.7237559Z tmp4.store(out_ptr0 + 16*i0); 2023-01-11T21:05:10.7237619Z } 2023-01-11T21:05:10.7237712Z #pragma omp for simd simdlen(8) 2023-01-11T21:05:10.7237792Z for(long i0=16; i0<16; i0+=1) 2023-01-11T21:05:10.7237840Z { 2023-01-11T21:05:10.7237920Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:05:10.7237999Z auto tmp3 = in_ptr1[i0]; 2023-01-11T21:05:10.7238096Z auto tmp1 = static_cast(1); 2023-01-11T21:05:10.7238179Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:05:10.7238298Z auto tmp4 = tmp2 + tmp3; 2023-01-11T21:05:10.7238379Z out_ptr0[i0] = tmp4; 2023-01-11T21:05:10.7238427Z } 2023-01-11T21:05:10.7238487Z } 2023-01-11T21:05:10.7238547Z } 2023-01-11T21:05:10.7238625Z ''') 2023-01-11T21:05:10.7238631Z 2023-01-11T21:05:10.7238635Z 2023-01-11T21:05:10.7238722Z async_compile.wait(globals()) 2023-01-11T21:05:10.7238797Z del async_compile 2023-01-11T21:05:10.7238802Z 2023-01-11T21:05:10.7238872Z def call(args): 2023-01-11T21:05:10.7238932Z arg0_1, arg1_1 = args 2023-01-11T21:05:10.7239003Z args.clear() 2023-01-11T21:05:10.7239200Z buf0 = empty_strided((4, 4), (4, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.7239362Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(arg1_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:05:10.7239429Z del arg0_1 2023-01-11T21:05:10.7239492Z del arg1_1 2023-01-11T21:05:10.7239561Z return (buf0, ) 2023-01-11T21:05:10.7239569Z 2023-01-11T21:05:10.7239573Z 2023-01-11T21:05:10.7239636Z if __name__ == "__main__": 2023-01-11T21:05:10.7239747Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.7239908Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.7240121Z arg0_1 = rand_strided((2, 2, 2, 2), (8, 4, 2, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.7240316Z arg1_1 = rand_strided((4, 4), (4, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.7240430Z print_performance(lambda: call([arg0_1, arg1_1])) 2023-01-11T21:05:10.7240435Z 2023-01-11T21:05:10.7240439Z 2023-01-11T21:05:10.7240532Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.7240722Z import torch 2023-01-11T21:05:10.7240780Z import random 2023-01-11T21:05:10.7240895Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.7241016Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.7241020Z 2023-01-11T21:05:10.7241097Z aten = torch.ops.aten 2023-01-11T21:05:10.7241232Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.7241322Z async_compile = AsyncCompile() 2023-01-11T21:05:10.7241328Z 2023-01-11T21:05:10.7241332Z 2023-01-11T21:05:10.7241469Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.7241675Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.7241780Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:05:10.7241885Z const float* __restrict__ in_ptr1, 2023-01-11T21:05:10.7241983Z float* __restrict__ out_ptr0) 2023-01-11T21:05:10.7242044Z { 2023-01-11T21:05:10.7242143Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.7242205Z { 2023-01-11T21:05:10.7242283Z #pragma omp for 2023-01-11T21:05:10.7242353Z for(long i0=0; i0<2; i0+=1) 2023-01-11T21:05:10.7242416Z { 2023-01-11T21:05:10.7242548Z auto tmp0 = at::vec::Vectorized::loadu(in_ptr0 + 16*i0); 2023-01-11T21:05:10.7242681Z auto tmp1 = at::vec::Vectorized::loadu(in_ptr1 + 16*i0); 2023-01-11T21:05:10.7242765Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:05:10.7242856Z tmp2.store(out_ptr0 + 16*i0); 2023-01-11T21:05:10.7242917Z } 2023-01-11T21:05:10.7243011Z #pragma omp for simd simdlen(8) 2023-01-11T21:05:10.7243080Z for(long i0=32; i0<35; i0+=1) 2023-01-11T21:05:10.7243140Z { 2023-01-11T21:05:10.7243223Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:05:10.7243302Z auto tmp1 = in_ptr1[i0]; 2023-01-11T21:05:10.7243382Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:05:10.7243459Z out_ptr0[i0] = tmp2; 2023-01-11T21:05:10.7243507Z } 2023-01-11T21:05:10.7243565Z } 2023-01-11T21:05:10.7243623Z } 2023-01-11T21:05:10.7243705Z ''') 2023-01-11T21:05:10.7243711Z 2023-01-11T21:05:10.7243715Z 2023-01-11T21:05:10.7243804Z async_compile.wait(globals()) 2023-01-11T21:05:10.7243945Z del async_compile 2023-01-11T21:05:10.7243950Z 2023-01-11T21:05:10.7244020Z def call(args): 2023-01-11T21:05:10.7244096Z arg0_1, arg1_1 = args 2023-01-11T21:05:10.7244153Z args.clear() 2023-01-11T21:05:10.7244351Z buf0 = empty_strided((35, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.7244510Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(arg1_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:05:10.7244578Z del arg0_1 2023-01-11T21:05:10.7244643Z del arg1_1 2023-01-11T21:05:10.7244714Z return (buf0, ) 2023-01-11T21:05:10.7244720Z 2023-01-11T21:05:10.7244724Z 2023-01-11T21:05:10.7244800Z if __name__ == "__main__": 2023-01-11T21:05:10.7244903Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.7245024Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.7245222Z arg0_1 = rand_strided((5, 7), (7, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.7245412Z arg1_1 = rand_strided((35, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.7245529Z print_performance(lambda: call([arg0_1, arg1_1])) 2023-01-11T21:05:10.7245840Z [2023-01-11 21:02:27,387] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 476 2023-01-11T21:05:10.7246246Z inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.7246373Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.7246635Z [2023-01-11 21:02:27,419] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 477 2023-01-11T21:05:10.7246885Z [2023-01-11 21:02:27,440] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 477 2023-01-11T21:05:10.7247286Z inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.7247412Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.7247669Z [2023-01-11 21:02:27,466] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 478 2023-01-11T21:05:10.7247929Z [2023-01-11 21:02:27,477] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 478 2023-01-11T21:05:10.7248325Z inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.7248454Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.7248711Z [2023-01-11 21:02:27,516] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 479 2023-01-11T21:05:10.7248978Z [2023-01-11 21:02:27,557] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 479 2023-01-11T21:05:10.7249375Z inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.7249503Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.7249754Z [2023-01-11 21:02:27,592] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 480 2023-01-11T21:05:10.7250036Z [2023-01-11 21:02:27,608] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 480 2023-01-11T21:05:10.7250432Z inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.7250554Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.7250803Z [2023-01-11 21:02:27,648] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 481 2023-01-11T21:05:10.7250809Z 2023-01-11T21:05:10.7250814Z 2023-01-11T21:05:10.7250906Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.7250975Z import torch 2023-01-11T21:05:10.7251043Z import random 2023-01-11T21:05:10.7251158Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.7251279Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.7251284Z 2023-01-11T21:05:10.7251348Z aten = torch.ops.aten 2023-01-11T21:05:10.7251510Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.7251602Z async_compile = AsyncCompile() 2023-01-11T21:05:10.7251607Z 2023-01-11T21:05:10.7251611Z 2023-01-11T21:05:10.7251745Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.7251946Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.7252063Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:05:10.7252164Z const float* __restrict__ in_ptr1, 2023-01-11T21:05:10.7252263Z float* __restrict__ out_ptr0) 2023-01-11T21:05:10.7252310Z { 2023-01-11T21:05:10.7252406Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.7252465Z { 2023-01-11T21:05:10.7252540Z #pragma omp for 2023-01-11T21:05:10.7252623Z for(long i0=0; i0<2; i0+=1) 2023-01-11T21:05:10.7252684Z { 2023-01-11T21:05:10.7252817Z auto tmp0 = at::vec::Vectorized::loadu(in_ptr0 + 16*i0); 2023-01-11T21:05:10.7252938Z auto tmp3 = at::vec::Vectorized::loadu(in_ptr1 + 16*i0); 2023-01-11T21:05:10.7253067Z auto tmp1 = at::vec::Vectorized(static_cast(1)); 2023-01-11T21:05:10.7253151Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:05:10.7253231Z auto tmp4 = tmp2 + tmp3; 2023-01-11T21:05:10.7253320Z tmp4.store(out_ptr0 + 16*i0); 2023-01-11T21:05:10.7253381Z } 2023-01-11T21:05:10.7253473Z #pragma omp for simd simdlen(8) 2023-01-11T21:05:10.7253542Z for(long i0=32; i0<35; i0+=1) 2023-01-11T21:05:10.7253603Z { 2023-01-11T21:05:10.7253685Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:05:10.7253765Z auto tmp3 = in_ptr1[i0]; 2023-01-11T21:05:10.7253864Z auto tmp1 = static_cast(1); 2023-01-11T21:05:10.7253949Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:05:10.7254028Z auto tmp4 = tmp2 + tmp3; 2023-01-11T21:05:10.7254093Z out_ptr0[i0] = tmp4; 2023-01-11T21:05:10.7254152Z } 2023-01-11T21:05:10.7254214Z } 2023-01-11T21:05:10.7254271Z } 2023-01-11T21:05:10.7254351Z ''') 2023-01-11T21:05:10.7254355Z 2023-01-11T21:05:10.7254360Z 2023-01-11T21:05:10.7254447Z async_compile.wait(globals()) 2023-01-11T21:05:10.7254519Z del async_compile 2023-01-11T21:05:10.7254523Z 2023-01-11T21:05:10.7254590Z def call(args): 2023-01-11T21:05:10.7254651Z arg0_1, arg1_1 = args 2023-01-11T21:05:10.7254719Z args.clear() 2023-01-11T21:05:10.7254914Z buf0 = empty_strided((35, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.7255074Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(arg1_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:05:10.7255142Z del arg0_1 2023-01-11T21:05:10.7255205Z del arg1_1 2023-01-11T21:05:10.7255298Z return (buf0, ) 2023-01-11T21:05:10.7255315Z 2023-01-11T21:05:10.7255319Z 2023-01-11T21:05:10.7255379Z if __name__ == "__main__": 2023-01-11T21:05:10.7255492Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.7255614Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.7255809Z arg0_1 = rand_strided((5, 7), (7, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.7256000Z arg1_1 = rand_strided((35, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.7256112Z print_performance(lambda: call([arg0_1, arg1_1])) 2023-01-11T21:05:10.7256116Z 2023-01-11T21:05:10.7256120Z 2023-01-11T21:05:10.7256212Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.7256280Z import torch 2023-01-11T21:05:10.7256335Z import random 2023-01-11T21:05:10.7256447Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.7256565Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.7256570Z 2023-01-11T21:05:10.7256649Z aten = torch.ops.aten 2023-01-11T21:05:10.7256783Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.7256873Z async_compile = AsyncCompile() 2023-01-11T21:05:10.7256878Z 2023-01-11T21:05:10.7256911Z 2023-01-11T21:05:10.7257044Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.7257249Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.7257355Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:05:10.7257457Z const float* __restrict__ in_ptr1, 2023-01-11T21:05:10.7257556Z float* __restrict__ out_ptr0) 2023-01-11T21:05:10.7257616Z { 2023-01-11T21:05:10.7257714Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.7257773Z { 2023-01-11T21:05:10.7257848Z #pragma omp for 2023-01-11T21:05:10.7257917Z for(long i0=0; i0<315; i0+=1) 2023-01-11T21:05:10.7257978Z { 2023-01-11T21:05:10.7258112Z auto tmp0 = at::vec::Vectorized::loadu(in_ptr0 + 16*i0); 2023-01-11T21:05:10.7258243Z auto tmp1 = at::vec::Vectorized::loadu(in_ptr1 + 16*i0); 2023-01-11T21:05:10.7258328Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:05:10.7258420Z tmp2.store(out_ptr0 + 16*i0); 2023-01-11T21:05:10.7258573Z } 2023-01-11T21:05:10.7258658Z #pragma omp for simd simdlen(8) 2023-01-11T21:05:10.7258742Z for(long i0=5040; i0<5040; i0+=1) 2023-01-11T21:05:10.7258805Z { 2023-01-11T21:05:10.7258889Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:05:10.7258970Z auto tmp1 = in_ptr1[i0]; 2023-01-11T21:05:10.7259050Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:05:10.7259129Z out_ptr0[i0] = tmp2; 2023-01-11T21:05:10.7259176Z } 2023-01-11T21:05:10.7259237Z } 2023-01-11T21:05:10.7259297Z } 2023-01-11T21:05:10.7259382Z ''') 2023-01-11T21:05:10.7259387Z 2023-01-11T21:05:10.7259392Z 2023-01-11T21:05:10.7259485Z async_compile.wait(globals()) 2023-01-11T21:05:10.7259555Z del async_compile 2023-01-11T21:05:10.7259559Z 2023-01-11T21:05:10.7259629Z def call(args): 2023-01-11T21:05:10.7259690Z arg0_1, arg1_1 = args 2023-01-11T21:05:10.7259764Z args.clear() 2023-01-11T21:05:10.7259964Z buf0 = empty_strided((5040, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.7260127Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(arg1_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:05:10.7260196Z del arg0_1 2023-01-11T21:05:10.7260263Z del arg1_1 2023-01-11T21:05:10.7260333Z return (buf0, ) 2023-01-11T21:05:10.7260338Z 2023-01-11T21:05:10.7260343Z 2023-01-11T21:05:10.7260417Z if __name__ == "__main__": 2023-01-11T21:05:10.7260522Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.7260645Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.7260879Z arg0_1 = rand_strided((2, 3, 4, 5, 6, 7), (2520, 840, 210, 42, 7, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.7261114Z arg1_1 = rand_strided((5040, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.7261228Z print_performance(lambda: call([arg0_1, arg1_1])) 2023-01-11T21:05:10.7261233Z 2023-01-11T21:05:10.7261239Z 2023-01-11T21:05:10.7261331Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.7261401Z import torch 2023-01-11T21:05:10.7261470Z import random 2023-01-11T21:05:10.7261569Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.7261689Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.7261694Z 2023-01-11T21:05:10.7261769Z aten = torch.ops.aten 2023-01-11T21:05:10.7261899Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.7261990Z async_compile = AsyncCompile() 2023-01-11T21:05:10.7261995Z 2023-01-11T21:05:10.7261999Z 2023-01-11T21:05:10.7262132Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.7262338Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.7262456Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:05:10.7262547Z const float* __restrict__ in_ptr1, 2023-01-11T21:05:10.7262670Z float* __restrict__ out_ptr0) 2023-01-11T21:05:10.7262733Z { 2023-01-11T21:05:10.7262829Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.7262888Z { 2023-01-11T21:05:10.7262962Z #pragma omp for 2023-01-11T21:05:10.7263044Z for(long i0=0; i0<315; i0+=1) 2023-01-11T21:05:10.7263092Z { 2023-01-11T21:05:10.7263223Z auto tmp0 = at::vec::Vectorized::loadu(in_ptr0 + 16*i0); 2023-01-11T21:05:10.7263352Z auto tmp3 = at::vec::Vectorized::loadu(in_ptr1 + 16*i0); 2023-01-11T21:05:10.7263481Z auto tmp1 = at::vec::Vectorized(static_cast(1)); 2023-01-11T21:05:10.7263565Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:05:10.7263643Z auto tmp4 = tmp2 + tmp3; 2023-01-11T21:05:10.7263734Z tmp4.store(out_ptr0 + 16*i0); 2023-01-11T21:05:10.7263784Z } 2023-01-11T21:05:10.7263876Z #pragma omp for simd simdlen(8) 2023-01-11T21:05:10.7263962Z for(long i0=5040; i0<5040; i0+=1) 2023-01-11T21:05:10.7264023Z { 2023-01-11T21:05:10.7264107Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:05:10.7264186Z auto tmp3 = in_ptr1[i0]; 2023-01-11T21:05:10.7264283Z auto tmp1 = static_cast(1); 2023-01-11T21:05:10.7264352Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:05:10.7264432Z auto tmp4 = tmp2 + tmp3; 2023-01-11T21:05:10.7264511Z out_ptr0[i0] = tmp4; 2023-01-11T21:05:10.7264571Z } 2023-01-11T21:05:10.7264630Z } 2023-01-11T21:05:10.7264688Z } 2023-01-11T21:05:10.7264771Z ''') 2023-01-11T21:05:10.7264777Z 2023-01-11T21:05:10.7264781Z 2023-01-11T21:05:10.7264856Z async_compile.wait(globals()) 2023-01-11T21:05:10.7264926Z del async_compile 2023-01-11T21:05:10.7264933Z 2023-01-11T21:05:10.7265003Z def call(args): 2023-01-11T21:05:10.7265074Z arg0_1, arg1_1 = args 2023-01-11T21:05:10.7265145Z args.clear() 2023-01-11T21:05:10.7265345Z buf0 = empty_strided((5040, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.7265505Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(arg1_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:05:10.7265559Z del arg0_1 2023-01-11T21:05:10.7265622Z del arg1_1 2023-01-11T21:05:10.7265691Z return (buf0, ) 2023-01-11T21:05:10.7265696Z 2023-01-11T21:05:10.7265700Z 2023-01-11T21:05:10.7265775Z if __name__ == "__main__": 2023-01-11T21:05:10.7265887Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.7266007Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.7266242Z arg0_1 = rand_strided((2, 3, 4, 5, 6, 7), (2520, 840, 210, 42, 7, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.7266437Z arg1_1 = rand_strided((5040, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.7266569Z print_performance(lambda: call([arg0_1, arg1_1])) 2023-01-11T21:05:10.7266588Z 2023-01-11T21:05:10.7266591Z 2023-01-11T21:05:10.7266672Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.7266741Z import torch 2023-01-11T21:05:10.7266808Z import random 2023-01-11T21:05:10.7266920Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.7267037Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.7267042Z 2023-01-11T21:05:10.7267118Z aten = torch.ops.aten 2023-01-11T21:05:10.7267251Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.7267328Z async_compile = AsyncCompile() 2023-01-11T21:05:10.7267333Z 2023-01-11T21:05:10.7267350Z 2023-01-11T21:05:10.7267468Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.7267669Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.7267785Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:05:10.7267889Z const float* __restrict__ in_ptr1, 2023-01-11T21:05:10.7267986Z float* __restrict__ out_ptr0) 2023-01-11T21:05:10.7268046Z { 2023-01-11T21:05:10.7268172Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.7268221Z { 2023-01-11T21:05:10.7268297Z #pragma omp for 2023-01-11T21:05:10.7268378Z for(long i0=0; i0<315; i0+=1) 2023-01-11T21:05:10.7268438Z { 2023-01-11T21:05:10.7268570Z auto tmp0 = at::vec::Vectorized::loadu(in_ptr0 + 16*i0); 2023-01-11T21:05:10.7268701Z auto tmp1 = at::vec::Vectorized::loadu(in_ptr1 + 16*i0); 2023-01-11T21:05:10.7268785Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:05:10.7268864Z tmp2.store(out_ptr0 + 16*i0); 2023-01-11T21:05:10.7268924Z } 2023-01-11T21:05:10.7269017Z #pragma omp for simd simdlen(8) 2023-01-11T21:05:10.7269100Z for(long i0=5040; i0<5040; i0+=1) 2023-01-11T21:05:10.7269164Z { 2023-01-11T21:05:10.7269246Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:05:10.7269325Z auto tmp1 = in_ptr1[i0]; 2023-01-11T21:05:10.7269394Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:05:10.7269472Z out_ptr0[i0] = tmp2; 2023-01-11T21:05:10.7269532Z } 2023-01-11T21:05:10.7269591Z } 2023-01-11T21:05:10.7269649Z } 2023-01-11T21:05:10.7269727Z ''') 2023-01-11T21:05:10.7269732Z 2023-01-11T21:05:10.7269736Z 2023-01-11T21:05:10.7269824Z async_compile.wait(globals()) 2023-01-11T21:05:10.7269882Z del async_compile 2023-01-11T21:05:10.7269887Z 2023-01-11T21:05:10.7269954Z def call(args): 2023-01-11T21:05:10.7270026Z arg0_1, arg1_1 = args 2023-01-11T21:05:10.7270096Z args.clear() 2023-01-11T21:05:10.7270312Z buf0 = empty_strided((6, 4, 5, 42), (840, 210, 42, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.7270471Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(arg1_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:05:10.7270539Z del arg0_1 2023-01-11T21:05:10.7270591Z del arg1_1 2023-01-11T21:05:10.7270660Z return (buf0, ) 2023-01-11T21:05:10.7270665Z 2023-01-11T21:05:10.7270669Z 2023-01-11T21:05:10.7270744Z if __name__ == "__main__": 2023-01-11T21:05:10.7270856Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.7270980Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.7271213Z arg0_1 = rand_strided((2, 3, 4, 5, 6, 7), (2520, 840, 210, 42, 7, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.7271426Z arg1_1 = rand_strided((6, 4, 5, 42), (840, 210, 42, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.7271538Z print_performance(lambda: call([arg0_1, arg1_1])) 2023-01-11T21:05:10.7271543Z 2023-01-11T21:05:10.7271547Z 2023-01-11T21:05:10.7271641Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.7271695Z import torch 2023-01-11T21:05:10.7271763Z import random 2023-01-11T21:05:10.7271929Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.7272047Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.7272051Z 2023-01-11T21:05:10.7272128Z aten = torch.ops.aten 2023-01-11T21:05:10.7272262Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.7272354Z async_compile = AsyncCompile() 2023-01-11T21:05:10.7272359Z 2023-01-11T21:05:10.7272363Z 2023-01-11T21:05:10.7272494Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.7272683Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.7272800Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:05:10.7272903Z const float* __restrict__ in_ptr1, 2023-01-11T21:05:10.7273006Z float* __restrict__ out_ptr0) 2023-01-11T21:05:10.7273065Z { 2023-01-11T21:05:10.7273160Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.7273223Z { 2023-01-11T21:05:10.7273287Z #pragma omp for 2023-01-11T21:05:10.7273370Z for(long i0=0; i0<315; i0+=1) 2023-01-11T21:05:10.7273432Z { 2023-01-11T21:05:10.7273600Z auto tmp0 = at::vec::Vectorized::loadu(in_ptr0 + 16*i0); 2023-01-11T21:05:10.7273733Z auto tmp3 = at::vec::Vectorized::loadu(in_ptr1 + 16*i0); 2023-01-11T21:05:10.7273863Z auto tmp1 = at::vec::Vectorized(static_cast(1)); 2023-01-11T21:05:10.7273947Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:05:10.7274013Z auto tmp4 = tmp2 + tmp3; 2023-01-11T21:05:10.7274104Z tmp4.store(out_ptr0 + 16*i0); 2023-01-11T21:05:10.7274165Z } 2023-01-11T21:05:10.7274260Z #pragma omp for simd simdlen(8) 2023-01-11T21:05:10.7274342Z for(long i0=5040; i0<5040; i0+=1) 2023-01-11T21:05:10.7274404Z { 2023-01-11T21:05:10.7274487Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:05:10.7274556Z auto tmp3 = in_ptr1[i0]; 2023-01-11T21:05:10.7274657Z auto tmp1 = static_cast(1); 2023-01-11T21:05:10.7274739Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:05:10.7274818Z auto tmp4 = tmp2 + tmp3; 2023-01-11T21:05:10.7274898Z out_ptr0[i0] = tmp4; 2023-01-11T21:05:10.7274959Z } 2023-01-11T21:05:10.7275017Z } 2023-01-11T21:05:10.7275063Z } 2023-01-11T21:05:10.7275144Z ''') 2023-01-11T21:05:10.7275149Z 2023-01-11T21:05:10.7275153Z 2023-01-11T21:05:10.7275240Z async_compile.wait(globals()) 2023-01-11T21:05:10.7275310Z del async_compile 2023-01-11T21:05:10.7275315Z 2023-01-11T21:05:10.7275385Z def call(args): 2023-01-11T21:05:10.7275459Z arg0_1, arg1_1 = args 2023-01-11T21:05:10.7275527Z args.clear() 2023-01-11T21:05:10.7275731Z buf0 = empty_strided((6, 4, 5, 42), (840, 210, 42, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.7275889Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(arg1_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:05:10.7275957Z del arg0_1 2023-01-11T21:05:10.7276023Z del arg1_1 2023-01-11T21:05:10.7276091Z return (buf0, ) 2023-01-11T21:05:10.7276096Z 2023-01-11T21:05:10.7276100Z 2023-01-11T21:05:10.7276175Z if __name__ == "__main__": 2023-01-11T21:05:10.7276290Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.7276410Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.7276631Z arg0_1 = rand_strided((2, 3, 4, 5, 6, 7), (2520, 840, 210, 42, 7, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.7276845Z arg1_1 = rand_strided((6, 4, 5, 42), (840, 210, 42, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.7276959Z print_performance(lambda: call([arg0_1, arg1_1])) 2023-01-11T21:05:10.7277227Z [2023-01-11 21:02:27,711] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 481 2023-01-11T21:05:10.7277627Z inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.7277794Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.7278055Z [2023-01-11 21:02:27,746] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 482 2023-01-11T21:05:10.7278320Z [2023-01-11 21:02:27,758] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 482 2023-01-11T21:05:10.7278719Z inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.7278843Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.7279105Z [2023-01-11 21:02:27,791] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 483 2023-01-11T21:05:10.7279386Z [2023-01-11 21:02:27,819] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 483 2023-01-11T21:05:10.7279787Z inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.7279911Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.7280168Z [2023-01-11 21:02:27,851] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 484 2023-01-11T21:05:10.7280427Z [2023-01-11 21:02:27,862] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 484 2023-01-11T21:05:10.7280935Z inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.7281062Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.7281318Z [2023-01-11 21:02:27,893] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 485 2023-01-11T21:05:10.7281581Z [2023-01-11 21:02:27,905] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 485 2023-01-11T21:05:10.7281979Z inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.7282106Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.7282350Z [2023-01-11 21:02:27,933] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 486 2023-01-11T21:05:10.7282372Z 2023-01-11T21:05:10.7282376Z 2023-01-11T21:05:10.7282457Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.7282527Z import torch 2023-01-11T21:05:10.7282598Z import random 2023-01-11T21:05:10.7282713Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.7282835Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.7282840Z 2023-01-11T21:05:10.7282916Z aten = torch.ops.aten 2023-01-11T21:05:10.7283049Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.7283127Z async_compile = AsyncCompile() 2023-01-11T21:05:10.7283144Z 2023-01-11T21:05:10.7283148Z 2023-01-11T21:05:10.7283270Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.7283532Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.7283651Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:05:10.7283754Z const float* __restrict__ in_ptr1, 2023-01-11T21:05:10.7283857Z float* __restrict__ out_ptr0) 2023-01-11T21:05:10.7283918Z { 2023-01-11T21:05:10.7284017Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.7284064Z { 2023-01-11T21:05:10.7284141Z #pragma omp for 2023-01-11T21:05:10.7284224Z for(long i0=0; i0<62; i0+=1) 2023-01-11T21:05:10.7284288Z { 2023-01-11T21:05:10.7284428Z auto tmp0 = at::vec::Vectorized::loadu(in_ptr0 + 16*i0); 2023-01-11T21:05:10.7284562Z auto tmp1 = at::vec::Vectorized::loadu(in_ptr1 + 16*i0); 2023-01-11T21:05:10.7284647Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:05:10.7284723Z tmp2.store(out_ptr0 + 16*i0); 2023-01-11T21:05:10.7284789Z } 2023-01-11T21:05:10.7284885Z #pragma omp for simd simdlen(8) 2023-01-11T21:05:10.7284969Z for(long i0=992; i0<1000; i0+=1) 2023-01-11T21:05:10.7285031Z { 2023-01-11T21:05:10.7285149Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:05:10.7285234Z auto tmp1 = in_ptr1[i0]; 2023-01-11T21:05:10.7285302Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:05:10.7285385Z out_ptr0[i0] = tmp2; 2023-01-11T21:05:10.7285447Z } 2023-01-11T21:05:10.7285508Z } 2023-01-11T21:05:10.7285566Z } 2023-01-11T21:05:10.7285649Z ''') 2023-01-11T21:05:10.7285655Z 2023-01-11T21:05:10.7285658Z 2023-01-11T21:05:10.7285745Z async_compile.wait(globals()) 2023-01-11T21:05:10.7285802Z del async_compile 2023-01-11T21:05:10.7285807Z 2023-01-11T21:05:10.7285875Z def call(args): 2023-01-11T21:05:10.7285949Z arg0_1, arg1_1 = args 2023-01-11T21:05:10.7286018Z args.clear() 2023-01-11T21:05:10.7286216Z buf0 = empty_strided((50, 20), (20, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.7286379Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(arg1_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:05:10.7286445Z del arg0_1 2023-01-11T21:05:10.7286498Z del arg1_1 2023-01-11T21:05:10.7286568Z return (buf0, ) 2023-01-11T21:05:10.7286573Z 2023-01-11T21:05:10.7286577Z 2023-01-11T21:05:10.7286651Z if __name__ == "__main__": 2023-01-11T21:05:10.7286764Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.7286885Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.7287092Z arg0_1 = rand_strided((10, 5, 20), (100, 20, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.7287288Z arg1_1 = rand_strided((50, 20), (20, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.7287403Z print_performance(lambda: call([arg0_1, arg1_1])) 2023-01-11T21:05:10.7287408Z 2023-01-11T21:05:10.7287412Z 2023-01-11T21:05:10.7287503Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.7287561Z import torch 2023-01-11T21:05:10.7287628Z import random 2023-01-11T21:05:10.7287739Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.7287859Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.7287864Z 2023-01-11T21:05:10.7287941Z aten = torch.ops.aten 2023-01-11T21:05:10.7288072Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.7288161Z async_compile = AsyncCompile() 2023-01-11T21:05:10.7288166Z 2023-01-11T21:05:10.7288170Z 2023-01-11T21:05:10.7288301Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.7288490Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.7288606Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:05:10.7288707Z const float* __restrict__ in_ptr1, 2023-01-11T21:05:10.7288804Z float* __restrict__ out_ptr0) 2023-01-11T21:05:10.7288894Z { 2023-01-11T21:05:10.7288989Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.7289050Z { 2023-01-11T21:05:10.7289112Z #pragma omp for 2023-01-11T21:05:10.7289193Z for(long i0=0; i0<62; i0+=1) 2023-01-11T21:05:10.7289256Z { 2023-01-11T21:05:10.7289390Z auto tmp0 = at::vec::Vectorized::loadu(in_ptr0 + 16*i0); 2023-01-11T21:05:10.7289519Z auto tmp3 = at::vec::Vectorized::loadu(in_ptr1 + 16*i0); 2023-01-11T21:05:10.7289651Z auto tmp1 = at::vec::Vectorized(static_cast(1)); 2023-01-11T21:05:10.7289735Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:05:10.7289805Z auto tmp4 = tmp2 + tmp3; 2023-01-11T21:05:10.7289895Z tmp4.store(out_ptr0 + 16*i0); 2023-01-11T21:05:10.7289957Z } 2023-01-11T21:05:10.7290052Z #pragma omp for simd simdlen(8) 2023-01-11T21:05:10.7290134Z for(long i0=992; i0<1000; i0+=1) 2023-01-11T21:05:10.7290197Z { 2023-01-11T21:05:10.7290281Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:05:10.7290349Z auto tmp3 = in_ptr1[i0]; 2023-01-11T21:05:10.7290451Z auto tmp1 = static_cast(1); 2023-01-11T21:05:10.7290559Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:05:10.7290641Z auto tmp4 = tmp2 + tmp3; 2023-01-11T21:05:10.7290718Z out_ptr0[i0] = tmp4; 2023-01-11T21:05:10.7290779Z } 2023-01-11T21:05:10.7290840Z } 2023-01-11T21:05:10.7290885Z } 2023-01-11T21:05:10.7290967Z ''') 2023-01-11T21:05:10.7290971Z 2023-01-11T21:05:10.7290976Z 2023-01-11T21:05:10.7291065Z async_compile.wait(globals()) 2023-01-11T21:05:10.7291136Z del async_compile 2023-01-11T21:05:10.7291141Z 2023-01-11T21:05:10.7291209Z def call(args): 2023-01-11T21:05:10.7291284Z arg0_1, arg1_1 = args 2023-01-11T21:05:10.7291355Z args.clear() 2023-01-11T21:05:10.7291541Z buf0 = empty_strided((50, 20), (20, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.7291703Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(arg1_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:05:10.7291773Z del arg0_1 2023-01-11T21:05:10.7291840Z del arg1_1 2023-01-11T21:05:10.7291909Z return (buf0, ) 2023-01-11T21:05:10.7291916Z 2023-01-11T21:05:10.7291920Z 2023-01-11T21:05:10.7291995Z if __name__ == "__main__": 2023-01-11T21:05:10.7292109Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.7292231Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.7292427Z arg0_1 = rand_strided((10, 5, 20), (100, 20, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.7292626Z arg1_1 = rand_strided((50, 20), (20, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.7292740Z print_performance(lambda: call([arg0_1, arg1_1])) 2023-01-11T21:05:10.7292745Z 2023-01-11T21:05:10.7292749Z 2023-01-11T21:05:10.7292841Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.7292911Z import torch 2023-01-11T21:05:10.7292980Z import random 2023-01-11T21:05:10.7293096Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.7293217Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.7293221Z 2023-01-11T21:05:10.7293287Z aten = torch.ops.aten 2023-01-11T21:05:10.7293418Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.7293507Z async_compile = AsyncCompile() 2023-01-11T21:05:10.7293511Z 2023-01-11T21:05:10.7293515Z 2023-01-11T21:05:10.7293648Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.7293851Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.7293973Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:05:10.7294077Z const float* __restrict__ in_ptr1, 2023-01-11T21:05:10.7294177Z float* __restrict__ out_ptr0) 2023-01-11T21:05:10.7294223Z { 2023-01-11T21:05:10.7294317Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.7294405Z { 2023-01-11T21:05:10.7294480Z #pragma omp for 2023-01-11T21:05:10.7294561Z for(long i0=0; i0<10; i0+=1) 2023-01-11T21:05:10.7294623Z { 2023-01-11T21:05:10.7294672Z { 2023-01-11T21:05:10.7294737Z { 2023-01-11T21:05:10.7294828Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:05:10.7294916Z auto tmp1 = in_ptr1[i0]; 2023-01-11T21:05:10.7295003Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:05:10.7295085Z out_ptr0[i0] = tmp2; 2023-01-11T21:05:10.7295148Z } 2023-01-11T21:05:10.7295195Z } 2023-01-11T21:05:10.7295257Z } 2023-01-11T21:05:10.7295315Z } 2023-01-11T21:05:10.7295374Z } 2023-01-11T21:05:10.7295451Z ''') 2023-01-11T21:05:10.7295456Z 2023-01-11T21:05:10.7295460Z 2023-01-11T21:05:10.7295548Z async_compile.wait(globals()) 2023-01-11T21:05:10.7295617Z del async_compile 2023-01-11T21:05:10.7295622Z 2023-01-11T21:05:10.7295689Z def call(args): 2023-01-11T21:05:10.7295754Z arg0_1, arg1_1 = args 2023-01-11T21:05:10.7295822Z args.clear() 2023-01-11T21:05:10.7296030Z buf0 = empty_strided((1, 10, 1), (10, 1, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.7296221Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(arg1_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:05:10.7296287Z del arg0_1 2023-01-11T21:05:10.7296351Z del arg1_1 2023-01-11T21:05:10.7296420Z return (buf0, ) 2023-01-11T21:05:10.7296424Z 2023-01-11T21:05:10.7296428Z 2023-01-11T21:05:10.7296491Z if __name__ == "__main__": 2023-01-11T21:05:10.7296604Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.7296728Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.7296922Z arg0_1 = rand_strided((10, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.7297125Z arg1_1 = rand_strided((1, 10, 1), (10, 1, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.7297238Z print_performance(lambda: call([arg0_1, arg1_1])) 2023-01-11T21:05:10.7297246Z 2023-01-11T21:05:10.7297250Z 2023-01-11T21:05:10.7297340Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.7297409Z import torch 2023-01-11T21:05:10.7297467Z import random 2023-01-11T21:05:10.7297581Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.7297698Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.7297703Z 2023-01-11T21:05:10.7297779Z aten = torch.ops.aten 2023-01-11T21:05:10.7297910Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.7297999Z async_compile = AsyncCompile() 2023-01-11T21:05:10.7298004Z 2023-01-11T21:05:10.7298007Z 2023-01-11T21:05:10.7298138Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.7298340Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.7298443Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:05:10.7298674Z const float* __restrict__ in_ptr1, 2023-01-11T21:05:10.7298777Z float* __restrict__ out_ptr0) 2023-01-11T21:05:10.7298838Z { 2023-01-11T21:05:10.7298935Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.7298998Z { 2023-01-11T21:05:10.7299076Z #pragma omp for 2023-01-11T21:05:10.7299144Z for(long i0=0; i0<10; i0+=1) 2023-01-11T21:05:10.7299207Z { 2023-01-11T21:05:10.7299269Z { 2023-01-11T21:05:10.7299333Z { 2023-01-11T21:05:10.7299425Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:05:10.7299516Z auto tmp3 = in_ptr1[i0]; 2023-01-11T21:05:10.7299621Z auto tmp1 = static_cast(1); 2023-01-11T21:05:10.7299697Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:05:10.7299786Z auto tmp4 = tmp2 + tmp3; 2023-01-11T21:05:10.7299870Z out_ptr0[i0] = tmp4; 2023-01-11T21:05:10.7299936Z } 2023-01-11T21:05:10.7300034Z } 2023-01-11T21:05:10.7300095Z } 2023-01-11T21:05:10.7300143Z } 2023-01-11T21:05:10.7300201Z } 2023-01-11T21:05:10.7300282Z ''') 2023-01-11T21:05:10.7300288Z 2023-01-11T21:05:10.7300292Z 2023-01-11T21:05:10.7300381Z async_compile.wait(globals()) 2023-01-11T21:05:10.7300451Z del async_compile 2023-01-11T21:05:10.7300456Z 2023-01-11T21:05:10.7300524Z def call(args): 2023-01-11T21:05:10.7300590Z arg0_1, arg1_1 = args 2023-01-11T21:05:10.7305669Z args.clear() 2023-01-11T21:05:10.7305930Z buf0 = empty_strided((1, 10, 1), (10, 1, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.7306100Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(arg1_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:05:10.7306168Z del arg0_1 2023-01-11T21:05:10.7306232Z del arg1_1 2023-01-11T21:05:10.7306302Z return (buf0, ) 2023-01-11T21:05:10.7306309Z 2023-01-11T21:05:10.7306314Z 2023-01-11T21:05:10.7306376Z if __name__ == "__main__": 2023-01-11T21:05:10.7306502Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.7306626Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.7306896Z arg0_1 = rand_strided((10, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.7307108Z arg1_1 = rand_strided((1, 10, 1), (10, 1, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.7307226Z print_performance(lambda: call([arg0_1, arg1_1])) 2023-01-11T21:05:10.7307231Z 2023-01-11T21:05:10.7307235Z 2023-01-11T21:05:10.7307327Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.7307396Z import torch 2023-01-11T21:05:10.7307453Z import random 2023-01-11T21:05:10.7307567Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.7307688Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.7307693Z 2023-01-11T21:05:10.7307768Z aten = torch.ops.aten 2023-01-11T21:05:10.7307901Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.7307992Z async_compile = AsyncCompile() 2023-01-11T21:05:10.7307998Z 2023-01-11T21:05:10.7308002Z 2023-01-11T21:05:10.7308137Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.7308346Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.7308452Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:05:10.7308554Z const float* __restrict__ in_ptr1, 2023-01-11T21:05:10.7308652Z float* __restrict__ out_ptr0) 2023-01-11T21:05:10.7308712Z { 2023-01-11T21:05:10.7308811Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.7308870Z { 2023-01-11T21:05:10.7308943Z #pragma omp for 2023-01-11T21:05:10.7309012Z for(long i0=0; i0<62; i0+=1) 2023-01-11T21:05:10.7309073Z { 2023-01-11T21:05:10.7309211Z auto tmp0 = at::vec::Vectorized::loadu(in_ptr0 + 16*i0); 2023-01-11T21:05:10.7309340Z auto tmp1 = at::vec::Vectorized::loadu(in_ptr1 + 16*i0); 2023-01-11T21:05:10.7309426Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:05:10.7309515Z tmp2.store(out_ptr0 + 16*i0); 2023-01-11T21:05:10.7309575Z } 2023-01-11T21:05:10.7309670Z #pragma omp for simd simdlen(8) 2023-01-11T21:05:10.7309741Z for(long i0=992; i0<1000; i0+=1) 2023-01-11T21:05:10.7309800Z { 2023-01-11T21:05:10.7309881Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:05:10.7309959Z auto tmp1 = in_ptr1[i0]; 2023-01-11T21:05:10.7310038Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:05:10.7310115Z out_ptr0[i0] = tmp2; 2023-01-11T21:05:10.7310162Z } 2023-01-11T21:05:10.7310220Z } 2023-01-11T21:05:10.7310276Z } 2023-01-11T21:05:10.7310353Z ''') 2023-01-11T21:05:10.7310358Z 2023-01-11T21:05:10.7310362Z 2023-01-11T21:05:10.7310448Z async_compile.wait(globals()) 2023-01-11T21:05:10.7310516Z del async_compile 2023-01-11T21:05:10.7310521Z 2023-01-11T21:05:10.7310580Z def call(args): 2023-01-11T21:05:10.7310700Z arg0_1, arg1_1 = args 2023-01-11T21:05:10.7310772Z args.clear() 2023-01-11T21:05:10.7311003Z buf0 = empty_strided((10, 1, 10, 1, 10), (100, 100, 10, 10, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.7311153Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(arg1_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:05:10.7311220Z del arg0_1 2023-01-11T21:05:10.7311284Z del arg1_1 2023-01-11T21:05:10.7311354Z return (buf0, ) 2023-01-11T21:05:10.7311359Z 2023-01-11T21:05:10.7311364Z 2023-01-11T21:05:10.7311440Z if __name__ == "__main__": 2023-01-11T21:05:10.7311552Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.7311673Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.7311863Z arg0_1 = rand_strided((10, 100), (100, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.7312089Z arg1_1 = rand_strided((10, 1, 10, 1, 10), (100, 100, 10, 10, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.7312208Z print_performance(lambda: call([arg0_1, arg1_1])) 2023-01-11T21:05:10.7312482Z [2023-01-11 21:02:27,947] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 486 2023-01-11T21:05:10.7312914Z inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.7313042Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.7313301Z [2023-01-11 21:02:27,981] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 487 2023-01-11T21:05:10.7313565Z [2023-01-11 21:02:27,996] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 487 2023-01-11T21:05:10.7313966Z inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.7314093Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.7314347Z [2023-01-11 21:02:28,025] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 488 2023-01-11T21:05:10.7314597Z [2023-01-11 21:02:28,070] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 488 2023-01-11T21:05:10.7314994Z inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.7315120Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.7315374Z [2023-01-11 21:02:28,115] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 489 2023-01-11T21:05:10.7315637Z [2023-01-11 21:02:28,137] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 489 2023-01-11T21:05:10.7315642Z 2023-01-11T21:05:10.7315646Z 2023-01-11T21:05:10.7315740Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.7315807Z import torch 2023-01-11T21:05:10.7315876Z import random 2023-01-11T21:05:10.7315991Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.7316098Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.7316115Z 2023-01-11T21:05:10.7316180Z aten = torch.ops.aten 2023-01-11T21:05:10.7316313Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.7316404Z async_compile = AsyncCompile() 2023-01-11T21:05:10.7316489Z 2023-01-11T21:05:10.7316493Z 2023-01-11T21:05:10.7316636Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.7316840Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.7316964Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:05:10.7317069Z const float* __restrict__ in_ptr1, 2023-01-11T21:05:10.7317155Z float* __restrict__ out_ptr0) 2023-01-11T21:05:10.7317215Z { 2023-01-11T21:05:10.7317313Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.7317377Z { 2023-01-11T21:05:10.7317453Z #pragma omp for 2023-01-11T21:05:10.7317535Z for(long i0=0; i0<62; i0+=1) 2023-01-11T21:05:10.7317598Z { 2023-01-11T21:05:10.7317720Z auto tmp0 = at::vec::Vectorized::loadu(in_ptr0 + 16*i0); 2023-01-11T21:05:10.7317852Z auto tmp3 = at::vec::Vectorized::loadu(in_ptr1 + 16*i0); 2023-01-11T21:05:10.7317984Z auto tmp1 = at::vec::Vectorized(static_cast(1)); 2023-01-11T21:05:10.7318072Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:05:10.7318156Z auto tmp4 = tmp2 + tmp3; 2023-01-11T21:05:10.7318282Z tmp4.store(out_ptr0 + 16*i0); 2023-01-11T21:05:10.7318346Z } 2023-01-11T21:05:10.7318440Z #pragma omp for simd simdlen(8) 2023-01-11T21:05:10.7318512Z for(long i0=992; i0<1000; i0+=1) 2023-01-11T21:05:10.7318571Z { 2023-01-11T21:05:10.7318651Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:05:10.7318732Z auto tmp3 = in_ptr1[i0]; 2023-01-11T21:05:10.7318830Z auto tmp1 = static_cast(1); 2023-01-11T21:05:10.7318911Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:05:10.7318991Z auto tmp4 = tmp2 + tmp3; 2023-01-11T21:05:10.7319056Z out_ptr0[i0] = tmp4; 2023-01-11T21:05:10.7319116Z } 2023-01-11T21:05:10.7319176Z } 2023-01-11T21:05:10.7319235Z } 2023-01-11T21:05:10.7319315Z ''') 2023-01-11T21:05:10.7319321Z 2023-01-11T21:05:10.7319325Z 2023-01-11T21:05:10.7319413Z async_compile.wait(globals()) 2023-01-11T21:05:10.7319483Z del async_compile 2023-01-11T21:05:10.7319488Z 2023-01-11T21:05:10.7319544Z def call(args): 2023-01-11T21:05:10.7319620Z arg0_1, arg1_1 = args 2023-01-11T21:05:10.7319689Z args.clear() 2023-01-11T21:05:10.7319919Z buf0 = empty_strided((10, 1, 10, 1, 10), (100, 100, 10, 10, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.7320080Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(arg1_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:05:10.7320146Z del arg0_1 2023-01-11T21:05:10.7320211Z del arg1_1 2023-01-11T21:05:10.7320268Z return (buf0, ) 2023-01-11T21:05:10.7320273Z 2023-01-11T21:05:10.7320289Z 2023-01-11T21:05:10.7320351Z if __name__ == "__main__": 2023-01-11T21:05:10.7320466Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.7320588Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.7320939Z arg0_1 = rand_strided((10, 100), (100, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.7321169Z arg1_1 = rand_strided((10, 1, 10, 1, 10), (100, 100, 10, 10, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.7321288Z print_performance(lambda: call([arg0_1, arg1_1])) 2023-01-11T21:05:10.7321294Z 2023-01-11T21:05:10.7321298Z 2023-01-11T21:05:10.7321391Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.7321446Z import torch 2023-01-11T21:05:10.7321516Z import random 2023-01-11T21:05:10.7321631Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.7321751Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.7321756Z 2023-01-11T21:05:10.7321834Z aten = torch.ops.aten 2023-01-11T21:05:10.7321968Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.7322060Z async_compile = AsyncCompile() 2023-01-11T21:05:10.7322065Z 2023-01-11T21:05:10.7322069Z 2023-01-11T21:05:10.7322267Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.7322457Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.7322577Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:05:10.7322683Z const float* __restrict__ in_ptr1, 2023-01-11T21:05:10.7322786Z float* __restrict__ out_ptr0) 2023-01-11T21:05:10.7322847Z { 2023-01-11T21:05:10.7322944Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.7323006Z { 2023-01-11T21:05:10.7323068Z #pragma omp for 2023-01-11T21:05:10.7323150Z for(long i0=0; i0<1; i0+=1) 2023-01-11T21:05:10.7323211Z { 2023-01-11T21:05:10.7323346Z auto tmp0 = at::vec::Vectorized::loadu(in_ptr0 + 16*i0); 2023-01-11T21:05:10.7323477Z auto tmp1 = at::vec::Vectorized::loadu(in_ptr1 + 16*i0); 2023-01-11T21:05:10.7323562Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:05:10.7323655Z tmp2.store(out_ptr0 + 16*i0); 2023-01-11T21:05:10.7323720Z } 2023-01-11T21:05:10.7323800Z #pragma omp for simd simdlen(8) 2023-01-11T21:05:10.7323881Z for(long i0=16; i0<16; i0+=1) 2023-01-11T21:05:10.7323942Z { 2023-01-11T21:05:10.7324065Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:05:10.7324148Z auto tmp1 = in_ptr1[i0]; 2023-01-11T21:05:10.7324228Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:05:10.7324309Z out_ptr0[i0] = tmp2; 2023-01-11T21:05:10.7324356Z } 2023-01-11T21:05:10.7324415Z } 2023-01-11T21:05:10.7324475Z } 2023-01-11T21:05:10.7324555Z ''') 2023-01-11T21:05:10.7324560Z 2023-01-11T21:05:10.7324564Z 2023-01-11T21:05:10.7324651Z async_compile.wait(globals()) 2023-01-11T21:05:10.7324723Z del async_compile 2023-01-11T21:05:10.7324728Z 2023-01-11T21:05:10.7324797Z def call(args): 2023-01-11T21:05:10.7324858Z arg0_1, arg1_1 = args 2023-01-11T21:05:10.7324927Z args.clear() 2023-01-11T21:05:10.7325137Z buf0 = empty_strided((2, 2, 2, 2), (8, 4, 2, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.7325304Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(arg1_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:05:10.7325374Z del arg0_1 2023-01-11T21:05:10.7325440Z del arg1_1 2023-01-11T21:05:10.7325510Z return (buf0, ) 2023-01-11T21:05:10.7325514Z 2023-01-11T21:05:10.7325518Z 2023-01-11T21:05:10.7325580Z if __name__ == "__main__": 2023-01-11T21:05:10.7325695Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.7325815Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.7326009Z arg0_1 = rand_strided((4, 4), (4, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.7326217Z arg1_1 = rand_strided((2, 2, 2, 2), (8, 4, 2, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.7326332Z print_performance(lambda: call([arg0_1, arg1_1])) 2023-01-11T21:05:10.7326337Z 2023-01-11T21:05:10.7326341Z 2023-01-11T21:05:10.7326436Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.7326505Z import torch 2023-01-11T21:05:10.7326561Z import random 2023-01-11T21:05:10.7326676Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.7326798Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.7326803Z 2023-01-11T21:05:10.7326879Z aten = torch.ops.aten 2023-01-11T21:05:10.7327012Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.7327104Z async_compile = AsyncCompile() 2023-01-11T21:05:10.7327110Z 2023-01-11T21:05:10.7327114Z 2023-01-11T21:05:10.7327246Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.7327449Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.7327555Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:05:10.7327658Z const float* __restrict__ in_ptr1, 2023-01-11T21:05:10.7327757Z float* __restrict__ out_ptr0) 2023-01-11T21:05:10.7327850Z { 2023-01-11T21:05:10.7327947Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.7328008Z { 2023-01-11T21:05:10.7328083Z #pragma omp for 2023-01-11T21:05:10.7328152Z for(long i0=0; i0<1; i0+=1) 2023-01-11T21:05:10.7328214Z { 2023-01-11T21:05:10.7328345Z auto tmp0 = at::vec::Vectorized::loadu(in_ptr0 + 16*i0); 2023-01-11T21:05:10.7328474Z auto tmp3 = at::vec::Vectorized::loadu(in_ptr1 + 16*i0); 2023-01-11T21:05:10.7328604Z auto tmp1 = at::vec::Vectorized(static_cast(1)); 2023-01-11T21:05:10.7328688Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:05:10.7328769Z auto tmp4 = tmp2 + tmp3; 2023-01-11T21:05:10.7328860Z tmp4.store(out_ptr0 + 16*i0); 2023-01-11T21:05:10.7328909Z } 2023-01-11T21:05:10.7329004Z #pragma omp for simd simdlen(8) 2023-01-11T21:05:10.7329083Z for(long i0=16; i0<16; i0+=1) 2023-01-11T21:05:10.7329143Z { 2023-01-11T21:05:10.7329226Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:05:10.7329309Z auto tmp3 = in_ptr1[i0]; 2023-01-11T21:05:10.7329406Z auto tmp1 = static_cast(1); 2023-01-11T21:05:10.7329507Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:05:10.7329590Z auto tmp4 = tmp2 + tmp3; 2023-01-11T21:05:10.7329668Z out_ptr0[i0] = tmp4; 2023-01-11T21:05:10.7329728Z } 2023-01-11T21:05:10.7329788Z } 2023-01-11T21:05:10.7329846Z } 2023-01-11T21:05:10.7329911Z ''') 2023-01-11T21:05:10.7329916Z 2023-01-11T21:05:10.7329934Z 2023-01-11T21:05:10.7330009Z async_compile.wait(globals()) 2023-01-11T21:05:10.7330078Z del async_compile 2023-01-11T21:05:10.7330083Z 2023-01-11T21:05:10.7330152Z def call(args): 2023-01-11T21:05:10.7330225Z arg0_1, arg1_1 = args 2023-01-11T21:05:10.7330296Z args.clear() 2023-01-11T21:05:10.7330504Z buf0 = empty_strided((2, 2, 2, 2), (8, 4, 2, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.7330668Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(arg1_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:05:10.7330723Z del arg0_1 2023-01-11T21:05:10.7330788Z del arg1_1 2023-01-11T21:05:10.7330857Z return (buf0, ) 2023-01-11T21:05:10.7330864Z 2023-01-11T21:05:10.7330868Z 2023-01-11T21:05:10.7330941Z if __name__ == "__main__": 2023-01-11T21:05:10.7331054Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.7331176Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.7331368Z arg0_1 = rand_strided((4, 4), (4, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.7331572Z arg1_1 = rand_strided((2, 2, 2, 2), (8, 4, 2, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.7331673Z print_performance(lambda: call([arg0_1, arg1_1])) 2023-01-11T21:05:10.7331678Z 2023-01-11T21:05:10.7331744Z ok (27.955s) 2023-01-11T21:05:10.7332182Z test_views2_cpu (__main__.CpuTests) ... inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.7332311Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.7332571Z [2023-01-11 21:02:28,174] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 490 2023-01-11T21:05:10.7332832Z [2023-01-11 21:02:30,813] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 490 2023-01-11T21:05:10.7333231Z inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.7333395Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.7333650Z [2023-01-11 21:02:30,852] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 491 2023-01-11T21:05:10.7333913Z [2023-01-11 21:02:33,477] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 491 2023-01-11T21:05:10.7334310Z inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.7334420Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.7334674Z [2023-01-11 21:02:33,510] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 492 2023-01-11T21:05:10.7334935Z [2023-01-11 21:02:36,151] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 492 2023-01-11T21:05:10.7335363Z inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.7335487Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.7335739Z [2023-01-11 21:02:36,191] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 493 2023-01-11T21:05:10.7335998Z [2023-01-11 21:02:38,823] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 493 2023-01-11T21:05:10.7336392Z inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.7336520Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.7336774Z [2023-01-11 21:02:38,858] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 494 2023-01-11T21:05:10.7336779Z 2023-01-11T21:05:10.7336872Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.7336928Z import torch 2023-01-11T21:05:10.7336997Z import random 2023-01-11T21:05:10.7337111Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.7337232Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.7337237Z 2023-01-11T21:05:10.7337315Z aten = torch.ops.aten 2023-01-11T21:05:10.7337448Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.7337538Z async_compile = AsyncCompile() 2023-01-11T21:05:10.7337543Z 2023-01-11T21:05:10.7337550Z 2023-01-11T21:05:10.7337683Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.7337874Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.7337993Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:05:10.7338094Z float* __restrict__ out_ptr0) 2023-01-11T21:05:10.7338153Z { 2023-01-11T21:05:10.7338250Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.7338310Z { 2023-01-11T21:05:10.7338384Z #pragma omp for 2023-01-11T21:05:10.7338453Z for(long i0=0; i0<1; i0+=1) 2023-01-11T21:05:10.7338606Z { 2023-01-11T21:05:10.7338742Z auto tmp0 = at::vec::Vectorized::loadu(in_ptr0 + 16*i0); 2023-01-11T21:05:10.7338876Z auto tmp1 = at::vec::Vectorized(static_cast(1)); 2023-01-11T21:05:10.7338963Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:05:10.7339058Z tmp2.store(out_ptr0 + 16*i0); 2023-01-11T21:05:10.7339161Z } 2023-01-11T21:05:10.7339243Z #pragma omp for simd simdlen(8) 2023-01-11T21:05:10.7339326Z for(long i0=16; i0<16; i0+=1) 2023-01-11T21:05:10.7339389Z { 2023-01-11T21:05:10.7339474Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:05:10.7339572Z auto tmp1 = static_cast(1); 2023-01-11T21:05:10.7339658Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:05:10.7339738Z out_ptr0[i0] = tmp2; 2023-01-11T21:05:10.7339786Z } 2023-01-11T21:05:10.7339846Z } 2023-01-11T21:05:10.7339904Z } 2023-01-11T21:05:10.7339983Z ''') 2023-01-11T21:05:10.7339988Z 2023-01-11T21:05:10.7339993Z 2023-01-11T21:05:10.7340079Z async_compile.wait(globals()) 2023-01-11T21:05:10.7340149Z del async_compile 2023-01-11T21:05:10.7340154Z 2023-01-11T21:05:10.7340223Z def call(args): 2023-01-11T21:05:10.7340278Z arg0_1, = args 2023-01-11T21:05:10.7340347Z args.clear() 2023-01-11T21:05:10.7340541Z buf0 = empty_strided((4, 4), (4, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.7340677Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:05:10.7340744Z del arg0_1 2023-01-11T21:05:10.7340814Z return (buf0, ) 2023-01-11T21:05:10.7340819Z 2023-01-11T21:05:10.7340854Z 2023-01-11T21:05:10.7340929Z if __name__ == "__main__": 2023-01-11T21:05:10.7341041Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.7341149Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.7341360Z arg0_1 = rand_strided((2, 2, 2, 2), (8, 4, 2, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.7341466Z print_performance(lambda: call([arg0_1])) 2023-01-11T21:05:10.7341472Z 2023-01-11T21:05:10.7341476Z 2023-01-11T21:05:10.7341567Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.7341635Z import torch 2023-01-11T21:05:10.7341703Z import random 2023-01-11T21:05:10.7341815Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.7341922Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.7341941Z 2023-01-11T21:05:10.7342006Z aten = torch.ops.aten 2023-01-11T21:05:10.7342137Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.7342228Z async_compile = AsyncCompile() 2023-01-11T21:05:10.7342233Z 2023-01-11T21:05:10.7342237Z 2023-01-11T21:05:10.7342369Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.7342572Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.7342689Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:05:10.7342786Z float* __restrict__ out_ptr0) 2023-01-11T21:05:10.7342845Z { 2023-01-11T21:05:10.7342928Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.7342987Z { 2023-01-11T21:05:10.7343062Z #pragma omp for 2023-01-11T21:05:10.7343142Z for(long i0=0; i0<1; i0+=1) 2023-01-11T21:05:10.7343202Z { 2023-01-11T21:05:10.7343335Z auto tmp0 = at::vec::Vectorized::loadu(in_ptr0 + 16*i0); 2023-01-11T21:05:10.7343467Z auto tmp1 = at::vec::Vectorized(static_cast(2)); 2023-01-11T21:05:10.7343538Z auto tmp2 = tmp0 * tmp1; 2023-01-11T21:05:10.7343669Z auto tmp3 = at::vec::Vectorized(static_cast(1)); 2023-01-11T21:05:10.7343751Z auto tmp4 = tmp2 + tmp3; 2023-01-11T21:05:10.7343840Z tmp4.store(out_ptr0 + 16*i0); 2023-01-11T21:05:10.7343903Z } 2023-01-11T21:05:10.7343995Z #pragma omp for simd simdlen(8) 2023-01-11T21:05:10.7344075Z for(long i0=16; i0<16; i0+=1) 2023-01-11T21:05:10.7344123Z { 2023-01-11T21:05:10.7344205Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:05:10.7344301Z auto tmp1 = static_cast(2); 2023-01-11T21:05:10.7344383Z auto tmp2 = tmp0 * tmp1; 2023-01-11T21:05:10.7344480Z auto tmp3 = static_cast(1); 2023-01-11T21:05:10.7344561Z auto tmp4 = tmp2 + tmp3; 2023-01-11T21:05:10.7344673Z out_ptr0[i0] = tmp4; 2023-01-11T21:05:10.7344722Z } 2023-01-11T21:05:10.7344781Z } 2023-01-11T21:05:10.7344839Z } 2023-01-11T21:05:10.7344916Z ''') 2023-01-11T21:05:10.7344921Z 2023-01-11T21:05:10.7344928Z 2023-01-11T21:05:10.7345015Z async_compile.wait(globals()) 2023-01-11T21:05:10.7345085Z del async_compile 2023-01-11T21:05:10.7345090Z 2023-01-11T21:05:10.7345158Z def call(args): 2023-01-11T21:05:10.7345213Z arg0_1, = args 2023-01-11T21:05:10.7345281Z args.clear() 2023-01-11T21:05:10.7345479Z buf0 = empty_strided((4, 4), (4, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.7345610Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:05:10.7345676Z del arg0_1 2023-01-11T21:05:10.7345745Z return (buf0, ) 2023-01-11T21:05:10.7345750Z 2023-01-11T21:05:10.7345754Z 2023-01-11T21:05:10.7345827Z if __name__ == "__main__": 2023-01-11T21:05:10.7345926Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.7346048Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.7346258Z arg0_1 = rand_strided((2, 2, 2, 2), (8, 4, 2, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.7346392Z print_performance(lambda: call([arg0_1])) 2023-01-11T21:05:10.7346398Z 2023-01-11T21:05:10.7346402Z 2023-01-11T21:05:10.7346496Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.7346564Z import torch 2023-01-11T21:05:10.7346632Z import random 2023-01-11T21:05:10.7346745Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.7346851Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.7346869Z 2023-01-11T21:05:10.7346932Z aten = torch.ops.aten 2023-01-11T21:05:10.7347063Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.7347153Z async_compile = AsyncCompile() 2023-01-11T21:05:10.7347158Z 2023-01-11T21:05:10.7347162Z 2023-01-11T21:05:10.7347293Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.7347500Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.7347618Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:05:10.7347718Z float* __restrict__ out_ptr0) 2023-01-11T21:05:10.7347764Z { 2023-01-11T21:05:10.7347861Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.7347921Z { 2023-01-11T21:05:10.7347997Z #pragma omp for 2023-01-11T21:05:10.7348079Z for(long i0=0; i0<62; i0+=1) 2023-01-11T21:05:10.7348145Z { 2023-01-11T21:05:10.7348279Z auto tmp0 = at::vec::Vectorized::loadu(in_ptr0 + 16*i0); 2023-01-11T21:05:10.7348397Z auto tmp1 = at::vec::Vectorized(static_cast(1)); 2023-01-11T21:05:10.7348482Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:05:10.7348573Z tmp2.store(out_ptr0 + 16*i0); 2023-01-11T21:05:10.7348634Z } 2023-01-11T21:05:10.7348727Z #pragma omp for simd simdlen(8) 2023-01-11T21:05:10.7348812Z for(long i0=992; i0<1000; i0+=1) 2023-01-11T21:05:10.7348877Z { 2023-01-11T21:05:10.7348946Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:05:10.7349045Z auto tmp1 = static_cast(1); 2023-01-11T21:05:10.7349127Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:05:10.7349204Z out_ptr0[i0] = tmp2; 2023-01-11T21:05:10.7349270Z } 2023-01-11T21:05:10.7349357Z } 2023-01-11T21:05:10.7349436Z } 2023-01-11T21:05:10.7349541Z ''') 2023-01-11T21:05:10.7349548Z 2023-01-11T21:05:10.7349554Z 2023-01-11T21:05:10.7349642Z async_compile.wait(globals()) 2023-01-11T21:05:10.7349714Z del async_compile 2023-01-11T21:05:10.7349719Z 2023-01-11T21:05:10.7349787Z def call(args): 2023-01-11T21:05:10.7349855Z arg0_1, = args 2023-01-11T21:05:10.7349926Z args.clear() 2023-01-11T21:05:10.7350128Z buf0 = empty_strided((10, 100), (100, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.7350257Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:05:10.7350349Z del arg0_1 2023-01-11T21:05:10.7350419Z return (buf0, ) 2023-01-11T21:05:10.7350423Z 2023-01-11T21:05:10.7350428Z 2023-01-11T21:05:10.7350503Z if __name__ == "__main__": 2023-01-11T21:05:10.7350613Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.7350734Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.7350966Z arg0_1 = rand_strided((10, 1, 10, 1, 10), (100, 100, 10, 10, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.7351073Z print_performance(lambda: call([arg0_1])) 2023-01-11T21:05:10.7351078Z 2023-01-11T21:05:10.7351082Z 2023-01-11T21:05:10.7351174Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.7351229Z import torch 2023-01-11T21:05:10.7351298Z import random 2023-01-11T21:05:10.7351410Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.7351528Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.7351535Z 2023-01-11T21:05:10.7351611Z aten = torch.ops.aten 2023-01-11T21:05:10.7351743Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.7351833Z async_compile = AsyncCompile() 2023-01-11T21:05:10.7351877Z 2023-01-11T21:05:10.7351882Z 2023-01-11T21:05:10.7352015Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.7352207Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.7352323Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:05:10.7352421Z float* __restrict__ out_ptr0) 2023-01-11T21:05:10.7352480Z { 2023-01-11T21:05:10.7352574Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.7352634Z { 2023-01-11T21:05:10.7352709Z #pragma omp for 2023-01-11T21:05:10.7352777Z for(long i0=0; i0<62; i0+=1) 2023-01-11T21:05:10.7352838Z { 2023-01-11T21:05:10.7352970Z auto tmp0 = at::vec::Vectorized::loadu(in_ptr0 + 16*i0); 2023-01-11T21:05:10.7353105Z auto tmp1 = at::vec::Vectorized(static_cast(2)); 2023-01-11T21:05:10.7353188Z auto tmp2 = tmp0 * tmp1; 2023-01-11T21:05:10.7353321Z auto tmp3 = at::vec::Vectorized(static_cast(1)); 2023-01-11T21:05:10.7353405Z auto tmp4 = tmp2 + tmp3; 2023-01-11T21:05:10.7353484Z tmp4.store(out_ptr0 + 16*i0); 2023-01-11T21:05:10.7353545Z } 2023-01-11T21:05:10.7353640Z #pragma omp for simd simdlen(8) 2023-01-11T21:05:10.7353723Z for(long i0=992; i0<1000; i0+=1) 2023-01-11T21:05:10.7353785Z { 2023-01-11T21:05:10.7353868Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:05:10.7353966Z auto tmp1 = static_cast(2); 2023-01-11T21:05:10.7354034Z auto tmp2 = tmp0 * tmp1; 2023-01-11T21:05:10.7354134Z auto tmp3 = static_cast(1); 2023-01-11T21:05:10.7354215Z auto tmp4 = tmp2 + tmp3; 2023-01-11T21:05:10.7354298Z out_ptr0[i0] = tmp4; 2023-01-11T21:05:10.7354357Z } 2023-01-11T21:05:10.7354417Z } 2023-01-11T21:05:10.7354475Z } 2023-01-11T21:05:10.7354539Z ''') 2023-01-11T21:05:10.7354543Z 2023-01-11T21:05:10.7354548Z 2023-01-11T21:05:10.7354637Z async_compile.wait(globals()) 2023-01-11T21:05:10.7354708Z del async_compile 2023-01-11T21:05:10.7354713Z 2023-01-11T21:05:10.7354783Z def call(args): 2023-01-11T21:05:10.7354850Z arg0_1, = args 2023-01-11T21:05:10.7354919Z args.clear() 2023-01-11T21:05:10.7355126Z buf0 = empty_strided((10, 100), (100, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.7355246Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:05:10.7355312Z del arg0_1 2023-01-11T21:05:10.7355381Z return (buf0, ) 2023-01-11T21:05:10.7355387Z 2023-01-11T21:05:10.7355392Z 2023-01-11T21:05:10.7355466Z if __name__ == "__main__": 2023-01-11T21:05:10.7355579Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.7355749Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.7355981Z arg0_1 = rand_strided((10, 1, 10, 1, 10), (100, 100, 10, 10, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.7356090Z print_performance(lambda: call([arg0_1])) 2023-01-11T21:05:10.7356095Z 2023-01-11T21:05:10.7356099Z 2023-01-11T21:05:10.7356192Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.7356247Z import torch 2023-01-11T21:05:10.7356317Z import random 2023-01-11T21:05:10.7356432Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.7356551Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.7356556Z 2023-01-11T21:05:10.7356633Z aten = torch.ops.aten 2023-01-11T21:05:10.7356766Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.7356856Z async_compile = AsyncCompile() 2023-01-11T21:05:10.7356861Z 2023-01-11T21:05:10.7356866Z 2023-01-11T21:05:10.7356998Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.7357191Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.7357310Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:05:10.7357440Z float* __restrict__ out_ptr0) 2023-01-11T21:05:10.7357502Z { 2023-01-11T21:05:10.7357600Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.7357661Z { 2023-01-11T21:05:10.7357738Z #pragma omp for 2023-01-11T21:05:10.7357807Z for(long i0=0; i0<62; i0+=1) 2023-01-11T21:05:10.7357868Z { 2023-01-11T21:05:10.7358004Z auto tmp0 = at::vec::Vectorized::loadu(in_ptr0 + 16*i0); 2023-01-11T21:05:10.7358137Z auto tmp1 = at::vec::Vectorized(static_cast(1)); 2023-01-11T21:05:10.7358222Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:05:10.7358313Z tmp2.store(out_ptr0 + 16*i0); 2023-01-11T21:05:10.7358375Z } 2023-01-11T21:05:10.7358455Z #pragma omp for simd simdlen(8) 2023-01-11T21:05:10.7358541Z for(long i0=992; i0<1000; i0+=1) 2023-01-11T21:05:10.7358602Z { 2023-01-11T21:05:10.7358685Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:05:10.7358787Z auto tmp1 = static_cast(1); 2023-01-11T21:05:10.7358873Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:05:10.7358952Z out_ptr0[i0] = tmp2; 2023-01-11T21:05:10.7358999Z } 2023-01-11T21:05:10.7359062Z } 2023-01-11T21:05:10.7359121Z } 2023-01-11T21:05:10.7359200Z ''') 2023-01-11T21:05:10.7359206Z 2023-01-11T21:05:10.7359210Z 2023-01-11T21:05:10.7359299Z async_compile.wait(globals()) 2023-01-11T21:05:10.7359371Z del async_compile 2023-01-11T21:05:10.7359376Z 2023-01-11T21:05:10.7359445Z def call(args): 2023-01-11T21:05:10.7359501Z arg0_1, = args 2023-01-11T21:05:10.7359570Z args.clear() 2023-01-11T21:05:10.7359780Z buf0 = empty_strided((10, 5, 20), (100, 20, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.7359915Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:05:10.7360017Z del arg0_1 2023-01-11T21:05:10.7360123Z return (buf0, ) 2023-01-11T21:05:10.7360129Z 2023-01-11T21:05:10.7360136Z 2023-01-11T21:05:10.7360219Z if __name__ == "__main__": 2023-01-11T21:05:10.7360320Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.7360443Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.7360761Z arg0_1 = rand_strided((50, 20), (20, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.7360871Z print_performance(lambda: call([arg0_1])) 2023-01-11T21:05:10.7361144Z [2023-01-11 21:02:38,870] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 494 2023-01-11T21:05:10.7361557Z inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.7361755Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.7362022Z [2023-01-11 21:02:38,900] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 495 2023-01-11T21:05:10.7362291Z [2023-01-11 21:02:38,912] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 495 2023-01-11T21:05:10.7362296Z 2023-01-11T21:05:10.7362300Z 2023-01-11T21:05:10.7362398Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.7362454Z import torch 2023-01-11T21:05:10.7362523Z import random 2023-01-11T21:05:10.7362639Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.7362760Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.7362765Z 2023-01-11T21:05:10.7362844Z aten = torch.ops.aten 2023-01-11T21:05:10.7362979Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.7363077Z async_compile = AsyncCompile() 2023-01-11T21:05:10.7363082Z 2023-01-11T21:05:10.7363086Z 2023-01-11T21:05:10.7363222Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.7363454Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.7363578Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:05:10.7363676Z float* __restrict__ out_ptr0) 2023-01-11T21:05:10.7363738Z { 2023-01-11T21:05:10.7363834Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.7363894Z { 2023-01-11T21:05:10.7363968Z #pragma omp for 2023-01-11T21:05:10.7364037Z for(long i0=0; i0<62; i0+=1) 2023-01-11T21:05:10.7364097Z { 2023-01-11T21:05:10.7364234Z auto tmp0 = at::vec::Vectorized::loadu(in_ptr0 + 16*i0); 2023-01-11T21:05:10.7364369Z auto tmp1 = at::vec::Vectorized(static_cast(2)); 2023-01-11T21:05:10.7364453Z auto tmp2 = tmp0 * tmp1; 2023-01-11T21:05:10.7364591Z auto tmp3 = at::vec::Vectorized(static_cast(1)); 2023-01-11T21:05:10.7364675Z auto tmp4 = tmp2 + tmp3; 2023-01-11T21:05:10.7364756Z tmp4.store(out_ptr0 + 16*i0); 2023-01-11T21:05:10.7364818Z } 2023-01-11T21:05:10.7364912Z #pragma omp for simd simdlen(8) 2023-01-11T21:05:10.7364997Z for(long i0=992; i0<1000; i0+=1) 2023-01-11T21:05:10.7365057Z { 2023-01-11T21:05:10.7365139Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:05:10.7365238Z auto tmp1 = static_cast(2); 2023-01-11T21:05:10.7365307Z auto tmp2 = tmp0 * tmp1; 2023-01-11T21:05:10.7365404Z auto tmp3 = static_cast(1); 2023-01-11T21:05:10.7365486Z auto tmp4 = tmp2 + tmp3; 2023-01-11T21:05:10.7365565Z out_ptr0[i0] = tmp4; 2023-01-11T21:05:10.7365625Z } 2023-01-11T21:05:10.7365684Z } 2023-01-11T21:05:10.7365740Z } 2023-01-11T21:05:10.7365810Z ''') 2023-01-11T21:05:10.7365814Z 2023-01-11T21:05:10.7365819Z 2023-01-11T21:05:10.7365905Z async_compile.wait(globals()) 2023-01-11T21:05:10.7365976Z del async_compile 2023-01-11T21:05:10.7365981Z 2023-01-11T21:05:10.7366049Z def call(args): 2023-01-11T21:05:10.7366117Z arg0_1, = args 2023-01-11T21:05:10.7366187Z args.clear() 2023-01-11T21:05:10.7366399Z buf0 = empty_strided((10, 5, 20), (100, 20, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.7366535Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:05:10.7366588Z del arg0_1 2023-01-11T21:05:10.7366657Z return (buf0, ) 2023-01-11T21:05:10.7366662Z 2023-01-11T21:05:10.7366667Z 2023-01-11T21:05:10.7366740Z if __name__ == "__main__": 2023-01-11T21:05:10.7366853Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.7366975Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.7367175Z arg0_1 = rand_strided((50, 20), (20, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.7367320Z print_performance(lambda: call([arg0_1])) 2023-01-11T21:05:10.7367325Z 2023-01-11T21:05:10.7367389Z ok (10.773s) 2023-01-11T21:05:10.7367825Z test_views3_cpu (__main__.CpuTests) ... inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.7367952Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.7368213Z [2023-01-11 21:02:39,024] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 496 2023-01-11T21:05:10.7368477Z [2023-01-11 21:02:41,710] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 496 2023-01-11T21:05:10.7368483Z 2023-01-11T21:05:10.7368576Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.7368646Z import torch 2023-01-11T21:05:10.7368715Z import random 2023-01-11T21:05:10.7368831Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.7368967Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.7368987Z 2023-01-11T21:05:10.7369051Z aten = torch.ops.aten 2023-01-11T21:05:10.7369183Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.7369273Z async_compile = AsyncCompile() 2023-01-11T21:05:10.7369278Z 2023-01-11T21:05:10.7369282Z 2023-01-11T21:05:10.7369417Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.7369621Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.7369738Z extern "C" void kernel(const long* __restrict__ in_ptr0, 2023-01-11T21:05:10.7369842Z const float* __restrict__ in_ptr1, 2023-01-11T21:05:10.7369940Z float* __restrict__ out_ptr0) 2023-01-11T21:05:10.7369989Z { 2023-01-11T21:05:10.7370085Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.7370145Z { 2023-01-11T21:05:10.7370220Z #pragma omp for 2023-01-11T21:05:10.7370302Z for(long i0=0; i0<744; i0+=1) 2023-01-11T21:05:10.7370365Z { 2023-01-11T21:05:10.7370432Z #pragma GCC ivdep 2023-01-11T21:05:10.7370517Z for(long i1=0; i1<192; i1+=1) 2023-01-11T21:05:10.7370578Z { 2023-01-11T21:05:10.7370641Z { 2023-01-11T21:05:10.7370706Z { 2023-01-11T21:05:10.7370813Z auto tmp0 = in_ptr0[(3*i0) + (i1 / 64)]; 2023-01-11T21:05:10.7370922Z auto tmp1 = in_ptr1[(64*tmp0) + (i1 % 64)]; 2023-01-11T21:05:10.7371004Z out_ptr0[i1 + (192*i0)] = tmp1; 2023-01-11T21:05:10.7371068Z } 2023-01-11T21:05:10.7371130Z } 2023-01-11T21:05:10.7371192Z } 2023-01-11T21:05:10.7371252Z } 2023-01-11T21:05:10.7371314Z } 2023-01-11T21:05:10.7371372Z } 2023-01-11T21:05:10.7371436Z ''') 2023-01-11T21:05:10.7371441Z 2023-01-11T21:05:10.7371445Z 2023-01-11T21:05:10.7371532Z async_compile.wait(globals()) 2023-01-11T21:05:10.7371602Z del async_compile 2023-01-11T21:05:10.7371609Z 2023-01-11T21:05:10.7371679Z def call(args): 2023-01-11T21:05:10.7371751Z arg0_1, arg1_1 = args 2023-01-11T21:05:10.7371823Z args.clear() 2023-01-11T21:05:10.7372051Z buf0 = empty_strided((1, 12, 62, 192), (142848, 11904, 192, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.7372202Z kernel_cpp_0(c_void_p(arg1_1.data_ptr()), c_void_p(arg0_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:05:10.7372269Z del arg0_1 2023-01-11T21:05:10.7372335Z del arg1_1 2023-01-11T21:05:10.7372404Z return (buf0, ) 2023-01-11T21:05:10.7372409Z 2023-01-11T21:05:10.7372413Z 2023-01-11T21:05:10.7372487Z if __name__ == "__main__": 2023-01-11T21:05:10.7372601Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.7372754Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.7372956Z arg0_1 = rand_strided((64, 64), (64, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.7373138Z arg1_1 = rand_strided((2232, ), (1, ), device='cpu', dtype=torch.int64) 2023-01-11T21:05:10.7373252Z print_performance(lambda: call([arg0_1, arg1_1])) 2023-01-11T21:05:10.7373257Z 2023-01-11T21:05:10.7373322Z ok (2.836s) 2023-01-11T21:05:10.7373668Z test_zero_dim_reductions_cpu (__main__.CpuTests) ... [2023-01-11 21:02:41,908] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 497 2023-01-11T21:05:10.7373935Z [2023-01-11 21:02:44,551] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 497 2023-01-11T21:05:10.7374186Z [2023-01-11 21:02:44,676] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 498 2023-01-11T21:05:10.7374446Z [2023-01-11 21:02:44,686] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 498 2023-01-11T21:05:10.7374454Z 2023-01-11T21:05:10.7374546Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.7374615Z import torch 2023-01-11T21:05:10.7374672Z import random 2023-01-11T21:05:10.7374815Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.7374936Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.7374942Z 2023-01-11T21:05:10.7375017Z aten = torch.ops.aten 2023-01-11T21:05:10.7375149Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.7375239Z async_compile = AsyncCompile() 2023-01-11T21:05:10.7375244Z 2023-01-11T21:05:10.7375247Z 2023-01-11T21:05:10.7375382Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.7375585Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.7375681Z extern "C" void kernel(bool* __restrict__ out_ptr0) 2023-01-11T21:05:10.7375741Z { 2023-01-11T21:05:10.7375815Z #pragma GCC ivdep 2023-01-11T21:05:10.7375896Z for(long i0=0; i0<2; i0+=1) 2023-01-11T21:05:10.7375956Z { 2023-01-11T21:05:10.7376017Z { 2023-01-11T21:05:10.7376079Z { 2023-01-11T21:05:10.7376173Z auto tmp0 = static_cast(false); 2023-01-11T21:05:10.7376255Z auto tmp1 = tmp0 == 0; 2023-01-11T21:05:10.7376335Z out_ptr0[i0] = tmp1; 2023-01-11T21:05:10.7376397Z } 2023-01-11T21:05:10.7376458Z } 2023-01-11T21:05:10.7376517Z } 2023-01-11T21:05:10.7376562Z } 2023-01-11T21:05:10.7376638Z ''') 2023-01-11T21:05:10.7376642Z 2023-01-11T21:05:10.7376647Z 2023-01-11T21:05:10.7376735Z async_compile.wait(globals()) 2023-01-11T21:05:10.7376806Z del async_compile 2023-01-11T21:05:10.7376810Z 2023-01-11T21:05:10.7376878Z def call(args): 2023-01-11T21:05:10.7376945Z arg0_1, = args 2023-01-11T21:05:10.7377014Z args.clear() 2023-01-11T21:05:10.7377203Z buf0 = empty_strided((2, 1), (1, 1), device='cpu', dtype=torch.bool) 2023-01-11T21:05:10.7377295Z kernel_cpp_0(c_void_p(buf0.data_ptr())) 2023-01-11T21:05:10.7377365Z return (buf0, ) 2023-01-11T21:05:10.7377369Z 2023-01-11T21:05:10.7377374Z 2023-01-11T21:05:10.7377447Z if __name__ == "__main__": 2023-01-11T21:05:10.7377564Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.7377685Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.7377878Z arg0_1 = rand_strided((2, 0), (1, 1), device='cpu', dtype=torch.float16) 2023-01-11T21:05:10.7377984Z print_performance(lambda: call([arg0_1])) 2023-01-11T21:05:10.7377989Z 2023-01-11T21:05:10.7377994Z 2023-01-11T21:05:10.7378085Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.7378140Z import torch 2023-01-11T21:05:10.7378207Z import random 2023-01-11T21:05:10.7378318Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.7378437Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.7378442Z 2023-01-11T21:05:10.7378608Z aten = torch.ops.aten 2023-01-11T21:05:10.7378778Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.7378869Z async_compile = AsyncCompile() 2023-01-11T21:05:10.7378874Z 2023-01-11T21:05:10.7378879Z 2023-01-11T21:05:10.7379014Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.7379206Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.7379317Z extern "C" void kernel(bool* __restrict__ out_ptr0) 2023-01-11T21:05:10.7379378Z { 2023-01-11T21:05:10.7379455Z #pragma GCC ivdep 2023-01-11T21:05:10.7379536Z for(long i0=0; i0<2; i0+=1) 2023-01-11T21:05:10.7379599Z { 2023-01-11T21:05:10.7379661Z { 2023-01-11T21:05:10.7379710Z { 2023-01-11T21:05:10.7379813Z auto tmp0 = static_cast(false); 2023-01-11T21:05:10.7379895Z auto tmp1 = tmp0 == 0; 2023-01-11T21:05:10.7379975Z out_ptr0[i0] = tmp1; 2023-01-11T21:05:10.7380036Z } 2023-01-11T21:05:10.7380099Z } 2023-01-11T21:05:10.7380146Z } 2023-01-11T21:05:10.7380204Z } 2023-01-11T21:05:10.7380281Z ''') 2023-01-11T21:05:10.7380286Z 2023-01-11T21:05:10.7380290Z 2023-01-11T21:05:10.7380415Z async_compile.wait(globals()) 2023-01-11T21:05:10.7380487Z del async_compile 2023-01-11T21:05:10.7380492Z 2023-01-11T21:05:10.7380563Z def call(args): 2023-01-11T21:05:10.7380633Z arg0_1, = args 2023-01-11T21:05:10.7380702Z args.clear() 2023-01-11T21:05:10.7380876Z buf0 = empty_strided((2, ), (1, ), device='cpu', dtype=torch.bool) 2023-01-11T21:05:10.7380976Z kernel_cpp_0(c_void_p(buf0.data_ptr())) 2023-01-11T21:05:10.7381047Z return (buf0, ) 2023-01-11T21:05:10.7381052Z 2023-01-11T21:05:10.7381057Z 2023-01-11T21:05:10.7381130Z if __name__ == "__main__": 2023-01-11T21:05:10.7381239Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.7381359Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.7381553Z arg0_1 = rand_strided((2, 0), (1, 1), device='cpu', dtype=torch.float16) 2023-01-11T21:05:10.7381650Z print_performance(lambda: call([arg0_1])) 2023-01-11T21:05:10.7381668Z 2023-01-11T21:05:10.7381719Z ok (2.938s) 2023-01-11T21:05:10.7382156Z test_zeros_cpu (__main__.CpuTests) ... inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.7382282Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.7382541Z [2023-01-11 21:02:44,883] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 499 2023-01-11T21:05:10.7382807Z [2023-01-11 21:02:47,605] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 499 2023-01-11T21:05:10.7382813Z 2023-01-11T21:05:10.7382909Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.7382979Z import torch 2023-01-11T21:05:10.7383048Z import random 2023-01-11T21:05:10.7383149Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.7383270Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.7383275Z 2023-01-11T21:05:10.7383351Z aten = torch.ops.aten 2023-01-11T21:05:10.7383481Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.7383571Z async_compile = AsyncCompile() 2023-01-11T21:05:10.7383576Z 2023-01-11T21:05:10.7383580Z 2023-01-11T21:05:10.7383713Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.7383918Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.7384034Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:05:10.7384133Z float* __restrict__ out_ptr0, 2023-01-11T21:05:10.7384215Z float* __restrict__ out_ptr1, 2023-01-11T21:05:10.7384339Z float* __restrict__ out_ptr2, 2023-01-11T21:05:10.7384432Z float* __restrict__ out_ptr3, 2023-01-11T21:05:10.7384526Z float* __restrict__ out_ptr4, 2023-01-11T21:05:10.7384616Z float* __restrict__ out_ptr5) 2023-01-11T21:05:10.7384675Z { 2023-01-11T21:05:10.7384770Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.7384818Z { 2023-01-11T21:05:10.7384892Z #pragma omp for 2023-01-11T21:05:10.7384974Z for(long i0=0; i0<8; i0+=1) 2023-01-11T21:05:10.7385037Z { 2023-01-11T21:05:10.7385099Z { 2023-01-11T21:05:10.7385164Z { 2023-01-11T21:05:10.7385242Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:05:10.7385345Z auto tmp1 = static_cast(1); 2023-01-11T21:05:10.7385436Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:05:10.7385520Z out_ptr0[i0] = tmp2; 2023-01-11T21:05:10.7385607Z out_ptr1[i0] = tmp2; 2023-01-11T21:05:10.7385671Z } 2023-01-11T21:05:10.7385733Z } 2023-01-11T21:05:10.7385780Z } 2023-01-11T21:05:10.7385882Z #pragma omp for 2023-01-11T21:05:10.7385965Z for(long i0=0; i0<2048; i0+=1) 2023-01-11T21:05:10.7386026Z { 2023-01-11T21:05:10.7386163Z auto tmp0 = at::vec::Vectorized(static_cast(0)); 2023-01-11T21:05:10.7386255Z tmp0.store(out_ptr2 + 16*i0); 2023-01-11T21:05:10.7386316Z } 2023-01-11T21:05:10.7386396Z #pragma omp for simd simdlen(8) 2023-01-11T21:05:10.7386483Z for(long i0=32768; i0<32768; i0+=1) 2023-01-11T21:05:10.7386544Z { 2023-01-11T21:05:10.7386642Z auto tmp0 = static_cast(0); 2023-01-11T21:05:10.7386722Z out_ptr2[i0] = tmp0; 2023-01-11T21:05:10.7386781Z } 2023-01-11T21:05:10.7386854Z #pragma omp for 2023-01-11T21:05:10.7386922Z for(long i0=0; i0<2048; i0+=1) 2023-01-11T21:05:10.7386985Z { 2023-01-11T21:05:10.7387118Z auto tmp0 = at::vec::Vectorized(static_cast(0)); 2023-01-11T21:05:10.7387210Z tmp0.store(out_ptr3 + 16*i0); 2023-01-11T21:05:10.7387275Z } 2023-01-11T21:05:10.7387368Z #pragma omp for simd simdlen(8) 2023-01-11T21:05:10.7387456Z for(long i0=32768; i0<32768; i0+=1) 2023-01-11T21:05:10.7387503Z { 2023-01-11T21:05:10.7387600Z auto tmp0 = static_cast(0); 2023-01-11T21:05:10.7387679Z out_ptr3[i0] = tmp0; 2023-01-11T21:05:10.7387741Z } 2023-01-11T21:05:10.7387816Z #pragma omp for 2023-01-11T21:05:10.7387896Z for(long i0=0; i0<6; i0+=1) 2023-01-11T21:05:10.7387957Z { 2023-01-11T21:05:10.7388005Z { 2023-01-11T21:05:10.7388068Z { 2023-01-11T21:05:10.7388171Z auto tmp0 = static_cast(0); 2023-01-11T21:05:10.7388256Z out_ptr4[i0] = tmp0; 2023-01-11T21:05:10.7388325Z } 2023-01-11T21:05:10.7388389Z } 2023-01-11T21:05:10.7388437Z } 2023-01-11T21:05:10.7388511Z #pragma omp for 2023-01-11T21:05:10.7388593Z for(long i0=0; i0<6; i0+=1) 2023-01-11T21:05:10.7388654Z { 2023-01-11T21:05:10.7388715Z { 2023-01-11T21:05:10.7388778Z { 2023-01-11T21:05:10.7388887Z auto tmp0 = static_cast(3.1416); 2023-01-11T21:05:10.7388956Z out_ptr5[i0] = tmp0; 2023-01-11T21:05:10.7389021Z } 2023-01-11T21:05:10.7389083Z } 2023-01-11T21:05:10.7389144Z } 2023-01-11T21:05:10.7389204Z } 2023-01-11T21:05:10.7389263Z } 2023-01-11T21:05:10.7389330Z ''') 2023-01-11T21:05:10.7389349Z 2023-01-11T21:05:10.7389353Z 2023-01-11T21:05:10.7389428Z async_compile.wait(globals()) 2023-01-11T21:05:10.7389501Z del async_compile 2023-01-11T21:05:10.7389506Z 2023-01-11T21:05:10.7389575Z def call(args): 2023-01-11T21:05:10.7389675Z arg0_1, = args 2023-01-11T21:05:10.7389744Z args.clear() 2023-01-11T21:05:10.7389938Z buf0 = empty_strided((8, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.7390134Z buf4 = empty_strided((8, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.7390339Z buf1 = empty_strided((1, 8, 64, 64), (32768, 4096, 64, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.7390556Z buf2 = empty_strided((1, 8, 64, 64), (32768, 4096, 64, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.7390747Z buf3 = empty_strided((2, 3), (3, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.7390935Z buf5 = empty_strided((2, 3), (3, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.7391192Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(buf0.data_ptr()), c_void_p(buf4.data_ptr()), c_void_p(buf1.data_ptr()), c_void_p(buf2.data_ptr()), c_void_p(buf3.data_ptr()), c_void_p(buf5.data_ptr())) 2023-01-11T21:05:10.7391262Z del arg0_1 2023-01-11T21:05:10.7391363Z return (buf0, buf1, buf2, buf3, buf4, buf5, ) 2023-01-11T21:05:10.7391369Z 2023-01-11T21:05:10.7391373Z 2023-01-11T21:05:10.7391449Z if __name__ == "__main__": 2023-01-11T21:05:10.7391594Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.7391705Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.7391897Z arg0_1 = rand_strided((8, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.7392003Z print_performance(lambda: call([arg0_1])) 2023-01-11T21:05:10.7392008Z 2023-01-11T21:05:10.7392073Z ok (2.984s) 2023-01-11T21:05:10.7392195Z test_print_pow (__main__.ExprPrinterTests) ... ok (0.010s) 2023-01-11T21:05:10.7392660Z test_cpu_broadcast1_broadcast1 (__main__.SweepInputsCpuTest) ... inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.7392786Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.7393049Z [2023-01-11 21:02:47,716] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 500 2023-01-11T21:05:10.7393309Z [2023-01-11 21:02:47,732] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 500 2023-01-11T21:05:10.7393315Z 2023-01-11T21:05:10.7393395Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.7393464Z import torch 2023-01-11T21:05:10.7393533Z import random 2023-01-11T21:05:10.7393646Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.7393765Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.7393770Z 2023-01-11T21:05:10.7393847Z aten = torch.ops.aten 2023-01-11T21:05:10.7393979Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.7394070Z async_compile = AsyncCompile() 2023-01-11T21:05:10.7394076Z 2023-01-11T21:05:10.7394080Z 2023-01-11T21:05:10.7394199Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.7394404Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.7394523Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:05:10.7394625Z const float* __restrict__ in_ptr1, 2023-01-11T21:05:10.7394723Z float* __restrict__ out_ptr0) 2023-01-11T21:05:10.7394784Z { 2023-01-11T21:05:10.7394880Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.7394927Z { 2023-01-11T21:05:10.7395002Z #pragma omp for 2023-01-11T21:05:10.7395083Z for(long i0=0; i0<10; i0+=1) 2023-01-11T21:05:10.7395144Z { 2023-01-11T21:05:10.7395207Z { 2023-01-11T21:05:10.7395270Z { 2023-01-11T21:05:10.7395361Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:05:10.7395483Z auto tmp1 = in_ptr1[i0]; 2023-01-11T21:05:10.7395572Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:05:10.7395656Z out_ptr0[i0] = tmp2; 2023-01-11T21:05:10.7395721Z } 2023-01-11T21:05:10.7395782Z } 2023-01-11T21:05:10.7395843Z } 2023-01-11T21:05:10.7395901Z } 2023-01-11T21:05:10.7395947Z } 2023-01-11T21:05:10.7396024Z ''') 2023-01-11T21:05:10.7396029Z 2023-01-11T21:05:10.7396033Z 2023-01-11T21:05:10.7396121Z async_compile.wait(globals()) 2023-01-11T21:05:10.7396190Z del async_compile 2023-01-11T21:05:10.7396195Z 2023-01-11T21:05:10.7396264Z def call(args): 2023-01-11T21:05:10.7396340Z arg0_1, arg1_1 = args 2023-01-11T21:05:10.7396412Z args.clear() 2023-01-11T21:05:10.7396592Z buf0 = empty_strided((10, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.7396754Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(arg1_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:05:10.7396825Z del arg0_1 2023-01-11T21:05:10.7396891Z del arg1_1 2023-01-11T21:05:10.7396963Z return (buf0, ) 2023-01-11T21:05:10.7396968Z 2023-01-11T21:05:10.7396972Z 2023-01-11T21:05:10.7397047Z if __name__ == "__main__": 2023-01-11T21:05:10.7397189Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.7397311Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.7397494Z arg0_1 = rand_strided((10, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.7397684Z arg1_1 = rand_strided((10, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.7397797Z print_performance(lambda: call([arg0_1, arg1_1])) 2023-01-11T21:05:10.7397802Z 2023-01-11T21:05:10.7397865Z ok (0.051s) 2023-01-11T21:05:10.7398333Z test_cpu_broadcast1_broadcast2 (__main__.SweepInputsCpuTest) ... inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.7398462Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.7398721Z [2023-01-11 21:02:47,756] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 501 2023-01-11T21:05:10.7398985Z [2023-01-11 21:02:50,431] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 501 2023-01-11T21:05:10.7398991Z 2023-01-11T21:05:10.7399081Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.7399137Z import torch 2023-01-11T21:05:10.7399206Z import random 2023-01-11T21:05:10.7399318Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.7399436Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.7399441Z 2023-01-11T21:05:10.7399517Z aten = torch.ops.aten 2023-01-11T21:05:10.7399649Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.7399744Z async_compile = AsyncCompile() 2023-01-11T21:05:10.7399749Z 2023-01-11T21:05:10.7399753Z 2023-01-11T21:05:10.7399887Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.7400079Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.7400197Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:05:10.7400298Z const float* __restrict__ in_ptr1, 2023-01-11T21:05:10.7400397Z float* __restrict__ out_ptr0) 2023-01-11T21:05:10.7400456Z { 2023-01-11T21:05:10.7400551Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.7400734Z { 2023-01-11T21:05:10.7400829Z #pragma omp for 2023-01-11T21:05:10.7400952Z for(long i0=0; i0<10; i0+=1) 2023-01-11T21:05:10.7401025Z { 2023-01-11T21:05:10.7401107Z #pragma GCC ivdep 2023-01-11T21:05:10.7401192Z for(long i1=0; i1<10; i1+=1) 2023-01-11T21:05:10.7401315Z { 2023-01-11T21:05:10.7401378Z { 2023-01-11T21:05:10.7401430Z { 2023-01-11T21:05:10.7401526Z auto tmp0 = in_ptr0[i1]; 2023-01-11T21:05:10.7401623Z auto tmp1 = in_ptr1[i0]; 2023-01-11T21:05:10.7401715Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:05:10.7401814Z out_ptr0[i1 + (10*i0)] = tmp2; 2023-01-11T21:05:10.7401880Z } 2023-01-11T21:05:10.7401944Z } 2023-01-11T21:05:10.7401992Z } 2023-01-11T21:05:10.7402054Z } 2023-01-11T21:05:10.7402115Z } 2023-01-11T21:05:10.7402175Z } 2023-01-11T21:05:10.7402259Z ''') 2023-01-11T21:05:10.7402265Z 2023-01-11T21:05:10.7402269Z 2023-01-11T21:05:10.7402357Z async_compile.wait(globals()) 2023-01-11T21:05:10.7402426Z del async_compile 2023-01-11T21:05:10.7402432Z 2023-01-11T21:05:10.7402486Z def call(args): 2023-01-11T21:05:10.7402560Z arg0_1, arg1_1 = args 2023-01-11T21:05:10.7402630Z args.clear() 2023-01-11T21:05:10.7402839Z buf0 = empty_strided((1, 10, 10), (100, 10, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.7403073Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(arg1_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:05:10.7403142Z del arg0_1 2023-01-11T21:05:10.7403207Z del arg1_1 2023-01-11T21:05:10.7403263Z return (buf0, ) 2023-01-11T21:05:10.7403269Z 2023-01-11T21:05:10.7403287Z 2023-01-11T21:05:10.7403348Z if __name__ == "__main__": 2023-01-11T21:05:10.7403463Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.7403586Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.7403782Z arg0_1 = rand_strided((10, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.7403988Z arg1_1 = rand_strided((1, 10, 1), (10, 1, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.7404104Z print_performance(lambda: call([arg0_1, arg1_1])) 2023-01-11T21:05:10.7404111Z 2023-01-11T21:05:10.7404177Z ok (2.701s) 2023-01-11T21:05:10.7404646Z test_cpu_broadcast1_broadcast3 (__main__.SweepInputsCpuTest) ... inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.7404759Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.7405016Z [2023-01-11 21:02:50,462] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 502 2023-01-11T21:05:10.7405281Z [2023-01-11 21:02:53,142] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 502 2023-01-11T21:05:10.7405286Z 2023-01-11T21:05:10.7405379Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.7405450Z import torch 2023-01-11T21:05:10.7405520Z import random 2023-01-11T21:05:10.7405633Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.7405751Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.7405756Z 2023-01-11T21:05:10.7405834Z aten = torch.ops.aten 2023-01-11T21:05:10.7405954Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.7406046Z async_compile = AsyncCompile() 2023-01-11T21:05:10.7406051Z 2023-01-11T21:05:10.7406055Z 2023-01-11T21:05:10.7406190Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.7406394Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.7406511Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:05:10.7406613Z const float* __restrict__ in_ptr1, 2023-01-11T21:05:10.7406712Z float* __restrict__ out_ptr0) 2023-01-11T21:05:10.7406759Z { 2023-01-11T21:05:10.7406855Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.7406957Z { 2023-01-11T21:05:10.7407032Z #pragma omp for 2023-01-11T21:05:10.7407114Z for(long i0=0; i0<10; i0+=1) 2023-01-11T21:05:10.7407175Z { 2023-01-11T21:05:10.7407240Z { 2023-01-11T21:05:10.7407289Z { 2023-01-11T21:05:10.7407380Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:05:10.7407468Z auto tmp1 = in_ptr1[0]; 2023-01-11T21:05:10.7407557Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:05:10.7407640Z out_ptr0[i0] = tmp2; 2023-01-11T21:05:10.7407703Z } 2023-01-11T21:05:10.7407763Z } 2023-01-11T21:05:10.7407811Z } 2023-01-11T21:05:10.7407870Z } 2023-01-11T21:05:10.7407927Z } 2023-01-11T21:05:10.7408004Z ''') 2023-01-11T21:05:10.7408009Z 2023-01-11T21:05:10.7408014Z 2023-01-11T21:05:10.7408102Z async_compile.wait(globals()) 2023-01-11T21:05:10.7408173Z del async_compile 2023-01-11T21:05:10.7408178Z 2023-01-11T21:05:10.7408251Z def call(args): 2023-01-11T21:05:10.7408312Z arg0_1, arg1_1 = args 2023-01-11T21:05:10.7408382Z args.clear() 2023-01-11T21:05:10.7408576Z buf0 = empty_strided((10, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.7408770Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(arg1_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:05:10.7408841Z del arg0_1 2023-01-11T21:05:10.7408906Z del arg1_1 2023-01-11T21:05:10.7408975Z return (buf0, ) 2023-01-11T21:05:10.7408981Z 2023-01-11T21:05:10.7408985Z 2023-01-11T21:05:10.7409058Z if __name__ == "__main__": 2023-01-11T21:05:10.7409158Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.7409277Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.7409468Z arg0_1 = rand_strided((10, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.7409657Z arg1_1 = rand_strided((1, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.7409773Z print_performance(lambda: call([arg0_1, arg1_1])) 2023-01-11T21:05:10.7409778Z 2023-01-11T21:05:10.7409841Z ok (2.712s) 2023-01-11T21:05:10.7410307Z test_cpu_broadcast1_dense (__main__.SweepInputsCpuTest) ... inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.7410432Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.7410690Z [2023-01-11 21:02:53,180] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 503 2023-01-11T21:05:10.7410941Z [2023-01-11 21:02:55,855] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 503 2023-01-11T21:05:10.7410946Z 2023-01-11T21:05:10.7411038Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.7411108Z import torch 2023-01-11T21:05:10.7411176Z import random 2023-01-11T21:05:10.7411288Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.7411410Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.7411416Z 2023-01-11T21:05:10.7411491Z aten = torch.ops.aten 2023-01-11T21:05:10.7411612Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.7411702Z async_compile = AsyncCompile() 2023-01-11T21:05:10.7411707Z 2023-01-11T21:05:10.7411712Z 2023-01-11T21:05:10.7411844Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.7412050Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.7412166Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:05:10.7412269Z const float* __restrict__ in_ptr1, 2023-01-11T21:05:10.7412366Z float* __restrict__ out_ptr0) 2023-01-11T21:05:10.7412425Z { 2023-01-11T21:05:10.7412538Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.7412600Z { 2023-01-11T21:05:10.7412675Z #pragma omp for 2023-01-11T21:05:10.7412755Z for(long i0=0; i0<10; i0+=1) 2023-01-11T21:05:10.7412818Z { 2023-01-11T21:05:10.7412897Z #pragma GCC ivdep 2023-01-11T21:05:10.7412981Z for(long i1=0; i1<10; i1+=1) 2023-01-11T21:05:10.7413029Z { 2023-01-11T21:05:10.7413091Z { 2023-01-11T21:05:10.7413154Z { 2023-01-11T21:05:10.7413252Z auto tmp0 = in_ptr0[i1]; 2023-01-11T21:05:10.7413352Z auto tmp1 = in_ptr1[i1 + (10*i0)]; 2023-01-11T21:05:10.7413444Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:05:10.7413539Z out_ptr0[i1 + (10*i0)] = tmp2; 2023-01-11T21:05:10.7413591Z } 2023-01-11T21:05:10.7413652Z } 2023-01-11T21:05:10.7413715Z } 2023-01-11T21:05:10.7413778Z } 2023-01-11T21:05:10.7413837Z } 2023-01-11T21:05:10.7413895Z } 2023-01-11T21:05:10.7413959Z ''') 2023-01-11T21:05:10.7413976Z 2023-01-11T21:05:10.7413980Z 2023-01-11T21:05:10.7414055Z async_compile.wait(globals()) 2023-01-11T21:05:10.7414150Z del async_compile 2023-01-11T21:05:10.7414156Z 2023-01-11T21:05:10.7414226Z def call(args): 2023-01-11T21:05:10.7414300Z arg0_1, arg1_1 = args 2023-01-11T21:05:10.7414369Z args.clear() 2023-01-11T21:05:10.7414567Z buf0 = empty_strided((10, 10), (10, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.7414729Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(arg1_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:05:10.7414782Z del arg0_1 2023-01-11T21:05:10.7414845Z del arg1_1 2023-01-11T21:05:10.7414914Z return (buf0, ) 2023-01-11T21:05:10.7414919Z 2023-01-11T21:05:10.7414923Z 2023-01-11T21:05:10.7414998Z if __name__ == "__main__": 2023-01-11T21:05:10.7415110Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.7415233Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.7415424Z arg0_1 = rand_strided((10, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.7415620Z arg1_1 = rand_strided((10, 10), (10, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.7415721Z print_performance(lambda: call([arg0_1, arg1_1])) 2023-01-11T21:05:10.7415727Z 2023-01-11T21:05:10.7415791Z ok (2.713s) 2023-01-11T21:05:10.7416255Z test_cpu_broadcast1_double (__main__.SweepInputsCpuTest) ... inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.7416379Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.7416637Z [2023-01-11 21:02:55,895] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 504 2023-01-11T21:05:10.7416901Z [2023-01-11 21:02:58,539] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 504 2023-01-11T21:05:10.7416909Z 2023-01-11T21:05:10.7417001Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.7417069Z import torch 2023-01-11T21:05:10.7417136Z import random 2023-01-11T21:05:10.7417236Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.7417355Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.7417360Z 2023-01-11T21:05:10.7417435Z aten = torch.ops.aten 2023-01-11T21:05:10.7417566Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.7417657Z async_compile = AsyncCompile() 2023-01-11T21:05:10.7417662Z 2023-01-11T21:05:10.7417666Z 2023-01-11T21:05:10.7417798Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.7417999Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.7418148Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:05:10.7418241Z const double* __restrict__ in_ptr1, 2023-01-11T21:05:10.7418340Z double* __restrict__ out_ptr0) 2023-01-11T21:05:10.7418400Z { 2023-01-11T21:05:10.7418592Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.7418657Z { 2023-01-11T21:05:10.7418736Z #pragma omp for 2023-01-11T21:05:10.7418817Z for(long i0=0; i0<10; i0+=1) 2023-01-11T21:05:10.7418866Z { 2023-01-11T21:05:10.7418946Z #pragma GCC ivdep 2023-01-11T21:05:10.7419032Z for(long i1=0; i1<10; i1+=1) 2023-01-11T21:05:10.7419095Z { 2023-01-11T21:05:10.7419160Z { 2023-01-11T21:05:10.7419225Z { 2023-01-11T21:05:10.7419321Z auto tmp0 = in_ptr0[i1]; 2023-01-11T21:05:10.7419411Z auto tmp2 = in_ptr1[i1 + (10*i0)]; 2023-01-11T21:05:10.7419525Z auto tmp1 = static_cast(tmp0); 2023-01-11T21:05:10.7419617Z auto tmp3 = tmp1 + tmp2; 2023-01-11T21:05:10.7419745Z out_ptr0[i1 + (10*i0)] = tmp3; 2023-01-11T21:05:10.7419812Z } 2023-01-11T21:05:10.7419874Z } 2023-01-11T21:05:10.7419936Z } 2023-01-11T21:05:10.7419983Z } 2023-01-11T21:05:10.7420043Z } 2023-01-11T21:05:10.7420103Z } 2023-01-11T21:05:10.7420186Z ''') 2023-01-11T21:05:10.7420191Z 2023-01-11T21:05:10.7420195Z 2023-01-11T21:05:10.7420285Z async_compile.wait(globals()) 2023-01-11T21:05:10.7420357Z del async_compile 2023-01-11T21:05:10.7420362Z 2023-01-11T21:05:10.7420431Z def call(args): 2023-01-11T21:05:10.7420491Z arg0_1, arg1_1 = args 2023-01-11T21:05:10.7420560Z args.clear() 2023-01-11T21:05:10.7420760Z buf0 = empty_strided((10, 10), (10, 1), device='cpu', dtype=torch.float64) 2023-01-11T21:05:10.7420919Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(arg1_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:05:10.7420992Z del arg0_1 2023-01-11T21:05:10.7421057Z del arg1_1 2023-01-11T21:05:10.7421127Z return (buf0, ) 2023-01-11T21:05:10.7421135Z 2023-01-11T21:05:10.7421139Z 2023-01-11T21:05:10.7421215Z if __name__ == "__main__": 2023-01-11T21:05:10.7421315Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.7421438Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.7421628Z arg0_1 = rand_strided((10, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.7421825Z arg1_1 = rand_strided((10, 10), (10, 1), device='cpu', dtype=torch.float64) 2023-01-11T21:05:10.7421939Z print_performance(lambda: call([arg0_1, arg1_1])) 2023-01-11T21:05:10.7421944Z 2023-01-11T21:05:10.7422010Z ok (2.683s) 2023-01-11T21:05:10.7422473Z test_cpu_broadcast1_int (__main__.SweepInputsCpuTest) ... inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.7422601Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.7422847Z [2023-01-11 21:02:58,573] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 505 2023-01-11T21:05:10.7423109Z [2023-01-11 21:03:01,216] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 505 2023-01-11T21:05:10.7423114Z 2023-01-11T21:05:10.7423207Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.7423276Z import torch 2023-01-11T21:05:10.7423347Z import random 2023-01-11T21:05:10.7423460Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.7423579Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.7423584Z 2023-01-11T21:05:10.7423689Z aten = torch.ops.aten 2023-01-11T21:05:10.7423808Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.7423897Z async_compile = AsyncCompile() 2023-01-11T21:05:10.7423902Z 2023-01-11T21:05:10.7423909Z 2023-01-11T21:05:10.7424043Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.7424246Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.7424366Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:05:10.7424467Z const int* __restrict__ in_ptr1, 2023-01-11T21:05:10.7424564Z float* __restrict__ out_ptr0) 2023-01-11T21:05:10.7424625Z { 2023-01-11T21:05:10.7424708Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.7424767Z { 2023-01-11T21:05:10.7424842Z #pragma omp for 2023-01-11T21:05:10.7424924Z for(long i0=0; i0<10; i0+=1) 2023-01-11T21:05:10.7424989Z { 2023-01-11T21:05:10.7425054Z { 2023-01-11T21:05:10.7425118Z { 2023-01-11T21:05:10.7425197Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:05:10.7425289Z auto tmp1 = in_ptr1[i0]; 2023-01-11T21:05:10.7425425Z auto tmp2 = static_cast(tmp1); 2023-01-11T21:05:10.7425517Z auto tmp3 = tmp0 + tmp2; 2023-01-11T21:05:10.7425601Z out_ptr0[i0] = tmp3; 2023-01-11T21:05:10.7425664Z } 2023-01-11T21:05:10.7425725Z } 2023-01-11T21:05:10.7425772Z } 2023-01-11T21:05:10.7425830Z } 2023-01-11T21:05:10.7425888Z } 2023-01-11T21:05:10.7425965Z ''') 2023-01-11T21:05:10.7425971Z 2023-01-11T21:05:10.7425975Z 2023-01-11T21:05:10.7426062Z async_compile.wait(globals()) 2023-01-11T21:05:10.7426132Z del async_compile 2023-01-11T21:05:10.7426137Z 2023-01-11T21:05:10.7426205Z def call(args): 2023-01-11T21:05:10.7426266Z arg0_1, arg1_1 = args 2023-01-11T21:05:10.7426335Z args.clear() 2023-01-11T21:05:10.7426533Z buf0 = empty_strided((10, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.7426696Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(arg1_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:05:10.7426767Z del arg0_1 2023-01-11T21:05:10.7426833Z del arg1_1 2023-01-11T21:05:10.7426903Z return (buf0, ) 2023-01-11T21:05:10.7426908Z 2023-01-11T21:05:10.7426912Z 2023-01-11T21:05:10.7426974Z if __name__ == "__main__": 2023-01-11T21:05:10.7427092Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.7427216Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.7427412Z arg0_1 = rand_strided((10, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.7427603Z arg1_1 = rand_strided((10, ), (1, ), device='cpu', dtype=torch.int32) 2023-01-11T21:05:10.7427717Z print_performance(lambda: call([arg0_1, arg1_1])) 2023-01-11T21:05:10.7427722Z 2023-01-11T21:05:10.7427787Z ok (2.677s) 2023-01-11T21:05:10.7428266Z test_cpu_broadcast1_strided (__main__.SweepInputsCpuTest) ... inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.7428391Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.7428637Z [2023-01-11 21:03:01,256] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 506 2023-01-11T21:05:10.7428900Z [2023-01-11 21:03:03,937] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 506 2023-01-11T21:05:10.7428905Z 2023-01-11T21:05:10.7429000Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.7429067Z import torch 2023-01-11T21:05:10.7429135Z import random 2023-01-11T21:05:10.7429248Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.7429396Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.7429401Z 2023-01-11T21:05:10.7429478Z aten = torch.ops.aten 2023-01-11T21:05:10.7429600Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.7429690Z async_compile = AsyncCompile() 2023-01-11T21:05:10.7429695Z 2023-01-11T21:05:10.7429700Z 2023-01-11T21:05:10.7429832Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.7430034Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.7430153Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:05:10.7430255Z const float* __restrict__ in_ptr1, 2023-01-11T21:05:10.7430353Z float* __restrict__ out_ptr0) 2023-01-11T21:05:10.7430412Z { 2023-01-11T21:05:10.7430497Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.7430555Z { 2023-01-11T21:05:10.7430630Z #pragma omp for 2023-01-11T21:05:10.7430714Z for(long i0=0; i0<10; i0+=1) 2023-01-11T21:05:10.7430776Z { 2023-01-11T21:05:10.7430854Z #pragma GCC ivdep 2023-01-11T21:05:10.7430938Z for(long i1=0; i1<10; i1+=1) 2023-01-11T21:05:10.7431015Z { 2023-01-11T21:05:10.7431080Z { 2023-01-11T21:05:10.7431144Z { 2023-01-11T21:05:10.7431238Z auto tmp0 = in_ptr0[i1]; 2023-01-11T21:05:10.7431342Z auto tmp1 = in_ptr1[(2*i1) + (30*i0)]; 2023-01-11T21:05:10.7431435Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:05:10.7431531Z out_ptr0[i1 + (10*i0)] = tmp2; 2023-01-11T21:05:10.7431583Z } 2023-01-11T21:05:10.7431646Z } 2023-01-11T21:05:10.7431707Z } 2023-01-11T21:05:10.7431767Z } 2023-01-11T21:05:10.7431826Z } 2023-01-11T21:05:10.7431884Z } 2023-01-11T21:05:10.7431948Z ''') 2023-01-11T21:05:10.7431955Z 2023-01-11T21:05:10.7431972Z 2023-01-11T21:05:10.7432049Z async_compile.wait(globals()) 2023-01-11T21:05:10.7432120Z del async_compile 2023-01-11T21:05:10.7432124Z 2023-01-11T21:05:10.7432194Z def call(args): 2023-01-11T21:05:10.7432269Z arg0_1, arg1_1 = args 2023-01-11T21:05:10.7432338Z args.clear() 2023-01-11T21:05:10.7432538Z buf0 = empty_strided((10, 10), (10, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.7432701Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(arg1_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:05:10.7432755Z del arg0_1 2023-01-11T21:05:10.7432818Z del arg1_1 2023-01-11T21:05:10.7432888Z return (buf0, ) 2023-01-11T21:05:10.7432893Z 2023-01-11T21:05:10.7432897Z 2023-01-11T21:05:10.7432970Z if __name__ == "__main__": 2023-01-11T21:05:10.7433084Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.7433205Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.7433399Z arg0_1 = rand_strided((10, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.7433599Z arg1_1 = rand_strided((10, 10), (30, 2), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.7433701Z print_performance(lambda: call([arg0_1, arg1_1])) 2023-01-11T21:05:10.7433708Z 2023-01-11T21:05:10.7433772Z ok (2.720s) 2023-01-11T21:05:10.7434251Z test_cpu_broadcast1_transposed (__main__.SweepInputsCpuTest) ... inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.7434376Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.7434636Z [2023-01-11 21:03:03,970] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 507 2023-01-11T21:05:10.7434898Z [2023-01-11 21:03:06,633] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 507 2023-01-11T21:05:10.7434953Z 2023-01-11T21:05:10.7435047Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.7435115Z import torch 2023-01-11T21:05:10.7435184Z import random 2023-01-11T21:05:10.7435287Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.7435405Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.7435409Z 2023-01-11T21:05:10.7435485Z aten = torch.ops.aten 2023-01-11T21:05:10.7435618Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.7435708Z async_compile = AsyncCompile() 2023-01-11T21:05:10.7435713Z 2023-01-11T21:05:10.7435717Z 2023-01-11T21:05:10.7435849Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.7436054Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.7436175Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:05:10.7436268Z const float* __restrict__ in_ptr1, 2023-01-11T21:05:10.7436368Z float* __restrict__ out_ptr0) 2023-01-11T21:05:10.7436427Z { 2023-01-11T21:05:10.7436555Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.7436617Z { 2023-01-11T21:05:10.7436694Z #pragma omp for 2023-01-11T21:05:10.7436776Z for(long i0=0; i0<10; i0+=1) 2023-01-11T21:05:10.7436824Z { 2023-01-11T21:05:10.7436901Z #pragma GCC ivdep 2023-01-11T21:05:10.7436985Z for(long i1=0; i1<10; i1+=1) 2023-01-11T21:05:10.7437046Z { 2023-01-11T21:05:10.7437109Z { 2023-01-11T21:05:10.7437173Z { 2023-01-11T21:05:10.7437268Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:05:10.7437358Z auto tmp1 = in_ptr1[i1 + (10*i0)]; 2023-01-11T21:05:10.7437450Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:05:10.7437544Z out_ptr0[i1 + (10*i0)] = tmp2; 2023-01-11T21:05:10.7437611Z } 2023-01-11T21:05:10.7437673Z } 2023-01-11T21:05:10.7437733Z } 2023-01-11T21:05:10.7437781Z } 2023-01-11T21:05:10.7437840Z } 2023-01-11T21:05:10.7437900Z } 2023-01-11T21:05:10.7437978Z ''') 2023-01-11T21:05:10.7437983Z 2023-01-11T21:05:10.7437987Z 2023-01-11T21:05:10.7438076Z async_compile.wait(globals()) 2023-01-11T21:05:10.7438147Z del async_compile 2023-01-11T21:05:10.7438152Z 2023-01-11T21:05:10.7438220Z def call(args): 2023-01-11T21:05:10.7438291Z arg0_1, arg1_1 = args 2023-01-11T21:05:10.7438347Z args.clear() 2023-01-11T21:05:10.7438548Z buf0 = empty_strided((10, 10), (1, 10), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.7438711Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(arg1_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:05:10.7438776Z del arg0_1 2023-01-11T21:05:10.7438844Z del arg1_1 2023-01-11T21:05:10.7438913Z return (buf0, ) 2023-01-11T21:05:10.7438920Z 2023-01-11T21:05:10.7438924Z 2023-01-11T21:05:10.7438998Z if __name__ == "__main__": 2023-01-11T21:05:10.7439099Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.7439223Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.7439421Z arg0_1 = rand_strided((10, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.7439620Z arg1_1 = rand_strided((10, 10), (1, 10), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.7439734Z print_performance(lambda: call([arg0_1, arg1_1])) 2023-01-11T21:05:10.7439740Z 2023-01-11T21:05:10.7439805Z ok (2.696s) 2023-01-11T21:05:10.7440279Z test_cpu_broadcast2_broadcast1 (__main__.SweepInputsCpuTest) ... inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.7440444Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.7440824Z [2023-01-11 21:03:06,666] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 508 2023-01-11T21:05:10.7441091Z [2023-01-11 21:03:09,279] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 508 2023-01-11T21:05:10.7441096Z 2023-01-11T21:05:10.7441178Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.7441251Z import torch 2023-01-11T21:05:10.7441321Z import random 2023-01-11T21:05:10.7441438Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.7441559Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.7441564Z 2023-01-11T21:05:10.7441641Z aten = torch.ops.aten 2023-01-11T21:05:10.7441778Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.7441856Z async_compile = AsyncCompile() 2023-01-11T21:05:10.7441877Z 2023-01-11T21:05:10.7441881Z 2023-01-11T21:05:10.7442001Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.7442205Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.7442379Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:05:10.7442485Z const float* __restrict__ in_ptr1, 2023-01-11T21:05:10.7442589Z float* __restrict__ out_ptr0) 2023-01-11T21:05:10.7442649Z { 2023-01-11T21:05:10.7442748Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.7442794Z { 2023-01-11T21:05:10.7442872Z #pragma omp for 2023-01-11T21:05:10.7442959Z for(long i0=0; i0<10; i0+=1) 2023-01-11T21:05:10.7443021Z { 2023-01-11T21:05:10.7443100Z #pragma GCC ivdep 2023-01-11T21:05:10.7443189Z for(long i1=0; i1<10; i1+=1) 2023-01-11T21:05:10.7443252Z { 2023-01-11T21:05:10.7443302Z { 2023-01-11T21:05:10.7443370Z { 2023-01-11T21:05:10.7443467Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:05:10.7443563Z auto tmp1 = in_ptr1[i1]; 2023-01-11T21:05:10.7443659Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:05:10.7443758Z out_ptr0[i1 + (10*i0)] = tmp2; 2023-01-11T21:05:10.7443825Z } 2023-01-11T21:05:10.7443876Z } 2023-01-11T21:05:10.7443937Z } 2023-01-11T21:05:10.7443998Z } 2023-01-11T21:05:10.7444058Z } 2023-01-11T21:05:10.7444116Z } 2023-01-11T21:05:10.7444193Z ''') 2023-01-11T21:05:10.7444198Z 2023-01-11T21:05:10.7444202Z 2023-01-11T21:05:10.7444289Z async_compile.wait(globals()) 2023-01-11T21:05:10.7444347Z del async_compile 2023-01-11T21:05:10.7444351Z 2023-01-11T21:05:10.7444419Z def call(args): 2023-01-11T21:05:10.7444492Z arg0_1, arg1_1 = args 2023-01-11T21:05:10.7444560Z args.clear() 2023-01-11T21:05:10.7444770Z buf0 = empty_strided((1, 10, 10), (100, 10, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.7444936Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(arg1_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:05:10.7445002Z del arg0_1 2023-01-11T21:05:10.7445057Z del arg1_1 2023-01-11T21:05:10.7445127Z return (buf0, ) 2023-01-11T21:05:10.7445133Z 2023-01-11T21:05:10.7445137Z 2023-01-11T21:05:10.7445210Z if __name__ == "__main__": 2023-01-11T21:05:10.7445324Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.7445445Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.7445652Z arg0_1 = rand_strided((1, 10, 1), (10, 1, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.7445844Z arg1_1 = rand_strided((10, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.7445958Z print_performance(lambda: call([arg0_1, arg1_1])) 2023-01-11T21:05:10.7445964Z 2023-01-11T21:05:10.7446015Z ok (2.649s) 2023-01-11T21:05:10.7446490Z test_cpu_broadcast2_broadcast2 (__main__.SweepInputsCpuTest) ... inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.7446655Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.7446919Z [2023-01-11 21:03:09,315] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 509 2023-01-11T21:05:10.7447182Z [2023-01-11 21:03:09,328] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 509 2023-01-11T21:05:10.7447187Z 2023-01-11T21:05:10.7447280Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.7447349Z import torch 2023-01-11T21:05:10.7447418Z import random 2023-01-11T21:05:10.7447532Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.7447641Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.7447646Z 2023-01-11T21:05:10.7447722Z aten = torch.ops.aten 2023-01-11T21:05:10.7447855Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.7447972Z async_compile = AsyncCompile() 2023-01-11T21:05:10.7447978Z 2023-01-11T21:05:10.7447982Z 2023-01-11T21:05:10.7448116Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.7448322Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.7448443Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:05:10.7448547Z const float* __restrict__ in_ptr1, 2023-01-11T21:05:10.7448634Z float* __restrict__ out_ptr0) 2023-01-11T21:05:10.7448694Z { 2023-01-11T21:05:10.7448791Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.7448851Z { 2023-01-11T21:05:10.7448926Z #pragma omp for 2023-01-11T21:05:10.7449009Z for(long i0=0; i0<10; i0+=1) 2023-01-11T21:05:10.7449070Z { 2023-01-11T21:05:10.7449120Z { 2023-01-11T21:05:10.7449182Z { 2023-01-11T21:05:10.7449273Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:05:10.7449367Z auto tmp1 = in_ptr1[i0]; 2023-01-11T21:05:10.7449456Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:05:10.7449539Z out_ptr0[i0] = tmp2; 2023-01-11T21:05:10.7449603Z } 2023-01-11T21:05:10.7449651Z } 2023-01-11T21:05:10.7449710Z } 2023-01-11T21:05:10.7449768Z } 2023-01-11T21:05:10.7449825Z } 2023-01-11T21:05:10.7449901Z ''') 2023-01-11T21:05:10.7449906Z 2023-01-11T21:05:10.7449910Z 2023-01-11T21:05:10.7449998Z async_compile.wait(globals()) 2023-01-11T21:05:10.7450056Z del async_compile 2023-01-11T21:05:10.7450071Z 2023-01-11T21:05:10.7450128Z def call(args): 2023-01-11T21:05:10.7450199Z arg0_1, arg1_1 = args 2023-01-11T21:05:10.7450267Z args.clear() 2023-01-11T21:05:10.7450476Z buf0 = empty_strided((1, 10, 1), (10, 1, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.7450641Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(arg1_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:05:10.7450708Z del arg0_1 2023-01-11T21:05:10.7450773Z del arg1_1 2023-01-11T21:05:10.7450830Z return (buf0, ) 2023-01-11T21:05:10.7450835Z 2023-01-11T21:05:10.7450839Z 2023-01-11T21:05:10.7450912Z if __name__ == "__main__": 2023-01-11T21:05:10.7451023Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.7451147Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.7451355Z arg0_1 = rand_strided((1, 10, 1), (10, 1, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.7451556Z arg1_1 = rand_strided((1, 10, 1), (10, 1, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.7451670Z print_performance(lambda: call([arg0_1, arg1_1])) 2023-01-11T21:05:10.7451676Z 2023-01-11T21:05:10.7451769Z ok (0.042s) 2023-01-11T21:05:10.7452239Z test_cpu_broadcast2_broadcast3 (__main__.SweepInputsCpuTest) ... inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.7452366Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.7452626Z [2023-01-11 21:03:09,351] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 510 2023-01-11T21:05:10.7452892Z [2023-01-11 21:03:09,365] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 510 2023-01-11T21:05:10.7452897Z 2023-01-11T21:05:10.7452989Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.7453059Z import torch 2023-01-11T21:05:10.7453126Z import random 2023-01-11T21:05:10.7453241Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.7453360Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.7453365Z 2023-01-11T21:05:10.7453429Z aten = torch.ops.aten 2023-01-11T21:05:10.7453591Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.7453682Z async_compile = AsyncCompile() 2023-01-11T21:05:10.7453687Z 2023-01-11T21:05:10.7453692Z 2023-01-11T21:05:10.7453825Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.7454031Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.7454149Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:05:10.7454252Z const float* __restrict__ in_ptr1, 2023-01-11T21:05:10.7454353Z float* __restrict__ out_ptr0) 2023-01-11T21:05:10.7454399Z { 2023-01-11T21:05:10.7454496Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.7454559Z { 2023-01-11T21:05:10.7454634Z #pragma omp for 2023-01-11T21:05:10.7454715Z for(long i0=0; i0<10; i0+=1) 2023-01-11T21:05:10.7454776Z { 2023-01-11T21:05:10.7454837Z { 2023-01-11T21:05:10.7454889Z { 2023-01-11T21:05:10.7454982Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:05:10.7455071Z auto tmp1 = in_ptr1[0]; 2023-01-11T21:05:10.7455161Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:05:10.7455245Z out_ptr0[i0] = tmp2; 2023-01-11T21:05:10.7455309Z } 2023-01-11T21:05:10.7455358Z } 2023-01-11T21:05:10.7455420Z } 2023-01-11T21:05:10.7455478Z } 2023-01-11T21:05:10.7455535Z } 2023-01-11T21:05:10.7455611Z ''') 2023-01-11T21:05:10.7455616Z 2023-01-11T21:05:10.7455621Z 2023-01-11T21:05:10.7455710Z async_compile.wait(globals()) 2023-01-11T21:05:10.7455778Z del async_compile 2023-01-11T21:05:10.7455783Z 2023-01-11T21:05:10.7455849Z def call(args): 2023-01-11T21:05:10.7455912Z arg0_1, arg1_1 = args 2023-01-11T21:05:10.7455978Z args.clear() 2023-01-11T21:05:10.7456186Z buf0 = empty_strided((1, 10, 1), (10, 1, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.7456349Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(arg1_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:05:10.7456415Z del arg0_1 2023-01-11T21:05:10.7456479Z del arg1_1 2023-01-11T21:05:10.7456547Z return (buf0, ) 2023-01-11T21:05:10.7456552Z 2023-01-11T21:05:10.7456556Z 2023-01-11T21:05:10.7456617Z if __name__ == "__main__": 2023-01-11T21:05:10.7456729Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.7456851Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.7457055Z arg0_1 = rand_strided((1, 10, 1), (10, 1, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.7457243Z arg1_1 = rand_strided((1, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.7457358Z print_performance(lambda: call([arg0_1, arg1_1])) 2023-01-11T21:05:10.7457394Z 2023-01-11T21:05:10.7457458Z ok (0.037s) 2023-01-11T21:05:10.7457931Z test_cpu_broadcast2_dense (__main__.SweepInputsCpuTest) ... inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.7458057Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.7458304Z [2023-01-11 21:03:09,388] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 511 2023-01-11T21:05:10.7458642Z [2023-01-11 21:03:09,401] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 511 2023-01-11T21:05:10.7458649Z 2023-01-11T21:05:10.7458743Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.7458814Z import torch 2023-01-11T21:05:10.7458881Z import random 2023-01-11T21:05:10.7458996Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.7459115Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.7459120Z 2023-01-11T21:05:10.7459233Z aten = torch.ops.aten 2023-01-11T21:05:10.7459356Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.7459446Z async_compile = AsyncCompile() 2023-01-11T21:05:10.7459450Z 2023-01-11T21:05:10.7459454Z 2023-01-11T21:05:10.7459590Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.7459789Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.7459906Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:05:10.7460006Z const float* __restrict__ in_ptr1, 2023-01-11T21:05:10.7460104Z float* __restrict__ out_ptr0) 2023-01-11T21:05:10.7460163Z { 2023-01-11T21:05:10.7460247Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.7460307Z { 2023-01-11T21:05:10.7460381Z #pragma omp for 2023-01-11T21:05:10.7460462Z for(long i0=0; i0<10; i0+=1) 2023-01-11T21:05:10.7460521Z { 2023-01-11T21:05:10.7460600Z #pragma GCC ivdep 2023-01-11T21:05:10.7460685Z for(long i1=0; i1<10; i1+=1) 2023-01-11T21:05:10.7460734Z { 2023-01-11T21:05:10.7460795Z { 2023-01-11T21:05:10.7460859Z { 2023-01-11T21:05:10.7460955Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:05:10.7461056Z auto tmp1 = in_ptr1[i1 + (10*i0)]; 2023-01-11T21:05:10.7461150Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:05:10.7461244Z out_ptr0[i1 + (10*i0)] = tmp2; 2023-01-11T21:05:10.7461296Z } 2023-01-11T21:05:10.7461357Z } 2023-01-11T21:05:10.7461418Z } 2023-01-11T21:05:10.7461478Z } 2023-01-11T21:05:10.7461540Z } 2023-01-11T21:05:10.7461598Z } 2023-01-11T21:05:10.7461661Z ''') 2023-01-11T21:05:10.7461666Z 2023-01-11T21:05:10.7461683Z 2023-01-11T21:05:10.7461759Z async_compile.wait(globals()) 2023-01-11T21:05:10.7461829Z del async_compile 2023-01-11T21:05:10.7461836Z 2023-01-11T21:05:10.7461905Z def call(args): 2023-01-11T21:05:10.7461978Z arg0_1, arg1_1 = args 2023-01-11T21:05:10.7462047Z args.clear() 2023-01-11T21:05:10.7462257Z buf0 = empty_strided((1, 10, 10), (100, 10, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.7462420Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(arg1_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:05:10.7462473Z del arg0_1 2023-01-11T21:05:10.7462538Z del arg1_1 2023-01-11T21:05:10.7462608Z return (buf0, ) 2023-01-11T21:05:10.7462612Z 2023-01-11T21:05:10.7462616Z 2023-01-11T21:05:10.7462691Z if __name__ == "__main__": 2023-01-11T21:05:10.7462805Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.7462959Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.7463165Z arg0_1 = rand_strided((1, 10, 1), (10, 1, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.7463355Z arg1_1 = rand_strided((10, 10), (10, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.7463471Z print_performance(lambda: call([arg0_1, arg1_1])) 2023-01-11T21:05:10.7463476Z 2023-01-11T21:05:10.7463540Z ok (0.036s) 2023-01-11T21:05:10.7464016Z test_cpu_broadcast2_double (__main__.SweepInputsCpuTest) ... inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.7464143Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.7464401Z [2023-01-11 21:03:09,424] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 512 2023-01-11T21:05:10.7464669Z [2023-01-11 21:03:12,099] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 512 2023-01-11T21:05:10.7464675Z 2023-01-11T21:05:10.7464795Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.7464865Z import torch 2023-01-11T21:05:10.7464933Z import random 2023-01-11T21:05:10.7465036Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.7465155Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.7465159Z 2023-01-11T21:05:10.7465235Z aten = torch.ops.aten 2023-01-11T21:05:10.7465368Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.7465459Z async_compile = AsyncCompile() 2023-01-11T21:05:10.7465464Z 2023-01-11T21:05:10.7465468Z 2023-01-11T21:05:10.7465603Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.7465807Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.7465929Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:05:10.7466024Z const double* __restrict__ in_ptr1, 2023-01-11T21:05:10.7466129Z double* __restrict__ out_ptr0) 2023-01-11T21:05:10.7466187Z { 2023-01-11T21:05:10.7466284Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.7466343Z { 2023-01-11T21:05:10.7466419Z #pragma omp for 2023-01-11T21:05:10.7466500Z for(long i0=0; i0<10; i0+=1) 2023-01-11T21:05:10.7466549Z { 2023-01-11T21:05:10.7466627Z #pragma GCC ivdep 2023-01-11T21:05:10.7466713Z for(long i1=0; i1<10; i1+=1) 2023-01-11T21:05:10.7466776Z { 2023-01-11T21:05:10.7466839Z { 2023-01-11T21:05:10.7466904Z { 2023-01-11T21:05:10.7466986Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:05:10.7467089Z auto tmp2 = in_ptr1[i1 + (10*i0)]; 2023-01-11T21:05:10.7467203Z auto tmp1 = static_cast(tmp0); 2023-01-11T21:05:10.7467293Z auto tmp3 = tmp1 + tmp2; 2023-01-11T21:05:10.7467388Z out_ptr0[i1 + (10*i0)] = tmp3; 2023-01-11T21:05:10.7467455Z } 2023-01-11T21:05:10.7467518Z } 2023-01-11T21:05:10.7467568Z } 2023-01-11T21:05:10.7467628Z } 2023-01-11T21:05:10.7467687Z } 2023-01-11T21:05:10.7467746Z } 2023-01-11T21:05:10.7467822Z ''') 2023-01-11T21:05:10.7467827Z 2023-01-11T21:05:10.7467831Z 2023-01-11T21:05:10.7467920Z async_compile.wait(globals()) 2023-01-11T21:05:10.7467990Z del async_compile 2023-01-11T21:05:10.7467995Z 2023-01-11T21:05:10.7468063Z def call(args): 2023-01-11T21:05:10.7468125Z arg0_1, arg1_1 = args 2023-01-11T21:05:10.7468195Z args.clear() 2023-01-11T21:05:10.7468405Z buf0 = empty_strided((1, 10, 10), (100, 10, 1), device='cpu', dtype=torch.float64) 2023-01-11T21:05:10.7468566Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(arg1_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:05:10.7468664Z del arg0_1 2023-01-11T21:05:10.7468731Z del arg1_1 2023-01-11T21:05:10.7468799Z return (buf0, ) 2023-01-11T21:05:10.7468807Z 2023-01-11T21:05:10.7468811Z 2023-01-11T21:05:10.7468874Z if __name__ == "__main__": 2023-01-11T21:05:10.7468987Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.7469108Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.7469315Z arg0_1 = rand_strided((1, 10, 1), (10, 1, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.7469514Z arg1_1 = rand_strided((10, 10), (10, 1), device='cpu', dtype=torch.float64) 2023-01-11T21:05:10.7469629Z print_performance(lambda: call([arg0_1, arg1_1])) 2023-01-11T21:05:10.7469634Z 2023-01-11T21:05:10.7469699Z ok (2.702s) 2023-01-11T21:05:10.7470196Z test_cpu_broadcast2_int (__main__.SweepInputsCpuTest) ... inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.7470326Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.7470574Z [2023-01-11 21:03:12,139] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 513 2023-01-11T21:05:10.7470839Z [2023-01-11 21:03:14,791] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 513 2023-01-11T21:05:10.7470845Z 2023-01-11T21:05:10.7470938Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.7471006Z import torch 2023-01-11T21:05:10.7471075Z import random 2023-01-11T21:05:10.7471191Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.7471311Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.7471318Z 2023-01-11T21:05:10.7471393Z aten = torch.ops.aten 2023-01-11T21:05:10.7471514Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.7471604Z async_compile = AsyncCompile() 2023-01-11T21:05:10.7471609Z 2023-01-11T21:05:10.7471615Z 2023-01-11T21:05:10.7471748Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.7471949Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.7472069Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:05:10.7472172Z const int* __restrict__ in_ptr1, 2023-01-11T21:05:10.7472272Z float* __restrict__ out_ptr0) 2023-01-11T21:05:10.7472331Z { 2023-01-11T21:05:10.7472415Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.7472474Z { 2023-01-11T21:05:10.7472549Z #pragma omp for 2023-01-11T21:05:10.7472630Z for(long i0=0; i0<10; i0+=1) 2023-01-11T21:05:10.7472691Z { 2023-01-11T21:05:10.7472772Z #pragma GCC ivdep 2023-01-11T21:05:10.7472857Z for(long i1=0; i1<10; i1+=1) 2023-01-11T21:05:10.7472906Z { 2023-01-11T21:05:10.7472970Z { 2023-01-11T21:05:10.7473034Z { 2023-01-11T21:05:10.7473132Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:05:10.7473229Z auto tmp1 = in_ptr1[i1]; 2023-01-11T21:05:10.7473338Z auto tmp2 = static_cast(tmp1); 2023-01-11T21:05:10.7473430Z auto tmp3 = tmp0 + tmp2; 2023-01-11T21:05:10.7473513Z out_ptr0[i1 + (10*i0)] = tmp3; 2023-01-11T21:05:10.7473579Z } 2023-01-11T21:05:10.7473642Z } 2023-01-11T21:05:10.7473703Z } 2023-01-11T21:05:10.7473766Z } 2023-01-11T21:05:10.7473824Z } 2023-01-11T21:05:10.7473869Z } 2023-01-11T21:05:10.7473945Z ''') 2023-01-11T21:05:10.7473950Z 2023-01-11T21:05:10.7473954Z 2023-01-11T21:05:10.7474089Z async_compile.wait(globals()) 2023-01-11T21:05:10.7474160Z del async_compile 2023-01-11T21:05:10.7474165Z 2023-01-11T21:05:10.7474234Z def call(args): 2023-01-11T21:05:10.7474308Z arg0_1, arg1_1 = args 2023-01-11T21:05:10.7474379Z args.clear() 2023-01-11T21:05:10.7474591Z buf0 = empty_strided((1, 10, 10), (100, 10, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.7474741Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(arg1_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:05:10.7474808Z del arg0_1 2023-01-11T21:05:10.7474872Z del arg1_1 2023-01-11T21:05:10.7474941Z return (buf0, ) 2023-01-11T21:05:10.7474946Z 2023-01-11T21:05:10.7474950Z 2023-01-11T21:05:10.7475024Z if __name__ == "__main__": 2023-01-11T21:05:10.7475138Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.7475259Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.7475450Z arg0_1 = rand_strided((1, 10, 1), (10, 1, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.7475642Z arg1_1 = rand_strided((10, ), (1, ), device='cpu', dtype=torch.int32) 2023-01-11T21:05:10.7475757Z print_performance(lambda: call([arg0_1, arg1_1])) 2023-01-11T21:05:10.7475762Z 2023-01-11T21:05:10.7475860Z ok (2.692s) 2023-01-11T21:05:10.7476337Z test_cpu_broadcast2_strided (__main__.SweepInputsCpuTest) ... inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.7476466Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.7476726Z [2023-01-11 21:03:14,832] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 514 2023-01-11T21:05:10.7476990Z [2023-01-11 21:03:17,485] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 514 2023-01-11T21:05:10.7476997Z 2023-01-11T21:05:10.7477090Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.7477158Z import torch 2023-01-11T21:05:10.7477213Z import random 2023-01-11T21:05:10.7477331Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.7477450Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.7477454Z 2023-01-11T21:05:10.7477530Z aten = torch.ops.aten 2023-01-11T21:05:10.7477662Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.7477752Z async_compile = AsyncCompile() 2023-01-11T21:05:10.7477757Z 2023-01-11T21:05:10.7477761Z 2023-01-11T21:05:10.7477892Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.7478095Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.7478201Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:05:10.7478305Z const float* __restrict__ in_ptr1, 2023-01-11T21:05:10.7478407Z float* __restrict__ out_ptr0) 2023-01-11T21:05:10.7478467Z { 2023-01-11T21:05:10.7478564Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.7478627Z { 2023-01-11T21:05:10.7478705Z #pragma omp for 2023-01-11T21:05:10.7478774Z for(long i0=0; i0<10; i0+=1) 2023-01-11T21:05:10.7478836Z { 2023-01-11T21:05:10.7478914Z #pragma GCC ivdep 2023-01-11T21:05:10.7478998Z for(long i1=0; i1<10; i1+=1) 2023-01-11T21:05:10.7479061Z { 2023-01-11T21:05:10.7479123Z { 2023-01-11T21:05:10.7479175Z { 2023-01-11T21:05:10.7479271Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:05:10.7479376Z auto tmp1 = in_ptr1[(2*i1) + (30*i0)]; 2023-01-11T21:05:10.7479470Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:05:10.7479564Z out_ptr0[i1 + (10*i0)] = tmp2; 2023-01-11T21:05:10.7479660Z } 2023-01-11T21:05:10.7479723Z } 2023-01-11T21:05:10.7479772Z } 2023-01-11T21:05:10.7479833Z } 2023-01-11T21:05:10.7479893Z } 2023-01-11T21:05:10.7479953Z } 2023-01-11T21:05:10.7480033Z ''') 2023-01-11T21:05:10.7480038Z 2023-01-11T21:05:10.7480042Z 2023-01-11T21:05:10.7480130Z async_compile.wait(globals()) 2023-01-11T21:05:10.7480202Z del async_compile 2023-01-11T21:05:10.7480207Z 2023-01-11T21:05:10.7480276Z def call(args): 2023-01-11T21:05:10.7480337Z arg0_1, arg1_1 = args 2023-01-11T21:05:10.7480406Z args.clear() 2023-01-11T21:05:10.7480736Z buf0 = empty_strided((1, 10, 10), (100, 10, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.7480898Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(arg1_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:05:10.7480965Z del arg0_1 2023-01-11T21:05:10.7481031Z del arg1_1 2023-01-11T21:05:10.7481103Z return (buf0, ) 2023-01-11T21:05:10.7481108Z 2023-01-11T21:05:10.7481115Z 2023-01-11T21:05:10.7481176Z if __name__ == "__main__": 2023-01-11T21:05:10.7481290Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.7481413Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.7481671Z arg0_1 = rand_strided((1, 10, 1), (10, 1, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.7481874Z arg1_1 = rand_strided((10, 10), (30, 2), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.7481988Z print_performance(lambda: call([arg0_1, arg1_1])) 2023-01-11T21:05:10.7481993Z 2023-01-11T21:05:10.7482061Z ok (2.695s) 2023-01-11T21:05:10.7482528Z test_cpu_broadcast2_transposed (__main__.SweepInputsCpuTest) ... inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.7482657Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.7482901Z [2023-01-11 21:03:17,528] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 515 2023-01-11T21:05:10.7483167Z [2023-01-11 21:03:17,549] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 515 2023-01-11T21:05:10.7483172Z 2023-01-11T21:05:10.7483266Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.7483335Z import torch 2023-01-11T21:05:10.7483405Z import random 2023-01-11T21:05:10.7483521Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.7483641Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.7483647Z 2023-01-11T21:05:10.7483724Z aten = torch.ops.aten 2023-01-11T21:05:10.7483843Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.7483935Z async_compile = AsyncCompile() 2023-01-11T21:05:10.7483940Z 2023-01-11T21:05:10.7483946Z 2023-01-11T21:05:10.7484079Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.7484282Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.7484403Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:05:10.7484508Z const float* __restrict__ in_ptr1, 2023-01-11T21:05:10.7484608Z float* __restrict__ out_ptr0) 2023-01-11T21:05:10.7484668Z { 2023-01-11T21:05:10.7484751Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.7484813Z { 2023-01-11T21:05:10.7484889Z #pragma omp for 2023-01-11T21:05:10.7484972Z for(long i0=0; i0<10; i0+=1) 2023-01-11T21:05:10.7485034Z { 2023-01-11T21:05:10.7485112Z #pragma GCC ivdep 2023-01-11T21:05:10.7485197Z for(long i1=0; i1<10; i1+=1) 2023-01-11T21:05:10.7485247Z { 2023-01-11T21:05:10.7485310Z { 2023-01-11T21:05:10.7485375Z { 2023-01-11T21:05:10.7485512Z auto tmp0 = in_ptr0[i1]; 2023-01-11T21:05:10.7485614Z auto tmp1 = in_ptr1[i1 + (10*i0)]; 2023-01-11T21:05:10.7485707Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:05:10.7485807Z out_ptr0[i1 + (10*i0)] = tmp2; 2023-01-11T21:05:10.7485859Z } 2023-01-11T21:05:10.7485924Z } 2023-01-11T21:05:10.7485986Z } 2023-01-11T21:05:10.7486048Z } 2023-01-11T21:05:10.7486109Z } 2023-01-11T21:05:10.7486167Z } 2023-01-11T21:05:10.7486232Z ''') 2023-01-11T21:05:10.7486237Z 2023-01-11T21:05:10.7486254Z 2023-01-11T21:05:10.7486330Z async_compile.wait(globals()) 2023-01-11T21:05:10.7486402Z del async_compile 2023-01-11T21:05:10.7486406Z 2023-01-11T21:05:10.7486477Z def call(args): 2023-01-11T21:05:10.7486549Z arg0_1, arg1_1 = args 2023-01-11T21:05:10.7486619Z args.clear() 2023-01-11T21:05:10.7486828Z buf0 = empty_strided((1, 10, 10), (100, 1, 10), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.7486990Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(arg1_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:05:10.7487045Z del arg0_1 2023-01-11T21:05:10.7487137Z del arg1_1 2023-01-11T21:05:10.7487211Z return (buf0, ) 2023-01-11T21:05:10.7487216Z 2023-01-11T21:05:10.7487220Z 2023-01-11T21:05:10.7487294Z if __name__ == "__main__": 2023-01-11T21:05:10.7487407Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.7487530Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.7487737Z arg0_1 = rand_strided((1, 10, 1), (10, 1, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.7487922Z arg1_1 = rand_strided((10, 10), (1, 10), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.7488035Z print_performance(lambda: call([arg0_1, arg1_1])) 2023-01-11T21:05:10.7488040Z 2023-01-11T21:05:10.7488106Z ok (0.060s) 2023-01-11T21:05:10.7488570Z test_cpu_broadcast3_broadcast1 (__main__.SweepInputsCpuTest) ... inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.7488698Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.7488958Z [2023-01-11 21:03:17,584] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 516 2023-01-11T21:05:10.7489216Z [2023-01-11 21:03:20,271] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 516 2023-01-11T21:05:10.7489222Z 2023-01-11T21:05:10.7489313Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.7489381Z import torch 2023-01-11T21:05:10.7489454Z import random 2023-01-11T21:05:10.7489555Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.7489678Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.7489683Z 2023-01-11T21:05:10.7489759Z aten = torch.ops.aten 2023-01-11T21:05:10.7489892Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.7489985Z async_compile = AsyncCompile() 2023-01-11T21:05:10.7489990Z 2023-01-11T21:05:10.7489995Z 2023-01-11T21:05:10.7490129Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.7490332Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.7490454Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:05:10.7490543Z const float* __restrict__ in_ptr1, 2023-01-11T21:05:10.7490642Z float* __restrict__ out_ptr0) 2023-01-11T21:05:10.7490701Z { 2023-01-11T21:05:10.7490798Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.7490858Z { 2023-01-11T21:05:10.7490934Z #pragma omp for 2023-01-11T21:05:10.7491014Z for(long i0=0; i0<10; i0+=1) 2023-01-11T21:05:10.7491132Z { 2023-01-11T21:05:10.7491195Z { 2023-01-11T21:05:10.7491257Z { 2023-01-11T21:05:10.7491348Z auto tmp0 = in_ptr0[0]; 2023-01-11T21:05:10.7491442Z auto tmp1 = in_ptr1[i0]; 2023-01-11T21:05:10.7491534Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:05:10.7491618Z out_ptr0[i0] = tmp2; 2023-01-11T21:05:10.7491668Z } 2023-01-11T21:05:10.7491730Z } 2023-01-11T21:05:10.7491791Z } 2023-01-11T21:05:10.7491852Z } 2023-01-11T21:05:10.7491912Z } 2023-01-11T21:05:10.7491992Z ''') 2023-01-11T21:05:10.7491997Z 2023-01-11T21:05:10.7492001Z 2023-01-11T21:05:10.7492076Z async_compile.wait(globals()) 2023-01-11T21:05:10.7492148Z del async_compile 2023-01-11T21:05:10.7492153Z 2023-01-11T21:05:10.7492224Z def call(args): 2023-01-11T21:05:10.7492300Z arg0_1, arg1_1 = args 2023-01-11T21:05:10.7492370Z args.clear() 2023-01-11T21:05:10.7492569Z buf0 = empty_strided((10, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.7492735Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(arg1_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:05:10.7492832Z del arg0_1 2023-01-11T21:05:10.7492886Z del arg1_1 2023-01-11T21:05:10.7492956Z return (buf0, ) 2023-01-11T21:05:10.7492962Z 2023-01-11T21:05:10.7492966Z 2023-01-11T21:05:10.7493040Z if __name__ == "__main__": 2023-01-11T21:05:10.7493152Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.7493274Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.7493466Z arg0_1 = rand_strided((1, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.7493658Z arg1_1 = rand_strided((10, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.7493759Z print_performance(lambda: call([arg0_1, arg1_1])) 2023-01-11T21:05:10.7493776Z 2023-01-11T21:05:10.7493828Z ok (2.724s) 2023-01-11T21:05:10.7494311Z test_cpu_broadcast3_broadcast2 (__main__.SweepInputsCpuTest) ... inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.7494437Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.7494694Z [2023-01-11 21:03:20,304] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 517 2023-01-11T21:05:10.7494959Z [2023-01-11 21:03:20,317] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 517 2023-01-11T21:05:10.7494964Z 2023-01-11T21:05:10.7495057Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.7495126Z import torch 2023-01-11T21:05:10.7495195Z import random 2023-01-11T21:05:10.7495309Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.7495418Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.7495423Z 2023-01-11T21:05:10.7495500Z aten = torch.ops.aten 2023-01-11T21:05:10.7495633Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.7495723Z async_compile = AsyncCompile() 2023-01-11T21:05:10.7495727Z 2023-01-11T21:05:10.7495732Z 2023-01-11T21:05:10.7495863Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.7496065Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.7496183Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:05:10.7496284Z const float* __restrict__ in_ptr1, 2023-01-11T21:05:10.7496371Z float* __restrict__ out_ptr0) 2023-01-11T21:05:10.7496431Z { 2023-01-11T21:05:10.7496528Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.7496588Z { 2023-01-11T21:05:10.7496664Z #pragma omp for 2023-01-11T21:05:10.7496776Z for(long i0=0; i0<10; i0+=1) 2023-01-11T21:05:10.7496835Z { 2023-01-11T21:05:10.7496884Z { 2023-01-11T21:05:10.7496947Z { 2023-01-11T21:05:10.7497039Z auto tmp0 = in_ptr0[0]; 2023-01-11T21:05:10.7497131Z auto tmp1 = in_ptr1[i0]; 2023-01-11T21:05:10.7497220Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:05:10.7497302Z out_ptr0[i0] = tmp2; 2023-01-11T21:05:10.7497352Z } 2023-01-11T21:05:10.7497414Z } 2023-01-11T21:05:10.7497475Z } 2023-01-11T21:05:10.7497533Z } 2023-01-11T21:05:10.7497591Z } 2023-01-11T21:05:10.7497668Z ''') 2023-01-11T21:05:10.7497674Z 2023-01-11T21:05:10.7497678Z 2023-01-11T21:05:10.7497766Z async_compile.wait(globals()) 2023-01-11T21:05:10.7497825Z del async_compile 2023-01-11T21:05:10.7497843Z 2023-01-11T21:05:10.7497899Z def call(args): 2023-01-11T21:05:10.7497974Z arg0_1, arg1_1 = args 2023-01-11T21:05:10.7498045Z args.clear() 2023-01-11T21:05:10.7498252Z buf0 = empty_strided((1, 10, 1), (10, 1, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.7498442Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(arg1_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:05:10.7498603Z del arg0_1 2023-01-11T21:05:10.7498672Z del arg1_1 2023-01-11T21:05:10.7498730Z return (buf0, ) 2023-01-11T21:05:10.7498735Z 2023-01-11T21:05:10.7498739Z 2023-01-11T21:05:10.7498816Z if __name__ == "__main__": 2023-01-11T21:05:10.7498932Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.7499055Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.7499252Z arg0_1 = rand_strided((1, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.7499461Z arg1_1 = rand_strided((1, 10, 1), (10, 1, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.7499578Z print_performance(lambda: call([arg0_1, arg1_1])) 2023-01-11T21:05:10.7499585Z 2023-01-11T21:05:10.7499652Z ok (0.042s) 2023-01-11T21:05:10.7500119Z test_cpu_broadcast3_broadcast3 (__main__.SweepInputsCpuTest) ... inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.7500247Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.7500508Z [2023-01-11 21:03:20,340] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 518 2023-01-11T21:05:10.7500771Z [2023-01-11 21:03:22,976] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 518 2023-01-11T21:05:10.7500776Z 2023-01-11T21:05:10.7500870Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.7500939Z import torch 2023-01-11T21:05:10.7501011Z import random 2023-01-11T21:05:10.7501127Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.7501245Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.7501251Z 2023-01-11T21:05:10.7501317Z aten = torch.ops.aten 2023-01-11T21:05:10.7501450Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.7501541Z async_compile = AsyncCompile() 2023-01-11T21:05:10.7501546Z 2023-01-11T21:05:10.7501550Z 2023-01-11T21:05:10.7501681Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.7501887Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.7502005Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:05:10.7502110Z const float* __restrict__ in_ptr1, 2023-01-11T21:05:10.7502208Z float* __restrict__ out_ptr0) 2023-01-11T21:05:10.7502255Z { 2023-01-11T21:05:10.7502315Z { 2023-01-11T21:05:10.7502376Z { 2023-01-11T21:05:10.7502495Z auto tmp0 = in_ptr0[0]; 2023-01-11T21:05:10.7502576Z auto tmp1 = in_ptr1[0]; 2023-01-11T21:05:10.7502660Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:05:10.7502739Z out_ptr0[0] = tmp2; 2023-01-11T21:05:10.7502787Z } 2023-01-11T21:05:10.7502847Z } 2023-01-11T21:05:10.7502905Z } 2023-01-11T21:05:10.7502982Z ''') 2023-01-11T21:05:10.7502987Z 2023-01-11T21:05:10.7502991Z 2023-01-11T21:05:10.7503078Z async_compile.wait(globals()) 2023-01-11T21:05:10.7503149Z del async_compile 2023-01-11T21:05:10.7503154Z 2023-01-11T21:05:10.7503224Z def call(args): 2023-01-11T21:05:10.7503286Z arg0_1, arg1_1 = args 2023-01-11T21:05:10.7503354Z args.clear() 2023-01-11T21:05:10.7503546Z buf0 = empty_strided((1, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.7503707Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(arg1_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:05:10.7503773Z del arg0_1 2023-01-11T21:05:10.7503838Z del arg1_1 2023-01-11T21:05:10.7503908Z return (buf0, ) 2023-01-11T21:05:10.7503913Z 2023-01-11T21:05:10.7503917Z 2023-01-11T21:05:10.7503978Z if __name__ == "__main__": 2023-01-11T21:05:10.7504120Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.7504244Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.7504436Z arg0_1 = rand_strided((1, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.7504625Z arg1_1 = rand_strided((1, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.7504739Z print_performance(lambda: call([arg0_1, arg1_1])) 2023-01-11T21:05:10.7504744Z 2023-01-11T21:05:10.7504809Z ok (2.662s) 2023-01-11T21:05:10.7505282Z test_cpu_broadcast3_dense (__main__.SweepInputsCpuTest) ... inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.7505410Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.7505659Z [2023-01-11 21:03:23,011] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 519 2023-01-11T21:05:10.7505925Z [2023-01-11 21:03:25,736] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 519 2023-01-11T21:05:10.7505930Z 2023-01-11T21:05:10.7506024Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.7506092Z import torch 2023-01-11T21:05:10.7506161Z import random 2023-01-11T21:05:10.7506276Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.7506396Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.7506401Z 2023-01-11T21:05:10.7506478Z aten = torch.ops.aten 2023-01-11T21:05:10.7506599Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.7506691Z async_compile = AsyncCompile() 2023-01-11T21:05:10.7506696Z 2023-01-11T21:05:10.7506700Z 2023-01-11T21:05:10.7506834Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.7507038Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.7507157Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:05:10.7507260Z const float* __restrict__ in_ptr1, 2023-01-11T21:05:10.7507359Z float* __restrict__ out_ptr0) 2023-01-11T21:05:10.7507419Z { 2023-01-11T21:05:10.7507503Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.7507563Z { 2023-01-11T21:05:10.7507636Z #pragma omp for 2023-01-11T21:05:10.7507721Z for(long i0=0; i0<6; i0+=1) 2023-01-11T21:05:10.7507783Z { 2023-01-11T21:05:10.7507914Z auto tmp0 = at::vec::Vectorized(in_ptr0[0]); 2023-01-11T21:05:10.7508047Z auto tmp1 = at::vec::Vectorized::loadu(in_ptr1 + 16*i0); 2023-01-11T21:05:10.7508149Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:05:10.7508241Z tmp2.store(out_ptr0 + 16*i0); 2023-01-11T21:05:10.7508301Z } 2023-01-11T21:05:10.7508398Z #pragma omp for simd simdlen(8) 2023-01-11T21:05:10.7508479Z for(long i0=96; i0<100; i0+=1) 2023-01-11T21:05:10.7508539Z { 2023-01-11T21:05:10.7508620Z auto tmp0 = in_ptr0[0]; 2023-01-11T21:05:10.7508691Z auto tmp1 = in_ptr1[i0]; 2023-01-11T21:05:10.7508772Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:05:10.7508851Z out_ptr0[i0] = tmp2; 2023-01-11T21:05:10.7508912Z } 2023-01-11T21:05:10.7508971Z } 2023-01-11T21:05:10.7509030Z } 2023-01-11T21:05:10.7509095Z ''') 2023-01-11T21:05:10.7509112Z 2023-01-11T21:05:10.7509116Z 2023-01-11T21:05:10.7509191Z async_compile.wait(globals()) 2023-01-11T21:05:10.7509262Z del async_compile 2023-01-11T21:05:10.7509267Z 2023-01-11T21:05:10.7509336Z def call(args): 2023-01-11T21:05:10.7509411Z arg0_1, arg1_1 = args 2023-01-11T21:05:10.7509480Z args.clear() 2023-01-11T21:05:10.7509679Z buf0 = empty_strided((10, 10), (10, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.7509871Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(arg1_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:05:10.7509926Z del arg0_1 2023-01-11T21:05:10.7509991Z del arg1_1 2023-01-11T21:05:10.7510061Z return (buf0, ) 2023-01-11T21:05:10.7510066Z 2023-01-11T21:05:10.7510070Z 2023-01-11T21:05:10.7510143Z if __name__ == "__main__": 2023-01-11T21:05:10.7510257Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.7510378Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.7510570Z arg0_1 = rand_strided((1, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.7510768Z arg1_1 = rand_strided((10, 10), (10, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.7510872Z print_performance(lambda: call([arg0_1, arg1_1])) 2023-01-11T21:05:10.7510879Z 2023-01-11T21:05:10.7510944Z ok (2.760s) 2023-01-11T21:05:10.7511417Z test_cpu_broadcast3_double (__main__.SweepInputsCpuTest) ... inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.7511543Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.7511800Z [2023-01-11 21:03:25,769] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 520 2023-01-11T21:05:10.7512064Z [2023-01-11 21:03:28,500] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 520 2023-01-11T21:05:10.7512070Z 2023-01-11T21:05:10.7512163Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.7512235Z import torch 2023-01-11T21:05:10.7512304Z import random 2023-01-11T21:05:10.7512406Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.7512525Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.7512530Z 2023-01-11T21:05:10.7512608Z aten = torch.ops.aten 2023-01-11T21:05:10.7512740Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.7512829Z async_compile = AsyncCompile() 2023-01-11T21:05:10.7512834Z 2023-01-11T21:05:10.7512838Z 2023-01-11T21:05:10.7512970Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.7513171Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.7513290Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:05:10.7513383Z const double* __restrict__ in_ptr1, 2023-01-11T21:05:10.7513482Z double* __restrict__ out_ptr0) 2023-01-11T21:05:10.7513541Z { 2023-01-11T21:05:10.7513638Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.7513750Z { 2023-01-11T21:05:10.7513826Z #pragma omp for 2023-01-11T21:05:10.7513908Z for(long i0=0; i0<100; i0+=1) 2023-01-11T21:05:10.7513956Z { 2023-01-11T21:05:10.7514020Z { 2023-01-11T21:05:10.7514082Z { 2023-01-11T21:05:10.7514173Z auto tmp0 = in_ptr0[0]; 2023-01-11T21:05:10.7514264Z auto tmp2 = in_ptr1[i0]; 2023-01-11T21:05:10.7514371Z auto tmp1 = static_cast(tmp0); 2023-01-11T21:05:10.7514461Z auto tmp3 = tmp1 + tmp2; 2023-01-11T21:05:10.7514533Z out_ptr0[i0] = tmp3; 2023-01-11T21:05:10.7514597Z } 2023-01-11T21:05:10.7514660Z } 2023-01-11T21:05:10.7514723Z } 2023-01-11T21:05:10.7514783Z } 2023-01-11T21:05:10.7514843Z } 2023-01-11T21:05:10.7514908Z ''') 2023-01-11T21:05:10.7514927Z 2023-01-11T21:05:10.7514931Z 2023-01-11T21:05:10.7515007Z async_compile.wait(globals()) 2023-01-11T21:05:10.7515084Z del async_compile 2023-01-11T21:05:10.7515090Z 2023-01-11T21:05:10.7515157Z def call(args): 2023-01-11T21:05:10.7515232Z arg0_1, arg1_1 = args 2023-01-11T21:05:10.7515302Z args.clear() 2023-01-11T21:05:10.7515532Z buf0 = empty_strided((10, 10), (10, 1), device='cpu', dtype=torch.float64) 2023-01-11T21:05:10.7515699Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(arg1_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:05:10.7515753Z del arg0_1 2023-01-11T21:05:10.7515817Z del arg1_1 2023-01-11T21:05:10.7515888Z return (buf0, ) 2023-01-11T21:05:10.7515893Z 2023-01-11T21:05:10.7515897Z 2023-01-11T21:05:10.7515973Z if __name__ == "__main__": 2023-01-11T21:05:10.7516090Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.7516216Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.7516411Z arg0_1 = rand_strided((1, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.7516612Z arg1_1 = rand_strided((10, 10), (10, 1), device='cpu', dtype=torch.float64) 2023-01-11T21:05:10.7516714Z print_performance(lambda: call([arg0_1, arg1_1])) 2023-01-11T21:05:10.7516719Z 2023-01-11T21:05:10.7516788Z ok (2.764s) 2023-01-11T21:05:10.7517262Z test_cpu_broadcast3_int (__main__.SweepInputsCpuTest) ... inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.7517391Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.7517653Z [2023-01-11 21:03:28,533] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 521 2023-01-11T21:05:10.7517920Z [2023-01-11 21:03:31,274] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 521 2023-01-11T21:05:10.7517927Z 2023-01-11T21:05:10.7518022Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.7518094Z import torch 2023-01-11T21:05:10.7518164Z import random 2023-01-11T21:05:10.7518269Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.7518393Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.7518399Z 2023-01-11T21:05:10.7518477Z aten = torch.ops.aten 2023-01-11T21:05:10.7518611Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.7518703Z async_compile = AsyncCompile() 2023-01-11T21:05:10.7518709Z 2023-01-11T21:05:10.7518713Z 2023-01-11T21:05:10.7518846Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.7519052Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.7519170Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:05:10.7519259Z const int* __restrict__ in_ptr1, 2023-01-11T21:05:10.7519391Z float* __restrict__ out_ptr0) 2023-01-11T21:05:10.7519451Z { 2023-01-11T21:05:10.7519548Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.7519610Z { 2023-01-11T21:05:10.7519689Z #pragma omp for 2023-01-11T21:05:10.7519771Z for(long i0=0; i0<10; i0+=1) 2023-01-11T21:05:10.7519820Z { 2023-01-11T21:05:10.7519881Z { 2023-01-11T21:05:10.7519945Z { 2023-01-11T21:05:10.7520034Z auto tmp0 = in_ptr0[0]; 2023-01-11T21:05:10.7520126Z auto tmp1 = in_ptr1[i0]; 2023-01-11T21:05:10.7520235Z auto tmp2 = static_cast(tmp1); 2023-01-11T21:05:10.7520325Z auto tmp3 = tmp0 + tmp2; 2023-01-11T21:05:10.7520398Z out_ptr0[i0] = tmp3; 2023-01-11T21:05:10.7520461Z } 2023-01-11T21:05:10.7520523Z } 2023-01-11T21:05:10.7520584Z } 2023-01-11T21:05:10.7520767Z } 2023-01-11T21:05:10.7520830Z } 2023-01-11T21:05:10.7520896Z ''') 2023-01-11T21:05:10.7520915Z 2023-01-11T21:05:10.7520919Z 2023-01-11T21:05:10.7520993Z async_compile.wait(globals()) 2023-01-11T21:05:10.7521065Z del async_compile 2023-01-11T21:05:10.7521069Z 2023-01-11T21:05:10.7521196Z def call(args): 2023-01-11T21:05:10.7521284Z arg0_1, arg1_1 = args 2023-01-11T21:05:10.7521388Z args.clear() 2023-01-11T21:05:10.7521631Z buf0 = empty_strided((10, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.7521793Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(arg1_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:05:10.7521847Z del arg0_1 2023-01-11T21:05:10.7521914Z del arg1_1 2023-01-11T21:05:10.7521985Z return (buf0, ) 2023-01-11T21:05:10.7521990Z 2023-01-11T21:05:10.7521994Z 2023-01-11T21:05:10.7522071Z if __name__ == "__main__": 2023-01-11T21:05:10.7522185Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.7522309Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.7522503Z arg0_1 = rand_strided((1, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.7522693Z arg1_1 = rand_strided((10, ), (1, ), device='cpu', dtype=torch.int32) 2023-01-11T21:05:10.7522796Z print_performance(lambda: call([arg0_1, arg1_1])) 2023-01-11T21:05:10.7522801Z 2023-01-11T21:05:10.7522867Z ok (2.773s) 2023-01-11T21:05:10.7523330Z test_cpu_broadcast3_strided (__main__.SweepInputsCpuTest) ... inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.7523456Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.7523713Z [2023-01-11 21:03:31,308] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 522 2023-01-11T21:05:10.7523977Z [2023-01-11 21:03:34,075] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 522 2023-01-11T21:05:10.7523982Z 2023-01-11T21:05:10.7524074Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.7524145Z import torch 2023-01-11T21:05:10.7524212Z import random 2023-01-11T21:05:10.7524313Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.7524430Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.7524435Z 2023-01-11T21:05:10.7524513Z aten = torch.ops.aten 2023-01-11T21:05:10.7524645Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.7524735Z async_compile = AsyncCompile() 2023-01-11T21:05:10.7524740Z 2023-01-11T21:05:10.7524744Z 2023-01-11T21:05:10.7524877Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.7525079Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.7525195Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:05:10.7525329Z const float* __restrict__ in_ptr1, 2023-01-11T21:05:10.7525428Z float* __restrict__ out_ptr0) 2023-01-11T21:05:10.7525488Z { 2023-01-11T21:05:10.7525584Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.7525645Z { 2023-01-11T21:05:10.7525719Z #pragma omp for 2023-01-11T21:05:10.7525800Z for(long i0=0; i0<10; i0+=1) 2023-01-11T21:05:10.7525849Z { 2023-01-11T21:05:10.7525927Z #pragma GCC ivdep 2023-01-11T21:05:10.7526011Z for(long i1=0; i1<10; i1+=1) 2023-01-11T21:05:10.7526073Z { 2023-01-11T21:05:10.7526135Z { 2023-01-11T21:05:10.7526200Z { 2023-01-11T21:05:10.7526293Z auto tmp0 = in_ptr0[0]; 2023-01-11T21:05:10.7526385Z auto tmp1 = in_ptr1[(2*i1) + (30*i0)]; 2023-01-11T21:05:10.7526477Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:05:10.7526577Z out_ptr0[i1 + (10*i0)] = tmp2; 2023-01-11T21:05:10.7526644Z } 2023-01-11T21:05:10.7526708Z } 2023-01-11T21:05:10.7526770Z } 2023-01-11T21:05:10.7526860Z } 2023-01-11T21:05:10.7526908Z } 2023-01-11T21:05:10.7526966Z } 2023-01-11T21:05:10.7527042Z ''') 2023-01-11T21:05:10.7527048Z 2023-01-11T21:05:10.7527052Z 2023-01-11T21:05:10.7527141Z async_compile.wait(globals()) 2023-01-11T21:05:10.7527211Z del async_compile 2023-01-11T21:05:10.7527216Z 2023-01-11T21:05:10.7527286Z def call(args): 2023-01-11T21:05:10.7527359Z arg0_1, arg1_1 = args 2023-01-11T21:05:10.7527415Z args.clear() 2023-01-11T21:05:10.7527615Z buf0 = empty_strided((10, 10), (10, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.7527774Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(arg1_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:05:10.7527841Z del arg0_1 2023-01-11T21:05:10.7527906Z del arg1_1 2023-01-11T21:05:10.7527978Z return (buf0, ) 2023-01-11T21:05:10.7527983Z 2023-01-11T21:05:10.7527987Z 2023-01-11T21:05:10.7528059Z if __name__ == "__main__": 2023-01-11T21:05:10.7528173Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.7528283Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.7528472Z arg0_1 = rand_strided((1, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.7528668Z arg1_1 = rand_strided((10, 10), (30, 2), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.7528787Z print_performance(lambda: call([arg0_1, arg1_1])) 2023-01-11T21:05:10.7528792Z 2023-01-11T21:05:10.7528856Z ok (2.801s) 2023-01-11T21:05:10.7529327Z test_cpu_broadcast3_transposed (__main__.SweepInputsCpuTest) ... inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.7529455Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.7529715Z [2023-01-11 21:03:34,108] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 523 2023-01-11T21:05:10.7529978Z [2023-01-11 21:03:34,122] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 523 2023-01-11T21:05:10.7529983Z 2023-01-11T21:05:10.7530063Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.7530132Z import torch 2023-01-11T21:05:10.7530201Z import random 2023-01-11T21:05:10.7530314Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.7530432Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.7530437Z 2023-01-11T21:05:10.7530513Z aten = torch.ops.aten 2023-01-11T21:05:10.7530648Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.7530752Z async_compile = AsyncCompile() 2023-01-11T21:05:10.7530770Z 2023-01-11T21:05:10.7530774Z 2023-01-11T21:05:10.7530894Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.7531100Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.7531217Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:05:10.7531318Z const float* __restrict__ in_ptr1, 2023-01-11T21:05:10.7531417Z float* __restrict__ out_ptr0) 2023-01-11T21:05:10.7531478Z { 2023-01-11T21:05:10.7531573Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.7531620Z { 2023-01-11T21:05:10.7531694Z #pragma omp for 2023-01-11T21:05:10.7531774Z for(long i0=0; i0<6; i0+=1) 2023-01-11T21:05:10.7531835Z { 2023-01-11T21:05:10.7531961Z auto tmp0 = at::vec::Vectorized(in_ptr0[0]); 2023-01-11T21:05:10.7532093Z auto tmp1 = at::vec::Vectorized::loadu(in_ptr1 + 16*i0); 2023-01-11T21:05:10.7532178Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:05:10.7532258Z tmp2.store(out_ptr0 + 16*i0); 2023-01-11T21:05:10.7532319Z } 2023-01-11T21:05:10.7532441Z #pragma omp for simd simdlen(8) 2023-01-11T21:05:10.7532524Z for(long i0=96; i0<100; i0+=1) 2023-01-11T21:05:10.7532584Z { 2023-01-11T21:05:10.7532664Z auto tmp0 = in_ptr0[0]; 2023-01-11T21:05:10.7532746Z auto tmp1 = in_ptr1[i0]; 2023-01-11T21:05:10.7532815Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:05:10.7532893Z out_ptr0[i0] = tmp2; 2023-01-11T21:05:10.7532953Z } 2023-01-11T21:05:10.7533011Z } 2023-01-11T21:05:10.7533070Z } 2023-01-11T21:05:10.7533146Z ''') 2023-01-11T21:05:10.7533151Z 2023-01-11T21:05:10.7533155Z 2023-01-11T21:05:10.7533240Z async_compile.wait(globals()) 2023-01-11T21:05:10.7533299Z del async_compile 2023-01-11T21:05:10.7533315Z 2023-01-11T21:05:10.7533372Z def call(args): 2023-01-11T21:05:10.7533447Z arg0_1, arg1_1 = args 2023-01-11T21:05:10.7533516Z args.clear() 2023-01-11T21:05:10.7533714Z buf0 = empty_strided((10, 10), (1, 10), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.7533876Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(arg1_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:05:10.7533942Z del arg0_1 2023-01-11T21:05:10.7533995Z del arg1_1 2023-01-11T21:05:10.7534065Z return (buf0, ) 2023-01-11T21:05:10.7534070Z 2023-01-11T21:05:10.7534074Z 2023-01-11T21:05:10.7534148Z if __name__ == "__main__": 2023-01-11T21:05:10.7534260Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.7534380Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.7534570Z arg0_1 = rand_strided((1, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.7534768Z arg1_1 = rand_strided((10, 10), (1, 10), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.7534881Z print_performance(lambda: call([arg0_1, arg1_1])) 2023-01-11T21:05:10.7534889Z 2023-01-11T21:05:10.7534952Z ok (0.044s) 2023-01-11T21:05:10.7535401Z test_cpu_dense_broadcast1 (__main__.SweepInputsCpuTest) ... inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.7535527Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.7535783Z [2023-01-11 21:03:34,146] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 524 2023-01-11T21:05:10.7536045Z [2023-01-11 21:03:36,883] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 524 2023-01-11T21:05:10.7536049Z 2023-01-11T21:05:10.7536140Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.7536207Z import torch 2023-01-11T21:05:10.7536307Z import random 2023-01-11T21:05:10.7536420Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.7536526Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.7536543Z 2023-01-11T21:05:10.7536609Z aten = torch.ops.aten 2023-01-11T21:05:10.7536742Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.7536832Z async_compile = AsyncCompile() 2023-01-11T21:05:10.7536837Z 2023-01-11T21:05:10.7536841Z 2023-01-11T21:05:10.7536974Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.7537177Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.7537295Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:05:10.7537397Z const float* __restrict__ in_ptr1, 2023-01-11T21:05:10.7537494Z float* __restrict__ out_ptr0) 2023-01-11T21:05:10.7537541Z { 2023-01-11T21:05:10.7537634Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.7537697Z { 2023-01-11T21:05:10.7537771Z #pragma omp for 2023-01-11T21:05:10.7537850Z for(long i0=0; i0<10; i0+=1) 2023-01-11T21:05:10.7537911Z { 2023-01-11T21:05:10.7538003Z #pragma GCC ivdep 2023-01-11T21:05:10.7538088Z for(long i1=0; i1<10; i1+=1) 2023-01-11T21:05:10.7538150Z { 2023-01-11T21:05:10.7538212Z { 2023-01-11T21:05:10.7538276Z { 2023-01-11T21:05:10.7538378Z auto tmp0 = in_ptr0[i1 + (10*i0)]; 2023-01-11T21:05:10.7538539Z auto tmp1 = in_ptr1[i1]; 2023-01-11T21:05:10.7538622Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:05:10.7538719Z out_ptr0[i1 + (10*i0)] = tmp2; 2023-01-11T21:05:10.7538784Z } 2023-01-11T21:05:10.7538847Z } 2023-01-11T21:05:10.7538909Z } 2023-01-11T21:05:10.7538971Z } 2023-01-11T21:05:10.7539032Z } 2023-01-11T21:05:10.7539079Z } 2023-01-11T21:05:10.7539160Z ''') 2023-01-11T21:05:10.7539165Z 2023-01-11T21:05:10.7539169Z 2023-01-11T21:05:10.7539259Z async_compile.wait(globals()) 2023-01-11T21:05:10.7539331Z del async_compile 2023-01-11T21:05:10.7539338Z 2023-01-11T21:05:10.7539408Z def call(args): 2023-01-11T21:05:10.7539483Z arg0_1, arg1_1 = args 2023-01-11T21:05:10.7539553Z args.clear() 2023-01-11T21:05:10.7539741Z buf0 = empty_strided((10, 10), (10, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.7539902Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(arg1_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:05:10.7539970Z del arg0_1 2023-01-11T21:05:10.7540035Z del arg1_1 2023-01-11T21:05:10.7540106Z return (buf0, ) 2023-01-11T21:05:10.7540110Z 2023-01-11T21:05:10.7540114Z 2023-01-11T21:05:10.7540189Z if __name__ == "__main__": 2023-01-11T21:05:10.7540302Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.7540423Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.7540609Z arg0_1 = rand_strided((10, 10), (10, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.7540801Z arg1_1 = rand_strided((10, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.7540915Z print_performance(lambda: call([arg0_1, arg1_1])) 2023-01-11T21:05:10.7540920Z 2023-01-11T21:05:10.7540986Z ok (2.764s) 2023-01-11T21:05:10.7541445Z test_cpu_dense_broadcast2 (__main__.SweepInputsCpuTest) ... inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.7541571Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.7541828Z [2023-01-11 21:03:36,915] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 525 2023-01-11T21:05:10.7542124Z [2023-01-11 21:03:39,626] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 525 2023-01-11T21:05:10.7542129Z 2023-01-11T21:05:10.7542223Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.7542278Z import torch 2023-01-11T21:05:10.7542345Z import random 2023-01-11T21:05:10.7542459Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.7542579Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.7542584Z 2023-01-11T21:05:10.7542660Z aten = torch.ops.aten 2023-01-11T21:05:10.7542794Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.7542883Z async_compile = AsyncCompile() 2023-01-11T21:05:10.7542888Z 2023-01-11T21:05:10.7542892Z 2023-01-11T21:05:10.7543025Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.7543215Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.7543336Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:05:10.7543440Z const float* __restrict__ in_ptr1, 2023-01-11T21:05:10.7543539Z float* __restrict__ out_ptr0) 2023-01-11T21:05:10.7543628Z { 2023-01-11T21:05:10.7543728Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.7543789Z { 2023-01-11T21:05:10.7543852Z #pragma omp for 2023-01-11T21:05:10.7543933Z for(long i0=0; i0<10; i0+=1) 2023-01-11T21:05:10.7543994Z { 2023-01-11T21:05:10.7544074Z #pragma GCC ivdep 2023-01-11T21:05:10.7544157Z for(long i1=0; i1<10; i1+=1) 2023-01-11T21:05:10.7544220Z { 2023-01-11T21:05:10.7544283Z { 2023-01-11T21:05:10.7544335Z { 2023-01-11T21:05:10.7544437Z auto tmp0 = in_ptr0[i1 + (10*i0)]; 2023-01-11T21:05:10.7544532Z auto tmp1 = in_ptr1[i0]; 2023-01-11T21:05:10.7544624Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:05:10.7544724Z out_ptr0[i1 + (10*i0)] = tmp2; 2023-01-11T21:05:10.7544788Z } 2023-01-11T21:05:10.7544850Z } 2023-01-11T21:05:10.7544898Z } 2023-01-11T21:05:10.7544960Z } 2023-01-11T21:05:10.7545020Z } 2023-01-11T21:05:10.7545081Z } 2023-01-11T21:05:10.7545157Z ''') 2023-01-11T21:05:10.7545163Z 2023-01-11T21:05:10.7545167Z 2023-01-11T21:05:10.7545255Z async_compile.wait(globals()) 2023-01-11T21:05:10.7545325Z del async_compile 2023-01-11T21:05:10.7545330Z 2023-01-11T21:05:10.7545385Z def call(args): 2023-01-11T21:05:10.7545459Z arg0_1, arg1_1 = args 2023-01-11T21:05:10.7545528Z args.clear() 2023-01-11T21:05:10.7545736Z buf0 = empty_strided((1, 10, 10), (100, 10, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.7545896Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(arg1_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:05:10.7545962Z del arg0_1 2023-01-11T21:05:10.7546029Z del arg1_1 2023-01-11T21:05:10.7546085Z return (buf0, ) 2023-01-11T21:05:10.7546103Z 2023-01-11T21:05:10.7546107Z 2023-01-11T21:05:10.7546168Z if __name__ == "__main__": 2023-01-11T21:05:10.7546282Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.7546404Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.7546604Z arg0_1 = rand_strided((10, 10), (10, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.7546810Z arg1_1 = rand_strided((1, 10, 1), (10, 1, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.7546924Z print_performance(lambda: call([arg0_1, arg1_1])) 2023-01-11T21:05:10.7546929Z 2023-01-11T21:05:10.7546997Z ok (2.743s) 2023-01-11T21:05:10.7547463Z test_cpu_dense_broadcast3 (__main__.SweepInputsCpuTest) ... inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.7547630Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.7547878Z [2023-01-11 21:03:39,658] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 526 2023-01-11T21:05:10.7548143Z [2023-01-11 21:03:42,387] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 526 2023-01-11T21:05:10.7548148Z 2023-01-11T21:05:10.7548242Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.7548310Z import torch 2023-01-11T21:05:10.7548379Z import random 2023-01-11T21:05:10.7548497Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.7548618Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.7548622Z 2023-01-11T21:05:10.7548700Z aten = torch.ops.aten 2023-01-11T21:05:10.7548822Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.7548916Z async_compile = AsyncCompile() 2023-01-11T21:05:10.7548921Z 2023-01-11T21:05:10.7548925Z 2023-01-11T21:05:10.7549060Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.7549296Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.7549420Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:05:10.7549526Z const float* __restrict__ in_ptr1, 2023-01-11T21:05:10.7549626Z float* __restrict__ out_ptr0) 2023-01-11T21:05:10.7549687Z { 2023-01-11T21:05:10.7549771Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.7549832Z { 2023-01-11T21:05:10.7549908Z #pragma omp for 2023-01-11T21:05:10.7549989Z for(long i0=0; i0<6; i0+=1) 2023-01-11T21:05:10.7550052Z { 2023-01-11T21:05:10.7550191Z auto tmp0 = at::vec::Vectorized::loadu(in_ptr0 + 16*i0); 2023-01-11T21:05:10.7550311Z auto tmp1 = at::vec::Vectorized(in_ptr1[0]); 2023-01-11T21:05:10.7550385Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:05:10.7550477Z tmp2.store(out_ptr0 + 16*i0); 2023-01-11T21:05:10.7550537Z } 2023-01-11T21:05:10.7550633Z #pragma omp for simd simdlen(8) 2023-01-11T21:05:10.7550718Z for(long i0=96; i0<100; i0+=1) 2023-01-11T21:05:10.7550779Z { 2023-01-11T21:05:10.7550849Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:05:10.7550930Z auto tmp1 = in_ptr1[0]; 2023-01-11T21:05:10.7551012Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:05:10.7551092Z out_ptr0[i0] = tmp2; 2023-01-11T21:05:10.7551152Z } 2023-01-11T21:05:10.7551214Z } 2023-01-11T21:05:10.7551272Z } 2023-01-11T21:05:10.7551336Z ''') 2023-01-11T21:05:10.7551340Z 2023-01-11T21:05:10.7551357Z 2023-01-11T21:05:10.7551431Z async_compile.wait(globals()) 2023-01-11T21:05:10.7551503Z del async_compile 2023-01-11T21:05:10.7551508Z 2023-01-11T21:05:10.7551578Z def call(args): 2023-01-11T21:05:10.7551655Z arg0_1, arg1_1 = args 2023-01-11T21:05:10.7551724Z args.clear() 2023-01-11T21:05:10.7551923Z buf0 = empty_strided((10, 10), (10, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.7552090Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(arg1_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:05:10.7552145Z del arg0_1 2023-01-11T21:05:10.7552210Z del arg1_1 2023-01-11T21:05:10.7552283Z return (buf0, ) 2023-01-11T21:05:10.7552288Z 2023-01-11T21:05:10.7552292Z 2023-01-11T21:05:10.7552366Z if __name__ == "__main__": 2023-01-11T21:05:10.7552480Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.7552602Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.7552802Z arg0_1 = rand_strided((10, 10), (10, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.7552981Z arg1_1 = rand_strided((1, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.7553096Z print_performance(lambda: call([arg0_1, arg1_1])) 2023-01-11T21:05:10.7553147Z 2023-01-11T21:05:10.7553215Z ok (2.762s) 2023-01-11T21:05:10.7553685Z test_cpu_dense_dense (__main__.SweepInputsCpuTest) ... inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.7553813Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.7554072Z [2023-01-11 21:03:42,421] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 527 2023-01-11T21:05:10.7554335Z [2023-01-11 21:03:42,434] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 527 2023-01-11T21:05:10.7554341Z 2023-01-11T21:05:10.7554434Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.7554506Z import torch 2023-01-11T21:05:10.7554574Z import random 2023-01-11T21:05:10.7554676Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.7554797Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.7554840Z 2023-01-11T21:05:10.7554919Z aten = torch.ops.aten 2023-01-11T21:05:10.7555051Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.7555143Z async_compile = AsyncCompile() 2023-01-11T21:05:10.7555147Z 2023-01-11T21:05:10.7555151Z 2023-01-11T21:05:10.7555284Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.7555492Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.7555610Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:05:10.7555700Z const float* __restrict__ in_ptr1, 2023-01-11T21:05:10.7555798Z float* __restrict__ out_ptr0) 2023-01-11T21:05:10.7555858Z { 2023-01-11T21:05:10.7555954Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.7556017Z { 2023-01-11T21:05:10.7556092Z #pragma omp for 2023-01-11T21:05:10.7556172Z for(long i0=0; i0<6; i0+=1) 2023-01-11T21:05:10.7556220Z { 2023-01-11T21:05:10.7556356Z auto tmp0 = at::vec::Vectorized::loadu(in_ptr0 + 16*i0); 2023-01-11T21:05:10.7556488Z auto tmp1 = at::vec::Vectorized::loadu(in_ptr1 + 16*i0); 2023-01-11T21:05:10.7556574Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:05:10.7556667Z tmp2.store(out_ptr0 + 16*i0); 2023-01-11T21:05:10.7556730Z } 2023-01-11T21:05:10.7556827Z #pragma omp for simd simdlen(8) 2023-01-11T21:05:10.7556895Z for(long i0=96; i0<100; i0+=1) 2023-01-11T21:05:10.7556960Z { 2023-01-11T21:05:10.7557044Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:05:10.7557125Z auto tmp1 = in_ptr1[i0]; 2023-01-11T21:05:10.7557205Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:05:10.7557282Z out_ptr0[i0] = tmp2; 2023-01-11T21:05:10.7557348Z } 2023-01-11T21:05:10.7557395Z } 2023-01-11T21:05:10.7557452Z } 2023-01-11T21:05:10.7557532Z ''') 2023-01-11T21:05:10.7557537Z 2023-01-11T21:05:10.7557541Z 2023-01-11T21:05:10.7557630Z async_compile.wait(globals()) 2023-01-11T21:05:10.7557702Z del async_compile 2023-01-11T21:05:10.7557707Z 2023-01-11T21:05:10.7557775Z def call(args): 2023-01-11T21:05:10.7557848Z arg0_1, arg1_1 = args 2023-01-11T21:05:10.7557905Z args.clear() 2023-01-11T21:05:10.7558106Z buf0 = empty_strided((10, 10), (10, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.7558265Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(arg1_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:05:10.7558334Z del arg0_1 2023-01-11T21:05:10.7558398Z del arg1_1 2023-01-11T21:05:10.7558467Z return (buf0, ) 2023-01-11T21:05:10.7558472Z 2023-01-11T21:05:10.7558476Z 2023-01-11T21:05:10.7558553Z if __name__ == "__main__": 2023-01-11T21:05:10.7558700Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.7558809Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.7559012Z arg0_1 = rand_strided((10, 10), (10, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.7559212Z arg1_1 = rand_strided((10, 10), (10, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.7559326Z print_performance(lambda: call([arg0_1, arg1_1])) 2023-01-11T21:05:10.7559331Z 2023-01-11T21:05:10.7559397Z ok (0.043s) 2023-01-11T21:05:10.7559867Z test_cpu_dense_double (__main__.SweepInputsCpuTest) ... inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.7559993Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.7560254Z [2023-01-11 21:03:42,458] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 528 2023-01-11T21:05:10.7560549Z [2023-01-11 21:03:45,183] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 528 2023-01-11T21:05:10.7560555Z 2023-01-11T21:05:10.7560762Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.7560832Z import torch 2023-01-11T21:05:10.7560901Z import random 2023-01-11T21:05:10.7561017Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.7561140Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.7561145Z 2023-01-11T21:05:10.7561224Z aten = torch.ops.aten 2023-01-11T21:05:10.7561359Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.7561435Z async_compile = AsyncCompile() 2023-01-11T21:05:10.7561455Z 2023-01-11T21:05:10.7561460Z 2023-01-11T21:05:10.7561582Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.7561786Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.7561909Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:05:10.7562020Z const double* __restrict__ in_ptr1, 2023-01-11T21:05:10.7562122Z double* __restrict__ out_ptr0) 2023-01-11T21:05:10.7562183Z { 2023-01-11T21:05:10.7562281Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.7562329Z { 2023-01-11T21:05:10.7562406Z #pragma omp for 2023-01-11T21:05:10.7562488Z for(long i0=0; i0<100; i0+=1) 2023-01-11T21:05:10.7562550Z { 2023-01-11T21:05:10.7562613Z { 2023-01-11T21:05:10.7562676Z { 2023-01-11T21:05:10.7562767Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:05:10.7562845Z auto tmp2 = in_ptr1[i0]; 2023-01-11T21:05:10.7562955Z auto tmp1 = static_cast(tmp0); 2023-01-11T21:05:10.7563044Z auto tmp3 = tmp1 + tmp2; 2023-01-11T21:05:10.7563131Z out_ptr0[i0] = tmp3; 2023-01-11T21:05:10.7563195Z } 2023-01-11T21:05:10.7563256Z } 2023-01-11T21:05:10.7563315Z } 2023-01-11T21:05:10.7563364Z } 2023-01-11T21:05:10.7563421Z } 2023-01-11T21:05:10.7563497Z ''') 2023-01-11T21:05:10.7563502Z 2023-01-11T21:05:10.7563506Z 2023-01-11T21:05:10.7563595Z async_compile.wait(globals()) 2023-01-11T21:05:10.7563666Z del async_compile 2023-01-11T21:05:10.7563671Z 2023-01-11T21:05:10.7563739Z def call(args): 2023-01-11T21:05:10.7563813Z arg0_1, arg1_1 = args 2023-01-11T21:05:10.7563869Z args.clear() 2023-01-11T21:05:10.7564069Z buf0 = empty_strided((10, 10), (10, 1), device='cpu', dtype=torch.float64) 2023-01-11T21:05:10.7564232Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(arg1_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:05:10.7564299Z del arg0_1 2023-01-11T21:05:10.7564365Z del arg1_1 2023-01-11T21:05:10.7564435Z return (buf0, ) 2023-01-11T21:05:10.7564498Z 2023-01-11T21:05:10.7564502Z 2023-01-11T21:05:10.7564578Z if __name__ == "__main__": 2023-01-11T21:05:10.7564694Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.7564806Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.7565009Z arg0_1 = rand_strided((10, 10), (10, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.7565208Z arg1_1 = rand_strided((10, 10), (10, 1), device='cpu', dtype=torch.float64) 2023-01-11T21:05:10.7565323Z print_performance(lambda: call([arg0_1, arg1_1])) 2023-01-11T21:05:10.7565329Z 2023-01-11T21:05:10.7565395Z ok (2.751s) 2023-01-11T21:05:10.7565860Z test_cpu_dense_int (__main__.SweepInputsCpuTest) ... inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.7565991Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.7566286Z [2023-01-11 21:03:45,214] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 529 2023-01-11T21:05:10.7566555Z [2023-01-11 21:03:47,986] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 529 2023-01-11T21:05:10.7566560Z 2023-01-11T21:05:10.7566641Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.7566710Z import torch 2023-01-11T21:05:10.7566780Z import random 2023-01-11T21:05:10.7566893Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.7567014Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.7567020Z 2023-01-11T21:05:10.7567096Z aten = torch.ops.aten 2023-01-11T21:05:10.7567229Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.7567306Z async_compile = AsyncCompile() 2023-01-11T21:05:10.7567326Z 2023-01-11T21:05:10.7567330Z 2023-01-11T21:05:10.7567449Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.7567653Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.7567774Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:05:10.7567878Z const int* __restrict__ in_ptr1, 2023-01-11T21:05:10.7567977Z float* __restrict__ out_ptr0) 2023-01-11T21:05:10.7568035Z { 2023-01-11T21:05:10.7568134Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.7568181Z { 2023-01-11T21:05:10.7568257Z #pragma omp for 2023-01-11T21:05:10.7568340Z for(long i0=0; i0<10; i0+=1) 2023-01-11T21:05:10.7568403Z { 2023-01-11T21:05:10.7568483Z #pragma GCC ivdep 2023-01-11T21:05:10.7568569Z for(long i1=0; i1<10; i1+=1) 2023-01-11T21:05:10.7568631Z { 2023-01-11T21:05:10.7568681Z { 2023-01-11T21:05:10.7568748Z { 2023-01-11T21:05:10.7568851Z auto tmp0 = in_ptr0[i1 + (10*i0)]; 2023-01-11T21:05:10.7568945Z auto tmp1 = in_ptr1[i1]; 2023-01-11T21:05:10.7569058Z auto tmp2 = static_cast(tmp1); 2023-01-11T21:05:10.7569152Z auto tmp3 = tmp0 + tmp2; 2023-01-11T21:05:10.7569247Z out_ptr0[i1 + (10*i0)] = tmp3; 2023-01-11T21:05:10.7569300Z } 2023-01-11T21:05:10.7569365Z } 2023-01-11T21:05:10.7569426Z } 2023-01-11T21:05:10.7569487Z } 2023-01-11T21:05:10.7569549Z } 2023-01-11T21:05:10.7569606Z } 2023-01-11T21:05:10.7569669Z ''') 2023-01-11T21:05:10.7569687Z 2023-01-11T21:05:10.7569691Z 2023-01-11T21:05:10.7569767Z async_compile.wait(globals()) 2023-01-11T21:05:10.7569838Z del async_compile 2023-01-11T21:05:10.7569843Z 2023-01-11T21:05:10.7569912Z def call(args): 2023-01-11T21:05:10.7569987Z arg0_1, arg1_1 = args 2023-01-11T21:05:10.7570088Z args.clear() 2023-01-11T21:05:10.7570287Z buf0 = empty_strided((10, 10), (10, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.7570453Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(arg1_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:05:10.7570507Z del arg0_1 2023-01-11T21:05:10.7570572Z del arg1_1 2023-01-11T21:05:10.7570643Z return (buf0, ) 2023-01-11T21:05:10.7570647Z 2023-01-11T21:05:10.7570652Z 2023-01-11T21:05:10.7570725Z if __name__ == "__main__": 2023-01-11T21:05:10.7570837Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.7570959Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.7571160Z arg0_1 = rand_strided((10, 10), (10, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.7571351Z arg1_1 = rand_strided((10, ), (1, ), device='cpu', dtype=torch.int32) 2023-01-11T21:05:10.7571452Z print_performance(lambda: call([arg0_1, arg1_1])) 2023-01-11T21:05:10.7571460Z 2023-01-11T21:05:10.7571524Z ok (2.804s) 2023-01-11T21:05:10.7572021Z test_cpu_dense_strided (__main__.SweepInputsCpuTest) ... inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.7572147Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.7572407Z [2023-01-11 21:03:48,027] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 530 2023-01-11T21:05:10.7572669Z [2023-01-11 21:03:50,795] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 530 2023-01-11T21:05:10.7572674Z 2023-01-11T21:05:10.7572768Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.7572841Z import torch 2023-01-11T21:05:10.7572910Z import random 2023-01-11T21:05:10.7573015Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.7573132Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.7573137Z 2023-01-11T21:05:10.7573213Z aten = torch.ops.aten 2023-01-11T21:05:10.7573348Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.7573438Z async_compile = AsyncCompile() 2023-01-11T21:05:10.7573443Z 2023-01-11T21:05:10.7573447Z 2023-01-11T21:05:10.7573579Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.7573782Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.7573902Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:05:10.7573992Z const float* __restrict__ in_ptr1, 2023-01-11T21:05:10.7574092Z float* __restrict__ out_ptr0) 2023-01-11T21:05:10.7574151Z { 2023-01-11T21:05:10.7574249Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.7574311Z { 2023-01-11T21:05:10.7574386Z #pragma omp for 2023-01-11T21:05:10.7574468Z for(long i0=0; i0<10; i0+=1) 2023-01-11T21:05:10.7574517Z { 2023-01-11T21:05:10.7574595Z #pragma GCC ivdep 2023-01-11T21:05:10.7574682Z for(long i1=0; i1<10; i1+=1) 2023-01-11T21:05:10.7574746Z { 2023-01-11T21:05:10.7574809Z { 2023-01-11T21:05:10.7574875Z { 2023-01-11T21:05:10.7574978Z auto tmp0 = in_ptr0[i1 + (10*i0)]; 2023-01-11T21:05:10.7575070Z auto tmp1 = in_ptr1[(2*i1) + (30*i0)]; 2023-01-11T21:05:10.7575164Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:05:10.7575260Z out_ptr0[i1 + (10*i0)] = tmp2; 2023-01-11T21:05:10.7575324Z } 2023-01-11T21:05:10.7575386Z } 2023-01-11T21:05:10.7575448Z } 2023-01-11T21:05:10.7575508Z } 2023-01-11T21:05:10.7575555Z } 2023-01-11T21:05:10.7575641Z } 2023-01-11T21:05:10.7575719Z ''') 2023-01-11T21:05:10.7575724Z 2023-01-11T21:05:10.7575728Z 2023-01-11T21:05:10.7575817Z async_compile.wait(globals()) 2023-01-11T21:05:10.7575888Z del async_compile 2023-01-11T21:05:10.7575893Z 2023-01-11T21:05:10.7575963Z def call(args): 2023-01-11T21:05:10.7576037Z arg0_1, arg1_1 = args 2023-01-11T21:05:10.7576093Z args.clear() 2023-01-11T21:05:10.7576293Z buf0 = empty_strided((10, 10), (10, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.7576458Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(arg1_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:05:10.7576525Z del arg0_1 2023-01-11T21:05:10.7576590Z del arg1_1 2023-01-11T21:05:10.7576659Z return (buf0, ) 2023-01-11T21:05:10.7576664Z 2023-01-11T21:05:10.7576668Z 2023-01-11T21:05:10.7576742Z if __name__ == "__main__": 2023-01-11T21:05:10.7576855Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.7576964Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.7577165Z arg0_1 = rand_strided((10, 10), (10, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.7577362Z arg1_1 = rand_strided((10, 10), (30, 2), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.7577542Z print_performance(lambda: call([arg0_1, arg1_1])) 2023-01-11T21:05:10.7577547Z 2023-01-11T21:05:10.7577615Z ok (2.810s) 2023-01-11T21:05:10.7578090Z test_cpu_dense_transposed (__main__.SweepInputsCpuTest) ... inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.7578218Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.7578575Z [2023-01-11 21:03:50,833] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 531 2023-01-11T21:05:10.7578848Z [2023-01-11 21:03:53,502] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 531 2023-01-11T21:05:10.7578853Z 2023-01-11T21:05:10.7578935Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.7579005Z import torch 2023-01-11T21:05:10.7579074Z import random 2023-01-11T21:05:10.7579192Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.7579313Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.7579318Z 2023-01-11T21:05:10.7579397Z aten = torch.ops.aten 2023-01-11T21:05:10.7579533Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.7579610Z async_compile = AsyncCompile() 2023-01-11T21:05:10.7579629Z 2023-01-11T21:05:10.7579633Z 2023-01-11T21:05:10.7579752Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.7579959Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.7580077Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:05:10.7580183Z const float* __restrict__ in_ptr1, 2023-01-11T21:05:10.7580284Z float* __restrict__ out_ptr0) 2023-01-11T21:05:10.7580344Z { 2023-01-11T21:05:10.7580442Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.7580491Z { 2023-01-11T21:05:10.7580566Z #pragma omp for 2023-01-11T21:05:10.7580648Z for(long i0=0; i0<10; i0+=1) 2023-01-11T21:05:10.7580711Z { 2023-01-11T21:05:10.7580791Z #pragma GCC ivdep 2023-01-11T21:05:10.7580876Z for(long i1=0; i1<10; i1+=1) 2023-01-11T21:05:10.7580939Z { 2023-01-11T21:05:10.7580989Z { 2023-01-11T21:05:10.7581056Z { 2023-01-11T21:05:10.7581160Z auto tmp0 = in_ptr0[i1 + (10*i0)]; 2023-01-11T21:05:10.7581261Z auto tmp1 = in_ptr1[i0 + (10*i1)]; 2023-01-11T21:05:10.7581353Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:05:10.7581480Z out_ptr0[i1 + (10*i0)] = tmp2; 2023-01-11T21:05:10.7581547Z } 2023-01-11T21:05:10.7581597Z } 2023-01-11T21:05:10.7581659Z } 2023-01-11T21:05:10.7581722Z } 2023-01-11T21:05:10.7581783Z } 2023-01-11T21:05:10.7581842Z } 2023-01-11T21:05:10.7581919Z ''') 2023-01-11T21:05:10.7581925Z 2023-01-11T21:05:10.7581929Z 2023-01-11T21:05:10.7582016Z async_compile.wait(globals()) 2023-01-11T21:05:10.7582074Z del async_compile 2023-01-11T21:05:10.7582078Z 2023-01-11T21:05:10.7582148Z def call(args): 2023-01-11T21:05:10.7582222Z arg0_1, arg1_1 = args 2023-01-11T21:05:10.7582292Z args.clear() 2023-01-11T21:05:10.7582491Z buf0 = empty_strided((10, 10), (10, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.7582651Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(arg1_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:05:10.7582719Z del arg0_1 2023-01-11T21:05:10.7582773Z del arg1_1 2023-01-11T21:05:10.7582843Z return (buf0, ) 2023-01-11T21:05:10.7582848Z 2023-01-11T21:05:10.7582852Z 2023-01-11T21:05:10.7582927Z if __name__ == "__main__": 2023-01-11T21:05:10.7583067Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.7583191Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.7583388Z arg0_1 = rand_strided((10, 10), (10, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.7583584Z arg1_1 = rand_strided((10, 10), (1, 10), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.7583699Z print_performance(lambda: call([arg0_1, arg1_1])) 2023-01-11T21:05:10.7583704Z 2023-01-11T21:05:10.7583755Z ok (2.705s) 2023-01-11T21:05:10.7584216Z test_cpu_double_broadcast1 (__main__.SweepInputsCpuTest) ... inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.7584343Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.7584603Z [2023-01-11 21:03:53,534] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 532 2023-01-11T21:05:10.7584865Z [2023-01-11 21:03:56,198] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 532 2023-01-11T21:05:10.7584870Z 2023-01-11T21:05:10.7584963Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.7585031Z import torch 2023-01-11T21:05:10.7585101Z import random 2023-01-11T21:05:10.7585215Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.7585321Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.7585326Z 2023-01-11T21:05:10.7585402Z aten = torch.ops.aten 2023-01-11T21:05:10.7585533Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.7585625Z async_compile = AsyncCompile() 2023-01-11T21:05:10.7585631Z 2023-01-11T21:05:10.7585635Z 2023-01-11T21:05:10.7585767Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.7585971Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.7586091Z extern "C" void kernel(const double* __restrict__ in_ptr0, 2023-01-11T21:05:10.7586194Z const float* __restrict__ in_ptr1, 2023-01-11T21:05:10.7586280Z double* __restrict__ out_ptr0) 2023-01-11T21:05:10.7586340Z { 2023-01-11T21:05:10.7586436Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.7586495Z { 2023-01-11T21:05:10.7586570Z #pragma omp for 2023-01-11T21:05:10.7586648Z for(long i0=0; i0<10; i0+=1) 2023-01-11T21:05:10.7586709Z { 2023-01-11T21:05:10.7586774Z #pragma GCC ivdep 2023-01-11T21:05:10.7586858Z for(long i1=0; i1<10; i1+=1) 2023-01-11T21:05:10.7586919Z { 2023-01-11T21:05:10.7587011Z { 2023-01-11T21:05:10.7587076Z { 2023-01-11T21:05:10.7587178Z auto tmp0 = in_ptr0[i1 + (10*i0)]; 2023-01-11T21:05:10.7587273Z auto tmp1 = in_ptr1[i1]; 2023-01-11T21:05:10.7587372Z auto tmp2 = static_cast(tmp1); 2023-01-11T21:05:10.7587463Z auto tmp3 = tmp0 + tmp2; 2023-01-11T21:05:10.7587558Z out_ptr0[i1 + (10*i0)] = tmp3; 2023-01-11T21:05:10.7587622Z } 2023-01-11T21:05:10.7587684Z } 2023-01-11T21:05:10.7587746Z } 2023-01-11T21:05:10.7587805Z } 2023-01-11T21:05:10.7587852Z } 2023-01-11T21:05:10.7587910Z } 2023-01-11T21:05:10.7587986Z ''') 2023-01-11T21:05:10.7587991Z 2023-01-11T21:05:10.7587995Z 2023-01-11T21:05:10.7588083Z async_compile.wait(globals()) 2023-01-11T21:05:10.7588153Z del async_compile 2023-01-11T21:05:10.7588158Z 2023-01-11T21:05:10.7588226Z def call(args): 2023-01-11T21:05:10.7588302Z arg0_1, arg1_1 = args 2023-01-11T21:05:10.7588357Z args.clear() 2023-01-11T21:05:10.7588553Z buf0 = empty_strided((10, 10), (10, 1), device='cpu', dtype=torch.float64) 2023-01-11T21:05:10.7588741Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(arg1_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:05:10.7588809Z del arg0_1 2023-01-11T21:05:10.7588873Z del arg1_1 2023-01-11T21:05:10.7588942Z return (buf0, ) 2023-01-11T21:05:10.7588948Z 2023-01-11T21:05:10.7588951Z 2023-01-11T21:05:10.7589024Z if __name__ == "__main__": 2023-01-11T21:05:10.7589136Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.7589245Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.7589442Z arg0_1 = rand_strided((10, 10), (10, 1), device='cpu', dtype=torch.float64) 2023-01-11T21:05:10.7589635Z arg1_1 = rand_strided((10, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.7589750Z print_performance(lambda: call([arg0_1, arg1_1])) 2023-01-11T21:05:10.7589757Z 2023-01-11T21:05:10.7589821Z ok (2.696s) 2023-01-11T21:05:10.7590285Z test_cpu_double_broadcast2 (__main__.SweepInputsCpuTest) ... inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.7590409Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.7590666Z [2023-01-11 21:03:56,230] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 533 2023-01-11T21:05:10.7590925Z [2023-01-11 21:03:58,873] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 533 2023-01-11T21:05:10.7590930Z 2023-01-11T21:05:10.7591009Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.7591079Z import torch 2023-01-11T21:05:10.7591147Z import random 2023-01-11T21:05:10.7591259Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.7591376Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.7591383Z 2023-01-11T21:05:10.7591459Z aten = torch.ops.aten 2023-01-11T21:05:10.7591590Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.7591667Z async_compile = AsyncCompile() 2023-01-11T21:05:10.7591684Z 2023-01-11T21:05:10.7591688Z 2023-01-11T21:05:10.7591806Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.7592008Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.7592127Z extern "C" void kernel(const double* __restrict__ in_ptr0, 2023-01-11T21:05:10.7592228Z const float* __restrict__ in_ptr1, 2023-01-11T21:05:10.7592328Z double* __restrict__ out_ptr0) 2023-01-11T21:05:10.7592387Z { 2023-01-11T21:05:10.7592525Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.7592572Z { 2023-01-11T21:05:10.7592647Z #pragma omp for 2023-01-11T21:05:10.7592726Z for(long i0=0; i0<10; i0+=1) 2023-01-11T21:05:10.7592787Z { 2023-01-11T21:05:10.7592867Z #pragma GCC ivdep 2023-01-11T21:05:10.7592951Z for(long i1=0; i1<10; i1+=1) 2023-01-11T21:05:10.7593013Z { 2023-01-11T21:05:10.7593063Z { 2023-01-11T21:05:10.7597941Z { 2023-01-11T21:05:10.7598082Z auto tmp0 = in_ptr0[i1 + (10*i0)]; 2023-01-11T21:05:10.7598180Z auto tmp1 = in_ptr1[i0]; 2023-01-11T21:05:10.7598294Z auto tmp2 = static_cast(tmp1); 2023-01-11T21:05:10.7598375Z auto tmp3 = tmp0 + tmp2; 2023-01-11T21:05:10.7598470Z out_ptr0[i1 + (10*i0)] = tmp3; 2023-01-11T21:05:10.7598536Z } 2023-01-11T21:05:10.7598601Z } 2023-01-11T21:05:10.7598667Z } 2023-01-11T21:05:10.7598727Z } 2023-01-11T21:05:10.7598787Z } 2023-01-11T21:05:10.7598834Z } 2023-01-11T21:05:10.7598938Z ''') 2023-01-11T21:05:10.7598945Z 2023-01-11T21:05:10.7599022Z 2023-01-11T21:05:10.7599114Z async_compile.wait(globals()) 2023-01-11T21:05:10.7599186Z del async_compile 2023-01-11T21:05:10.7599191Z 2023-01-11T21:05:10.7599260Z def call(args): 2023-01-11T21:05:10.7599333Z arg0_1, arg1_1 = args 2023-01-11T21:05:10.7599403Z args.clear() 2023-01-11T21:05:10.7599607Z buf0 = empty_strided((1, 10, 10), (100, 10, 1), device='cpu', dtype=torch.float64) 2023-01-11T21:05:10.7599771Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(arg1_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:05:10.7599836Z del arg0_1 2023-01-11T21:05:10.7599901Z del arg1_1 2023-01-11T21:05:10.7599969Z return (buf0, ) 2023-01-11T21:05:10.7599974Z 2023-01-11T21:05:10.7599978Z 2023-01-11T21:05:10.7600052Z if __name__ == "__main__": 2023-01-11T21:05:10.7600168Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.7600293Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.7600483Z arg0_1 = rand_strided((10, 10), (10, 1), device='cpu', dtype=torch.float64) 2023-01-11T21:05:10.7600819Z arg1_1 = rand_strided((1, 10, 1), (10, 1, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.7600933Z print_performance(lambda: call([arg0_1, arg1_1])) 2023-01-11T21:05:10.7600939Z 2023-01-11T21:05:10.7601004Z ok (2.675s) 2023-01-11T21:05:10.7601470Z test_cpu_double_broadcast3 (__main__.SweepInputsCpuTest) ... inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.7601594Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.7601862Z [2023-01-11 21:03:58,905] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 534 2023-01-11T21:05:10.7602131Z [2023-01-11 21:04:01,584] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 534 2023-01-11T21:05:10.7602137Z 2023-01-11T21:05:10.7602229Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.7602284Z import torch 2023-01-11T21:05:10.7602353Z import random 2023-01-11T21:05:10.7602466Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.7602586Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.7602591Z 2023-01-11T21:05:10.7602669Z aten = torch.ops.aten 2023-01-11T21:05:10.7602804Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.7602893Z async_compile = AsyncCompile() 2023-01-11T21:05:10.7602898Z 2023-01-11T21:05:10.7602902Z 2023-01-11T21:05:10.7603033Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.7603290Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.7603410Z extern "C" void kernel(const double* __restrict__ in_ptr0, 2023-01-11T21:05:10.7603516Z const float* __restrict__ in_ptr1, 2023-01-11T21:05:10.7603614Z double* __restrict__ out_ptr0) 2023-01-11T21:05:10.7603674Z { 2023-01-11T21:05:10.7603768Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.7603821Z { 2023-01-11T21:05:10.7603900Z #pragma omp for 2023-01-11T21:05:10.7603984Z for(long i0=0; i0<100; i0+=1) 2023-01-11T21:05:10.7604033Z { 2023-01-11T21:05:10.7604097Z { 2023-01-11T21:05:10.7604161Z { 2023-01-11T21:05:10.7604255Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:05:10.7604345Z auto tmp1 = in_ptr1[0]; 2023-01-11T21:05:10.7604454Z auto tmp2 = static_cast(tmp1); 2023-01-11T21:05:10.7604548Z auto tmp3 = tmp0 + tmp2; 2023-01-11T21:05:10.7604620Z out_ptr0[i0] = tmp3; 2023-01-11T21:05:10.7604685Z } 2023-01-11T21:05:10.7604747Z } 2023-01-11T21:05:10.7604848Z } 2023-01-11T21:05:10.7604909Z } 2023-01-11T21:05:10.7604967Z } 2023-01-11T21:05:10.7605033Z ''') 2023-01-11T21:05:10.7605054Z 2023-01-11T21:05:10.7605058Z 2023-01-11T21:05:10.7605133Z async_compile.wait(globals()) 2023-01-11T21:05:10.7605203Z del async_compile 2023-01-11T21:05:10.7605209Z 2023-01-11T21:05:10.7605276Z def call(args): 2023-01-11T21:05:10.7605348Z arg0_1, arg1_1 = args 2023-01-11T21:05:10.7605418Z args.clear() 2023-01-11T21:05:10.7605617Z buf0 = empty_strided((10, 10), (10, 1), device='cpu', dtype=torch.float64) 2023-01-11T21:05:10.7605777Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(arg1_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:05:10.7605832Z del arg0_1 2023-01-11T21:05:10.7605897Z del arg1_1 2023-01-11T21:05:10.7605969Z return (buf0, ) 2023-01-11T21:05:10.7605974Z 2023-01-11T21:05:10.7605979Z 2023-01-11T21:05:10.7606054Z if __name__ == "__main__": 2023-01-11T21:05:10.7606168Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.7606292Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.7606493Z arg0_1 = rand_strided((10, 10), (10, 1), device='cpu', dtype=torch.float64) 2023-01-11T21:05:10.7606687Z arg1_1 = rand_strided((1, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.7606787Z print_performance(lambda: call([arg0_1, arg1_1])) 2023-01-11T21:05:10.7606792Z 2023-01-11T21:05:10.7606858Z ok (2.711s) 2023-01-11T21:05:10.7607311Z test_cpu_double_dense (__main__.SweepInputsCpuTest) ... inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.7607439Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.7607698Z [2023-01-11 21:04:01,615] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 535 2023-01-11T21:05:10.7607962Z [2023-01-11 21:04:04,272] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 535 2023-01-11T21:05:10.7607967Z 2023-01-11T21:05:10.7608060Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.7608127Z import torch 2023-01-11T21:05:10.7608195Z import random 2023-01-11T21:05:10.7608296Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.7608413Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.7608418Z 2023-01-11T21:05:10.7608495Z aten = torch.ops.aten 2023-01-11T21:05:10.7608627Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.7608716Z async_compile = AsyncCompile() 2023-01-11T21:05:10.7608755Z 2023-01-11T21:05:10.7608759Z 2023-01-11T21:05:10.7608890Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.7609095Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.7609216Z extern "C" void kernel(const double* __restrict__ in_ptr0, 2023-01-11T21:05:10.7609307Z const float* __restrict__ in_ptr1, 2023-01-11T21:05:10.7609405Z double* __restrict__ out_ptr0) 2023-01-11T21:05:10.7609465Z { 2023-01-11T21:05:10.7609559Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.7609619Z { 2023-01-11T21:05:10.7609695Z #pragma omp for 2023-01-11T21:05:10.7609776Z for(long i0=0; i0<100; i0+=1) 2023-01-11T21:05:10.7609825Z { 2023-01-11T21:05:10.7609886Z { 2023-01-11T21:05:10.7609949Z { 2023-01-11T21:05:10.7610043Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:05:10.7610133Z auto tmp1 = in_ptr1[i0]; 2023-01-11T21:05:10.7610243Z auto tmp2 = static_cast(tmp1); 2023-01-11T21:05:10.7610331Z auto tmp3 = tmp0 + tmp2; 2023-01-11T21:05:10.7610429Z out_ptr0[i0] = tmp3; 2023-01-11T21:05:10.7610493Z } 2023-01-11T21:05:10.7610554Z } 2023-01-11T21:05:10.7610615Z } 2023-01-11T21:05:10.7610674Z } 2023-01-11T21:05:10.7610735Z } 2023-01-11T21:05:10.7610800Z ''') 2023-01-11T21:05:10.7610817Z 2023-01-11T21:05:10.7610821Z 2023-01-11T21:05:10.7610897Z async_compile.wait(globals()) 2023-01-11T21:05:10.7610966Z del async_compile 2023-01-11T21:05:10.7610971Z 2023-01-11T21:05:10.7611040Z def call(args): 2023-01-11T21:05:10.7611113Z arg0_1, arg1_1 = args 2023-01-11T21:05:10.7611183Z args.clear() 2023-01-11T21:05:10.7611382Z buf0 = empty_strided((10, 10), (10, 1), device='cpu', dtype=torch.float64) 2023-01-11T21:05:10.7611541Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(arg1_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:05:10.7611598Z del arg0_1 2023-01-11T21:05:10.7611664Z del arg1_1 2023-01-11T21:05:10.7611733Z return (buf0, ) 2023-01-11T21:05:10.7611737Z 2023-01-11T21:05:10.7611743Z 2023-01-11T21:05:10.7611817Z if __name__ == "__main__": 2023-01-11T21:05:10.7611928Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.7612049Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.7612248Z arg0_1 = rand_strided((10, 10), (10, 1), device='cpu', dtype=torch.float64) 2023-01-11T21:05:10.7612443Z arg1_1 = rand_strided((10, 10), (10, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.7612545Z print_performance(lambda: call([arg0_1, arg1_1])) 2023-01-11T21:05:10.7612550Z 2023-01-11T21:05:10.7612615Z ok (2.687s) 2023-01-11T21:05:10.7613080Z test_cpu_double_double (__main__.SweepInputsCpuTest) ... inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.7613210Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.7613468Z [2023-01-11 21:04:04,302] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 536 2023-01-11T21:05:10.7613728Z [2023-01-11 21:04:06,921] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 536 2023-01-11T21:05:10.7613733Z 2023-01-11T21:05:10.7613826Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.7613894Z import torch 2023-01-11T21:05:10.7613962Z import random 2023-01-11T21:05:10.7614063Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.7614181Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.7614186Z 2023-01-11T21:05:10.7614262Z aten = torch.ops.aten 2023-01-11T21:05:10.7614429Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.7614519Z async_compile = AsyncCompile() 2023-01-11T21:05:10.7614524Z 2023-01-11T21:05:10.7614528Z 2023-01-11T21:05:10.7614662Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.7614865Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.7614985Z extern "C" void kernel(const double* __restrict__ in_ptr0, 2023-01-11T21:05:10.7615077Z const double* __restrict__ in_ptr1, 2023-01-11T21:05:10.7615176Z double* __restrict__ out_ptr0) 2023-01-11T21:05:10.7615236Z { 2023-01-11T21:05:10.7615331Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.7615391Z { 2023-01-11T21:05:10.7615469Z #pragma omp for 2023-01-11T21:05:10.7615550Z for(long i0=0; i0<100; i0+=1) 2023-01-11T21:05:10.7615600Z { 2023-01-11T21:05:10.7615662Z { 2023-01-11T21:05:10.7615727Z { 2023-01-11T21:05:10.7615819Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:05:10.7615909Z auto tmp1 = in_ptr1[i0]; 2023-01-11T21:05:10.7616027Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:05:10.7616112Z out_ptr0[i0] = tmp2; 2023-01-11T21:05:10.7616163Z } 2023-01-11T21:05:10.7616224Z } 2023-01-11T21:05:10.7616288Z } 2023-01-11T21:05:10.7616348Z } 2023-01-11T21:05:10.7616407Z } 2023-01-11T21:05:10.7616484Z ''') 2023-01-11T21:05:10.7616489Z 2023-01-11T21:05:10.7616493Z 2023-01-11T21:05:10.7616581Z async_compile.wait(globals()) 2023-01-11T21:05:10.7616639Z del async_compile 2023-01-11T21:05:10.7616644Z 2023-01-11T21:05:10.7616713Z def call(args): 2023-01-11T21:05:10.7616785Z arg0_1, arg1_1 = args 2023-01-11T21:05:10.7616855Z args.clear() 2023-01-11T21:05:10.7617056Z buf0 = empty_strided((10, 10), (10, 1), device='cpu', dtype=torch.float64) 2023-01-11T21:05:10.7617218Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(arg1_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:05:10.7617287Z del arg0_1 2023-01-11T21:05:10.7617338Z del arg1_1 2023-01-11T21:05:10.7617411Z return (buf0, ) 2023-01-11T21:05:10.7617416Z 2023-01-11T21:05:10.7617420Z 2023-01-11T21:05:10.7617494Z if __name__ == "__main__": 2023-01-11T21:05:10.7617607Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.7617728Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.7617927Z arg0_1 = rand_strided((10, 10), (10, 1), device='cpu', dtype=torch.float64) 2023-01-11T21:05:10.7618123Z arg1_1 = rand_strided((10, 10), (10, 1), device='cpu', dtype=torch.float64) 2023-01-11T21:05:10.7618238Z print_performance(lambda: call([arg0_1, arg1_1])) 2023-01-11T21:05:10.7618243Z 2023-01-11T21:05:10.7618296Z ok (2.649s) 2023-01-11T21:05:10.7618846Z test_cpu_double_int (__main__.SweepInputsCpuTest) ... inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.7618977Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.7619241Z [2023-01-11 21:04:06,952] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 537 2023-01-11T21:05:10.7619506Z [2023-01-11 21:04:09,600] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 537 2023-01-11T21:05:10.7619510Z 2023-01-11T21:05:10.7619604Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.7619674Z import torch 2023-01-11T21:05:10.7619745Z import random 2023-01-11T21:05:10.7619860Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.7619967Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.7620020Z 2023-01-11T21:05:10.7620085Z aten = torch.ops.aten 2023-01-11T21:05:10.7620220Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.7620309Z async_compile = AsyncCompile() 2023-01-11T21:05:10.7620316Z 2023-01-11T21:05:10.7620321Z 2023-01-11T21:05:10.7620456Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.7620660Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.7620780Z extern "C" void kernel(const double* __restrict__ in_ptr0, 2023-01-11T21:05:10.7620880Z const int* __restrict__ in_ptr1, 2023-01-11T21:05:10.7620967Z double* __restrict__ out_ptr0) 2023-01-11T21:05:10.7621027Z { 2023-01-11T21:05:10.7621123Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.7621184Z { 2023-01-11T21:05:10.7621261Z #pragma omp for 2023-01-11T21:05:10.7621341Z for(long i0=0; i0<10; i0+=1) 2023-01-11T21:05:10.7621401Z { 2023-01-11T21:05:10.7621468Z #pragma GCC ivdep 2023-01-11T21:05:10.7621553Z for(long i1=0; i1<10; i1+=1) 2023-01-11T21:05:10.7621617Z { 2023-01-11T21:05:10.7621680Z { 2023-01-11T21:05:10.7621776Z { 2023-01-11T21:05:10.7621880Z auto tmp0 = in_ptr0[i1 + (10*i0)]; 2023-01-11T21:05:10.7621972Z auto tmp1 = in_ptr1[i1]; 2023-01-11T21:05:10.7622071Z auto tmp2 = static_cast(tmp1); 2023-01-11T21:05:10.7622163Z auto tmp3 = tmp0 + tmp2; 2023-01-11T21:05:10.7622257Z out_ptr0[i1 + (10*i0)] = tmp3; 2023-01-11T21:05:10.7622323Z } 2023-01-11T21:05:10.7622386Z } 2023-01-11T21:05:10.7622448Z } 2023-01-11T21:05:10.7622508Z } 2023-01-11T21:05:10.7622555Z } 2023-01-11T21:05:10.7622613Z } 2023-01-11T21:05:10.7622688Z ''') 2023-01-11T21:05:10.7622693Z 2023-01-11T21:05:10.7622699Z 2023-01-11T21:05:10.7622787Z async_compile.wait(globals()) 2023-01-11T21:05:10.7622857Z del async_compile 2023-01-11T21:05:10.7622863Z 2023-01-11T21:05:10.7622931Z def call(args): 2023-01-11T21:05:10.7623004Z arg0_1, arg1_1 = args 2023-01-11T21:05:10.7623063Z args.clear() 2023-01-11T21:05:10.7623259Z buf0 = empty_strided((10, 10), (10, 1), device='cpu', dtype=torch.float64) 2023-01-11T21:05:10.7623418Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(arg1_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:05:10.7623484Z del arg0_1 2023-01-11T21:05:10.7623550Z del arg1_1 2023-01-11T21:05:10.7623620Z return (buf0, ) 2023-01-11T21:05:10.7623625Z 2023-01-11T21:05:10.7623629Z 2023-01-11T21:05:10.7623702Z if __name__ == "__main__": 2023-01-11T21:05:10.7623815Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.7623923Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.7624119Z arg0_1 = rand_strided((10, 10), (10, 1), device='cpu', dtype=torch.float64) 2023-01-11T21:05:10.7624312Z arg1_1 = rand_strided((10, ), (1, ), device='cpu', dtype=torch.int32) 2023-01-11T21:05:10.7624424Z print_performance(lambda: call([arg0_1, arg1_1])) 2023-01-11T21:05:10.7624431Z 2023-01-11T21:05:10.7624495Z ok (2.679s) 2023-01-11T21:05:10.7624957Z test_cpu_double_strided (__main__.SweepInputsCpuTest) ... inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.7625082Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.7625341Z [2023-01-11 21:04:09,632] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 538 2023-01-11T21:05:10.7625599Z [2023-01-11 21:04:12,286] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 538 2023-01-11T21:05:10.7625641Z 2023-01-11T21:05:10.7625722Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.7625791Z import torch 2023-01-11T21:05:10.7625859Z import random 2023-01-11T21:05:10.7625974Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.7626092Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.7626097Z 2023-01-11T21:05:10.7626173Z aten = torch.ops.aten 2023-01-11T21:05:10.7626304Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.7626381Z async_compile = AsyncCompile() 2023-01-11T21:05:10.7626398Z 2023-01-11T21:05:10.7626402Z 2023-01-11T21:05:10.7626521Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.7626722Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.7626842Z extern "C" void kernel(const double* __restrict__ in_ptr0, 2023-01-11T21:05:10.7626947Z const float* __restrict__ in_ptr1, 2023-01-11T21:05:10.7627047Z double* __restrict__ out_ptr0) 2023-01-11T21:05:10.7627110Z { 2023-01-11T21:05:10.7627205Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.7627284Z { 2023-01-11T21:05:10.7627359Z #pragma omp for 2023-01-11T21:05:10.7627439Z for(long i0=0; i0<10; i0+=1) 2023-01-11T21:05:10.7627500Z { 2023-01-11T21:05:10.7627577Z #pragma GCC ivdep 2023-01-11T21:05:10.7627661Z for(long i1=0; i1<10; i1+=1) 2023-01-11T21:05:10.7627723Z { 2023-01-11T21:05:10.7627773Z { 2023-01-11T21:05:10.7627838Z { 2023-01-11T21:05:10.7627939Z auto tmp0 = in_ptr0[i1 + (10*i0)]; 2023-01-11T21:05:10.7628041Z auto tmp1 = in_ptr1[(2*i1) + (30*i0)]; 2023-01-11T21:05:10.7628151Z auto tmp2 = static_cast(tmp1); 2023-01-11T21:05:10.7628243Z auto tmp3 = tmp0 + tmp2; 2023-01-11T21:05:10.7628338Z out_ptr0[i1 + (10*i0)] = tmp3; 2023-01-11T21:05:10.7628390Z } 2023-01-11T21:05:10.7628454Z } 2023-01-11T21:05:10.7628516Z } 2023-01-11T21:05:10.7628579Z } 2023-01-11T21:05:10.7628639Z } 2023-01-11T21:05:10.7628697Z } 2023-01-11T21:05:10.7628761Z ''') 2023-01-11T21:05:10.7628778Z 2023-01-11T21:05:10.7628782Z 2023-01-11T21:05:10.7628857Z async_compile.wait(globals()) 2023-01-11T21:05:10.7628927Z del async_compile 2023-01-11T21:05:10.7628933Z 2023-01-11T21:05:10.7629001Z def call(args): 2023-01-11T21:05:10.7629075Z arg0_1, arg1_1 = args 2023-01-11T21:05:10.7629144Z args.clear() 2023-01-11T21:05:10.7629345Z buf0 = empty_strided((10, 10), (10, 1), device='cpu', dtype=torch.float64) 2023-01-11T21:05:10.7629504Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(arg1_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:05:10.7629558Z del arg0_1 2023-01-11T21:05:10.7629623Z del arg1_1 2023-01-11T21:05:10.7629692Z return (buf0, ) 2023-01-11T21:05:10.7629697Z 2023-01-11T21:05:10.7629701Z 2023-01-11T21:05:10.7629774Z if __name__ == "__main__": 2023-01-11T21:05:10.7629888Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.7630009Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.7630209Z arg0_1 = rand_strided((10, 10), (10, 1), device='cpu', dtype=torch.float64) 2023-01-11T21:05:10.7630405Z arg1_1 = rand_strided((10, 10), (30, 2), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.7630505Z print_performance(lambda: call([arg0_1, arg1_1])) 2023-01-11T21:05:10.7630510Z 2023-01-11T21:05:10.7630573Z ok (2.686s) 2023-01-11T21:05:10.7631034Z test_cpu_double_transposed (__main__.SweepInputsCpuTest) ... inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.7631186Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.7631446Z [2023-01-11 21:04:12,318] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 539 2023-01-11T21:05:10.7631708Z [2023-01-11 21:04:14,953] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 539 2023-01-11T21:05:10.7631713Z 2023-01-11T21:05:10.7631808Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.7631877Z import torch 2023-01-11T21:05:10.7631946Z import random 2023-01-11T21:05:10.7632047Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.7632164Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.7632169Z 2023-01-11T21:05:10.7632245Z aten = torch.ops.aten 2023-01-11T21:05:10.7632376Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.7632467Z async_compile = AsyncCompile() 2023-01-11T21:05:10.7632472Z 2023-01-11T21:05:10.7632477Z 2023-01-11T21:05:10.7632608Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.7632843Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.7632964Z extern "C" void kernel(const double* __restrict__ in_ptr0, 2023-01-11T21:05:10.7633056Z const float* __restrict__ in_ptr1, 2023-01-11T21:05:10.7633155Z double* __restrict__ out_ptr0) 2023-01-11T21:05:10.7633213Z { 2023-01-11T21:05:10.7633310Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.7633369Z { 2023-01-11T21:05:10.7633444Z #pragma omp for 2023-01-11T21:05:10.7633524Z for(long i0=0; i0<10; i0+=1) 2023-01-11T21:05:10.7633574Z { 2023-01-11T21:05:10.7633653Z #pragma GCC ivdep 2023-01-11T21:05:10.7633736Z for(long i1=0; i1<10; i1+=1) 2023-01-11T21:05:10.7633798Z { 2023-01-11T21:05:10.7633863Z { 2023-01-11T21:05:10.7633927Z { 2023-01-11T21:05:10.7634029Z auto tmp0 = in_ptr0[i1 + (10*i0)]; 2023-01-11T21:05:10.7634118Z auto tmp1 = in_ptr1[i0 + (10*i1)]; 2023-01-11T21:05:10.7634232Z auto tmp2 = static_cast(tmp1); 2023-01-11T21:05:10.7634324Z auto tmp3 = tmp0 + tmp2; 2023-01-11T21:05:10.7634421Z out_ptr0[i1 + (10*i0)] = tmp3; 2023-01-11T21:05:10.7634485Z } 2023-01-11T21:05:10.7634548Z } 2023-01-11T21:05:10.7634610Z } 2023-01-11T21:05:10.7634658Z } 2023-01-11T21:05:10.7634717Z } 2023-01-11T21:05:10.7634774Z } 2023-01-11T21:05:10.7634851Z ''') 2023-01-11T21:05:10.7634856Z 2023-01-11T21:05:10.7634860Z 2023-01-11T21:05:10.7634948Z async_compile.wait(globals()) 2023-01-11T21:05:10.7635019Z del async_compile 2023-01-11T21:05:10.7635023Z 2023-01-11T21:05:10.7635094Z def call(args): 2023-01-11T21:05:10.7635154Z arg0_1, arg1_1 = args 2023-01-11T21:05:10.7635223Z args.clear() 2023-01-11T21:05:10.7635423Z buf0 = empty_strided((10, 10), (10, 1), device='cpu', dtype=torch.float64) 2023-01-11T21:05:10.7635584Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(arg1_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:05:10.7635651Z del arg0_1 2023-01-11T21:05:10.7635717Z del arg1_1 2023-01-11T21:05:10.7635787Z return (buf0, ) 2023-01-11T21:05:10.7635791Z 2023-01-11T21:05:10.7635795Z 2023-01-11T21:05:10.7635870Z if __name__ == "__main__": 2023-01-11T21:05:10.7635972Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.7636092Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.7636291Z arg0_1 = rand_strided((10, 10), (10, 1), device='cpu', dtype=torch.float64) 2023-01-11T21:05:10.7636486Z arg1_1 = rand_strided((10, 10), (1, 10), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.7636648Z print_performance(lambda: call([arg0_1, arg1_1])) 2023-01-11T21:05:10.7636653Z 2023-01-11T21:05:10.7636718Z ok (2.666s) 2023-01-11T21:05:10.7637178Z test_cpu_int_broadcast1 (__main__.SweepInputsCpuTest) ... inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.7637303Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.7637565Z [2023-01-11 21:04:14,984] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 540 2023-01-11T21:05:10.7637816Z [2023-01-11 21:04:17,605] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 540 2023-01-11T21:05:10.7637832Z 2023-01-11T21:05:10.7637911Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.7637982Z import torch 2023-01-11T21:05:10.7638051Z import random 2023-01-11T21:05:10.7638164Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.7638282Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.7638314Z 2023-01-11T21:05:10.7638392Z aten = torch.ops.aten 2023-01-11T21:05:10.7638524Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.7638601Z async_compile = AsyncCompile() 2023-01-11T21:05:10.7638606Z 2023-01-11T21:05:10.7638610Z 2023-01-11T21:05:10.7638744Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.7638946Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.7639063Z extern "C" void kernel(const int* __restrict__ in_ptr0, 2023-01-11T21:05:10.7639167Z const float* __restrict__ in_ptr1, 2023-01-11T21:05:10.7639265Z float* __restrict__ out_ptr0) 2023-01-11T21:05:10.7639323Z { 2023-01-11T21:05:10.7639410Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.7639469Z { 2023-01-11T21:05:10.7639544Z #pragma omp for 2023-01-11T21:05:10.7639623Z for(long i0=0; i0<10; i0+=1) 2023-01-11T21:05:10.7639687Z { 2023-01-11T21:05:10.7639750Z { 2023-01-11T21:05:10.7639815Z { 2023-01-11T21:05:10.7639894Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:05:10.7639984Z auto tmp2 = in_ptr1[i0]; 2023-01-11T21:05:10.7640090Z auto tmp1 = static_cast(tmp0); 2023-01-11T21:05:10.7640180Z auto tmp3 = tmp1 + tmp2; 2023-01-11T21:05:10.7640263Z out_ptr0[i0] = tmp3; 2023-01-11T21:05:10.7640325Z } 2023-01-11T21:05:10.7640385Z } 2023-01-11T21:05:10.7640433Z } 2023-01-11T21:05:10.7640490Z } 2023-01-11T21:05:10.7640549Z } 2023-01-11T21:05:10.7640729Z ''') 2023-01-11T21:05:10.7640735Z 2023-01-11T21:05:10.7640739Z 2023-01-11T21:05:10.7640832Z async_compile.wait(globals()) 2023-01-11T21:05:10.7640902Z del async_compile 2023-01-11T21:05:10.7640908Z 2023-01-11T21:05:10.7640978Z def call(args): 2023-01-11T21:05:10.7641039Z arg0_1, arg1_1 = args 2023-01-11T21:05:10.7641111Z args.clear() 2023-01-11T21:05:10.7641307Z buf0 = empty_strided((10, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.7641471Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(arg1_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:05:10.7641538Z del arg0_1 2023-01-11T21:05:10.7641603Z del arg1_1 2023-01-11T21:05:10.7641674Z return (buf0, ) 2023-01-11T21:05:10.7641680Z 2023-01-11T21:05:10.7641684Z 2023-01-11T21:05:10.7641759Z if __name__ == "__main__": 2023-01-11T21:05:10.7641861Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.7641986Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.7642177Z arg0_1 = rand_strided((10, ), (1, ), device='cpu', dtype=torch.int32) 2023-01-11T21:05:10.7642432Z arg1_1 = rand_strided((10, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.7642545Z print_performance(lambda: call([arg0_1, arg1_1])) 2023-01-11T21:05:10.7642550Z 2023-01-11T21:05:10.7642619Z ok (2.653s) 2023-01-11T21:05:10.7643076Z test_cpu_int_broadcast2 (__main__.SweepInputsCpuTest) ... inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.7643202Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.7643460Z [2023-01-11 21:04:17,645] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 541 2023-01-11T21:05:10.7643710Z [2023-01-11 21:04:20,300] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 541 2023-01-11T21:05:10.7643718Z 2023-01-11T21:05:10.7643813Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.7643882Z import torch 2023-01-11T21:05:10.7643952Z import random 2023-01-11T21:05:10.7644105Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.7644227Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.7644232Z 2023-01-11T21:05:10.7644309Z aten = torch.ops.aten 2023-01-11T21:05:10.7644442Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.7644519Z async_compile = AsyncCompile() 2023-01-11T21:05:10.7644524Z 2023-01-11T21:05:10.7644528Z 2023-01-11T21:05:10.7644660Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.7644863Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.7644980Z extern "C" void kernel(const int* __restrict__ in_ptr0, 2023-01-11T21:05:10.7645083Z const float* __restrict__ in_ptr1, 2023-01-11T21:05:10.7645183Z float* __restrict__ out_ptr0) 2023-01-11T21:05:10.7645242Z { 2023-01-11T21:05:10.7645324Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.7645384Z { 2023-01-11T21:05:10.7645460Z #pragma omp for 2023-01-11T21:05:10.7645544Z for(long i0=0; i0<10; i0+=1) 2023-01-11T21:05:10.7645605Z { 2023-01-11T21:05:10.7645684Z #pragma GCC ivdep 2023-01-11T21:05:10.7645768Z for(long i1=0; i1<10; i1+=1) 2023-01-11T21:05:10.7645817Z { 2023-01-11T21:05:10.7645881Z { 2023-01-11T21:05:10.7645947Z { 2023-01-11T21:05:10.7646041Z auto tmp0 = in_ptr0[i1]; 2023-01-11T21:05:10.7646133Z auto tmp2 = in_ptr1[i0]; 2023-01-11T21:05:10.7646243Z auto tmp1 = static_cast(tmp0); 2023-01-11T21:05:10.7646332Z auto tmp3 = tmp1 + tmp2; 2023-01-11T21:05:10.7646415Z out_ptr0[i1 + (10*i0)] = tmp3; 2023-01-11T21:05:10.7646482Z } 2023-01-11T21:05:10.7646544Z } 2023-01-11T21:05:10.7646605Z } 2023-01-11T21:05:10.7646665Z } 2023-01-11T21:05:10.7646726Z } 2023-01-11T21:05:10.7646783Z } 2023-01-11T21:05:10.7646848Z ''') 2023-01-11T21:05:10.7646852Z 2023-01-11T21:05:10.7646856Z 2023-01-11T21:05:10.7646945Z async_compile.wait(globals()) 2023-01-11T21:05:10.7647014Z del async_compile 2023-01-11T21:05:10.7647019Z 2023-01-11T21:05:10.7647089Z def call(args): 2023-01-11T21:05:10.7647161Z arg0_1, arg1_1 = args 2023-01-11T21:05:10.7647232Z args.clear() 2023-01-11T21:05:10.7647439Z buf0 = empty_strided((1, 10, 10), (100, 10, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.7647589Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(arg1_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:05:10.7647656Z del arg0_1 2023-01-11T21:05:10.7647725Z del arg1_1 2023-01-11T21:05:10.7647836Z return (buf0, ) 2023-01-11T21:05:10.7647841Z 2023-01-11T21:05:10.7647845Z 2023-01-11T21:05:10.7647919Z if __name__ == "__main__": 2023-01-11T21:05:10.7648036Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.7648160Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.7648349Z arg0_1 = rand_strided((10, ), (1, ), device='cpu', dtype=torch.int32) 2023-01-11T21:05:10.7648540Z arg1_1 = rand_strided((1, 10, 1), (10, 1, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.7648655Z print_performance(lambda: call([arg0_1, arg1_1])) 2023-01-11T21:05:10.7648660Z 2023-01-11T21:05:10.7648725Z ok (2.694s) 2023-01-11T21:05:10.7649189Z test_cpu_int_broadcast3 (__main__.SweepInputsCpuTest) ... inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.7649317Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.7649603Z [2023-01-11 21:04:20,331] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 542 2023-01-11T21:05:10.7649869Z [2023-01-11 21:04:22,971] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 542 2023-01-11T21:05:10.7649874Z 2023-01-11T21:05:10.7649967Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.7650036Z import torch 2023-01-11T21:05:10.7650092Z import random 2023-01-11T21:05:10.7650208Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.7650329Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.7650334Z 2023-01-11T21:05:10.7650411Z aten = torch.ops.aten 2023-01-11T21:05:10.7650545Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.7650636Z async_compile = AsyncCompile() 2023-01-11T21:05:10.7650643Z 2023-01-11T21:05:10.7650647Z 2023-01-11T21:05:10.7650779Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.7650983Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.7651088Z extern "C" void kernel(const int* __restrict__ in_ptr0, 2023-01-11T21:05:10.7651192Z const float* __restrict__ in_ptr1, 2023-01-11T21:05:10.7651289Z float* __restrict__ out_ptr0) 2023-01-11T21:05:10.7651349Z { 2023-01-11T21:05:10.7651444Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.7651506Z { 2023-01-11T21:05:10.7651583Z #pragma omp for 2023-01-11T21:05:10.7651651Z for(long i0=0; i0<10; i0+=1) 2023-01-11T21:05:10.7651714Z { 2023-01-11T21:05:10.7651776Z { 2023-01-11T21:05:10.7651840Z { 2023-01-11T21:05:10.7651932Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:05:10.7652023Z auto tmp2 = in_ptr1[0]; 2023-01-11T21:05:10.7652133Z auto tmp1 = static_cast(tmp0); 2023-01-11T21:05:10.7652211Z auto tmp3 = tmp1 + tmp2; 2023-01-11T21:05:10.7652294Z out_ptr0[i0] = tmp3; 2023-01-11T21:05:10.7652359Z } 2023-01-11T21:05:10.7652421Z } 2023-01-11T21:05:10.7652484Z } 2023-01-11T21:05:10.7652545Z } 2023-01-11T21:05:10.7652604Z } 2023-01-11T21:05:10.7652667Z ''') 2023-01-11T21:05:10.7652672Z 2023-01-11T21:05:10.7652676Z 2023-01-11T21:05:10.7652763Z async_compile.wait(globals()) 2023-01-11T21:05:10.7652832Z del async_compile 2023-01-11T21:05:10.7652837Z 2023-01-11T21:05:10.7652905Z def call(args): 2023-01-11T21:05:10.7652978Z arg0_1, arg1_1 = args 2023-01-11T21:05:10.7653047Z args.clear() 2023-01-11T21:05:10.7653242Z buf0 = empty_strided((10, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.7653387Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(arg1_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:05:10.7653488Z del arg0_1 2023-01-11T21:05:10.7653552Z del arg1_1 2023-01-11T21:05:10.7653621Z return (buf0, ) 2023-01-11T21:05:10.7653626Z 2023-01-11T21:05:10.7653631Z 2023-01-11T21:05:10.7653706Z if __name__ == "__main__": 2023-01-11T21:05:10.7653818Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.7653938Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.7654126Z arg0_1 = rand_strided((10, ), (1, ), device='cpu', dtype=torch.int32) 2023-01-11T21:05:10.7654303Z arg1_1 = rand_strided((1, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.7654416Z print_performance(lambda: call([arg0_1, arg1_1])) 2023-01-11T21:05:10.7654421Z 2023-01-11T21:05:10.7654485Z ok (2.671s) 2023-01-11T21:05:10.7654938Z test_cpu_int_dense (__main__.SweepInputsCpuTest) ... inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.7655092Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.7655351Z [2023-01-11 21:04:23,002] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 543 2023-01-11T21:05:10.7655614Z [2023-01-11 21:04:25,716] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 543 2023-01-11T21:05:10.7655620Z 2023-01-11T21:05:10.7655712Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.7655781Z import torch 2023-01-11T21:05:10.7655837Z import random 2023-01-11T21:05:10.7655949Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.7656067Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.7656072Z 2023-01-11T21:05:10.7656148Z aten = torch.ops.aten 2023-01-11T21:05:10.7656281Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.7656372Z async_compile = AsyncCompile() 2023-01-11T21:05:10.7656377Z 2023-01-11T21:05:10.7656381Z 2023-01-11T21:05:10.7656515Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.7656718Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.7656821Z extern "C" void kernel(const int* __restrict__ in_ptr0, 2023-01-11T21:05:10.7656924Z const float* __restrict__ in_ptr1, 2023-01-11T21:05:10.7657022Z float* __restrict__ out_ptr0) 2023-01-11T21:05:10.7657082Z { 2023-01-11T21:05:10.7657178Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.7657237Z { 2023-01-11T21:05:10.7657311Z #pragma omp for 2023-01-11T21:05:10.7657380Z for(long i0=0; i0<10; i0+=1) 2023-01-11T21:05:10.7657440Z { 2023-01-11T21:05:10.7657518Z #pragma GCC ivdep 2023-01-11T21:05:10.7657603Z for(long i1=0; i1<10; i1+=1) 2023-01-11T21:05:10.7657666Z { 2023-01-11T21:05:10.7657728Z { 2023-01-11T21:05:10.7657792Z { 2023-01-11T21:05:10.7657875Z auto tmp0 = in_ptr0[i1]; 2023-01-11T21:05:10.7657977Z auto tmp2 = in_ptr1[i1 + (10*i0)]; 2023-01-11T21:05:10.7658084Z auto tmp1 = static_cast(tmp0); 2023-01-11T21:05:10.7658174Z auto tmp3 = tmp1 + tmp2; 2023-01-11T21:05:10.7658269Z out_ptr0[i1 + (10*i0)] = tmp3; 2023-01-11T21:05:10.7658333Z } 2023-01-11T21:05:10.7658395Z } 2023-01-11T21:05:10.7658444Z } 2023-01-11T21:05:10.7658601Z } 2023-01-11T21:05:10.7658668Z } 2023-01-11T21:05:10.7658727Z } 2023-01-11T21:05:10.7658807Z ''') 2023-01-11T21:05:10.7658811Z 2023-01-11T21:05:10.7658816Z 2023-01-11T21:05:10.7658906Z async_compile.wait(globals()) 2023-01-11T21:05:10.7658978Z del async_compile 2023-01-11T21:05:10.7659018Z 2023-01-11T21:05:10.7659074Z def call(args): 2023-01-11T21:05:10.7659151Z arg0_1, arg1_1 = args 2023-01-11T21:05:10.7659221Z args.clear() 2023-01-11T21:05:10.7659423Z buf0 = empty_strided((10, 10), (10, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.7659585Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(arg1_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:05:10.7659652Z del arg0_1 2023-01-11T21:05:10.7659717Z del arg1_1 2023-01-11T21:05:10.7659774Z return (buf0, ) 2023-01-11T21:05:10.7659779Z 2023-01-11T21:05:10.7659795Z 2023-01-11T21:05:10.7659857Z if __name__ == "__main__": 2023-01-11T21:05:10.7659968Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.7660090Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.7660280Z arg0_1 = rand_strided((10, ), (1, ), device='cpu', dtype=torch.int32) 2023-01-11T21:05:10.7660477Z arg1_1 = rand_strided((10, 10), (10, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.7660592Z print_performance(lambda: call([arg0_1, arg1_1])) 2023-01-11T21:05:10.7660597Z 2023-01-11T21:05:10.7660661Z ok (2.745s) 2023-01-11T21:05:10.7661141Z test_cpu_int_double (__main__.SweepInputsCpuTest) ... inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.7661256Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.7661516Z [2023-01-11 21:04:25,747] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 544 2023-01-11T21:05:10.7661778Z [2023-01-11 21:04:28,389] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 544 2023-01-11T21:05:10.7661784Z 2023-01-11T21:05:10.7661879Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.7661948Z import torch 2023-01-11T21:05:10.7662019Z import random 2023-01-11T21:05:10.7662131Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.7662251Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.7662256Z 2023-01-11T21:05:10.7662320Z aten = torch.ops.aten 2023-01-11T21:05:10.7662450Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.7662539Z async_compile = AsyncCompile() 2023-01-11T21:05:10.7662544Z 2023-01-11T21:05:10.7662549Z 2023-01-11T21:05:10.7662679Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.7662881Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.7662998Z extern "C" void kernel(const int* __restrict__ in_ptr0, 2023-01-11T21:05:10.7663103Z const double* __restrict__ in_ptr1, 2023-01-11T21:05:10.7663201Z double* __restrict__ out_ptr0) 2023-01-11T21:05:10.7663251Z { 2023-01-11T21:05:10.7663346Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.7663406Z { 2023-01-11T21:05:10.7663480Z #pragma omp for 2023-01-11T21:05:10.7663564Z for(long i0=0; i0<10; i0+=1) 2023-01-11T21:05:10.7663625Z { 2023-01-11T21:05:10.7663704Z #pragma GCC ivdep 2023-01-11T21:05:10.7663775Z for(long i1=0; i1<10; i1+=1) 2023-01-11T21:05:10.7663838Z { 2023-01-11T21:05:10.7663901Z { 2023-01-11T21:05:10.7663966Z { 2023-01-11T21:05:10.7664061Z auto tmp0 = in_ptr0[i1]; 2023-01-11T21:05:10.7664162Z auto tmp2 = in_ptr1[i1 + (10*i0)]; 2023-01-11T21:05:10.7664274Z auto tmp1 = static_cast(tmp0); 2023-01-11T21:05:10.7664352Z auto tmp3 = tmp1 + tmp2; 2023-01-11T21:05:10.7664447Z out_ptr0[i1 + (10*i0)] = tmp3; 2023-01-11T21:05:10.7664542Z } 2023-01-11T21:05:10.7664603Z } 2023-01-11T21:05:10.7664666Z } 2023-01-11T21:05:10.7664725Z } 2023-01-11T21:05:10.7664785Z } 2023-01-11T21:05:10.7664830Z } 2023-01-11T21:05:10.7664910Z ''') 2023-01-11T21:05:10.7664916Z 2023-01-11T21:05:10.7664920Z 2023-01-11T21:05:10.7665009Z async_compile.wait(globals()) 2023-01-11T21:05:10.7665078Z del async_compile 2023-01-11T21:05:10.7665083Z 2023-01-11T21:05:10.7665150Z def call(args): 2023-01-11T21:05:10.7665222Z arg0_1, arg1_1 = args 2023-01-11T21:05:10.7665290Z args.clear() 2023-01-11T21:05:10.7665473Z buf0 = empty_strided((10, 10), (10, 1), device='cpu', dtype=torch.float64) 2023-01-11T21:05:10.7665633Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(arg1_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:05:10.7665699Z del arg0_1 2023-01-11T21:05:10.7665763Z del arg1_1 2023-01-11T21:05:10.7665832Z return (buf0, ) 2023-01-11T21:05:10.7665837Z 2023-01-11T21:05:10.7665843Z 2023-01-11T21:05:10.7665918Z if __name__ == "__main__": 2023-01-11T21:05:10.7666030Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.7666152Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.7666355Z arg0_1 = rand_strided((10, ), (1, ), device='cpu', dtype=torch.int32) 2023-01-11T21:05:10.7666552Z arg1_1 = rand_strided((10, 10), (10, 1), device='cpu', dtype=torch.float64) 2023-01-11T21:05:10.7666666Z print_performance(lambda: call([arg0_1, arg1_1])) 2023-01-11T21:05:10.7666671Z 2023-01-11T21:05:10.7666738Z ok (2.672s) 2023-01-11T21:05:10.7667184Z test_cpu_int_int (__main__.SweepInputsCpuTest) ... inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.7667311Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.7667570Z [2023-01-11 21:04:28,418] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 545 2023-01-11T21:05:10.7667834Z [2023-01-11 21:04:31,009] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 545 2023-01-11T21:05:10.7667840Z 2023-01-11T21:05:10.7667932Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.7667987Z import torch 2023-01-11T21:05:10.7668057Z import random 2023-01-11T21:05:10.7668169Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.7668287Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.7668293Z 2023-01-11T21:05:10.7668367Z aten = torch.ops.aten 2023-01-11T21:05:10.7668498Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.7668587Z async_compile = AsyncCompile() 2023-01-11T21:05:10.7668592Z 2023-01-11T21:05:10.7668596Z 2023-01-11T21:05:10.7668731Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.7668921Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.7669035Z extern "C" void kernel(const int* __restrict__ in_ptr0, 2023-01-11T21:05:10.7669138Z const int* __restrict__ in_ptr1, 2023-01-11T21:05:10.7669232Z int* __restrict__ out_ptr0) 2023-01-11T21:05:10.7669290Z { 2023-01-11T21:05:10.7669386Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.7669444Z { 2023-01-11T21:05:10.7669506Z #pragma omp for 2023-01-11T21:05:10.7669587Z for(long i0=0; i0<10; i0+=1) 2023-01-11T21:05:10.7669648Z { 2023-01-11T21:05:10.7669708Z { 2023-01-11T21:05:10.7669770Z { 2023-01-11T21:05:10.7669861Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:05:10.7669951Z auto tmp1 = in_ptr1[i0]; 2023-01-11T21:05:10.7670026Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:05:10.7670176Z out_ptr0[i0] = tmp2; 2023-01-11T21:05:10.7670239Z } 2023-01-11T21:05:10.7670301Z } 2023-01-11T21:05:10.7670363Z } 2023-01-11T21:05:10.7670423Z } 2023-01-11T21:05:10.7670472Z } 2023-01-11T21:05:10.7670549Z ''') 2023-01-11T21:05:10.7670554Z 2023-01-11T21:05:10.7670559Z 2023-01-11T21:05:10.7670647Z async_compile.wait(globals()) 2023-01-11T21:05:10.7670718Z del async_compile 2023-01-11T21:05:10.7670722Z 2023-01-11T21:05:10.7670791Z def call(args): 2023-01-11T21:05:10.7670866Z arg0_1, arg1_1 = args 2023-01-11T21:05:10.7670937Z args.clear() 2023-01-11T21:05:10.7671126Z buf0 = empty_strided((10, ), (1, ), device='cpu', dtype=torch.int32) 2023-01-11T21:05:10.7671274Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(arg1_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:05:10.7671342Z del arg0_1 2023-01-11T21:05:10.7671408Z del arg1_1 2023-01-11T21:05:10.7671478Z return (buf0, ) 2023-01-11T21:05:10.7671485Z 2023-01-11T21:05:10.7671489Z 2023-01-11T21:05:10.7671564Z if __name__ == "__main__": 2023-01-11T21:05:10.7671676Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.7671831Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.7672022Z arg0_1 = rand_strided((10, ), (1, ), device='cpu', dtype=torch.int32) 2023-01-11T21:05:10.7672197Z arg1_1 = rand_strided((10, ), (1, ), device='cpu', dtype=torch.int32) 2023-01-11T21:05:10.7672310Z print_performance(lambda: call([arg0_1, arg1_1])) 2023-01-11T21:05:10.7672315Z 2023-01-11T21:05:10.7672379Z ok (2.619s) 2023-01-11T21:05:10.7672831Z test_cpu_int_strided (__main__.SweepInputsCpuTest) ... inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.7672960Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.7673216Z [2023-01-11 21:04:31,040] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 546 2023-01-11T21:05:10.7673479Z [2023-01-11 21:04:33,718] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 546 2023-01-11T21:05:10.7673484Z 2023-01-11T21:05:10.7673574Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.7673642Z import torch 2023-01-11T21:05:10.7673697Z import random 2023-01-11T21:05:10.7673809Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.7673928Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.7673933Z 2023-01-11T21:05:10.7674009Z aten = torch.ops.aten 2023-01-11T21:05:10.7674140Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.7674231Z async_compile = AsyncCompile() 2023-01-11T21:05:10.7674236Z 2023-01-11T21:05:10.7674243Z 2023-01-11T21:05:10.7674374Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.7674575Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.7674679Z extern "C" void kernel(const int* __restrict__ in_ptr0, 2023-01-11T21:05:10.7674783Z const float* __restrict__ in_ptr1, 2023-01-11T21:05:10.7674883Z float* __restrict__ out_ptr0) 2023-01-11T21:05:10.7674942Z { 2023-01-11T21:05:10.7675035Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.7675095Z { 2023-01-11T21:05:10.7675170Z #pragma omp for 2023-01-11T21:05:10.7675237Z for(long i0=0; i0<10; i0+=1) 2023-01-11T21:05:10.7675297Z { 2023-01-11T21:05:10.7675375Z #pragma GCC ivdep 2023-01-11T21:05:10.7675459Z for(long i1=0; i1<10; i1+=1) 2023-01-11T21:05:10.7675520Z { 2023-01-11T21:05:10.7675583Z { 2023-01-11T21:05:10.7675646Z { 2023-01-11T21:05:10.7675769Z auto tmp0 = in_ptr0[i1]; 2023-01-11T21:05:10.7675874Z auto tmp2 = in_ptr1[(2*i1) + (30*i0)]; 2023-01-11T21:05:10.7675981Z auto tmp1 = static_cast(tmp0); 2023-01-11T21:05:10.7676073Z auto tmp3 = tmp1 + tmp2; 2023-01-11T21:05:10.7676169Z out_ptr0[i1 + (10*i0)] = tmp3; 2023-01-11T21:05:10.7676235Z } 2023-01-11T21:05:10.7676297Z } 2023-01-11T21:05:10.7676347Z } 2023-01-11T21:05:10.7676408Z } 2023-01-11T21:05:10.7676469Z } 2023-01-11T21:05:10.7676526Z } 2023-01-11T21:05:10.7676605Z ''') 2023-01-11T21:05:10.7676610Z 2023-01-11T21:05:10.7676614Z 2023-01-11T21:05:10.7676701Z async_compile.wait(globals()) 2023-01-11T21:05:10.7676771Z del async_compile 2023-01-11T21:05:10.7676775Z 2023-01-11T21:05:10.7676831Z def call(args): 2023-01-11T21:05:10.7676903Z arg0_1, arg1_1 = args 2023-01-11T21:05:10.7676973Z args.clear() 2023-01-11T21:05:10.7677173Z buf0 = empty_strided((10, 10), (10, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.7677333Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(arg1_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:05:10.7677426Z del arg0_1 2023-01-11T21:05:10.7677493Z del arg1_1 2023-01-11T21:05:10.7677550Z return (buf0, ) 2023-01-11T21:05:10.7677555Z 2023-01-11T21:05:10.7677559Z 2023-01-11T21:05:10.7677632Z if __name__ == "__main__": 2023-01-11T21:05:10.7677744Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.7677865Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.7678056Z arg0_1 = rand_strided((10, ), (1, ), device='cpu', dtype=torch.int32) 2023-01-11T21:05:10.7678252Z arg1_1 = rand_strided((10, 10), (30, 2), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.7678364Z print_performance(lambda: call([arg0_1, arg1_1])) 2023-01-11T21:05:10.7678369Z 2023-01-11T21:05:10.7678432Z ok (2.710s) 2023-01-11T21:05:10.7678903Z test_cpu_int_transposed (__main__.SweepInputsCpuTest) ... inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.7679016Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.7679275Z [2023-01-11 21:04:33,750] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 547 2023-01-11T21:05:10.7679538Z [2023-01-11 21:04:36,400] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 547 2023-01-11T21:05:10.7679542Z 2023-01-11T21:05:10.7679635Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.7679704Z import torch 2023-01-11T21:05:10.7679773Z import random 2023-01-11T21:05:10.7679886Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.7680009Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.7680014Z 2023-01-11T21:05:10.7680077Z aten = torch.ops.aten 2023-01-11T21:05:10.7680214Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.7680304Z async_compile = AsyncCompile() 2023-01-11T21:05:10.7680308Z 2023-01-11T21:05:10.7680313Z 2023-01-11T21:05:10.7680446Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.7680764Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.7680881Z extern "C" void kernel(const int* __restrict__ in_ptr0, 2023-01-11T21:05:10.7680989Z const float* __restrict__ in_ptr1, 2023-01-11T21:05:10.7681090Z float* __restrict__ out_ptr0) 2023-01-11T21:05:10.7681137Z { 2023-01-11T21:05:10.7681233Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.7681294Z { 2023-01-11T21:05:10.7681422Z #pragma omp for 2023-01-11T21:05:10.7681504Z for(long i0=0; i0<10; i0+=1) 2023-01-11T21:05:10.7681568Z { 2023-01-11T21:05:10.7681647Z #pragma GCC ivdep 2023-01-11T21:05:10.7681720Z for(long i1=0; i1<10; i1+=1) 2023-01-11T21:05:10.7681783Z { 2023-01-11T21:05:10.7681847Z { 2023-01-11T21:05:10.7681913Z { 2023-01-11T21:05:10.7682009Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:05:10.7682112Z auto tmp2 = in_ptr1[i1 + (10*i0)]; 2023-01-11T21:05:10.7682221Z auto tmp1 = static_cast(tmp0); 2023-01-11T21:05:10.7682303Z auto tmp3 = tmp1 + tmp2; 2023-01-11T21:05:10.7682400Z out_ptr0[i1 + (10*i0)] = tmp3; 2023-01-11T21:05:10.7682466Z } 2023-01-11T21:05:10.7682531Z } 2023-01-11T21:05:10.7682594Z } 2023-01-11T21:05:10.7682655Z } 2023-01-11T21:05:10.7682704Z } 2023-01-11T21:05:10.7682762Z } 2023-01-11T21:05:10.7682845Z ''') 2023-01-11T21:05:10.7682850Z 2023-01-11T21:05:10.7682854Z 2023-01-11T21:05:10.7682943Z async_compile.wait(globals()) 2023-01-11T21:05:10.7683014Z del async_compile 2023-01-11T21:05:10.7683054Z 2023-01-11T21:05:10.7683125Z def call(args): 2023-01-11T21:05:10.7683198Z arg0_1, arg1_1 = args 2023-01-11T21:05:10.7683266Z args.clear() 2023-01-11T21:05:10.7683453Z buf0 = empty_strided((10, 10), (1, 10), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.7683612Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(arg1_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:05:10.7683680Z del arg0_1 2023-01-11T21:05:10.7683745Z del arg1_1 2023-01-11T21:05:10.7683816Z return (buf0, ) 2023-01-11T21:05:10.7683821Z 2023-01-11T21:05:10.7683825Z 2023-01-11T21:05:10.7683898Z if __name__ == "__main__": 2023-01-11T21:05:10.7684011Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.7684119Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.7684310Z arg0_1 = rand_strided((10, ), (1, ), device='cpu', dtype=torch.int32) 2023-01-11T21:05:10.7684512Z arg1_1 = rand_strided((10, 10), (1, 10), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.7684624Z print_performance(lambda: call([arg0_1, arg1_1])) 2023-01-11T21:05:10.7684629Z 2023-01-11T21:05:10.7684694Z ok (2.682s) 2023-01-11T21:05:10.7685158Z test_cpu_strided_broadcast1 (__main__.SweepInputsCpuTest) ... inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.7685282Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.7685540Z [2023-01-11 21:04:36,432] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 548 2023-01-11T21:05:10.7685802Z [2023-01-11 21:04:39,093] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 548 2023-01-11T21:05:10.7685807Z 2023-01-11T21:05:10.7685899Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.7685955Z import torch 2023-01-11T21:05:10.7686022Z import random 2023-01-11T21:05:10.7686133Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.7686251Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.7686256Z 2023-01-11T21:05:10.7686331Z aten = torch.ops.aten 2023-01-11T21:05:10.7686462Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.7686551Z async_compile = AsyncCompile() 2023-01-11T21:05:10.7686556Z 2023-01-11T21:05:10.7686560Z 2023-01-11T21:05:10.7686692Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.7686882Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.7687029Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:05:10.7687131Z const float* __restrict__ in_ptr1, 2023-01-11T21:05:10.7687230Z float* __restrict__ out_ptr0) 2023-01-11T21:05:10.7687289Z { 2023-01-11T21:05:10.7687385Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.7687444Z { 2023-01-11T21:05:10.7687507Z #pragma omp for 2023-01-11T21:05:10.7687586Z for(long i0=0; i0<10; i0+=1) 2023-01-11T21:05:10.7687646Z { 2023-01-11T21:05:10.7687725Z #pragma GCC ivdep 2023-01-11T21:05:10.7687809Z for(long i1=0; i1<10; i1+=1) 2023-01-11T21:05:10.7687872Z { 2023-01-11T21:05:10.7687933Z { 2023-01-11T21:05:10.7687985Z { 2023-01-11T21:05:10.7688088Z auto tmp0 = in_ptr0[(2*i1) + (30*i0)]; 2023-01-11T21:05:10.7688181Z auto tmp1 = in_ptr1[i1]; 2023-01-11T21:05:10.7688271Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:05:10.7688370Z out_ptr0[i1 + (10*i0)] = tmp2; 2023-01-11T21:05:10.7688436Z } 2023-01-11T21:05:10.7688496Z } 2023-01-11T21:05:10.7688572Z } 2023-01-11T21:05:10.7688635Z } 2023-01-11T21:05:10.7688693Z } 2023-01-11T21:05:10.7688749Z } 2023-01-11T21:05:10.7688826Z ''') 2023-01-11T21:05:10.7688831Z 2023-01-11T21:05:10.7688835Z 2023-01-11T21:05:10.7688923Z async_compile.wait(globals()) 2023-01-11T21:05:10.7688993Z del async_compile 2023-01-11T21:05:10.7688997Z 2023-01-11T21:05:10.7689053Z def call(args): 2023-01-11T21:05:10.7689124Z arg0_1, arg1_1 = args 2023-01-11T21:05:10.7689193Z args.clear() 2023-01-11T21:05:10.7689391Z buf0 = empty_strided((10, 10), (10, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.7689551Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(arg1_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:05:10.7689616Z del arg0_1 2023-01-11T21:05:10.7689687Z del arg1_1 2023-01-11T21:05:10.7689744Z return (buf0, ) 2023-01-11T21:05:10.7689749Z 2023-01-11T21:05:10.7689753Z 2023-01-11T21:05:10.7689826Z if __name__ == "__main__": 2023-01-11T21:05:10.7689939Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.7690059Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.7690256Z arg0_1 = rand_strided((10, 10), (30, 2), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.7690449Z arg1_1 = rand_strided((10, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.7690561Z print_performance(lambda: call([arg0_1, arg1_1])) 2023-01-11T21:05:10.7690566Z 2023-01-11T21:05:10.7690629Z ok (2.693s) 2023-01-11T21:05:10.7691078Z test_cpu_strided_broadcast2 (__main__.SweepInputsCpuTest) ... inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.7691203Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.7691464Z [2023-01-11 21:04:39,125] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 549 2023-01-11T21:05:10.7691724Z [2023-01-11 21:04:41,787] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 549 2023-01-11T21:05:10.7691729Z 2023-01-11T21:05:10.7691820Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.7691890Z import torch 2023-01-11T21:05:10.7691958Z import random 2023-01-11T21:05:10.7692071Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.7692191Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.7692195Z 2023-01-11T21:05:10.7692258Z aten = torch.ops.aten 2023-01-11T21:05:10.7692389Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.7692511Z async_compile = AsyncCompile() 2023-01-11T21:05:10.7692516Z 2023-01-11T21:05:10.7692520Z 2023-01-11T21:05:10.7692652Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.7692858Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.7692976Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:05:10.7693077Z const float* __restrict__ in_ptr1, 2023-01-11T21:05:10.7693174Z float* __restrict__ out_ptr0) 2023-01-11T21:05:10.7693222Z { 2023-01-11T21:05:10.7693316Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.7693374Z { 2023-01-11T21:05:10.7693450Z #pragma omp for 2023-01-11T21:05:10.7693531Z for(long i0=0; i0<10; i0+=1) 2023-01-11T21:05:10.7693590Z { 2023-01-11T21:05:10.7693666Z #pragma GCC ivdep 2023-01-11T21:05:10.7693738Z for(long i1=0; i1<10; i1+=1) 2023-01-11T21:05:10.7693801Z { 2023-01-11T21:05:10.7693862Z { 2023-01-11T21:05:10.7693926Z { 2023-01-11T21:05:10.7694030Z auto tmp0 = in_ptr0[(2*i1) + (30*i0)]; 2023-01-11T21:05:10.7694153Z auto tmp1 = in_ptr1[i0]; 2023-01-11T21:05:10.7694246Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:05:10.7694330Z out_ptr0[i1 + (10*i0)] = tmp2; 2023-01-11T21:05:10.7694392Z } 2023-01-11T21:05:10.7694454Z } 2023-01-11T21:05:10.7694514Z } 2023-01-11T21:05:10.7694574Z } 2023-01-11T21:05:10.7694632Z } 2023-01-11T21:05:10.7694677Z } 2023-01-11T21:05:10.7694755Z ''') 2023-01-11T21:05:10.7694760Z 2023-01-11T21:05:10.7694764Z 2023-01-11T21:05:10.7694850Z async_compile.wait(globals()) 2023-01-11T21:05:10.7694921Z del async_compile 2023-01-11T21:05:10.7694926Z 2023-01-11T21:05:10.7694993Z def call(args): 2023-01-11T21:05:10.7695071Z arg0_1, arg1_1 = args 2023-01-11T21:05:10.7695141Z args.clear() 2023-01-11T21:05:10.7695348Z buf0 = empty_strided((1, 10, 10), (100, 10, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.7695498Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(arg1_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:05:10.7695566Z del arg0_1 2023-01-11T21:05:10.7695630Z del arg1_1 2023-01-11T21:05:10.7695700Z return (buf0, ) 2023-01-11T21:05:10.7695704Z 2023-01-11T21:05:10.7695709Z 2023-01-11T21:05:10.7695781Z if __name__ == "__main__": 2023-01-11T21:05:10.7695895Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.7696015Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.7696200Z arg0_1 = rand_strided((10, 10), (30, 2), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.7696406Z arg1_1 = rand_strided((1, 10, 1), (10, 1, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.7696518Z print_performance(lambda: call([arg0_1, arg1_1])) 2023-01-11T21:05:10.7696525Z 2023-01-11T21:05:10.7696589Z ok (2.694s) 2023-01-11T21:05:10.7697055Z test_cpu_strided_broadcast3 (__main__.SweepInputsCpuTest) ... inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.7697181Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.7697439Z [2023-01-11 21:04:41,822] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 550 2023-01-11T21:05:10.7697699Z [2023-01-11 21:04:44,443] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 550 2023-01-11T21:05:10.7697704Z 2023-01-11T21:05:10.7697796Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.7697861Z import torch 2023-01-11T21:05:10.7697947Z import random 2023-01-11T21:05:10.7698060Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.7698178Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.7698183Z 2023-01-11T21:05:10.7698262Z aten = torch.ops.aten 2023-01-11T21:05:10.7698396Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.7698574Z async_compile = AsyncCompile() 2023-01-11T21:05:10.7698580Z 2023-01-11T21:05:10.7698584Z 2023-01-11T21:05:10.7698724Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.7698927Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.7699033Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:05:10.7699136Z const float* __restrict__ in_ptr1, 2023-01-11T21:05:10.7699238Z float* __restrict__ out_ptr0) 2023-01-11T21:05:10.7699299Z { 2023-01-11T21:05:10.7699395Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.7699459Z { 2023-01-11T21:05:10.7699539Z #pragma omp for 2023-01-11T21:05:10.7699607Z for(long i0=0; i0<10; i0+=1) 2023-01-11T21:05:10.7699670Z { 2023-01-11T21:05:10.7699784Z #pragma GCC ivdep 2023-01-11T21:05:10.7699872Z for(long i1=0; i1<10; i1+=1) 2023-01-11T21:05:10.7699936Z { 2023-01-11T21:05:10.7700001Z { 2023-01-11T21:05:10.7700054Z { 2023-01-11T21:05:10.7700158Z auto tmp0 = in_ptr0[(2*i1) + (30*i0)]; 2023-01-11T21:05:10.7700251Z auto tmp1 = in_ptr1[0]; 2023-01-11T21:05:10.7700344Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:05:10.7700438Z out_ptr0[i1 + (10*i0)] = tmp2; 2023-01-11T21:05:10.7700503Z } 2023-01-11T21:05:10.7700566Z } 2023-01-11T21:05:10.7700614Z } 2023-01-11T21:05:10.7700675Z } 2023-01-11T21:05:10.7700733Z } 2023-01-11T21:05:10.7700793Z } 2023-01-11T21:05:10.7700870Z ''') 2023-01-11T21:05:10.7700875Z 2023-01-11T21:05:10.7700879Z 2023-01-11T21:05:10.7700967Z async_compile.wait(globals()) 2023-01-11T21:05:10.7701037Z del async_compile 2023-01-11T21:05:10.7701044Z 2023-01-11T21:05:10.7701112Z def call(args): 2023-01-11T21:05:10.7701173Z arg0_1, arg1_1 = args 2023-01-11T21:05:10.7701242Z args.clear() 2023-01-11T21:05:10.7701439Z buf0 = empty_strided((10, 10), (10, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.7701598Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(arg1_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:05:10.7701665Z del arg0_1 2023-01-11T21:05:10.7701728Z del arg1_1 2023-01-11T21:05:10.7701798Z return (buf0, ) 2023-01-11T21:05:10.7701803Z 2023-01-11T21:05:10.7701806Z 2023-01-11T21:05:10.7701867Z if __name__ == "__main__": 2023-01-11T21:05:10.7701978Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.7702098Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.7702296Z arg0_1 = rand_strided((10, 10), (30, 2), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.7702484Z arg1_1 = rand_strided((1, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.7702599Z print_performance(lambda: call([arg0_1, arg1_1])) 2023-01-11T21:05:10.7702603Z 2023-01-11T21:05:10.7702668Z ok (2.655s) 2023-01-11T21:05:10.7703127Z test_cpu_strided_dense (__main__.SweepInputsCpuTest) ... inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.7703251Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.7703495Z [2023-01-11 21:04:44,474] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 551 2023-01-11T21:05:10.7703787Z [2023-01-11 21:04:47,135] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 551 2023-01-11T21:05:10.7703792Z 2023-01-11T21:05:10.7703886Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.7703958Z import torch 2023-01-11T21:05:10.7704027Z import random 2023-01-11T21:05:10.7704139Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.7704259Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.7704264Z 2023-01-11T21:05:10.7704341Z aten = torch.ops.aten 2023-01-11T21:05:10.7704458Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.7704547Z async_compile = AsyncCompile() 2023-01-11T21:05:10.7704552Z 2023-01-11T21:05:10.7704556Z 2023-01-11T21:05:10.7704685Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.7704888Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.7705009Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:05:10.7705109Z const float* __restrict__ in_ptr1, 2023-01-11T21:05:10.7705207Z float* __restrict__ out_ptr0) 2023-01-11T21:05:10.7705300Z { 2023-01-11T21:05:10.7705385Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.7705447Z { 2023-01-11T21:05:10.7705523Z #pragma omp for 2023-01-11T21:05:10.7705603Z for(long i0=0; i0<10; i0+=1) 2023-01-11T21:05:10.7705665Z { 2023-01-11T21:05:10.7705742Z #pragma GCC ivdep 2023-01-11T21:05:10.7705826Z for(long i1=0; i1<10; i1+=1) 2023-01-11T21:05:10.7705876Z { 2023-01-11T21:05:10.7705937Z { 2023-01-11T21:05:10.7706002Z { 2023-01-11T21:05:10.7706106Z auto tmp0 = in_ptr0[(2*i1) + (30*i0)]; 2023-01-11T21:05:10.7706207Z auto tmp1 = in_ptr1[i1 + (10*i0)]; 2023-01-11T21:05:10.7706301Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:05:10.7706398Z out_ptr0[i1 + (10*i0)] = tmp2; 2023-01-11T21:05:10.7706451Z } 2023-01-11T21:05:10.7706513Z } 2023-01-11T21:05:10.7706576Z } 2023-01-11T21:05:10.7706637Z } 2023-01-11T21:05:10.7706696Z } 2023-01-11T21:05:10.7706754Z } 2023-01-11T21:05:10.7706818Z ''') 2023-01-11T21:05:10.7706823Z 2023-01-11T21:05:10.7706839Z 2023-01-11T21:05:10.7706914Z async_compile.wait(globals()) 2023-01-11T21:05:10.7706983Z del async_compile 2023-01-11T21:05:10.7706988Z 2023-01-11T21:05:10.7707056Z def call(args): 2023-01-11T21:05:10.7707128Z arg0_1, arg1_1 = args 2023-01-11T21:05:10.7707197Z args.clear() 2023-01-11T21:05:10.7707394Z buf0 = empty_strided((10, 10), (10, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.7707552Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(arg1_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:05:10.7707606Z del arg0_1 2023-01-11T21:05:10.7707670Z del arg1_1 2023-01-11T21:05:10.7707740Z return (buf0, ) 2023-01-11T21:05:10.7707745Z 2023-01-11T21:05:10.7707749Z 2023-01-11T21:05:10.7707822Z if __name__ == "__main__": 2023-01-11T21:05:10.7707940Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.7708061Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.7708259Z arg0_1 = rand_strided((10, 10), (30, 2), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.7708443Z arg1_1 = rand_strided((10, 10), (10, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.7708556Z print_performance(lambda: call([arg0_1, arg1_1])) 2023-01-11T21:05:10.7708561Z 2023-01-11T21:05:10.7708627Z ok (2.692s) 2023-01-11T21:05:10.7709086Z test_cpu_strided_double (__main__.SweepInputsCpuTest) ... inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.7709246Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.7709507Z [2023-01-11 21:04:47,167] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 552 2023-01-11T21:05:10.7709773Z [2023-01-11 21:04:49,837] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 552 2023-01-11T21:05:10.7709777Z 2023-01-11T21:05:10.7709873Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.7709939Z import torch 2023-01-11T21:05:10.7710006Z import random 2023-01-11T21:05:10.7710106Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.7710224Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.7710229Z 2023-01-11T21:05:10.7710307Z aten = torch.ops.aten 2023-01-11T21:05:10.7710436Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.7710528Z async_compile = AsyncCompile() 2023-01-11T21:05:10.7710533Z 2023-01-11T21:05:10.7710538Z 2023-01-11T21:05:10.7710668Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.7710897Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.7711016Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:05:10.7711110Z const double* __restrict__ in_ptr1, 2023-01-11T21:05:10.7711209Z double* __restrict__ out_ptr0) 2023-01-11T21:05:10.7711269Z { 2023-01-11T21:05:10.7711366Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.7711427Z { 2023-01-11T21:05:10.7711503Z #pragma omp for 2023-01-11T21:05:10.7711583Z for(long i0=0; i0<10; i0+=1) 2023-01-11T21:05:10.7711633Z { 2023-01-11T21:05:10.7711713Z #pragma GCC ivdep 2023-01-11T21:05:10.7711797Z for(long i1=0; i1<10; i1+=1) 2023-01-11T21:05:10.7711860Z { 2023-01-11T21:05:10.7711927Z { 2023-01-11T21:05:10.7711991Z { 2023-01-11T21:05:10.7712083Z auto tmp0 = in_ptr0[(2*i1) + (30*i0)]; 2023-01-11T21:05:10.7712185Z auto tmp2 = in_ptr1[i1 + (10*i0)]; 2023-01-11T21:05:10.7712295Z auto tmp1 = static_cast(tmp0); 2023-01-11T21:05:10.7712388Z auto tmp3 = tmp1 + tmp2; 2023-01-11T21:05:10.7712484Z out_ptr0[i1 + (10*i0)] = tmp3; 2023-01-11T21:05:10.7712550Z } 2023-01-11T21:05:10.7712614Z } 2023-01-11T21:05:10.7712662Z } 2023-01-11T21:05:10.7712723Z } 2023-01-11T21:05:10.7712783Z } 2023-01-11T21:05:10.7712841Z } 2023-01-11T21:05:10.7712921Z ''') 2023-01-11T21:05:10.7712927Z 2023-01-11T21:05:10.7712931Z 2023-01-11T21:05:10.7713021Z async_compile.wait(globals()) 2023-01-11T21:05:10.7713092Z del async_compile 2023-01-11T21:05:10.7713096Z 2023-01-11T21:05:10.7713167Z def call(args): 2023-01-11T21:05:10.7713227Z arg0_1, arg1_1 = args 2023-01-11T21:05:10.7713296Z args.clear() 2023-01-11T21:05:10.7713496Z buf0 = empty_strided((10, 10), (10, 1), device='cpu', dtype=torch.float64) 2023-01-11T21:05:10.7713657Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(arg1_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:05:10.7713724Z del arg0_1 2023-01-11T21:05:10.7713789Z del arg1_1 2023-01-11T21:05:10.7713860Z return (buf0, ) 2023-01-11T21:05:10.7713865Z 2023-01-11T21:05:10.7713869Z 2023-01-11T21:05:10.7713930Z if __name__ == "__main__": 2023-01-11T21:05:10.7714042Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.7714164Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.7714364Z arg0_1 = rand_strided((10, 10), (30, 2), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.7714563Z arg1_1 = rand_strided((10, 10), (10, 1), device='cpu', dtype=torch.float64) 2023-01-11T21:05:10.7714723Z print_performance(lambda: call([arg0_1, arg1_1])) 2023-01-11T21:05:10.7714727Z 2023-01-11T21:05:10.7714791Z ok (2.702s) 2023-01-11T21:05:10.7715249Z test_cpu_strided_int (__main__.SweepInputsCpuTest) ... inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.7715375Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.7715622Z [2023-01-11 21:04:49,869] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 553 2023-01-11T21:05:10.7715884Z [2023-01-11 21:04:52,528] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 553 2023-01-11T21:05:10.7715889Z 2023-01-11T21:05:10.7715981Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.7716051Z import torch 2023-01-11T21:05:10.7716120Z import random 2023-01-11T21:05:10.7716234Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.7716383Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.7716389Z 2023-01-11T21:05:10.7716467Z aten = torch.ops.aten 2023-01-11T21:05:10.7716586Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.7716676Z async_compile = AsyncCompile() 2023-01-11T21:05:10.7716681Z 2023-01-11T21:05:10.7716686Z 2023-01-11T21:05:10.7716819Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.7717023Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.7717142Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:05:10.7717242Z const int* __restrict__ in_ptr1, 2023-01-11T21:05:10.7717341Z float* __restrict__ out_ptr0) 2023-01-11T21:05:10.7717406Z { 2023-01-11T21:05:10.7717489Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.7717549Z { 2023-01-11T21:05:10.7717625Z #pragma omp for 2023-01-11T21:05:10.7717706Z for(long i0=0; i0<10; i0+=1) 2023-01-11T21:05:10.7717769Z { 2023-01-11T21:05:10.7717847Z #pragma GCC ivdep 2023-01-11T21:05:10.7717932Z for(long i1=0; i1<10; i1+=1) 2023-01-11T21:05:10.7717982Z { 2023-01-11T21:05:10.7718045Z { 2023-01-11T21:05:10.7718111Z { 2023-01-11T21:05:10.7718214Z auto tmp0 = in_ptr0[(2*i1) + (30*i0)]; 2023-01-11T21:05:10.7718307Z auto tmp1 = in_ptr1[i1]; 2023-01-11T21:05:10.7718415Z auto tmp2 = static_cast(tmp1); 2023-01-11T21:05:10.7718505Z auto tmp3 = tmp0 + tmp2; 2023-01-11T21:05:10.7718587Z out_ptr0[i1 + (10*i0)] = tmp3; 2023-01-11T21:05:10.7718651Z } 2023-01-11T21:05:10.7718716Z } 2023-01-11T21:05:10.7718778Z } 2023-01-11T21:05:10.7718839Z } 2023-01-11T21:05:10.7718898Z } 2023-01-11T21:05:10.7718944Z } 2023-01-11T21:05:10.7719021Z ''') 2023-01-11T21:05:10.7719026Z 2023-01-11T21:05:10.7719032Z 2023-01-11T21:05:10.7719119Z async_compile.wait(globals()) 2023-01-11T21:05:10.7719189Z del async_compile 2023-01-11T21:05:10.7719194Z 2023-01-11T21:05:10.7719262Z def call(args): 2023-01-11T21:05:10.7719335Z arg0_1, arg1_1 = args 2023-01-11T21:05:10.7719404Z args.clear() 2023-01-11T21:05:10.7719601Z buf0 = empty_strided((10, 10), (10, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.7719748Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(arg1_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:05:10.7719815Z del arg0_1 2023-01-11T21:05:10.7719879Z del arg1_1 2023-01-11T21:05:10.7719948Z return (buf0, ) 2023-01-11T21:05:10.7719953Z 2023-01-11T21:05:10.7719957Z 2023-01-11T21:05:10.7720061Z if __name__ == "__main__": 2023-01-11T21:05:10.7720174Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.7720296Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.7720484Z arg0_1 = rand_strided((10, 10), (30, 2), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.7720796Z arg1_1 = rand_strided((10, ), (1, ), device='cpu', dtype=torch.int32) 2023-01-11T21:05:10.7720913Z print_performance(lambda: call([arg0_1, arg1_1])) 2023-01-11T21:05:10.7720918Z 2023-01-11T21:05:10.7720983Z ok (2.690s) 2023-01-11T21:05:10.7721442Z test_cpu_strided_strided (__main__.SweepInputsCpuTest) ... inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.7721569Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.7721832Z [2023-01-11 21:04:52,561] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 554 2023-01-11T21:05:10.7722150Z [2023-01-11 21:04:55,259] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 554 2023-01-11T21:05:10.7722157Z 2023-01-11T21:05:10.7722254Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.7722324Z import torch 2023-01-11T21:05:10.7722380Z import random 2023-01-11T21:05:10.7722498Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.7722619Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.7722624Z 2023-01-11T21:05:10.7722701Z aten = torch.ops.aten 2023-01-11T21:05:10.7722834Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.7722925Z async_compile = AsyncCompile() 2023-01-11T21:05:10.7722931Z 2023-01-11T21:05:10.7722935Z 2023-01-11T21:05:10.7723070Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.7723278Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.7723382Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:05:10.7723487Z const float* __restrict__ in_ptr1, 2023-01-11T21:05:10.7723587Z float* __restrict__ out_ptr0) 2023-01-11T21:05:10.7723647Z { 2023-01-11T21:05:10.7723743Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.7723803Z { 2023-01-11T21:05:10.7723878Z #pragma omp for 2023-01-11T21:05:10.7723947Z for(long i0=0; i0<10; i0+=1) 2023-01-11T21:05:10.7724007Z { 2023-01-11T21:05:10.7724084Z #pragma GCC ivdep 2023-01-11T21:05:10.7724169Z for(long i1=0; i1<10; i1+=1) 2023-01-11T21:05:10.7724231Z { 2023-01-11T21:05:10.7724293Z { 2023-01-11T21:05:10.7724345Z { 2023-01-11T21:05:10.7724449Z auto tmp0 = in_ptr0[(2*i1) + (30*i0)]; 2023-01-11T21:05:10.7724553Z auto tmp1 = in_ptr1[(2*i1) + (30*i0)]; 2023-01-11T21:05:10.7724646Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:05:10.7724743Z out_ptr0[i1 + (10*i0)] = tmp2; 2023-01-11T21:05:10.7724808Z } 2023-01-11T21:05:10.7724869Z } 2023-01-11T21:05:10.7724917Z } 2023-01-11T21:05:10.7724978Z } 2023-01-11T21:05:10.7725037Z } 2023-01-11T21:05:10.7725095Z } 2023-01-11T21:05:10.7725171Z ''') 2023-01-11T21:05:10.7725176Z 2023-01-11T21:05:10.7725180Z 2023-01-11T21:05:10.7725268Z async_compile.wait(globals()) 2023-01-11T21:05:10.7725337Z del async_compile 2023-01-11T21:05:10.7725342Z 2023-01-11T21:05:10.7725409Z def call(args): 2023-01-11T21:05:10.7725469Z arg0_1, arg1_1 = args 2023-01-11T21:05:10.7725537Z args.clear() 2023-01-11T21:05:10.7725735Z buf0 = empty_strided((10, 10), (10, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.7725937Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(arg1_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:05:10.7726004Z del arg0_1 2023-01-11T21:05:10.7726067Z del arg1_1 2023-01-11T21:05:10.7726136Z return (buf0, ) 2023-01-11T21:05:10.7726143Z 2023-01-11T21:05:10.7726147Z 2023-01-11T21:05:10.7726208Z if __name__ == "__main__": 2023-01-11T21:05:10.7726317Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.7726437Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.7726636Z arg0_1 = rand_strided((10, 10), (30, 2), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.7726832Z arg1_1 = rand_strided((10, 10), (30, 2), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.7726943Z print_performance(lambda: call([arg0_1, arg1_1])) 2023-01-11T21:05:10.7726948Z 2023-01-11T21:05:10.7727012Z ok (2.732s) 2023-01-11T21:05:10.7727507Z test_cpu_strided_transposed (__main__.SweepInputsCpuTest) ... inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.7727636Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.7727881Z [2023-01-11 21:04:55,292] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 555 2023-01-11T21:05:10.7728145Z [2023-01-11 21:04:57,958] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 555 2023-01-11T21:05:10.7728150Z 2023-01-11T21:05:10.7728243Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.7728310Z import torch 2023-01-11T21:05:10.7728379Z import random 2023-01-11T21:05:10.7728491Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.7728610Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.7728617Z 2023-01-11T21:05:10.7728694Z aten = torch.ops.aten 2023-01-11T21:05:10.7728813Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.7728904Z async_compile = AsyncCompile() 2023-01-11T21:05:10.7728911Z 2023-01-11T21:05:10.7728915Z 2023-01-11T21:05:10.7729047Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.7729248Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.7729365Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:05:10.7729467Z const float* __restrict__ in_ptr1, 2023-01-11T21:05:10.7729564Z float* __restrict__ out_ptr0) 2023-01-11T21:05:10.7729624Z { 2023-01-11T21:05:10.7729707Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.7729766Z { 2023-01-11T21:05:10.7729842Z #pragma omp for 2023-01-11T21:05:10.7729922Z for(long i0=0; i0<10; i0+=1) 2023-01-11T21:05:10.7729984Z { 2023-01-11T21:05:10.7730065Z #pragma GCC ivdep 2023-01-11T21:05:10.7730148Z for(long i1=0; i1<10; i1+=1) 2023-01-11T21:05:10.7730197Z { 2023-01-11T21:05:10.7730261Z { 2023-01-11T21:05:10.7730327Z { 2023-01-11T21:05:10.7730432Z auto tmp0 = in_ptr0[(2*i1) + (30*i0)]; 2023-01-11T21:05:10.7730533Z auto tmp1 = in_ptr1[i0 + (10*i1)]; 2023-01-11T21:05:10.7730626Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:05:10.7730723Z out_ptr0[i1 + (10*i0)] = tmp2; 2023-01-11T21:05:10.7730777Z } 2023-01-11T21:05:10.7730838Z } 2023-01-11T21:05:10.7730899Z } 2023-01-11T21:05:10.7730958Z } 2023-01-11T21:05:10.7731017Z } 2023-01-11T21:05:10.7731075Z } 2023-01-11T21:05:10.7731139Z ''') 2023-01-11T21:05:10.7731143Z 2023-01-11T21:05:10.7731162Z 2023-01-11T21:05:10.7731238Z async_compile.wait(globals()) 2023-01-11T21:05:10.7731343Z del async_compile 2023-01-11T21:05:10.7731348Z 2023-01-11T21:05:10.7731418Z def call(args): 2023-01-11T21:05:10.7731491Z arg0_1, arg1_1 = args 2023-01-11T21:05:10.7731560Z args.clear() 2023-01-11T21:05:10.7731763Z buf0 = empty_strided((10, 10), (10, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.7731925Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(arg1_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:05:10.7731978Z del arg0_1 2023-01-11T21:05:10.7732041Z del arg1_1 2023-01-11T21:05:10.7732110Z return (buf0, ) 2023-01-11T21:05:10.7732114Z 2023-01-11T21:05:10.7732118Z 2023-01-11T21:05:10.7732192Z if __name__ == "__main__": 2023-01-11T21:05:10.7732303Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.7732424Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.7732623Z arg0_1 = rand_strided((10, 10), (30, 2), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.7732820Z arg1_1 = rand_strided((10, 10), (1, 10), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.7732923Z print_performance(lambda: call([arg0_1, arg1_1])) 2023-01-11T21:05:10.7732928Z 2023-01-11T21:05:10.7732992Z ok (2.699s) 2023-01-11T21:05:10.7733489Z test_cpu_transposed_broadcast1 (__main__.SweepInputsCpuTest) ... inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.7733614Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.7733872Z [2023-01-11 21:04:57,992] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 556 2023-01-11T21:05:10.7734136Z [2023-01-11 21:04:58,006] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 556 2023-01-11T21:05:10.7734143Z 2023-01-11T21:05:10.7734239Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.7734306Z import torch 2023-01-11T21:05:10.7734374Z import random 2023-01-11T21:05:10.7734478Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.7734596Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.7734601Z 2023-01-11T21:05:10.7734677Z aten = torch.ops.aten 2023-01-11T21:05:10.7734810Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.7734899Z async_compile = AsyncCompile() 2023-01-11T21:05:10.7734904Z 2023-01-11T21:05:10.7734908Z 2023-01-11T21:05:10.7735040Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.7735244Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.7735362Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:05:10.7735452Z const float* __restrict__ in_ptr1, 2023-01-11T21:05:10.7735553Z float* __restrict__ out_ptr0) 2023-01-11T21:05:10.7735613Z { 2023-01-11T21:05:10.7735708Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.7735769Z { 2023-01-11T21:05:10.7735844Z #pragma omp for 2023-01-11T21:05:10.7735926Z for(long i0=0; i0<10; i0+=1) 2023-01-11T21:05:10.7735975Z { 2023-01-11T21:05:10.7736052Z #pragma GCC ivdep 2023-01-11T21:05:10.7736135Z for(long i1=0; i1<10; i1+=1) 2023-01-11T21:05:10.7736198Z { 2023-01-11T21:05:10.7736261Z { 2023-01-11T21:05:10.7736325Z { 2023-01-11T21:05:10.7736414Z auto tmp0 = in_ptr0[i1 + (10*i0)]; 2023-01-11T21:05:10.7736505Z auto tmp1 = in_ptr1[i0]; 2023-01-11T21:05:10.7736597Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:05:10.7736692Z out_ptr0[i1 + (10*i0)] = tmp2; 2023-01-11T21:05:10.7736758Z } 2023-01-11T21:05:10.7736851Z } 2023-01-11T21:05:10.7736912Z } 2023-01-11T21:05:10.7736959Z } 2023-01-11T21:05:10.7737018Z } 2023-01-11T21:05:10.7737076Z } 2023-01-11T21:05:10.7737154Z ''') 2023-01-11T21:05:10.7737159Z 2023-01-11T21:05:10.7737166Z 2023-01-11T21:05:10.7737254Z async_compile.wait(globals()) 2023-01-11T21:05:10.7737326Z del async_compile 2023-01-11T21:05:10.7737330Z 2023-01-11T21:05:10.7737397Z def call(args): 2023-01-11T21:05:10.7737468Z arg0_1, arg1_1 = args 2023-01-11T21:05:10.7737526Z args.clear() 2023-01-11T21:05:10.7737723Z buf0 = empty_strided((10, 10), (1, 10), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.7737883Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(arg1_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:05:10.7737949Z del arg0_1 2023-01-11T21:05:10.7738012Z del arg1_1 2023-01-11T21:05:10.7738081Z return (buf0, ) 2023-01-11T21:05:10.7738086Z 2023-01-11T21:05:10.7738091Z 2023-01-11T21:05:10.7738164Z if __name__ == "__main__": 2023-01-11T21:05:10.7738267Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.7738388Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.7738707Z arg0_1 = rand_strided((10, 10), (1, 10), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.7738908Z arg1_1 = rand_strided((10, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.7739020Z print_performance(lambda: call([arg0_1, arg1_1])) 2023-01-11T21:05:10.7739025Z 2023-01-11T21:05:10.7739092Z ok (0.043s) 2023-01-11T21:05:10.7739560Z test_cpu_transposed_broadcast2 (__main__.SweepInputsCpuTest) ... inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.7739686Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.7739947Z [2023-01-11 21:04:58,028] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 557 2023-01-11T21:05:10.7740201Z [2023-01-11 21:04:58,040] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 557 2023-01-11T21:05:10.7740220Z 2023-01-11T21:05:10.7740299Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.7740367Z import torch 2023-01-11T21:05:10.7740437Z import random 2023-01-11T21:05:10.7740551Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.7740674Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.7740679Z 2023-01-11T21:05:10.7740755Z aten = torch.ops.aten 2023-01-11T21:05:10.7740892Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.7740969Z async_compile = AsyncCompile() 2023-01-11T21:05:10.7740974Z 2023-01-11T21:05:10.7740993Z 2023-01-11T21:05:10.7741111Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.7741317Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.7741435Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:05:10.7741542Z const float* __restrict__ in_ptr1, 2023-01-11T21:05:10.7741642Z float* __restrict__ out_ptr0) 2023-01-11T21:05:10.7741703Z { 2023-01-11T21:05:10.7741799Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.7741847Z { 2023-01-11T21:05:10.7741920Z #pragma omp for 2023-01-11T21:05:10.7742001Z for(long i0=0; i0<10; i0+=1) 2023-01-11T21:05:10.7742062Z { 2023-01-11T21:05:10.7742139Z #pragma GCC ivdep 2023-01-11T21:05:10.7742222Z for(long i1=0; i1<10; i1+=1) 2023-01-11T21:05:10.7742284Z { 2023-01-11T21:05:10.7742334Z { 2023-01-11T21:05:10.7742396Z { 2023-01-11T21:05:10.7742498Z auto tmp0 = in_ptr0[i1 + (10*i0)]; 2023-01-11T21:05:10.7742622Z auto tmp1 = in_ptr1[i1]; 2023-01-11T21:05:10.7742716Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:05:10.7742813Z out_ptr0[i1 + (10*i0)] = tmp2; 2023-01-11T21:05:10.7742878Z } 2023-01-11T21:05:10.7742928Z } 2023-01-11T21:05:10.7742990Z } 2023-01-11T21:05:10.7743049Z } 2023-01-11T21:05:10.7743108Z } 2023-01-11T21:05:10.7743167Z } 2023-01-11T21:05:10.7743246Z ''') 2023-01-11T21:05:10.7743251Z 2023-01-11T21:05:10.7743255Z 2023-01-11T21:05:10.7743332Z async_compile.wait(globals()) 2023-01-11T21:05:10.7743405Z del async_compile 2023-01-11T21:05:10.7743409Z 2023-01-11T21:05:10.7743477Z def call(args): 2023-01-11T21:05:10.7743550Z arg0_1, arg1_1 = args 2023-01-11T21:05:10.7743621Z args.clear() 2023-01-11T21:05:10.7743829Z buf0 = empty_strided((1, 10, 10), (100, 1, 10), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.7743994Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(arg1_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:05:10.7744062Z del arg0_1 2023-01-11T21:05:10.7744115Z del arg1_1 2023-01-11T21:05:10.7744185Z return (buf0, ) 2023-01-11T21:05:10.7744219Z 2023-01-11T21:05:10.7744223Z 2023-01-11T21:05:10.7744298Z if __name__ == "__main__": 2023-01-11T21:05:10.7744410Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.7744532Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.7744729Z arg0_1 = rand_strided((10, 10), (1, 10), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.7744936Z arg1_1 = rand_strided((1, 10, 1), (10, 1, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.7745053Z print_performance(lambda: call([arg0_1, arg1_1])) 2023-01-11T21:05:10.7745057Z 2023-01-11T21:05:10.7745109Z ok (0.034s) 2023-01-11T21:05:10.7745579Z test_cpu_transposed_broadcast3 (__main__.SweepInputsCpuTest) ... inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.7745705Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.7745964Z [2023-01-11 21:04:58,061] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 558 2023-01-11T21:05:10.7746226Z [2023-01-11 21:04:58,072] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 558 2023-01-11T21:05:10.7746231Z 2023-01-11T21:05:10.7746326Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.7746395Z import torch 2023-01-11T21:05:10.7746466Z import random 2023-01-11T21:05:10.7746581Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.7746688Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.7746696Z 2023-01-11T21:05:10.7746773Z aten = torch.ops.aten 2023-01-11T21:05:10.7746906Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.7746996Z async_compile = AsyncCompile() 2023-01-11T21:05:10.7747004Z 2023-01-11T21:05:10.7747008Z 2023-01-11T21:05:10.7747145Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.7747346Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.7747465Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:05:10.7747567Z const float* __restrict__ in_ptr1, 2023-01-11T21:05:10.7747653Z float* __restrict__ out_ptr0) 2023-01-11T21:05:10.7747715Z { 2023-01-11T21:05:10.7747810Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.7747871Z { 2023-01-11T21:05:10.7747948Z #pragma omp for 2023-01-11T21:05:10.7748028Z for(long i0=0; i0<6; i0+=1) 2023-01-11T21:05:10.7748088Z { 2023-01-11T21:05:10.7748263Z auto tmp0 = at::vec::Vectorized::loadu(in_ptr0 + 16*i0); 2023-01-11T21:05:10.7748384Z auto tmp1 = at::vec::Vectorized(in_ptr1[0]); 2023-01-11T21:05:10.7748470Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:05:10.7748562Z tmp2.store(out_ptr0 + 16*i0); 2023-01-11T21:05:10.7748623Z } 2023-01-11T21:05:10.7748715Z #pragma omp for simd simdlen(8) 2023-01-11T21:05:10.7748797Z for(long i0=96; i0<100; i0+=1) 2023-01-11T21:05:10.7748846Z { 2023-01-11T21:05:10.7748928Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:05:10.7749006Z auto tmp1 = in_ptr1[0]; 2023-01-11T21:05:10.7749088Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:05:10.7749164Z out_ptr0[i0] = tmp2; 2023-01-11T21:05:10.7749223Z } 2023-01-11T21:05:10.7749280Z } 2023-01-11T21:05:10.7749326Z } 2023-01-11T21:05:10.7749403Z ''') 2023-01-11T21:05:10.7749408Z 2023-01-11T21:05:10.7749412Z 2023-01-11T21:05:10.7749500Z async_compile.wait(globals()) 2023-01-11T21:05:10.7749571Z del async_compile 2023-01-11T21:05:10.7749577Z 2023-01-11T21:05:10.7749644Z def call(args): 2023-01-11T21:05:10.7749717Z arg0_1, arg1_1 = args 2023-01-11T21:05:10.7749812Z args.clear() 2023-01-11T21:05:10.7750000Z buf0 = empty_strided((10, 10), (1, 10), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.7750158Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(arg1_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:05:10.7750224Z del arg0_1 2023-01-11T21:05:10.7750290Z del arg1_1 2023-01-11T21:05:10.7750359Z return (buf0, ) 2023-01-11T21:05:10.7750364Z 2023-01-11T21:05:10.7750368Z 2023-01-11T21:05:10.7750442Z if __name__ == "__main__": 2023-01-11T21:05:10.7750554Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.7750676Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.7750859Z arg0_1 = rand_strided((10, 10), (1, 10), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.7751048Z arg1_1 = rand_strided((1, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.7751158Z print_performance(lambda: call([arg0_1, arg1_1])) 2023-01-11T21:05:10.7751163Z 2023-01-11T21:05:10.7751229Z ok (0.031s) 2023-01-11T21:05:10.7751690Z test_cpu_transposed_dense (__main__.SweepInputsCpuTest) ... inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.7751815Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.7752070Z [2023-01-11 21:04:58,092] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 559 2023-01-11T21:05:10.7752331Z [2023-01-11 21:05:00,760] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 559 2023-01-11T21:05:10.7752339Z 2023-01-11T21:05:10.7752430Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.7752487Z import torch 2023-01-11T21:05:10.7752555Z import random 2023-01-11T21:05:10.7752671Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.7752792Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.7752797Z 2023-01-11T21:05:10.7752873Z aten = torch.ops.aten 2023-01-11T21:05:10.7753006Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.7753095Z async_compile = AsyncCompile() 2023-01-11T21:05:10.7753100Z 2023-01-11T21:05:10.7753104Z 2023-01-11T21:05:10.7753236Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.7753426Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.7753543Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:05:10.7753645Z const float* __restrict__ in_ptr1, 2023-01-11T21:05:10.7753784Z float* __restrict__ out_ptr0) 2023-01-11T21:05:10.7753844Z { 2023-01-11T21:05:10.7753939Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.7753999Z { 2023-01-11T21:05:10.7754063Z #pragma omp for 2023-01-11T21:05:10.7754145Z for(long i0=0; i0<10; i0+=1) 2023-01-11T21:05:10.7754209Z { 2023-01-11T21:05:10.7754286Z #pragma GCC ivdep 2023-01-11T21:05:10.7754370Z for(long i1=0; i1<10; i1+=1) 2023-01-11T21:05:10.7754431Z { 2023-01-11T21:05:10.7754494Z { 2023-01-11T21:05:10.7754547Z { 2023-01-11T21:05:10.7754649Z auto tmp0 = in_ptr0[i0 + (10*i1)]; 2023-01-11T21:05:10.7754749Z auto tmp1 = in_ptr1[i1 + (10*i0)]; 2023-01-11T21:05:10.7754842Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:05:10.7754935Z out_ptr0[i0 + (10*i1)] = tmp2; 2023-01-11T21:05:10.7755001Z } 2023-01-11T21:05:10.7755063Z } 2023-01-11T21:05:10.7755112Z } 2023-01-11T21:05:10.7755171Z } 2023-01-11T21:05:10.7755231Z } 2023-01-11T21:05:10.7755292Z } 2023-01-11T21:05:10.7755429Z ''') 2023-01-11T21:05:10.7755434Z 2023-01-11T21:05:10.7755438Z 2023-01-11T21:05:10.7755526Z async_compile.wait(globals()) 2023-01-11T21:05:10.7755597Z del async_compile 2023-01-11T21:05:10.7755601Z 2023-01-11T21:05:10.7755656Z def call(args): 2023-01-11T21:05:10.7755730Z arg0_1, arg1_1 = args 2023-01-11T21:05:10.7755801Z args.clear() 2023-01-11T21:05:10.7756004Z buf0 = empty_strided((10, 10), (1, 10), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.7756165Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(arg1_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:05:10.7756232Z del arg0_1 2023-01-11T21:05:10.7756300Z del arg1_1 2023-01-11T21:05:10.7756356Z return (buf0, ) 2023-01-11T21:05:10.7756361Z 2023-01-11T21:05:10.7756382Z 2023-01-11T21:05:10.7756443Z if __name__ == "__main__": 2023-01-11T21:05:10.7756556Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.7756679Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.7756880Z arg0_1 = rand_strided((10, 10), (1, 10), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.7757077Z arg1_1 = rand_strided((10, 10), (10, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.7757192Z print_performance(lambda: call([arg0_1, arg1_1])) 2023-01-11T21:05:10.7757197Z 2023-01-11T21:05:10.7757262Z ok (2.693s) 2023-01-11T21:05:10.7757724Z test_cpu_transposed_double (__main__.SweepInputsCpuTest) ... inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.7757840Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.7758096Z [2023-01-11 21:05:00,792] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 560 2023-01-11T21:05:10.7758360Z [2023-01-11 21:05:03,443] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 560 2023-01-11T21:05:10.7758365Z 2023-01-11T21:05:10.7758458Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.7758528Z import torch 2023-01-11T21:05:10.7758596Z import random 2023-01-11T21:05:10.7758715Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.7758833Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.7758838Z 2023-01-11T21:05:10.7758901Z aten = torch.ops.aten 2023-01-11T21:05:10.7759034Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.7759125Z async_compile = AsyncCompile() 2023-01-11T21:05:10.7759130Z 2023-01-11T21:05:10.7759134Z 2023-01-11T21:05:10.7759301Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.7759504Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.7759624Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:05:10.7759731Z const double* __restrict__ in_ptr1, 2023-01-11T21:05:10.7759831Z double* __restrict__ out_ptr0) 2023-01-11T21:05:10.7759879Z { 2023-01-11T21:05:10.7759973Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.7760033Z { 2023-01-11T21:05:10.7760109Z #pragma omp for 2023-01-11T21:05:10.7760189Z for(long i0=0; i0<10; i0+=1) 2023-01-11T21:05:10.7760250Z { 2023-01-11T21:05:10.7760327Z #pragma GCC ivdep 2023-01-11T21:05:10.7760399Z for(long i1=0; i1<10; i1+=1) 2023-01-11T21:05:10.7760460Z { 2023-01-11T21:05:10.7760522Z { 2023-01-11T21:05:10.7760587Z { 2023-01-11T21:05:10.7760815Z auto tmp0 = in_ptr0[i0 + (10*i1)]; 2023-01-11T21:05:10.7760916Z auto tmp2 = in_ptr1[i1 + (10*i0)]; 2023-01-11T21:05:10.7761084Z auto tmp1 = static_cast(tmp0); 2023-01-11T21:05:10.7761167Z auto tmp3 = tmp1 + tmp2; 2023-01-11T21:05:10.7761262Z out_ptr0[i0 + (10*i1)] = tmp3; 2023-01-11T21:05:10.7761329Z } 2023-01-11T21:05:10.7761392Z } 2023-01-11T21:05:10.7761456Z } 2023-01-11T21:05:10.7761517Z } 2023-01-11T21:05:10.7761579Z } 2023-01-11T21:05:10.7761624Z } 2023-01-11T21:05:10.7761704Z ''') 2023-01-11T21:05:10.7761709Z 2023-01-11T21:05:10.7761713Z 2023-01-11T21:05:10.7761802Z async_compile.wait(globals()) 2023-01-11T21:05:10.7761874Z del async_compile 2023-01-11T21:05:10.7761878Z 2023-01-11T21:05:10.7761949Z def call(args): 2023-01-11T21:05:10.7762022Z arg0_1, arg1_1 = args 2023-01-11T21:05:10.7762094Z args.clear() 2023-01-11T21:05:10.7762284Z buf0 = empty_strided((10, 10), (1, 10), device='cpu', dtype=torch.float64) 2023-01-11T21:05:10.7762448Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(arg1_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:05:10.7762519Z del arg0_1 2023-01-11T21:05:10.7762585Z del arg1_1 2023-01-11T21:05:10.7762654Z return (buf0, ) 2023-01-11T21:05:10.7762660Z 2023-01-11T21:05:10.7762664Z 2023-01-11T21:05:10.7762737Z if __name__ == "__main__": 2023-01-11T21:05:10.7762848Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.7762968Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.7763152Z arg0_1 = rand_strided((10, 10), (1, 10), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.7763346Z arg1_1 = rand_strided((10, 10), (10, 1), device='cpu', dtype=torch.float64) 2023-01-11T21:05:10.7763459Z print_performance(lambda: call([arg0_1, arg1_1])) 2023-01-11T21:05:10.7763463Z 2023-01-11T21:05:10.7763531Z ok (2.683s) 2023-01-11T21:05:10.7763993Z test_cpu_transposed_int (__main__.SweepInputsCpuTest) ... inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.7764117Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.7764376Z [2023-01-11 21:05:03,476] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 561 2023-01-11T21:05:10.7764638Z [2023-01-11 21:05:06,125] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 561 2023-01-11T21:05:10.7764644Z 2023-01-11T21:05:10.7764735Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.7764792Z import torch 2023-01-11T21:05:10.7764861Z import random 2023-01-11T21:05:10.7765014Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.7765132Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.7765137Z 2023-01-11T21:05:10.7765214Z aten = torch.ops.aten 2023-01-11T21:05:10.7765348Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.7765438Z async_compile = AsyncCompile() 2023-01-11T21:05:10.7765443Z 2023-01-11T21:05:10.7765448Z 2023-01-11T21:05:10.7765582Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.7765772Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.7765889Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:05:10.7765988Z const int* __restrict__ in_ptr1, 2023-01-11T21:05:10.7766087Z float* __restrict__ out_ptr0) 2023-01-11T21:05:10.7766145Z { 2023-01-11T21:05:10.7766240Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.7766301Z { 2023-01-11T21:05:10.7766366Z #pragma omp for 2023-01-11T21:05:10.7766448Z for(long i0=0; i0<10; i0+=1) 2023-01-11T21:05:10.7766510Z { 2023-01-11T21:05:10.7766589Z #pragma GCC ivdep 2023-01-11T21:05:10.7766704Z for(long i1=0; i1<10; i1+=1) 2023-01-11T21:05:10.7766770Z { 2023-01-11T21:05:10.7766830Z { 2023-01-11T21:05:10.7766883Z { 2023-01-11T21:05:10.7766986Z auto tmp0 = in_ptr0[i1 + (10*i0)]; 2023-01-11T21:05:10.7767078Z auto tmp1 = in_ptr1[i0]; 2023-01-11T21:05:10.7767187Z auto tmp2 = static_cast(tmp1); 2023-01-11T21:05:10.7767279Z auto tmp3 = tmp0 + tmp2; 2023-01-11T21:05:10.7767373Z out_ptr0[i1 + (10*i0)] = tmp3; 2023-01-11T21:05:10.7767437Z } 2023-01-11T21:05:10.7767488Z } 2023-01-11T21:05:10.7767546Z } 2023-01-11T21:05:10.7767605Z } 2023-01-11T21:05:10.7767667Z } 2023-01-11T21:05:10.7767725Z } 2023-01-11T21:05:10.7767801Z ''') 2023-01-11T21:05:10.7767806Z 2023-01-11T21:05:10.7767810Z 2023-01-11T21:05:10.7767898Z async_compile.wait(globals()) 2023-01-11T21:05:10.7767958Z del async_compile 2023-01-11T21:05:10.7767963Z 2023-01-11T21:05:10.7768030Z def call(args): 2023-01-11T21:05:10.7768105Z arg0_1, arg1_1 = args 2023-01-11T21:05:10.7768174Z args.clear() 2023-01-11T21:05:10.7768370Z buf0 = empty_strided((10, 10), (1, 10), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.7768532Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(arg1_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:05:10.7768598Z del arg0_1 2023-01-11T21:05:10.7768650Z del arg1_1 2023-01-11T21:05:10.7768720Z return (buf0, ) 2023-01-11T21:05:10.7768724Z 2023-01-11T21:05:10.7768728Z 2023-01-11T21:05:10.7768802Z if __name__ == "__main__": 2023-01-11T21:05:10.7768915Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.7769037Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.7769232Z arg0_1 = rand_strided((10, 10), (1, 10), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.7769422Z arg1_1 = rand_strided((10, ), (1, ), device='cpu', dtype=torch.int32) 2023-01-11T21:05:10.7769533Z print_performance(lambda: call([arg0_1, arg1_1])) 2023-01-11T21:05:10.7769538Z 2023-01-11T21:05:10.7769590Z ok (2.682s) 2023-01-11T21:05:10.7770053Z test_cpu_transposed_strided (__main__.SweepInputsCpuTest) ... inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.7770180Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.7770435Z [2023-01-11 21:05:06,312] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 562 2023-01-11T21:05:10.7770739Z [2023-01-11 21:05:08,894] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 562 2023-01-11T21:05:10.7770744Z 2023-01-11T21:05:10.7770838Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.7770906Z import torch 2023-01-11T21:05:10.7770975Z import random 2023-01-11T21:05:10.7771089Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.7771196Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.7771215Z 2023-01-11T21:05:10.7771277Z aten = torch.ops.aten 2023-01-11T21:05:10.7771409Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.7771498Z async_compile = AsyncCompile() 2023-01-11T21:05:10.7771503Z 2023-01-11T21:05:10.7771507Z 2023-01-11T21:05:10.7771640Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.7771843Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.7771965Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:05:10.7772068Z const float* __restrict__ in_ptr1, 2023-01-11T21:05:10.7772182Z float* __restrict__ out_ptr0) 2023-01-11T21:05:10.7772245Z { 2023-01-11T21:05:10.7772342Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.7772404Z { 2023-01-11T21:05:10.7772479Z #pragma omp for 2023-01-11T21:05:10.7772559Z for(long i0=0; i0<10; i0+=1) 2023-01-11T21:05:10.7772620Z { 2023-01-11T21:05:10.7772685Z #pragma GCC ivdep 2023-01-11T21:05:10.7772769Z for(long i1=0; i1<10; i1+=1) 2023-01-11T21:05:10.7772831Z { 2023-01-11T21:05:10.7772892Z { 2023-01-11T21:05:10.7772957Z { 2023-01-11T21:05:10.7773060Z auto tmp0 = in_ptr0[i0 + (10*i1)]; 2023-01-11T21:05:10.7773160Z auto tmp1 = in_ptr1[(2*i1) + (30*i0)]; 2023-01-11T21:05:10.7773243Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:05:10.7773336Z out_ptr0[i0 + (10*i1)] = tmp2; 2023-01-11T21:05:10.7773401Z } 2023-01-11T21:05:10.7773463Z } 2023-01-11T21:05:10.7773525Z } 2023-01-11T21:05:10.7773585Z } 2023-01-11T21:05:10.7773643Z } 2023-01-11T21:05:10.7773689Z } 2023-01-11T21:05:10.7773764Z ''') 2023-01-11T21:05:10.7773769Z 2023-01-11T21:05:10.7773774Z 2023-01-11T21:05:10.7773860Z async_compile.wait(globals()) 2023-01-11T21:05:10.7773933Z del async_compile 2023-01-11T21:05:10.7773938Z 2023-01-11T21:05:10.7774005Z def call(args): 2023-01-11T21:05:10.7774080Z arg0_1, arg1_1 = args 2023-01-11T21:05:10.7774150Z args.clear() 2023-01-11T21:05:10.7774336Z buf0 = empty_strided((10, 10), (1, 10), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.7774496Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(arg1_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:05:10.7774565Z del arg0_1 2023-01-11T21:05:10.7774630Z del arg1_1 2023-01-11T21:05:10.7774700Z return (buf0, ) 2023-01-11T21:05:10.7774705Z 2023-01-11T21:05:10.7774709Z 2023-01-11T21:05:10.7774784Z if __name__ == "__main__": 2023-01-11T21:05:10.7774901Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.7775022Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.7775206Z arg0_1 = rand_strided((10, 10), (1, 10), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.7775403Z arg1_1 = rand_strided((10, 10), (30, 2), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.7775517Z print_performance(lambda: call([arg0_1, arg1_1])) 2023-01-11T21:05:10.7775522Z 2023-01-11T21:05:10.7775586Z ok (2.769s) 2023-01-11T21:05:10.7776055Z test_cpu_transposed_transposed (__main__.SweepInputsCpuTest) ... inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:05:10.7776213Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:05:10.7776472Z [2023-01-11 21:05:08,926] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 563 2023-01-11T21:05:10.7776736Z [2023-01-11 21:05:08,939] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 563 2023-01-11T21:05:10.7776741Z 2023-01-11T21:05:10.7776835Z from ctypes import c_void_p, c_long 2023-01-11T21:05:10.7776891Z import torch 2023-01-11T21:05:10.7776960Z import random 2023-01-11T21:05:10.7777078Z from torch import empty_strided, as_strided, device 2023-01-11T21:05:10.7777197Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:05:10.7777202Z 2023-01-11T21:05:10.7777279Z aten = torch.ops.aten 2023-01-11T21:05:10.7777413Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:05:10.7777505Z async_compile = AsyncCompile() 2023-01-11T21:05:10.7777510Z 2023-01-11T21:05:10.7777514Z 2023-01-11T21:05:10.7777646Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:05:10.7777865Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:05:10.7777984Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:05:10.7778089Z const float* __restrict__ in_ptr1, 2023-01-11T21:05:10.7778189Z float* __restrict__ out_ptr0) 2023-01-11T21:05:10.7778248Z { 2023-01-11T21:05:10.7778344Z #pragma omp parallel num_threads(4) 2023-01-11T21:05:10.7778404Z { 2023-01-11T21:05:10.7778561Z #pragma omp for 2023-01-11T21:05:10.7778645Z for(long i0=0; i0<6; i0+=1) 2023-01-11T21:05:10.7778707Z { 2023-01-11T21:05:10.7778848Z auto tmp0 = at::vec::Vectorized::loadu(in_ptr0 + 16*i0); 2023-01-11T21:05:10.7778983Z auto tmp1 = at::vec::Vectorized::loadu(in_ptr1 + 16*i0); 2023-01-11T21:05:10.7779066Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:05:10.7779159Z tmp2.store(out_ptr0 + 16*i0); 2023-01-11T21:05:10.7779210Z } 2023-01-11T21:05:10.7779304Z #pragma omp for simd simdlen(8) 2023-01-11T21:05:10.7779387Z for(long i0=96; i0<100; i0+=1) 2023-01-11T21:05:10.7779449Z { 2023-01-11T21:05:10.7779531Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:05:10.7779612Z auto tmp1 = in_ptr1[i0]; 2023-01-11T21:05:10.7779693Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:05:10.7779759Z out_ptr0[i0] = tmp2; 2023-01-11T21:05:10.7779819Z } 2023-01-11T21:05:10.7779879Z } 2023-01-11T21:05:10.7779938Z } 2023-01-11T21:05:10.7780021Z ''') 2023-01-11T21:05:10.7780027Z 2023-01-11T21:05:10.7780030Z 2023-01-11T21:05:10.7780118Z async_compile.wait(globals()) 2023-01-11T21:05:10.7780190Z del async_compile 2023-01-11T21:05:10.7780197Z 2023-01-11T21:05:10.7780266Z def call(args): 2023-01-11T21:05:10.7780327Z arg0_1, arg1_1 = args 2023-01-11T21:05:10.7780396Z args.clear() 2023-01-11T21:05:10.7780597Z buf0 = empty_strided((10, 10), (1, 10), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.7780758Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(arg1_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:05:10.7780827Z del arg0_1 2023-01-11T21:05:10.7780890Z del arg1_1 2023-01-11T21:05:10.7780948Z return (buf0, ) 2023-01-11T21:05:10.7780966Z 2023-01-11T21:05:10.7780970Z 2023-01-11T21:05:10.7781030Z if __name__ == "__main__": 2023-01-11T21:05:10.7781141Z from torch._dynamo.testing import rand_strided 2023-01-11T21:05:10.7781261Z from torch._inductor.utils import print_performance 2023-01-11T21:05:10.7781458Z arg0_1 = rand_strided((10, 10), (1, 10), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.7781653Z arg1_1 = rand_strided((10, 10), (1, 10), device='cpu', dtype=torch.float32) 2023-01-11T21:05:10.7781806Z print_performance(lambda: call([arg0_1, arg1_1])) 2023-01-11T21:05:10.7781811Z 2023-01-11T21:05:10.7781877Z ok (0.041s) 2023-01-11T21:05:10.7782025Z test_indexing_join (__main__.TestIndexingSimplification) ... ok (0.083s) 2023-01-11T21:05:10.7782175Z test_indexing_simplification (__main__.TestIndexingSimplification) ... ok (0.088s) 2023-01-11T21:05:10.7782180Z 2023-01-11T21:05:10.7782377Z ---------------------------------------------------------------------- 2023-01-11T21:05:10.7782454Z Ran 362 tests in 1295.323s 2023-01-11T21:05:10.7782459Z 2023-01-11T21:05:10.7782528Z OK (skipped=20) 2023-01-11T21:05:10.7782533Z 2023-01-11T21:05:10.7782615Z Generating XML reports... 2023-01-11T21:05:10.7782924Z Generated XML report: test-reports/python-unittest/inductor.test_torchinductor/TEST-CPUReproTests-20230111204333.xml 2023-01-11T21:05:10.7783210Z Generated XML report: test-reports/python-unittest/inductor.test_torchinductor/TEST-CpuTests-20230111204333.xml 2023-01-11T21:05:10.7783525Z Generated XML report: test-reports/python-unittest/inductor.test_torchinductor/TEST-ExprPrinterTests-20230111204333.xml 2023-01-11T21:05:10.7783867Z Generated XML report: test-reports/python-unittest/inductor.test_torchinductor/TEST-SweepInputsCpuTest-20230111204333.xml 2023-01-11T21:05:10.7784201Z Generated XML report: test-reports/python-unittest/inductor.test_torchinductor/TEST-TestIndexingSimplification-20230111204333.xml 2023-01-11T21:05:10.7784207Z 2023-01-11T21:05:10.7784575Z ##[endgroup] 2023-01-11T21:05:10.7784904Z FINISHED PRINTING LOG FILE of inductor/test_torchinductor (/var/lib/jenkins/workspace/test/test-reports/inductor-test_torchinductor_1hiiowhq) 2023-01-11T21:05:10.7784910Z 2023-01-11T21:05:11.0725765Z Running test_sparse_csr ... [2023-01-11 21:05:11.072164] 2023-01-11T21:05:11.0729726Z Executing ['/opt/conda/bin/python', '-bb', 'test_sparse_csr.py', '-v', '--import-slow-tests', '--import-disabled-tests'] ... [2023-01-11 21:05:11.072708] 2023-01-11T21:22:05.4102520Z 2023-01-11T21:22:05.4103095Z Expand the folded group to see the log file of test_sparse_csr 2023-01-11T21:22:05.4103946Z ##[group]PRINTING LOG FILE of test_sparse_csr (/var/lib/jenkins/workspace/test/test-reports/test_sparse_csr_1aons3sa) 2023-01-11T21:22:05.4166257Z Test results will be stored in test-reports/python-unittest/test_sparse_csr 2023-01-11T21:22:05.4166623Z 2023-01-11T21:22:05.4168432Z Running tests... 2023-01-11T21:22:05.4169018Z ---------------------------------------------------------------------- 2023-01-11T21:22:05.4170723Z test_add_cpu_float32 (__main__.TestSparseCSRCPU) ... /opt/conda/lib/python3.7/site-packages/torch/testing/_internal/common_utils.py:2430: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /var/lib/jenkins/workspace/aten/src/ATen/SparseCsrTensorImpl.cpp:56.) 2023-01-11T21:22:05.4171913Z values, size=size, dtype=dtype, layout=layout, device=device) 2023-01-11T21:22:05.4172280Z ok (0.259s) 2023-01-11T21:22:05.4172583Z test_add_cpu_float64 (__main__.TestSparseCSRCPU) ... ok (0.206s) 2023-01-11T21:22:05.4173074Z test_addmm_all_sparse_csr_SparseCSC_cpu_complex128 (__main__.TestSparseCSRCPU) ... ok (0.178s) 2023-01-11T21:22:05.4173577Z test_addmm_all_sparse_csr_SparseCSC_cpu_complex64 (__main__.TestSparseCSRCPU) ... ok (0.157s) 2023-01-11T21:22:05.4174020Z test_addmm_all_sparse_csr_SparseCSC_cpu_float32 (__main__.TestSparseCSRCPU) ... ok (0.147s) 2023-01-11T21:22:05.4174518Z test_addmm_all_sparse_csr_SparseCSC_cpu_float64 (__main__.TestSparseCSRCPU) ... ok (0.151s) 2023-01-11T21:22:05.4175012Z test_addmm_all_sparse_csr_SparseCSR_cpu_complex128 (__main__.TestSparseCSRCPU) ... ok (0.135s) 2023-01-11T21:22:05.4261022Z test_addmm_all_sparse_csr_SparseCSR_cpu_complex64 (__main__.TestSparseCSRCPU) ... ok (0.117s) 2023-01-11T21:22:05.4261633Z test_addmm_all_sparse_csr_SparseCSR_cpu_float32 (__main__.TestSparseCSRCPU) ... ok (0.107s) 2023-01-11T21:22:05.4262443Z test_addmm_all_sparse_csr_SparseCSR_cpu_float64 (__main__.TestSparseCSRCPU) ... ok (0.116s) 2023-01-11T21:22:05.4262961Z test_addmm_dense_result_SparseCSC_cpu_complex128 (__main__.TestSparseCSRCPU) ... ok (0.127s) 2023-01-11T21:22:05.4263512Z test_addmm_dense_result_SparseCSC_cpu_complex64 (__main__.TestSparseCSRCPU) ... ok (0.129s) 2023-01-11T21:22:05.4264029Z test_addmm_dense_result_SparseCSC_cpu_float32 (__main__.TestSparseCSRCPU) ... ok (0.120s) 2023-01-11T21:22:05.4264573Z test_addmm_dense_result_SparseCSC_cpu_float64 (__main__.TestSparseCSRCPU) ... ok (0.118s) 2023-01-11T21:22:05.4265117Z test_addmm_dense_result_SparseCSR_cpu_complex128 (__main__.TestSparseCSRCPU) ... ok (0.116s) 2023-01-11T21:22:05.4265704Z test_addmm_dense_result_SparseCSR_cpu_complex64 (__main__.TestSparseCSRCPU) ... ok (0.093s) 2023-01-11T21:22:05.4266291Z test_addmm_dense_result_SparseCSR_cpu_float32 (__main__.TestSparseCSRCPU) ... ok (0.085s) 2023-01-11T21:22:05.4266912Z test_addmm_dense_result_SparseCSR_cpu_float64 (__main__.TestSparseCSRCPU) ... ok (0.083s) 2023-01-11T21:22:05.4267475Z test_addmm_errors_cpu_float32 (__main__.TestSparseCSRCPU) ... ok (0.088s) 2023-01-11T21:22:05.4268178Z test_addmm_sizes_all_sparse_csr_k_0_n_0_m_0_cpu_complex128 (__main__.TestSparseCSRCPU) ... ok (0.035s) 2023-01-11T21:22:05.4268799Z test_addmm_sizes_all_sparse_csr_k_0_n_0_m_0_cpu_complex64 (__main__.TestSparseCSRCPU) ... ok (0.035s) 2023-01-11T21:22:05.4269408Z test_addmm_sizes_all_sparse_csr_k_0_n_0_m_0_cpu_float32 (__main__.TestSparseCSRCPU) ... ok (0.035s) 2023-01-11T21:22:05.4269994Z test_addmm_sizes_all_sparse_csr_k_0_n_0_m_0_cpu_float64 (__main__.TestSparseCSRCPU) ... ok (0.035s) 2023-01-11T21:22:05.4270473Z test_addmm_sizes_all_sparse_csr_k_0_n_0_m_1_cpu_complex128 (__main__.TestSparseCSRCPU) ... ok (0.035s) 2023-01-11T21:22:05.4271021Z test_addmm_sizes_all_sparse_csr_k_0_n_0_m_1_cpu_complex64 (__main__.TestSparseCSRCPU) ... ok (0.035s) 2023-01-11T21:22:05.4271596Z test_addmm_sizes_all_sparse_csr_k_0_n_0_m_1_cpu_float32 (__main__.TestSparseCSRCPU) ... ok (0.035s) 2023-01-11T21:22:05.4272150Z test_addmm_sizes_all_sparse_csr_k_0_n_0_m_1_cpu_float64 (__main__.TestSparseCSRCPU) ... ok (0.035s) 2023-01-11T21:22:05.4272687Z test_addmm_sizes_all_sparse_csr_k_0_n_0_m_25_cpu_complex128 (__main__.TestSparseCSRCPU) ... ok (0.036s) 2023-01-11T21:22:05.4273237Z test_addmm_sizes_all_sparse_csr_k_0_n_0_m_25_cpu_complex64 (__main__.TestSparseCSRCPU) ... ok (0.035s) 2023-01-11T21:22:05.4273821Z test_addmm_sizes_all_sparse_csr_k_0_n_0_m_25_cpu_float32 (__main__.TestSparseCSRCPU) ... ok (0.035s) 2023-01-11T21:22:05.4274337Z test_addmm_sizes_all_sparse_csr_k_0_n_0_m_25_cpu_float64 (__main__.TestSparseCSRCPU) ... ok (0.035s) 2023-01-11T21:22:05.4274874Z test_addmm_sizes_all_sparse_csr_k_0_n_10_m_0_cpu_complex128 (__main__.TestSparseCSRCPU) ... ok (0.036s) 2023-01-11T21:22:05.4275409Z test_addmm_sizes_all_sparse_csr_k_0_n_10_m_0_cpu_complex64 (__main__.TestSparseCSRCPU) ... ok (0.035s) 2023-01-11T21:22:05.4275974Z test_addmm_sizes_all_sparse_csr_k_0_n_10_m_0_cpu_float32 (__main__.TestSparseCSRCPU) ... ok (0.035s) 2023-01-11T21:22:05.4276505Z test_addmm_sizes_all_sparse_csr_k_0_n_10_m_0_cpu_float64 (__main__.TestSparseCSRCPU) ... ok (0.035s) 2023-01-11T21:22:05.4277003Z test_addmm_sizes_all_sparse_csr_k_0_n_10_m_1_cpu_complex128 (__main__.TestSparseCSRCPU) ... ok (0.036s) 2023-01-11T21:22:05.4277509Z test_addmm_sizes_all_sparse_csr_k_0_n_10_m_1_cpu_complex64 (__main__.TestSparseCSRCPU) ... ok (0.036s) 2023-01-11T21:22:05.4278010Z test_addmm_sizes_all_sparse_csr_k_0_n_10_m_1_cpu_float32 (__main__.TestSparseCSRCPU) ... ok (0.046s) 2023-01-11T21:22:05.4278536Z test_addmm_sizes_all_sparse_csr_k_0_n_10_m_1_cpu_float64 (__main__.TestSparseCSRCPU) ... ok (0.036s) 2023-01-11T21:22:05.4279090Z test_addmm_sizes_all_sparse_csr_k_0_n_10_m_25_cpu_complex128 (__main__.TestSparseCSRCPU) ... ok (0.037s) 2023-01-11T21:22:05.4279603Z test_addmm_sizes_all_sparse_csr_k_0_n_10_m_25_cpu_complex64 (__main__.TestSparseCSRCPU) ... ok (0.037s) 2023-01-11T21:22:05.4280175Z test_addmm_sizes_all_sparse_csr_k_0_n_10_m_25_cpu_float32 (__main__.TestSparseCSRCPU) ... ok (0.037s) 2023-01-11T21:22:05.4281285Z test_addmm_sizes_all_sparse_csr_k_0_n_10_m_25_cpu_float64 (__main__.TestSparseCSRCPU) ... ok (0.036s) 2023-01-11T21:22:05.4281803Z test_addmm_sizes_all_sparse_csr_k_0_n_1_m_0_cpu_complex128 (__main__.TestSparseCSRCPU) ... ok (0.035s) 2023-01-11T21:22:05.4282358Z test_addmm_sizes_all_sparse_csr_k_0_n_1_m_0_cpu_complex64 (__main__.TestSparseCSRCPU) ... ok (0.038s) 2023-01-11T21:22:05.4282859Z test_addmm_sizes_all_sparse_csr_k_0_n_1_m_0_cpu_float32 (__main__.TestSparseCSRCPU) ... ok (0.036s) 2023-01-11T21:22:05.4283369Z test_addmm_sizes_all_sparse_csr_k_0_n_1_m_0_cpu_float64 (__main__.TestSparseCSRCPU) ... ok (0.036s) 2023-01-11T21:22:05.4283859Z test_addmm_sizes_all_sparse_csr_k_0_n_1_m_1_cpu_complex128 (__main__.TestSparseCSRCPU) ... ok (0.037s) 2023-01-11T21:22:05.4284373Z test_addmm_sizes_all_sparse_csr_k_0_n_1_m_1_cpu_complex64 (__main__.TestSparseCSRCPU) ... ok (0.036s) 2023-01-11T21:22:05.4284833Z test_addmm_sizes_all_sparse_csr_k_0_n_1_m_1_cpu_float32 (__main__.TestSparseCSRCPU) ... ok (0.036s) 2023-01-11T21:22:05.4285458Z test_addmm_sizes_all_sparse_csr_k_0_n_1_m_1_cpu_float64 (__main__.TestSparseCSRCPU) ... ok (0.035s) 2023-01-11T21:22:05.4285957Z test_addmm_sizes_all_sparse_csr_k_0_n_1_m_25_cpu_complex128 (__main__.TestSparseCSRCPU) ... ok (0.036s) 2023-01-11T21:22:05.4286433Z test_addmm_sizes_all_sparse_csr_k_0_n_1_m_25_cpu_complex64 (__main__.TestSparseCSRCPU) ... ok (0.036s) 2023-01-11T21:22:05.4286895Z test_addmm_sizes_all_sparse_csr_k_0_n_1_m_25_cpu_float32 (__main__.TestSparseCSRCPU) ... ok (0.036s) 2023-01-11T21:22:05.4287408Z test_addmm_sizes_all_sparse_csr_k_0_n_1_m_25_cpu_float64 (__main__.TestSparseCSRCPU) ... ok (0.036s) 2023-01-11T21:22:05.4287935Z test_addmm_sizes_all_sparse_csr_k_1_n_0_m_0_cpu_complex128 (__main__.TestSparseCSRCPU) ... ok (0.036s) 2023-01-11T21:22:05.4288451Z test_addmm_sizes_all_sparse_csr_k_1_n_0_m_0_cpu_complex64 (__main__.TestSparseCSRCPU) ... ok (0.036s) 2023-01-11T21:22:05.4288948Z test_addmm_sizes_all_sparse_csr_k_1_n_0_m_0_cpu_float32 (__main__.TestSparseCSRCPU) ... ok (0.035s) 2023-01-11T21:22:05.4289455Z test_addmm_sizes_all_sparse_csr_k_1_n_0_m_0_cpu_float64 (__main__.TestSparseCSRCPU) ... ok (0.035s) 2023-01-11T21:22:05.4289907Z test_addmm_sizes_all_sparse_csr_k_1_n_0_m_1_cpu_complex128 (__main__.TestSparseCSRCPU) ... ok (0.036s) 2023-01-11T21:22:05.4290455Z test_addmm_sizes_all_sparse_csr_k_1_n_0_m_1_cpu_complex64 (__main__.TestSparseCSRCPU) ... ok (0.036s) 2023-01-11T21:22:05.4290940Z test_addmm_sizes_all_sparse_csr_k_1_n_0_m_1_cpu_float32 (__main__.TestSparseCSRCPU) ... ok (0.036s) 2023-01-11T21:22:05.4291438Z test_addmm_sizes_all_sparse_csr_k_1_n_0_m_1_cpu_float64 (__main__.TestSparseCSRCPU) ... ok (0.035s) 2023-01-11T21:22:05.4291936Z test_addmm_sizes_all_sparse_csr_k_1_n_0_m_25_cpu_complex128 (__main__.TestSparseCSRCPU) ... ok (0.036s) 2023-01-11T21:22:05.4292476Z test_addmm_sizes_all_sparse_csr_k_1_n_0_m_25_cpu_complex64 (__main__.TestSparseCSRCPU) ... ok (0.036s) 2023-01-11T21:22:05.4292982Z test_addmm_sizes_all_sparse_csr_k_1_n_0_m_25_cpu_float32 (__main__.TestSparseCSRCPU) ... ok (0.035s) 2023-01-11T21:22:05.4293505Z test_addmm_sizes_all_sparse_csr_k_1_n_0_m_25_cpu_float64 (__main__.TestSparseCSRCPU) ... ok (0.039s) 2023-01-11T21:22:05.4294039Z test_addmm_sizes_all_sparse_csr_k_1_n_10_m_0_cpu_complex128 (__main__.TestSparseCSRCPU) ... ok (0.037s) 2023-01-11T21:22:05.4294520Z test_addmm_sizes_all_sparse_csr_k_1_n_10_m_0_cpu_complex64 (__main__.TestSparseCSRCPU) ... ok (0.037s) 2023-01-11T21:22:05.4294965Z test_addmm_sizes_all_sparse_csr_k_1_n_10_m_0_cpu_float32 (__main__.TestSparseCSRCPU) ... ok (0.037s) 2023-01-11T21:22:05.4295422Z test_addmm_sizes_all_sparse_csr_k_1_n_10_m_0_cpu_float64 (__main__.TestSparseCSRCPU) ... ok (0.036s) 2023-01-11T21:22:05.4295880Z test_addmm_sizes_all_sparse_csr_k_1_n_10_m_1_cpu_complex128 (__main__.TestSparseCSRCPU) ... ok (0.038s) 2023-01-11T21:22:05.4296470Z test_addmm_sizes_all_sparse_csr_k_1_n_10_m_1_cpu_complex64 (__main__.TestSparseCSRCPU) ... ok (0.038s) 2023-01-11T21:22:05.4296928Z test_addmm_sizes_all_sparse_csr_k_1_n_10_m_1_cpu_float32 (__main__.TestSparseCSRCPU) ... ok (0.038s) 2023-01-11T21:22:05.4297536Z test_addmm_sizes_all_sparse_csr_k_1_n_10_m_1_cpu_float64 (__main__.TestSparseCSRCPU) ... ok (0.037s) 2023-01-11T21:22:05.4298096Z test_addmm_sizes_all_sparse_csr_k_1_n_10_m_25_cpu_complex128 (__main__.TestSparseCSRCPU) ... ok (0.039s) 2023-01-11T21:22:05.4298603Z test_addmm_sizes_all_sparse_csr_k_1_n_10_m_25_cpu_complex64 (__main__.TestSparseCSRCPU) ... ok (0.039s) 2023-01-11T21:22:05.4299131Z test_addmm_sizes_all_sparse_csr_k_1_n_10_m_25_cpu_float32 (__main__.TestSparseCSRCPU) ... ok (0.039s) 2023-01-11T21:22:05.4299716Z test_addmm_sizes_all_sparse_csr_k_1_n_10_m_25_cpu_float64 (__main__.TestSparseCSRCPU) ... ok (0.038s) 2023-01-11T21:22:05.4300260Z test_addmm_sizes_all_sparse_csr_k_1_n_1_m_0_cpu_complex128 (__main__.TestSparseCSRCPU) ... ok (0.039s) 2023-01-11T21:22:05.4300820Z test_addmm_sizes_all_sparse_csr_k_1_n_1_m_0_cpu_complex64 (__main__.TestSparseCSRCPU) ... ok (0.036s) 2023-01-11T21:22:05.4301321Z test_addmm_sizes_all_sparse_csr_k_1_n_1_m_0_cpu_float32 (__main__.TestSparseCSRCPU) ... ok (0.035s) 2023-01-11T21:22:05.4301789Z test_addmm_sizes_all_sparse_csr_k_1_n_1_m_0_cpu_float64 (__main__.TestSparseCSRCPU) ... ok (0.035s) 2023-01-11T21:22:05.4302251Z test_addmm_sizes_all_sparse_csr_k_1_n_1_m_1_cpu_complex128 (__main__.TestSparseCSRCPU) ... ok (0.037s) 2023-01-11T21:22:05.4302695Z test_addmm_sizes_all_sparse_csr_k_1_n_1_m_1_cpu_complex64 (__main__.TestSparseCSRCPU) ... ok (0.037s) 2023-01-11T21:22:05.4303157Z test_addmm_sizes_all_sparse_csr_k_1_n_1_m_1_cpu_float32 (__main__.TestSparseCSRCPU) ... ok (0.037s) 2023-01-11T21:22:05.4303619Z test_addmm_sizes_all_sparse_csr_k_1_n_1_m_1_cpu_float64 (__main__.TestSparseCSRCPU) ... ok (0.037s) 2023-01-11T21:22:05.4304081Z test_addmm_sizes_all_sparse_csr_k_1_n_1_m_25_cpu_complex128 (__main__.TestSparseCSRCPU) ... ok (0.038s) 2023-01-11T21:22:05.4304532Z test_addmm_sizes_all_sparse_csr_k_1_n_1_m_25_cpu_complex64 (__main__.TestSparseCSRCPU) ... ok (0.038s) 2023-01-11T21:22:05.4304998Z test_addmm_sizes_all_sparse_csr_k_1_n_1_m_25_cpu_float32 (__main__.TestSparseCSRCPU) ... ok (0.038s) 2023-01-11T21:22:05.4305464Z test_addmm_sizes_all_sparse_csr_k_1_n_1_m_25_cpu_float64 (__main__.TestSparseCSRCPU) ... ok (0.037s) 2023-01-11T21:22:05.4305936Z test_addmm_sizes_all_sparse_csr_k_8_n_0_m_0_cpu_complex128 (__main__.TestSparseCSRCPU) ... ok (0.036s) 2023-01-11T21:22:05.4306393Z test_addmm_sizes_all_sparse_csr_k_8_n_0_m_0_cpu_complex64 (__main__.TestSparseCSRCPU) ... ok (0.035s) 2023-01-11T21:22:05.4306869Z test_addmm_sizes_all_sparse_csr_k_8_n_0_m_0_cpu_float32 (__main__.TestSparseCSRCPU) ... ok (0.035s) 2023-01-11T21:22:05.4307326Z test_addmm_sizes_all_sparse_csr_k_8_n_0_m_0_cpu_float64 (__main__.TestSparseCSRCPU) ... ok (0.043s) 2023-01-11T21:22:05.4307832Z test_addmm_sizes_all_sparse_csr_k_8_n_0_m_1_cpu_complex128 (__main__.TestSparseCSRCPU) ... ok (0.036s) 2023-01-11T21:22:05.4308306Z test_addmm_sizes_all_sparse_csr_k_8_n_0_m_1_cpu_complex64 (__main__.TestSparseCSRCPU) ... ok (0.036s) 2023-01-11T21:22:05.4308771Z test_addmm_sizes_all_sparse_csr_k_8_n_0_m_1_cpu_float32 (__main__.TestSparseCSRCPU) ... ok (0.035s) 2023-01-11T21:22:05.4309229Z test_addmm_sizes_all_sparse_csr_k_8_n_0_m_1_cpu_float64 (__main__.TestSparseCSRCPU) ... ok (0.036s) 2023-01-11T21:22:05.4309684Z test_addmm_sizes_all_sparse_csr_k_8_n_0_m_25_cpu_complex128 (__main__.TestSparseCSRCPU) ... ok (0.036s) 2023-01-11T21:22:05.4310124Z test_addmm_sizes_all_sparse_csr_k_8_n_0_m_25_cpu_complex64 (__main__.TestSparseCSRCPU) ... ok (0.036s) 2023-01-11T21:22:05.4310574Z test_addmm_sizes_all_sparse_csr_k_8_n_0_m_25_cpu_float32 (__main__.TestSparseCSRCPU) ... ok (0.035s) 2023-01-11T21:22:05.4311099Z test_addmm_sizes_all_sparse_csr_k_8_n_0_m_25_cpu_float64 (__main__.TestSparseCSRCPU) ... ok (0.035s) 2023-01-11T21:22:05.4311544Z test_addmm_sizes_all_sparse_csr_k_8_n_10_m_0_cpu_complex128 (__main__.TestSparseCSRCPU) ... ok (0.036s) 2023-01-11T21:22:05.4311986Z test_addmm_sizes_all_sparse_csr_k_8_n_10_m_0_cpu_complex64 (__main__.TestSparseCSRCPU) ... ok (0.036s) 2023-01-11T21:22:05.4312439Z test_addmm_sizes_all_sparse_csr_k_8_n_10_m_0_cpu_float32 (__main__.TestSparseCSRCPU) ... ok (0.035s) 2023-01-11T21:22:05.4312884Z test_addmm_sizes_all_sparse_csr_k_8_n_10_m_0_cpu_float64 (__main__.TestSparseCSRCPU) ... ok (0.036s) 2023-01-11T21:22:05.4313316Z test_addmm_sizes_all_sparse_csr_k_8_n_10_m_1_cpu_complex128 (__main__.TestSparseCSRCPU) ... ok (0.038s) 2023-01-11T21:22:05.4313768Z test_addmm_sizes_all_sparse_csr_k_8_n_10_m_1_cpu_complex64 (__main__.TestSparseCSRCPU) ... ok (0.038s) 2023-01-11T21:22:05.4314224Z test_addmm_sizes_all_sparse_csr_k_8_n_10_m_1_cpu_float32 (__main__.TestSparseCSRCPU) ... ok (0.037s) 2023-01-11T21:22:05.4314675Z test_addmm_sizes_all_sparse_csr_k_8_n_10_m_1_cpu_float64 (__main__.TestSparseCSRCPU) ... ok (0.037s) 2023-01-11T21:22:05.4315177Z test_addmm_sizes_all_sparse_csr_k_8_n_10_m_25_cpu_complex128 (__main__.TestSparseCSRCPU) ... ok (0.038s) 2023-01-11T21:22:05.4315641Z test_addmm_sizes_all_sparse_csr_k_8_n_10_m_25_cpu_complex64 (__main__.TestSparseCSRCPU) ... ok (0.038s) 2023-01-11T21:22:05.4316092Z test_addmm_sizes_all_sparse_csr_k_8_n_10_m_25_cpu_float32 (__main__.TestSparseCSRCPU) ... ok (0.052s) 2023-01-11T21:22:05.4316545Z test_addmm_sizes_all_sparse_csr_k_8_n_10_m_25_cpu_float64 (__main__.TestSparseCSRCPU) ... ok (0.038s) 2023-01-11T21:22:05.4316976Z test_addmm_sizes_all_sparse_csr_k_8_n_1_m_0_cpu_complex128 (__main__.TestSparseCSRCPU) ... ok (0.036s) 2023-01-11T21:22:05.4317427Z test_addmm_sizes_all_sparse_csr_k_8_n_1_m_0_cpu_complex64 (__main__.TestSparseCSRCPU) ... ok (0.036s) 2023-01-11T21:22:05.4317888Z test_addmm_sizes_all_sparse_csr_k_8_n_1_m_0_cpu_float32 (__main__.TestSparseCSRCPU) ... ok (0.036s) 2023-01-11T21:22:05.4318319Z test_addmm_sizes_all_sparse_csr_k_8_n_1_m_0_cpu_float64 (__main__.TestSparseCSRCPU) ... ok (0.036s) 2023-01-11T21:22:05.4318772Z test_addmm_sizes_all_sparse_csr_k_8_n_1_m_1_cpu_complex128 (__main__.TestSparseCSRCPU) ... ok (0.039s) 2023-01-11T21:22:05.4319230Z test_addmm_sizes_all_sparse_csr_k_8_n_1_m_1_cpu_complex64 (__main__.TestSparseCSRCPU) ... ok (0.038s) 2023-01-11T21:22:05.4319680Z test_addmm_sizes_all_sparse_csr_k_8_n_1_m_1_cpu_float32 (__main__.TestSparseCSRCPU) ... ok (0.037s) 2023-01-11T21:22:05.4320105Z test_addmm_sizes_all_sparse_csr_k_8_n_1_m_1_cpu_float64 (__main__.TestSparseCSRCPU) ... ok (0.037s) 2023-01-11T21:22:05.4320547Z test_addmm_sizes_all_sparse_csr_k_8_n_1_m_25_cpu_complex128 (__main__.TestSparseCSRCPU) ... ok (0.045s) 2023-01-11T21:22:05.4321138Z test_addmm_sizes_all_sparse_csr_k_8_n_1_m_25_cpu_complex64 (__main__.TestSparseCSRCPU) ... ok (0.038s) 2023-01-11T21:22:05.4321591Z test_addmm_sizes_all_sparse_csr_k_8_n_1_m_25_cpu_float32 (__main__.TestSparseCSRCPU) ... ok (0.037s) 2023-01-11T21:22:05.4322029Z test_addmm_sizes_all_sparse_csr_k_8_n_1_m_25_cpu_float64 (__main__.TestSparseCSRCPU) ... ok (0.037s) 2023-01-11T21:22:05.4322476Z test_autograd_dense_output_addmm_cpu_float64 (__main__.TestSparseCSRCPU) ... ok (0.127s) 2023-01-11T21:22:05.4322914Z test_autograd_dense_output_addmv_cpu_float64 (__main__.TestSparseCSRCPU) ... ok (0.100s) 2023-01-11T21:22:05.4323327Z test_autograd_dense_output_mm_cpu_float64 (__main__.TestSparseCSRCPU) ... ok (0.015s) 2023-01-11T21:22:05.4323765Z test_autograd_dense_output_mv_cpu_float64 (__main__.TestSparseCSRCPU) ... ok (0.014s) 2023-01-11T21:22:05.4324206Z test_autograd_sparse_csr_unary_abs_cpu_complex128 (__main__.TestSparseCSRCPU) ... ok (0.007s) 2023-01-11T21:22:05.4324653Z test_autograd_sparse_csr_unary_abs_cpu_float64 (__main__.TestSparseCSRCPU) ... ok (0.005s) 2023-01-11T21:22:05.4325194Z test_autograd_sparse_csr_unary_angle_cpu_complex128 (__main__.TestSparseCSRCPU) ... skip: Skipped! Unary op angle not supported with CSR input and autograd (0.002s) 2023-01-11T21:22:05.4325952Z test_autograd_sparse_csr_unary_angle_cpu_float64 (__main__.TestSparseCSRCPU) ... skip: Skipped! Unary op angle not supported with CSR input and autograd (0.002s) 2023-01-11T21:22:05.4326593Z test_autograd_sparse_csr_unary_asin_cpu_complex128 (__main__.TestSparseCSRCPU) ... skip: Skipped! Unary op asin not supported with CSR input and autograd (0.002s) 2023-01-11T21:22:05.4327233Z test_autograd_sparse_csr_unary_asin_cpu_float64 (__main__.TestSparseCSRCPU) ... skip: Skipped! Unary op asin not supported with CSR input and autograd (0.002s) 2023-01-11T21:22:05.4327851Z test_autograd_sparse_csr_unary_asinh_cpu_complex128 (__main__.TestSparseCSRCPU) ... skip: Skipped! Unary op asinh not supported with CSR input and autograd (0.002s) 2023-01-11T21:22:05.4328492Z test_autograd_sparse_csr_unary_asinh_cpu_float64 (__main__.TestSparseCSRCPU) ... skip: Skipped! Unary op asinh not supported with CSR input and autograd (0.002s) 2023-01-11T21:22:05.4329189Z test_autograd_sparse_csr_unary_atan_cpu_complex128 (__main__.TestSparseCSRCPU) ... skip: Skipped! Unary op atan not supported with CSR input and autograd (0.006s) 2023-01-11T21:22:05.4329817Z test_autograd_sparse_csr_unary_atan_cpu_float64 (__main__.TestSparseCSRCPU) ... skip: Skipped! Unary op atan not supported with CSR input and autograd (0.002s) 2023-01-11T21:22:05.4330446Z test_autograd_sparse_csr_unary_atanh_cpu_complex128 (__main__.TestSparseCSRCPU) ... skip: Skipped! Unary op atanh not supported with CSR input and autograd (0.002s) 2023-01-11T21:22:05.4331069Z test_autograd_sparse_csr_unary_atanh_cpu_float64 (__main__.TestSparseCSRCPU) ... skip: Skipped! Unary op atanh not supported with CSR input and autograd (0.002s) 2023-01-11T21:22:05.4331692Z test_autograd_sparse_csr_unary_ceil_cpu_float64 (__main__.TestSparseCSRCPU) ... skip: Skipped! Unary op ceil not supported with CSR input and autograd (0.002s) 2023-01-11T21:22:05.4332247Z test_autograd_sparse_csr_unary_conj_physical_cpu_complex128 (__main__.TestSparseCSRCPU) ... ok (0.005s) 2023-01-11T21:22:05.4332730Z test_autograd_sparse_csr_unary_conj_physical_cpu_float64 (__main__.TestSparseCSRCPU) ... ok (0.004s) 2023-01-11T21:22:05.4333190Z test_autograd_sparse_csr_unary_deg2rad_cpu_float64 (__main__.TestSparseCSRCPU) ... ok (0.004s) 2023-01-11T21:22:05.4333741Z test_autograd_sparse_csr_unary_erf_cpu_float64 (__main__.TestSparseCSRCPU) ... skip: Skipped! Unary op erf not supported with CSR input and autograd (0.002s) 2023-01-11T21:22:05.4334366Z test_autograd_sparse_csr_unary_erfinv_cpu_float64 (__main__.TestSparseCSRCPU) ... skip: Skipped! Unary op erfinv not supported with CSR input and autograd (0.002s) 2023-01-11T21:22:05.4335002Z test_autograd_sparse_csr_unary_expm1_cpu_float64 (__main__.TestSparseCSRCPU) ... skip: Skipped! Unary op expm1 not supported with CSR input and autograd (0.002s) 2023-01-11T21:22:05.4335615Z test_autograd_sparse_csr_unary_floor_cpu_float64 (__main__.TestSparseCSRCPU) ... skip: Skipped! Unary op floor not supported with CSR input and autograd (0.002s) 2023-01-11T21:22:05.4336152Z test_autograd_sparse_csr_unary_frac_cpu_float64 (__main__.TestSparseCSRCPU) ... ok (0.004s) 2023-01-11T21:22:05.4336701Z test_autograd_sparse_csr_unary_isinf_cpu_complex128 (__main__.TestSparseCSRCPU) ... skip: Skipped! Unary op isinf not supported with CSR input and autograd (0.002s) 2023-01-11T21:22:05.4337438Z test_autograd_sparse_csr_unary_isinf_cpu_float64 (__main__.TestSparseCSRCPU) ... skip: Skipped! Unary op isinf not supported with CSR input and autograd (0.002s) 2023-01-11T21:22:05.4338059Z test_autograd_sparse_csr_unary_isnan_cpu_complex128 (__main__.TestSparseCSRCPU) ... skip: Skipped! Unary op isnan not supported with CSR input and autograd (0.002s) 2023-01-11T21:22:05.4338710Z test_autograd_sparse_csr_unary_isnan_cpu_float64 (__main__.TestSparseCSRCPU) ... skip: Skipped! Unary op isnan not supported with CSR input and autograd (0.002s) 2023-01-11T21:22:05.4339412Z test_autograd_sparse_csr_unary_isneginf_cpu_float64 (__main__.TestSparseCSRCPU) ... skip: Skipped! Unary op isneginf not supported with CSR input and autograd (0.002s) 2023-01-11T21:22:05.4340065Z test_autograd_sparse_csr_unary_isposinf_cpu_float64 (__main__.TestSparseCSRCPU) ... skip: Skipped! Unary op isposinf not supported with CSR input and autograd (0.002s) 2023-01-11T21:22:05.4341487Z test_autograd_sparse_csr_unary_log1p_cpu_complex128 (__main__.TestSparseCSRCPU) ... /opt/conda/lib/python3.7/site-packages/torch/autograd/__init__.py:199: UserWarning: log1p_backward: received self with sparse layout, but backward requires materialization of a dense tensor with this shape (Triggered internally at /var/lib/jenkins/workspace/torch/csrc/autograd/FunctionsManual.cpp:4679.) 2023-01-11T21:22:05.4342394Z allow_unreachable=True, accumulate_grad=True) # Calls into the C++ engine to run the backward pass 2023-01-11T21:22:05.4342717Z ok (0.010s) 2023-01-11T21:22:05.4343065Z test_autograd_sparse_csr_unary_log1p_cpu_float64 (__main__.TestSparseCSRCPU) ... ok (0.006s) 2023-01-11T21:22:05.4343535Z test_autograd_sparse_csr_unary_neg_cpu_complex128 (__main__.TestSparseCSRCPU) ... ok (0.005s) 2023-01-11T21:22:05.4344042Z test_autograd_sparse_csr_unary_neg_cpu_float64 (__main__.TestSparseCSRCPU) ... ok (0.004s) 2023-01-11T21:22:05.4344496Z test_autograd_sparse_csr_unary_nn_functional_relu_cpu_float64 (__main__.TestSparseCSRCPU) ... ok (0.008s) 2023-01-11T21:22:05.4344973Z test_autograd_sparse_csr_unary_positive_cpu_complex128 (__main__.TestSparseCSRCPU) ... ok (0.004s) 2023-01-11T21:22:05.4345436Z test_autograd_sparse_csr_unary_positive_cpu_float64 (__main__.TestSparseCSRCPU) ... ok (0.004s) 2023-01-11T21:22:05.4345878Z test_autograd_sparse_csr_unary_rad2deg_cpu_float64 (__main__.TestSparseCSRCPU) ... ok (0.004s) 2023-01-11T21:22:05.4346433Z test_autograd_sparse_csr_unary_round_cpu_float64 (__main__.TestSparseCSRCPU) ... skip: Skipped! Unary op round not supported with CSR input and autograd (0.002s) 2023-01-11T21:22:05.4347073Z test_autograd_sparse_csr_unary_sgn_cpu_complex128 (__main__.TestSparseCSRCPU) ... skip: Skipped! Unary op sgn not supported with CSR input and autograd (0.002s) 2023-01-11T21:22:05.4347713Z test_autograd_sparse_csr_unary_sgn_cpu_float64 (__main__.TestSparseCSRCPU) ... skip: Skipped! Unary op sgn not supported with CSR input and autograd (0.002s) 2023-01-11T21:22:05.4348329Z test_autograd_sparse_csr_unary_sign_cpu_float64 (__main__.TestSparseCSRCPU) ... skip: Skipped! Unary op sign not supported with CSR input and autograd (0.002s) 2023-01-11T21:22:05.4348935Z test_autograd_sparse_csr_unary_signbit_cpu_float64 (__main__.TestSparseCSRCPU) ... skip: Skipped! Unary op signbit not supported with CSR input and autograd (0.002s) 2023-01-11T21:22:05.4349560Z test_autograd_sparse_csr_unary_sin_cpu_complex128 (__main__.TestSparseCSRCPU) ... skip: Skipped! Unary op sin not supported with CSR input and autograd (0.002s) 2023-01-11T21:22:05.4350189Z test_autograd_sparse_csr_unary_sin_cpu_float64 (__main__.TestSparseCSRCPU) ... skip: Skipped! Unary op sin not supported with CSR input and autograd (0.002s) 2023-01-11T21:22:05.4350816Z test_autograd_sparse_csr_unary_sinh_cpu_complex128 (__main__.TestSparseCSRCPU) ... skip: Skipped! Unary op sinh not supported with CSR input and autograd (0.002s) 2023-01-11T21:22:05.4351418Z test_autograd_sparse_csr_unary_sinh_cpu_float64 (__main__.TestSparseCSRCPU) ... skip: Skipped! Unary op sinh not supported with CSR input and autograd (0.002s) 2023-01-11T21:22:05.4352051Z test_autograd_sparse_csr_unary_sqrt_cpu_complex128 (__main__.TestSparseCSRCPU) ... skip: Skipped! Unary op sqrt not supported with CSR input and autograd (0.002s) 2023-01-11T21:22:05.4352679Z test_autograd_sparse_csr_unary_sqrt_cpu_float64 (__main__.TestSparseCSRCPU) ... skip: Skipped! Unary op sqrt not supported with CSR input and autograd (0.002s) 2023-01-11T21:22:05.4353300Z test_autograd_sparse_csr_unary_tan_cpu_complex128 (__main__.TestSparseCSRCPU) ... skip: Skipped! Unary op tan not supported with CSR input and autograd (0.002s) 2023-01-11T21:22:05.4354022Z test_autograd_sparse_csr_unary_tan_cpu_float64 (__main__.TestSparseCSRCPU) ... skip: Skipped! Unary op tan not supported with CSR input and autograd (0.002s) 2023-01-11T21:22:05.4354642Z test_autograd_sparse_csr_unary_tanh_cpu_complex128 (__main__.TestSparseCSRCPU) ... skip: Skipped! Unary op tanh not supported with CSR input and autograd (0.002s) 2023-01-11T21:22:05.4355286Z test_autograd_sparse_csr_unary_tanh_cpu_float64 (__main__.TestSparseCSRCPU) ... skip: Skipped! Unary op tanh not supported with CSR input and autograd (0.002s) 2023-01-11T21:22:05.4355921Z test_autograd_sparse_csr_unary_trunc_cpu_float64 (__main__.TestSparseCSRCPU) ... skip: Skipped! Unary op trunc not supported with CSR input and autograd (0.002s) 2023-01-11T21:22:05.4356468Z test_baddbmm_cpu_complex128 (__main__.TestSparseCSRCPU) ... skip: Only CUDA 11+ is supported (0.003s) 2023-01-11T21:22:05.4356936Z test_baddbmm_cpu_complex64 (__main__.TestSparseCSRCPU) ... skip: Only CUDA 11+ is supported (0.003s) 2023-01-11T21:22:05.4357406Z test_baddbmm_cpu_float32 (__main__.TestSparseCSRCPU) ... skip: Only CUDA 11+ is supported (0.003s) 2023-01-11T21:22:05.4357926Z test_baddbmm_cpu_float64 (__main__.TestSparseCSRCPU) ... skip: Only CUDA 11+ is supported (0.003s) 2023-01-11T21:22:05.4358403Z test_block_addmm_block_size_2_int32_noncontiguous_False_cpu_complex128 (__main__.TestSparseCSRCPU) ... ok (0.155s) 2023-01-11T21:22:05.4358913Z test_block_addmm_block_size_2_int32_noncontiguous_False_cpu_complex64 (__main__.TestSparseCSRCPU) ... ok (0.155s) 2023-01-11T21:22:05.4359414Z test_block_addmm_block_size_2_int32_noncontiguous_False_cpu_float32 (__main__.TestSparseCSRCPU) ... ok (0.135s) 2023-01-11T21:22:05.4359915Z test_block_addmm_block_size_2_int32_noncontiguous_False_cpu_float64 (__main__.TestSparseCSRCPU) ... ok (0.155s) 2023-01-11T21:22:05.4360406Z test_block_addmm_block_size_2_int32_noncontiguous_True_cpu_complex128 (__main__.TestSparseCSRCPU) ... ok (0.165s) 2023-01-11T21:22:05.4361027Z test_block_addmm_block_size_2_int32_noncontiguous_True_cpu_complex64 (__main__.TestSparseCSRCPU) ... ok (0.171s) 2023-01-11T21:22:05.4361526Z test_block_addmm_block_size_2_int32_noncontiguous_True_cpu_float32 (__main__.TestSparseCSRCPU) ... ok (0.147s) 2023-01-11T21:22:05.4362012Z test_block_addmm_block_size_2_int32_noncontiguous_True_cpu_float64 (__main__.TestSparseCSRCPU) ... ok (0.145s) 2023-01-11T21:22:05.4362488Z test_block_addmm_block_size_2_int64_noncontiguous_False_cpu_complex128 (__main__.TestSparseCSRCPU) ... ok (0.166s) 2023-01-11T21:22:05.4362992Z test_block_addmm_block_size_2_int64_noncontiguous_False_cpu_complex64 (__main__.TestSparseCSRCPU) ... ok (0.175s) 2023-01-11T21:22:05.4363483Z test_block_addmm_block_size_2_int64_noncontiguous_False_cpu_float32 (__main__.TestSparseCSRCPU) ... ok (0.154s) 2023-01-11T21:22:05.4363965Z test_block_addmm_block_size_2_int64_noncontiguous_False_cpu_float64 (__main__.TestSparseCSRCPU) ... ok (0.144s) 2023-01-11T21:22:05.4364448Z test_block_addmm_block_size_2_int64_noncontiguous_True_cpu_complex128 (__main__.TestSparseCSRCPU) ... ok (0.184s) 2023-01-11T21:22:05.4364942Z test_block_addmm_block_size_2_int64_noncontiguous_True_cpu_complex64 (__main__.TestSparseCSRCPU) ... ok (0.176s) 2023-01-11T21:22:05.4365433Z test_block_addmm_block_size_2_int64_noncontiguous_True_cpu_float32 (__main__.TestSparseCSRCPU) ... ok (0.155s) 2023-01-11T21:22:05.4365915Z test_block_addmm_block_size_2_int64_noncontiguous_True_cpu_float64 (__main__.TestSparseCSRCPU) ... ok (0.150s) 2023-01-11T21:22:05.4366394Z test_block_addmm_block_size_3_int32_noncontiguous_False_cpu_complex128 (__main__.TestSparseCSRCPU) ... ok (0.185s) 2023-01-11T21:22:05.4366899Z test_block_addmm_block_size_3_int32_noncontiguous_False_cpu_complex64 (__main__.TestSparseCSRCPU) ... ok (0.162s) 2023-01-11T21:22:05.4367394Z test_block_addmm_block_size_3_int32_noncontiguous_False_cpu_float32 (__main__.TestSparseCSRCPU) ... ok (0.146s) 2023-01-11T21:22:05.4367993Z test_block_addmm_block_size_3_int32_noncontiguous_False_cpu_float64 (__main__.TestSparseCSRCPU) ... ok (0.145s) 2023-01-11T21:22:05.4368475Z test_block_addmm_block_size_3_int32_noncontiguous_True_cpu_complex128 (__main__.TestSparseCSRCPU) ... ok (0.176s) 2023-01-11T21:22:05.4368979Z test_block_addmm_block_size_3_int32_noncontiguous_True_cpu_complex64 (__main__.TestSparseCSRCPU) ... ok (0.179s) 2023-01-11T21:22:05.4369483Z test_block_addmm_block_size_3_int32_noncontiguous_True_cpu_float32 (__main__.TestSparseCSRCPU) ... ok (0.177s) 2023-01-11T21:22:05.4369947Z test_block_addmm_block_size_3_int32_noncontiguous_True_cpu_float64 (__main__.TestSparseCSRCPU) ... ok (0.152s) 2023-01-11T21:22:05.4370448Z test_block_addmm_block_size_3_int64_noncontiguous_False_cpu_complex128 (__main__.TestSparseCSRCPU) ... ok (0.166s) 2023-01-11T21:22:05.4370945Z test_block_addmm_block_size_3_int64_noncontiguous_False_cpu_complex64 (__main__.TestSparseCSRCPU) ... ok (0.174s) 2023-01-11T21:22:05.4371442Z test_block_addmm_block_size_3_int64_noncontiguous_False_cpu_float32 (__main__.TestSparseCSRCPU) ... ok (0.165s) 2023-01-11T21:22:05.4371982Z test_block_addmm_block_size_3_int64_noncontiguous_False_cpu_float64 (__main__.TestSparseCSRCPU) ... ok (0.143s) 2023-01-11T21:22:05.4372488Z test_block_addmm_block_size_3_int64_noncontiguous_True_cpu_complex128 (__main__.TestSparseCSRCPU) ... ok (0.205s) 2023-01-11T21:22:05.4372998Z test_block_addmm_block_size_3_int64_noncontiguous_True_cpu_complex64 (__main__.TestSparseCSRCPU) ... ok (0.192s) 2023-01-11T21:22:05.4373492Z test_block_addmm_block_size_3_int64_noncontiguous_True_cpu_float32 (__main__.TestSparseCSRCPU) ... ok (0.160s) 2023-01-11T21:22:05.4373964Z test_block_addmm_block_size_3_int64_noncontiguous_True_cpu_float64 (__main__.TestSparseCSRCPU) ... ok (0.154s) 2023-01-11T21:22:05.4374454Z test_block_addmv_block_size_2_int32_noncontiguous_False_cpu_complex128 (__main__.TestSparseCSRCPU) ... ok (0.019s) 2023-01-11T21:22:05.4374962Z test_block_addmv_block_size_2_int32_noncontiguous_False_cpu_complex64 (__main__.TestSparseCSRCPU) ... ok (0.021s) 2023-01-11T21:22:05.4375470Z test_block_addmv_block_size_2_int32_noncontiguous_False_cpu_float32 (__main__.TestSparseCSRCPU) ... ok (0.021s) 2023-01-11T21:22:05.4375939Z test_block_addmv_block_size_2_int32_noncontiguous_False_cpu_float64 (__main__.TestSparseCSRCPU) ... ok (0.017s) 2023-01-11T21:22:05.4376435Z test_block_addmv_block_size_2_int32_noncontiguous_True_cpu_complex128 (__main__.TestSparseCSRCPU) ... ok (0.018s) 2023-01-11T21:22:05.4376940Z test_block_addmv_block_size_2_int32_noncontiguous_True_cpu_complex64 (__main__.TestSparseCSRCPU) ... ok (0.018s) 2023-01-11T21:22:05.4377511Z test_block_addmv_block_size_2_int32_noncontiguous_True_cpu_float32 (__main__.TestSparseCSRCPU) ... ok (0.017s) 2023-01-11T21:22:05.4377997Z test_block_addmv_block_size_2_int32_noncontiguous_True_cpu_float64 (__main__.TestSparseCSRCPU) ... ok (0.017s) 2023-01-11T21:22:05.4378493Z test_block_addmv_block_size_2_int64_noncontiguous_False_cpu_complex128 (__main__.TestSparseCSRCPU) ... ok (0.018s) 2023-01-11T21:22:05.4378998Z test_block_addmv_block_size_2_int64_noncontiguous_False_cpu_complex64 (__main__.TestSparseCSRCPU) ... ok (0.018s) 2023-01-11T21:22:05.4379510Z test_block_addmv_block_size_2_int64_noncontiguous_False_cpu_float32 (__main__.TestSparseCSRCPU) ... ok (0.022s) 2023-01-11T21:22:05.4379984Z test_block_addmv_block_size_2_int64_noncontiguous_False_cpu_float64 (__main__.TestSparseCSRCPU) ... ok (0.017s) 2023-01-11T21:22:05.4380477Z test_block_addmv_block_size_2_int64_noncontiguous_True_cpu_complex128 (__main__.TestSparseCSRCPU) ... ok (0.017s) 2023-01-11T21:22:05.4380971Z test_block_addmv_block_size_2_int64_noncontiguous_True_cpu_complex64 (__main__.TestSparseCSRCPU) ... ok (0.018s) 2023-01-11T21:22:05.4381460Z test_block_addmv_block_size_2_int64_noncontiguous_True_cpu_float32 (__main__.TestSparseCSRCPU) ... ok (0.017s) 2023-01-11T21:22:05.4381950Z test_block_addmv_block_size_2_int64_noncontiguous_True_cpu_float64 (__main__.TestSparseCSRCPU) ... ok (0.017s) 2023-01-11T21:22:05.4382532Z test_block_addmv_block_size_3_int32_noncontiguous_False_cpu_complex128 (__main__.TestSparseCSRCPU) ... ok (0.020s) 2023-01-11T21:22:05.4383040Z test_block_addmv_block_size_3_int32_noncontiguous_False_cpu_complex64 (__main__.TestSparseCSRCPU) ... ok (0.021s) 2023-01-11T21:22:05.4383527Z test_block_addmv_block_size_3_int32_noncontiguous_False_cpu_float32 (__main__.TestSparseCSRCPU) ... ok (0.020s) 2023-01-11T21:22:05.4384012Z test_block_addmv_block_size_3_int32_noncontiguous_False_cpu_float64 (__main__.TestSparseCSRCPU) ... ok (0.020s) 2023-01-11T21:22:05.4384513Z test_block_addmv_block_size_3_int32_noncontiguous_True_cpu_complex128 (__main__.TestSparseCSRCPU) ... ok (0.018s) 2023-01-11T21:22:05.4385015Z test_block_addmv_block_size_3_int32_noncontiguous_True_cpu_complex64 (__main__.TestSparseCSRCPU) ... ok (0.018s) 2023-01-11T21:22:05.4385505Z test_block_addmv_block_size_3_int32_noncontiguous_True_cpu_float32 (__main__.TestSparseCSRCPU) ... ok (0.017s) 2023-01-11T21:22:05.4385997Z test_block_addmv_block_size_3_int32_noncontiguous_True_cpu_float64 (__main__.TestSparseCSRCPU) ... ok (0.016s) 2023-01-11T21:22:05.4386548Z test_block_addmv_block_size_3_int64_noncontiguous_False_cpu_complex128 (__main__.TestSparseCSRCPU) ... ok (0.021s) 2023-01-11T21:22:05.4387056Z test_block_addmv_block_size_3_int64_noncontiguous_False_cpu_complex64 (__main__.TestSparseCSRCPU) ... ok (0.042s) 2023-01-11T21:22:05.4387539Z test_block_addmv_block_size_3_int64_noncontiguous_False_cpu_float32 (__main__.TestSparseCSRCPU) ... ok (0.021s) 2023-01-11T21:22:05.4388035Z test_block_addmv_block_size_3_int64_noncontiguous_False_cpu_float64 (__main__.TestSparseCSRCPU) ... ok (0.020s) 2023-01-11T21:22:05.4388535Z test_block_addmv_block_size_3_int64_noncontiguous_True_cpu_complex128 (__main__.TestSparseCSRCPU) ... ok (0.018s) 2023-01-11T21:22:05.4389043Z test_block_addmv_block_size_3_int64_noncontiguous_True_cpu_complex64 (__main__.TestSparseCSRCPU) ... ok (0.018s) 2023-01-11T21:22:05.4389520Z test_block_addmv_block_size_3_int64_noncontiguous_True_cpu_float32 (__main__.TestSparseCSRCPU) ... ok (0.017s) 2023-01-11T21:22:05.4390009Z test_block_addmv_block_size_3_int64_noncontiguous_True_cpu_float64 (__main__.TestSparseCSRCPU) ... ok (0.017s) 2023-01-11T21:22:05.4390750Z test_block_triangular_solve_block_size_2_int32_noncontiguous_False_cpu_complex128 (__main__.TestSparseCSRCPU) ... test_sparse_csr.py:1621: UserWarning: torch.triangular_solve is deprecated in favor of torch.linalg.solve_triangularand will be removed in a future PyTorch release. 2023-01-11T21:22:05.4391487Z torch.linalg.solve_triangular has its arguments reversed and does not return a copy of one of the inputs. 2023-01-11T21:22:05.4391869Z X = torch.triangular_solve(B, A).solution 2023-01-11T21:22:05.4392155Z should be replaced with 2023-01-11T21:22:05.4392614Z X = torch.linalg.solve_triangular(A, B). (Triggered internally at /var/lib/jenkins/workspace/aten/src/ATen/native/BatchLinearAlgebra.cpp:2225.) 2023-01-11T21:22:05.4393058Z unitriangular=unitriangular) 2023-01-11T21:22:05.4393315Z ok (0.031s) 2023-01-11T21:22:05.4393718Z test_block_triangular_solve_block_size_2_int32_noncontiguous_False_cpu_complex64 (__main__.TestSparseCSRCPU) ... ok (0.026s) 2023-01-11T21:22:05.4394253Z test_block_triangular_solve_block_size_2_int32_noncontiguous_False_cpu_float32 (__main__.TestSparseCSRCPU) ... ok (0.024s) 2023-01-11T21:22:05.4394777Z test_block_triangular_solve_block_size_2_int32_noncontiguous_False_cpu_float64 (__main__.TestSparseCSRCPU) ... ok (0.023s) 2023-01-11T21:22:05.4395310Z test_block_triangular_solve_block_size_2_int32_noncontiguous_True_cpu_complex128 (__main__.TestSparseCSRCPU) ... ok (0.018s) 2023-01-11T21:22:05.4395833Z test_block_triangular_solve_block_size_2_int32_noncontiguous_True_cpu_complex64 (__main__.TestSparseCSRCPU) ... ok (0.018s) 2023-01-11T21:22:05.4396359Z test_block_triangular_solve_block_size_2_int32_noncontiguous_True_cpu_float32 (__main__.TestSparseCSRCPU) ... ok (0.024s) 2023-01-11T21:22:05.4396934Z test_block_triangular_solve_block_size_2_int32_noncontiguous_True_cpu_float64 (__main__.TestSparseCSRCPU) ... ok (0.017s) 2023-01-11T21:22:05.4397465Z test_block_triangular_solve_block_size_2_int64_noncontiguous_False_cpu_complex128 (__main__.TestSparseCSRCPU) ... ok (0.018s) 2023-01-11T21:22:05.4397998Z test_block_triangular_solve_block_size_2_int64_noncontiguous_False_cpu_complex64 (__main__.TestSparseCSRCPU) ... ok (0.018s) 2023-01-11T21:22:05.4398526Z test_block_triangular_solve_block_size_2_int64_noncontiguous_False_cpu_float32 (__main__.TestSparseCSRCPU) ... ok (0.018s) 2023-01-11T21:22:05.4399031Z test_block_triangular_solve_block_size_2_int64_noncontiguous_False_cpu_float64 (__main__.TestSparseCSRCPU) ... ok (0.018s) 2023-01-11T21:22:05.4399564Z test_block_triangular_solve_block_size_2_int64_noncontiguous_True_cpu_complex128 (__main__.TestSparseCSRCPU) ... ok (0.018s) 2023-01-11T21:22:05.4400097Z test_block_triangular_solve_block_size_2_int64_noncontiguous_True_cpu_complex64 (__main__.TestSparseCSRCPU) ... ok (0.018s) 2023-01-11T21:22:05.4400824Z test_block_triangular_solve_block_size_2_int64_noncontiguous_True_cpu_float32 (__main__.TestSparseCSRCPU) ... ok (0.017s) 2023-01-11T21:22:05.4401337Z test_block_triangular_solve_block_size_2_int64_noncontiguous_True_cpu_float64 (__main__.TestSparseCSRCPU) ... ok (0.017s) 2023-01-11T21:22:05.4401861Z test_block_triangular_solve_block_size_3_int32_noncontiguous_False_cpu_complex128 (__main__.TestSparseCSRCPU) ... ok (0.020s) 2023-01-11T21:22:05.4402396Z test_block_triangular_solve_block_size_3_int32_noncontiguous_False_cpu_complex64 (__main__.TestSparseCSRCPU) ... ok (0.020s) 2023-01-11T21:22:05.4402930Z test_block_triangular_solve_block_size_3_int32_noncontiguous_False_cpu_float32 (__main__.TestSparseCSRCPU) ... ok (0.020s) 2023-01-11T21:22:05.4403456Z test_block_triangular_solve_block_size_3_int32_noncontiguous_False_cpu_float64 (__main__.TestSparseCSRCPU) ... ok (0.020s) 2023-01-11T21:22:05.4403991Z test_block_triangular_solve_block_size_3_int32_noncontiguous_True_cpu_complex128 (__main__.TestSparseCSRCPU) ... ok (0.017s) 2023-01-11T21:22:05.4404532Z test_block_triangular_solve_block_size_3_int32_noncontiguous_True_cpu_complex64 (__main__.TestSparseCSRCPU) ... ok (0.017s) 2023-01-11T21:22:05.4405040Z test_block_triangular_solve_block_size_3_int32_noncontiguous_True_cpu_float32 (__main__.TestSparseCSRCPU) ... ok (0.017s) 2023-01-11T21:22:05.4405569Z test_block_triangular_solve_block_size_3_int32_noncontiguous_True_cpu_float64 (__main__.TestSparseCSRCPU) ... ok (0.017s) 2023-01-11T21:22:05.4406085Z test_block_triangular_solve_block_size_3_int64_noncontiguous_False_cpu_complex128 (__main__.TestSparseCSRCPU) ... ok (0.020s) 2023-01-11T21:22:05.4406612Z test_block_triangular_solve_block_size_3_int64_noncontiguous_False_cpu_complex64 (__main__.TestSparseCSRCPU) ... ok (0.020s) 2023-01-11T21:22:05.4407129Z test_block_triangular_solve_block_size_3_int64_noncontiguous_False_cpu_float32 (__main__.TestSparseCSRCPU) ... ok (0.020s) 2023-01-11T21:22:05.4407661Z test_block_triangular_solve_block_size_3_int64_noncontiguous_False_cpu_float64 (__main__.TestSparseCSRCPU) ... ok (0.028s) 2023-01-11T21:22:05.4408249Z test_block_triangular_solve_block_size_3_int64_noncontiguous_True_cpu_complex128 (__main__.TestSparseCSRCPU) ... ok (0.018s) 2023-01-11T21:22:05.4408799Z test_block_triangular_solve_block_size_3_int64_noncontiguous_True_cpu_complex64 (__main__.TestSparseCSRCPU) ... ok (0.018s) 2023-01-11T21:22:05.4409353Z test_block_triangular_solve_block_size_3_int64_noncontiguous_True_cpu_float32 (__main__.TestSparseCSRCPU) ... ok (0.018s) 2023-01-11T21:22:05.4409886Z test_block_triangular_solve_block_size_3_int64_noncontiguous_True_cpu_float64 (__main__.TestSparseCSRCPU) ... ok (0.018s) 2023-01-11T21:22:05.4410379Z test_bmm_cpu_complex128 (__main__.TestSparseCSRCPU) ... skip: Only CUDA 11+ is supported (0.002s) 2023-01-11T21:22:05.4410925Z test_bmm_cpu_complex64 (__main__.TestSparseCSRCPU) ... skip: Only CUDA 11+ is supported (0.002s) 2023-01-11T21:22:05.4411370Z test_bmm_cpu_float32 (__main__.TestSparseCSRCPU) ... skip: Only CUDA 11+ is supported (0.002s) 2023-01-11T21:22:05.4411821Z test_bmm_cpu_float64 (__main__.TestSparseCSRCPU) ... skip: Only CUDA 11+ is supported (0.002s) 2023-01-11T21:22:05.4412295Z test_compressed_layout_conversions_coverage_SparseBSC_SparseBSC_cpu (__main__.TestSparseCSRCPU) 2023-01-11T21:22:05.4412760Z This test performs a smoke test for covered conversion and verifies ... ok (0.074s) 2023-01-11T21:22:05.4413213Z test_compressed_layout_conversions_coverage_SparseBSC_SparseBSR_cpu (__main__.TestSparseCSRCPU) 2023-01-11T21:22:05.4413669Z This test performs a smoke test for covered conversion and verifies ... ok (0.077s) 2023-01-11T21:22:05.4414133Z test_compressed_layout_conversions_coverage_SparseBSC_SparseCSC_cpu (__main__.TestSparseCSRCPU) 2023-01-11T21:22:05.4414598Z This test performs a smoke test for covered conversion and verifies ... ok (0.036s) 2023-01-11T21:22:05.4415066Z test_compressed_layout_conversions_coverage_SparseBSC_SparseCSR_cpu (__main__.TestSparseCSRCPU) 2023-01-11T21:22:05.4415568Z This test performs a smoke test for covered conversion and verifies ... ok (0.035s) 2023-01-11T21:22:05.4416029Z test_compressed_layout_conversions_coverage_SparseBSR_SparseBSC_cpu (__main__.TestSparseCSRCPU) 2023-01-11T21:22:05.4416476Z This test performs a smoke test for covered conversion and verifies ... ok (0.077s) 2023-01-11T21:22:05.4416930Z test_compressed_layout_conversions_coverage_SparseBSR_SparseBSR_cpu (__main__.TestSparseCSRCPU) 2023-01-11T21:22:05.4417495Z This test performs a smoke test for covered conversion and verifies ... ok (0.071s) 2023-01-11T21:22:05.4417950Z test_compressed_layout_conversions_coverage_SparseBSR_SparseCSC_cpu (__main__.TestSparseCSRCPU) 2023-01-11T21:22:05.4418391Z This test performs a smoke test for covered conversion and verifies ... ok (0.035s) 2023-01-11T21:22:05.4418852Z test_compressed_layout_conversions_coverage_SparseBSR_SparseCSR_cpu (__main__.TestSparseCSRCPU) 2023-01-11T21:22:05.4419309Z This test performs a smoke test for covered conversion and verifies ... ok (0.029s) 2023-01-11T21:22:05.4419753Z test_compressed_layout_conversions_coverage_SparseCSC_SparseBSC_cpu (__main__.TestSparseCSRCPU) 2023-01-11T21:22:05.4420197Z This test performs a smoke test for covered conversion and verifies ... ok (0.037s) 2023-01-11T21:22:05.4420645Z test_compressed_layout_conversions_coverage_SparseCSC_SparseBSR_cpu (__main__.TestSparseCSRCPU) 2023-01-11T21:22:05.4421095Z This test performs a smoke test for covered conversion and verifies ... ok (0.036s) 2023-01-11T21:22:05.4421535Z test_compressed_layout_conversions_coverage_SparseCSC_SparseCSC_cpu (__main__.TestSparseCSRCPU) 2023-01-11T21:22:05.4421986Z This test performs a smoke test for covered conversion and verifies ... ok (0.010s) 2023-01-11T21:22:05.4422439Z test_compressed_layout_conversions_coverage_SparseCSC_SparseCSR_cpu (__main__.TestSparseCSRCPU) 2023-01-11T21:22:05.4422886Z This test performs a smoke test for covered conversion and verifies ... ok (0.014s) 2023-01-11T21:22:05.4423346Z test_compressed_layout_conversions_coverage_SparseCSR_SparseBSC_cpu (__main__.TestSparseCSRCPU) 2023-01-11T21:22:05.4423797Z This test performs a smoke test for covered conversion and verifies ... ok (0.037s) 2023-01-11T21:22:05.4424250Z test_compressed_layout_conversions_coverage_SparseCSR_SparseBSR_cpu (__main__.TestSparseCSRCPU) 2023-01-11T21:22:05.4424688Z This test performs a smoke test for covered conversion and verifies ... ok (0.036s) 2023-01-11T21:22:05.4425139Z test_compressed_layout_conversions_coverage_SparseCSR_SparseCSC_cpu (__main__.TestSparseCSRCPU) 2023-01-11T21:22:05.4425589Z This test performs a smoke test for covered conversion and verifies ... ok (0.014s) 2023-01-11T21:22:05.4426033Z test_compressed_layout_conversions_coverage_SparseCSR_SparseCSR_cpu (__main__.TestSparseCSRCPU) 2023-01-11T21:22:05.4426566Z This test performs a smoke test for covered conversion and verifies ... ok (0.009s) 2023-01-11T21:22:05.4426989Z test_coo_csr_conversion_cpu_bfloat16 (__main__.TestSparseCSRCPU) ... ok (0.009s) 2023-01-11T21:22:05.4427405Z test_coo_csr_conversion_cpu_bool (__main__.TestSparseCSRCPU) ... ok (0.006s) 2023-01-11T21:22:05.4427816Z test_coo_csr_conversion_cpu_complex128 (__main__.TestSparseCSRCPU) ... ok (0.016s) 2023-01-11T21:22:05.4428231Z test_coo_csr_conversion_cpu_complex64 (__main__.TestSparseCSRCPU) ... ok (0.009s) 2023-01-11T21:22:05.4428643Z test_coo_csr_conversion_cpu_float16 (__main__.TestSparseCSRCPU) ... ok (0.008s) 2023-01-11T21:22:05.4429055Z test_coo_csr_conversion_cpu_float32 (__main__.TestSparseCSRCPU) ... ok (0.008s) 2023-01-11T21:22:05.4429447Z test_coo_csr_conversion_cpu_float64 (__main__.TestSparseCSRCPU) ... ok (0.008s) 2023-01-11T21:22:05.4429869Z test_coo_csr_conversion_cpu_int16 (__main__.TestSparseCSRCPU) ... ok (0.006s) 2023-01-11T21:22:05.4430278Z test_coo_csr_conversion_cpu_int32 (__main__.TestSparseCSRCPU) ... ok (0.006s) 2023-01-11T21:22:05.4430666Z test_coo_csr_conversion_cpu_int64 (__main__.TestSparseCSRCPU) ... ok (0.006s) 2023-01-11T21:22:05.4431115Z test_coo_csr_conversion_cpu_int8 (__main__.TestSparseCSRCPU) ... ok (0.006s) 2023-01-11T21:22:05.4431518Z test_coo_csr_conversion_cpu_uint8 (__main__.TestSparseCSRCPU) ... ok (0.006s) 2023-01-11T21:22:05.4431949Z test_coo_to_csr_convert_cpu_float64 (__main__.TestSparseCSRCPU) ... ok (0.031s) 2023-01-11T21:22:05.4432342Z test_csr_coo_conversion_cpu_bfloat16 (__main__.TestSparseCSRCPU) ... ok (0.012s) 2023-01-11T21:22:05.4432746Z test_csr_coo_conversion_cpu_bool (__main__.TestSparseCSRCPU) ... ok (0.008s) 2023-01-11T21:22:05.4433165Z test_csr_coo_conversion_cpu_complex128 (__main__.TestSparseCSRCPU) ... ok (0.010s) 2023-01-11T21:22:05.4433570Z test_csr_coo_conversion_cpu_complex64 (__main__.TestSparseCSRCPU) ... ok (0.011s) 2023-01-11T21:22:05.4433987Z test_csr_coo_conversion_cpu_float16 (__main__.TestSparseCSRCPU) ... ok (0.010s) 2023-01-11T21:22:05.4434392Z test_csr_coo_conversion_cpu_float32 (__main__.TestSparseCSRCPU) ... ok (0.010s) 2023-01-11T21:22:05.4434798Z test_csr_coo_conversion_cpu_float64 (__main__.TestSparseCSRCPU) ... ok (0.009s) 2023-01-11T21:22:05.4435185Z test_csr_coo_conversion_cpu_int16 (__main__.TestSparseCSRCPU) ... ok (0.008s) 2023-01-11T21:22:05.4435580Z test_csr_coo_conversion_cpu_int32 (__main__.TestSparseCSRCPU) ... ok (0.008s) 2023-01-11T21:22:05.4435979Z test_csr_coo_conversion_cpu_int64 (__main__.TestSparseCSRCPU) ... ok (0.007s) 2023-01-11T21:22:05.4436365Z test_csr_coo_conversion_cpu_int8 (__main__.TestSparseCSRCPU) ... ok (0.008s) 2023-01-11T21:22:05.4436762Z test_csr_coo_conversion_cpu_uint8 (__main__.TestSparseCSRCPU) ... ok (0.008s) 2023-01-11T21:22:05.4437157Z test_csr_double_to_sparse_csr_cpu (__main__.TestSparseCSRCPU) ... ok (0.003s) 2023-01-11T21:22:05.4437536Z test_csr_is_contiguous_cpu (__main__.TestSparseCSRCPU) ... ok (0.005s) 2023-01-11T21:22:05.4437935Z test_csr_matvec_cpu_complex128 (__main__.TestSparseCSRCPU) ... ok (0.081s) 2023-01-11T21:22:05.4438332Z test_csr_matvec_cpu_complex64 (__main__.TestSparseCSRCPU) ... ok (0.079s) 2023-01-11T21:22:05.4438726Z test_csr_matvec_cpu_float32 (__main__.TestSparseCSRCPU) ... ok (0.078s) 2023-01-11T21:22:05.4439093Z test_csr_matvec_cpu_float64 (__main__.TestSparseCSRCPU) ... ok (0.079s) 2023-01-11T21:22:05.4439874Z test_csr_storage_cpu (__main__.TestSparseCSRCPU) ... test_sparse_csr.py:924: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:22:05.4440541Z a.storage() 2023-01-11T21:22:05.4440908Z ok (0.006s) 2023-01-11T21:22:05.4441194Z test_csr_stride_cpu (__main__.TestSparseCSRCPU) ... ok (0.008s) 2023-01-11T21:22:05.4441698Z test_csr_to_block_csr_blocksize_2_cpu_float64_int32 (__main__.TestSparseCSRCPU) ... ok (0.027s) 2023-01-11T21:22:05.4442142Z test_csr_to_block_csr_blocksize_2_cpu_float64_int64 (__main__.TestSparseCSRCPU) ... ok (0.024s) 2023-01-11T21:22:05.4442569Z test_csr_to_block_csr_blocksize_4_cpu_float64_int32 (__main__.TestSparseCSRCPU) ... ok (0.041s) 2023-01-11T21:22:05.4443007Z test_csr_to_block_csr_blocksize_4_cpu_float64_int64 (__main__.TestSparseCSRCPU) ... ok (0.054s) 2023-01-11T21:22:05.4443435Z test_csr_to_block_csr_errors_cpu_float64 (__main__.TestSparseCSRCPU) ... ok (0.042s) 2023-01-11T21:22:05.4443888Z test_dense_to_from_sparse_compressed_SparseBSC_Batched_Hybrid_cpu (__main__.TestSparseCSRCPU) 2023-01-11T21:22:05.4444305Z This test tests conversion from dense to/from CSR and CSC ... ok (0.023s) 2023-01-11T21:22:05.4444746Z test_dense_to_from_sparse_compressed_SparseBSC_Batched_NonHybrid_cpu (__main__.TestSparseCSRCPU) 2023-01-11T21:22:05.4445176Z This test tests conversion from dense to/from CSR and CSC ... ok (0.856s) 2023-01-11T21:22:05.4445614Z test_dense_to_from_sparse_compressed_SparseBSC_NonBatched_Hybrid_cpu (__main__.TestSparseCSRCPU) 2023-01-11T21:22:05.4446092Z This test tests conversion from dense to/from CSR and CSC ... ok (0.025s) 2023-01-11T21:22:05.4446533Z test_dense_to_from_sparse_compressed_SparseBSC_NonBatched_NonHybrid_cpu (__main__.TestSparseCSRCPU) 2023-01-11T21:22:05.4446966Z This test tests conversion from dense to/from CSR and CSC ... ok (0.041s) 2023-01-11T21:22:05.4447376Z test_dense_to_from_sparse_compressed_SparseBSR_Batched_Hybrid_cpu (__main__.TestSparseCSRCPU) 2023-01-11T21:22:05.4447804Z This test tests conversion from dense to/from CSR and CSC ... ok (0.021s) 2023-01-11T21:22:05.4448233Z test_dense_to_from_sparse_compressed_SparseBSR_Batched_NonHybrid_cpu (__main__.TestSparseCSRCPU) 2023-01-11T21:22:05.4448652Z This test tests conversion from dense to/from CSR and CSC ... ok (0.773s) 2023-01-11T21:22:05.4449075Z test_dense_to_from_sparse_compressed_SparseBSR_NonBatched_Hybrid_cpu (__main__.TestSparseCSRCPU) 2023-01-11T21:22:05.4449505Z This test tests conversion from dense to/from CSR and CSC ... ok (0.019s) 2023-01-11T21:22:05.4449957Z test_dense_to_from_sparse_compressed_SparseBSR_NonBatched_NonHybrid_cpu (__main__.TestSparseCSRCPU) 2023-01-11T21:22:05.4450378Z This test tests conversion from dense to/from CSR and CSC ... ok (0.041s) 2023-01-11T21:22:05.4450804Z test_dense_to_from_sparse_compressed_SparseCSC_Batched_Hybrid_cpu (__main__.TestSparseCSRCPU) 2023-01-11T21:22:05.4451222Z This test tests conversion from dense to/from CSR and CSC ... ok (0.026s) 2023-01-11T21:22:05.4451653Z test_dense_to_from_sparse_compressed_SparseCSC_Batched_NonHybrid_cpu (__main__.TestSparseCSRCPU) 2023-01-11T21:22:05.4452063Z This test tests conversion from dense to/from CSR and CSC ... ok (0.179s) 2023-01-11T21:22:05.4452491Z test_dense_to_from_sparse_compressed_SparseCSC_NonBatched_Hybrid_cpu (__main__.TestSparseCSRCPU) 2023-01-11T21:22:05.4452922Z This test tests conversion from dense to/from CSR and CSC ... ok (0.042s) 2023-01-11T21:22:05.4453346Z test_dense_to_from_sparse_compressed_SparseCSC_NonBatched_NonHybrid_cpu (__main__.TestSparseCSRCPU) 2023-01-11T21:22:05.4453782Z This test tests conversion from dense to/from CSR and CSC ... ok (0.019s) 2023-01-11T21:22:05.4454211Z test_dense_to_from_sparse_compressed_SparseCSR_Batched_Hybrid_cpu (__main__.TestSparseCSRCPU) 2023-01-11T21:22:05.4454635Z This test tests conversion from dense to/from CSR and CSC ... ok (0.023s) 2023-01-11T21:22:05.4455050Z test_dense_to_from_sparse_compressed_SparseCSR_Batched_NonHybrid_cpu (__main__.TestSparseCSRCPU) 2023-01-11T21:22:05.4455474Z This test tests conversion from dense to/from CSR and CSC ... ok (0.177s) 2023-01-11T21:22:05.4455900Z test_dense_to_from_sparse_compressed_SparseCSR_NonBatched_Hybrid_cpu (__main__.TestSparseCSRCPU) 2023-01-11T21:22:05.4456315Z This test tests conversion from dense to/from CSR and CSC ... ok (0.019s) 2023-01-11T21:22:05.4456750Z test_dense_to_from_sparse_compressed_SparseCSR_NonBatched_NonHybrid_cpu (__main__.TestSparseCSRCPU) 2023-01-11T21:22:05.4457347Z This test tests conversion from dense to/from CSR and CSC ... ok (0.018s) 2023-01-11T21:22:05.4457771Z test_direct_coo_csr_conversion_cpu_complex128 (__main__.TestSparseCSRCPU) ... ok (0.011s) 2023-01-11T21:22:05.4458200Z test_direct_coo_csr_conversion_cpu_complex64 (__main__.TestSparseCSRCPU) ... ok (0.010s) 2023-01-11T21:22:05.4458631Z test_direct_coo_csr_conversion_cpu_float32 (__main__.TestSparseCSRCPU) ... ok (0.009s) 2023-01-11T21:22:05.4459058Z test_direct_coo_csr_conversion_cpu_float64 (__main__.TestSparseCSRCPU) ... ok (0.009s) 2023-01-11T21:22:05.4459467Z test_direct_coo_csr_conversion_cpu_int16 (__main__.TestSparseCSRCPU) ... ok (0.007s) 2023-01-11T21:22:05.4459885Z test_direct_coo_csr_conversion_cpu_int32 (__main__.TestSparseCSRCPU) ... ok (0.007s) 2023-01-11T21:22:05.4460305Z test_direct_coo_csr_conversion_cpu_int64 (__main__.TestSparseCSRCPU) ... ok (0.007s) 2023-01-11T21:22:05.4460726Z test_direct_coo_csr_conversion_cpu_int8 (__main__.TestSparseCSRCPU) ... ok (0.007s) 2023-01-11T21:22:05.4461135Z test_direct_coo_csr_conversion_cpu_uint8 (__main__.TestSparseCSRCPU) ... ok (0.007s) 2023-01-11T21:22:05.4461615Z test_exercise_detach_cpu_bfloat16 (__main__.TestSparseCSRCPU) ... ok (0.006s) 2023-01-11T21:22:05.4462018Z test_exercise_detach_cpu_bool (__main__.TestSparseCSRCPU) ... ok (0.005s) 2023-01-11T21:22:05.4462427Z test_exercise_detach_cpu_complex128 (__main__.TestSparseCSRCPU) ... ok (0.006s) 2023-01-11T21:22:05.4462820Z test_exercise_detach_cpu_complex64 (__main__.TestSparseCSRCPU) ... ok (0.006s) 2023-01-11T21:22:05.4463224Z test_exercise_detach_cpu_float16 (__main__.TestSparseCSRCPU) ... ok (0.006s) 2023-01-11T21:22:05.4463627Z test_exercise_detach_cpu_float32 (__main__.TestSparseCSRCPU) ... ok (0.006s) 2023-01-11T21:22:05.4464009Z test_exercise_detach_cpu_float64 (__main__.TestSparseCSRCPU) ... ok (0.006s) 2023-01-11T21:22:05.4464403Z test_exercise_detach_cpu_int16 (__main__.TestSparseCSRCPU) ... ok (0.005s) 2023-01-11T21:22:05.4464798Z test_exercise_detach_cpu_int32 (__main__.TestSparseCSRCPU) ... ok (0.005s) 2023-01-11T21:22:05.4465181Z test_exercise_detach_cpu_int64 (__main__.TestSparseCSRCPU) ... ok (0.005s) 2023-01-11T21:22:05.4465581Z test_exercise_detach_cpu_int8 (__main__.TestSparseCSRCPU) ... ok (0.005s) 2023-01-11T21:22:05.4465972Z test_exercise_detach_cpu_uint8 (__main__.TestSparseCSRCPU) ... ok (0.005s) 2023-01-11T21:22:05.4466414Z test_matmul_device_mismatch_cpu_float64 (__main__.TestSparseCSRCPU) ... skip: Only runs on cuda (0.001s) 2023-01-11T21:22:05.4466855Z test_mm_cpu_float64 (__main__.TestSparseCSRCPU) ... skip: Only CUDA 11+ is supported (0.006s) 2023-01-11T21:22:05.4467267Z test_mm_errors_cpu_float32 (__main__.TestSparseCSRCPU) ... ok (0.049s) 2023-01-11T21:22:05.4467643Z test_mul_cpu_float32 (__main__.TestSparseCSRCPU) ... ok (0.491s) 2023-01-11T21:22:05.4467995Z test_mul_cpu_float64 (__main__.TestSparseCSRCPU) ... ok (0.513s) 2023-01-11T21:22:05.4468426Z test_mul_scalar_enable_hybrid_False_SparseBSC_cpu_bfloat16 (__main__.TestSparseCSRCPU) ... ok (13.962s) 2023-01-11T21:22:05.4468911Z test_mul_scalar_enable_hybrid_False_SparseBSC_cpu_bool (__main__.TestSparseCSRCPU) ... ok (8.059s) 2023-01-11T21:22:05.4469414Z test_mul_scalar_enable_hybrid_False_SparseBSC_cpu_complex128 (__main__.TestSparseCSRCPU) ... ok (15.431s) 2023-01-11T21:22:05.4469883Z test_mul_scalar_enable_hybrid_False_SparseBSC_cpu_complex64 (__main__.TestSparseCSRCPU) ... ok (15.304s) 2023-01-11T21:22:05.4470359Z test_mul_scalar_enable_hybrid_False_SparseBSC_cpu_float16 (__main__.TestSparseCSRCPU) ... ok (12.463s) 2023-01-11T21:22:05.4470829Z test_mul_scalar_enable_hybrid_False_SparseBSC_cpu_float32 (__main__.TestSparseCSRCPU) ... ok (13.853s) 2023-01-11T21:22:05.4471302Z test_mul_scalar_enable_hybrid_False_SparseBSC_cpu_float64 (__main__.TestSparseCSRCPU) ... ok (13.714s) 2023-01-11T21:22:05.4471752Z test_mul_scalar_enable_hybrid_False_SparseBSC_cpu_int16 (__main__.TestSparseCSRCPU) ... ok (11.117s) 2023-01-11T21:22:05.4472283Z test_mul_scalar_enable_hybrid_False_SparseBSC_cpu_int32 (__main__.TestSparseCSRCPU) ... ok (11.129s) 2023-01-11T21:22:05.4472750Z test_mul_scalar_enable_hybrid_False_SparseBSC_cpu_int64 (__main__.TestSparseCSRCPU) ... ok (11.239s) 2023-01-11T21:22:05.4473214Z test_mul_scalar_enable_hybrid_False_SparseBSC_cpu_int8 (__main__.TestSparseCSRCPU) ... ok (11.162s) 2023-01-11T21:22:05.4473671Z test_mul_scalar_enable_hybrid_False_SparseBSC_cpu_uint8 (__main__.TestSparseCSRCPU) ... ok (11.220s) 2023-01-11T21:22:05.4474140Z test_mul_scalar_enable_hybrid_False_SparseBSR_cpu_bfloat16 (__main__.TestSparseCSRCPU) ... ok (11.940s) 2023-01-11T21:22:05.4474609Z test_mul_scalar_enable_hybrid_False_SparseBSR_cpu_bool (__main__.TestSparseCSRCPU) ... ok (7.039s) 2023-01-11T21:22:05.4475067Z test_mul_scalar_enable_hybrid_False_SparseBSR_cpu_complex128 (__main__.TestSparseCSRCPU) ... ok (13.435s) 2023-01-11T21:22:05.4475570Z test_mul_scalar_enable_hybrid_False_SparseBSR_cpu_complex64 (__main__.TestSparseCSRCPU) ... ok (13.662s) 2023-01-11T21:22:05.4476045Z test_mul_scalar_enable_hybrid_False_SparseBSR_cpu_float16 (__main__.TestSparseCSRCPU) ... ok (10.981s) 2023-01-11T21:22:05.4476576Z test_mul_scalar_enable_hybrid_False_SparseBSR_cpu_float32 (__main__.TestSparseCSRCPU) ... ok (12.009s) 2023-01-11T21:22:05.4477046Z test_mul_scalar_enable_hybrid_False_SparseBSR_cpu_float64 (__main__.TestSparseCSRCPU) ... ok (11.790s) 2023-01-11T21:22:05.4477513Z test_mul_scalar_enable_hybrid_False_SparseBSR_cpu_int16 (__main__.TestSparseCSRCPU) ... ok (9.582s) 2023-01-11T21:22:05.4477987Z test_mul_scalar_enable_hybrid_False_SparseBSR_cpu_int32 (__main__.TestSparseCSRCPU) ... ok (9.571s) 2023-01-11T21:22:05.4478445Z test_mul_scalar_enable_hybrid_False_SparseBSR_cpu_int64 (__main__.TestSparseCSRCPU) ... ok (9.382s) 2023-01-11T21:22:05.4478924Z test_mul_scalar_enable_hybrid_False_SparseBSR_cpu_int8 (__main__.TestSparseCSRCPU) ... ok (9.536s) 2023-01-11T21:22:05.4479420Z test_mul_scalar_enable_hybrid_False_SparseBSR_cpu_uint8 (__main__.TestSparseCSRCPU) ... ok (9.551s) 2023-01-11T21:22:05.4479934Z test_mul_scalar_enable_hybrid_False_SparseCSC_cpu_bfloat16 (__main__.TestSparseCSRCPU) ... ok (3.990s) 2023-01-11T21:22:05.4480400Z test_mul_scalar_enable_hybrid_False_SparseCSC_cpu_bool (__main__.TestSparseCSRCPU) ... ok (2.252s) 2023-01-11T21:22:05.4481031Z test_mul_scalar_enable_hybrid_False_SparseCSC_cpu_complex128 (__main__.TestSparseCSRCPU) ... ok (4.457s) 2023-01-11T21:22:05.4481516Z test_mul_scalar_enable_hybrid_False_SparseCSC_cpu_complex64 (__main__.TestSparseCSRCPU) ... ok (4.564s) 2023-01-11T21:22:05.4481995Z test_mul_scalar_enable_hybrid_False_SparseCSC_cpu_float16 (__main__.TestSparseCSRCPU) ... ok (3.634s) 2023-01-11T21:22:05.4482452Z test_mul_scalar_enable_hybrid_False_SparseCSC_cpu_float32 (__main__.TestSparseCSRCPU) ... ok (3.942s) 2023-01-11T21:22:05.4482921Z test_mul_scalar_enable_hybrid_False_SparseCSC_cpu_float64 (__main__.TestSparseCSRCPU) ... ok (3.895s) 2023-01-11T21:22:05.4483389Z test_mul_scalar_enable_hybrid_False_SparseCSC_cpu_int16 (__main__.TestSparseCSRCPU) ... ok (3.032s) 2023-01-11T21:22:05.4483866Z test_mul_scalar_enable_hybrid_False_SparseCSC_cpu_int32 (__main__.TestSparseCSRCPU) ... ok (2.976s) 2023-01-11T21:22:05.4484363Z test_mul_scalar_enable_hybrid_False_SparseCSC_cpu_int64 (__main__.TestSparseCSRCPU) ... ok (2.934s) 2023-01-11T21:22:05.4484833Z test_mul_scalar_enable_hybrid_False_SparseCSC_cpu_int8 (__main__.TestSparseCSRCPU) ... ok (2.952s) 2023-01-11T21:22:05.4485292Z test_mul_scalar_enable_hybrid_False_SparseCSC_cpu_uint8 (__main__.TestSparseCSRCPU) ... ok (2.967s) 2023-01-11T21:22:05.4485758Z test_mul_scalar_enable_hybrid_False_SparseCSR_cpu_bfloat16 (__main__.TestSparseCSRCPU) ... ok (3.419s) 2023-01-11T21:22:05.4486208Z test_mul_scalar_enable_hybrid_False_SparseCSR_cpu_bool (__main__.TestSparseCSRCPU) ... ok (1.909s) 2023-01-11T21:22:05.4486694Z test_mul_scalar_enable_hybrid_False_SparseCSR_cpu_complex128 (__main__.TestSparseCSRCPU) ... ok (3.925s) 2023-01-11T21:22:05.4487394Z test_mul_scalar_enable_hybrid_False_SparseCSR_cpu_complex64 (__main__.TestSparseCSRCPU) ... ok (3.980s) 2023-01-11T21:22:05.4487966Z test_mul_scalar_enable_hybrid_False_SparseCSR_cpu_float16 (__main__.TestSparseCSRCPU) ... ok (3.140s) 2023-01-11T21:22:05.4488469Z test_mul_scalar_enable_hybrid_False_SparseCSR_cpu_float32 (__main__.TestSparseCSRCPU) ... ok (3.408s) 2023-01-11T21:22:05.4488823Z test_mul_scalar_enable_hybrid_False_SparseCSR_cpu_float64 (__main__.TestSparseCSRCPU) ... ok (3.298s) 2023-01-11T21:22:05.4489168Z test_mul_scalar_enable_hybrid_False_SparseCSR_cpu_int16 (__main__.TestSparseCSRCPU) ... ok (2.562s) 2023-01-11T21:22:05.4489499Z test_mul_scalar_enable_hybrid_False_SparseCSR_cpu_int32 (__main__.TestSparseCSRCPU) ... ok (2.559s) 2023-01-11T21:22:05.4489839Z test_mul_scalar_enable_hybrid_False_SparseCSR_cpu_int64 (__main__.TestSparseCSRCPU) ... ok (2.506s) 2023-01-11T21:22:05.4490184Z test_mul_scalar_enable_hybrid_False_SparseCSR_cpu_int8 (__main__.TestSparseCSRCPU) ... ok (2.605s) 2023-01-11T21:22:05.4490525Z test_mul_scalar_enable_hybrid_False_SparseCSR_cpu_uint8 (__main__.TestSparseCSRCPU) ... ok (2.594s) 2023-01-11T21:22:05.4491469Z test_resize_as_sparse_compressed_SparseBSC_cpu_bool (__main__.TestSparseCSRCPU) ... /opt/conda/lib/python3.7/site-packages/torch/testing/_creation.py:167: UserWarning: ComplexHalf support is experimental and many operators don't support it yet. (Triggered internally at /var/lib/jenkins/workspace/aten/src/ATen/EmptyTensor.cpp:32.) 2023-01-11T21:22:05.4492011Z result = torch.empty(shape, device=device, dtype=dtype) 2023-01-11T21:22:05.4492229Z ok (0.138s) 2023-01-11T21:22:05.4492496Z test_resize_as_sparse_compressed_SparseBSC_cpu_float32 (__main__.TestSparseCSRCPU) ... ok (0.138s) 2023-01-11T21:22:05.4492832Z test_resize_as_sparse_compressed_SparseBSR_cpu_bool (__main__.TestSparseCSRCPU) ... ok (0.134s) 2023-01-11T21:22:05.4493190Z test_resize_as_sparse_compressed_SparseBSR_cpu_float32 (__main__.TestSparseCSRCPU) ... ok (0.133s) 2023-01-11T21:22:05.4493539Z test_resize_as_sparse_compressed_SparseCSC_cpu_bool (__main__.TestSparseCSRCPU) ... ok (0.150s) 2023-01-11T21:22:05.4493877Z test_resize_as_sparse_compressed_SparseCSC_cpu_float32 (__main__.TestSparseCSRCPU) ... ok (0.151s) 2023-01-11T21:22:05.4494227Z test_resize_as_sparse_compressed_SparseCSR_cpu_bool (__main__.TestSparseCSRCPU) ... ok (0.168s) 2023-01-11T21:22:05.4494578Z test_resize_as_sparse_compressed_SparseCSR_cpu_float32 (__main__.TestSparseCSRCPU) ... ok (0.168s) 2023-01-11T21:22:05.4494891Z test_resize_cpu_bfloat16 (__main__.TestSparseCSRCPU) ... ok (0.044s) 2023-01-11T21:22:05.4495162Z test_resize_cpu_bool (__main__.TestSparseCSRCPU) ... ok (0.007s) 2023-01-11T21:22:05.4495446Z test_resize_cpu_complex128 (__main__.TestSparseCSRCPU) ... ok (0.007s) 2023-01-11T21:22:05.4495732Z test_resize_cpu_complex64 (__main__.TestSparseCSRCPU) ... ok (0.007s) 2023-01-11T21:22:05.4496005Z test_resize_cpu_float16 (__main__.TestSparseCSRCPU) ... ok (0.007s) 2023-01-11T21:22:05.4496285Z test_resize_cpu_float32 (__main__.TestSparseCSRCPU) ... ok (0.006s) 2023-01-11T21:22:05.4496565Z test_resize_cpu_float64 (__main__.TestSparseCSRCPU) ... ok (0.006s) 2023-01-11T21:22:05.4496842Z test_resize_cpu_int16 (__main__.TestSparseCSRCPU) ... ok (0.006s) 2023-01-11T21:22:05.4497103Z test_resize_cpu_int32 (__main__.TestSparseCSRCPU) ... ok (0.006s) 2023-01-11T21:22:05.4497469Z test_resize_cpu_int64 (__main__.TestSparseCSRCPU) ... ok (0.006s) 2023-01-11T21:22:05.4497745Z test_resize_cpu_int8 (__main__.TestSparseCSRCPU) ... ok (0.006s) 2023-01-11T21:22:05.4498007Z test_resize_cpu_uint8 (__main__.TestSparseCSRCPU) ... ok (0.006s) 2023-01-11T21:22:05.4498298Z test_resize_errors_cpu_bfloat16 (__main__.TestSparseCSRCPU) ... ok (0.034s) 2023-01-11T21:22:05.4498596Z test_resize_errors_cpu_bool (__main__.TestSparseCSRCPU) ... ok (0.034s) 2023-01-11T21:22:05.4498894Z test_resize_errors_cpu_complex128 (__main__.TestSparseCSRCPU) ... ok (0.035s) 2023-01-11T21:22:05.4499221Z test_resize_errors_cpu_complex64 (__main__.TestSparseCSRCPU) ... ok (0.035s) 2023-01-11T21:22:05.4499526Z test_resize_errors_cpu_float16 (__main__.TestSparseCSRCPU) ... ok (0.034s) 2023-01-11T21:22:05.4499823Z test_resize_errors_cpu_float32 (__main__.TestSparseCSRCPU) ... ok (0.034s) 2023-01-11T21:22:05.4500101Z test_resize_errors_cpu_float64 (__main__.TestSparseCSRCPU) ... ok (0.034s) 2023-01-11T21:22:05.4500389Z test_resize_errors_cpu_int16 (__main__.TestSparseCSRCPU) ... ok (0.035s) 2023-01-11T21:22:05.4500679Z test_resize_errors_cpu_int32 (__main__.TestSparseCSRCPU) ... ok (0.035s) 2023-01-11T21:22:05.4500949Z test_resize_errors_cpu_int64 (__main__.TestSparseCSRCPU) ... ok (0.035s) 2023-01-11T21:22:05.4501230Z test_resize_errors_cpu_int8 (__main__.TestSparseCSRCPU) ... ok (0.035s) 2023-01-11T21:22:05.4501515Z test_resize_errors_cpu_uint8 (__main__.TestSparseCSRCPU) ... ok (0.035s) 2023-01-11T21:22:05.4501821Z test_sampled_addmm_autograd_cpu_complex128 (__main__.TestSparseCSRCPU) ... ok (0.020s) 2023-01-11T21:22:05.4502136Z test_sampled_addmm_autograd_cpu_complex64 (__main__.TestSparseCSRCPU) ... ok (0.017s) 2023-01-11T21:22:05.4502487Z test_sampled_addmm_autograd_cpu_float32 (__main__.TestSparseCSRCPU) ... ok (0.016s) 2023-01-11T21:22:05.4502806Z test_sampled_addmm_autograd_cpu_float64 (__main__.TestSparseCSRCPU) ... ok (0.015s) 2023-01-11T21:22:05.4503104Z test_sampled_addmm_cpu_complex128 (__main__.TestSparseCSRCPU) ... ok (0.582s) 2023-01-11T21:22:05.4503409Z test_sampled_addmm_cpu_complex64 (__main__.TestSparseCSRCPU) ... ok (0.575s) 2023-01-11T21:22:05.4503712Z test_sampled_addmm_cpu_float32 (__main__.TestSparseCSRCPU) ... ok (0.549s) 2023-01-11T21:22:05.4504009Z test_sampled_addmm_cpu_float64 (__main__.TestSparseCSRCPU) ... ok (0.508s) 2023-01-11T21:22:05.4504329Z test_sampled_addmm_errors_cpu_complex128 (__main__.TestSparseCSRCPU) ... skip: Only runs on cuda (0.003s) 2023-01-11T21:22:05.4504694Z test_sampled_addmm_errors_cpu_complex64 (__main__.TestSparseCSRCPU) ... skip: Only runs on cuda (0.002s) 2023-01-11T21:22:05.4505051Z test_sampled_addmm_errors_cpu_float32 (__main__.TestSparseCSRCPU) ... skip: Only runs on cuda (0.002s) 2023-01-11T21:22:05.4505404Z test_sampled_addmm_errors_cpu_float64 (__main__.TestSparseCSRCPU) ... skip: Only runs on cuda (0.002s) 2023-01-11T21:22:05.4505751Z test_sampled_addmm_zero_sized_cpu_complex128 (__main__.TestSparseCSRCPU) ... skip: Only runs on cuda (0.002s) 2023-01-11T21:22:05.4506117Z test_sampled_addmm_zero_sized_cpu_complex64 (__main__.TestSparseCSRCPU) ... skip: Only runs on cuda (0.002s) 2023-01-11T21:22:05.4506476Z test_sampled_addmm_zero_sized_cpu_float32 (__main__.TestSparseCSRCPU) ... skip: Only runs on cuda (0.017s) 2023-01-11T21:22:05.4506822Z test_sampled_addmm_zero_sized_cpu_float64 (__main__.TestSparseCSRCPU) ... skip: Only runs on cuda (0.002s) 2023-01-11T21:22:05.4507155Z test_select_SparseBSC_int32_cpu_bfloat16 (__main__.TestSparseCSRCPU) ... ok (0.063s) 2023-01-11T21:22:05.4507472Z test_select_SparseBSC_int32_cpu_bool (__main__.TestSparseCSRCPU) ... ok (0.060s) 2023-01-11T21:22:05.4507793Z test_select_SparseBSC_int32_cpu_complex128 (__main__.TestSparseCSRCPU) ... ok (0.061s) 2023-01-11T21:22:05.4508104Z test_select_SparseBSC_int32_cpu_complex64 (__main__.TestSparseCSRCPU) ... ok (0.061s) 2023-01-11T21:22:05.4508420Z test_select_SparseBSC_int32_cpu_float16 (__main__.TestSparseCSRCPU) ... ok (0.061s) 2023-01-11T21:22:05.4508731Z test_select_SparseBSC_int32_cpu_float32 (__main__.TestSparseCSRCPU) ... ok (0.062s) 2023-01-11T21:22:05.4509033Z test_select_SparseBSC_int32_cpu_float64 (__main__.TestSparseCSRCPU) ... ok (0.060s) 2023-01-11T21:22:05.4509323Z test_select_SparseBSC_int32_cpu_int16 (__main__.TestSparseCSRCPU) ... ok (0.060s) 2023-01-11T21:22:05.4509634Z test_select_SparseBSC_int32_cpu_int32 (__main__.TestSparseCSRCPU) ... ok (0.060s) 2023-01-11T21:22:05.4509941Z test_select_SparseBSC_int32_cpu_int64 (__main__.TestSparseCSRCPU) ... ok (0.060s) 2023-01-11T21:22:05.4510265Z test_select_SparseBSC_int32_cpu_int8 (__main__.TestSparseCSRCPU) ... ok (0.060s) 2023-01-11T21:22:05.4510575Z test_select_SparseBSC_int32_cpu_uint8 (__main__.TestSparseCSRCPU) ... ok (0.060s) 2023-01-11T21:22:05.4510891Z test_select_SparseBSC_int64_cpu_bfloat16 (__main__.TestSparseCSRCPU) ... ok (0.059s) 2023-01-11T21:22:05.4511204Z test_select_SparseBSC_int64_cpu_bool (__main__.TestSparseCSRCPU) ... ok (0.057s) 2023-01-11T21:22:05.4511506Z test_select_SparseBSC_int64_cpu_complex128 (__main__.TestSparseCSRCPU) ... ok (0.059s) 2023-01-11T21:22:05.4511827Z test_select_SparseBSC_int64_cpu_complex64 (__main__.TestSparseCSRCPU) ... ok (0.060s) 2023-01-11T21:22:05.4512144Z test_select_SparseBSC_int64_cpu_float16 (__main__.TestSparseCSRCPU) ... ok (0.075s) 2023-01-11T21:22:05.4512442Z test_select_SparseBSC_int64_cpu_float32 (__main__.TestSparseCSRCPU) ... ok (0.060s) 2023-01-11T21:22:05.4512753Z test_select_SparseBSC_int64_cpu_float64 (__main__.TestSparseCSRCPU) ... ok (0.059s) 2023-01-11T21:22:05.4513063Z test_select_SparseBSC_int64_cpu_int16 (__main__.TestSparseCSRCPU) ... ok (0.058s) 2023-01-11T21:22:05.4513401Z test_select_SparseBSC_int64_cpu_int32 (__main__.TestSparseCSRCPU) ... ok (0.057s) 2023-01-11T21:22:05.4513696Z test_select_SparseBSC_int64_cpu_int64 (__main__.TestSparseCSRCPU) ... ok (0.059s) 2023-01-11T21:22:05.4514002Z test_select_SparseBSC_int64_cpu_int8 (__main__.TestSparseCSRCPU) ... ok (0.060s) 2023-01-11T21:22:05.4514314Z test_select_SparseBSC_int64_cpu_uint8 (__main__.TestSparseCSRCPU) ... ok (0.058s) 2023-01-11T21:22:05.4514611Z test_select_SparseBSR_int32_cpu_bfloat16 (__main__.TestSparseCSRCPU) ... ok (0.057s) 2023-01-11T21:22:05.4514925Z test_select_SparseBSR_int32_cpu_bool (__main__.TestSparseCSRCPU) ... ok (0.055s) 2023-01-11T21:22:05.4515243Z test_select_SparseBSR_int32_cpu_complex128 (__main__.TestSparseCSRCPU) ... ok (0.056s) 2023-01-11T21:22:05.4515567Z test_select_SparseBSR_int32_cpu_complex64 (__main__.TestSparseCSRCPU) ... ok (0.056s) 2023-01-11T21:22:05.4515872Z test_select_SparseBSR_int32_cpu_float16 (__main__.TestSparseCSRCPU) ... ok (0.056s) 2023-01-11T21:22:05.4516192Z test_select_SparseBSR_int32_cpu_float32 (__main__.TestSparseCSRCPU) ... ok (0.055s) 2023-01-11T21:22:05.4516503Z test_select_SparseBSR_int32_cpu_float64 (__main__.TestSparseCSRCPU) ... ok (0.055s) 2023-01-11T21:22:05.4516794Z test_select_SparseBSR_int32_cpu_int16 (__main__.TestSparseCSRCPU) ... ok (0.056s) 2023-01-11T21:22:05.4517103Z test_select_SparseBSR_int32_cpu_int32 (__main__.TestSparseCSRCPU) ... ok (0.056s) 2023-01-11T21:22:05.4517405Z test_select_SparseBSR_int32_cpu_int64 (__main__.TestSparseCSRCPU) ... ok (0.057s) 2023-01-11T21:22:05.4517711Z test_select_SparseBSR_int32_cpu_int8 (__main__.TestSparseCSRCPU) ... ok (0.057s) 2023-01-11T21:22:05.4518000Z test_select_SparseBSR_int32_cpu_uint8 (__main__.TestSparseCSRCPU) ... ok (0.073s) 2023-01-11T21:22:05.4518315Z test_select_SparseBSR_int64_cpu_bfloat16 (__main__.TestSparseCSRCPU) ... ok (0.057s) 2023-01-11T21:22:05.4518626Z test_select_SparseBSR_int64_cpu_bool (__main__.TestSparseCSRCPU) ... ok (0.055s) 2023-01-11T21:22:05.4518928Z test_select_SparseBSR_int64_cpu_complex128 (__main__.TestSparseCSRCPU) ... ok (0.057s) 2023-01-11T21:22:05.4519247Z test_select_SparseBSR_int64_cpu_complex64 (__main__.TestSparseCSRCPU) ... ok (0.057s) 2023-01-11T21:22:05.4519561Z test_select_SparseBSR_int64_cpu_float16 (__main__.TestSparseCSRCPU) ... ok (0.057s) 2023-01-11T21:22:05.4519869Z test_select_SparseBSR_int64_cpu_float32 (__main__.TestSparseCSRCPU) ... ok (0.057s) 2023-01-11T21:22:05.4520162Z test_select_SparseBSR_int64_cpu_float64 (__main__.TestSparseCSRCPU) ... ok (0.057s) 2023-01-11T21:22:05.4520466Z test_select_SparseBSR_int64_cpu_int16 (__main__.TestSparseCSRCPU) ... ok (0.057s) 2023-01-11T21:22:05.4520946Z test_select_SparseBSR_int64_cpu_int32 (__main__.TestSparseCSRCPU) ... ok (0.056s) 2023-01-11T21:22:05.4521242Z test_select_SparseBSR_int64_cpu_int64 (__main__.TestSparseCSRCPU) ... ok (0.055s) 2023-01-11T21:22:05.4521619Z test_select_SparseBSR_int64_cpu_int8 (__main__.TestSparseCSRCPU) ... ok (0.056s) 2023-01-11T21:22:05.4521931Z test_select_SparseBSR_int64_cpu_uint8 (__main__.TestSparseCSRCPU) ... ok (0.056s) 2023-01-11T21:22:05.4522246Z test_select_SparseCSC_int32_cpu_bfloat16 (__main__.TestSparseCSRCPU) ... ok (0.060s) 2023-01-11T21:22:05.4522545Z test_select_SparseCSC_int32_cpu_bool (__main__.TestSparseCSRCPU) ... ok (0.058s) 2023-01-11T21:22:05.4522860Z test_select_SparseCSC_int32_cpu_complex128 (__main__.TestSparseCSRCPU) ... ok (0.059s) 2023-01-11T21:22:05.4523183Z test_select_SparseCSC_int32_cpu_complex64 (__main__.TestSparseCSRCPU) ... ok (0.059s) 2023-01-11T21:22:05.4523489Z test_select_SparseCSC_int32_cpu_float16 (__main__.TestSparseCSRCPU) ... ok (0.058s) 2023-01-11T21:22:05.4523803Z test_select_SparseCSC_int32_cpu_float32 (__main__.TestSparseCSRCPU) ... ok (0.090s) 2023-01-11T21:22:05.4524116Z test_select_SparseCSC_int32_cpu_float64 (__main__.TestSparseCSRCPU) ... ok (0.058s) 2023-01-11T21:22:05.4524423Z test_select_SparseCSC_int32_cpu_int16 (__main__.TestSparseCSRCPU) ... ok (0.057s) 2023-01-11T21:22:05.4524751Z test_select_SparseCSC_int32_cpu_int32 (__main__.TestSparseCSRCPU) ... ok (0.056s) 2023-01-11T21:22:05.4525059Z test_select_SparseCSC_int32_cpu_int64 (__main__.TestSparseCSRCPU) ... ok (0.056s) 2023-01-11T21:22:05.4525365Z test_select_SparseCSC_int32_cpu_int8 (__main__.TestSparseCSRCPU) ... ok (0.056s) 2023-01-11T21:22:05.4525671Z test_select_SparseCSC_int32_cpu_uint8 (__main__.TestSparseCSRCPU) ... ok (0.057s) 2023-01-11T21:22:05.4525969Z test_select_SparseCSC_int64_cpu_bfloat16 (__main__.TestSparseCSRCPU) ... ok (0.057s) 2023-01-11T21:22:05.4526274Z test_select_SparseCSC_int64_cpu_bool (__main__.TestSparseCSRCPU) ... ok (0.056s) 2023-01-11T21:22:05.4526588Z test_select_SparseCSC_int64_cpu_complex128 (__main__.TestSparseCSRCPU) ... ok (0.057s) 2023-01-11T21:22:05.4526895Z test_select_SparseCSC_int64_cpu_complex64 (__main__.TestSparseCSRCPU) ... ok (0.057s) 2023-01-11T21:22:05.4527209Z test_select_SparseCSC_int64_cpu_float16 (__main__.TestSparseCSRCPU) ... ok (0.056s) 2023-01-11T21:22:05.4527529Z test_select_SparseCSC_int64_cpu_float32 (__main__.TestSparseCSRCPU) ... ok (0.057s) 2023-01-11T21:22:05.4527836Z test_select_SparseCSC_int64_cpu_float64 (__main__.TestSparseCSRCPU) ... ok (0.057s) 2023-01-11T21:22:05.4528124Z test_select_SparseCSC_int64_cpu_int16 (__main__.TestSparseCSRCPU) ... ok (0.056s) 2023-01-11T21:22:05.4528431Z test_select_SparseCSC_int64_cpu_int32 (__main__.TestSparseCSRCPU) ... ok (0.056s) 2023-01-11T21:22:05.4528735Z test_select_SparseCSC_int64_cpu_int64 (__main__.TestSparseCSRCPU) ... ok (0.055s) 2023-01-11T21:22:05.4529027Z test_select_SparseCSC_int64_cpu_int8 (__main__.TestSparseCSRCPU) ... ok (0.055s) 2023-01-11T21:22:05.4529336Z test_select_SparseCSC_int64_cpu_uint8 (__main__.TestSparseCSRCPU) ... ok (0.056s) 2023-01-11T21:22:05.4529651Z test_select_SparseCSR_int32_cpu_bfloat16 (__main__.TestSparseCSRCPU) ... ok (0.070s) 2023-01-11T21:22:05.4529962Z test_select_SparseCSR_int32_cpu_bool (__main__.TestSparseCSRCPU) ... ok (0.051s) 2023-01-11T21:22:05.4530262Z test_select_SparseCSR_int32_cpu_complex128 (__main__.TestSparseCSRCPU) ... ok (0.054s) 2023-01-11T21:22:05.4530578Z test_select_SparseCSR_int32_cpu_complex64 (__main__.TestSparseCSRCPU) ... ok (0.054s) 2023-01-11T21:22:05.4530891Z test_select_SparseCSR_int32_cpu_float16 (__main__.TestSparseCSRCPU) ... ok (0.054s) 2023-01-11T21:22:05.4531188Z test_select_SparseCSR_int32_cpu_float32 (__main__.TestSparseCSRCPU) ... ok (0.054s) 2023-01-11T21:22:05.4531492Z test_select_SparseCSR_int32_cpu_float64 (__main__.TestSparseCSRCPU) ... ok (0.054s) 2023-01-11T21:22:05.4531799Z test_select_SparseCSR_int32_cpu_int16 (__main__.TestSparseCSRCPU) ... ok (0.053s) 2023-01-11T21:22:05.4532104Z test_select_SparseCSR_int32_cpu_int32 (__main__.TestSparseCSRCPU) ... ok (0.053s) 2023-01-11T21:22:05.4532430Z test_select_SparseCSR_int32_cpu_int64 (__main__.TestSparseCSRCPU) ... ok (0.053s) 2023-01-11T21:22:05.4532739Z test_select_SparseCSR_int32_cpu_int8 (__main__.TestSparseCSRCPU) ... ok (0.053s) 2023-01-11T21:22:05.4533047Z test_select_SparseCSR_int32_cpu_uint8 (__main__.TestSparseCSRCPU) ... ok (0.053s) 2023-01-11T21:22:05.4533343Z test_select_SparseCSR_int64_cpu_bfloat16 (__main__.TestSparseCSRCPU) ... ok (0.054s) 2023-01-11T21:22:05.4533650Z test_select_SparseCSR_int64_cpu_bool (__main__.TestSparseCSRCPU) ... ok (0.052s) 2023-01-11T21:22:05.4533962Z test_select_SparseCSR_int64_cpu_complex128 (__main__.TestSparseCSRCPU) ... ok (0.055s) 2023-01-11T21:22:05.4534282Z test_select_SparseCSR_int64_cpu_complex64 (__main__.TestSparseCSRCPU) ... ok (0.055s) 2023-01-11T21:22:05.4534583Z test_select_SparseCSR_int64_cpu_float16 (__main__.TestSparseCSRCPU) ... ok (0.054s) 2023-01-11T21:22:05.4534894Z test_select_SparseCSR_int64_cpu_float32 (__main__.TestSparseCSRCPU) ... ok (0.054s) 2023-01-11T21:22:05.4535204Z test_select_SparseCSR_int64_cpu_float64 (__main__.TestSparseCSRCPU) ... ok (0.053s) 2023-01-11T21:22:05.4535492Z test_select_SparseCSR_int64_cpu_int16 (__main__.TestSparseCSRCPU) ... ok (0.052s) 2023-01-11T21:22:05.4535829Z test_select_SparseCSR_int64_cpu_int32 (__main__.TestSparseCSRCPU) ... ok (0.070s) 2023-01-11T21:22:05.4536133Z test_select_SparseCSR_int64_cpu_int64 (__main__.TestSparseCSRCPU) ... ok (0.052s) 2023-01-11T21:22:05.4536440Z test_select_SparseCSR_int64_cpu_int8 (__main__.TestSparseCSRCPU) ... ok (0.053s) 2023-01-11T21:22:05.4536731Z test_select_SparseCSR_int64_cpu_uint8 (__main__.TestSparseCSRCPU) ... ok (0.053s) 2023-01-11T21:22:05.4537034Z test_sparse_add_cpu_complex128 (__main__.TestSparseCSRCPU) ... ok (0.067s) 2023-01-11T21:22:05.4537433Z test_sparse_add_cpu_complex64 (__main__.TestSparseCSRCPU) ... ok (0.061s) 2023-01-11T21:22:05.4537719Z test_sparse_add_cpu_float32 (__main__.TestSparseCSRCPU) ... ok (0.058s) 2023-01-11T21:22:05.4538011Z test_sparse_add_cpu_float64 (__main__.TestSparseCSRCPU) ... ok (0.058s) 2023-01-11T21:22:05.4538315Z test_sparse_add_errors_cpu_complex128 (__main__.TestSparseCSRCPU) ... ok (0.031s) 2023-01-11T21:22:05.4538634Z test_sparse_add_errors_cpu_complex64 (__main__.TestSparseCSRCPU) ... ok (0.031s) 2023-01-11T21:22:05.4538932Z test_sparse_add_errors_cpu_float32 (__main__.TestSparseCSRCPU) ... ok (0.030s) 2023-01-11T21:22:05.4539238Z test_sparse_add_errors_cpu_float64 (__main__.TestSparseCSRCPU) ... ok (0.031s) 2023-01-11T21:22:05.4539541Z test_sparse_addmm_cpu_complex128 (__main__.TestSparseCSRCPU) ... ok (0.061s) 2023-01-11T21:22:05.4539829Z test_sparse_addmm_cpu_complex64 (__main__.TestSparseCSRCPU) ... ok (0.056s) 2023-01-11T21:22:05.4540123Z test_sparse_addmm_cpu_float32 (__main__.TestSparseCSRCPU) ... ok (0.051s) 2023-01-11T21:22:05.4540414Z test_sparse_addmm_cpu_float64 (__main__.TestSparseCSRCPU) ... ok (0.057s) 2023-01-11T21:22:05.4540716Z test_sparse_csc_to_dense_cpu_bfloat16 (__main__.TestSparseCSRCPU) ... ok (0.012s) 2023-01-11T21:22:05.4541013Z test_sparse_csc_to_dense_cpu_bool (__main__.TestSparseCSRCPU) ... ok (0.009s) 2023-01-11T21:22:05.4541325Z test_sparse_csc_to_dense_cpu_complex128 (__main__.TestSparseCSRCPU) ... ok (0.013s) 2023-01-11T21:22:05.4541644Z test_sparse_csc_to_dense_cpu_complex64 (__main__.TestSparseCSRCPU) ... ok (0.013s) 2023-01-11T21:22:05.4541947Z test_sparse_csc_to_dense_cpu_float16 (__main__.TestSparseCSRCPU) ... ok (0.012s) 2023-01-11T21:22:05.4542252Z test_sparse_csc_to_dense_cpu_float32 (__main__.TestSparseCSRCPU) ... ok (0.012s) 2023-01-11T21:22:05.4542556Z test_sparse_csc_to_dense_cpu_float64 (__main__.TestSparseCSRCPU) ... ok (0.012s) 2023-01-11T21:22:05.4542858Z test_sparse_csc_to_dense_cpu_int16 (__main__.TestSparseCSRCPU) ... ok (0.009s) 2023-01-11T21:22:05.4543147Z test_sparse_csc_to_dense_cpu_int32 (__main__.TestSparseCSRCPU) ... ok (0.009s) 2023-01-11T21:22:05.4543443Z test_sparse_csc_to_dense_cpu_int64 (__main__.TestSparseCSRCPU) ... ok (0.009s) 2023-01-11T21:22:05.4543796Z test_sparse_csc_to_dense_cpu_int8 (__main__.TestSparseCSRCPU) ... ok (0.009s) 2023-01-11T21:22:05.4544083Z test_sparse_csc_to_dense_cpu_uint8 (__main__.TestSparseCSRCPU) ... ok (0.009s) 2023-01-11T21:22:05.4544394Z test_sparse_csr_from_dense_cpu_bfloat16 (__main__.TestSparseCSRCPU) ... ok (0.007s) 2023-01-11T21:22:05.4544708Z test_sparse_csr_from_dense_cpu_bool (__main__.TestSparseCSRCPU) ... ok (0.007s) 2023-01-11T21:22:05.4545025Z test_sparse_csr_from_dense_cpu_complex128 (__main__.TestSparseCSRCPU) ... ok (0.008s) 2023-01-11T21:22:05.4545330Z test_sparse_csr_from_dense_cpu_complex64 (__main__.TestSparseCSRCPU) ... ok (0.021s) 2023-01-11T21:22:05.4545644Z test_sparse_csr_from_dense_cpu_float16 (__main__.TestSparseCSRCPU) ... ok (0.007s) 2023-01-11T21:22:05.4545960Z test_sparse_csr_from_dense_cpu_float32 (__main__.TestSparseCSRCPU) ... ok (0.007s) 2023-01-11T21:22:05.4546260Z test_sparse_csr_from_dense_cpu_float64 (__main__.TestSparseCSRCPU) ... ok (0.007s) 2023-01-11T21:22:05.4546573Z test_sparse_csr_from_dense_cpu_int16 (__main__.TestSparseCSRCPU) ... ok (0.006s) 2023-01-11T21:22:05.4546882Z test_sparse_csr_from_dense_cpu_int32 (__main__.TestSparseCSRCPU) ... ok (0.007s) 2023-01-11T21:22:05.4547214Z test_sparse_csr_from_dense_cpu_int64 (__main__.TestSparseCSRCPU) ... ok (0.006s) 2023-01-11T21:22:05.4547507Z test_sparse_csr_from_dense_cpu_int8 (__main__.TestSparseCSRCPU) ... ok (0.006s) 2023-01-11T21:22:05.4547815Z test_sparse_csr_from_dense_cpu_uint8 (__main__.TestSparseCSRCPU) ... ok (0.006s) 2023-01-11T21:22:05.4548121Z test_sparse_csr_to_dense_cpu_bfloat16 (__main__.TestSparseCSRCPU) ... ok (0.012s) 2023-01-11T21:22:05.4548415Z test_sparse_csr_to_dense_cpu_bool (__main__.TestSparseCSRCPU) ... ok (0.009s) 2023-01-11T21:22:05.4548723Z test_sparse_csr_to_dense_cpu_complex128 (__main__.TestSparseCSRCPU) ... ok (0.013s) 2023-01-11T21:22:05.4549038Z test_sparse_csr_to_dense_cpu_complex64 (__main__.TestSparseCSRCPU) ... ok (0.013s) 2023-01-11T21:22:05.4549347Z test_sparse_csr_to_dense_cpu_float16 (__main__.TestSparseCSRCPU) ... ok (0.012s) 2023-01-11T21:22:05.4549638Z test_sparse_csr_to_dense_cpu_float32 (__main__.TestSparseCSRCPU) ... ok (0.012s) 2023-01-11T21:22:05.4549945Z test_sparse_csr_to_dense_cpu_float64 (__main__.TestSparseCSRCPU) ... ok (0.011s) 2023-01-11T21:22:05.4550252Z test_sparse_csr_to_dense_cpu_int16 (__main__.TestSparseCSRCPU) ... ok (0.009s) 2023-01-11T21:22:05.4550539Z test_sparse_csr_to_dense_cpu_int32 (__main__.TestSparseCSRCPU) ... ok (0.009s) 2023-01-11T21:22:05.4550836Z test_sparse_csr_to_dense_cpu_int64 (__main__.TestSparseCSRCPU) ... ok (0.008s) 2023-01-11T21:22:05.4551133Z test_sparse_csr_to_dense_cpu_int8 (__main__.TestSparseCSRCPU) ... ok (0.009s) 2023-01-11T21:22:05.4551432Z test_sparse_csr_to_dense_cpu_uint8 (__main__.TestSparseCSRCPU) ... ok (0.009s) 2023-01-11T21:22:05.4551736Z test_sparse_csr_unary_inplace_abs_cpu_bfloat16 (__main__.TestSparseCSRCPU) ... ok (0.004s) 2023-01-11T21:22:05.4552068Z test_sparse_csr_unary_inplace_abs_cpu_complex128 (__main__.TestSparseCSRCPU) ... ok (0.017s) 2023-01-11T21:22:05.4552407Z test_sparse_csr_unary_inplace_abs_cpu_complex32 (__main__.TestSparseCSRCPU) ... ok (0.016s) 2023-01-11T21:22:05.4552742Z test_sparse_csr_unary_inplace_abs_cpu_complex64 (__main__.TestSparseCSRCPU) ... ok (0.016s) 2023-01-11T21:22:05.4553057Z test_sparse_csr_unary_inplace_abs_cpu_float16 (__main__.TestSparseCSRCPU) ... ok (0.004s) 2023-01-11T21:22:05.4553380Z test_sparse_csr_unary_inplace_abs_cpu_float32 (__main__.TestSparseCSRCPU) ... ok (0.004s) 2023-01-11T21:22:05.4553700Z test_sparse_csr_unary_inplace_abs_cpu_float64 (__main__.TestSparseCSRCPU) ... ok (0.004s) 2023-01-11T21:22:05.4554002Z test_sparse_csr_unary_inplace_abs_cpu_int16 (__main__.TestSparseCSRCPU) ... ok (0.003s) 2023-01-11T21:22:05.4554321Z test_sparse_csr_unary_inplace_abs_cpu_int32 (__main__.TestSparseCSRCPU) ... ok (0.003s) 2023-01-11T21:22:05.4554638Z test_sparse_csr_unary_inplace_abs_cpu_int64 (__main__.TestSparseCSRCPU) ... ok (0.003s) 2023-01-11T21:22:05.4554995Z test_sparse_csr_unary_inplace_abs_cpu_int8 (__main__.TestSparseCSRCPU) ... ok (0.003s) 2023-01-11T21:22:05.4555301Z test_sparse_csr_unary_inplace_abs_cpu_uint8 (__main__.TestSparseCSRCPU) ... ok (0.003s) 2023-01-11T21:22:05.4555678Z test_sparse_csr_unary_inplace_angle_cpu_bfloat16 (__main__.TestSparseCSRCPU) ... skip: Skipped! Inplace variant not supported! (0.002s) 2023-01-11T21:22:05.4556107Z test_sparse_csr_unary_inplace_angle_cpu_bool (__main__.TestSparseCSRCPU) ... skip: Skipped! Inplace variant not supported! (0.002s) 2023-01-11T21:22:05.4556528Z test_sparse_csr_unary_inplace_angle_cpu_complex128 (__main__.TestSparseCSRCPU) ... skip: Skipped! Inplace variant not supported! (0.002s) 2023-01-11T21:22:05.4556945Z test_sparse_csr_unary_inplace_angle_cpu_complex64 (__main__.TestSparseCSRCPU) ... skip: Skipped! Inplace variant not supported! (0.002s) 2023-01-11T21:22:05.4557368Z test_sparse_csr_unary_inplace_angle_cpu_float16 (__main__.TestSparseCSRCPU) ... skip: Skipped! Inplace variant not supported! (0.002s) 2023-01-11T21:22:05.4557790Z test_sparse_csr_unary_inplace_angle_cpu_float32 (__main__.TestSparseCSRCPU) ... skip: Skipped! Inplace variant not supported! (0.002s) 2023-01-11T21:22:05.4558234Z test_sparse_csr_unary_inplace_angle_cpu_float64 (__main__.TestSparseCSRCPU) ... skip: Skipped! Inplace variant not supported! (0.002s) 2023-01-11T21:22:05.4558636Z test_sparse_csr_unary_inplace_angle_cpu_int16 (__main__.TestSparseCSRCPU) ... skip: Skipped! Inplace variant not supported! (0.002s) 2023-01-11T21:22:05.4559050Z test_sparse_csr_unary_inplace_angle_cpu_int32 (__main__.TestSparseCSRCPU) ... skip: Skipped! Inplace variant not supported! (0.002s) 2023-01-11T21:22:05.4559457Z test_sparse_csr_unary_inplace_angle_cpu_int64 (__main__.TestSparseCSRCPU) ... skip: Skipped! Inplace variant not supported! (0.002s) 2023-01-11T21:22:05.4559871Z test_sparse_csr_unary_inplace_angle_cpu_int8 (__main__.TestSparseCSRCPU) ... skip: Skipped! Inplace variant not supported! (0.002s) 2023-01-11T21:22:05.4560274Z test_sparse_csr_unary_inplace_angle_cpu_uint8 (__main__.TestSparseCSRCPU) ... skip: Skipped! Inplace variant not supported! (0.002s) 2023-01-11T21:22:05.4560807Z test_sparse_csr_unary_inplace_asin_cpu_bfloat16 (__main__.TestSparseCSRCPU) ... ok (0.004s) 2023-01-11T21:22:05.4561144Z test_sparse_csr_unary_inplace_asin_cpu_bool (__main__.TestSparseCSRCPU) ... ok (0.018s) 2023-01-11T21:22:05.4561476Z test_sparse_csr_unary_inplace_asin_cpu_complex128 (__main__.TestSparseCSRCPU) ... ok (0.006s) 2023-01-11T21:22:05.4561801Z test_sparse_csr_unary_inplace_asin_cpu_complex64 (__main__.TestSparseCSRCPU) ... ok (0.005s) 2023-01-11T21:22:05.4562134Z test_sparse_csr_unary_inplace_asin_cpu_float32 (__main__.TestSparseCSRCPU) ... ok (0.004s) 2023-01-11T21:22:05.4562464Z test_sparse_csr_unary_inplace_asin_cpu_float64 (__main__.TestSparseCSRCPU) ... ok (0.004s) 2023-01-11T21:22:05.4562774Z test_sparse_csr_unary_inplace_asin_cpu_int16 (__main__.TestSparseCSRCPU) ... ok (0.018s) 2023-01-11T21:22:05.4563103Z test_sparse_csr_unary_inplace_asin_cpu_int32 (__main__.TestSparseCSRCPU) ... ok (0.018s) 2023-01-11T21:22:05.4563427Z test_sparse_csr_unary_inplace_asin_cpu_int64 (__main__.TestSparseCSRCPU) ... ok (0.018s) 2023-01-11T21:22:05.4563747Z test_sparse_csr_unary_inplace_asin_cpu_int8 (__main__.TestSparseCSRCPU) ... ok (0.018s) 2023-01-11T21:22:05.4564053Z test_sparse_csr_unary_inplace_asin_cpu_uint8 (__main__.TestSparseCSRCPU) ... ok (0.018s) 2023-01-11T21:22:05.4564382Z test_sparse_csr_unary_inplace_asinh_cpu_bfloat16 (__main__.TestSparseCSRCPU) ... ok (0.006s) 2023-01-11T21:22:05.4564712Z test_sparse_csr_unary_inplace_asinh_cpu_bool (__main__.TestSparseCSRCPU) ... ok (0.018s) 2023-01-11T21:22:05.4565030Z test_sparse_csr_unary_inplace_asinh_cpu_complex128 (__main__.TestSparseCSRCPU) ... ok (0.005s) 2023-01-11T21:22:05.4565369Z test_sparse_csr_unary_inplace_asinh_cpu_complex64 (__main__.TestSparseCSRCPU) ... ok (0.005s) 2023-01-11T21:22:05.4565762Z test_sparse_csr_unary_inplace_asinh_cpu_float32 (__main__.TestSparseCSRCPU) ... ok (0.004s) 2023-01-11T21:22:05.4566094Z test_sparse_csr_unary_inplace_asinh_cpu_float64 (__main__.TestSparseCSRCPU) ... ok (0.004s) 2023-01-11T21:22:05.4566412Z test_sparse_csr_unary_inplace_asinh_cpu_int16 (__main__.TestSparseCSRCPU) ... ok (0.018s) 2023-01-11T21:22:05.4566737Z test_sparse_csr_unary_inplace_asinh_cpu_int32 (__main__.TestSparseCSRCPU) ... ok (0.018s) 2023-01-11T21:22:05.4567059Z test_sparse_csr_unary_inplace_asinh_cpu_int64 (__main__.TestSparseCSRCPU) ... ok (0.018s) 2023-01-11T21:22:05.4567375Z test_sparse_csr_unary_inplace_asinh_cpu_int8 (__main__.TestSparseCSRCPU) ... ok (0.018s) 2023-01-11T21:22:05.4567682Z test_sparse_csr_unary_inplace_asinh_cpu_uint8 (__main__.TestSparseCSRCPU) ... ok (0.018s) 2023-01-11T21:22:05.4568014Z test_sparse_csr_unary_inplace_atan_cpu_bfloat16 (__main__.TestSparseCSRCPU) ... ok (0.006s) 2023-01-11T21:22:05.4568343Z test_sparse_csr_unary_inplace_atan_cpu_bool (__main__.TestSparseCSRCPU) ... ok (0.018s) 2023-01-11T21:22:05.4568666Z test_sparse_csr_unary_inplace_atan_cpu_complex128 (__main__.TestSparseCSRCPU) ... ok (0.007s) 2023-01-11T21:22:05.4569034Z test_sparse_csr_unary_inplace_atan_cpu_complex64 (__main__.TestSparseCSRCPU) ... ok (0.019s) 2023-01-11T21:22:05.4569365Z test_sparse_csr_unary_inplace_atan_cpu_float32 (__main__.TestSparseCSRCPU) ... ok (0.004s) 2023-01-11T21:22:05.4569688Z test_sparse_csr_unary_inplace_atan_cpu_float64 (__main__.TestSparseCSRCPU) ... ok (0.004s) 2023-01-11T21:22:05.4569995Z test_sparse_csr_unary_inplace_atan_cpu_int16 (__main__.TestSparseCSRCPU) ... ok (0.018s) 2023-01-11T21:22:05.4570316Z test_sparse_csr_unary_inplace_atan_cpu_int32 (__main__.TestSparseCSRCPU) ... ok (0.018s) 2023-01-11T21:22:05.4570633Z test_sparse_csr_unary_inplace_atan_cpu_int64 (__main__.TestSparseCSRCPU) ... ok (0.018s) 2023-01-11T21:22:05.4570938Z test_sparse_csr_unary_inplace_atan_cpu_int8 (__main__.TestSparseCSRCPU) ... ok (0.018s) 2023-01-11T21:22:05.4571258Z test_sparse_csr_unary_inplace_atan_cpu_uint8 (__main__.TestSparseCSRCPU) ... ok (0.018s) 2023-01-11T21:22:05.4571577Z test_sparse_csr_unary_inplace_atanh_cpu_bfloat16 (__main__.TestSparseCSRCPU) ... ok (0.004s) 2023-01-11T21:22:05.4571902Z test_sparse_csr_unary_inplace_atanh_cpu_bool (__main__.TestSparseCSRCPU) ... ok (0.018s) 2023-01-11T21:22:05.4572222Z test_sparse_csr_unary_inplace_atanh_cpu_complex128 (__main__.TestSparseCSRCPU) ... ok (0.005s) 2023-01-11T21:22:05.4572561Z test_sparse_csr_unary_inplace_atanh_cpu_complex64 (__main__.TestSparseCSRCPU) ... ok (0.004s) 2023-01-11T21:22:05.4572891Z test_sparse_csr_unary_inplace_atanh_cpu_float32 (__main__.TestSparseCSRCPU) ... ok (0.004s) 2023-01-11T21:22:05.4573219Z test_sparse_csr_unary_inplace_atanh_cpu_float64 (__main__.TestSparseCSRCPU) ... ok (0.004s) 2023-01-11T21:22:05.4573528Z test_sparse_csr_unary_inplace_atanh_cpu_int16 (__main__.TestSparseCSRCPU) ... ok (0.018s) 2023-01-11T21:22:05.4573852Z test_sparse_csr_unary_inplace_atanh_cpu_int32 (__main__.TestSparseCSRCPU) ... ok (0.018s) 2023-01-11T21:22:05.4574171Z test_sparse_csr_unary_inplace_atanh_cpu_int64 (__main__.TestSparseCSRCPU) ... ok (0.018s) 2023-01-11T21:22:05.4574477Z test_sparse_csr_unary_inplace_atanh_cpu_int8 (__main__.TestSparseCSRCPU) ... ok (0.018s) 2023-01-11T21:22:05.4574797Z test_sparse_csr_unary_inplace_atanh_cpu_uint8 (__main__.TestSparseCSRCPU) ... ok (0.018s) 2023-01-11T21:22:05.4575124Z test_sparse_csr_unary_inplace_ceil_cpu_bfloat16 (__main__.TestSparseCSRCPU) ... ok (0.005s) 2023-01-11T21:22:05.4575449Z test_sparse_csr_unary_inplace_ceil_cpu_float32 (__main__.TestSparseCSRCPU) ... ok (0.004s) 2023-01-11T21:22:05.4575759Z test_sparse_csr_unary_inplace_ceil_cpu_float64 (__main__.TestSparseCSRCPU) ... ok (0.004s) 2023-01-11T21:22:05.4576084Z test_sparse_csr_unary_inplace_ceil_cpu_int16 (__main__.TestSparseCSRCPU) ... ok (0.003s) 2023-01-11T21:22:05.4576402Z test_sparse_csr_unary_inplace_ceil_cpu_int32 (__main__.TestSparseCSRCPU) ... ok (0.003s) 2023-01-11T21:22:05.4576735Z test_sparse_csr_unary_inplace_ceil_cpu_int64 (__main__.TestSparseCSRCPU) ... ok (0.003s) 2023-01-11T21:22:05.4577051Z test_sparse_csr_unary_inplace_ceil_cpu_int8 (__main__.TestSparseCSRCPU) ... ok (0.003s) 2023-01-11T21:22:05.4577451Z test_sparse_csr_unary_inplace_ceil_cpu_uint8 (__main__.TestSparseCSRCPU) ... ok (0.003s) 2023-01-11T21:22:05.4577791Z test_sparse_csr_unary_inplace_conj_physical_cpu_bfloat16 (__main__.TestSparseCSRCPU) ... ok (0.004s) 2023-01-11T21:22:05.4578127Z test_sparse_csr_unary_inplace_conj_physical_cpu_bool (__main__.TestSparseCSRCPU) ... ok (0.003s) 2023-01-11T21:22:05.4578483Z test_sparse_csr_unary_inplace_conj_physical_cpu_complex128 (__main__.TestSparseCSRCPU) ... ok (0.004s) 2023-01-11T21:22:05.4578844Z test_sparse_csr_unary_inplace_conj_physical_cpu_complex32 (__main__.TestSparseCSRCPU) ... ok (0.004s) 2023-01-11T21:22:05.4579201Z test_sparse_csr_unary_inplace_conj_physical_cpu_complex64 (__main__.TestSparseCSRCPU) ... ok (0.004s) 2023-01-11T21:22:05.4579540Z test_sparse_csr_unary_inplace_conj_physical_cpu_float16 (__main__.TestSparseCSRCPU) ... ok (0.004s) 2023-01-11T21:22:05.4579928Z test_sparse_csr_unary_inplace_conj_physical_cpu_float32 (__main__.TestSparseCSRCPU) ... ok (0.004s) 2023-01-11T21:22:05.4580273Z test_sparse_csr_unary_inplace_conj_physical_cpu_float64 (__main__.TestSparseCSRCPU) ... ok (0.004s) 2023-01-11T21:22:05.4580600Z test_sparse_csr_unary_inplace_conj_physical_cpu_int16 (__main__.TestSparseCSRCPU) ... ok (0.003s) 2023-01-11T21:22:05.4580943Z test_sparse_csr_unary_inplace_conj_physical_cpu_int32 (__main__.TestSparseCSRCPU) ... ok (0.003s) 2023-01-11T21:22:05.4581284Z test_sparse_csr_unary_inplace_conj_physical_cpu_int64 (__main__.TestSparseCSRCPU) ... ok (0.003s) 2023-01-11T21:22:05.4581628Z test_sparse_csr_unary_inplace_conj_physical_cpu_int8 (__main__.TestSparseCSRCPU) ... ok (0.003s) 2023-01-11T21:22:05.4581957Z test_sparse_csr_unary_inplace_conj_physical_cpu_uint8 (__main__.TestSparseCSRCPU) ... ok (0.003s) 2023-01-11T21:22:05.4582297Z test_sparse_csr_unary_inplace_deg2rad_cpu_bfloat16 (__main__.TestSparseCSRCPU) ... ok (0.004s) 2023-01-11T21:22:05.4582633Z test_sparse_csr_unary_inplace_deg2rad_cpu_bool (__main__.TestSparseCSRCPU) ... ok (0.022s) 2023-01-11T21:22:05.4582969Z test_sparse_csr_unary_inplace_deg2rad_cpu_float16 (__main__.TestSparseCSRCPU) ... ok (0.004s) 2023-01-11T21:22:05.4583288Z test_sparse_csr_unary_inplace_deg2rad_cpu_float32 (__main__.TestSparseCSRCPU) ... ok (0.004s) 2023-01-11T21:22:05.4583613Z test_sparse_csr_unary_inplace_deg2rad_cpu_float64 (__main__.TestSparseCSRCPU) ... ok (0.004s) 2023-01-11T21:22:05.4583944Z test_sparse_csr_unary_inplace_deg2rad_cpu_int16 (__main__.TestSparseCSRCPU) ... ok (0.022s) 2023-01-11T21:22:05.4584263Z test_sparse_csr_unary_inplace_deg2rad_cpu_int32 (__main__.TestSparseCSRCPU) ... ok (0.022s) 2023-01-11T21:22:05.4584592Z test_sparse_csr_unary_inplace_deg2rad_cpu_int64 (__main__.TestSparseCSRCPU) ... ok (0.022s) 2023-01-11T21:22:05.4584921Z test_sparse_csr_unary_inplace_deg2rad_cpu_int8 (__main__.TestSparseCSRCPU) ... ok (0.022s) 2023-01-11T21:22:05.4585249Z test_sparse_csr_unary_inplace_deg2rad_cpu_uint8 (__main__.TestSparseCSRCPU) ... ok (0.022s) 2023-01-11T21:22:05.4585567Z test_sparse_csr_unary_inplace_erf_cpu_bfloat16 (__main__.TestSparseCSRCPU) ... ok (0.005s) 2023-01-11T21:22:05.4585888Z test_sparse_csr_unary_inplace_erf_cpu_bool (__main__.TestSparseCSRCPU) ... ok (0.018s) 2023-01-11T21:22:05.4586208Z test_sparse_csr_unary_inplace_erf_cpu_float32 (__main__.TestSparseCSRCPU) ... ok (0.004s) 2023-01-11T21:22:05.4586532Z test_sparse_csr_unary_inplace_erf_cpu_float64 (__main__.TestSparseCSRCPU) ... ok (0.004s) 2023-01-11T21:22:05.4586837Z test_sparse_csr_unary_inplace_erf_cpu_int16 (__main__.TestSparseCSRCPU) ... ok (0.018s) 2023-01-11T21:22:05.4587156Z test_sparse_csr_unary_inplace_erf_cpu_int32 (__main__.TestSparseCSRCPU) ... ok (0.018s) 2023-01-11T21:22:05.4587473Z test_sparse_csr_unary_inplace_erf_cpu_int64 (__main__.TestSparseCSRCPU) ... ok (0.018s) 2023-01-11T21:22:05.4587824Z test_sparse_csr_unary_inplace_erf_cpu_int8 (__main__.TestSparseCSRCPU) ... ok (0.018s) 2023-01-11T21:22:05.4588142Z test_sparse_csr_unary_inplace_erf_cpu_uint8 (__main__.TestSparseCSRCPU) ... ok (0.018s) 2023-01-11T21:22:05.4588472Z test_sparse_csr_unary_inplace_erfinv_cpu_bfloat16 (__main__.TestSparseCSRCPU) ... ok (0.005s) 2023-01-11T21:22:05.4588798Z test_sparse_csr_unary_inplace_erfinv_cpu_bool (__main__.TestSparseCSRCPU) ... ok (0.018s) 2023-01-11T21:22:05.4589115Z test_sparse_csr_unary_inplace_erfinv_cpu_float32 (__main__.TestSparseCSRCPU) ... ok (0.005s) 2023-01-11T21:22:05.4589442Z test_sparse_csr_unary_inplace_erfinv_cpu_float64 (__main__.TestSparseCSRCPU) ... ok (0.004s) 2023-01-11T21:22:05.4589770Z test_sparse_csr_unary_inplace_erfinv_cpu_int16 (__main__.TestSparseCSRCPU) ... ok (0.018s) 2023-01-11T21:22:05.4590080Z test_sparse_csr_unary_inplace_erfinv_cpu_int32 (__main__.TestSparseCSRCPU) ... ok (0.018s) 2023-01-11T21:22:05.4590403Z test_sparse_csr_unary_inplace_erfinv_cpu_int64 (__main__.TestSparseCSRCPU) ... ok (0.018s) 2023-01-11T21:22:05.4590759Z test_sparse_csr_unary_inplace_erfinv_cpu_int8 (__main__.TestSparseCSRCPU) ... ok (0.018s) 2023-01-11T21:22:05.4591081Z test_sparse_csr_unary_inplace_erfinv_cpu_uint8 (__main__.TestSparseCSRCPU) ... ok (0.018s) 2023-01-11T21:22:05.4591396Z test_sparse_csr_unary_inplace_expm1_cpu_bfloat16 (__main__.TestSparseCSRCPU) ... ok (0.021s) 2023-01-11T21:22:05.4591722Z test_sparse_csr_unary_inplace_expm1_cpu_bool (__main__.TestSparseCSRCPU) ... ok (0.018s) 2023-01-11T21:22:05.4592048Z test_sparse_csr_unary_inplace_expm1_cpu_float32 (__main__.TestSparseCSRCPU) ... ok (0.004s) 2023-01-11T21:22:05.4592376Z test_sparse_csr_unary_inplace_expm1_cpu_float64 (__main__.TestSparseCSRCPU) ... ok (0.004s) 2023-01-11T21:22:05.4592687Z test_sparse_csr_unary_inplace_expm1_cpu_int16 (__main__.TestSparseCSRCPU) ... ok (0.018s) 2023-01-11T21:22:05.4593006Z test_sparse_csr_unary_inplace_expm1_cpu_int32 (__main__.TestSparseCSRCPU) ... ok (0.043s) 2023-01-11T21:22:05.4593326Z test_sparse_csr_unary_inplace_expm1_cpu_int64 (__main__.TestSparseCSRCPU) ... ok (0.018s) 2023-01-11T21:22:05.4593631Z test_sparse_csr_unary_inplace_expm1_cpu_int8 (__main__.TestSparseCSRCPU) ... ok (0.018s) 2023-01-11T21:22:05.4593954Z test_sparse_csr_unary_inplace_expm1_cpu_uint8 (__main__.TestSparseCSRCPU) ... ok (0.018s) 2023-01-11T21:22:05.4594283Z test_sparse_csr_unary_inplace_floor_cpu_bfloat16 (__main__.TestSparseCSRCPU) ... ok (0.005s) 2023-01-11T21:22:05.4594613Z test_sparse_csr_unary_inplace_floor_cpu_float32 (__main__.TestSparseCSRCPU) ... ok (0.004s) 2023-01-11T21:22:05.4594928Z test_sparse_csr_unary_inplace_floor_cpu_float64 (__main__.TestSparseCSRCPU) ... ok (0.004s) 2023-01-11T21:22:05.4595251Z test_sparse_csr_unary_inplace_floor_cpu_int16 (__main__.TestSparseCSRCPU) ... ok (0.003s) 2023-01-11T21:22:05.4595570Z test_sparse_csr_unary_inplace_floor_cpu_int32 (__main__.TestSparseCSRCPU) ... ok (0.003s) 2023-01-11T21:22:05.4595876Z test_sparse_csr_unary_inplace_floor_cpu_int64 (__main__.TestSparseCSRCPU) ... ok (0.003s) 2023-01-11T21:22:05.4596194Z test_sparse_csr_unary_inplace_floor_cpu_int8 (__main__.TestSparseCSRCPU) ... ok (0.003s) 2023-01-11T21:22:05.4596515Z test_sparse_csr_unary_inplace_floor_cpu_uint8 (__main__.TestSparseCSRCPU) ... ok (0.003s) 2023-01-11T21:22:05.4596841Z test_sparse_csr_unary_inplace_frac_cpu_bfloat16 (__main__.TestSparseCSRCPU) ... ok (0.004s) 2023-01-11T21:22:05.4597155Z test_sparse_csr_unary_inplace_frac_cpu_float16 (__main__.TestSparseCSRCPU) ... ok (0.004s) 2023-01-11T21:22:05.4597479Z test_sparse_csr_unary_inplace_frac_cpu_float32 (__main__.TestSparseCSRCPU) ... ok (0.004s) 2023-01-11T21:22:05.4597803Z test_sparse_csr_unary_inplace_frac_cpu_float64 (__main__.TestSparseCSRCPU) ... ok (0.004s) 2023-01-11T21:22:05.4598174Z test_sparse_csr_unary_inplace_isinf_cpu_bfloat16 (__main__.TestSparseCSRCPU) ... skip: Skipped! Inplace variant not supported! (0.002s) 2023-01-11T21:22:05.4598613Z test_sparse_csr_unary_inplace_isinf_cpu_bool (__main__.TestSparseCSRCPU) ... skip: Skipped! Inplace variant not supported! (0.002s) 2023-01-11T21:22:05.4599037Z test_sparse_csr_unary_inplace_isinf_cpu_complex128 (__main__.TestSparseCSRCPU) ... skip: Skipped! Inplace variant not supported! (0.002s) 2023-01-11T21:22:05.4601357Z test_sparse_csr_unary_inplace_isinf_cpu_complex32 (__main__.TestSparseCSRCPU) ... skip: Skipped! Inplace variant not supported! (0.002s) 2023-01-11T21:22:05.4601785Z test_sparse_csr_unary_inplace_isinf_cpu_complex64 (__main__.TestSparseCSRCPU) ... skip: Skipped! Inplace variant not supported! (0.002s) 2023-01-11T21:22:05.4602189Z test_sparse_csr_unary_inplace_isinf_cpu_float16 (__main__.TestSparseCSRCPU) ... skip: Skipped! Inplace variant not supported! (0.002s) 2023-01-11T21:22:05.4602610Z test_sparse_csr_unary_inplace_isinf_cpu_float32 (__main__.TestSparseCSRCPU) ... skip: Skipped! Inplace variant not supported! (0.002s) 2023-01-11T21:22:05.4603030Z test_sparse_csr_unary_inplace_isinf_cpu_float64 (__main__.TestSparseCSRCPU) ... skip: Skipped! Inplace variant not supported! (0.002s) 2023-01-11T21:22:05.4603517Z test_sparse_csr_unary_inplace_isinf_cpu_int16 (__main__.TestSparseCSRCPU) ... skip: Skipped! Inplace variant not supported! (0.002s) 2023-01-11T21:22:05.4603920Z test_sparse_csr_unary_inplace_isinf_cpu_int32 (__main__.TestSparseCSRCPU) ... skip: Skipped! Inplace variant not supported! (0.002s) 2023-01-11T21:22:05.4604333Z test_sparse_csr_unary_inplace_isinf_cpu_int64 (__main__.TestSparseCSRCPU) ... skip: Skipped! Inplace variant not supported! (0.002s) 2023-01-11T21:22:05.4604743Z test_sparse_csr_unary_inplace_isinf_cpu_int8 (__main__.TestSparseCSRCPU) ... skip: Skipped! Inplace variant not supported! (0.002s) 2023-01-11T21:22:05.4605154Z test_sparse_csr_unary_inplace_isinf_cpu_uint8 (__main__.TestSparseCSRCPU) ... skip: Skipped! Inplace variant not supported! (0.002s) 2023-01-11T21:22:05.4605556Z test_sparse_csr_unary_inplace_isnan_cpu_bfloat16 (__main__.TestSparseCSRCPU) ... skip: Skipped! Inplace variant not supported! (0.002s) 2023-01-11T21:22:05.4605979Z test_sparse_csr_unary_inplace_isnan_cpu_bool (__main__.TestSparseCSRCPU) ... skip: Skipped! Inplace variant not supported! (0.002s) 2023-01-11T21:22:05.4606402Z test_sparse_csr_unary_inplace_isnan_cpu_complex128 (__main__.TestSparseCSRCPU) ... skip: Skipped! Inplace variant not supported! (0.002s) 2023-01-11T21:22:05.4606823Z test_sparse_csr_unary_inplace_isnan_cpu_complex64 (__main__.TestSparseCSRCPU) ... skip: Skipped! Inplace variant not supported! (0.002s) 2023-01-11T21:22:05.4607225Z test_sparse_csr_unary_inplace_isnan_cpu_float16 (__main__.TestSparseCSRCPU) ... skip: Skipped! Inplace variant not supported! (0.002s) 2023-01-11T21:22:05.4607642Z test_sparse_csr_unary_inplace_isnan_cpu_float32 (__main__.TestSparseCSRCPU) ... skip: Skipped! Inplace variant not supported! (0.002s) 2023-01-11T21:22:05.4608052Z test_sparse_csr_unary_inplace_isnan_cpu_float64 (__main__.TestSparseCSRCPU) ... skip: Skipped! Inplace variant not supported! (0.002s) 2023-01-11T21:22:05.4608472Z test_sparse_csr_unary_inplace_isnan_cpu_int16 (__main__.TestSparseCSRCPU) ... skip: Skipped! Inplace variant not supported! (0.002s) 2023-01-11T21:22:05.4608873Z test_sparse_csr_unary_inplace_isnan_cpu_int32 (__main__.TestSparseCSRCPU) ... skip: Skipped! Inplace variant not supported! (0.002s) 2023-01-11T21:22:05.4609289Z test_sparse_csr_unary_inplace_isnan_cpu_int64 (__main__.TestSparseCSRCPU) ... skip: Skipped! Inplace variant not supported! (0.002s) 2023-01-11T21:22:05.4609699Z test_sparse_csr_unary_inplace_isnan_cpu_int8 (__main__.TestSparseCSRCPU) ... skip: Skipped! Inplace variant not supported! (0.002s) 2023-01-11T21:22:05.4610114Z test_sparse_csr_unary_inplace_isnan_cpu_uint8 (__main__.TestSparseCSRCPU) ... skip: Skipped! Inplace variant not supported! (0.002s) 2023-01-11T21:22:05.4610516Z test_sparse_csr_unary_inplace_isneginf_cpu_bfloat16 (__main__.TestSparseCSRCPU) ... skip: Skipped! Inplace variant not supported! (0.002s) 2023-01-11T21:22:05.4610984Z test_sparse_csr_unary_inplace_isneginf_cpu_bool (__main__.TestSparseCSRCPU) ... skip: Skipped! Inplace variant not supported! (0.002s) 2023-01-11T21:22:05.4611409Z test_sparse_csr_unary_inplace_isneginf_cpu_float16 (__main__.TestSparseCSRCPU) ... skip: Skipped! Inplace variant not supported! (0.002s) 2023-01-11T21:22:05.4611834Z test_sparse_csr_unary_inplace_isneginf_cpu_float32 (__main__.TestSparseCSRCPU) ... skip: Skipped! Inplace variant not supported! (0.002s) 2023-01-11T21:22:05.4612241Z test_sparse_csr_unary_inplace_isneginf_cpu_float64 (__main__.TestSparseCSRCPU) ... skip: Skipped! Inplace variant not supported! (0.002s) 2023-01-11T21:22:05.4612654Z test_sparse_csr_unary_inplace_isneginf_cpu_int16 (__main__.TestSparseCSRCPU) ... skip: Skipped! Inplace variant not supported! (0.002s) 2023-01-11T21:22:05.4613071Z test_sparse_csr_unary_inplace_isneginf_cpu_int32 (__main__.TestSparseCSRCPU) ... skip: Skipped! Inplace variant not supported! (0.002s) 2023-01-11T21:22:05.4613494Z test_sparse_csr_unary_inplace_isneginf_cpu_int64 (__main__.TestSparseCSRCPU) ... skip: Skipped! Inplace variant not supported! (0.002s) 2023-01-11T21:22:05.4613936Z test_sparse_csr_unary_inplace_isneginf_cpu_int8 (__main__.TestSparseCSRCPU) ... skip: Skipped! Inplace variant not supported! (0.002s) 2023-01-11T21:22:05.4614351Z test_sparse_csr_unary_inplace_isneginf_cpu_uint8 (__main__.TestSparseCSRCPU) ... skip: Skipped! Inplace variant not supported! (0.002s) 2023-01-11T21:22:05.4614767Z test_sparse_csr_unary_inplace_isposinf_cpu_bfloat16 (__main__.TestSparseCSRCPU) ... skip: Skipped! Inplace variant not supported! (0.002s) 2023-01-11T21:22:05.4615185Z test_sparse_csr_unary_inplace_isposinf_cpu_bool (__main__.TestSparseCSRCPU) ... skip: Skipped! Inplace variant not supported! (0.002s) 2023-01-11T21:22:05.4615604Z test_sparse_csr_unary_inplace_isposinf_cpu_float16 (__main__.TestSparseCSRCPU) ... skip: Skipped! Inplace variant not supported! (0.002s) 2023-01-11T21:22:05.4616014Z test_sparse_csr_unary_inplace_isposinf_cpu_float32 (__main__.TestSparseCSRCPU) ... skip: Skipped! Inplace variant not supported! (0.002s) 2023-01-11T21:22:05.4616433Z test_sparse_csr_unary_inplace_isposinf_cpu_float64 (__main__.TestSparseCSRCPU) ... skip: Skipped! Inplace variant not supported! (0.002s) 2023-01-11T21:22:05.4616846Z test_sparse_csr_unary_inplace_isposinf_cpu_int16 (__main__.TestSparseCSRCPU) ... skip: Skipped! Inplace variant not supported! (0.002s) 2023-01-11T21:22:05.4617328Z test_sparse_csr_unary_inplace_isposinf_cpu_int32 (__main__.TestSparseCSRCPU) ... skip: Skipped! Inplace variant not supported! (0.002s) 2023-01-11T21:22:05.4617729Z test_sparse_csr_unary_inplace_isposinf_cpu_int64 (__main__.TestSparseCSRCPU) ... skip: Skipped! Inplace variant not supported! (0.002s) 2023-01-11T21:22:05.4618140Z test_sparse_csr_unary_inplace_isposinf_cpu_int8 (__main__.TestSparseCSRCPU) ... skip: Skipped! Inplace variant not supported! (0.002s) 2023-01-11T21:22:05.4618557Z test_sparse_csr_unary_inplace_isposinf_cpu_uint8 (__main__.TestSparseCSRCPU) ... skip: Skipped! Inplace variant not supported! (0.002s) 2023-01-11T21:22:05.4618932Z test_sparse_csr_unary_inplace_log1p_cpu_bfloat16 (__main__.TestSparseCSRCPU) ... ok (0.004s) 2023-01-11T21:22:05.4619252Z test_sparse_csr_unary_inplace_log1p_cpu_bool (__main__.TestSparseCSRCPU) ... ok (0.018s) 2023-01-11T21:22:05.4619592Z test_sparse_csr_unary_inplace_log1p_cpu_complex128 (__main__.TestSparseCSRCPU) ... ok (0.005s) 2023-01-11T21:22:05.4619931Z test_sparse_csr_unary_inplace_log1p_cpu_complex64 (__main__.TestSparseCSRCPU) ... ok (0.004s) 2023-01-11T21:22:05.4620253Z test_sparse_csr_unary_inplace_log1p_cpu_float32 (__main__.TestSparseCSRCPU) ... ok (0.004s) 2023-01-11T21:22:05.4620582Z test_sparse_csr_unary_inplace_log1p_cpu_float64 (__main__.TestSparseCSRCPU) ... ok (0.004s) 2023-01-11T21:22:05.4620909Z test_sparse_csr_unary_inplace_log1p_cpu_int16 (__main__.TestSparseCSRCPU) ... ok (0.018s) 2023-01-11T21:22:05.4621281Z test_sparse_csr_unary_inplace_log1p_cpu_int32 (__main__.TestSparseCSRCPU) ... ok (0.018s) 2023-01-11T21:22:05.4621592Z test_sparse_csr_unary_inplace_log1p_cpu_int64 (__main__.TestSparseCSRCPU) ... ok (0.018s) 2023-01-11T21:22:05.4621917Z test_sparse_csr_unary_inplace_log1p_cpu_int8 (__main__.TestSparseCSRCPU) ... ok (0.018s) 2023-01-11T21:22:05.4622239Z test_sparse_csr_unary_inplace_log1p_cpu_uint8 (__main__.TestSparseCSRCPU) ... ok (0.018s) 2023-01-11T21:22:05.4622565Z test_sparse_csr_unary_inplace_neg_cpu_bfloat16 (__main__.TestSparseCSRCPU) ... ok (0.005s) 2023-01-11T21:22:05.4622885Z test_sparse_csr_unary_inplace_neg_cpu_complex128 (__main__.TestSparseCSRCPU) ... ok (0.004s) 2023-01-11T21:22:05.4623222Z test_sparse_csr_unary_inplace_neg_cpu_complex32 (__main__.TestSparseCSRCPU) ... ok (0.004s) 2023-01-11T21:22:05.4623553Z test_sparse_csr_unary_inplace_neg_cpu_complex64 (__main__.TestSparseCSRCPU) ... ok (0.004s) 2023-01-11T21:22:05.4623871Z test_sparse_csr_unary_inplace_neg_cpu_float16 (__main__.TestSparseCSRCPU) ... ok (0.018s) 2023-01-11T21:22:05.4624198Z test_sparse_csr_unary_inplace_neg_cpu_float32 (__main__.TestSparseCSRCPU) ... ok (0.004s) 2023-01-11T21:22:05.4624550Z test_sparse_csr_unary_inplace_neg_cpu_float64 (__main__.TestSparseCSRCPU) ... ok (0.004s) 2023-01-11T21:22:05.4624872Z test_sparse_csr_unary_inplace_neg_cpu_int16 (__main__.TestSparseCSRCPU) ... ok (0.003s) 2023-01-11T21:22:05.4625176Z test_sparse_csr_unary_inplace_neg_cpu_int32 (__main__.TestSparseCSRCPU) ... ok (0.003s) 2023-01-11T21:22:05.4625486Z test_sparse_csr_unary_inplace_neg_cpu_int64 (__main__.TestSparseCSRCPU) ... ok (0.003s) 2023-01-11T21:22:05.4625805Z test_sparse_csr_unary_inplace_neg_cpu_int8 (__main__.TestSparseCSRCPU) ... ok (0.003s) 2023-01-11T21:22:05.4626112Z test_sparse_csr_unary_inplace_neg_cpu_uint8 (__main__.TestSparseCSRCPU) ... ok (0.003s) 2023-01-11T21:22:05.4626498Z test_sparse_csr_unary_inplace_nn_functional_relu_cpu_bfloat16 (__main__.TestSparseCSRCPU) ... skip: Skipped! Inplace variant not supported! (0.002s) 2023-01-11T21:22:05.4626951Z test_sparse_csr_unary_inplace_nn_functional_relu_cpu_float32 (__main__.TestSparseCSRCPU) ... skip: Skipped! Inplace variant not supported! (0.002s) 2023-01-11T21:22:05.4627391Z test_sparse_csr_unary_inplace_nn_functional_relu_cpu_float64 (__main__.TestSparseCSRCPU) ... skip: Skipped! Inplace variant not supported! (0.002s) 2023-01-11T21:22:05.4627817Z test_sparse_csr_unary_inplace_nn_functional_relu_cpu_int16 (__main__.TestSparseCSRCPU) ... skip: Skipped! Inplace variant not supported! (0.002s) 2023-01-11T21:22:05.4628248Z test_sparse_csr_unary_inplace_nn_functional_relu_cpu_int32 (__main__.TestSparseCSRCPU) ... skip: Skipped! Inplace variant not supported! (0.002s) 2023-01-11T21:22:05.4628679Z test_sparse_csr_unary_inplace_nn_functional_relu_cpu_int64 (__main__.TestSparseCSRCPU) ... skip: Skipped! Inplace variant not supported! (0.002s) 2023-01-11T21:22:05.4629112Z test_sparse_csr_unary_inplace_nn_functional_relu_cpu_int8 (__main__.TestSparseCSRCPU) ... skip: Skipped! Inplace variant not supported! (0.002s) 2023-01-11T21:22:05.4629547Z test_sparse_csr_unary_inplace_nn_functional_relu_cpu_uint8 (__main__.TestSparseCSRCPU) ... skip: Skipped! Inplace variant not supported! (0.002s) 2023-01-11T21:22:05.4629966Z test_sparse_csr_unary_inplace_positive_cpu_bfloat16 (__main__.TestSparseCSRCPU) ... skip: Skipped! Inplace variant not supported! (0.002s) 2023-01-11T21:22:05.4630398Z test_sparse_csr_unary_inplace_positive_cpu_complex128 (__main__.TestSparseCSRCPU) ... skip: Skipped! Inplace variant not supported! (0.002s) 2023-01-11T21:22:05.4630835Z test_sparse_csr_unary_inplace_positive_cpu_complex32 (__main__.TestSparseCSRCPU) ... skip: Skipped! Inplace variant not supported! (0.002s) 2023-01-11T21:22:05.4631264Z test_sparse_csr_unary_inplace_positive_cpu_complex64 (__main__.TestSparseCSRCPU) ... skip: Skipped! Inplace variant not supported! (0.002s) 2023-01-11T21:22:05.4631675Z test_sparse_csr_unary_inplace_positive_cpu_float16 (__main__.TestSparseCSRCPU) ... skip: Skipped! Inplace variant not supported! (0.002s) 2023-01-11T21:22:05.4632136Z test_sparse_csr_unary_inplace_positive_cpu_float32 (__main__.TestSparseCSRCPU) ... skip: Skipped! Inplace variant not supported! (0.002s) 2023-01-11T21:22:05.4632555Z test_sparse_csr_unary_inplace_positive_cpu_float64 (__main__.TestSparseCSRCPU) ... skip: Skipped! Inplace variant not supported! (0.002s) 2023-01-11T21:22:05.4632966Z test_sparse_csr_unary_inplace_positive_cpu_int16 (__main__.TestSparseCSRCPU) ... skip: Skipped! Inplace variant not supported! (0.002s) 2023-01-11T21:22:05.4633365Z test_sparse_csr_unary_inplace_positive_cpu_int32 (__main__.TestSparseCSRCPU) ... skip: Skipped! Inplace variant not supported! (0.002s) 2023-01-11T21:22:05.4633769Z test_sparse_csr_unary_inplace_positive_cpu_int64 (__main__.TestSparseCSRCPU) ... skip: Skipped! Inplace variant not supported! (0.002s) 2023-01-11T21:22:05.4634188Z test_sparse_csr_unary_inplace_positive_cpu_int8 (__main__.TestSparseCSRCPU) ... skip: Skipped! Inplace variant not supported! (0.002s) 2023-01-11T21:22:05.4634630Z test_sparse_csr_unary_inplace_positive_cpu_uint8 (__main__.TestSparseCSRCPU) ... skip: Skipped! Inplace variant not supported! (0.002s) 2023-01-11T21:22:05.4634994Z test_sparse_csr_unary_inplace_rad2deg_cpu_bfloat16 (__main__.TestSparseCSRCPU) ... ok (0.004s) 2023-01-11T21:22:05.4635330Z test_sparse_csr_unary_inplace_rad2deg_cpu_bool (__main__.TestSparseCSRCPU) ... ok (0.022s) 2023-01-11T21:22:05.4635677Z test_sparse_csr_unary_inplace_rad2deg_cpu_float16 (__main__.TestSparseCSRCPU) ... ok (0.004s) 2023-01-11T21:22:05.4636013Z test_sparse_csr_unary_inplace_rad2deg_cpu_float32 (__main__.TestSparseCSRCPU) ... ok (0.004s) 2023-01-11T21:22:05.4636329Z test_sparse_csr_unary_inplace_rad2deg_cpu_float64 (__main__.TestSparseCSRCPU) ... ok (0.004s) 2023-01-11T21:22:05.4636655Z test_sparse_csr_unary_inplace_rad2deg_cpu_int16 (__main__.TestSparseCSRCPU) ... ok (0.022s) 2023-01-11T21:22:05.4636991Z test_sparse_csr_unary_inplace_rad2deg_cpu_int32 (__main__.TestSparseCSRCPU) ... ok (0.022s) 2023-01-11T21:22:05.4637308Z test_sparse_csr_unary_inplace_rad2deg_cpu_int64 (__main__.TestSparseCSRCPU) ... ok (0.022s) 2023-01-11T21:22:05.4637636Z test_sparse_csr_unary_inplace_rad2deg_cpu_int8 (__main__.TestSparseCSRCPU) ... ok (0.022s) 2023-01-11T21:22:05.4637962Z test_sparse_csr_unary_inplace_rad2deg_cpu_uint8 (__main__.TestSparseCSRCPU) ... ok (0.022s) 2023-01-11T21:22:05.4638290Z test_sparse_csr_unary_inplace_round_cpu_bfloat16 (__main__.TestSparseCSRCPU) ... ok (0.004s) 2023-01-11T21:22:05.4638604Z test_sparse_csr_unary_inplace_round_cpu_float32 (__main__.TestSparseCSRCPU) ... ok (0.004s) 2023-01-11T21:22:05.4638926Z test_sparse_csr_unary_inplace_round_cpu_float64 (__main__.TestSparseCSRCPU) ... ok (0.004s) 2023-01-11T21:22:05.4639249Z test_sparse_csr_unary_inplace_round_cpu_int16 (__main__.TestSparseCSRCPU) ... ok (0.003s) 2023-01-11T21:22:05.4639557Z test_sparse_csr_unary_inplace_round_cpu_int32 (__main__.TestSparseCSRCPU) ... ok (0.003s) 2023-01-11T21:22:05.4639875Z test_sparse_csr_unary_inplace_round_cpu_int64 (__main__.TestSparseCSRCPU) ... ok (0.003s) 2023-01-11T21:22:05.4640200Z test_sparse_csr_unary_inplace_round_cpu_int8 (__main__.TestSparseCSRCPU) ... ok (0.003s) 2023-01-11T21:22:05.4640523Z test_sparse_csr_unary_inplace_round_cpu_uint8 (__main__.TestSparseCSRCPU) ... ok (0.003s) 2023-01-11T21:22:05.4641053Z test_sparse_csr_unary_inplace_sgn_cpu_bfloat16 (__main__.TestSparseCSRCPU) ... ok (0.004s) 2023-01-11T21:22:05.4641634Z test_sparse_csr_unary_inplace_sgn_cpu_bool (__main__.TestSparseCSRCPU) ... ok (0.003s) 2023-01-11T21:22:05.4642057Z test_sparse_csr_unary_inplace_sgn_cpu_complex128 (__main__.TestSparseCSRCPU) ... ok (0.004s) 2023-01-11T21:22:05.4642395Z test_sparse_csr_unary_inplace_sgn_cpu_complex32 (__main__.TestSparseCSRCPU) ... ok (0.004s) 2023-01-11T21:22:05.4642713Z test_sparse_csr_unary_inplace_sgn_cpu_complex64 (__main__.TestSparseCSRCPU) ... ok (0.004s) 2023-01-11T21:22:05.4643126Z test_sparse_csr_unary_inplace_sgn_cpu_float16 (__main__.TestSparseCSRCPU) ... ok (0.004s) 2023-01-11T21:22:05.4643454Z test_sparse_csr_unary_inplace_sgn_cpu_float32 (__main__.TestSparseCSRCPU) ... ok (0.004s) 2023-01-11T21:22:05.4643763Z test_sparse_csr_unary_inplace_sgn_cpu_float64 (__main__.TestSparseCSRCPU) ... ok (0.004s) 2023-01-11T21:22:05.4644081Z test_sparse_csr_unary_inplace_sgn_cpu_int16 (__main__.TestSparseCSRCPU) ... ok (0.003s) 2023-01-11T21:22:05.4644400Z test_sparse_csr_unary_inplace_sgn_cpu_int32 (__main__.TestSparseCSRCPU) ... ok (0.003s) 2023-01-11T21:22:05.4644718Z test_sparse_csr_unary_inplace_sgn_cpu_int64 (__main__.TestSparseCSRCPU) ... ok (0.003s) 2023-01-11T21:22:05.4645026Z test_sparse_csr_unary_inplace_sgn_cpu_int8 (__main__.TestSparseCSRCPU) ... ok (0.003s) 2023-01-11T21:22:05.4645349Z test_sparse_csr_unary_inplace_sgn_cpu_uint8 (__main__.TestSparseCSRCPU) ... ok (0.003s) 2023-01-11T21:22:05.4645672Z test_sparse_csr_unary_inplace_sign_cpu_bfloat16 (__main__.TestSparseCSRCPU) ... ok (0.004s) 2023-01-11T21:22:05.4645983Z test_sparse_csr_unary_inplace_sign_cpu_bool (__main__.TestSparseCSRCPU) ... ok (0.003s) 2023-01-11T21:22:05.4646348Z test_sparse_csr_unary_inplace_sign_cpu_float16 (__main__.TestSparseCSRCPU) ... ok (0.004s) 2023-01-11T21:22:05.4646675Z test_sparse_csr_unary_inplace_sign_cpu_float32 (__main__.TestSparseCSRCPU) ... ok (0.004s) 2023-01-11T21:22:05.4646997Z test_sparse_csr_unary_inplace_sign_cpu_float64 (__main__.TestSparseCSRCPU) ... ok (0.004s) 2023-01-11T21:22:05.4647298Z test_sparse_csr_unary_inplace_sign_cpu_int16 (__main__.TestSparseCSRCPU) ... ok (0.003s) 2023-01-11T21:22:05.4647621Z test_sparse_csr_unary_inplace_sign_cpu_int32 (__main__.TestSparseCSRCPU) ... ok (0.003s) 2023-01-11T21:22:05.4647937Z test_sparse_csr_unary_inplace_sign_cpu_int64 (__main__.TestSparseCSRCPU) ... ok (0.003s) 2023-01-11T21:22:05.4648253Z test_sparse_csr_unary_inplace_sign_cpu_int8 (__main__.TestSparseCSRCPU) ... ok (0.003s) 2023-01-11T21:22:05.4648561Z test_sparse_csr_unary_inplace_sign_cpu_uint8 (__main__.TestSparseCSRCPU) ... ok (0.003s) 2023-01-11T21:22:05.4648937Z test_sparse_csr_unary_inplace_signbit_cpu_bfloat16 (__main__.TestSparseCSRCPU) ... skip: Skipped! Inplace variant not supported! (0.002s) 2023-01-11T21:22:05.4649366Z test_sparse_csr_unary_inplace_signbit_cpu_bool (__main__.TestSparseCSRCPU) ... skip: Skipped! Inplace variant not supported! (0.002s) 2023-01-11T21:22:05.4649786Z test_sparse_csr_unary_inplace_signbit_cpu_float16 (__main__.TestSparseCSRCPU) ... skip: Skipped! Inplace variant not supported! (0.002s) 2023-01-11T21:22:05.4650194Z test_sparse_csr_unary_inplace_signbit_cpu_float32 (__main__.TestSparseCSRCPU) ... skip: Skipped! Inplace variant not supported! (0.002s) 2023-01-11T21:22:05.4650609Z test_sparse_csr_unary_inplace_signbit_cpu_float64 (__main__.TestSparseCSRCPU) ... skip: Skipped! Inplace variant not supported! (0.002s) 2023-01-11T21:22:05.4651022Z test_sparse_csr_unary_inplace_signbit_cpu_int16 (__main__.TestSparseCSRCPU) ... skip: Skipped! Inplace variant not supported! (0.002s) 2023-01-11T21:22:05.4651440Z test_sparse_csr_unary_inplace_signbit_cpu_int32 (__main__.TestSparseCSRCPU) ... skip: Skipped! Inplace variant not supported! (0.002s) 2023-01-11T21:22:05.4651837Z test_sparse_csr_unary_inplace_signbit_cpu_int64 (__main__.TestSparseCSRCPU) ... skip: Skipped! Inplace variant not supported! (0.002s) 2023-01-11T21:22:05.4652245Z test_sparse_csr_unary_inplace_signbit_cpu_int8 (__main__.TestSparseCSRCPU) ... skip: Skipped! Inplace variant not supported! (0.002s) 2023-01-11T21:22:05.4652655Z test_sparse_csr_unary_inplace_signbit_cpu_uint8 (__main__.TestSparseCSRCPU) ... skip: Skipped! Inplace variant not supported! (0.002s) 2023-01-11T21:22:05.4653020Z test_sparse_csr_unary_inplace_sin_cpu_bfloat16 (__main__.TestSparseCSRCPU) ... ok (0.042s) 2023-01-11T21:22:05.4653331Z test_sparse_csr_unary_inplace_sin_cpu_bool (__main__.TestSparseCSRCPU) ... ok (0.018s) 2023-01-11T21:22:05.4653690Z test_sparse_csr_unary_inplace_sin_cpu_complex128 (__main__.TestSparseCSRCPU) ... ok (0.004s) 2023-01-11T21:22:05.4654027Z test_sparse_csr_unary_inplace_sin_cpu_complex64 (__main__.TestSparseCSRCPU) ... ok (0.004s) 2023-01-11T21:22:05.4654343Z test_sparse_csr_unary_inplace_sin_cpu_float32 (__main__.TestSparseCSRCPU) ... ok (0.004s) 2023-01-11T21:22:05.4654667Z test_sparse_csr_unary_inplace_sin_cpu_float64 (__main__.TestSparseCSRCPU) ... ok (0.004s) 2023-01-11T21:22:05.4654988Z test_sparse_csr_unary_inplace_sin_cpu_int16 (__main__.TestSparseCSRCPU) ... ok (0.017s) 2023-01-11T21:22:05.4655306Z test_sparse_csr_unary_inplace_sin_cpu_int32 (__main__.TestSparseCSRCPU) ... ok (0.017s) 2023-01-11T21:22:05.4655609Z test_sparse_csr_unary_inplace_sin_cpu_int64 (__main__.TestSparseCSRCPU) ... ok (0.017s) 2023-01-11T21:22:05.4655921Z test_sparse_csr_unary_inplace_sin_cpu_int8 (__main__.TestSparseCSRCPU) ... ok (0.018s) 2023-01-11T21:22:05.4656235Z test_sparse_csr_unary_inplace_sin_cpu_uint8 (__main__.TestSparseCSRCPU) ... ok (0.018s) 2023-01-11T21:22:05.4656543Z test_sparse_csr_unary_inplace_sinh_cpu_bfloat16 (__main__.TestSparseCSRCPU) ... ok (0.004s) 2023-01-11T21:22:05.4656893Z test_sparse_csr_unary_inplace_sinh_cpu_bool (__main__.TestSparseCSRCPU) ... ok (0.018s) 2023-01-11T21:22:05.4657298Z test_sparse_csr_unary_inplace_sinh_cpu_complex128 (__main__.TestSparseCSRCPU) ... ok (0.004s) 2023-01-11T21:22:05.4657637Z test_sparse_csr_unary_inplace_sinh_cpu_complex64 (__main__.TestSparseCSRCPU) ... ok (0.004s) 2023-01-11T21:22:05.4657953Z test_sparse_csr_unary_inplace_sinh_cpu_float32 (__main__.TestSparseCSRCPU) ... ok (0.004s) 2023-01-11T21:22:05.4658281Z test_sparse_csr_unary_inplace_sinh_cpu_float64 (__main__.TestSparseCSRCPU) ... ok (0.004s) 2023-01-11T21:22:05.4658603Z test_sparse_csr_unary_inplace_sinh_cpu_int16 (__main__.TestSparseCSRCPU) ... ok (0.018s) 2023-01-11T21:22:05.4658927Z test_sparse_csr_unary_inplace_sinh_cpu_int32 (__main__.TestSparseCSRCPU) ... ok (0.018s) 2023-01-11T21:22:05.4659234Z test_sparse_csr_unary_inplace_sinh_cpu_int64 (__main__.TestSparseCSRCPU) ... ok (0.018s) 2023-01-11T21:22:05.4659558Z test_sparse_csr_unary_inplace_sinh_cpu_int8 (__main__.TestSparseCSRCPU) ... ok (0.018s) 2023-01-11T21:22:05.4659878Z test_sparse_csr_unary_inplace_sinh_cpu_uint8 (__main__.TestSparseCSRCPU) ... ok (0.018s) 2023-01-11T21:22:05.4660190Z test_sparse_csr_unary_inplace_sqrt_cpu_bfloat16 (__main__.TestSparseCSRCPU) ... ok (0.004s) 2023-01-11T21:22:05.4660516Z test_sparse_csr_unary_inplace_sqrt_cpu_bool (__main__.TestSparseCSRCPU) ... ok (0.018s) 2023-01-11T21:22:05.4660845Z test_sparse_csr_unary_inplace_sqrt_cpu_complex128 (__main__.TestSparseCSRCPU) ... ok (0.005s) 2023-01-11T21:22:05.4661179Z test_sparse_csr_unary_inplace_sqrt_cpu_complex64 (__main__.TestSparseCSRCPU) ... ok (0.004s) 2023-01-11T21:22:05.4661499Z test_sparse_csr_unary_inplace_sqrt_cpu_float32 (__main__.TestSparseCSRCPU) ... ok (0.004s) 2023-01-11T21:22:05.4661825Z test_sparse_csr_unary_inplace_sqrt_cpu_float64 (__main__.TestSparseCSRCPU) ... ok (0.004s) 2023-01-11T21:22:05.4662152Z test_sparse_csr_unary_inplace_sqrt_cpu_int16 (__main__.TestSparseCSRCPU) ... ok (0.042s) 2023-01-11T21:22:05.4662462Z test_sparse_csr_unary_inplace_sqrt_cpu_int32 (__main__.TestSparseCSRCPU) ... ok (0.018s) 2023-01-11T21:22:05.4662778Z test_sparse_csr_unary_inplace_sqrt_cpu_int64 (__main__.TestSparseCSRCPU) ... ok (0.018s) 2023-01-11T21:22:05.4663100Z test_sparse_csr_unary_inplace_sqrt_cpu_int8 (__main__.TestSparseCSRCPU) ... ok (0.018s) 2023-01-11T21:22:05.4663423Z test_sparse_csr_unary_inplace_sqrt_cpu_uint8 (__main__.TestSparseCSRCPU) ... ok (0.018s) 2023-01-11T21:22:05.4663731Z test_sparse_csr_unary_inplace_tan_cpu_bfloat16 (__main__.TestSparseCSRCPU) ... ok (0.004s) 2023-01-11T21:22:05.4664055Z test_sparse_csr_unary_inplace_tan_cpu_bool (__main__.TestSparseCSRCPU) ... ok (0.018s) 2023-01-11T21:22:05.4664379Z test_sparse_csr_unary_inplace_tan_cpu_complex128 (__main__.TestSparseCSRCPU) ... ok (0.006s) 2023-01-11T21:22:05.4664756Z test_sparse_csr_unary_inplace_tan_cpu_complex64 (__main__.TestSparseCSRCPU) ... ok (0.004s) 2023-01-11T21:22:05.4665076Z test_sparse_csr_unary_inplace_tan_cpu_float32 (__main__.TestSparseCSRCPU) ... ok (0.004s) 2023-01-11T21:22:05.4665399Z test_sparse_csr_unary_inplace_tan_cpu_float64 (__main__.TestSparseCSRCPU) ... ok (0.004s) 2023-01-11T21:22:05.4665718Z test_sparse_csr_unary_inplace_tan_cpu_int16 (__main__.TestSparseCSRCPU) ... ok (0.018s) 2023-01-11T21:22:05.4666026Z test_sparse_csr_unary_inplace_tan_cpu_int32 (__main__.TestSparseCSRCPU) ... ok (0.018s) 2023-01-11T21:22:05.4666342Z test_sparse_csr_unary_inplace_tan_cpu_int64 (__main__.TestSparseCSRCPU) ... ok (0.018s) 2023-01-11T21:22:05.4666659Z test_sparse_csr_unary_inplace_tan_cpu_int8 (__main__.TestSparseCSRCPU) ... ok (0.018s) 2023-01-11T21:22:05.4666977Z test_sparse_csr_unary_inplace_tan_cpu_uint8 (__main__.TestSparseCSRCPU) ... ok (0.018s) 2023-01-11T21:22:05.4667290Z test_sparse_csr_unary_inplace_tanh_cpu_bfloat16 (__main__.TestSparseCSRCPU) ... ok (0.005s) 2023-01-11T21:22:05.4667613Z test_sparse_csr_unary_inplace_tanh_cpu_bool (__main__.TestSparseCSRCPU) ... ok (0.018s) 2023-01-11T21:22:05.4667974Z test_sparse_csr_unary_inplace_tanh_cpu_complex128 (__main__.TestSparseCSRCPU) ... ok (0.005s) 2023-01-11T21:22:05.4668306Z test_sparse_csr_unary_inplace_tanh_cpu_complex64 (__main__.TestSparseCSRCPU) ... ok (0.004s) 2023-01-11T21:22:05.4668636Z test_sparse_csr_unary_inplace_tanh_cpu_float32 (__main__.TestSparseCSRCPU) ... ok (0.004s) 2023-01-11T21:22:05.4668963Z test_sparse_csr_unary_inplace_tanh_cpu_float64 (__main__.TestSparseCSRCPU) ... ok (0.004s) 2023-01-11T21:22:05.4669283Z test_sparse_csr_unary_inplace_tanh_cpu_int16 (__main__.TestSparseCSRCPU) ... ok (0.018s) 2023-01-11T21:22:05.4669590Z test_sparse_csr_unary_inplace_tanh_cpu_int32 (__main__.TestSparseCSRCPU) ... ok (0.018s) 2023-01-11T21:22:05.4669911Z test_sparse_csr_unary_inplace_tanh_cpu_int64 (__main__.TestSparseCSRCPU) ... ok (0.018s) 2023-01-11T21:22:05.4670230Z test_sparse_csr_unary_inplace_tanh_cpu_int8 (__main__.TestSparseCSRCPU) ... ok (0.018s) 2023-01-11T21:22:05.4670548Z test_sparse_csr_unary_inplace_tanh_cpu_uint8 (__main__.TestSparseCSRCPU) ... ok (0.018s) 2023-01-11T21:22:05.4670861Z test_sparse_csr_unary_inplace_trunc_cpu_bfloat16 (__main__.TestSparseCSRCPU) ... ok (0.004s) 2023-01-11T21:22:05.4671188Z test_sparse_csr_unary_inplace_trunc_cpu_float32 (__main__.TestSparseCSRCPU) ... ok (0.004s) 2023-01-11T21:22:05.4671513Z test_sparse_csr_unary_inplace_trunc_cpu_float64 (__main__.TestSparseCSRCPU) ... ok (0.004s) 2023-01-11T21:22:05.4671823Z test_sparse_csr_unary_inplace_trunc_cpu_int16 (__main__.TestSparseCSRCPU) ... ok (0.003s) 2023-01-11T21:22:05.4672142Z test_sparse_csr_unary_inplace_trunc_cpu_int32 (__main__.TestSparseCSRCPU) ... ok (0.003s) 2023-01-11T21:22:05.4672460Z test_sparse_csr_unary_inplace_trunc_cpu_int64 (__main__.TestSparseCSRCPU) ... ok (0.003s) 2023-01-11T21:22:05.4672783Z test_sparse_csr_unary_inplace_trunc_cpu_int8 (__main__.TestSparseCSRCPU) ... ok (0.003s) 2023-01-11T21:22:05.4673090Z test_sparse_csr_unary_inplace_trunc_cpu_uint8 (__main__.TestSparseCSRCPU) ... ok (0.003s) 2023-01-11T21:22:05.4673412Z test_sparse_csr_unary_out_abs_cpu_bfloat16 (__main__.TestSparseCSRCPU) ... ok (0.010s) 2023-01-11T21:22:05.4674261Z test_sparse_csr_unary_out_abs_cpu_complex128 (__main__.TestSparseCSRCPU) ... /opt/conda/lib/python3.7/site-packages/torch/testing/_internal/opinfo/core.py:1068: UserWarning: Casting complex values to real discards the imaginary part (Triggered internally at /var/lib/jenkins/workspace/aten/src/ATen/native/Copy.cpp:276.) 2023-01-11T21:22:05.4674759Z return self.op(*args, **kwargs) 2023-01-11T21:22:05.4674931Z ok (0.013s) 2023-01-11T21:22:05.4675177Z test_sparse_csr_unary_out_abs_cpu_complex32 (__main__.TestSparseCSRCPU) ... ok (0.021s) 2023-01-11T21:22:05.4675499Z test_sparse_csr_unary_out_abs_cpu_complex64 (__main__.TestSparseCSRCPU) ... ok (0.010s) 2023-01-11T21:22:05.4675841Z test_sparse_csr_unary_out_abs_cpu_float16 (__main__.TestSparseCSRCPU) ... ok (0.010s) 2023-01-11T21:22:05.4676157Z test_sparse_csr_unary_out_abs_cpu_float32 (__main__.TestSparseCSRCPU) ... ok (0.010s) 2023-01-11T21:22:05.4676476Z test_sparse_csr_unary_out_abs_cpu_float64 (__main__.TestSparseCSRCPU) ... ok (0.009s) 2023-01-11T21:22:05.4676788Z test_sparse_csr_unary_out_abs_cpu_int16 (__main__.TestSparseCSRCPU) ... ok (0.009s) 2023-01-11T21:22:05.4677085Z test_sparse_csr_unary_out_abs_cpu_int32 (__main__.TestSparseCSRCPU) ... ok (0.009s) 2023-01-11T21:22:05.4677393Z test_sparse_csr_unary_out_abs_cpu_int64 (__main__.TestSparseCSRCPU) ... ok (0.009s) 2023-01-11T21:22:05.4677539Z test_sparse_csr_unary_out_abs_cpu_int8 (__main__.TestSparseCSRCPU) ... ok (0.009s) 2023-01-11T21:22:05.4677684Z test_sparse_csr_unary_out_abs_cpu_uint8 (__main__.TestSparseCSRCPU) ... ok (0.010s) 2023-01-11T21:22:05.4677837Z test_sparse_csr_unary_out_angle_cpu_bfloat16 (__main__.TestSparseCSRCPU) ... ok (0.010s) 2023-01-11T21:22:05.4677985Z test_sparse_csr_unary_out_angle_cpu_bool (__main__.TestSparseCSRCPU) ... ok (0.010s) 2023-01-11T21:22:05.4678155Z test_sparse_csr_unary_out_angle_cpu_complex128 (__main__.TestSparseCSRCPU) ... ok (0.012s) 2023-01-11T21:22:05.4678309Z test_sparse_csr_unary_out_angle_cpu_complex64 (__main__.TestSparseCSRCPU) ... ok (0.010s) 2023-01-11T21:22:05.4678458Z test_sparse_csr_unary_out_angle_cpu_float16 (__main__.TestSparseCSRCPU) ... ok (0.010s) 2023-01-11T21:22:05.4678606Z test_sparse_csr_unary_out_angle_cpu_float32 (__main__.TestSparseCSRCPU) ... ok (0.009s) 2023-01-11T21:22:05.4678749Z test_sparse_csr_unary_out_angle_cpu_float64 (__main__.TestSparseCSRCPU) ... ok (0.009s) 2023-01-11T21:22:05.4678897Z test_sparse_csr_unary_out_angle_cpu_int16 (__main__.TestSparseCSRCPU) ... ok (0.010s) 2023-01-11T21:22:05.4679041Z test_sparse_csr_unary_out_angle_cpu_int32 (__main__.TestSparseCSRCPU) ... ok (0.010s) 2023-01-11T21:22:05.4679182Z test_sparse_csr_unary_out_angle_cpu_int64 (__main__.TestSparseCSRCPU) ... ok (0.010s) 2023-01-11T21:22:05.4679318Z test_sparse_csr_unary_out_angle_cpu_int8 (__main__.TestSparseCSRCPU) ... ok (0.010s) 2023-01-11T21:22:05.4679461Z test_sparse_csr_unary_out_angle_cpu_uint8 (__main__.TestSparseCSRCPU) ... ok (0.010s) 2023-01-11T21:22:05.4679607Z test_sparse_csr_unary_out_asin_cpu_bfloat16 (__main__.TestSparseCSRCPU) ... ok (0.010s) 2023-01-11T21:22:05.4679751Z test_sparse_csr_unary_out_asin_cpu_bool (__main__.TestSparseCSRCPU) ... ok (0.010s) 2023-01-11T21:22:05.4679903Z test_sparse_csr_unary_out_asin_cpu_complex128 (__main__.TestSparseCSRCPU) ... ok (0.010s) 2023-01-11T21:22:05.4680054Z test_sparse_csr_unary_out_asin_cpu_complex64 (__main__.TestSparseCSRCPU) ... ok (0.010s) 2023-01-11T21:22:05.4680201Z test_sparse_csr_unary_out_asin_cpu_float32 (__main__.TestSparseCSRCPU) ... ok (0.010s) 2023-01-11T21:22:05.4680346Z test_sparse_csr_unary_out_asin_cpu_float64 (__main__.TestSparseCSRCPU) ... ok (0.010s) 2023-01-11T21:22:05.4680491Z test_sparse_csr_unary_out_asin_cpu_int16 (__main__.TestSparseCSRCPU) ... ok (0.010s) 2023-01-11T21:22:05.4680770Z test_sparse_csr_unary_out_asin_cpu_int32 (__main__.TestSparseCSRCPU) ... ok (0.009s) 2023-01-11T21:22:05.4680925Z test_sparse_csr_unary_out_asin_cpu_int64 (__main__.TestSparseCSRCPU) ... ok (0.009s) 2023-01-11T21:22:05.4681073Z test_sparse_csr_unary_out_asin_cpu_int8 (__main__.TestSparseCSRCPU) ... ok (0.009s) 2023-01-11T21:22:05.4681224Z test_sparse_csr_unary_out_asin_cpu_uint8 (__main__.TestSparseCSRCPU) ... ok (0.008s) 2023-01-11T21:22:05.4681376Z test_sparse_csr_unary_out_asinh_cpu_bfloat16 (__main__.TestSparseCSRCPU) ... ok (0.009s) 2023-01-11T21:22:05.4681522Z test_sparse_csr_unary_out_asinh_cpu_bool (__main__.TestSparseCSRCPU) ... ok (0.009s) 2023-01-11T21:22:05.4681680Z test_sparse_csr_unary_out_asinh_cpu_complex128 (__main__.TestSparseCSRCPU) ... ok (0.010s) 2023-01-11T21:22:05.4681833Z test_sparse_csr_unary_out_asinh_cpu_complex64 (__main__.TestSparseCSRCPU) ... ok (0.010s) 2023-01-11T21:22:05.4682022Z test_sparse_csr_unary_out_asinh_cpu_float32 (__main__.TestSparseCSRCPU) ... ok (0.009s) 2023-01-11T21:22:05.4682173Z test_sparse_csr_unary_out_asinh_cpu_float64 (__main__.TestSparseCSRCPU) ... ok (0.010s) 2023-01-11T21:22:05.4682319Z test_sparse_csr_unary_out_asinh_cpu_int16 (__main__.TestSparseCSRCPU) ... ok (0.010s) 2023-01-11T21:22:05.4682465Z test_sparse_csr_unary_out_asinh_cpu_int32 (__main__.TestSparseCSRCPU) ... ok (0.009s) 2023-01-11T21:22:05.4682611Z test_sparse_csr_unary_out_asinh_cpu_int64 (__main__.TestSparseCSRCPU) ... ok (0.010s) 2023-01-11T21:22:05.4682756Z test_sparse_csr_unary_out_asinh_cpu_int8 (__main__.TestSparseCSRCPU) ... ok (0.010s) 2023-01-11T21:22:05.4682898Z test_sparse_csr_unary_out_asinh_cpu_uint8 (__main__.TestSparseCSRCPU) ... ok (0.010s) 2023-01-11T21:22:05.4683048Z test_sparse_csr_unary_out_atan_cpu_bfloat16 (__main__.TestSparseCSRCPU) ... ok (0.010s) 2023-01-11T21:22:05.4683196Z test_sparse_csr_unary_out_atan_cpu_bool (__main__.TestSparseCSRCPU) ... ok (0.010s) 2023-01-11T21:22:05.4683334Z test_sparse_csr_unary_out_atan_cpu_complex128 (__main__.TestSparseCSRCPU) ... ok (0.010s) 2023-01-11T21:22:05.4683526Z test_sparse_csr_unary_out_atan_cpu_complex64 (__main__.TestSparseCSRCPU) ... ok (0.010s) 2023-01-11T21:22:05.4683677Z test_sparse_csr_unary_out_atan_cpu_float32 (__main__.TestSparseCSRCPU) ... ok (0.010s) 2023-01-11T21:22:05.4683824Z test_sparse_csr_unary_out_atan_cpu_float64 (__main__.TestSparseCSRCPU) ... ok (0.010s) 2023-01-11T21:22:05.4683966Z test_sparse_csr_unary_out_atan_cpu_int16 (__main__.TestSparseCSRCPU) ... ok (0.010s) 2023-01-11T21:22:05.4684109Z test_sparse_csr_unary_out_atan_cpu_int32 (__main__.TestSparseCSRCPU) ... ok (0.010s) 2023-01-11T21:22:05.4684248Z test_sparse_csr_unary_out_atan_cpu_int64 (__main__.TestSparseCSRCPU) ... ok (0.011s) 2023-01-11T21:22:05.4684390Z test_sparse_csr_unary_out_atan_cpu_int8 (__main__.TestSparseCSRCPU) ... ok (0.011s) 2023-01-11T21:22:05.4684526Z test_sparse_csr_unary_out_atan_cpu_uint8 (__main__.TestSparseCSRCPU) ... ok (0.010s) 2023-01-11T21:22:05.4684674Z test_sparse_csr_unary_out_atanh_cpu_bfloat16 (__main__.TestSparseCSRCPU) ... ok (0.010s) 2023-01-11T21:22:05.4684818Z test_sparse_csr_unary_out_atanh_cpu_bool (__main__.TestSparseCSRCPU) ... ok (0.020s) 2023-01-11T21:22:05.4684971Z test_sparse_csr_unary_out_atanh_cpu_complex128 (__main__.TestSparseCSRCPU) ... ok (0.011s) 2023-01-11T21:22:05.4685122Z test_sparse_csr_unary_out_atanh_cpu_complex64 (__main__.TestSparseCSRCPU) ... ok (0.011s) 2023-01-11T21:22:05.4685270Z test_sparse_csr_unary_out_atanh_cpu_float32 (__main__.TestSparseCSRCPU) ... ok (0.011s) 2023-01-11T21:22:05.4685418Z test_sparse_csr_unary_out_atanh_cpu_float64 (__main__.TestSparseCSRCPU) ... ok (0.011s) 2023-01-11T21:22:05.4685563Z test_sparse_csr_unary_out_atanh_cpu_int16 (__main__.TestSparseCSRCPU) ... ok (0.037s) 2023-01-11T21:22:05.4685697Z test_sparse_csr_unary_out_atanh_cpu_int32 (__main__.TestSparseCSRCPU) ... ok (0.011s) 2023-01-11T21:22:05.4685842Z test_sparse_csr_unary_out_atanh_cpu_int64 (__main__.TestSparseCSRCPU) ... ok (0.011s) 2023-01-11T21:22:05.4685987Z test_sparse_csr_unary_out_atanh_cpu_int8 (__main__.TestSparseCSRCPU) ... ok (0.011s) 2023-01-11T21:22:05.4686133Z test_sparse_csr_unary_out_atanh_cpu_uint8 (__main__.TestSparseCSRCPU) ... ok (0.009s) 2023-01-11T21:22:05.4686283Z test_sparse_csr_unary_out_ceil_cpu_bfloat16 (__main__.TestSparseCSRCPU) ... ok (0.011s) 2023-01-11T21:22:05.4686430Z test_sparse_csr_unary_out_ceil_cpu_float32 (__main__.TestSparseCSRCPU) ... ok (0.010s) 2023-01-11T21:22:05.4686580Z test_sparse_csr_unary_out_ceil_cpu_float64 (__main__.TestSparseCSRCPU) ... ok (0.010s) 2023-01-11T21:22:05.4686725Z test_sparse_csr_unary_out_ceil_cpu_int16 (__main__.TestSparseCSRCPU) ... ok (0.009s) 2023-01-11T21:22:05.4686868Z test_sparse_csr_unary_out_ceil_cpu_int32 (__main__.TestSparseCSRCPU) ... ok (0.009s) 2023-01-11T21:22:05.4686999Z test_sparse_csr_unary_out_ceil_cpu_int64 (__main__.TestSparseCSRCPU) ... ok (0.009s) 2023-01-11T21:22:05.4687188Z test_sparse_csr_unary_out_ceil_cpu_int8 (__main__.TestSparseCSRCPU) ... ok (0.009s) 2023-01-11T21:22:05.4687331Z test_sparse_csr_unary_out_ceil_cpu_uint8 (__main__.TestSparseCSRCPU) ... ok (0.009s) 2023-01-11T21:22:05.4687494Z test_sparse_csr_unary_out_conj_physical_cpu_bfloat16 (__main__.TestSparseCSRCPU) ... ok (0.010s) 2023-01-11T21:22:05.4687652Z test_sparse_csr_unary_out_conj_physical_cpu_bool (__main__.TestSparseCSRCPU) ... ok (0.009s) 2023-01-11T21:22:05.4687817Z test_sparse_csr_unary_out_conj_physical_cpu_complex128 (__main__.TestSparseCSRCPU) ... ok (0.010s) 2023-01-11T21:22:05.4687981Z test_sparse_csr_unary_out_conj_physical_cpu_complex32 (__main__.TestSparseCSRCPU) ... ok (0.010s) 2023-01-11T21:22:05.4688142Z test_sparse_csr_unary_out_conj_physical_cpu_complex64 (__main__.TestSparseCSRCPU) ... ok (0.010s) 2023-01-11T21:22:05.4688291Z test_sparse_csr_unary_out_conj_physical_cpu_float16 (__main__.TestSparseCSRCPU) ... ok (0.010s) 2023-01-11T21:22:05.4688448Z test_sparse_csr_unary_out_conj_physical_cpu_float32 (__main__.TestSparseCSRCPU) ... ok (0.010s) 2023-01-11T21:22:05.4688635Z test_sparse_csr_unary_out_conj_physical_cpu_float64 (__main__.TestSparseCSRCPU) ... ok (0.009s) 2023-01-11T21:22:05.4688795Z test_sparse_csr_unary_out_conj_physical_cpu_int16 (__main__.TestSparseCSRCPU) ... ok (0.009s) 2023-01-11T21:22:05.4688947Z test_sparse_csr_unary_out_conj_physical_cpu_int32 (__main__.TestSparseCSRCPU) ... ok (0.009s) 2023-01-11T21:22:05.4689098Z test_sparse_csr_unary_out_conj_physical_cpu_int64 (__main__.TestSparseCSRCPU) ... ok (0.009s) 2023-01-11T21:22:05.4689255Z test_sparse_csr_unary_out_conj_physical_cpu_int8 (__main__.TestSparseCSRCPU) ... ok (0.009s) 2023-01-11T21:22:05.4689405Z test_sparse_csr_unary_out_conj_physical_cpu_uint8 (__main__.TestSparseCSRCPU) ... ok (0.009s) 2023-01-11T21:22:05.4689558Z test_sparse_csr_unary_out_deg2rad_cpu_bfloat16 (__main__.TestSparseCSRCPU) ... ok (0.010s) 2023-01-11T21:22:05.4689697Z test_sparse_csr_unary_out_deg2rad_cpu_bool (__main__.TestSparseCSRCPU) ... ok (0.009s) 2023-01-11T21:22:05.4689847Z test_sparse_csr_unary_out_deg2rad_cpu_float16 (__main__.TestSparseCSRCPU) ... ok (0.010s) 2023-01-11T21:22:05.4690000Z test_sparse_csr_unary_out_deg2rad_cpu_float32 (__main__.TestSparseCSRCPU) ... ok (0.010s) 2023-01-11T21:22:05.4690150Z test_sparse_csr_unary_out_deg2rad_cpu_float64 (__main__.TestSparseCSRCPU) ... ok (0.009s) 2023-01-11T21:22:05.4690297Z test_sparse_csr_unary_out_deg2rad_cpu_int16 (__main__.TestSparseCSRCPU) ... ok (0.010s) 2023-01-11T21:22:05.4690443Z test_sparse_csr_unary_out_deg2rad_cpu_int32 (__main__.TestSparseCSRCPU) ... ok (0.010s) 2023-01-11T21:22:05.4690586Z test_sparse_csr_unary_out_deg2rad_cpu_int64 (__main__.TestSparseCSRCPU) ... ok (0.010s) 2023-01-11T21:22:05.4690734Z test_sparse_csr_unary_out_deg2rad_cpu_int8 (__main__.TestSparseCSRCPU) ... ok (0.010s) 2023-01-11T21:22:05.4690878Z test_sparse_csr_unary_out_deg2rad_cpu_uint8 (__main__.TestSparseCSRCPU) ... ok (0.010s) 2023-01-11T21:22:05.4691013Z test_sparse_csr_unary_out_erf_cpu_bfloat16 (__main__.TestSparseCSRCPU) ... ok (0.010s) 2023-01-11T21:22:05.4691160Z test_sparse_csr_unary_out_erf_cpu_bool (__main__.TestSparseCSRCPU) ... ok (0.010s) 2023-01-11T21:22:05.4691307Z test_sparse_csr_unary_out_erf_cpu_float32 (__main__.TestSparseCSRCPU) ... ok (0.010s) 2023-01-11T21:22:05.4691452Z test_sparse_csr_unary_out_erf_cpu_float64 (__main__.TestSparseCSRCPU) ... ok (0.010s) 2023-01-11T21:22:05.4691594Z test_sparse_csr_unary_out_erf_cpu_int16 (__main__.TestSparseCSRCPU) ... ok (0.010s) 2023-01-11T21:22:05.4691736Z test_sparse_csr_unary_out_erf_cpu_int32 (__main__.TestSparseCSRCPU) ... ok (0.010s) 2023-01-11T21:22:05.4691878Z test_sparse_csr_unary_out_erf_cpu_int64 (__main__.TestSparseCSRCPU) ... ok (0.010s) 2023-01-11T21:22:05.4692021Z test_sparse_csr_unary_out_erf_cpu_int8 (__main__.TestSparseCSRCPU) ... ok (0.010s) 2023-01-11T21:22:05.4692150Z test_sparse_csr_unary_out_erf_cpu_uint8 (__main__.TestSparseCSRCPU) ... ok (0.010s) 2023-01-11T21:22:05.4692330Z test_sparse_csr_unary_out_erfinv_cpu_bfloat16 (__main__.TestSparseCSRCPU) ... ok (0.010s) 2023-01-11T21:22:05.4692477Z test_sparse_csr_unary_out_erfinv_cpu_bool (__main__.TestSparseCSRCPU) ... ok (0.010s) 2023-01-11T21:22:05.4692628Z test_sparse_csr_unary_out_erfinv_cpu_float32 (__main__.TestSparseCSRCPU) ... ok (0.010s) 2023-01-11T21:22:05.4692776Z test_sparse_csr_unary_out_erfinv_cpu_float64 (__main__.TestSparseCSRCPU) ... ok (0.010s) 2023-01-11T21:22:05.4692926Z test_sparse_csr_unary_out_erfinv_cpu_int16 (__main__.TestSparseCSRCPU) ... ok (0.009s) 2023-01-11T21:22:05.4693070Z test_sparse_csr_unary_out_erfinv_cpu_int32 (__main__.TestSparseCSRCPU) ... ok (0.009s) 2023-01-11T21:22:05.4693213Z test_sparse_csr_unary_out_erfinv_cpu_int64 (__main__.TestSparseCSRCPU) ... ok (0.009s) 2023-01-11T21:22:05.4693347Z test_sparse_csr_unary_out_erfinv_cpu_int8 (__main__.TestSparseCSRCPU) ... ok (0.020s) 2023-01-11T21:22:05.4693491Z test_sparse_csr_unary_out_erfinv_cpu_uint8 (__main__.TestSparseCSRCPU) ... ok (0.008s) 2023-01-11T21:22:05.4693643Z test_sparse_csr_unary_out_expm1_cpu_bfloat16 (__main__.TestSparseCSRCPU) ... ok (0.010s) 2023-01-11T21:22:05.4693816Z test_sparse_csr_unary_out_expm1_cpu_bool (__main__.TestSparseCSRCPU) ... ok (0.009s) 2023-01-11T21:22:05.4693965Z test_sparse_csr_unary_out_expm1_cpu_float32 (__main__.TestSparseCSRCPU) ... ok (0.010s) 2023-01-11T21:22:05.4694114Z test_sparse_csr_unary_out_expm1_cpu_float64 (__main__.TestSparseCSRCPU) ... ok (0.010s) 2023-01-11T21:22:05.4694259Z test_sparse_csr_unary_out_expm1_cpu_int16 (__main__.TestSparseCSRCPU) ... ok (0.010s) 2023-01-11T21:22:05.4694404Z test_sparse_csr_unary_out_expm1_cpu_int32 (__main__.TestSparseCSRCPU) ... ok (0.010s) 2023-01-11T21:22:05.4694547Z test_sparse_csr_unary_out_expm1_cpu_int64 (__main__.TestSparseCSRCPU) ... ok (0.010s) 2023-01-11T21:22:05.4694678Z test_sparse_csr_unary_out_expm1_cpu_int8 (__main__.TestSparseCSRCPU) ... ok (0.010s) 2023-01-11T21:22:05.4694823Z test_sparse_csr_unary_out_expm1_cpu_uint8 (__main__.TestSparseCSRCPU) ... ok (0.010s) 2023-01-11T21:22:05.4694975Z test_sparse_csr_unary_out_floor_cpu_bfloat16 (__main__.TestSparseCSRCPU) ... ok (0.009s) 2023-01-11T21:22:05.4695122Z test_sparse_csr_unary_out_floor_cpu_float32 (__main__.TestSparseCSRCPU) ... ok (0.010s) 2023-01-11T21:22:05.4695269Z test_sparse_csr_unary_out_floor_cpu_float64 (__main__.TestSparseCSRCPU) ... ok (0.009s) 2023-01-11T21:22:05.4695413Z test_sparse_csr_unary_out_floor_cpu_int16 (__main__.TestSparseCSRCPU) ... ok (0.009s) 2023-01-11T21:22:05.4695558Z test_sparse_csr_unary_out_floor_cpu_int32 (__main__.TestSparseCSRCPU) ... ok (0.009s) 2023-01-11T21:22:05.4695700Z test_sparse_csr_unary_out_floor_cpu_int64 (__main__.TestSparseCSRCPU) ... ok (0.009s) 2023-01-11T21:22:05.4695832Z test_sparse_csr_unary_out_floor_cpu_int8 (__main__.TestSparseCSRCPU) ... ok (0.009s) 2023-01-11T21:22:05.4695972Z test_sparse_csr_unary_out_floor_cpu_uint8 (__main__.TestSparseCSRCPU) ... ok (0.009s) 2023-01-11T21:22:05.4696121Z test_sparse_csr_unary_out_frac_cpu_bfloat16 (__main__.TestSparseCSRCPU) ... ok (0.009s) 2023-01-11T21:22:05.4696272Z test_sparse_csr_unary_out_frac_cpu_float16 (__main__.TestSparseCSRCPU) ... ok (0.009s) 2023-01-11T21:22:05.4696420Z test_sparse_csr_unary_out_frac_cpu_float32 (__main__.TestSparseCSRCPU) ... ok (0.009s) 2023-01-11T21:22:05.4696563Z test_sparse_csr_unary_out_frac_cpu_float64 (__main__.TestSparseCSRCPU) ... ok (0.009s) 2023-01-11T21:22:05.4696750Z test_sparse_csr_unary_out_isinf_cpu_bfloat16 (__main__.TestSparseCSRCPU) ... skip: Skipped! Out not supported (0.001s) 2023-01-11T21:22:05.4696933Z test_sparse_csr_unary_out_isinf_cpu_bool (__main__.TestSparseCSRCPU) ... skip: Skipped! Out not supported (0.001s) 2023-01-11T21:22:05.4697122Z test_sparse_csr_unary_out_isinf_cpu_complex128 (__main__.TestSparseCSRCPU) ... skip: Skipped! Out not supported (0.001s) 2023-01-11T21:22:05.4697383Z test_sparse_csr_unary_out_isinf_cpu_complex32 (__main__.TestSparseCSRCPU) ... skip: Skipped! Out not supported (0.001s) 2023-01-11T21:22:05.4697609Z test_sparse_csr_unary_out_isinf_cpu_complex64 (__main__.TestSparseCSRCPU) ... skip: Skipped! Out not supported (0.001s) 2023-01-11T21:22:05.4697792Z test_sparse_csr_unary_out_isinf_cpu_float16 (__main__.TestSparseCSRCPU) ... skip: Skipped! Out not supported (0.001s) 2023-01-11T21:22:05.4697976Z test_sparse_csr_unary_out_isinf_cpu_float32 (__main__.TestSparseCSRCPU) ... skip: Skipped! Out not supported (0.001s) 2023-01-11T21:22:05.4698156Z test_sparse_csr_unary_out_isinf_cpu_float64 (__main__.TestSparseCSRCPU) ... skip: Skipped! Out not supported (0.001s) 2023-01-11T21:22:05.4698337Z test_sparse_csr_unary_out_isinf_cpu_int16 (__main__.TestSparseCSRCPU) ... skip: Skipped! Out not supported (0.001s) 2023-01-11T21:22:05.4698517Z test_sparse_csr_unary_out_isinf_cpu_int32 (__main__.TestSparseCSRCPU) ... skip: Skipped! Out not supported (0.001s) 2023-01-11T21:22:05.4698699Z test_sparse_csr_unary_out_isinf_cpu_int64 (__main__.TestSparseCSRCPU) ... skip: Skipped! Out not supported (0.001s) 2023-01-11T21:22:05.4698909Z test_sparse_csr_unary_out_isinf_cpu_int8 (__main__.TestSparseCSRCPU) ... skip: Skipped! Out not supported (0.001s) 2023-01-11T21:22:05.4699092Z test_sparse_csr_unary_out_isinf_cpu_uint8 (__main__.TestSparseCSRCPU) ... skip: Skipped! Out not supported (0.001s) 2023-01-11T21:22:05.4699265Z test_sparse_csr_unary_out_isnan_cpu_bfloat16 (__main__.TestSparseCSRCPU) ... skip: Skipped! Out not supported (0.001s) 2023-01-11T21:22:05.4699447Z test_sparse_csr_unary_out_isnan_cpu_bool (__main__.TestSparseCSRCPU) ... skip: Skipped! Out not supported (0.001s) 2023-01-11T21:22:05.4699633Z test_sparse_csr_unary_out_isnan_cpu_complex128 (__main__.TestSparseCSRCPU) ... skip: Skipped! Out not supported (0.001s) 2023-01-11T21:22:05.4699817Z test_sparse_csr_unary_out_isnan_cpu_complex64 (__main__.TestSparseCSRCPU) ... skip: Skipped! Out not supported (0.001s) 2023-01-11T21:22:05.4700001Z test_sparse_csr_unary_out_isnan_cpu_float16 (__main__.TestSparseCSRCPU) ... skip: Skipped! Out not supported (0.001s) 2023-01-11T21:22:05.4700183Z test_sparse_csr_unary_out_isnan_cpu_float32 (__main__.TestSparseCSRCPU) ... skip: Skipped! Out not supported (0.001s) 2023-01-11T21:22:05.4700360Z test_sparse_csr_unary_out_isnan_cpu_float64 (__main__.TestSparseCSRCPU) ... skip: Skipped! Out not supported (0.001s) 2023-01-11T21:22:05.4700537Z test_sparse_csr_unary_out_isnan_cpu_int16 (__main__.TestSparseCSRCPU) ... skip: Skipped! Out not supported (0.001s) 2023-01-11T21:22:05.4700715Z test_sparse_csr_unary_out_isnan_cpu_int32 (__main__.TestSparseCSRCPU) ... skip: Skipped! Out not supported (0.001s) 2023-01-11T21:22:05.4700880Z test_sparse_csr_unary_out_isnan_cpu_int64 (__main__.TestSparseCSRCPU) ... skip: Skipped! Out not supported (0.001s) 2023-01-11T21:22:05.4701060Z test_sparse_csr_unary_out_isnan_cpu_int8 (__main__.TestSparseCSRCPU) ... skip: Skipped! Out not supported (0.001s) 2023-01-11T21:22:05.4701238Z test_sparse_csr_unary_out_isnan_cpu_uint8 (__main__.TestSparseCSRCPU) ... skip: Skipped! Out not supported (0.001s) 2023-01-11T21:22:05.4701396Z test_sparse_csr_unary_out_isneginf_cpu_bfloat16 (__main__.TestSparseCSRCPU) ... ok (0.012s) 2023-01-11T21:22:05.4701546Z test_sparse_csr_unary_out_isneginf_cpu_bool (__main__.TestSparseCSRCPU) ... ok (0.009s) 2023-01-11T21:22:05.4701701Z test_sparse_csr_unary_out_isneginf_cpu_float16 (__main__.TestSparseCSRCPU) ... ok (0.009s) 2023-01-11T21:22:05.4701853Z test_sparse_csr_unary_out_isneginf_cpu_float32 (__main__.TestSparseCSRCPU) ... ok (0.009s) 2023-01-11T21:22:05.4702005Z test_sparse_csr_unary_out_isneginf_cpu_float64 (__main__.TestSparseCSRCPU) ... ok (0.009s) 2023-01-11T21:22:05.4702154Z test_sparse_csr_unary_out_isneginf_cpu_int16 (__main__.TestSparseCSRCPU) ... ok (0.009s) 2023-01-11T21:22:05.4702294Z test_sparse_csr_unary_out_isneginf_cpu_int32 (__main__.TestSparseCSRCPU) ... ok (0.009s) 2023-01-11T21:22:05.4702471Z test_sparse_csr_unary_out_isneginf_cpu_int64 (__main__.TestSparseCSRCPU) ... ok (0.009s) 2023-01-11T21:22:05.4702619Z test_sparse_csr_unary_out_isneginf_cpu_int8 (__main__.TestSparseCSRCPU) ... ok (0.009s) 2023-01-11T21:22:05.4702768Z test_sparse_csr_unary_out_isneginf_cpu_uint8 (__main__.TestSparseCSRCPU) ... ok (0.009s) 2023-01-11T21:22:05.4702919Z test_sparse_csr_unary_out_isposinf_cpu_bfloat16 (__main__.TestSparseCSRCPU) ... ok (0.009s) 2023-01-11T21:22:05.4703067Z test_sparse_csr_unary_out_isposinf_cpu_bool (__main__.TestSparseCSRCPU) ... ok (0.009s) 2023-01-11T21:22:05.4703221Z test_sparse_csr_unary_out_isposinf_cpu_float16 (__main__.TestSparseCSRCPU) ... ok (0.009s) 2023-01-11T21:22:05.4703371Z test_sparse_csr_unary_out_isposinf_cpu_float32 (__main__.TestSparseCSRCPU) ... ok (0.009s) 2023-01-11T21:22:05.4703523Z test_sparse_csr_unary_out_isposinf_cpu_float64 (__main__.TestSparseCSRCPU) ... ok (0.009s) 2023-01-11T21:22:05.4703659Z test_sparse_csr_unary_out_isposinf_cpu_int16 (__main__.TestSparseCSRCPU) ... ok (0.009s) 2023-01-11T21:22:05.4703811Z test_sparse_csr_unary_out_isposinf_cpu_int32 (__main__.TestSparseCSRCPU) ... ok (0.009s) 2023-01-11T21:22:05.4703985Z test_sparse_csr_unary_out_isposinf_cpu_int64 (__main__.TestSparseCSRCPU) ... ok (0.009s) 2023-01-11T21:22:05.4704135Z test_sparse_csr_unary_out_isposinf_cpu_int8 (__main__.TestSparseCSRCPU) ... ok (0.009s) 2023-01-11T21:22:05.4704281Z test_sparse_csr_unary_out_isposinf_cpu_uint8 (__main__.TestSparseCSRCPU) ... ok (0.009s) 2023-01-11T21:22:05.4704428Z test_sparse_csr_unary_out_log1p_cpu_bfloat16 (__main__.TestSparseCSRCPU) ... ok (0.010s) 2023-01-11T21:22:05.4704576Z test_sparse_csr_unary_out_log1p_cpu_bool (__main__.TestSparseCSRCPU) ... ok (0.010s) 2023-01-11T21:22:05.4704729Z test_sparse_csr_unary_out_log1p_cpu_complex128 (__main__.TestSparseCSRCPU) ... ok (0.010s) 2023-01-11T21:22:05.4704869Z test_sparse_csr_unary_out_log1p_cpu_complex64 (__main__.TestSparseCSRCPU) ... ok (0.021s) 2023-01-11T21:22:05.4705017Z test_sparse_csr_unary_out_log1p_cpu_float32 (__main__.TestSparseCSRCPU) ... ok (0.011s) 2023-01-11T21:22:05.4705167Z test_sparse_csr_unary_out_log1p_cpu_float64 (__main__.TestSparseCSRCPU) ... ok (0.010s) 2023-01-11T21:22:05.4705316Z test_sparse_csr_unary_out_log1p_cpu_int16 (__main__.TestSparseCSRCPU) ... ok (0.034s) 2023-01-11T21:22:05.4705463Z test_sparse_csr_unary_out_log1p_cpu_int32 (__main__.TestSparseCSRCPU) ... ok (0.011s) 2023-01-11T21:22:05.4705606Z test_sparse_csr_unary_out_log1p_cpu_int64 (__main__.TestSparseCSRCPU) ... ok (0.010s) 2023-01-11T21:22:05.4705751Z test_sparse_csr_unary_out_log1p_cpu_int8 (__main__.TestSparseCSRCPU) ... ok (0.010s) 2023-01-11T21:22:05.4705893Z test_sparse_csr_unary_out_log1p_cpu_uint8 (__main__.TestSparseCSRCPU) ... ok (0.010s) 2023-01-11T21:22:05.4706028Z test_sparse_csr_unary_out_neg_cpu_bfloat16 (__main__.TestSparseCSRCPU) ... ok (0.010s) 2023-01-11T21:22:05.4706177Z test_sparse_csr_unary_out_neg_cpu_complex128 (__main__.TestSparseCSRCPU) ... ok (0.010s) 2023-01-11T21:22:05.4706327Z test_sparse_csr_unary_out_neg_cpu_complex32 (__main__.TestSparseCSRCPU) ... ok (0.010s) 2023-01-11T21:22:05.4706474Z test_sparse_csr_unary_out_neg_cpu_complex64 (__main__.TestSparseCSRCPU) ... ok (0.010s) 2023-01-11T21:22:05.4706621Z test_sparse_csr_unary_out_neg_cpu_float16 (__main__.TestSparseCSRCPU) ... ok (0.010s) 2023-01-11T21:22:05.4706763Z test_sparse_csr_unary_out_neg_cpu_float32 (__main__.TestSparseCSRCPU) ... ok (0.010s) 2023-01-11T21:22:05.4706907Z test_sparse_csr_unary_out_neg_cpu_float64 (__main__.TestSparseCSRCPU) ... ok (0.010s) 2023-01-11T21:22:05.4707050Z test_sparse_csr_unary_out_neg_cpu_int16 (__main__.TestSparseCSRCPU) ... ok (0.009s) 2023-01-11T21:22:05.4707193Z test_sparse_csr_unary_out_neg_cpu_int32 (__main__.TestSparseCSRCPU) ... ok (0.009s) 2023-01-11T21:22:05.4707327Z test_sparse_csr_unary_out_neg_cpu_int64 (__main__.TestSparseCSRCPU) ... ok (0.009s) 2023-01-11T21:22:05.4707471Z test_sparse_csr_unary_out_neg_cpu_int8 (__main__.TestSparseCSRCPU) ... ok (0.009s) 2023-01-11T21:22:05.4707644Z test_sparse_csr_unary_out_neg_cpu_uint8 (__main__.TestSparseCSRCPU) ... ok (0.009s) 2023-01-11T21:22:05.4707847Z test_sparse_csr_unary_out_nn_functional_relu_cpu_bfloat16 (__main__.TestSparseCSRCPU) ... skip: Skipped! Out not supported (0.002s) 2023-01-11T21:22:05.4708051Z test_sparse_csr_unary_out_nn_functional_relu_cpu_float32 (__main__.TestSparseCSRCPU) ... skip: Skipped! Out not supported (0.001s) 2023-01-11T21:22:05.4708249Z test_sparse_csr_unary_out_nn_functional_relu_cpu_float64 (__main__.TestSparseCSRCPU) ... skip: Skipped! Out not supported (0.001s) 2023-01-11T21:22:05.4708448Z test_sparse_csr_unary_out_nn_functional_relu_cpu_int16 (__main__.TestSparseCSRCPU) ... skip: Skipped! Out not supported (0.001s) 2023-01-11T21:22:05.4708641Z test_sparse_csr_unary_out_nn_functional_relu_cpu_int32 (__main__.TestSparseCSRCPU) ... skip: Skipped! Out not supported (0.001s) 2023-01-11T21:22:05.4708836Z test_sparse_csr_unary_out_nn_functional_relu_cpu_int64 (__main__.TestSparseCSRCPU) ... skip: Skipped! Out not supported (0.001s) 2023-01-11T21:22:05.4709017Z test_sparse_csr_unary_out_nn_functional_relu_cpu_int8 (__main__.TestSparseCSRCPU) ... skip: Skipped! Out not supported (0.001s) 2023-01-11T21:22:05.4709238Z test_sparse_csr_unary_out_nn_functional_relu_cpu_uint8 (__main__.TestSparseCSRCPU) ... skip: Skipped! Out not supported (0.001s) 2023-01-11T21:22:05.4709430Z test_sparse_csr_unary_out_positive_cpu_bfloat16 (__main__.TestSparseCSRCPU) ... skip: Skipped! Out not supported (0.001s) 2023-01-11T21:22:05.4709619Z test_sparse_csr_unary_out_positive_cpu_complex128 (__main__.TestSparseCSRCPU) ... skip: Skipped! Out not supported (0.001s) 2023-01-11T21:22:05.4709811Z test_sparse_csr_unary_out_positive_cpu_complex32 (__main__.TestSparseCSRCPU) ... skip: Skipped! Out not supported (0.001s) 2023-01-11T21:22:05.4710001Z test_sparse_csr_unary_out_positive_cpu_complex64 (__main__.TestSparseCSRCPU) ... skip: Skipped! Out not supported (0.001s) 2023-01-11T21:22:05.4710190Z test_sparse_csr_unary_out_positive_cpu_float16 (__main__.TestSparseCSRCPU) ... skip: Skipped! Out not supported (0.001s) 2023-01-11T21:22:05.4710380Z test_sparse_csr_unary_out_positive_cpu_float32 (__main__.TestSparseCSRCPU) ... skip: Skipped! Out not supported (0.001s) 2023-01-11T21:22:05.4710566Z test_sparse_csr_unary_out_positive_cpu_float64 (__main__.TestSparseCSRCPU) ... skip: Skipped! Out not supported (0.001s) 2023-01-11T21:22:05.4710753Z test_sparse_csr_unary_out_positive_cpu_int16 (__main__.TestSparseCSRCPU) ... skip: Skipped! Out not supported (0.001s) 2023-01-11T21:22:05.4710925Z test_sparse_csr_unary_out_positive_cpu_int32 (__main__.TestSparseCSRCPU) ... skip: Skipped! Out not supported (0.001s) 2023-01-11T21:22:05.4711107Z test_sparse_csr_unary_out_positive_cpu_int64 (__main__.TestSparseCSRCPU) ... skip: Skipped! Out not supported (0.001s) 2023-01-11T21:22:05.4711290Z test_sparse_csr_unary_out_positive_cpu_int8 (__main__.TestSparseCSRCPU) ... skip: Skipped! Out not supported (0.001s) 2023-01-11T21:22:05.4711473Z test_sparse_csr_unary_out_positive_cpu_uint8 (__main__.TestSparseCSRCPU) ... skip: Skipped! Out not supported (0.001s) 2023-01-11T21:22:05.4711631Z test_sparse_csr_unary_out_rad2deg_cpu_bfloat16 (__main__.TestSparseCSRCPU) ... ok (0.011s) 2023-01-11T21:22:05.4711784Z test_sparse_csr_unary_out_rad2deg_cpu_bool (__main__.TestSparseCSRCPU) ... ok (0.010s) 2023-01-11T21:22:05.4711939Z test_sparse_csr_unary_out_rad2deg_cpu_float16 (__main__.TestSparseCSRCPU) ... ok (0.010s) 2023-01-11T21:22:05.4712089Z test_sparse_csr_unary_out_rad2deg_cpu_float32 (__main__.TestSparseCSRCPU) ... ok (0.010s) 2023-01-11T21:22:05.4712241Z test_sparse_csr_unary_out_rad2deg_cpu_float64 (__main__.TestSparseCSRCPU) ... ok (0.010s) 2023-01-11T21:22:05.4712378Z test_sparse_csr_unary_out_rad2deg_cpu_int16 (__main__.TestSparseCSRCPU) ... ok (0.010s) 2023-01-11T21:22:05.4712526Z test_sparse_csr_unary_out_rad2deg_cpu_int32 (__main__.TestSparseCSRCPU) ... ok (0.010s) 2023-01-11T21:22:05.4712701Z test_sparse_csr_unary_out_rad2deg_cpu_int64 (__main__.TestSparseCSRCPU) ... ok (0.010s) 2023-01-11T21:22:05.4712851Z test_sparse_csr_unary_out_rad2deg_cpu_int8 (__main__.TestSparseCSRCPU) ... ok (0.010s) 2023-01-11T21:22:05.4712997Z test_sparse_csr_unary_out_rad2deg_cpu_uint8 (__main__.TestSparseCSRCPU) ... ok (0.010s) 2023-01-11T21:22:05.4713148Z test_sparse_csr_unary_out_round_cpu_bfloat16 (__main__.TestSparseCSRCPU) ... ok (0.010s) 2023-01-11T21:22:05.4713292Z test_sparse_csr_unary_out_round_cpu_float32 (__main__.TestSparseCSRCPU) ... ok (0.010s) 2023-01-11T21:22:05.4713438Z test_sparse_csr_unary_out_round_cpu_float64 (__main__.TestSparseCSRCPU) ... ok (0.010s) 2023-01-11T21:22:05.4713586Z test_sparse_csr_unary_out_round_cpu_int16 (__main__.TestSparseCSRCPU) ... ok (0.010s) 2023-01-11T21:22:05.4713720Z test_sparse_csr_unary_out_round_cpu_int32 (__main__.TestSparseCSRCPU) ... ok (0.010s) 2023-01-11T21:22:05.4713863Z test_sparse_csr_unary_out_round_cpu_int64 (__main__.TestSparseCSRCPU) ... ok (0.010s) 2023-01-11T21:22:05.4714013Z test_sparse_csr_unary_out_round_cpu_int8 (__main__.TestSparseCSRCPU) ... ok (0.010s) 2023-01-11T21:22:05.4714184Z test_sparse_csr_unary_out_round_cpu_uint8 (__main__.TestSparseCSRCPU) ... ok (0.010s) 2023-01-11T21:22:05.4714333Z test_sparse_csr_unary_out_sgn_cpu_bfloat16 (__main__.TestSparseCSRCPU) ... ok (0.010s) 2023-01-11T21:22:05.4714475Z test_sparse_csr_unary_out_sgn_cpu_bool (__main__.TestSparseCSRCPU) ... ok (0.009s) 2023-01-11T21:22:05.4714627Z test_sparse_csr_unary_out_sgn_cpu_complex128 (__main__.TestSparseCSRCPU) ... ok (0.010s) 2023-01-11T21:22:05.4714776Z test_sparse_csr_unary_out_sgn_cpu_complex32 (__main__.TestSparseCSRCPU) ... ok (0.010s) 2023-01-11T21:22:05.4714911Z test_sparse_csr_unary_out_sgn_cpu_complex64 (__main__.TestSparseCSRCPU) ... ok (0.010s) 2023-01-11T21:22:05.4715053Z test_sparse_csr_unary_out_sgn_cpu_float16 (__main__.TestSparseCSRCPU) ... ok (0.010s) 2023-01-11T21:22:05.4715199Z test_sparse_csr_unary_out_sgn_cpu_float32 (__main__.TestSparseCSRCPU) ... ok (0.010s) 2023-01-11T21:22:05.4715344Z test_sparse_csr_unary_out_sgn_cpu_float64 (__main__.TestSparseCSRCPU) ... ok (0.010s) 2023-01-11T21:22:05.4715491Z test_sparse_csr_unary_out_sgn_cpu_int16 (__main__.TestSparseCSRCPU) ... ok (0.010s) 2023-01-11T21:22:05.4715634Z test_sparse_csr_unary_out_sgn_cpu_int32 (__main__.TestSparseCSRCPU) ... ok (0.010s) 2023-01-11T21:22:05.4715776Z test_sparse_csr_unary_out_sgn_cpu_int64 (__main__.TestSparseCSRCPU) ... ok (0.025s) 2023-01-11T21:22:05.4715922Z test_sparse_csr_unary_out_sgn_cpu_int8 (__main__.TestSparseCSRCPU) ... ok (0.010s) 2023-01-11T21:22:05.4716051Z test_sparse_csr_unary_out_sgn_cpu_uint8 (__main__.TestSparseCSRCPU) ... ok (0.010s) 2023-01-11T21:22:05.4716201Z test_sparse_csr_unary_out_sign_cpu_bfloat16 (__main__.TestSparseCSRCPU) ... ok (0.010s) 2023-01-11T21:22:05.4716346Z test_sparse_csr_unary_out_sign_cpu_bool (__main__.TestSparseCSRCPU) ... ok (0.009s) 2023-01-11T21:22:05.4716494Z test_sparse_csr_unary_out_sign_cpu_float16 (__main__.TestSparseCSRCPU) ... ok (0.010s) 2023-01-11T21:22:05.4716644Z test_sparse_csr_unary_out_sign_cpu_float32 (__main__.TestSparseCSRCPU) ... ok (0.010s) 2023-01-11T21:22:05.4716789Z test_sparse_csr_unary_out_sign_cpu_float64 (__main__.TestSparseCSRCPU) ... ok (0.010s) 2023-01-11T21:22:05.4716933Z test_sparse_csr_unary_out_sign_cpu_int16 (__main__.TestSparseCSRCPU) ... ok (0.010s) 2023-01-11T21:22:05.4717078Z test_sparse_csr_unary_out_sign_cpu_int32 (__main__.TestSparseCSRCPU) ... ok (0.010s) 2023-01-11T21:22:05.4717217Z test_sparse_csr_unary_out_sign_cpu_int64 (__main__.TestSparseCSRCPU) ... ok (0.009s) 2023-01-11T21:22:05.4717347Z test_sparse_csr_unary_out_sign_cpu_int8 (__main__.TestSparseCSRCPU) ... ok (0.009s) 2023-01-11T21:22:05.4717496Z test_sparse_csr_unary_out_sign_cpu_uint8 (__main__.TestSparseCSRCPU) ... ok (0.009s) 2023-01-11T21:22:05.4717647Z test_sparse_csr_unary_out_signbit_cpu_bfloat16 (__main__.TestSparseCSRCPU) ... ok (0.009s) 2023-01-11T21:22:05.4717823Z test_sparse_csr_unary_out_signbit_cpu_bool (__main__.TestSparseCSRCPU) ... ok (0.009s) 2023-01-11T21:22:05.4717975Z test_sparse_csr_unary_out_signbit_cpu_float16 (__main__.TestSparseCSRCPU) ... ok (0.009s) 2023-01-11T21:22:05.4718127Z test_sparse_csr_unary_out_signbit_cpu_float32 (__main__.TestSparseCSRCPU) ... ok (0.009s) 2023-01-11T21:22:05.4718277Z test_sparse_csr_unary_out_signbit_cpu_float64 (__main__.TestSparseCSRCPU) ... ok (0.009s) 2023-01-11T21:22:05.4718424Z test_sparse_csr_unary_out_signbit_cpu_int16 (__main__.TestSparseCSRCPU) ... ok (0.009s) 2023-01-11T21:22:05.4718558Z test_sparse_csr_unary_out_signbit_cpu_int32 (__main__.TestSparseCSRCPU) ... ok (0.009s) 2023-01-11T21:22:05.4718701Z test_sparse_csr_unary_out_signbit_cpu_int64 (__main__.TestSparseCSRCPU) ... ok (0.009s) 2023-01-11T21:22:05.4718848Z test_sparse_csr_unary_out_signbit_cpu_int8 (__main__.TestSparseCSRCPU) ... ok (0.009s) 2023-01-11T21:22:05.4718993Z test_sparse_csr_unary_out_signbit_cpu_uint8 (__main__.TestSparseCSRCPU) ... ok (0.009s) 2023-01-11T21:22:05.4719141Z test_sparse_csr_unary_out_sin_cpu_bfloat16 (__main__.TestSparseCSRCPU) ... ok (0.010s) 2023-01-11T21:22:05.4719314Z test_sparse_csr_unary_out_sin_cpu_bool (__main__.TestSparseCSRCPU) ... ok (0.009s) 2023-01-11T21:22:05.4719467Z test_sparse_csr_unary_out_sin_cpu_complex128 (__main__.TestSparseCSRCPU) ... ok (0.010s) 2023-01-11T21:22:05.4719612Z test_sparse_csr_unary_out_sin_cpu_complex64 (__main__.TestSparseCSRCPU) ... ok (0.010s) 2023-01-11T21:22:05.4719757Z test_sparse_csr_unary_out_sin_cpu_float32 (__main__.TestSparseCSRCPU) ... ok (0.010s) 2023-01-11T21:22:05.4719889Z test_sparse_csr_unary_out_sin_cpu_float64 (__main__.TestSparseCSRCPU) ... ok (0.009s) 2023-01-11T21:22:05.4720031Z test_sparse_csr_unary_out_sin_cpu_int16 (__main__.TestSparseCSRCPU) ... ok (0.010s) 2023-01-11T21:22:05.4720171Z test_sparse_csr_unary_out_sin_cpu_int32 (__main__.TestSparseCSRCPU) ... ok (0.010s) 2023-01-11T21:22:05.4720312Z test_sparse_csr_unary_out_sin_cpu_int64 (__main__.TestSparseCSRCPU) ... ok (0.010s) 2023-01-11T21:22:05.4720456Z test_sparse_csr_unary_out_sin_cpu_int8 (__main__.TestSparseCSRCPU) ... ok (0.010s) 2023-01-11T21:22:05.4720703Z test_sparse_csr_unary_out_sin_cpu_uint8 (__main__.TestSparseCSRCPU) ... ok (0.010s) 2023-01-11T21:22:05.4720878Z test_sparse_csr_unary_out_sinh_cpu_bfloat16 (__main__.TestSparseCSRCPU) ... ok (0.010s) 2023-01-11T21:22:05.4721023Z test_sparse_csr_unary_out_sinh_cpu_bool (__main__.TestSparseCSRCPU) ... ok (0.010s) 2023-01-11T21:22:05.4721164Z test_sparse_csr_unary_out_sinh_cpu_complex128 (__main__.TestSparseCSRCPU) ... ok (0.010s) 2023-01-11T21:22:05.4721313Z test_sparse_csr_unary_out_sinh_cpu_complex64 (__main__.TestSparseCSRCPU) ... ok (0.010s) 2023-01-11T21:22:05.4721462Z test_sparse_csr_unary_out_sinh_cpu_float32 (__main__.TestSparseCSRCPU) ... ok (0.010s) 2023-01-11T21:22:05.4721615Z test_sparse_csr_unary_out_sinh_cpu_float64 (__main__.TestSparseCSRCPU) ... ok (0.010s) 2023-01-11T21:22:05.4721765Z test_sparse_csr_unary_out_sinh_cpu_int16 (__main__.TestSparseCSRCPU) ... ok (0.010s) 2023-01-11T21:22:05.4721910Z test_sparse_csr_unary_out_sinh_cpu_int32 (__main__.TestSparseCSRCPU) ... ok (0.010s) 2023-01-11T21:22:05.4722056Z test_sparse_csr_unary_out_sinh_cpu_int64 (__main__.TestSparseCSRCPU) ... ok (0.010s) 2023-01-11T21:22:05.4722203Z test_sparse_csr_unary_out_sinh_cpu_int8 (__main__.TestSparseCSRCPU) ... ok (0.010s) 2023-01-11T21:22:05.4722335Z test_sparse_csr_unary_out_sinh_cpu_uint8 (__main__.TestSparseCSRCPU) ... ok (0.010s) 2023-01-11T21:22:05.4722488Z test_sparse_csr_unary_out_sqrt_cpu_bfloat16 (__main__.TestSparseCSRCPU) ... ok (0.010s) 2023-01-11T21:22:05.4722632Z test_sparse_csr_unary_out_sqrt_cpu_bool (__main__.TestSparseCSRCPU) ... ok (0.010s) 2023-01-11T21:22:05.4722786Z test_sparse_csr_unary_out_sqrt_cpu_complex128 (__main__.TestSparseCSRCPU) ... ok (0.011s) 2023-01-11T21:22:05.4722937Z test_sparse_csr_unary_out_sqrt_cpu_complex64 (__main__.TestSparseCSRCPU) ... ok (0.011s) 2023-01-11T21:22:05.4723155Z test_sparse_csr_unary_out_sqrt_cpu_float32 (__main__.TestSparseCSRCPU) ... ok (0.011s) 2023-01-11T21:22:05.4723305Z test_sparse_csr_unary_out_sqrt_cpu_float64 (__main__.TestSparseCSRCPU) ... ok (0.010s) 2023-01-11T21:22:05.4723450Z test_sparse_csr_unary_out_sqrt_cpu_int16 (__main__.TestSparseCSRCPU) ... ok (0.010s) 2023-01-11T21:22:05.4723594Z test_sparse_csr_unary_out_sqrt_cpu_int32 (__main__.TestSparseCSRCPU) ... ok (0.010s) 2023-01-11T21:22:05.4723722Z test_sparse_csr_unary_out_sqrt_cpu_int64 (__main__.TestSparseCSRCPU) ... ok (0.010s) 2023-01-11T21:22:05.4723866Z test_sparse_csr_unary_out_sqrt_cpu_int8 (__main__.TestSparseCSRCPU) ... ok (0.010s) 2023-01-11T21:22:05.4724010Z test_sparse_csr_unary_out_sqrt_cpu_uint8 (__main__.TestSparseCSRCPU) ... ok (0.036s) 2023-01-11T21:22:05.4724158Z test_sparse_csr_unary_out_tan_cpu_bfloat16 (__main__.TestSparseCSRCPU) ... ok (0.017s) 2023-01-11T21:22:05.4724304Z test_sparse_csr_unary_out_tan_cpu_bool (__main__.TestSparseCSRCPU) ... ok (0.010s) 2023-01-11T21:22:05.4724459Z test_sparse_csr_unary_out_tan_cpu_complex128 (__main__.TestSparseCSRCPU) ... ok (0.010s) 2023-01-11T21:22:05.4724647Z test_sparse_csr_unary_out_tan_cpu_complex64 (__main__.TestSparseCSRCPU) ... ok (0.010s) 2023-01-11T21:22:05.4724795Z test_sparse_csr_unary_out_tan_cpu_float32 (__main__.TestSparseCSRCPU) ... ok (0.011s) 2023-01-11T21:22:05.4724927Z test_sparse_csr_unary_out_tan_cpu_float64 (__main__.TestSparseCSRCPU) ... ok (0.010s) 2023-01-11T21:22:05.4725070Z test_sparse_csr_unary_out_tan_cpu_int16 (__main__.TestSparseCSRCPU) ... ok (0.010s) 2023-01-11T21:22:05.4725212Z test_sparse_csr_unary_out_tan_cpu_int32 (__main__.TestSparseCSRCPU) ... ok (0.010s) 2023-01-11T21:22:05.4725355Z test_sparse_csr_unary_out_tan_cpu_int64 (__main__.TestSparseCSRCPU) ... ok (0.010s) 2023-01-11T21:22:05.4725500Z test_sparse_csr_unary_out_tan_cpu_int8 (__main__.TestSparseCSRCPU) ... ok (0.010s) 2023-01-11T21:22:05.4725642Z test_sparse_csr_unary_out_tan_cpu_uint8 (__main__.TestSparseCSRCPU) ... ok (0.011s) 2023-01-11T21:22:05.4725793Z test_sparse_csr_unary_out_tanh_cpu_bfloat16 (__main__.TestSparseCSRCPU) ... ok (0.010s) 2023-01-11T21:22:05.4725938Z test_sparse_csr_unary_out_tanh_cpu_bool (__main__.TestSparseCSRCPU) ... ok (0.010s) 2023-01-11T21:22:05.4726090Z test_sparse_csr_unary_out_tanh_cpu_complex128 (__main__.TestSparseCSRCPU) ... ok (0.010s) 2023-01-11T21:22:05.4726228Z test_sparse_csr_unary_out_tanh_cpu_complex64 (__main__.TestSparseCSRCPU) ... ok (0.010s) 2023-01-11T21:22:05.4726374Z test_sparse_csr_unary_out_tanh_cpu_float32 (__main__.TestSparseCSRCPU) ... ok (0.010s) 2023-01-11T21:22:05.4726520Z test_sparse_csr_unary_out_tanh_cpu_float64 (__main__.TestSparseCSRCPU) ... ok (0.010s) 2023-01-11T21:22:05.4726664Z test_sparse_csr_unary_out_tanh_cpu_int16 (__main__.TestSparseCSRCPU) ... ok (0.010s) 2023-01-11T21:22:05.4726805Z test_sparse_csr_unary_out_tanh_cpu_int32 (__main__.TestSparseCSRCPU) ... ok (0.010s) 2023-01-11T21:22:05.4726951Z test_sparse_csr_unary_out_tanh_cpu_int64 (__main__.TestSparseCSRCPU) ... ok (0.010s) 2023-01-11T21:22:05.4727094Z test_sparse_csr_unary_out_tanh_cpu_int8 (__main__.TestSparseCSRCPU) ... ok (0.010s) 2023-01-11T21:22:05.4727233Z test_sparse_csr_unary_out_tanh_cpu_uint8 (__main__.TestSparseCSRCPU) ... ok (0.010s) 2023-01-11T21:22:05.4748258Z test_sparse_csr_unary_out_trunc_cpu_bfloat16 (__main__.TestSparseCSRCPU) ... ok (0.010s) 2023-01-11T21:22:05.4748517Z test_sparse_csr_unary_out_trunc_cpu_float32 (__main__.TestSparseCSRCPU) ... ok (0.010s) 2023-01-11T21:22:05.4748673Z test_sparse_csr_unary_out_trunc_cpu_float64 (__main__.TestSparseCSRCPU) ... ok (0.010s) 2023-01-11T21:22:05.4748818Z test_sparse_csr_unary_out_trunc_cpu_int16 (__main__.TestSparseCSRCPU) ... ok (0.009s) 2023-01-11T21:22:05.4748967Z test_sparse_csr_unary_out_trunc_cpu_int32 (__main__.TestSparseCSRCPU) ... ok (0.010s) 2023-01-11T21:22:05.4749103Z test_sparse_csr_unary_out_trunc_cpu_int64 (__main__.TestSparseCSRCPU) ... ok (0.009s) 2023-01-11T21:22:05.4749340Z test_sparse_csr_unary_out_trunc_cpu_int8 (__main__.TestSparseCSRCPU) ... ok (0.009s) 2023-01-11T21:22:05.4749493Z test_sparse_csr_unary_out_trunc_cpu_uint8 (__main__.TestSparseCSRCPU) ... ok (0.009s) 2023-01-11T21:22:05.4749625Z test_sparse_mm_cpu_complex128 (__main__.TestSparseCSRCPU) ... ok (0.018s) 2023-01-11T21:22:05.4749757Z test_sparse_mm_cpu_complex64 (__main__.TestSparseCSRCPU) ... ok (0.017s) 2023-01-11T21:22:05.4749885Z test_sparse_mm_cpu_float32 (__main__.TestSparseCSRCPU) ... ok (0.017s) 2023-01-11T21:22:05.4750011Z test_sparse_mm_cpu_float64 (__main__.TestSparseCSRCPU) ... ok (0.019s) 2023-01-11T21:22:05.4750164Z test_sparse_to_sparse_compressed_SparseBSC_cpu_float64 (__main__.TestSparseCSRCPU) 2023-01-11T21:22:05.4750317Z This test tests conversion from COO to CSR and CSC and CSC to CSR and CSC ... skip: NOT IMPL (0.003s) 2023-01-11T21:22:05.4750473Z test_sparse_to_sparse_compressed_SparseBSR_cpu_float64 (__main__.TestSparseCSRCPU) 2023-01-11T21:22:05.4750630Z This test tests conversion from COO to CSR and CSC and CSC to CSR and CSC ... skip: NOT IMPL (0.003s) 2023-01-11T21:22:05.4750773Z test_sparse_to_sparse_compressed_SparseCSC_cpu_float64 (__main__.TestSparseCSRCPU) 2023-01-11T21:22:05.4750957Z This test tests conversion from COO to CSR and CSC and CSC to CSR and CSC ... ok (0.037s) 2023-01-11T21:22:05.4751104Z test_sparse_to_sparse_compressed_SparseCSR_cpu_float64 (__main__.TestSparseCSRCPU) 2023-01-11T21:22:05.4751244Z This test tests conversion from COO to CSR and CSC and CSC to CSR and CSC ... ok (0.040s) 2023-01-11T21:22:05.4751394Z test_sparse_triangular_solve_cpu_complex128 (__main__.TestSparseCSRCPU) ... ok (0.274s) 2023-01-11T21:22:05.4751542Z test_sparse_triangular_solve_cpu_complex64 (__main__.TestSparseCSRCPU) ... ok (0.275s) 2023-01-11T21:22:05.4751679Z test_sparse_triangular_solve_cpu_float32 (__main__.TestSparseCSRCPU) ... ok (0.239s) 2023-01-11T21:22:05.4751822Z test_sparse_triangular_solve_cpu_float64 (__main__.TestSparseCSRCPU) ... ok (0.254s) 2023-01-11T21:22:05.4751947Z test_sum_cpu_bfloat16 (__main__.TestSparseCSRCPU) ... ok (0.049s) 2023-01-11T21:22:05.4752066Z test_sum_cpu_bool (__main__.TestSparseCSRCPU) ... ok (0.044s) 2023-01-11T21:22:05.4752192Z test_sum_cpu_complex128 (__main__.TestSparseCSRCPU) ... ok (0.049s) 2023-01-11T21:22:05.4752312Z test_sum_cpu_complex64 (__main__.TestSparseCSRCPU) ... ok (0.050s) 2023-01-11T21:22:05.4752433Z test_sum_cpu_float16 (__main__.TestSparseCSRCPU) ... ok (0.050s) 2023-01-11T21:22:05.4752541Z test_sum_cpu_float32 (__main__.TestSparseCSRCPU) ... ok (0.059s) 2023-01-11T21:22:05.4752656Z test_sum_cpu_float64 (__main__.TestSparseCSRCPU) ... ok (0.057s) 2023-01-11T21:22:05.4752774Z test_sum_cpu_int16 (__main__.TestSparseCSRCPU) ... ok (0.044s) 2023-01-11T21:22:05.4752889Z test_sum_cpu_int32 (__main__.TestSparseCSRCPU) ... ok (0.044s) 2023-01-11T21:22:05.4753002Z test_sum_cpu_int64 (__main__.TestSparseCSRCPU) ... ok (0.044s) 2023-01-11T21:22:05.4753123Z test_sum_cpu_int8 (__main__.TestSparseCSRCPU) ... ok (0.044s) 2023-01-11T21:22:05.4753236Z test_sum_cpu_uint8 (__main__.TestSparseCSRCPU) ... ok (0.046s) 2023-01-11T21:22:05.4753380Z test_transpose_SparseBSC_cpu_bfloat16 (__main__.TestSparseCSRCPU) ... ok (7.854s) 2023-01-11T21:22:05.4753511Z test_transpose_SparseBSC_cpu_bool (__main__.TestSparseCSRCPU) ... ok (7.636s) 2023-01-11T21:22:05.4753659Z test_transpose_SparseBSC_cpu_complex128 (__main__.TestSparseCSRCPU) ... ok (7.717s) 2023-01-11T21:22:05.4753801Z test_transpose_SparseBSC_cpu_complex64 (__main__.TestSparseCSRCPU) ... ok (7.650s) 2023-01-11T21:22:05.4753942Z test_transpose_SparseBSC_cpu_float16 (__main__.TestSparseCSRCPU) ... ok (7.482s) 2023-01-11T21:22:05.4754082Z test_transpose_SparseBSC_cpu_float32 (__main__.TestSparseCSRCPU) ... ok (7.455s) 2023-01-11T21:22:05.4754221Z test_transpose_SparseBSC_cpu_float64 (__main__.TestSparseCSRCPU) ... ok (7.444s) 2023-01-11T21:22:05.4754359Z test_transpose_SparseBSC_cpu_int16 (__main__.TestSparseCSRCPU) ... ok (7.241s) 2023-01-11T21:22:05.4754527Z test_transpose_SparseBSC_cpu_int32 (__main__.TestSparseCSRCPU) ... ok (7.259s) 2023-01-11T21:22:05.4754659Z test_transpose_SparseBSC_cpu_int64 (__main__.TestSparseCSRCPU) ... ok (7.265s) 2023-01-11T21:22:05.4754793Z test_transpose_SparseBSC_cpu_int8 (__main__.TestSparseCSRCPU) ... ok (7.307s) 2023-01-11T21:22:05.4754929Z test_transpose_SparseBSC_cpu_uint8 (__main__.TestSparseCSRCPU) ... ok (7.361s) 2023-01-11T21:22:05.4755069Z test_transpose_SparseBSR_cpu_bfloat16 (__main__.TestSparseCSRCPU) ... ok (7.622s) 2023-01-11T21:22:05.4755207Z test_transpose_SparseBSR_cpu_bool (__main__.TestSparseCSRCPU) ... ok (7.438s) 2023-01-11T21:22:05.4755349Z test_transpose_SparseBSR_cpu_complex128 (__main__.TestSparseCSRCPU) ... ok (7.758s) 2023-01-11T21:22:05.4755487Z test_transpose_SparseBSR_cpu_complex64 (__main__.TestSparseCSRCPU) ... ok (7.763s) 2023-01-11T21:22:05.4755628Z test_transpose_SparseBSR_cpu_float16 (__main__.TestSparseCSRCPU) ... ok (7.647s) 2023-01-11T21:22:05.4755767Z test_transpose_SparseBSR_cpu_float32 (__main__.TestSparseCSRCPU) ... ok (7.688s) 2023-01-11T21:22:05.4755895Z test_transpose_SparseBSR_cpu_float64 (__main__.TestSparseCSRCPU) ... ok (7.618s) 2023-01-11T21:22:05.4756058Z test_transpose_SparseBSR_cpu_int16 (__main__.TestSparseCSRCPU) ... ok (7.370s) 2023-01-11T21:22:05.4756198Z test_transpose_SparseBSR_cpu_int32 (__main__.TestSparseCSRCPU) ... ok (7.398s) 2023-01-11T21:22:05.4756331Z test_transpose_SparseBSR_cpu_int64 (__main__.TestSparseCSRCPU) ... ok (7.378s) 2023-01-11T21:22:05.4756468Z test_transpose_SparseBSR_cpu_int8 (__main__.TestSparseCSRCPU) ... ok (7.423s) 2023-01-11T21:22:05.4756600Z test_transpose_SparseBSR_cpu_uint8 (__main__.TestSparseCSRCPU) ... ok (7.442s) 2023-01-11T21:22:05.4756738Z test_transpose_SparseCSC_cpu_bfloat16 (__main__.TestSparseCSRCPU) ... ok (3.367s) 2023-01-11T21:22:05.4756874Z test_transpose_SparseCSC_cpu_bool (__main__.TestSparseCSRCPU) ... ok (3.207s) 2023-01-11T21:22:05.4757012Z test_transpose_SparseCSC_cpu_complex128 (__main__.TestSparseCSRCPU) ... ok (3.422s) 2023-01-11T21:22:05.4757151Z test_transpose_SparseCSC_cpu_complex64 (__main__.TestSparseCSRCPU) ... ok (3.431s) 2023-01-11T21:22:05.4757295Z test_transpose_SparseCSC_cpu_float16 (__main__.TestSparseCSRCPU) ... ok (3.351s) 2023-01-11T21:22:05.4757431Z test_transpose_SparseCSC_cpu_float32 (__main__.TestSparseCSRCPU) ... ok (3.318s) 2023-01-11T21:22:05.4757567Z test_transpose_SparseCSC_cpu_float64 (__main__.TestSparseCSRCPU) ... ok (3.350s) 2023-01-11T21:22:05.4757701Z test_transpose_SparseCSC_cpu_int16 (__main__.TestSparseCSRCPU) ... ok (3.219s) 2023-01-11T21:22:05.4757837Z test_transpose_SparseCSC_cpu_int32 (__main__.TestSparseCSRCPU) ... ok (3.213s) 2023-01-11T21:22:05.4757972Z test_transpose_SparseCSC_cpu_int64 (__main__.TestSparseCSRCPU) ... ok (3.173s) 2023-01-11T21:22:05.4758100Z test_transpose_SparseCSC_cpu_int8 (__main__.TestSparseCSRCPU) ... ok (3.208s) 2023-01-11T21:22:05.4758230Z test_transpose_SparseCSC_cpu_uint8 (__main__.TestSparseCSRCPU) ... ok (3.267s) 2023-01-11T21:22:05.4758373Z test_transpose_SparseCSR_cpu_bfloat16 (__main__.TestSparseCSRCPU) ... ok (3.391s) 2023-01-11T21:22:05.4758507Z test_transpose_SparseCSR_cpu_bool (__main__.TestSparseCSRCPU) ... ok (3.305s) 2023-01-11T21:22:05.4758653Z test_transpose_SparseCSR_cpu_complex128 (__main__.TestSparseCSRCPU) ... ok (3.418s) 2023-01-11T21:22:05.4758798Z test_transpose_SparseCSR_cpu_complex64 (__main__.TestSparseCSRCPU) ... ok (3.480s) 2023-01-11T21:22:05.4758934Z test_transpose_SparseCSR_cpu_float16 (__main__.TestSparseCSRCPU) ... ok (3.375s) 2023-01-11T21:22:05.4759074Z test_transpose_SparseCSR_cpu_float32 (__main__.TestSparseCSRCPU) ... ok (3.423s) 2023-01-11T21:22:05.4759199Z test_transpose_SparseCSR_cpu_float64 (__main__.TestSparseCSRCPU) ... ok (3.375s) 2023-01-11T21:22:05.4759330Z test_transpose_SparseCSR_cpu_int16 (__main__.TestSparseCSRCPU) ... ok (3.259s) 2023-01-11T21:22:05.4759465Z test_transpose_SparseCSR_cpu_int32 (__main__.TestSparseCSRCPU) ... ok (3.339s) 2023-01-11T21:22:05.4759628Z test_transpose_SparseCSR_cpu_int64 (__main__.TestSparseCSRCPU) ... ok (3.261s) 2023-01-11T21:22:05.4759769Z test_transpose_SparseCSR_cpu_int8 (__main__.TestSparseCSRCPU) ... ok (3.312s) 2023-01-11T21:22:05.4759901Z test_transpose_SparseCSR_cpu_uint8 (__main__.TestSparseCSRCPU) ... ok (3.307s) 2023-01-11T21:22:05.4760065Z test_zero_to_zero_correspondence_unary_abs_cpu_bfloat16 (__main__.TestSparseCSRCPU) ... ok (0.004s) 2023-01-11T21:22:05.4760227Z test_zero_to_zero_correspondence_unary_abs_cpu_complex128 (__main__.TestSparseCSRCPU) ... ok (0.004s) 2023-01-11T21:22:05.4760391Z test_zero_to_zero_correspondence_unary_abs_cpu_complex32 (__main__.TestSparseCSRCPU) ... ok (0.004s) 2023-01-11T21:22:05.4760542Z test_zero_to_zero_correspondence_unary_abs_cpu_complex64 (__main__.TestSparseCSRCPU) ... ok (0.004s) 2023-01-11T21:22:05.4760876Z test_zero_to_zero_correspondence_unary_abs_cpu_float16 (__main__.TestSparseCSRCPU) ... ok (0.004s) 2023-01-11T21:22:05.4761040Z test_zero_to_zero_correspondence_unary_abs_cpu_float32 (__main__.TestSparseCSRCPU) ... ok (0.004s) 2023-01-11T21:22:05.4761245Z test_zero_to_zero_correspondence_unary_abs_cpu_float64 (__main__.TestSparseCSRCPU) ... ok (0.003s) 2023-01-11T21:22:05.4761408Z test_zero_to_zero_correspondence_unary_abs_cpu_int16 (__main__.TestSparseCSRCPU) ... ok (0.003s) 2023-01-11T21:22:05.4761565Z test_zero_to_zero_correspondence_unary_abs_cpu_int32 (__main__.TestSparseCSRCPU) ... ok (0.003s) 2023-01-11T21:22:05.4761720Z test_zero_to_zero_correspondence_unary_abs_cpu_int64 (__main__.TestSparseCSRCPU) ... ok (0.003s) 2023-01-11T21:22:05.4761874Z test_zero_to_zero_correspondence_unary_abs_cpu_int8 (__main__.TestSparseCSRCPU) ... ok (0.003s) 2023-01-11T21:22:05.4762022Z test_zero_to_zero_correspondence_unary_abs_cpu_uint8 (__main__.TestSparseCSRCPU) ... ok (0.003s) 2023-01-11T21:22:05.4762186Z test_zero_to_zero_correspondence_unary_angle_cpu_bfloat16 (__main__.TestSparseCSRCPU) ... ok (0.004s) 2023-01-11T21:22:05.4762345Z test_zero_to_zero_correspondence_unary_angle_cpu_bool (__main__.TestSparseCSRCPU) ... ok (0.004s) 2023-01-11T21:22:05.4762514Z test_zero_to_zero_correspondence_unary_angle_cpu_complex128 (__main__.TestSparseCSRCPU) ... ok (0.004s) 2023-01-11T21:22:05.4762679Z test_zero_to_zero_correspondence_unary_angle_cpu_complex64 (__main__.TestSparseCSRCPU) ... ok (0.004s) 2023-01-11T21:22:05.4762838Z test_zero_to_zero_correspondence_unary_angle_cpu_float16 (__main__.TestSparseCSRCPU) ... ok (0.018s) 2023-01-11T21:22:05.4763003Z test_zero_to_zero_correspondence_unary_angle_cpu_float32 (__main__.TestSparseCSRCPU) ... ok (0.003s) 2023-01-11T21:22:05.4763160Z test_zero_to_zero_correspondence_unary_angle_cpu_float64 (__main__.TestSparseCSRCPU) ... ok (0.003s) 2023-01-11T21:22:05.4763321Z test_zero_to_zero_correspondence_unary_angle_cpu_int16 (__main__.TestSparseCSRCPU) ... ok (0.004s) 2023-01-11T21:22:05.4763467Z test_zero_to_zero_correspondence_unary_angle_cpu_int32 (__main__.TestSparseCSRCPU) ... ok (0.004s) 2023-01-11T21:22:05.4763620Z test_zero_to_zero_correspondence_unary_angle_cpu_int64 (__main__.TestSparseCSRCPU) ... ok (0.004s) 2023-01-11T21:22:05.4763781Z test_zero_to_zero_correspondence_unary_angle_cpu_int8 (__main__.TestSparseCSRCPU) ... ok (0.004s) 2023-01-11T21:22:05.4763939Z test_zero_to_zero_correspondence_unary_angle_cpu_uint8 (__main__.TestSparseCSRCPU) ... ok (0.004s) 2023-01-11T21:22:05.4764096Z test_zero_to_zero_correspondence_unary_asin_cpu_bfloat16 (__main__.TestSparseCSRCPU) ... ok (0.004s) 2023-01-11T21:22:05.4764256Z test_zero_to_zero_correspondence_unary_asin_cpu_bool (__main__.TestSparseCSRCPU) ... ok (0.004s) 2023-01-11T21:22:05.4764419Z test_zero_to_zero_correspondence_unary_asin_cpu_complex128 (__main__.TestSparseCSRCPU) ... ok (0.004s) 2023-01-11T21:22:05.4764580Z test_zero_to_zero_correspondence_unary_asin_cpu_complex64 (__main__.TestSparseCSRCPU) ... ok (0.004s) 2023-01-11T21:22:05.4764741Z test_zero_to_zero_correspondence_unary_asin_cpu_float32 (__main__.TestSparseCSRCPU) ... ok (0.004s) 2023-01-11T21:22:05.4764930Z test_zero_to_zero_correspondence_unary_asin_cpu_float64 (__main__.TestSparseCSRCPU) ... ok (0.004s) 2023-01-11T21:22:05.4765089Z test_zero_to_zero_correspondence_unary_asin_cpu_int16 (__main__.TestSparseCSRCPU) ... ok (0.004s) 2023-01-11T21:22:05.4765244Z test_zero_to_zero_correspondence_unary_asin_cpu_int32 (__main__.TestSparseCSRCPU) ... ok (0.004s) 2023-01-11T21:22:05.4765393Z test_zero_to_zero_correspondence_unary_asin_cpu_int64 (__main__.TestSparseCSRCPU) ... ok (0.004s) 2023-01-11T21:22:05.4765550Z test_zero_to_zero_correspondence_unary_asin_cpu_int8 (__main__.TestSparseCSRCPU) ... ok (0.004s) 2023-01-11T21:22:05.4765703Z test_zero_to_zero_correspondence_unary_asin_cpu_uint8 (__main__.TestSparseCSRCPU) ... ok (0.004s) 2023-01-11T21:22:05.4765862Z test_zero_to_zero_correspondence_unary_asinh_cpu_bfloat16 (__main__.TestSparseCSRCPU) ... ok (0.004s) 2023-01-11T21:22:05.4766017Z test_zero_to_zero_correspondence_unary_asinh_cpu_bool (__main__.TestSparseCSRCPU) ... ok (0.004s) 2023-01-11T21:22:05.4766185Z test_zero_to_zero_correspondence_unary_asinh_cpu_complex128 (__main__.TestSparseCSRCPU) ... ok (0.004s) 2023-01-11T21:22:05.4766370Z test_zero_to_zero_correspondence_unary_asinh_cpu_complex64 (__main__.TestSparseCSRCPU) ... ok (0.004s) 2023-01-11T21:22:05.4766536Z test_zero_to_zero_correspondence_unary_asinh_cpu_float32 (__main__.TestSparseCSRCPU) ... ok (0.004s) 2023-01-11T21:22:05.4766692Z test_zero_to_zero_correspondence_unary_asinh_cpu_float64 (__main__.TestSparseCSRCPU) ... ok (0.003s) 2023-01-11T21:22:05.4766852Z test_zero_to_zero_correspondence_unary_asinh_cpu_int16 (__main__.TestSparseCSRCPU) ... ok (0.004s) 2023-01-11T21:22:05.4767003Z test_zero_to_zero_correspondence_unary_asinh_cpu_int32 (__main__.TestSparseCSRCPU) ... ok (0.004s) 2023-01-11T21:22:05.4767158Z test_zero_to_zero_correspondence_unary_asinh_cpu_int64 (__main__.TestSparseCSRCPU) ... ok (0.004s) 2023-01-11T21:22:05.4767322Z test_zero_to_zero_correspondence_unary_asinh_cpu_int8 (__main__.TestSparseCSRCPU) ... ok (0.004s) 2023-01-11T21:22:05.4767480Z test_zero_to_zero_correspondence_unary_asinh_cpu_uint8 (__main__.TestSparseCSRCPU) ... ok (0.004s) 2023-01-11T21:22:05.4767637Z test_zero_to_zero_correspondence_unary_atan_cpu_bfloat16 (__main__.TestSparseCSRCPU) ... ok (0.004s) 2023-01-11T21:22:05.4767785Z test_zero_to_zero_correspondence_unary_atan_cpu_bool (__main__.TestSparseCSRCPU) ... ok (0.004s) 2023-01-11T21:22:05.4767953Z test_zero_to_zero_correspondence_unary_atan_cpu_complex128 (__main__.TestSparseCSRCPU) ... ok (0.004s) 2023-01-11T21:22:05.4768115Z test_zero_to_zero_correspondence_unary_atan_cpu_complex64 (__main__.TestSparseCSRCPU) ... ok (0.004s) 2023-01-11T21:22:05.4768279Z test_zero_to_zero_correspondence_unary_atan_cpu_float32 (__main__.TestSparseCSRCPU) ... ok (0.004s) 2023-01-11T21:22:05.4768432Z test_zero_to_zero_correspondence_unary_atan_cpu_float64 (__main__.TestSparseCSRCPU) ... ok (0.004s) 2023-01-11T21:22:05.4768589Z test_zero_to_zero_correspondence_unary_atan_cpu_int16 (__main__.TestSparseCSRCPU) ... ok (0.004s) 2023-01-11T21:22:05.4768748Z test_zero_to_zero_correspondence_unary_atan_cpu_int32 (__main__.TestSparseCSRCPU) ... ok (0.004s) 2023-01-11T21:22:05.4768898Z test_zero_to_zero_correspondence_unary_atan_cpu_int64 (__main__.TestSparseCSRCPU) ... ok (0.004s) 2023-01-11T21:22:05.4769054Z test_zero_to_zero_correspondence_unary_atan_cpu_int8 (__main__.TestSparseCSRCPU) ... ok (0.004s) 2023-01-11T21:22:05.4769198Z test_zero_to_zero_correspondence_unary_atan_cpu_uint8 (__main__.TestSparseCSRCPU) ... ok (0.004s) 2023-01-11T21:22:05.4769356Z test_zero_to_zero_correspondence_unary_atanh_cpu_bfloat16 (__main__.TestSparseCSRCPU) ... ok (0.004s) 2023-01-11T21:22:05.4769512Z test_zero_to_zero_correspondence_unary_atanh_cpu_bool (__main__.TestSparseCSRCPU) ... ok (0.004s) 2023-01-11T21:22:05.4769676Z test_zero_to_zero_correspondence_unary_atanh_cpu_complex128 (__main__.TestSparseCSRCPU) ... ok (0.004s) 2023-01-11T21:22:05.4769880Z test_zero_to_zero_correspondence_unary_atanh_cpu_complex64 (__main__.TestSparseCSRCPU) ... ok (0.004s) 2023-01-11T21:22:05.4770042Z test_zero_to_zero_correspondence_unary_atanh_cpu_float32 (__main__.TestSparseCSRCPU) ... ok (0.004s) 2023-01-11T21:22:05.4770203Z test_zero_to_zero_correspondence_unary_atanh_cpu_float64 (__main__.TestSparseCSRCPU) ... ok (0.004s) 2023-01-11T21:22:05.4770357Z test_zero_to_zero_correspondence_unary_atanh_cpu_int16 (__main__.TestSparseCSRCPU) ... ok (0.004s) 2023-01-11T21:22:05.4770506Z test_zero_to_zero_correspondence_unary_atanh_cpu_int32 (__main__.TestSparseCSRCPU) ... ok (0.004s) 2023-01-11T21:22:05.4770650Z test_zero_to_zero_correspondence_unary_atanh_cpu_int64 (__main__.TestSparseCSRCPU) ... ok (0.004s) 2023-01-11T21:22:05.4770807Z test_zero_to_zero_correspondence_unary_atanh_cpu_int8 (__main__.TestSparseCSRCPU) ... ok (0.004s) 2023-01-11T21:22:05.4770956Z test_zero_to_zero_correspondence_unary_atanh_cpu_uint8 (__main__.TestSparseCSRCPU) ... ok (0.004s) 2023-01-11T21:22:05.4771120Z test_zero_to_zero_correspondence_unary_ceil_cpu_bfloat16 (__main__.TestSparseCSRCPU) ... ok (0.004s) 2023-01-11T21:22:05.4771304Z test_zero_to_zero_correspondence_unary_ceil_cpu_float32 (__main__.TestSparseCSRCPU) ... ok (0.004s) 2023-01-11T21:22:05.4771463Z test_zero_to_zero_correspondence_unary_ceil_cpu_float64 (__main__.TestSparseCSRCPU) ... ok (0.003s) 2023-01-11T21:22:05.4771619Z test_zero_to_zero_correspondence_unary_ceil_cpu_int16 (__main__.TestSparseCSRCPU) ... ok (0.003s) 2023-01-11T21:22:05.4771771Z test_zero_to_zero_correspondence_unary_ceil_cpu_int32 (__main__.TestSparseCSRCPU) ... ok (0.003s) 2023-01-11T21:22:05.4771925Z test_zero_to_zero_correspondence_unary_ceil_cpu_int64 (__main__.TestSparseCSRCPU) ... ok (0.003s) 2023-01-11T21:22:05.4772073Z test_zero_to_zero_correspondence_unary_ceil_cpu_int8 (__main__.TestSparseCSRCPU) ... ok (0.003s) 2023-01-11T21:22:05.4772224Z test_zero_to_zero_correspondence_unary_ceil_cpu_uint8 (__main__.TestSparseCSRCPU) ... ok (0.003s) 2023-01-11T21:22:05.4772402Z test_zero_to_zero_correspondence_unary_conj_physical_cpu_bfloat16 (__main__.TestSparseCSRCPU) ... ok (0.003s) 2023-01-11T21:22:05.4772572Z test_zero_to_zero_correspondence_unary_conj_physical_cpu_bool (__main__.TestSparseCSRCPU) ... ok (0.003s) 2023-01-11T21:22:05.4772753Z test_zero_to_zero_correspondence_unary_conj_physical_cpu_complex128 (__main__.TestSparseCSRCPU) ... ok (0.004s) 2023-01-11T21:22:05.4772929Z test_zero_to_zero_correspondence_unary_conj_physical_cpu_complex32 (__main__.TestSparseCSRCPU) ... ok (0.004s) 2023-01-11T21:22:05.4773099Z test_zero_to_zero_correspondence_unary_conj_physical_cpu_complex64 (__main__.TestSparseCSRCPU) ... ok (0.004s) 2023-01-11T21:22:05.4773274Z test_zero_to_zero_correspondence_unary_conj_physical_cpu_float16 (__main__.TestSparseCSRCPU) ... ok (0.003s) 2023-01-11T21:22:05.4773442Z test_zero_to_zero_correspondence_unary_conj_physical_cpu_float32 (__main__.TestSparseCSRCPU) ... ok (0.003s) 2023-01-11T21:22:05.4773608Z test_zero_to_zero_correspondence_unary_conj_physical_cpu_float64 (__main__.TestSparseCSRCPU) ... ok (0.003s) 2023-01-11T21:22:05.4773777Z test_zero_to_zero_correspondence_unary_conj_physical_cpu_int16 (__main__.TestSparseCSRCPU) ... ok (0.003s) 2023-01-11T21:22:05.4773946Z test_zero_to_zero_correspondence_unary_conj_physical_cpu_int32 (__main__.TestSparseCSRCPU) ... ok (0.003s) 2023-01-11T21:22:05.4774115Z test_zero_to_zero_correspondence_unary_conj_physical_cpu_int64 (__main__.TestSparseCSRCPU) ... ok (0.003s) 2023-01-11T21:22:05.4774284Z test_zero_to_zero_correspondence_unary_conj_physical_cpu_int8 (__main__.TestSparseCSRCPU) ... ok (0.003s) 2023-01-11T21:22:05.4774448Z test_zero_to_zero_correspondence_unary_conj_physical_cpu_uint8 (__main__.TestSparseCSRCPU) ... ok (0.003s) 2023-01-11T21:22:05.4774615Z test_zero_to_zero_correspondence_unary_deg2rad_cpu_bfloat16 (__main__.TestSparseCSRCPU) ... ok (0.004s) 2023-01-11T21:22:05.4774818Z test_zero_to_zero_correspondence_unary_deg2rad_cpu_bool (__main__.TestSparseCSRCPU) ... ok (0.004s) 2023-01-11T21:22:05.4774980Z test_zero_to_zero_correspondence_unary_deg2rad_cpu_float16 (__main__.TestSparseCSRCPU) ... ok (0.004s) 2023-01-11T21:22:05.4775140Z test_zero_to_zero_correspondence_unary_deg2rad_cpu_float32 (__main__.TestSparseCSRCPU) ... ok (0.004s) 2023-01-11T21:22:05.4775306Z test_zero_to_zero_correspondence_unary_deg2rad_cpu_float64 (__main__.TestSparseCSRCPU) ... ok (0.004s) 2023-01-11T21:22:05.4775467Z test_zero_to_zero_correspondence_unary_deg2rad_cpu_int16 (__main__.TestSparseCSRCPU) ... ok (0.004s) 2023-01-11T21:22:05.4775631Z test_zero_to_zero_correspondence_unary_deg2rad_cpu_int32 (__main__.TestSparseCSRCPU) ... ok (0.004s) 2023-01-11T21:22:05.4775786Z test_zero_to_zero_correspondence_unary_deg2rad_cpu_int64 (__main__.TestSparseCSRCPU) ... ok (0.004s) 2023-01-11T21:22:05.4775941Z test_zero_to_zero_correspondence_unary_deg2rad_cpu_int8 (__main__.TestSparseCSRCPU) ... ok (0.004s) 2023-01-11T21:22:05.4776105Z test_zero_to_zero_correspondence_unary_deg2rad_cpu_uint8 (__main__.TestSparseCSRCPU) ... ok (0.004s) 2023-01-11T21:22:05.4776294Z test_zero_to_zero_correspondence_unary_erf_cpu_bfloat16 (__main__.TestSparseCSRCPU) ... ok (0.004s) 2023-01-11T21:22:05.4776454Z test_zero_to_zero_correspondence_unary_erf_cpu_bool (__main__.TestSparseCSRCPU) ... ok (0.004s) 2023-01-11T21:22:05.4776605Z test_zero_to_zero_correspondence_unary_erf_cpu_float32 (__main__.TestSparseCSRCPU) ... ok (0.004s) 2023-01-11T21:22:05.4776759Z test_zero_to_zero_correspondence_unary_erf_cpu_float64 (__main__.TestSparseCSRCPU) ... ok (0.004s) 2023-01-11T21:22:05.4776912Z test_zero_to_zero_correspondence_unary_erf_cpu_int16 (__main__.TestSparseCSRCPU) ... ok (0.004s) 2023-01-11T21:22:05.4777065Z test_zero_to_zero_correspondence_unary_erf_cpu_int32 (__main__.TestSparseCSRCPU) ... ok (0.004s) 2023-01-11T21:22:05.4777283Z test_zero_to_zero_correspondence_unary_erf_cpu_int64 (__main__.TestSparseCSRCPU) ... ok (0.004s) 2023-01-11T21:22:05.4777447Z test_zero_to_zero_correspondence_unary_erf_cpu_int8 (__main__.TestSparseCSRCPU) ... ok (0.004s) 2023-01-11T21:22:05.4777607Z test_zero_to_zero_correspondence_unary_erf_cpu_uint8 (__main__.TestSparseCSRCPU) ... ok (0.004s) 2023-01-11T21:22:05.4777774Z test_zero_to_zero_correspondence_unary_erfinv_cpu_bfloat16 (__main__.TestSparseCSRCPU) ... ok (0.004s) 2023-01-11T21:22:05.4777934Z test_zero_to_zero_correspondence_unary_erfinv_cpu_bool (__main__.TestSparseCSRCPU) ... ok (0.004s) 2023-01-11T21:22:05.4778088Z test_zero_to_zero_correspondence_unary_erfinv_cpu_float32 (__main__.TestSparseCSRCPU) ... ok (0.016s) 2023-01-11T21:22:05.4778243Z test_zero_to_zero_correspondence_unary_erfinv_cpu_float64 (__main__.TestSparseCSRCPU) ... ok (0.004s) 2023-01-11T21:22:05.4778407Z test_zero_to_zero_correspondence_unary_erfinv_cpu_int16 (__main__.TestSparseCSRCPU) ... ok (0.004s) 2023-01-11T21:22:05.4778561Z test_zero_to_zero_correspondence_unary_erfinv_cpu_int32 (__main__.TestSparseCSRCPU) ... ok (0.004s) 2023-01-11T21:22:05.4778714Z test_zero_to_zero_correspondence_unary_erfinv_cpu_int64 (__main__.TestSparseCSRCPU) ... ok (0.004s) 2023-01-11T21:22:05.4778880Z test_zero_to_zero_correspondence_unary_erfinv_cpu_int8 (__main__.TestSparseCSRCPU) ... ok (0.004s) 2023-01-11T21:22:05.4779038Z test_zero_to_zero_correspondence_unary_erfinv_cpu_uint8 (__main__.TestSparseCSRCPU) ... ok (0.004s) 2023-01-11T21:22:05.4779200Z test_zero_to_zero_correspondence_unary_expm1_cpu_bfloat16 (__main__.TestSparseCSRCPU) ... ok (0.004s) 2023-01-11T21:22:05.4779351Z test_zero_to_zero_correspondence_unary_expm1_cpu_bool (__main__.TestSparseCSRCPU) ... ok (0.004s) 2023-01-11T21:22:05.4779510Z test_zero_to_zero_correspondence_unary_expm1_cpu_float32 (__main__.TestSparseCSRCPU) ... ok (0.004s) 2023-01-11T21:22:05.4779674Z test_zero_to_zero_correspondence_unary_expm1_cpu_float64 (__main__.TestSparseCSRCPU) ... ok (0.004s) 2023-01-11T21:22:05.4779829Z test_zero_to_zero_correspondence_unary_expm1_cpu_int16 (__main__.TestSparseCSRCPU) ... ok (0.004s) 2023-01-11T21:22:05.4780019Z test_zero_to_zero_correspondence_unary_expm1_cpu_int32 (__main__.TestSparseCSRCPU) ... ok (0.004s) 2023-01-11T21:22:05.4780171Z test_zero_to_zero_correspondence_unary_expm1_cpu_int64 (__main__.TestSparseCSRCPU) ... ok (0.004s) 2023-01-11T21:22:05.4780329Z test_zero_to_zero_correspondence_unary_expm1_cpu_int8 (__main__.TestSparseCSRCPU) ... ok (0.004s) 2023-01-11T21:22:05.4780478Z test_zero_to_zero_correspondence_unary_expm1_cpu_uint8 (__main__.TestSparseCSRCPU) ... ok (0.004s) 2023-01-11T21:22:05.4780639Z test_zero_to_zero_correspondence_unary_floor_cpu_bfloat16 (__main__.TestSparseCSRCPU) ... ok (0.004s) 2023-01-11T21:22:05.4780789Z test_zero_to_zero_correspondence_unary_floor_cpu_float32 (__main__.TestSparseCSRCPU) ... ok (0.004s) 2023-01-11T21:22:05.4780943Z test_zero_to_zero_correspondence_unary_floor_cpu_float64 (__main__.TestSparseCSRCPU) ... ok (0.003s) 2023-01-11T21:22:05.4781100Z test_zero_to_zero_correspondence_unary_floor_cpu_int16 (__main__.TestSparseCSRCPU) ... ok (0.003s) 2023-01-11T21:22:05.4781257Z test_zero_to_zero_correspondence_unary_floor_cpu_int32 (__main__.TestSparseCSRCPU) ... ok (0.003s) 2023-01-11T21:22:05.4781450Z test_zero_to_zero_correspondence_unary_floor_cpu_int64 (__main__.TestSparseCSRCPU) ... ok (0.003s) 2023-01-11T21:22:05.4781609Z test_zero_to_zero_correspondence_unary_floor_cpu_int8 (__main__.TestSparseCSRCPU) ... ok (0.003s) 2023-01-11T21:22:05.4781763Z test_zero_to_zero_correspondence_unary_floor_cpu_uint8 (__main__.TestSparseCSRCPU) ... ok (0.003s) 2023-01-11T21:22:05.4781924Z test_zero_to_zero_correspondence_unary_frac_cpu_bfloat16 (__main__.TestSparseCSRCPU) ... ok (0.004s) 2023-01-11T21:22:05.4782083Z test_zero_to_zero_correspondence_unary_frac_cpu_float16 (__main__.TestSparseCSRCPU) ... ok (0.004s) 2023-01-11T21:22:05.4782234Z test_zero_to_zero_correspondence_unary_frac_cpu_float32 (__main__.TestSparseCSRCPU) ... ok (0.004s) 2023-01-11T21:22:05.4782392Z test_zero_to_zero_correspondence_unary_frac_cpu_float64 (__main__.TestSparseCSRCPU) ... ok (0.003s) 2023-01-11T21:22:05.4782553Z test_zero_to_zero_correspondence_unary_isinf_cpu_bfloat16 (__main__.TestSparseCSRCPU) ... ok (0.003s) 2023-01-11T21:22:05.4782713Z test_zero_to_zero_correspondence_unary_isinf_cpu_bool (__main__.TestSparseCSRCPU) ... ok (0.003s) 2023-01-11T21:22:05.4782878Z test_zero_to_zero_correspondence_unary_isinf_cpu_complex128 (__main__.TestSparseCSRCPU) ... ok (0.004s) 2023-01-11T21:22:05.4783041Z test_zero_to_zero_correspondence_unary_isinf_cpu_complex32 (__main__.TestSparseCSRCPU) ... ok (0.004s) 2023-01-11T21:22:05.4783205Z test_zero_to_zero_correspondence_unary_isinf_cpu_complex64 (__main__.TestSparseCSRCPU) ... ok (0.004s) 2023-01-11T21:22:05.4783363Z test_zero_to_zero_correspondence_unary_isinf_cpu_float16 (__main__.TestSparseCSRCPU) ... ok (0.003s) 2023-01-11T21:22:05.4783524Z test_zero_to_zero_correspondence_unary_isinf_cpu_float32 (__main__.TestSparseCSRCPU) ... ok (0.003s) 2023-01-11T21:22:05.4783679Z test_zero_to_zero_correspondence_unary_isinf_cpu_float64 (__main__.TestSparseCSRCPU) ... ok (0.003s) 2023-01-11T21:22:05.4783837Z test_zero_to_zero_correspondence_unary_isinf_cpu_int16 (__main__.TestSparseCSRCPU) ... ok (0.003s) 2023-01-11T21:22:05.4783991Z test_zero_to_zero_correspondence_unary_isinf_cpu_int32 (__main__.TestSparseCSRCPU) ... ok (0.003s) 2023-01-11T21:22:05.4784139Z test_zero_to_zero_correspondence_unary_isinf_cpu_int64 (__main__.TestSparseCSRCPU) ... ok (0.003s) 2023-01-11T21:22:05.4784294Z test_zero_to_zero_correspondence_unary_isinf_cpu_int8 (__main__.TestSparseCSRCPU) ... ok (0.003s) 2023-01-11T21:22:05.4784450Z test_zero_to_zero_correspondence_unary_isinf_cpu_uint8 (__main__.TestSparseCSRCPU) ... ok (0.003s) 2023-01-11T21:22:05.4784610Z test_zero_to_zero_correspondence_unary_isnan_cpu_bfloat16 (__main__.TestSparseCSRCPU) ... ok (0.003s) 2023-01-11T21:22:05.4784769Z test_zero_to_zero_correspondence_unary_isnan_cpu_bool (__main__.TestSparseCSRCPU) ... ok (0.003s) 2023-01-11T21:22:05.4784967Z test_zero_to_zero_correspondence_unary_isnan_cpu_complex128 (__main__.TestSparseCSRCPU) ... ok (0.003s) 2023-01-11T21:22:05.4785126Z test_zero_to_zero_correspondence_unary_isnan_cpu_complex64 (__main__.TestSparseCSRCPU) ... ok (0.003s) 2023-01-11T21:22:05.4785289Z test_zero_to_zero_correspondence_unary_isnan_cpu_float16 (__main__.TestSparseCSRCPU) ... ok (0.003s) 2023-01-11T21:22:05.4785443Z test_zero_to_zero_correspondence_unary_isnan_cpu_float32 (__main__.TestSparseCSRCPU) ... ok (0.003s) 2023-01-11T21:22:05.4785603Z test_zero_to_zero_correspondence_unary_isnan_cpu_float64 (__main__.TestSparseCSRCPU) ... ok (0.003s) 2023-01-11T21:22:05.4785758Z test_zero_to_zero_correspondence_unary_isnan_cpu_int16 (__main__.TestSparseCSRCPU) ... ok (0.003s) 2023-01-11T21:22:05.4785911Z test_zero_to_zero_correspondence_unary_isnan_cpu_int32 (__main__.TestSparseCSRCPU) ... ok (0.003s) 2023-01-11T21:22:05.4786058Z test_zero_to_zero_correspondence_unary_isnan_cpu_int64 (__main__.TestSparseCSRCPU) ... ok (0.003s) 2023-01-11T21:22:05.4786219Z test_zero_to_zero_correspondence_unary_isnan_cpu_int8 (__main__.TestSparseCSRCPU) ... ok (0.003s) 2023-01-11T21:22:05.4786407Z test_zero_to_zero_correspondence_unary_isnan_cpu_uint8 (__main__.TestSparseCSRCPU) ... ok (0.003s) 2023-01-11T21:22:05.4786568Z test_zero_to_zero_correspondence_unary_isneginf_cpu_bfloat16 (__main__.TestSparseCSRCPU) ... ok (0.003s) 2023-01-11T21:22:05.4786730Z test_zero_to_zero_correspondence_unary_isneginf_cpu_bool (__main__.TestSparseCSRCPU) ... ok (0.003s) 2023-01-11T21:22:05.4786896Z test_zero_to_zero_correspondence_unary_isneginf_cpu_float16 (__main__.TestSparseCSRCPU) ... ok (0.003s) 2023-01-11T21:22:05.4787059Z test_zero_to_zero_correspondence_unary_isneginf_cpu_float32 (__main__.TestSparseCSRCPU) ... ok (0.003s) 2023-01-11T21:22:05.4787224Z test_zero_to_zero_correspondence_unary_isneginf_cpu_float64 (__main__.TestSparseCSRCPU) ... ok (0.003s) 2023-01-11T21:22:05.4787387Z test_zero_to_zero_correspondence_unary_isneginf_cpu_int16 (__main__.TestSparseCSRCPU) ... ok (0.003s) 2023-01-11T21:22:05.4787547Z test_zero_to_zero_correspondence_unary_isneginf_cpu_int32 (__main__.TestSparseCSRCPU) ... ok (0.003s) 2023-01-11T21:22:05.4787711Z test_zero_to_zero_correspondence_unary_isneginf_cpu_int64 (__main__.TestSparseCSRCPU) ... ok (0.003s) 2023-01-11T21:22:05.4787869Z test_zero_to_zero_correspondence_unary_isneginf_cpu_int8 (__main__.TestSparseCSRCPU) ... ok (0.003s) 2023-01-11T21:22:05.4788024Z test_zero_to_zero_correspondence_unary_isneginf_cpu_uint8 (__main__.TestSparseCSRCPU) ... ok (0.003s) 2023-01-11T21:22:05.4788193Z test_zero_to_zero_correspondence_unary_isposinf_cpu_bfloat16 (__main__.TestSparseCSRCPU) ... ok (0.003s) 2023-01-11T21:22:05.4788349Z test_zero_to_zero_correspondence_unary_isposinf_cpu_bool (__main__.TestSparseCSRCPU) ... ok (0.003s) 2023-01-11T21:22:05.4788515Z test_zero_to_zero_correspondence_unary_isposinf_cpu_float16 (__main__.TestSparseCSRCPU) ... ok (0.003s) 2023-01-11T21:22:05.4788676Z test_zero_to_zero_correspondence_unary_isposinf_cpu_float32 (__main__.TestSparseCSRCPU) ... ok (0.003s) 2023-01-11T21:22:05.4788844Z test_zero_to_zero_correspondence_unary_isposinf_cpu_float64 (__main__.TestSparseCSRCPU) ... ok (0.003s) 2023-01-11T21:22:05.4789004Z test_zero_to_zero_correspondence_unary_isposinf_cpu_int16 (__main__.TestSparseCSRCPU) ... ok (0.003s) 2023-01-11T21:22:05.4789163Z test_zero_to_zero_correspondence_unary_isposinf_cpu_int32 (__main__.TestSparseCSRCPU) ... ok (0.003s) 2023-01-11T21:22:05.4789327Z test_zero_to_zero_correspondence_unary_isposinf_cpu_int64 (__main__.TestSparseCSRCPU) ... ok (0.003s) 2023-01-11T21:22:05.4789479Z test_zero_to_zero_correspondence_unary_isposinf_cpu_int8 (__main__.TestSparseCSRCPU) ... ok (0.003s) 2023-01-11T21:22:05.4789639Z test_zero_to_zero_correspondence_unary_isposinf_cpu_uint8 (__main__.TestSparseCSRCPU) ... ok (0.003s) 2023-01-11T21:22:05.4789797Z test_zero_to_zero_correspondence_unary_log1p_cpu_bfloat16 (__main__.TestSparseCSRCPU) ... ok (0.004s) 2023-01-11T21:22:05.4789988Z test_zero_to_zero_correspondence_unary_log1p_cpu_bool (__main__.TestSparseCSRCPU) ... ok (0.004s) 2023-01-11T21:22:05.4790154Z test_zero_to_zero_correspondence_unary_log1p_cpu_complex128 (__main__.TestSparseCSRCPU) ... ok (0.004s) 2023-01-11T21:22:05.4790320Z test_zero_to_zero_correspondence_unary_log1p_cpu_complex64 (__main__.TestSparseCSRCPU) ... ok (0.004s) 2023-01-11T21:22:05.4790481Z test_zero_to_zero_correspondence_unary_log1p_cpu_float32 (__main__.TestSparseCSRCPU) ... ok (0.004s) 2023-01-11T21:22:05.4790644Z test_zero_to_zero_correspondence_unary_log1p_cpu_float64 (__main__.TestSparseCSRCPU) ... ok (0.004s) 2023-01-11T21:22:05.4790805Z test_zero_to_zero_correspondence_unary_log1p_cpu_int16 (__main__.TestSparseCSRCPU) ... ok (0.004s) 2023-01-11T21:22:05.4790954Z test_zero_to_zero_correspondence_unary_log1p_cpu_int32 (__main__.TestSparseCSRCPU) ... ok (0.004s) 2023-01-11T21:22:05.4791116Z test_zero_to_zero_correspondence_unary_log1p_cpu_int64 (__main__.TestSparseCSRCPU) ... ok (0.004s) 2023-01-11T21:22:05.4791276Z test_zero_to_zero_correspondence_unary_log1p_cpu_int8 (__main__.TestSparseCSRCPU) ... ok (0.004s) 2023-01-11T21:22:05.4791458Z test_zero_to_zero_correspondence_unary_log1p_cpu_uint8 (__main__.TestSparseCSRCPU) ... ok (0.004s) 2023-01-11T21:22:05.4791619Z test_zero_to_zero_correspondence_unary_neg_cpu_bfloat16 (__main__.TestSparseCSRCPU) ... ok (0.004s) 2023-01-11T21:22:05.4791779Z test_zero_to_zero_correspondence_unary_neg_cpu_complex128 (__main__.TestSparseCSRCPU) ... ok (0.004s) 2023-01-11T21:22:05.4791942Z test_zero_to_zero_correspondence_unary_neg_cpu_complex32 (__main__.TestSparseCSRCPU) ... ok (0.004s) 2023-01-11T21:22:05.4792105Z test_zero_to_zero_correspondence_unary_neg_cpu_complex64 (__main__.TestSparseCSRCPU) ... ok (0.004s) 2023-01-11T21:22:05.4792267Z test_zero_to_zero_correspondence_unary_neg_cpu_float16 (__main__.TestSparseCSRCPU) ... ok (0.003s) 2023-01-11T21:22:05.4792416Z test_zero_to_zero_correspondence_unary_neg_cpu_float32 (__main__.TestSparseCSRCPU) ... ok (0.004s) 2023-01-11T21:22:05.4792568Z test_zero_to_zero_correspondence_unary_neg_cpu_float64 (__main__.TestSparseCSRCPU) ... ok (0.003s) 2023-01-11T21:22:05.4792724Z test_zero_to_zero_correspondence_unary_neg_cpu_int16 (__main__.TestSparseCSRCPU) ... ok (0.003s) 2023-01-11T21:22:05.4792880Z test_zero_to_zero_correspondence_unary_neg_cpu_int32 (__main__.TestSparseCSRCPU) ... ok (0.003s) 2023-01-11T21:22:05.4793029Z test_zero_to_zero_correspondence_unary_neg_cpu_int64 (__main__.TestSparseCSRCPU) ... ok (0.003s) 2023-01-11T21:22:05.4793186Z test_zero_to_zero_correspondence_unary_neg_cpu_int8 (__main__.TestSparseCSRCPU) ... ok (0.003s) 2023-01-11T21:22:05.4793344Z test_zero_to_zero_correspondence_unary_neg_cpu_uint8 (__main__.TestSparseCSRCPU) ... ok (0.017s) 2023-01-11T21:22:05.4793525Z test_zero_to_zero_correspondence_unary_nn_functional_relu_cpu_bfloat16 (__main__.TestSparseCSRCPU) ... ok (0.004s) 2023-01-11T21:22:05.4793705Z test_zero_to_zero_correspondence_unary_nn_functional_relu_cpu_float32 (__main__.TestSparseCSRCPU) ... ok (0.004s) 2023-01-11T21:22:05.4793869Z test_zero_to_zero_correspondence_unary_nn_functional_relu_cpu_float64 (__main__.TestSparseCSRCPU) ... ok (0.003s) 2023-01-11T21:22:05.4794044Z test_zero_to_zero_correspondence_unary_nn_functional_relu_cpu_int16 (__main__.TestSparseCSRCPU) ... ok (0.003s) 2023-01-11T21:22:05.4794222Z test_zero_to_zero_correspondence_unary_nn_functional_relu_cpu_int32 (__main__.TestSparseCSRCPU) ... ok (0.003s) 2023-01-11T21:22:05.4794399Z test_zero_to_zero_correspondence_unary_nn_functional_relu_cpu_int64 (__main__.TestSparseCSRCPU) ... ok (0.003s) 2023-01-11T21:22:05.4794576Z test_zero_to_zero_correspondence_unary_nn_functional_relu_cpu_int8 (__main__.TestSparseCSRCPU) ... ok (0.003s) 2023-01-11T21:22:05.4794754Z test_zero_to_zero_correspondence_unary_nn_functional_relu_cpu_uint8 (__main__.TestSparseCSRCPU) ... ok (0.003s) 2023-01-11T21:22:05.4794955Z test_zero_to_zero_correspondence_unary_positive_cpu_bfloat16 (__main__.TestSparseCSRCPU) ... ok (0.003s) 2023-01-11T21:22:05.4795134Z test_zero_to_zero_correspondence_unary_positive_cpu_complex128 (__main__.TestSparseCSRCPU) ... ok (0.003s) 2023-01-11T21:22:05.4795308Z test_zero_to_zero_correspondence_unary_positive_cpu_complex32 (__main__.TestSparseCSRCPU) ... ok (0.004s) 2023-01-11T21:22:05.4795468Z test_zero_to_zero_correspondence_unary_positive_cpu_complex64 (__main__.TestSparseCSRCPU) ... ok (0.003s) 2023-01-11T21:22:05.4795637Z test_zero_to_zero_correspondence_unary_positive_cpu_float16 (__main__.TestSparseCSRCPU) ... ok (0.003s) 2023-01-11T21:22:05.4795803Z test_zero_to_zero_correspondence_unary_positive_cpu_float32 (__main__.TestSparseCSRCPU) ... ok (0.003s) 2023-01-11T21:22:05.4795973Z test_zero_to_zero_correspondence_unary_positive_cpu_float64 (__main__.TestSparseCSRCPU) ... ok (0.003s) 2023-01-11T21:22:05.4796139Z test_zero_to_zero_correspondence_unary_positive_cpu_int16 (__main__.TestSparseCSRCPU) ... ok (0.003s) 2023-01-11T21:22:05.4796309Z test_zero_to_zero_correspondence_unary_positive_cpu_int32 (__main__.TestSparseCSRCPU) ... ok (0.003s) 2023-01-11T21:22:05.4796502Z test_zero_to_zero_correspondence_unary_positive_cpu_int64 (__main__.TestSparseCSRCPU) ... ok (0.003s) 2023-01-11T21:22:05.4796673Z test_zero_to_zero_correspondence_unary_positive_cpu_int8 (__main__.TestSparseCSRCPU) ... ok (0.003s) 2023-01-11T21:22:05.4796835Z test_zero_to_zero_correspondence_unary_positive_cpu_uint8 (__main__.TestSparseCSRCPU) ... ok (0.003s) 2023-01-11T21:22:05.4796994Z test_zero_to_zero_correspondence_unary_rad2deg_cpu_bfloat16 (__main__.TestSparseCSRCPU) ... ok (0.004s) 2023-01-11T21:22:05.4797161Z test_zero_to_zero_correspondence_unary_rad2deg_cpu_bool (__main__.TestSparseCSRCPU) ... ok (0.004s) 2023-01-11T21:22:05.4797331Z test_zero_to_zero_correspondence_unary_rad2deg_cpu_float16 (__main__.TestSparseCSRCPU) ... ok (0.004s) 2023-01-11T21:22:05.4797501Z test_zero_to_zero_correspondence_unary_rad2deg_cpu_float32 (__main__.TestSparseCSRCPU) ... ok (0.004s) 2023-01-11T21:22:05.4797671Z test_zero_to_zero_correspondence_unary_rad2deg_cpu_float64 (__main__.TestSparseCSRCPU) ... ok (0.004s) 2023-01-11T21:22:05.4797839Z test_zero_to_zero_correspondence_unary_rad2deg_cpu_int16 (__main__.TestSparseCSRCPU) ... ok (0.004s) 2023-01-11T21:22:05.4798003Z test_zero_to_zero_correspondence_unary_rad2deg_cpu_int32 (__main__.TestSparseCSRCPU) ... ok (0.004s) 2023-01-11T21:22:05.4798164Z test_zero_to_zero_correspondence_unary_rad2deg_cpu_int64 (__main__.TestSparseCSRCPU) ... ok (0.004s) 2023-01-11T21:22:05.4798327Z test_zero_to_zero_correspondence_unary_rad2deg_cpu_int8 (__main__.TestSparseCSRCPU) ... ok (0.004s) 2023-01-11T21:22:05.4798478Z test_zero_to_zero_correspondence_unary_rad2deg_cpu_uint8 (__main__.TestSparseCSRCPU) ... ok (0.004s) 2023-01-11T21:22:05.4798644Z test_zero_to_zero_correspondence_unary_round_cpu_bfloat16 (__main__.TestSparseCSRCPU) ... ok (0.004s) 2023-01-11T21:22:05.4798809Z test_zero_to_zero_correspondence_unary_round_cpu_float32 (__main__.TestSparseCSRCPU) ... ok (0.003s) 2023-01-11T21:22:05.4798967Z test_zero_to_zero_correspondence_unary_round_cpu_float64 (__main__.TestSparseCSRCPU) ... ok (0.003s) 2023-01-11T21:22:05.4799132Z test_zero_to_zero_correspondence_unary_round_cpu_int16 (__main__.TestSparseCSRCPU) ... ok (0.003s) 2023-01-11T21:22:05.4799292Z test_zero_to_zero_correspondence_unary_round_cpu_int32 (__main__.TestSparseCSRCPU) ... ok (0.003s) 2023-01-11T21:22:05.4799450Z test_zero_to_zero_correspondence_unary_round_cpu_int64 (__main__.TestSparseCSRCPU) ... ok (0.003s) 2023-01-11T21:22:05.4799610Z test_zero_to_zero_correspondence_unary_round_cpu_int8 (__main__.TestSparseCSRCPU) ... ok (0.003s) 2023-01-11T21:22:05.4799770Z test_zero_to_zero_correspondence_unary_round_cpu_uint8 (__main__.TestSparseCSRCPU) ... ok (0.003s) 2023-01-11T21:22:05.4799921Z test_zero_to_zero_correspondence_unary_sgn_cpu_bfloat16 (__main__.TestSparseCSRCPU) ... ok (0.004s) 2023-01-11T21:22:05.4800109Z test_zero_to_zero_correspondence_unary_sgn_cpu_bool (__main__.TestSparseCSRCPU) ... ok (0.003s) 2023-01-11T21:22:05.4800279Z test_zero_to_zero_correspondence_unary_sgn_cpu_complex128 (__main__.TestSparseCSRCPU) ... ok (0.004s) 2023-01-11T21:22:05.4800446Z test_zero_to_zero_correspondence_unary_sgn_cpu_complex32 (__main__.TestSparseCSRCPU) ... ok (0.004s) 2023-01-11T21:22:05.4800828Z test_zero_to_zero_correspondence_unary_sgn_cpu_complex64 (__main__.TestSparseCSRCPU) ... ok (0.004s) 2023-01-11T21:22:05.4800997Z test_zero_to_zero_correspondence_unary_sgn_cpu_float16 (__main__.TestSparseCSRCPU) ... ok (0.004s) 2023-01-11T21:22:05.4801155Z test_zero_to_zero_correspondence_unary_sgn_cpu_float32 (__main__.TestSparseCSRCPU) ... ok (0.004s) 2023-01-11T21:22:05.4801313Z test_zero_to_zero_correspondence_unary_sgn_cpu_float64 (__main__.TestSparseCSRCPU) ... ok (0.003s) 2023-01-11T21:22:05.4801477Z test_zero_to_zero_correspondence_unary_sgn_cpu_int16 (__main__.TestSparseCSRCPU) ... ok (0.003s) 2023-01-11T21:22:05.4801628Z test_zero_to_zero_correspondence_unary_sgn_cpu_int32 (__main__.TestSparseCSRCPU) ... ok (0.003s) 2023-01-11T21:22:05.4801836Z test_zero_to_zero_correspondence_unary_sgn_cpu_int64 (__main__.TestSparseCSRCPU) ... ok (0.003s) 2023-01-11T21:22:05.4801993Z test_zero_to_zero_correspondence_unary_sgn_cpu_int8 (__main__.TestSparseCSRCPU) ... ok (0.003s) 2023-01-11T21:22:05.4802154Z test_zero_to_zero_correspondence_unary_sgn_cpu_uint8 (__main__.TestSparseCSRCPU) ... ok (0.003s) 2023-01-11T21:22:05.4802319Z test_zero_to_zero_correspondence_unary_sign_cpu_bfloat16 (__main__.TestSparseCSRCPU) ... ok (0.004s) 2023-01-11T21:22:05.4802480Z test_zero_to_zero_correspondence_unary_sign_cpu_bool (__main__.TestSparseCSRCPU) ... ok (0.003s) 2023-01-11T21:22:05.4802645Z test_zero_to_zero_correspondence_unary_sign_cpu_float16 (__main__.TestSparseCSRCPU) ... ok (0.004s) 2023-01-11T21:22:05.4802805Z test_zero_to_zero_correspondence_unary_sign_cpu_float32 (__main__.TestSparseCSRCPU) ... ok (0.004s) 2023-01-11T21:22:05.4802964Z test_zero_to_zero_correspondence_unary_sign_cpu_float64 (__main__.TestSparseCSRCPU) ... ok (0.003s) 2023-01-11T21:22:05.4803116Z test_zero_to_zero_correspondence_unary_sign_cpu_int16 (__main__.TestSparseCSRCPU) ... ok (0.003s) 2023-01-11T21:22:05.4803282Z test_zero_to_zero_correspondence_unary_sign_cpu_int32 (__main__.TestSparseCSRCPU) ... ok (0.003s) 2023-01-11T21:22:05.4803443Z test_zero_to_zero_correspondence_unary_sign_cpu_int64 (__main__.TestSparseCSRCPU) ... ok (0.003s) 2023-01-11T21:22:05.4803605Z test_zero_to_zero_correspondence_unary_sign_cpu_int8 (__main__.TestSparseCSRCPU) ... ok (0.003s) 2023-01-11T21:22:05.4803761Z test_zero_to_zero_correspondence_unary_sign_cpu_uint8 (__main__.TestSparseCSRCPU) ... ok (0.003s) 2023-01-11T21:22:05.4803931Z test_zero_to_zero_correspondence_unary_signbit_cpu_bfloat16 (__main__.TestSparseCSRCPU) ... ok (0.003s) 2023-01-11T21:22:05.4804096Z test_zero_to_zero_correspondence_unary_signbit_cpu_bool (__main__.TestSparseCSRCPU) ... ok (0.003s) 2023-01-11T21:22:05.4804267Z test_zero_to_zero_correspondence_unary_signbit_cpu_float16 (__main__.TestSparseCSRCPU) ... ok (0.003s) 2023-01-11T21:22:05.4804425Z test_zero_to_zero_correspondence_unary_signbit_cpu_float32 (__main__.TestSparseCSRCPU) ... ok (0.003s) 2023-01-11T21:22:05.4804594Z test_zero_to_zero_correspondence_unary_signbit_cpu_float64 (__main__.TestSparseCSRCPU) ... ok (0.003s) 2023-01-11T21:22:05.4804759Z test_zero_to_zero_correspondence_unary_signbit_cpu_int16 (__main__.TestSparseCSRCPU) ... ok (0.003s) 2023-01-11T21:22:05.4804918Z test_zero_to_zero_correspondence_unary_signbit_cpu_int32 (__main__.TestSparseCSRCPU) ... ok (0.003s) 2023-01-11T21:22:05.4805081Z test_zero_to_zero_correspondence_unary_signbit_cpu_int64 (__main__.TestSparseCSRCPU) ... ok (0.003s) 2023-01-11T21:22:05.4805242Z test_zero_to_zero_correspondence_unary_signbit_cpu_int8 (__main__.TestSparseCSRCPU) ... ok (0.003s) 2023-01-11T21:22:05.4805405Z test_zero_to_zero_correspondence_unary_signbit_cpu_uint8 (__main__.TestSparseCSRCPU) ... ok (0.003s) 2023-01-11T21:22:05.4805602Z test_zero_to_zero_correspondence_unary_sin_cpu_bfloat16 (__main__.TestSparseCSRCPU) ... ok (0.004s) 2023-01-11T21:22:05.4805763Z test_zero_to_zero_correspondence_unary_sin_cpu_bool (__main__.TestSparseCSRCPU) ... ok (0.004s) 2023-01-11T21:22:05.4805918Z test_zero_to_zero_correspondence_unary_sin_cpu_complex128 (__main__.TestSparseCSRCPU) ... ok (0.004s) 2023-01-11T21:22:05.4806081Z test_zero_to_zero_correspondence_unary_sin_cpu_complex64 (__main__.TestSparseCSRCPU) ... ok (0.004s) 2023-01-11T21:22:05.4806242Z test_zero_to_zero_correspondence_unary_sin_cpu_float32 (__main__.TestSparseCSRCPU) ... ok (0.004s) 2023-01-11T21:22:05.4806399Z test_zero_to_zero_correspondence_unary_sin_cpu_float64 (__main__.TestSparseCSRCPU) ... ok (0.004s) 2023-01-11T21:22:05.4806560Z test_zero_to_zero_correspondence_unary_sin_cpu_int16 (__main__.TestSparseCSRCPU) ... ok (0.004s) 2023-01-11T21:22:05.4806717Z test_zero_to_zero_correspondence_unary_sin_cpu_int32 (__main__.TestSparseCSRCPU) ... ok (0.004s) 2023-01-11T21:22:05.4806870Z test_zero_to_zero_correspondence_unary_sin_cpu_int64 (__main__.TestSparseCSRCPU) ... ok (0.004s) 2023-01-11T21:22:05.4807057Z test_zero_to_zero_correspondence_unary_sin_cpu_int8 (__main__.TestSparseCSRCPU) ... ok (0.004s) 2023-01-11T21:22:05.4807216Z test_zero_to_zero_correspondence_unary_sin_cpu_uint8 (__main__.TestSparseCSRCPU) ... ok (0.004s) 2023-01-11T21:22:05.4807368Z test_zero_to_zero_correspondence_unary_sinh_cpu_bfloat16 (__main__.TestSparseCSRCPU) ... ok (0.004s) 2023-01-11T21:22:05.4807525Z test_zero_to_zero_correspondence_unary_sinh_cpu_bool (__main__.TestSparseCSRCPU) ... ok (0.004s) 2023-01-11T21:22:05.4807692Z test_zero_to_zero_correspondence_unary_sinh_cpu_complex128 (__main__.TestSparseCSRCPU) ... ok (0.004s) 2023-01-11T21:22:05.4807858Z test_zero_to_zero_correspondence_unary_sinh_cpu_complex64 (__main__.TestSparseCSRCPU) ... ok (0.004s) 2023-01-11T21:22:05.4808021Z test_zero_to_zero_correspondence_unary_sinh_cpu_float32 (__main__.TestSparseCSRCPU) ... ok (0.004s) 2023-01-11T21:22:05.4808180Z test_zero_to_zero_correspondence_unary_sinh_cpu_float64 (__main__.TestSparseCSRCPU) ... ok (0.004s) 2023-01-11T21:22:05.4808342Z test_zero_to_zero_correspondence_unary_sinh_cpu_int16 (__main__.TestSparseCSRCPU) ... ok (0.004s) 2023-01-11T21:22:05.4808499Z test_zero_to_zero_correspondence_unary_sinh_cpu_int32 (__main__.TestSparseCSRCPU) ... ok (0.004s) 2023-01-11T21:22:05.4808652Z test_zero_to_zero_correspondence_unary_sinh_cpu_int64 (__main__.TestSparseCSRCPU) ... ok (0.004s) 2023-01-11T21:22:05.4808797Z test_zero_to_zero_correspondence_unary_sinh_cpu_int8 (__main__.TestSparseCSRCPU) ... ok (0.004s) 2023-01-11T21:22:05.4808955Z test_zero_to_zero_correspondence_unary_sinh_cpu_uint8 (__main__.TestSparseCSRCPU) ... ok (0.004s) 2023-01-11T21:22:05.4809118Z test_zero_to_zero_correspondence_unary_sqrt_cpu_bfloat16 (__main__.TestSparseCSRCPU) ... ok (0.004s) 2023-01-11T21:22:05.4809274Z test_zero_to_zero_correspondence_unary_sqrt_cpu_bool (__main__.TestSparseCSRCPU) ... ok (0.004s) 2023-01-11T21:22:05.4809445Z test_zero_to_zero_correspondence_unary_sqrt_cpu_complex128 (__main__.TestSparseCSRCPU) ... ok (0.015s) 2023-01-11T21:22:05.4809611Z test_zero_to_zero_correspondence_unary_sqrt_cpu_complex64 (__main__.TestSparseCSRCPU) ... ok (0.004s) 2023-01-11T21:22:05.4809772Z test_zero_to_zero_correspondence_unary_sqrt_cpu_float32 (__main__.TestSparseCSRCPU) ... ok (0.004s) 2023-01-11T21:22:05.4809928Z test_zero_to_zero_correspondence_unary_sqrt_cpu_float64 (__main__.TestSparseCSRCPU) ... ok (0.004s) 2023-01-11T21:22:05.4810086Z test_zero_to_zero_correspondence_unary_sqrt_cpu_int16 (__main__.TestSparseCSRCPU) ... ok (0.004s) 2023-01-11T21:22:05.4810228Z test_zero_to_zero_correspondence_unary_sqrt_cpu_int32 (__main__.TestSparseCSRCPU) ... ok (0.004s) 2023-01-11T21:22:05.4810378Z test_zero_to_zero_correspondence_unary_sqrt_cpu_int64 (__main__.TestSparseCSRCPU) ... ok (0.004s) 2023-01-11T21:22:05.4810581Z test_zero_to_zero_correspondence_unary_sqrt_cpu_int8 (__main__.TestSparseCSRCPU) ... ok (0.004s) 2023-01-11T21:22:05.4810740Z test_zero_to_zero_correspondence_unary_sqrt_cpu_uint8 (__main__.TestSparseCSRCPU) ... ok (0.004s) 2023-01-11T21:22:05.4810902Z test_zero_to_zero_correspondence_unary_tan_cpu_bfloat16 (__main__.TestSparseCSRCPU) ... ok (0.004s) 2023-01-11T21:22:05.4811061Z test_zero_to_zero_correspondence_unary_tan_cpu_bool (__main__.TestSparseCSRCPU) ... ok (0.004s) 2023-01-11T21:22:05.4811227Z test_zero_to_zero_correspondence_unary_tan_cpu_complex128 (__main__.TestSparseCSRCPU) ... ok (0.004s) 2023-01-11T21:22:05.4811391Z test_zero_to_zero_correspondence_unary_tan_cpu_complex64 (__main__.TestSparseCSRCPU) ... ok (0.004s) 2023-01-11T21:22:05.4811553Z test_zero_to_zero_correspondence_unary_tan_cpu_float32 (__main__.TestSparseCSRCPU) ... ok (0.004s) 2023-01-11T21:22:05.4811700Z test_zero_to_zero_correspondence_unary_tan_cpu_float64 (__main__.TestSparseCSRCPU) ... ok (0.004s) 2023-01-11T21:22:05.4811862Z test_zero_to_zero_correspondence_unary_tan_cpu_int16 (__main__.TestSparseCSRCPU) ... ok (0.004s) 2023-01-11T21:22:05.4812044Z test_zero_to_zero_correspondence_unary_tan_cpu_int32 (__main__.TestSparseCSRCPU) ... ok (0.004s) 2023-01-11T21:22:05.4812206Z test_zero_to_zero_correspondence_unary_tan_cpu_int64 (__main__.TestSparseCSRCPU) ... ok (0.004s) 2023-01-11T21:22:05.4812363Z test_zero_to_zero_correspondence_unary_tan_cpu_int8 (__main__.TestSparseCSRCPU) ... ok (0.004s) 2023-01-11T21:22:05.4812521Z test_zero_to_zero_correspondence_unary_tan_cpu_uint8 (__main__.TestSparseCSRCPU) ... ok (0.004s) 2023-01-11T21:22:05.4812684Z test_zero_to_zero_correspondence_unary_tanh_cpu_bfloat16 (__main__.TestSparseCSRCPU) ... ok (0.004s) 2023-01-11T21:22:05.4812841Z test_zero_to_zero_correspondence_unary_tanh_cpu_bool (__main__.TestSparseCSRCPU) ... ok (0.004s) 2023-01-11T21:22:05.4813005Z test_zero_to_zero_correspondence_unary_tanh_cpu_complex128 (__main__.TestSparseCSRCPU) ... ok (0.004s) 2023-01-11T21:22:05.4813164Z test_zero_to_zero_correspondence_unary_tanh_cpu_complex64 (__main__.TestSparseCSRCPU) ... ok (0.004s) 2023-01-11T21:22:05.4813328Z test_zero_to_zero_correspondence_unary_tanh_cpu_float32 (__main__.TestSparseCSRCPU) ... ok (0.004s) 2023-01-11T21:22:05.4813484Z test_zero_to_zero_correspondence_unary_tanh_cpu_float64 (__main__.TestSparseCSRCPU) ... ok (0.004s) 2023-01-11T21:22:05.4813643Z test_zero_to_zero_correspondence_unary_tanh_cpu_int16 (__main__.TestSparseCSRCPU) ... ok (0.004s) 2023-01-11T21:22:05.4813804Z test_zero_to_zero_correspondence_unary_tanh_cpu_int32 (__main__.TestSparseCSRCPU) ... ok (0.004s) 2023-01-11T21:22:05.4813962Z test_zero_to_zero_correspondence_unary_tanh_cpu_int64 (__main__.TestSparseCSRCPU) ... ok (0.004s) 2023-01-11T21:22:05.4814119Z test_zero_to_zero_correspondence_unary_tanh_cpu_int8 (__main__.TestSparseCSRCPU) ... ok (0.004s) 2023-01-11T21:22:05.4814274Z test_zero_to_zero_correspondence_unary_tanh_cpu_uint8 (__main__.TestSparseCSRCPU) ... ok (0.004s) 2023-01-11T21:22:05.4814440Z test_zero_to_zero_correspondence_unary_trunc_cpu_bfloat16 (__main__.TestSparseCSRCPU) ... ok (0.004s) 2023-01-11T21:22:05.4814595Z test_zero_to_zero_correspondence_unary_trunc_cpu_float32 (__main__.TestSparseCSRCPU) ... ok (0.004s) 2023-01-11T21:22:05.4814758Z test_zero_to_zero_correspondence_unary_trunc_cpu_float64 (__main__.TestSparseCSRCPU) ... ok (0.004s) 2023-01-11T21:22:05.4814921Z test_zero_to_zero_correspondence_unary_trunc_cpu_int16 (__main__.TestSparseCSRCPU) ... ok (0.003s) 2023-01-11T21:22:05.4815080Z test_zero_to_zero_correspondence_unary_trunc_cpu_int32 (__main__.TestSparseCSRCPU) ... ok (0.003s) 2023-01-11T21:22:05.4815236Z test_zero_to_zero_correspondence_unary_trunc_cpu_int64 (__main__.TestSparseCSRCPU) ... ok (0.003s) 2023-01-11T21:22:05.4815393Z test_zero_to_zero_correspondence_unary_trunc_cpu_int8 (__main__.TestSparseCSRCPU) ... ok (0.003s) 2023-01-11T21:22:05.4815553Z test_zero_to_zero_correspondence_unary_trunc_cpu_uint8 (__main__.TestSparseCSRCPU) ... ok (0.003s) 2023-01-11T21:22:05.4815716Z test_make_crow_indices (__main__.TestSparseCSRSampler) ... ok (1.819s) 2023-01-11T21:22:05.4815864Z test_clone_SparseBSC_cpu_bfloat16 (__main__.TestSparseCompressedCPU) ... ok (0.536s) 2023-01-11T21:22:05.4816014Z test_clone_SparseBSC_cpu_bool (__main__.TestSparseCompressedCPU) ... ok (0.499s) 2023-01-11T21:22:05.4816172Z test_clone_SparseBSC_cpu_complex128 (__main__.TestSparseCompressedCPU) ... ok (0.538s) 2023-01-11T21:22:05.4816329Z test_clone_SparseBSC_cpu_complex64 (__main__.TestSparseCompressedCPU) ... ok (0.567s) 2023-01-11T21:22:05.4816482Z test_clone_SparseBSC_cpu_float16 (__main__.TestSparseCompressedCPU) ... ok (0.515s) 2023-01-11T21:22:05.4816630Z test_clone_SparseBSC_cpu_float32 (__main__.TestSparseCompressedCPU) ... ok (0.529s) 2023-01-11T21:22:05.4816776Z test_clone_SparseBSC_cpu_float64 (__main__.TestSparseCompressedCPU) ... ok (0.503s) 2023-01-11T21:22:05.4816925Z test_clone_SparseBSC_cpu_int16 (__main__.TestSparseCompressedCPU) ... ok (0.527s) 2023-01-11T21:22:05.4817073Z test_clone_SparseBSC_cpu_int32 (__main__.TestSparseCompressedCPU) ... ok (0.485s) 2023-01-11T21:22:05.4817308Z test_clone_SparseBSC_cpu_int64 (__main__.TestSparseCompressedCPU) ... ok (0.501s) 2023-01-11T21:22:05.4817458Z test_clone_SparseBSC_cpu_int8 (__main__.TestSparseCompressedCPU) ... ok (0.496s) 2023-01-11T21:22:05.4817604Z test_clone_SparseBSC_cpu_uint8 (__main__.TestSparseCompressedCPU) ... ok (0.501s) 2023-01-11T21:22:05.4817759Z test_clone_SparseBSR_cpu_bfloat16 (__main__.TestSparseCompressedCPU) ... ok (0.453s) 2023-01-11T21:22:05.4817907Z test_clone_SparseBSR_cpu_bool (__main__.TestSparseCompressedCPU) ... ok (0.446s) 2023-01-11T21:22:05.4818065Z test_clone_SparseBSR_cpu_complex128 (__main__.TestSparseCompressedCPU) ... ok (0.468s) 2023-01-11T21:22:05.4818222Z test_clone_SparseBSR_cpu_complex64 (__main__.TestSparseCompressedCPU) ... ok (0.480s) 2023-01-11T21:22:05.4818380Z test_clone_SparseBSR_cpu_float16 (__main__.TestSparseCompressedCPU) ... ok (0.459s) 2023-01-11T21:22:05.4818518Z test_clone_SparseBSR_cpu_float32 (__main__.TestSparseCompressedCPU) ... ok (0.471s) 2023-01-11T21:22:05.4818672Z test_clone_SparseBSR_cpu_float64 (__main__.TestSparseCompressedCPU) ... ok (0.446s) 2023-01-11T21:22:05.4818818Z test_clone_SparseBSR_cpu_int16 (__main__.TestSparseCompressedCPU) ... ok (0.480s) 2023-01-11T21:22:05.4818963Z test_clone_SparseBSR_cpu_int32 (__main__.TestSparseCompressedCPU) ... ok (0.432s) 2023-01-11T21:22:05.4819106Z test_clone_SparseBSR_cpu_int64 (__main__.TestSparseCompressedCPU) ... ok (0.430s) 2023-01-11T21:22:05.4819254Z test_clone_SparseBSR_cpu_int8 (__main__.TestSparseCompressedCPU) ... ok (0.455s) 2023-01-11T21:22:05.4819398Z test_clone_SparseBSR_cpu_uint8 (__main__.TestSparseCompressedCPU) ... ok (0.433s) 2023-01-11T21:22:05.4819552Z test_clone_SparseCSC_cpu_bfloat16 (__main__.TestSparseCompressedCPU) ... ok (0.332s) 2023-01-11T21:22:05.4819690Z test_clone_SparseCSC_cpu_bool (__main__.TestSparseCompressedCPU) ... ok (0.299s) 2023-01-11T21:22:05.4819845Z test_clone_SparseCSC_cpu_complex128 (__main__.TestSparseCompressedCPU) ... ok (0.320s) 2023-01-11T21:22:05.4820001Z test_clone_SparseCSC_cpu_complex64 (__main__.TestSparseCompressedCPU) ... ok (0.349s) 2023-01-11T21:22:05.4820150Z test_clone_SparseCSC_cpu_float16 (__main__.TestSparseCompressedCPU) ... ok (0.314s) 2023-01-11T21:22:05.4820298Z test_clone_SparseCSC_cpu_float32 (__main__.TestSparseCompressedCPU) ... ok (0.312s) 2023-01-11T21:22:05.4820443Z test_clone_SparseCSC_cpu_float64 (__main__.TestSparseCompressedCPU) ... ok (0.325s) 2023-01-11T21:22:05.4820593Z test_clone_SparseCSC_cpu_int16 (__main__.TestSparseCompressedCPU) ... ok (0.292s) 2023-01-11T21:22:05.4820738Z test_clone_SparseCSC_cpu_int32 (__main__.TestSparseCompressedCPU) ... ok (0.311s) 2023-01-11T21:22:05.4820869Z test_clone_SparseCSC_cpu_int64 (__main__.TestSparseCompressedCPU) ... ok (0.327s) 2023-01-11T21:22:05.4821046Z test_clone_SparseCSC_cpu_int8 (__main__.TestSparseCompressedCPU) ... ok (0.303s) 2023-01-11T21:22:05.4821190Z test_clone_SparseCSC_cpu_uint8 (__main__.TestSparseCompressedCPU) ... ok (0.295s) 2023-01-11T21:22:05.4821343Z test_clone_SparseCSR_cpu_bfloat16 (__main__.TestSparseCompressedCPU) ... ok (0.277s) 2023-01-11T21:22:05.4821492Z test_clone_SparseCSR_cpu_bool (__main__.TestSparseCompressedCPU) ... ok (0.235s) 2023-01-11T21:22:05.4821649Z test_clone_SparseCSR_cpu_complex128 (__main__.TestSparseCompressedCPU) ... ok (0.261s) 2023-01-11T21:22:05.4821802Z test_clone_SparseCSR_cpu_complex64 (__main__.TestSparseCompressedCPU) ... ok (0.280s) 2023-01-11T21:22:05.4821951Z test_clone_SparseCSR_cpu_float16 (__main__.TestSparseCompressedCPU) ... ok (0.251s) 2023-01-11T21:22:05.4822098Z test_clone_SparseCSR_cpu_float32 (__main__.TestSparseCompressedCPU) ... ok (0.245s) 2023-01-11T21:22:05.4822230Z test_clone_SparseCSR_cpu_float64 (__main__.TestSparseCompressedCPU) ... ok (0.247s) 2023-01-11T21:22:05.4822383Z test_clone_SparseCSR_cpu_int16 (__main__.TestSparseCompressedCPU) ... ok (0.252s) 2023-01-11T21:22:05.4822534Z test_clone_SparseCSR_cpu_int32 (__main__.TestSparseCompressedCPU) ... ok (0.231s) 2023-01-11T21:22:05.4822706Z test_clone_SparseCSR_cpu_int64 (__main__.TestSparseCompressedCPU) ... ok (0.232s) 2023-01-11T21:22:05.4822857Z test_clone_SparseCSR_cpu_int8 (__main__.TestSparseCompressedCPU) ... ok (0.233s) 2023-01-11T21:22:05.4823004Z test_clone_SparseCSR_cpu_uint8 (__main__.TestSparseCompressedCPU) ... ok (0.256s) 2023-01-11T21:22:05.4823172Z test_consistency_SparseBSC_abs_cpu_bfloat16 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4823340Z test_consistency_SparseBSC_abs_cpu_complex128 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4823495Z test_consistency_SparseBSC_abs_cpu_complex32 (__main__.TestSparseCompressedCPU) ... ok (0.006s) 2023-01-11T21:22:05.4823661Z test_consistency_SparseBSC_abs_cpu_complex64 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4823828Z test_consistency_SparseBSC_abs_cpu_float16 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4823992Z test_consistency_SparseBSC_abs_cpu_float32 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4824155Z test_consistency_SparseBSC_abs_cpu_float64 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4824315Z test_consistency_SparseBSC_abs_cpu_int16 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4824475Z test_consistency_SparseBSC_abs_cpu_int32 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4824634Z test_consistency_SparseBSC_abs_cpu_int64 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4824793Z test_consistency_SparseBSC_abs_cpu_int8 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4824940Z test_consistency_SparseBSC_abs_cpu_uint8 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4825110Z test_consistency_SparseBSC_angle_cpu_bfloat16 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4825276Z test_consistency_SparseBSC_angle_cpu_bool (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4825451Z test_consistency_SparseBSC_angle_cpu_complex128 (__main__.TestSparseCompressedCPU) ... ok (0.006s) 2023-01-11T21:22:05.4825622Z test_consistency_SparseBSC_angle_cpu_complex64 (__main__.TestSparseCompressedCPU) ... ok (0.006s) 2023-01-11T21:22:05.4825787Z test_consistency_SparseBSC_angle_cpu_float16 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4825951Z test_consistency_SparseBSC_angle_cpu_float32 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4826116Z test_consistency_SparseBSC_angle_cpu_float64 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4826282Z test_consistency_SparseBSC_angle_cpu_int16 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4826462Z test_consistency_SparseBSC_angle_cpu_int32 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4826624Z test_consistency_SparseBSC_angle_cpu_int64 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4826788Z test_consistency_SparseBSC_angle_cpu_int8 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4826949Z test_consistency_SparseBSC_angle_cpu_uint8 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4827114Z test_consistency_SparseBSC_asin_cpu_bfloat16 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4827275Z test_consistency_SparseBSC_asin_cpu_bool (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4827442Z test_consistency_SparseBSC_asin_cpu_complex128 (__main__.TestSparseCompressedCPU) ... ok (0.006s) 2023-01-11T21:22:05.4827614Z test_consistency_SparseBSC_asin_cpu_complex64 (__main__.TestSparseCompressedCPU) ... ok (0.006s) 2023-01-11T21:22:05.4827772Z test_consistency_SparseBSC_asin_cpu_float32 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4827936Z test_consistency_SparseBSC_asin_cpu_float64 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4828125Z test_consistency_SparseBSC_asin_cpu_int16 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4828287Z test_consistency_SparseBSC_asin_cpu_int32 (__main__.TestSparseCompressedCPU) ... ok (0.027s) 2023-01-11T21:22:05.4828446Z test_consistency_SparseBSC_asin_cpu_int64 (__main__.TestSparseCompressedCPU) ... ok (0.006s) 2023-01-11T21:22:05.4828605Z test_consistency_SparseBSC_asin_cpu_int8 (__main__.TestSparseCompressedCPU) ... ok (0.006s) 2023-01-11T21:22:05.4828766Z test_consistency_SparseBSC_asin_cpu_uint8 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4828938Z test_consistency_SparseBSC_asinh_cpu_bfloat16 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4829100Z test_consistency_SparseBSC_asinh_cpu_bool (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4829263Z test_consistency_SparseBSC_asinh_cpu_complex128 (__main__.TestSparseCompressedCPU) ... ok (0.006s) 2023-01-11T21:22:05.4829434Z test_consistency_SparseBSC_asinh_cpu_complex64 (__main__.TestSparseCompressedCPU) ... ok (0.006s) 2023-01-11T21:22:05.4829597Z test_consistency_SparseBSC_asinh_cpu_float32 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4829762Z test_consistency_SparseBSC_asinh_cpu_float64 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4829926Z test_consistency_SparseBSC_asinh_cpu_int16 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4830088Z test_consistency_SparseBSC_asinh_cpu_int32 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4830252Z test_consistency_SparseBSC_asinh_cpu_int64 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4830414Z test_consistency_SparseBSC_asinh_cpu_int8 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4830576Z test_consistency_SparseBSC_asinh_cpu_uint8 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4830729Z test_consistency_SparseBSC_atan_cpu_bfloat16 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4830890Z test_consistency_SparseBSC_atan_cpu_bool (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4831059Z test_consistency_SparseBSC_atan_cpu_complex128 (__main__.TestSparseCompressedCPU) ... ok (0.006s) 2023-01-11T21:22:05.4831227Z test_consistency_SparseBSC_atan_cpu_complex64 (__main__.TestSparseCompressedCPU) ... ok (0.006s) 2023-01-11T21:22:05.4831393Z test_consistency_SparseBSC_atan_cpu_float32 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4831561Z test_consistency_SparseBSC_atan_cpu_float64 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4831722Z test_consistency_SparseBSC_atan_cpu_int16 (__main__.TestSparseCompressedCPU) ... ok (0.006s) 2023-01-11T21:22:05.4831910Z test_consistency_SparseBSC_atan_cpu_int32 (__main__.TestSparseCompressedCPU) ... ok (0.006s) 2023-01-11T21:22:05.4832061Z test_consistency_SparseBSC_atan_cpu_int64 (__main__.TestSparseCompressedCPU) ... ok (0.006s) 2023-01-11T21:22:05.4832223Z test_consistency_SparseBSC_atan_cpu_int8 (__main__.TestSparseCompressedCPU) ... ok (0.006s) 2023-01-11T21:22:05.4832381Z test_consistency_SparseBSC_atan_cpu_uint8 (__main__.TestSparseCompressedCPU) ... ok (0.006s) 2023-01-11T21:22:05.4832548Z test_consistency_SparseBSC_atanh_cpu_bfloat16 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4832709Z test_consistency_SparseBSC_atanh_cpu_bool (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4832881Z test_consistency_SparseBSC_atanh_cpu_complex128 (__main__.TestSparseCompressedCPU) ... ok (0.006s) 2023-01-11T21:22:05.4833049Z test_consistency_SparseBSC_atanh_cpu_complex64 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4833216Z test_consistency_SparseBSC_atanh_cpu_float32 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4833407Z test_consistency_SparseBSC_atanh_cpu_float64 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4833561Z test_consistency_SparseBSC_atanh_cpu_int16 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4833721Z test_consistency_SparseBSC_atanh_cpu_int32 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4833883Z test_consistency_SparseBSC_atanh_cpu_int64 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4834044Z test_consistency_SparseBSC_atanh_cpu_int8 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4834205Z test_consistency_SparseBSC_atanh_cpu_uint8 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4834369Z test_consistency_SparseBSC_ceil_cpu_bfloat16 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4834535Z test_consistency_SparseBSC_ceil_cpu_float32 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4834703Z test_consistency_SparseBSC_ceil_cpu_float64 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4834864Z test_consistency_SparseBSC_ceil_cpu_int16 (__main__.TestSparseCompressedCPU) ... ok (0.044s) 2023-01-11T21:22:05.4835013Z test_consistency_SparseBSC_ceil_cpu_int32 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4835172Z test_consistency_SparseBSC_ceil_cpu_int64 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4835331Z test_consistency_SparseBSC_ceil_cpu_int8 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4835490Z test_consistency_SparseBSC_ceil_cpu_uint8 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4835666Z test_consistency_SparseBSC_conj_physical_cpu_bfloat16 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4835842Z test_consistency_SparseBSC_conj_physical_cpu_bool (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4836026Z test_consistency_SparseBSC_conj_physical_cpu_complex128 (__main__.TestSparseCompressedCPU) ... ok (0.006s) 2023-01-11T21:22:05.4836207Z test_consistency_SparseBSC_conj_physical_cpu_complex32 (__main__.TestSparseCompressedCPU) ... ok (0.006s) 2023-01-11T21:22:05.4836386Z test_consistency_SparseBSC_conj_physical_cpu_complex64 (__main__.TestSparseCompressedCPU) ... ok (0.006s) 2023-01-11T21:22:05.4836551Z test_consistency_SparseBSC_conj_physical_cpu_float16 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4836728Z test_consistency_SparseBSC_conj_physical_cpu_float32 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4836900Z test_consistency_SparseBSC_conj_physical_cpu_float64 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4837076Z test_consistency_SparseBSC_conj_physical_cpu_int16 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4837280Z test_consistency_SparseBSC_conj_physical_cpu_int32 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4837455Z test_consistency_SparseBSC_conj_physical_cpu_int64 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4837629Z test_consistency_SparseBSC_conj_physical_cpu_int8 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4837806Z test_consistency_SparseBSC_conj_physical_cpu_uint8 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4837984Z test_consistency_SparseBSC_deg2rad_cpu_bfloat16 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4838139Z test_consistency_SparseBSC_deg2rad_cpu_bool (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4838309Z test_consistency_SparseBSC_deg2rad_cpu_float16 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4838473Z test_consistency_SparseBSC_deg2rad_cpu_float32 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4838645Z test_consistency_SparseBSC_deg2rad_cpu_float64 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4838841Z test_consistency_SparseBSC_deg2rad_cpu_int16 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4839010Z test_consistency_SparseBSC_deg2rad_cpu_int32 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4839178Z test_consistency_SparseBSC_deg2rad_cpu_int64 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4839346Z test_consistency_SparseBSC_deg2rad_cpu_int8 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4839498Z test_consistency_SparseBSC_deg2rad_cpu_uint8 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4839668Z test_consistency_SparseBSC_erf_cpu_bfloat16 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4839832Z test_consistency_SparseBSC_erf_cpu_bool (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4839999Z test_consistency_SparseBSC_erf_cpu_float32 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4840165Z test_consistency_SparseBSC_erf_cpu_float64 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4840328Z test_consistency_SparseBSC_erf_cpu_int16 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4840488Z test_consistency_SparseBSC_erf_cpu_int32 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4840794Z test_consistency_SparseBSC_erf_cpu_int64 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4840962Z test_consistency_SparseBSC_erf_cpu_int8 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4841108Z test_consistency_SparseBSC_erf_cpu_uint8 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4841281Z test_consistency_SparseBSC_erfinv_cpu_bfloat16 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4841450Z test_consistency_SparseBSC_erfinv_cpu_bool (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4841623Z test_consistency_SparseBSC_erfinv_cpu_float32 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4841790Z test_consistency_SparseBSC_erfinv_cpu_float64 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4841960Z test_consistency_SparseBSC_erfinv_cpu_int16 (__main__.TestSparseCompressedCPU) ... ok (0.026s) 2023-01-11T21:22:05.4842125Z test_consistency_SparseBSC_erfinv_cpu_int32 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4842291Z test_consistency_SparseBSC_erfinv_cpu_int64 (__main__.TestSparseCompressedCPU) ... ok (0.006s) 2023-01-11T21:22:05.4842455Z test_consistency_SparseBSC_erfinv_cpu_int8 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4842608Z test_consistency_SparseBSC_erfinv_cpu_uint8 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4842831Z test_consistency_SparseBSC_expm1_cpu_bfloat16 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4842999Z test_consistency_SparseBSC_expm1_cpu_bool (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4843165Z test_consistency_SparseBSC_expm1_cpu_float32 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4843332Z test_consistency_SparseBSC_expm1_cpu_float64 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4843495Z test_consistency_SparseBSC_expm1_cpu_int16 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4843658Z test_consistency_SparseBSC_expm1_cpu_int32 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4843823Z test_consistency_SparseBSC_expm1_cpu_int64 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4843973Z test_consistency_SparseBSC_expm1_cpu_int8 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4844138Z test_consistency_SparseBSC_expm1_cpu_uint8 (__main__.TestSparseCompressedCPU) ... ok (0.006s) 2023-01-11T21:22:05.4844306Z test_consistency_SparseBSC_floor_cpu_bfloat16 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4844508Z test_consistency_SparseBSC_floor_cpu_float32 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4844676Z test_consistency_SparseBSC_floor_cpu_float64 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4844836Z test_consistency_SparseBSC_floor_cpu_int16 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4844998Z test_consistency_SparseBSC_floor_cpu_int32 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4845159Z test_consistency_SparseBSC_floor_cpu_int64 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4845322Z test_consistency_SparseBSC_floor_cpu_int8 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4845477Z test_consistency_SparseBSC_floor_cpu_uint8 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4845641Z test_consistency_SparseBSC_frac_cpu_bfloat16 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4845809Z test_consistency_SparseBSC_frac_cpu_float16 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4845977Z test_consistency_SparseBSC_frac_cpu_float32 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4846143Z test_consistency_SparseBSC_frac_cpu_float64 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4846309Z test_consistency_SparseBSC_isinf_cpu_bfloat16 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4846475Z test_consistency_SparseBSC_isinf_cpu_bool (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4846647Z test_consistency_SparseBSC_isinf_cpu_complex128 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4846816Z test_consistency_SparseBSC_isinf_cpu_complex32 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4846973Z test_consistency_SparseBSC_isinf_cpu_complex64 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4847143Z test_consistency_SparseBSC_isinf_cpu_float16 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4847307Z test_consistency_SparseBSC_isinf_cpu_float32 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4847472Z test_consistency_SparseBSC_isinf_cpu_float64 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4847636Z test_consistency_SparseBSC_isinf_cpu_int16 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4847798Z test_consistency_SparseBSC_isinf_cpu_int32 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4847957Z test_consistency_SparseBSC_isinf_cpu_int64 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4848121Z test_consistency_SparseBSC_isinf_cpu_int8 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4848332Z test_consistency_SparseBSC_isinf_cpu_uint8 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4848493Z test_consistency_SparseBSC_isnan_cpu_bfloat16 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4848656Z test_consistency_SparseBSC_isnan_cpu_bool (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4848827Z test_consistency_SparseBSC_isnan_cpu_complex128 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4848995Z test_consistency_SparseBSC_isnan_cpu_complex64 (__main__.TestSparseCompressedCPU) ... ok (0.026s) 2023-01-11T21:22:05.4849160Z test_consistency_SparseBSC_isnan_cpu_float16 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4849324Z test_consistency_SparseBSC_isnan_cpu_float32 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4849489Z test_consistency_SparseBSC_isnan_cpu_float64 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4849652Z test_consistency_SparseBSC_isnan_cpu_int16 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4849830Z test_consistency_SparseBSC_isnan_cpu_int32 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4849994Z test_consistency_SparseBSC_isnan_cpu_int64 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4850155Z test_consistency_SparseBSC_isnan_cpu_int8 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4850316Z test_consistency_SparseBSC_isnan_cpu_uint8 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4850490Z test_consistency_SparseBSC_isneginf_cpu_bfloat16 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4850658Z test_consistency_SparseBSC_isneginf_cpu_bool (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4850830Z test_consistency_SparseBSC_isneginf_cpu_float16 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4850999Z test_consistency_SparseBSC_isneginf_cpu_float32 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4851167Z test_consistency_SparseBSC_isneginf_cpu_float64 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4851323Z test_consistency_SparseBSC_isneginf_cpu_int16 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4851487Z test_consistency_SparseBSC_isneginf_cpu_int32 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4851648Z test_consistency_SparseBSC_isneginf_cpu_int64 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4851811Z test_consistency_SparseBSC_isneginf_cpu_int8 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4851976Z test_consistency_SparseBSC_isneginf_cpu_uint8 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4852145Z test_consistency_SparseBSC_isposinf_cpu_bfloat16 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4852311Z test_consistency_SparseBSC_isposinf_cpu_bool (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4852481Z test_consistency_SparseBSC_isposinf_cpu_float16 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4852646Z test_consistency_SparseBSC_isposinf_cpu_float32 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4852798Z test_consistency_SparseBSC_isposinf_cpu_float64 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4852962Z test_consistency_SparseBSC_isposinf_cpu_int16 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4853125Z test_consistency_SparseBSC_isposinf_cpu_int32 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4853285Z test_consistency_SparseBSC_isposinf_cpu_int64 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4853451Z test_consistency_SparseBSC_isposinf_cpu_int8 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4853652Z test_consistency_SparseBSC_isposinf_cpu_uint8 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4853823Z test_consistency_SparseBSC_log1p_cpu_bfloat16 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4853984Z test_consistency_SparseBSC_log1p_cpu_bool (__main__.TestSparseCompressedCPU) ... ok (0.006s) 2023-01-11T21:22:05.4854152Z test_consistency_SparseBSC_log1p_cpu_complex128 (__main__.TestSparseCompressedCPU) ... ok (0.006s) 2023-01-11T21:22:05.4854310Z test_consistency_SparseBSC_log1p_cpu_complex64 (__main__.TestSparseCompressedCPU) ... ok (0.006s) 2023-01-11T21:22:05.4854477Z test_consistency_SparseBSC_log1p_cpu_float32 (__main__.TestSparseCompressedCPU) ... ok (0.006s) 2023-01-11T21:22:05.4854641Z test_consistency_SparseBSC_log1p_cpu_float64 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4854803Z test_consistency_SparseBSC_log1p_cpu_int16 (__main__.TestSparseCompressedCPU) ... ok (0.006s) 2023-01-11T21:22:05.4854968Z test_consistency_SparseBSC_log1p_cpu_int32 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4855156Z test_consistency_SparseBSC_log1p_cpu_int64 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4855317Z test_consistency_SparseBSC_log1p_cpu_int8 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4855481Z test_consistency_SparseBSC_log1p_cpu_uint8 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4855732Z test_consistency_SparseBSC_masked_amax_cpu_bfloat16 (__main__.TestSparseCompressedCPU) ... skip: masked.amax does not support input with torch.sparse_bsc layout (0.003s) 2023-01-11T21:22:05.4855967Z test_consistency_SparseBSC_masked_amax_cpu_float16 (__main__.TestSparseCompressedCPU) ... skip: masked.amax does not support input with torch.sparse_bsc layout (0.003s) 2023-01-11T21:22:05.4856211Z test_consistency_SparseBSC_masked_amax_cpu_float32 (__main__.TestSparseCompressedCPU) ... skip: masked.amax does not support input with torch.sparse_bsc layout (0.024s) 2023-01-11T21:22:05.4856458Z test_consistency_SparseBSC_masked_amax_cpu_float64 (__main__.TestSparseCompressedCPU) ... skip: masked.amax does not support input with torch.sparse_bsc layout (0.003s) 2023-01-11T21:22:05.4856702Z test_consistency_SparseBSC_masked_amax_cpu_int16 (__main__.TestSparseCompressedCPU) ... skip: masked.amax does not support input with torch.sparse_bsc layout (0.003s) 2023-01-11T21:22:05.4856942Z test_consistency_SparseBSC_masked_amax_cpu_int32 (__main__.TestSparseCompressedCPU) ... skip: masked.amax does not support input with torch.sparse_bsc layout (0.003s) 2023-01-11T21:22:05.4857232Z test_consistency_SparseBSC_masked_amax_cpu_int64 (__main__.TestSparseCompressedCPU) ... skip: masked.amax does not support input with torch.sparse_bsc layout (0.003s) 2023-01-11T21:22:05.4857478Z test_consistency_SparseBSC_masked_amax_cpu_int8 (__main__.TestSparseCompressedCPU) ... skip: masked.amax does not support input with torch.sparse_bsc layout (0.003s) 2023-01-11T21:22:05.4857726Z test_consistency_SparseBSC_masked_amax_cpu_uint8 (__main__.TestSparseCompressedCPU) ... skip: masked.amax does not support input with torch.sparse_bsc layout (0.003s) 2023-01-11T21:22:05.4857972Z test_consistency_SparseBSC_masked_amin_cpu_bfloat16 (__main__.TestSparseCompressedCPU) ... skip: masked.amin does not support input with torch.sparse_bsc layout (0.003s) 2023-01-11T21:22:05.4858215Z test_consistency_SparseBSC_masked_amin_cpu_float16 (__main__.TestSparseCompressedCPU) ... skip: masked.amin does not support input with torch.sparse_bsc layout (0.003s) 2023-01-11T21:22:05.4858457Z test_consistency_SparseBSC_masked_amin_cpu_float32 (__main__.TestSparseCompressedCPU) ... skip: masked.amin does not support input with torch.sparse_bsc layout (0.003s) 2023-01-11T21:22:05.4858704Z test_consistency_SparseBSC_masked_amin_cpu_float64 (__main__.TestSparseCompressedCPU) ... skip: masked.amin does not support input with torch.sparse_bsc layout (0.003s) 2023-01-11T21:22:05.4858969Z test_consistency_SparseBSC_masked_amin_cpu_int16 (__main__.TestSparseCompressedCPU) ... skip: masked.amin does not support input with torch.sparse_bsc layout (0.003s) 2023-01-11T21:22:05.4859208Z test_consistency_SparseBSC_masked_amin_cpu_int32 (__main__.TestSparseCompressedCPU) ... skip: masked.amin does not support input with torch.sparse_bsc layout (0.003s) 2023-01-11T21:22:05.4859443Z test_consistency_SparseBSC_masked_amin_cpu_int64 (__main__.TestSparseCompressedCPU) ... skip: masked.amin does not support input with torch.sparse_bsc layout (0.003s) 2023-01-11T21:22:05.4859685Z test_consistency_SparseBSC_masked_amin_cpu_int8 (__main__.TestSparseCompressedCPU) ... skip: masked.amin does not support input with torch.sparse_bsc layout (0.003s) 2023-01-11T21:22:05.4859924Z test_consistency_SparseBSC_masked_amin_cpu_uint8 (__main__.TestSparseCompressedCPU) ... skip: masked.amin does not support input with torch.sparse_bsc layout (0.003s) 2023-01-11T21:22:05.4860167Z test_consistency_SparseBSC_masked_mean_cpu_bfloat16 (__main__.TestSparseCompressedCPU) ... skip: masked.mean does not support input with torch.sparse_bsc layout (0.003s) 2023-01-11T21:22:05.4860435Z test_consistency_SparseBSC_masked_mean_cpu_bool (__main__.TestSparseCompressedCPU) ... skip: masked.mean does not support input with torch.sparse_bsc layout (0.003s) 2023-01-11T21:22:05.4860685Z test_consistency_SparseBSC_masked_mean_cpu_complex128 (__main__.TestSparseCompressedCPU) ... skip: masked.mean does not support input with torch.sparse_bsc layout (0.003s) 2023-01-11T21:22:05.4860934Z test_consistency_SparseBSC_masked_mean_cpu_complex64 (__main__.TestSparseCompressedCPU) ... skip: masked.mean does not support input with torch.sparse_bsc layout (0.003s) 2023-01-11T21:22:05.4861177Z test_consistency_SparseBSC_masked_mean_cpu_float16 (__main__.TestSparseCompressedCPU) ... skip: masked.mean does not support input with torch.sparse_bsc layout (0.003s) 2023-01-11T21:22:05.4861420Z test_consistency_SparseBSC_masked_mean_cpu_float32 (__main__.TestSparseCompressedCPU) ... skip: masked.mean does not support input with torch.sparse_bsc layout (0.003s) 2023-01-11T21:22:05.4861668Z test_consistency_SparseBSC_masked_mean_cpu_float64 (__main__.TestSparseCompressedCPU) ... skip: masked.mean does not support input with torch.sparse_bsc layout (0.003s) 2023-01-11T21:22:05.4861910Z test_consistency_SparseBSC_masked_mean_cpu_int16 (__main__.TestSparseCompressedCPU) ... skip: masked.mean does not support input with torch.sparse_bsc layout (0.003s) 2023-01-11T21:22:05.4862136Z test_consistency_SparseBSC_masked_mean_cpu_int32 (__main__.TestSparseCompressedCPU) ... skip: masked.mean does not support input with torch.sparse_bsc layout (0.003s) 2023-01-11T21:22:05.4862371Z test_consistency_SparseBSC_masked_mean_cpu_int64 (__main__.TestSparseCompressedCPU) ... skip: masked.mean does not support input with torch.sparse_bsc layout (0.003s) 2023-01-11T21:22:05.4862615Z test_consistency_SparseBSC_masked_mean_cpu_int8 (__main__.TestSparseCompressedCPU) ... skip: masked.mean does not support input with torch.sparse_bsc layout (0.003s) 2023-01-11T21:22:05.4862858Z test_consistency_SparseBSC_masked_mean_cpu_uint8 (__main__.TestSparseCompressedCPU) ... skip: masked.mean does not support input with torch.sparse_bsc layout (0.003s) 2023-01-11T21:22:05.4863102Z test_consistency_SparseBSC_masked_prod_cpu_bfloat16 (__main__.TestSparseCompressedCPU) ... skip: masked.prod does not support input with torch.sparse_bsc layout (0.003s) 2023-01-11T21:22:05.4863340Z test_consistency_SparseBSC_masked_prod_cpu_bool (__main__.TestSparseCompressedCPU) ... skip: masked.prod does not support input with torch.sparse_bsc layout (0.003s) 2023-01-11T21:22:05.4863586Z test_consistency_SparseBSC_masked_prod_cpu_complex128 (__main__.TestSparseCompressedCPU) ... skip: masked.prod does not support input with torch.sparse_bsc layout (0.003s) 2023-01-11T21:22:05.4863835Z test_consistency_SparseBSC_masked_prod_cpu_complex64 (__main__.TestSparseCompressedCPU) ... skip: masked.prod does not support input with torch.sparse_bsc layout (0.003s) 2023-01-11T21:22:05.4864114Z test_consistency_SparseBSC_masked_prod_cpu_float32 (__main__.TestSparseCompressedCPU) ... skip: masked.prod does not support input with torch.sparse_bsc layout (0.003s) 2023-01-11T21:22:05.4864357Z test_consistency_SparseBSC_masked_prod_cpu_float64 (__main__.TestSparseCompressedCPU) ... skip: masked.prod does not support input with torch.sparse_bsc layout (0.003s) 2023-01-11T21:22:05.4864597Z test_consistency_SparseBSC_masked_prod_cpu_int16 (__main__.TestSparseCompressedCPU) ... skip: masked.prod does not support input with torch.sparse_bsc layout (0.003s) 2023-01-11T21:22:05.4864837Z test_consistency_SparseBSC_masked_prod_cpu_int32 (__main__.TestSparseCompressedCPU) ... skip: masked.prod does not support input with torch.sparse_bsc layout (0.003s) 2023-01-11T21:22:05.4865076Z test_consistency_SparseBSC_masked_prod_cpu_int64 (__main__.TestSparseCompressedCPU) ... skip: masked.prod does not support input with torch.sparse_bsc layout (0.003s) 2023-01-11T21:22:05.4865335Z test_consistency_SparseBSC_masked_prod_cpu_int8 (__main__.TestSparseCompressedCPU) ... skip: masked.prod does not support input with torch.sparse_bsc layout (0.003s) 2023-01-11T21:22:05.4865615Z test_consistency_SparseBSC_masked_prod_cpu_uint8 (__main__.TestSparseCompressedCPU) ... skip: masked.prod does not support input with torch.sparse_bsc layout (0.003s) 2023-01-11T21:22:05.4865929Z test_consistency_SparseBSC_masked_sum_cpu_bfloat16 (__main__.TestSparseCompressedCPU) ... skip: masked.sum does not support input with torch.sparse_bsc layout (0.003s) 2023-01-11T21:22:05.4866167Z test_consistency_SparseBSC_masked_sum_cpu_bool (__main__.TestSparseCompressedCPU) ... skip: masked.sum does not support input with torch.sparse_bsc layout (0.003s) 2023-01-11T21:22:05.4866413Z test_consistency_SparseBSC_masked_sum_cpu_complex128 (__main__.TestSparseCompressedCPU) ... skip: masked.sum does not support input with torch.sparse_bsc layout (0.003s) 2023-01-11T21:22:05.4866660Z test_consistency_SparseBSC_masked_sum_cpu_complex64 (__main__.TestSparseCompressedCPU) ... skip: masked.sum does not support input with torch.sparse_bsc layout (0.003s) 2023-01-11T21:22:05.4866901Z test_consistency_SparseBSC_masked_sum_cpu_float16 (__main__.TestSparseCompressedCPU) ... skip: masked.sum does not support input with torch.sparse_bsc layout (0.003s) 2023-01-11T21:22:05.4867140Z test_consistency_SparseBSC_masked_sum_cpu_float32 (__main__.TestSparseCompressedCPU) ... skip: masked.sum does not support input with torch.sparse_bsc layout (0.003s) 2023-01-11T21:22:05.4867379Z test_consistency_SparseBSC_masked_sum_cpu_float64 (__main__.TestSparseCompressedCPU) ... skip: masked.sum does not support input with torch.sparse_bsc layout (0.003s) 2023-01-11T21:22:05.4867617Z test_consistency_SparseBSC_masked_sum_cpu_int16 (__main__.TestSparseCompressedCPU) ... skip: masked.sum does not support input with torch.sparse_bsc layout (0.003s) 2023-01-11T21:22:05.4867851Z test_consistency_SparseBSC_masked_sum_cpu_int32 (__main__.TestSparseCompressedCPU) ... skip: masked.sum does not support input with torch.sparse_bsc layout (0.023s) 2023-01-11T21:22:05.4868087Z test_consistency_SparseBSC_masked_sum_cpu_int64 (__main__.TestSparseCompressedCPU) ... skip: masked.sum does not support input with torch.sparse_bsc layout (0.003s) 2023-01-11T21:22:05.4868313Z test_consistency_SparseBSC_masked_sum_cpu_int8 (__main__.TestSparseCompressedCPU) ... skip: masked.sum does not support input with torch.sparse_bsc layout (0.003s) 2023-01-11T21:22:05.4868544Z test_consistency_SparseBSC_masked_sum_cpu_uint8 (__main__.TestSparseCompressedCPU) ... skip: masked.sum does not support input with torch.sparse_bsc layout (0.003s) 2023-01-11T21:22:05.4868711Z test_consistency_SparseBSC_neg_cpu_bfloat16 (__main__.TestSparseCompressedCPU) ... ok (0.006s) 2023-01-11T21:22:05.4868878Z test_consistency_SparseBSC_neg_cpu_complex128 (__main__.TestSparseCompressedCPU) ... ok (0.006s) 2023-01-11T21:22:05.4869078Z test_consistency_SparseBSC_neg_cpu_complex32 (__main__.TestSparseCompressedCPU) ... ok (0.006s) 2023-01-11T21:22:05.4869249Z test_consistency_SparseBSC_neg_cpu_complex64 (__main__.TestSparseCompressedCPU) ... ok (0.006s) 2023-01-11T21:22:05.4869415Z test_consistency_SparseBSC_neg_cpu_float16 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4869577Z test_consistency_SparseBSC_neg_cpu_float32 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4869739Z test_consistency_SparseBSC_neg_cpu_float64 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4869890Z test_consistency_SparseBSC_neg_cpu_int16 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4870050Z test_consistency_SparseBSC_neg_cpu_int32 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4870207Z test_consistency_SparseBSC_neg_cpu_int64 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4870370Z test_consistency_SparseBSC_neg_cpu_int8 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4870555Z test_consistency_SparseBSC_neg_cpu_uint8 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4870740Z test_consistency_SparseBSC_nn_functional_relu_cpu_bfloat16 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4870925Z test_consistency_SparseBSC_nn_functional_relu_cpu_float32 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4871104Z test_consistency_SparseBSC_nn_functional_relu_cpu_float64 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4871282Z test_consistency_SparseBSC_nn_functional_relu_cpu_int16 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.4871448Z test_consistency_SparseBSC_nn_functional_relu_cpu_int32 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.4871626Z test_consistency_SparseBSC_nn_functional_relu_cpu_int64 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.4871806Z test_consistency_SparseBSC_nn_functional_relu_cpu_int8 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.4871979Z test_consistency_SparseBSC_nn_functional_relu_cpu_uint8 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.4872153Z test_consistency_SparseBSC_positive_cpu_bfloat16 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4872331Z test_consistency_SparseBSC_positive_cpu_complex128 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4872505Z test_consistency_SparseBSC_positive_cpu_complex32 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4872677Z test_consistency_SparseBSC_positive_cpu_complex64 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4872849Z test_consistency_SparseBSC_positive_cpu_float16 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4873007Z test_consistency_SparseBSC_positive_cpu_float32 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4873181Z test_consistency_SparseBSC_positive_cpu_float64 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4873349Z test_consistency_SparseBSC_positive_cpu_int16 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4873512Z test_consistency_SparseBSC_positive_cpu_int32 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4873675Z test_consistency_SparseBSC_positive_cpu_int64 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4873839Z test_consistency_SparseBSC_positive_cpu_int8 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4874007Z test_consistency_SparseBSC_positive_cpu_uint8 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4874179Z test_consistency_SparseBSC_rad2deg_cpu_bfloat16 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4874374Z test_consistency_SparseBSC_rad2deg_cpu_bool (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4874565Z test_consistency_SparseBSC_rad2deg_cpu_float16 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4874746Z test_consistency_SparseBSC_rad2deg_cpu_float32 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4874916Z test_consistency_SparseBSC_rad2deg_cpu_float64 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4875081Z test_consistency_SparseBSC_rad2deg_cpu_int16 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4875246Z test_consistency_SparseBSC_rad2deg_cpu_int32 (__main__.TestSparseCompressedCPU) ... ok (0.024s) 2023-01-11T21:22:05.4875412Z test_consistency_SparseBSC_rad2deg_cpu_int64 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4875581Z test_consistency_SparseBSC_rad2deg_cpu_int8 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4875746Z test_consistency_SparseBSC_rad2deg_cpu_uint8 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4876022Z test_consistency_SparseBSC_randn_like_cpu_bfloat16 (__main__.TestSparseCompressedCPU) ... skip: randn_like does not support input with torch.sparse_bsc layout (0.003s) 2023-01-11T21:22:05.4876259Z test_consistency_SparseBSC_randn_like_cpu_complex128 (__main__.TestSparseCompressedCPU) ... skip: randn_like does not support input with torch.sparse_bsc layout (0.003s) 2023-01-11T21:22:05.4876504Z test_consistency_SparseBSC_randn_like_cpu_complex32 (__main__.TestSparseCompressedCPU) ... skip: randn_like does not support input with torch.sparse_bsc layout (0.003s) 2023-01-11T21:22:05.4876748Z test_consistency_SparseBSC_randn_like_cpu_complex64 (__main__.TestSparseCompressedCPU) ... skip: randn_like does not support input with torch.sparse_bsc layout (0.003s) 2023-01-11T21:22:05.4876990Z test_consistency_SparseBSC_randn_like_cpu_float16 (__main__.TestSparseCompressedCPU) ... skip: randn_like does not support input with torch.sparse_bsc layout (0.003s) 2023-01-11T21:22:05.4877235Z test_consistency_SparseBSC_randn_like_cpu_float32 (__main__.TestSparseCompressedCPU) ... skip: randn_like does not support input with torch.sparse_bsc layout (0.003s) 2023-01-11T21:22:05.4877466Z test_consistency_SparseBSC_randn_like_cpu_float64 (__main__.TestSparseCompressedCPU) ... skip: randn_like does not support input with torch.sparse_bsc layout (0.003s) 2023-01-11T21:22:05.4877639Z test_consistency_SparseBSC_round_cpu_bfloat16 (__main__.TestSparseCompressedCPU) ... ok (0.006s) 2023-01-11T21:22:05.4877805Z test_consistency_SparseBSC_round_cpu_float32 (__main__.TestSparseCompressedCPU) ... ok (0.006s) 2023-01-11T21:22:05.4877970Z test_consistency_SparseBSC_round_cpu_float64 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4878135Z test_consistency_SparseBSC_round_cpu_int16 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4878303Z test_consistency_SparseBSC_round_cpu_int32 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4878456Z test_consistency_SparseBSC_round_cpu_int64 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4878619Z test_consistency_SparseBSC_round_cpu_int8 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4878783Z test_consistency_SparseBSC_round_cpu_uint8 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4878948Z test_consistency_SparseBSC_sgn_cpu_bfloat16 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4879111Z test_consistency_SparseBSC_sgn_cpu_bool (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4879277Z test_consistency_SparseBSC_sgn_cpu_complex128 (__main__.TestSparseCompressedCPU) ... ok (0.006s) 2023-01-11T21:22:05.4879442Z test_consistency_SparseBSC_sgn_cpu_complex32 (__main__.TestSparseCompressedCPU) ... ok (0.006s) 2023-01-11T21:22:05.4879638Z test_consistency_SparseBSC_sgn_cpu_complex64 (__main__.TestSparseCompressedCPU) ... ok (0.006s) 2023-01-11T21:22:05.4879789Z test_consistency_SparseBSC_sgn_cpu_float16 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4879954Z test_consistency_SparseBSC_sgn_cpu_float32 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4880116Z test_consistency_SparseBSC_sgn_cpu_float64 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4880278Z test_consistency_SparseBSC_sgn_cpu_int16 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4880437Z test_consistency_SparseBSC_sgn_cpu_int32 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4880696Z test_consistency_SparseBSC_sgn_cpu_int64 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4880874Z test_consistency_SparseBSC_sgn_cpu_int8 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4881035Z test_consistency_SparseBSC_sgn_cpu_uint8 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4881204Z test_consistency_SparseBSC_sign_cpu_bfloat16 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4881405Z test_consistency_SparseBSC_sign_cpu_bool (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4881572Z test_consistency_SparseBSC_sign_cpu_float16 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4881736Z test_consistency_SparseBSC_sign_cpu_float32 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4881899Z test_consistency_SparseBSC_sign_cpu_float64 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4882064Z test_consistency_SparseBSC_sign_cpu_int16 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4882226Z test_consistency_SparseBSC_sign_cpu_int32 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4882388Z test_consistency_SparseBSC_sign_cpu_int64 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4882553Z test_consistency_SparseBSC_sign_cpu_int8 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4882718Z test_consistency_SparseBSC_sign_cpu_uint8 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4882877Z test_consistency_SparseBSC_signbit_cpu_bfloat16 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4883043Z test_consistency_SparseBSC_signbit_cpu_bool (__main__.TestSparseCompressedCPU) ... ok (0.024s) 2023-01-11T21:22:05.4883213Z test_consistency_SparseBSC_signbit_cpu_float16 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4883378Z test_consistency_SparseBSC_signbit_cpu_float32 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4883542Z test_consistency_SparseBSC_signbit_cpu_float64 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4883707Z test_consistency_SparseBSC_signbit_cpu_int16 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4883875Z test_consistency_SparseBSC_signbit_cpu_int32 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4884042Z test_consistency_SparseBSC_signbit_cpu_int64 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4884196Z test_consistency_SparseBSC_signbit_cpu_int8 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4884362Z test_consistency_SparseBSC_signbit_cpu_uint8 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4884527Z test_consistency_SparseBSC_sin_cpu_bfloat16 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4884689Z test_consistency_SparseBSC_sin_cpu_bool (__main__.TestSparseCompressedCPU) ... ok (0.006s) 2023-01-11T21:22:05.4884855Z test_consistency_SparseBSC_sin_cpu_complex128 (__main__.TestSparseCompressedCPU) ... ok (0.006s) 2023-01-11T21:22:05.4885022Z test_consistency_SparseBSC_sin_cpu_complex64 (__main__.TestSparseCompressedCPU) ... ok (0.006s) 2023-01-11T21:22:05.4885242Z test_consistency_SparseBSC_sin_cpu_float32 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4885408Z test_consistency_SparseBSC_sin_cpu_float64 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4885569Z test_consistency_SparseBSC_sin_cpu_int16 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4885718Z test_consistency_SparseBSC_sin_cpu_int32 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4885877Z test_consistency_SparseBSC_sin_cpu_int64 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4886037Z test_consistency_SparseBSC_sin_cpu_int8 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4886198Z test_consistency_SparseBSC_sin_cpu_uint8 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4886363Z test_consistency_SparseBSC_sinh_cpu_bfloat16 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4886525Z test_consistency_SparseBSC_sinh_cpu_bool (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4886697Z test_consistency_SparseBSC_sinh_cpu_complex128 (__main__.TestSparseCompressedCPU) ... ok (0.006s) 2023-01-11T21:22:05.4886894Z test_consistency_SparseBSC_sinh_cpu_complex64 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4887059Z test_consistency_SparseBSC_sinh_cpu_float32 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4887212Z test_consistency_SparseBSC_sinh_cpu_float64 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4887378Z test_consistency_SparseBSC_sinh_cpu_int16 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4887539Z test_consistency_SparseBSC_sinh_cpu_int32 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4887701Z test_consistency_SparseBSC_sinh_cpu_int64 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4887862Z test_consistency_SparseBSC_sinh_cpu_int8 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4888050Z test_consistency_SparseBSC_sinh_cpu_uint8 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4888225Z test_consistency_SparseBSC_sqrt_cpu_bfloat16 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4888384Z test_consistency_SparseBSC_sqrt_cpu_bool (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4888552Z test_consistency_SparseBSC_sqrt_cpu_complex128 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4888709Z test_consistency_SparseBSC_sqrt_cpu_complex64 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4888872Z test_consistency_SparseBSC_sqrt_cpu_float32 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4889036Z test_consistency_SparseBSC_sqrt_cpu_float64 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4889199Z test_consistency_SparseBSC_sqrt_cpu_int16 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4889361Z test_consistency_SparseBSC_sqrt_cpu_int32 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4889527Z test_consistency_SparseBSC_sqrt_cpu_int64 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4889686Z test_consistency_SparseBSC_sqrt_cpu_int8 (__main__.TestSparseCompressedCPU) ... ok (0.026s) 2023-01-11T21:22:05.4889847Z test_consistency_SparseBSC_sqrt_cpu_uint8 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4889999Z test_consistency_SparseBSC_tan_cpu_bfloat16 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4890160Z test_consistency_SparseBSC_tan_cpu_bool (__main__.TestSparseCompressedCPU) ... ok (0.006s) 2023-01-11T21:22:05.4890331Z test_consistency_SparseBSC_tan_cpu_complex128 (__main__.TestSparseCompressedCPU) ... ok (0.006s) 2023-01-11T21:22:05.4890499Z test_consistency_SparseBSC_tan_cpu_complex64 (__main__.TestSparseCompressedCPU) ... ok (0.006s) 2023-01-11T21:22:05.4890701Z test_consistency_SparseBSC_tan_cpu_float32 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4890869Z test_consistency_SparseBSC_tan_cpu_float64 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4891031Z test_consistency_SparseBSC_tan_cpu_int16 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4891194Z test_consistency_SparseBSC_tan_cpu_int32 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4891351Z test_consistency_SparseBSC_tan_cpu_int64 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4891501Z test_consistency_SparseBSC_tan_cpu_int8 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4891664Z test_consistency_SparseBSC_tan_cpu_uint8 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4891831Z test_consistency_SparseBSC_tanh_cpu_bfloat16 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4891991Z test_consistency_SparseBSC_tanh_cpu_bool (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4892191Z test_consistency_SparseBSC_tanh_cpu_complex128 (__main__.TestSparseCompressedCPU) ... ok (0.006s) 2023-01-11T21:22:05.4892364Z test_consistency_SparseBSC_tanh_cpu_complex64 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4892530Z test_consistency_SparseBSC_tanh_cpu_float32 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4892697Z test_consistency_SparseBSC_tanh_cpu_float64 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4892862Z test_consistency_SparseBSC_tanh_cpu_int16 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4893013Z test_consistency_SparseBSC_tanh_cpu_int32 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4893175Z test_consistency_SparseBSC_tanh_cpu_int64 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4893339Z test_consistency_SparseBSC_tanh_cpu_int8 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4893502Z test_consistency_SparseBSC_tanh_cpu_uint8 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4893749Z test_consistency_SparseBSC_to_sparse_cpu_bfloat16 (__main__.TestSparseCompressedCPU) ... skip: to_sparse does not support input with torch.sparse_bsc layout (0.003s) 2023-01-11T21:22:05.4893989Z test_consistency_SparseBSC_to_sparse_cpu_bool (__main__.TestSparseCompressedCPU) ... skip: to_sparse does not support input with torch.sparse_bsc layout (0.003s) 2023-01-11T21:22:05.4894238Z test_consistency_SparseBSC_to_sparse_cpu_complex128 (__main__.TestSparseCompressedCPU) ... skip: to_sparse does not support input with torch.sparse_bsc layout (0.003s) 2023-01-11T21:22:05.4894483Z test_consistency_SparseBSC_to_sparse_cpu_complex64 (__main__.TestSparseCompressedCPU) ... skip: to_sparse does not support input with torch.sparse_bsc layout (0.003s) 2023-01-11T21:22:05.4894725Z test_consistency_SparseBSC_to_sparse_cpu_float16 (__main__.TestSparseCompressedCPU) ... skip: to_sparse does not support input with torch.sparse_bsc layout (0.003s) 2023-01-11T21:22:05.4894970Z test_consistency_SparseBSC_to_sparse_cpu_float32 (__main__.TestSparseCompressedCPU) ... skip: to_sparse does not support input with torch.sparse_bsc layout (0.003s) 2023-01-11T21:22:05.4895192Z test_consistency_SparseBSC_to_sparse_cpu_float64 (__main__.TestSparseCompressedCPU) ... skip: to_sparse does not support input with torch.sparse_bsc layout (0.003s) 2023-01-11T21:22:05.4895432Z test_consistency_SparseBSC_to_sparse_cpu_int16 (__main__.TestSparseCompressedCPU) ... skip: to_sparse does not support input with torch.sparse_bsc layout (0.003s) 2023-01-11T21:22:05.4895664Z test_consistency_SparseBSC_to_sparse_cpu_int32 (__main__.TestSparseCompressedCPU) ... skip: to_sparse does not support input with torch.sparse_bsc layout (0.003s) 2023-01-11T21:22:05.4895896Z test_consistency_SparseBSC_to_sparse_cpu_int64 (__main__.TestSparseCompressedCPU) ... skip: to_sparse does not support input with torch.sparse_bsc layout (0.003s) 2023-01-11T21:22:05.4896165Z test_consistency_SparseBSC_to_sparse_cpu_int8 (__main__.TestSparseCompressedCPU) ... skip: to_sparse does not support input with torch.sparse_bsc layout (0.003s) 2023-01-11T21:22:05.4896401Z test_consistency_SparseBSC_to_sparse_cpu_uint8 (__main__.TestSparseCompressedCPU) ... skip: to_sparse does not support input with torch.sparse_bsc layout (0.003s) 2023-01-11T21:22:05.4896572Z test_consistency_SparseBSC_trunc_cpu_bfloat16 (__main__.TestSparseCompressedCPU) ... ok (0.006s) 2023-01-11T21:22:05.4896740Z test_consistency_SparseBSC_trunc_cpu_float32 (__main__.TestSparseCompressedCPU) ... ok (0.006s) 2023-01-11T21:22:05.4896908Z test_consistency_SparseBSC_trunc_cpu_float64 (__main__.TestSparseCompressedCPU) ... ok (0.006s) 2023-01-11T21:22:05.4897075Z test_consistency_SparseBSC_trunc_cpu_int16 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4897295Z test_consistency_SparseBSC_trunc_cpu_int32 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4897498Z test_consistency_SparseBSC_trunc_cpu_int64 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4897664Z test_consistency_SparseBSC_trunc_cpu_int8 (__main__.TestSparseCompressedCPU) ... ok (0.062s) 2023-01-11T21:22:05.4897827Z test_consistency_SparseBSC_trunc_cpu_uint8 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4897993Z test_consistency_SparseBSR_abs_cpu_bfloat16 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4898165Z test_consistency_SparseBSR_abs_cpu_complex128 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4898333Z test_consistency_SparseBSR_abs_cpu_complex32 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4898503Z test_consistency_SparseBSR_abs_cpu_complex64 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4898669Z test_consistency_SparseBSR_abs_cpu_float16 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4898823Z test_consistency_SparseBSR_abs_cpu_float32 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4898988Z test_consistency_SparseBSR_abs_cpu_float64 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4899148Z test_consistency_SparseBSR_abs_cpu_int16 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.4899310Z test_consistency_SparseBSR_abs_cpu_int32 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.4899472Z test_consistency_SparseBSR_abs_cpu_int64 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.4899631Z test_consistency_SparseBSR_abs_cpu_int8 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.4899790Z test_consistency_SparseBSR_abs_cpu_uint8 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.4899964Z test_consistency_SparseBSR_angle_cpu_bfloat16 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4900129Z test_consistency_SparseBSR_angle_cpu_bool (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4900291Z test_consistency_SparseBSR_angle_cpu_complex128 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4900464Z test_consistency_SparseBSR_angle_cpu_complex64 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4900635Z test_consistency_SparseBSR_angle_cpu_float16 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4900815Z test_consistency_SparseBSR_angle_cpu_float32 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4900998Z test_consistency_SparseBSR_angle_cpu_float64 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4901165Z test_consistency_SparseBSR_angle_cpu_int16 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4901367Z test_consistency_SparseBSR_angle_cpu_int32 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4901528Z test_consistency_SparseBSR_angle_cpu_int64 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4901693Z test_consistency_SparseBSR_angle_cpu_int8 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4901843Z test_consistency_SparseBSR_angle_cpu_uint8 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4902008Z test_consistency_SparseBSR_asin_cpu_bfloat16 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4902168Z test_consistency_SparseBSR_asin_cpu_bool (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4902339Z test_consistency_SparseBSR_asin_cpu_complex128 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4902508Z test_consistency_SparseBSR_asin_cpu_complex64 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4902674Z test_consistency_SparseBSR_asin_cpu_float32 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4902841Z test_consistency_SparseBSR_asin_cpu_float64 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4903030Z test_consistency_SparseBSR_asin_cpu_int16 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4903181Z test_consistency_SparseBSR_asin_cpu_int32 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4903342Z test_consistency_SparseBSR_asin_cpu_int64 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4903503Z test_consistency_SparseBSR_asin_cpu_int8 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4903663Z test_consistency_SparseBSR_asin_cpu_uint8 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4903837Z test_consistency_SparseBSR_asinh_cpu_bfloat16 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4903998Z test_consistency_SparseBSR_asinh_cpu_bool (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4904173Z test_consistency_SparseBSR_asinh_cpu_complex128 (__main__.TestSparseCompressedCPU) ... ok (0.006s) 2023-01-11T21:22:05.4904345Z test_consistency_SparseBSR_asinh_cpu_complex64 (__main__.TestSparseCompressedCPU) ... ok (0.006s) 2023-01-11T21:22:05.4904510Z test_consistency_SparseBSR_asinh_cpu_float32 (__main__.TestSparseCompressedCPU) ... ok (0.009s) 2023-01-11T21:22:05.4904664Z test_consistency_SparseBSR_asinh_cpu_float64 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4904825Z test_consistency_SparseBSR_asinh_cpu_int16 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4904988Z test_consistency_SparseBSR_asinh_cpu_int32 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4905147Z test_consistency_SparseBSR_asinh_cpu_int64 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4905308Z test_consistency_SparseBSR_asinh_cpu_int8 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4905468Z test_consistency_SparseBSR_asinh_cpu_uint8 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4905637Z test_consistency_SparseBSR_atan_cpu_bfloat16 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4905800Z test_consistency_SparseBSR_atan_cpu_bool (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4905967Z test_consistency_SparseBSR_atan_cpu_complex128 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4906124Z test_consistency_SparseBSR_atan_cpu_complex64 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4906288Z test_consistency_SparseBSR_atan_cpu_float32 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4906456Z test_consistency_SparseBSR_atan_cpu_float64 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4906614Z test_consistency_SparseBSR_atan_cpu_int16 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4906805Z test_consistency_SparseBSR_atan_cpu_int32 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4906969Z test_consistency_SparseBSR_atan_cpu_int64 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4907129Z test_consistency_SparseBSR_atan_cpu_int8 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4907290Z test_consistency_SparseBSR_atan_cpu_uint8 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4907448Z test_consistency_SparseBSR_atanh_cpu_bfloat16 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4907610Z test_consistency_SparseBSR_atanh_cpu_bool (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4907779Z test_consistency_SparseBSR_atanh_cpu_complex128 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4907947Z test_consistency_SparseBSR_atanh_cpu_complex64 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4908118Z test_consistency_SparseBSR_atanh_cpu_float32 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4908309Z test_consistency_SparseBSR_atanh_cpu_float64 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4908475Z test_consistency_SparseBSR_atanh_cpu_int16 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4908636Z test_consistency_SparseBSR_atanh_cpu_int32 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4908794Z test_consistency_SparseBSR_atanh_cpu_int64 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4908944Z test_consistency_SparseBSR_atanh_cpu_int8 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4909105Z test_consistency_SparseBSR_atanh_cpu_uint8 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.4909268Z test_consistency_SparseBSR_ceil_cpu_bfloat16 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4909433Z test_consistency_SparseBSR_ceil_cpu_float32 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4909599Z test_consistency_SparseBSR_ceil_cpu_float64 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4909763Z test_consistency_SparseBSR_ceil_cpu_int16 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.4909924Z test_consistency_SparseBSR_ceil_cpu_int32 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.4910083Z test_consistency_SparseBSR_ceil_cpu_int64 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.4910242Z test_consistency_SparseBSR_ceil_cpu_int8 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.4910388Z test_consistency_SparseBSR_ceil_cpu_uint8 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.4910567Z test_consistency_SparseBSR_conj_physical_cpu_bfloat16 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4910744Z test_consistency_SparseBSR_conj_physical_cpu_bool (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.4910927Z test_consistency_SparseBSR_conj_physical_cpu_complex128 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4911111Z test_consistency_SparseBSR_conj_physical_cpu_complex32 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4911291Z test_consistency_SparseBSR_conj_physical_cpu_complex64 (__main__.TestSparseCompressedCPU) ... ok (0.009s) 2023-01-11T21:22:05.4911468Z test_consistency_SparseBSR_conj_physical_cpu_float16 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4911642Z test_consistency_SparseBSR_conj_physical_cpu_float32 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4911817Z test_consistency_SparseBSR_conj_physical_cpu_float64 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4911978Z test_consistency_SparseBSR_conj_physical_cpu_int16 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.4912180Z test_consistency_SparseBSR_conj_physical_cpu_int32 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.4912353Z test_consistency_SparseBSR_conj_physical_cpu_int64 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.4912528Z test_consistency_SparseBSR_conj_physical_cpu_int8 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.4912699Z test_consistency_SparseBSR_conj_physical_cpu_uint8 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.4912874Z test_consistency_SparseBSR_deg2rad_cpu_bfloat16 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4913042Z test_consistency_SparseBSR_deg2rad_cpu_bool (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4913210Z test_consistency_SparseBSR_deg2rad_cpu_float16 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4913376Z test_consistency_SparseBSR_deg2rad_cpu_float32 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4913531Z test_consistency_SparseBSR_deg2rad_cpu_float64 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4913722Z test_consistency_SparseBSR_deg2rad_cpu_int16 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4913888Z test_consistency_SparseBSR_deg2rad_cpu_int32 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4914050Z test_consistency_SparseBSR_deg2rad_cpu_int64 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4914218Z test_consistency_SparseBSR_deg2rad_cpu_int8 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4914384Z test_consistency_SparseBSR_deg2rad_cpu_uint8 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4914551Z test_consistency_SparseBSR_erf_cpu_bfloat16 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4914714Z test_consistency_SparseBSR_erf_cpu_bool (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4914870Z test_consistency_SparseBSR_erf_cpu_float32 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4915033Z test_consistency_SparseBSR_erf_cpu_float64 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4915195Z test_consistency_SparseBSR_erf_cpu_int16 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4915352Z test_consistency_SparseBSR_erf_cpu_int32 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4915511Z test_consistency_SparseBSR_erf_cpu_int64 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4915674Z test_consistency_SparseBSR_erf_cpu_int8 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4915836Z test_consistency_SparseBSR_erf_cpu_uint8 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4916005Z test_consistency_SparseBSR_erfinv_cpu_bfloat16 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4916170Z test_consistency_SparseBSR_erfinv_cpu_bool (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4916331Z test_consistency_SparseBSR_erfinv_cpu_float32 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4916494Z test_consistency_SparseBSR_erfinv_cpu_float64 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4916658Z test_consistency_SparseBSR_erfinv_cpu_int16 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4916826Z test_consistency_SparseBSR_erfinv_cpu_int32 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4916991Z test_consistency_SparseBSR_erfinv_cpu_int64 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4917153Z test_consistency_SparseBSR_erfinv_cpu_int8 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4917318Z test_consistency_SparseBSR_erfinv_cpu_uint8 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4917515Z test_consistency_SparseBSR_expm1_cpu_bfloat16 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4917678Z test_consistency_SparseBSR_expm1_cpu_bool (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4917834Z test_consistency_SparseBSR_expm1_cpu_float32 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4918000Z test_consistency_SparseBSR_expm1_cpu_float64 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4918161Z test_consistency_SparseBSR_expm1_cpu_int16 (__main__.TestSparseCompressedCPU) ... ok (0.009s) 2023-01-11T21:22:05.4918329Z test_consistency_SparseBSR_expm1_cpu_int32 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4918490Z test_consistency_SparseBSR_expm1_cpu_int64 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4918650Z test_consistency_SparseBSR_expm1_cpu_int8 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4918812Z test_consistency_SparseBSR_expm1_cpu_uint8 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4918978Z test_consistency_SparseBSR_floor_cpu_bfloat16 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4919158Z test_consistency_SparseBSR_floor_cpu_float32 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4919325Z test_consistency_SparseBSR_floor_cpu_float64 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4919483Z test_consistency_SparseBSR_floor_cpu_int16 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.4919642Z test_consistency_SparseBSR_floor_cpu_int32 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.4919804Z test_consistency_SparseBSR_floor_cpu_int64 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.4919963Z test_consistency_SparseBSR_floor_cpu_int8 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.4920120Z test_consistency_SparseBSR_floor_cpu_uint8 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.4920287Z test_consistency_SparseBSR_frac_cpu_bfloat16 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4920455Z test_consistency_SparseBSR_frac_cpu_float16 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4920739Z test_consistency_SparseBSR_frac_cpu_float32 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4920928Z test_consistency_SparseBSR_frac_cpu_float64 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4921099Z test_consistency_SparseBSR_isinf_cpu_bfloat16 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.4921261Z test_consistency_SparseBSR_isinf_cpu_bool (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.4921434Z test_consistency_SparseBSR_isinf_cpu_complex128 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4921603Z test_consistency_SparseBSR_isinf_cpu_complex32 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4921770Z test_consistency_SparseBSR_isinf_cpu_complex64 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4921942Z test_consistency_SparseBSR_isinf_cpu_float16 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.4922109Z test_consistency_SparseBSR_isinf_cpu_float32 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.4922263Z test_consistency_SparseBSR_isinf_cpu_float64 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.4922426Z test_consistency_SparseBSR_isinf_cpu_int16 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.4922588Z test_consistency_SparseBSR_isinf_cpu_int32 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.4922751Z test_consistency_SparseBSR_isinf_cpu_int64 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.4922917Z test_consistency_SparseBSR_isinf_cpu_int8 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.4923149Z test_consistency_SparseBSR_isinf_cpu_uint8 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.4923321Z test_consistency_SparseBSR_isnan_cpu_bfloat16 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.4923487Z test_consistency_SparseBSR_isnan_cpu_bool (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.4923659Z test_consistency_SparseBSR_isnan_cpu_complex128 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.4923815Z test_consistency_SparseBSR_isnan_cpu_complex64 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.4923979Z test_consistency_SparseBSR_isnan_cpu_float16 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.4924144Z test_consistency_SparseBSR_isnan_cpu_float32 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.4924311Z test_consistency_SparseBSR_isnan_cpu_float64 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.4924477Z test_consistency_SparseBSR_isnan_cpu_int16 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.4924674Z test_consistency_SparseBSR_isnan_cpu_int32 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.4924837Z test_consistency_SparseBSR_isnan_cpu_int64 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.4925001Z test_consistency_SparseBSR_isnan_cpu_int8 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.4925151Z test_consistency_SparseBSR_isnan_cpu_uint8 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.4925327Z test_consistency_SparseBSR_isneginf_cpu_bfloat16 (__main__.TestSparseCompressedCPU) ... ok (0.008s) 2023-01-11T21:22:05.4925494Z test_consistency_SparseBSR_isneginf_cpu_bool (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.4925671Z test_consistency_SparseBSR_isneginf_cpu_float16 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.4925840Z test_consistency_SparseBSR_isneginf_cpu_float32 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.4926005Z test_consistency_SparseBSR_isneginf_cpu_float64 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.4926173Z test_consistency_SparseBSR_isneginf_cpu_int16 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.4926342Z test_consistency_SparseBSR_isneginf_cpu_int32 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.4926506Z test_consistency_SparseBSR_isneginf_cpu_int64 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.4926659Z test_consistency_SparseBSR_isneginf_cpu_int8 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.4926825Z test_consistency_SparseBSR_isneginf_cpu_uint8 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.4926997Z test_consistency_SparseBSR_isposinf_cpu_bfloat16 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.4927164Z test_consistency_SparseBSR_isposinf_cpu_bool (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.4927334Z test_consistency_SparseBSR_isposinf_cpu_float16 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.4927498Z test_consistency_SparseBSR_isposinf_cpu_float32 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.4927660Z test_consistency_SparseBSR_isposinf_cpu_float64 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.4927827Z test_consistency_SparseBSR_isposinf_cpu_int16 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.4927994Z test_consistency_SparseBSR_isposinf_cpu_int32 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.4928145Z test_consistency_SparseBSR_isposinf_cpu_int64 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.4928309Z test_consistency_SparseBSR_isposinf_cpu_int8 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.4928507Z test_consistency_SparseBSR_isposinf_cpu_uint8 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.4928675Z test_consistency_SparseBSR_log1p_cpu_bfloat16 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4928842Z test_consistency_SparseBSR_log1p_cpu_bool (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4929012Z test_consistency_SparseBSR_log1p_cpu_complex128 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4929183Z test_consistency_SparseBSR_log1p_cpu_complex64 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4929349Z test_consistency_SparseBSR_log1p_cpu_float32 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4929514Z test_consistency_SparseBSR_log1p_cpu_float64 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4929665Z test_consistency_SparseBSR_log1p_cpu_int16 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4929830Z test_consistency_SparseBSR_log1p_cpu_int32 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4930017Z test_consistency_SparseBSR_log1p_cpu_int64 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4930183Z test_consistency_SparseBSR_log1p_cpu_int8 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4930344Z test_consistency_SparseBSR_log1p_cpu_uint8 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4930595Z test_consistency_SparseBSR_masked_amax_cpu_bfloat16 (__main__.TestSparseCompressedCPU) ... skip: masked.amax does not support input with torch.sparse_bsr layout (0.003s) 2023-01-11T21:22:05.4930843Z test_consistency_SparseBSR_masked_amax_cpu_float16 (__main__.TestSparseCompressedCPU) ... skip: masked.amax does not support input with torch.sparse_bsr layout (0.003s) 2023-01-11T21:22:05.4931090Z test_consistency_SparseBSR_masked_amax_cpu_float32 (__main__.TestSparseCompressedCPU) ... skip: masked.amax does not support input with torch.sparse_bsr layout (0.003s) 2023-01-11T21:22:05.4931331Z test_consistency_SparseBSR_masked_amax_cpu_float64 (__main__.TestSparseCompressedCPU) ... skip: masked.amax does not support input with torch.sparse_bsr layout (0.003s) 2023-01-11T21:22:05.4931573Z test_consistency_SparseBSR_masked_amax_cpu_int16 (__main__.TestSparseCompressedCPU) ... skip: masked.amax does not support input with torch.sparse_bsr layout (0.003s) 2023-01-11T21:22:05.4931805Z test_consistency_SparseBSR_masked_amax_cpu_int32 (__main__.TestSparseCompressedCPU) ... skip: masked.amax does not support input with torch.sparse_bsr layout (0.003s) 2023-01-11T21:22:05.4932040Z test_consistency_SparseBSR_masked_amax_cpu_int64 (__main__.TestSparseCompressedCPU) ... skip: masked.amax does not support input with torch.sparse_bsr layout (0.003s) 2023-01-11T21:22:05.4932285Z test_consistency_SparseBSR_masked_amax_cpu_int8 (__main__.TestSparseCompressedCPU) ... skip: masked.amax does not support input with torch.sparse_bsr layout (0.003s) 2023-01-11T21:22:05.4932531Z test_consistency_SparseBSR_masked_amax_cpu_uint8 (__main__.TestSparseCompressedCPU) ... skip: masked.amax does not support input with torch.sparse_bsr layout (0.003s) 2023-01-11T21:22:05.4932774Z test_consistency_SparseBSR_masked_amin_cpu_bfloat16 (__main__.TestSparseCompressedCPU) ... skip: masked.amin does not support input with torch.sparse_bsr layout (0.003s) 2023-01-11T21:22:05.4933017Z test_consistency_SparseBSR_masked_amin_cpu_float16 (__main__.TestSparseCompressedCPU) ... skip: masked.amin does not support input with torch.sparse_bsr layout (0.003s) 2023-01-11T21:22:05.4933259Z test_consistency_SparseBSR_masked_amin_cpu_float32 (__main__.TestSparseCompressedCPU) ... skip: masked.amin does not support input with torch.sparse_bsr layout (0.003s) 2023-01-11T21:22:05.4933499Z test_consistency_SparseBSR_masked_amin_cpu_float64 (__main__.TestSparseCompressedCPU) ... skip: masked.amin does not support input with torch.sparse_bsr layout (0.005s) 2023-01-11T21:22:05.4933801Z test_consistency_SparseBSR_masked_amin_cpu_int16 (__main__.TestSparseCompressedCPU) ... skip: masked.amin does not support input with torch.sparse_bsr layout (0.003s) 2023-01-11T21:22:05.4934041Z test_consistency_SparseBSR_masked_amin_cpu_int32 (__main__.TestSparseCompressedCPU) ... skip: masked.amin does not support input with torch.sparse_bsr layout (0.003s) 2023-01-11T21:22:05.4934274Z test_consistency_SparseBSR_masked_amin_cpu_int64 (__main__.TestSparseCompressedCPU) ... skip: masked.amin does not support input with torch.sparse_bsr layout (0.003s) 2023-01-11T21:22:05.4934519Z test_consistency_SparseBSR_masked_amin_cpu_int8 (__main__.TestSparseCompressedCPU) ... skip: masked.amin does not support input with torch.sparse_bsr layout (0.003s) 2023-01-11T21:22:05.4934762Z test_consistency_SparseBSR_masked_amin_cpu_uint8 (__main__.TestSparseCompressedCPU) ... skip: masked.amin does not support input with torch.sparse_bsr layout (0.003s) 2023-01-11T21:22:05.4934996Z test_consistency_SparseBSR_masked_mean_cpu_bfloat16 (__main__.TestSparseCompressedCPU) ... skip: masked.mean does not support input with torch.sparse_bsr layout (0.003s) 2023-01-11T21:22:05.4935268Z test_consistency_SparseBSR_masked_mean_cpu_bool (__main__.TestSparseCompressedCPU) ... skip: masked.mean does not support input with torch.sparse_bsr layout (0.003s) 2023-01-11T21:22:05.4935520Z test_consistency_SparseBSR_masked_mean_cpu_complex128 (__main__.TestSparseCompressedCPU) ... skip: masked.mean does not support input with torch.sparse_bsr layout (0.003s) 2023-01-11T21:22:05.4935813Z test_consistency_SparseBSR_masked_mean_cpu_complex64 (__main__.TestSparseCompressedCPU) ... skip: masked.mean does not support input with torch.sparse_bsr layout (0.003s) 2023-01-11T21:22:05.4936058Z test_consistency_SparseBSR_masked_mean_cpu_float16 (__main__.TestSparseCompressedCPU) ... skip: masked.mean does not support input with torch.sparse_bsr layout (0.003s) 2023-01-11T21:22:05.4936304Z test_consistency_SparseBSR_masked_mean_cpu_float32 (__main__.TestSparseCompressedCPU) ... skip: masked.mean does not support input with torch.sparse_bsr layout (0.003s) 2023-01-11T21:22:05.4936547Z test_consistency_SparseBSR_masked_mean_cpu_float64 (__main__.TestSparseCompressedCPU) ... skip: masked.mean does not support input with torch.sparse_bsr layout (0.003s) 2023-01-11T21:22:05.4936789Z test_consistency_SparseBSR_masked_mean_cpu_int16 (__main__.TestSparseCompressedCPU) ... skip: masked.mean does not support input with torch.sparse_bsr layout (0.003s) 2023-01-11T21:22:05.4937028Z test_consistency_SparseBSR_masked_mean_cpu_int32 (__main__.TestSparseCompressedCPU) ... skip: masked.mean does not support input with torch.sparse_bsr layout (0.003s) 2023-01-11T21:22:05.4937325Z test_consistency_SparseBSR_masked_mean_cpu_int64 (__main__.TestSparseCompressedCPU) ... skip: masked.mean does not support input with torch.sparse_bsr layout (0.003s) 2023-01-11T21:22:05.4937576Z test_consistency_SparseBSR_masked_mean_cpu_int8 (__main__.TestSparseCompressedCPU) ... skip: masked.mean does not support input with torch.sparse_bsr layout (0.003s) 2023-01-11T21:22:05.4937824Z test_consistency_SparseBSR_masked_mean_cpu_uint8 (__main__.TestSparseCompressedCPU) ... skip: masked.mean does not support input with torch.sparse_bsr layout (0.003s) 2023-01-11T21:22:05.4938059Z test_consistency_SparseBSR_masked_prod_cpu_bfloat16 (__main__.TestSparseCompressedCPU) ... skip: masked.prod does not support input with torch.sparse_bsr layout (0.003s) 2023-01-11T21:22:05.4938302Z test_consistency_SparseBSR_masked_prod_cpu_bool (__main__.TestSparseCompressedCPU) ... skip: masked.prod does not support input with torch.sparse_bsr layout (0.003s) 2023-01-11T21:22:05.4938555Z test_consistency_SparseBSR_masked_prod_cpu_complex128 (__main__.TestSparseCompressedCPU) ... skip: masked.prod does not support input with torch.sparse_bsr layout (0.003s) 2023-01-11T21:22:05.4938806Z test_consistency_SparseBSR_masked_prod_cpu_complex64 (__main__.TestSparseCompressedCPU) ... skip: masked.prod does not support input with torch.sparse_bsr layout (0.003s) 2023-01-11T21:22:05.4939092Z test_consistency_SparseBSR_masked_prod_cpu_float32 (__main__.TestSparseCompressedCPU) ... skip: masked.prod does not support input with torch.sparse_bsr layout (0.003s) 2023-01-11T21:22:05.4939334Z test_consistency_SparseBSR_masked_prod_cpu_float64 (__main__.TestSparseCompressedCPU) ... skip: masked.prod does not support input with torch.sparse_bsr layout (0.003s) 2023-01-11T21:22:05.4939578Z test_consistency_SparseBSR_masked_prod_cpu_int16 (__main__.TestSparseCompressedCPU) ... skip: masked.prod does not support input with torch.sparse_bsr layout (0.003s) 2023-01-11T21:22:05.4939818Z test_consistency_SparseBSR_masked_prod_cpu_int32 (__main__.TestSparseCompressedCPU) ... skip: masked.prod does not support input with torch.sparse_bsr layout (0.003s) 2023-01-11T21:22:05.4940057Z test_consistency_SparseBSR_masked_prod_cpu_int64 (__main__.TestSparseCompressedCPU) ... skip: masked.prod does not support input with torch.sparse_bsr layout (0.003s) 2023-01-11T21:22:05.4940329Z test_consistency_SparseBSR_masked_prod_cpu_int8 (__main__.TestSparseCompressedCPU) ... skip: masked.prod does not support input with torch.sparse_bsr layout (0.003s) 2023-01-11T21:22:05.4940569Z test_consistency_SparseBSR_masked_prod_cpu_uint8 (__main__.TestSparseCompressedCPU) ... skip: masked.prod does not support input with torch.sparse_bsr layout (0.003s) 2023-01-11T21:22:05.4940814Z test_consistency_SparseBSR_masked_sum_cpu_bfloat16 (__main__.TestSparseCompressedCPU) ... skip: masked.sum does not support input with torch.sparse_bsr layout (0.003s) 2023-01-11T21:22:05.4941055Z test_consistency_SparseBSR_masked_sum_cpu_bool (__main__.TestSparseCompressedCPU) ... skip: masked.sum does not support input with torch.sparse_bsr layout (0.003s) 2023-01-11T21:22:05.4941289Z test_consistency_SparseBSR_masked_sum_cpu_complex128 (__main__.TestSparseCompressedCPU) ... skip: masked.sum does not support input with torch.sparse_bsr layout (0.003s) 2023-01-11T21:22:05.4941540Z test_consistency_SparseBSR_masked_sum_cpu_complex64 (__main__.TestSparseCompressedCPU) ... skip: masked.sum does not support input with torch.sparse_bsr layout (0.003s) 2023-01-11T21:22:05.4941781Z test_consistency_SparseBSR_masked_sum_cpu_float16 (__main__.TestSparseCompressedCPU) ... skip: masked.sum does not support input with torch.sparse_bsr layout (0.003s) 2023-01-11T21:22:05.4942021Z test_consistency_SparseBSR_masked_sum_cpu_float32 (__main__.TestSparseCompressedCPU) ... skip: masked.sum does not support input with torch.sparse_bsr layout (0.003s) 2023-01-11T21:22:05.4942264Z test_consistency_SparseBSR_masked_sum_cpu_float64 (__main__.TestSparseCompressedCPU) ... skip: masked.sum does not support input with torch.sparse_bsr layout (0.003s) 2023-01-11T21:22:05.4942503Z test_consistency_SparseBSR_masked_sum_cpu_int16 (__main__.TestSparseCompressedCPU) ... skip: masked.sum does not support input with torch.sparse_bsr layout (0.003s) 2023-01-11T21:22:05.4942751Z test_consistency_SparseBSR_masked_sum_cpu_int32 (__main__.TestSparseCompressedCPU) ... skip: masked.sum does not support input with torch.sparse_bsr layout (0.003s) 2023-01-11T21:22:05.4942993Z test_consistency_SparseBSR_masked_sum_cpu_int64 (__main__.TestSparseCompressedCPU) ... skip: masked.sum does not support input with torch.sparse_bsr layout (0.003s) 2023-01-11T21:22:05.4943231Z test_consistency_SparseBSR_masked_sum_cpu_int8 (__main__.TestSparseCompressedCPU) ... skip: masked.sum does not support input with torch.sparse_bsr layout (0.003s) 2023-01-11T21:22:05.4943467Z test_consistency_SparseBSR_masked_sum_cpu_uint8 (__main__.TestSparseCompressedCPU) ... skip: masked.sum does not support input with torch.sparse_bsr layout (0.003s) 2023-01-11T21:22:05.4943638Z test_consistency_SparseBSR_neg_cpu_bfloat16 (__main__.TestSparseCompressedCPU) ... ok (0.006s) 2023-01-11T21:22:05.4943810Z test_consistency_SparseBSR_neg_cpu_complex128 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4943997Z test_consistency_SparseBSR_neg_cpu_complex32 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4944169Z test_consistency_SparseBSR_neg_cpu_complex64 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4944337Z test_consistency_SparseBSR_neg_cpu_float16 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4944503Z test_consistency_SparseBSR_neg_cpu_float32 (__main__.TestSparseCompressedCPU) ... ok (0.008s) 2023-01-11T21:22:05.4944672Z test_consistency_SparseBSR_neg_cpu_float64 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4944841Z test_consistency_SparseBSR_neg_cpu_int16 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.4945005Z test_consistency_SparseBSR_neg_cpu_int32 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.4945165Z test_consistency_SparseBSR_neg_cpu_int64 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.4945317Z test_consistency_SparseBSR_neg_cpu_int8 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.4945502Z test_consistency_SparseBSR_neg_cpu_uint8 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.4945693Z test_consistency_SparseBSR_nn_functional_relu_cpu_bfloat16 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.4945875Z test_consistency_SparseBSR_nn_functional_relu_cpu_float32 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.4946059Z test_consistency_SparseBSR_nn_functional_relu_cpu_float64 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.4946242Z test_consistency_SparseBSR_nn_functional_relu_cpu_int16 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.4946422Z test_consistency_SparseBSR_nn_functional_relu_cpu_int32 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.4946603Z test_consistency_SparseBSR_nn_functional_relu_cpu_int64 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.4946787Z test_consistency_SparseBSR_nn_functional_relu_cpu_int8 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.4946955Z test_consistency_SparseBSR_nn_functional_relu_cpu_uint8 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.4947134Z test_consistency_SparseBSR_positive_cpu_bfloat16 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4947310Z test_consistency_SparseBSR_positive_cpu_complex128 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4947488Z test_consistency_SparseBSR_positive_cpu_complex32 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4947663Z test_consistency_SparseBSR_positive_cpu_complex64 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4947836Z test_consistency_SparseBSR_positive_cpu_float16 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4948010Z test_consistency_SparseBSR_positive_cpu_float32 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4948186Z test_consistency_SparseBSR_positive_cpu_float64 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4948356Z test_consistency_SparseBSR_positive_cpu_int16 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.4948510Z test_consistency_SparseBSR_positive_cpu_int32 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.4948672Z test_consistency_SparseBSR_positive_cpu_int64 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.4948838Z test_consistency_SparseBSR_positive_cpu_int8 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.4949009Z test_consistency_SparseBSR_positive_cpu_uint8 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.4949181Z test_consistency_SparseBSR_rad2deg_cpu_bfloat16 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4949380Z test_consistency_SparseBSR_rad2deg_cpu_bool (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4949556Z test_consistency_SparseBSR_rad2deg_cpu_float16 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4949724Z test_consistency_SparseBSR_rad2deg_cpu_float32 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4949897Z test_consistency_SparseBSR_rad2deg_cpu_float64 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4950052Z test_consistency_SparseBSR_rad2deg_cpu_int16 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4950222Z test_consistency_SparseBSR_rad2deg_cpu_int32 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4950389Z test_consistency_SparseBSR_rad2deg_cpu_int64 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4950557Z test_consistency_SparseBSR_rad2deg_cpu_int8 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4950725Z test_consistency_SparseBSR_rad2deg_cpu_uint8 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4951001Z test_consistency_SparseBSR_randn_like_cpu_bfloat16 (__main__.TestSparseCompressedCPU) ... skip: randn_like does not support input with torch.sparse_bsr layout (0.003s) 2023-01-11T21:22:05.4951253Z test_consistency_SparseBSR_randn_like_cpu_complex128 (__main__.TestSparseCompressedCPU) ... skip: randn_like does not support input with torch.sparse_bsr layout (0.003s) 2023-01-11T21:22:05.4951498Z test_consistency_SparseBSR_randn_like_cpu_complex32 (__main__.TestSparseCompressedCPU) ... skip: randn_like does not support input with torch.sparse_bsr layout (0.003s) 2023-01-11T21:22:05.4951745Z test_consistency_SparseBSR_randn_like_cpu_complex64 (__main__.TestSparseCompressedCPU) ... skip: randn_like does not support input with torch.sparse_bsr layout (0.003s) 2023-01-11T21:22:05.4951990Z test_consistency_SparseBSR_randn_like_cpu_float16 (__main__.TestSparseCompressedCPU) ... skip: randn_like does not support input with torch.sparse_bsr layout (0.003s) 2023-01-11T21:22:05.4952239Z test_consistency_SparseBSR_randn_like_cpu_float32 (__main__.TestSparseCompressedCPU) ... skip: randn_like does not support input with torch.sparse_bsr layout (0.003s) 2023-01-11T21:22:05.4952463Z test_consistency_SparseBSR_randn_like_cpu_float64 (__main__.TestSparseCompressedCPU) ... skip: randn_like does not support input with torch.sparse_bsr layout (0.006s) 2023-01-11T21:22:05.4952632Z test_consistency_SparseBSR_round_cpu_bfloat16 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4952798Z test_consistency_SparseBSR_round_cpu_float32 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4952968Z test_consistency_SparseBSR_round_cpu_float64 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4953135Z test_consistency_SparseBSR_round_cpu_int16 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.4953305Z test_consistency_SparseBSR_round_cpu_int32 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.4953468Z test_consistency_SparseBSR_round_cpu_int64 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.4953634Z test_consistency_SparseBSR_round_cpu_int8 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.4953794Z test_consistency_SparseBSR_round_cpu_uint8 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.4953951Z test_consistency_SparseBSR_sgn_cpu_bfloat16 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4954113Z test_consistency_SparseBSR_sgn_cpu_bool (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.4954284Z test_consistency_SparseBSR_sgn_cpu_complex128 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4954450Z test_consistency_SparseBSR_sgn_cpu_complex32 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4954616Z test_consistency_SparseBSR_sgn_cpu_complex64 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4954805Z test_consistency_SparseBSR_sgn_cpu_float16 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4954973Z test_consistency_SparseBSR_sgn_cpu_float32 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4955134Z test_consistency_SparseBSR_sgn_cpu_float64 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4955285Z test_consistency_SparseBSR_sgn_cpu_int16 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.4955444Z test_consistency_SparseBSR_sgn_cpu_int32 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.4955605Z test_consistency_SparseBSR_sgn_cpu_int64 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.4955763Z test_consistency_SparseBSR_sgn_cpu_int8 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.4955919Z test_consistency_SparseBSR_sgn_cpu_uint8 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.4956086Z test_consistency_SparseBSR_sign_cpu_bfloat16 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4956279Z test_consistency_SparseBSR_sign_cpu_bool (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.4956446Z test_consistency_SparseBSR_sign_cpu_float16 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4956612Z test_consistency_SparseBSR_sign_cpu_float32 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4956765Z test_consistency_SparseBSR_sign_cpu_float64 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4956926Z test_consistency_SparseBSR_sign_cpu_int16 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.4957089Z test_consistency_SparseBSR_sign_cpu_int32 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.4957250Z test_consistency_SparseBSR_sign_cpu_int64 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.4957412Z test_consistency_SparseBSR_sign_cpu_int8 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.4957575Z test_consistency_SparseBSR_sign_cpu_uint8 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.4957748Z test_consistency_SparseBSR_signbit_cpu_bfloat16 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.4957915Z test_consistency_SparseBSR_signbit_cpu_bool (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.4958085Z test_consistency_SparseBSR_signbit_cpu_float16 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.4958240Z test_consistency_SparseBSR_signbit_cpu_float32 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.4958403Z test_consistency_SparseBSR_signbit_cpu_float64 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.4958567Z test_consistency_SparseBSR_signbit_cpu_int16 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.4958734Z test_consistency_SparseBSR_signbit_cpu_int32 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.4958900Z test_consistency_SparseBSR_signbit_cpu_int64 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.4959065Z test_consistency_SparseBSR_signbit_cpu_int8 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.4959228Z test_consistency_SparseBSR_signbit_cpu_uint8 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.4959393Z test_consistency_SparseBSR_sin_cpu_bfloat16 (__main__.TestSparseCompressedCPU) ... ok (0.009s) 2023-01-11T21:22:05.4959542Z test_consistency_SparseBSR_sin_cpu_bool (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4959710Z test_consistency_SparseBSR_sin_cpu_complex128 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4959874Z test_consistency_SparseBSR_sin_cpu_complex64 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4960079Z test_consistency_SparseBSR_sin_cpu_float32 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4960243Z test_consistency_SparseBSR_sin_cpu_float64 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4960402Z test_consistency_SparseBSR_sin_cpu_int16 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4960560Z test_consistency_SparseBSR_sin_cpu_int32 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4960870Z test_consistency_SparseBSR_sin_cpu_int64 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4961036Z test_consistency_SparseBSR_sin_cpu_int8 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4961182Z test_consistency_SparseBSR_sin_cpu_uint8 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4961349Z test_consistency_SparseBSR_sinh_cpu_bfloat16 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4961509Z test_consistency_SparseBSR_sinh_cpu_bool (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4961678Z test_consistency_SparseBSR_sinh_cpu_complex128 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4961901Z test_consistency_SparseBSR_sinh_cpu_complex64 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4962069Z test_consistency_SparseBSR_sinh_cpu_float32 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4962236Z test_consistency_SparseBSR_sinh_cpu_float64 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4962403Z test_consistency_SparseBSR_sinh_cpu_int16 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4962566Z test_consistency_SparseBSR_sinh_cpu_int32 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4962715Z test_consistency_SparseBSR_sinh_cpu_int64 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4962875Z test_consistency_SparseBSR_sinh_cpu_int8 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4963037Z test_consistency_SparseBSR_sinh_cpu_uint8 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4963207Z test_consistency_SparseBSR_sqrt_cpu_bfloat16 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4963369Z test_consistency_SparseBSR_sqrt_cpu_bool (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4963540Z test_consistency_SparseBSR_sqrt_cpu_complex128 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4963709Z test_consistency_SparseBSR_sqrt_cpu_complex64 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4963874Z test_consistency_SparseBSR_sqrt_cpu_float32 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4964039Z test_consistency_SparseBSR_sqrt_cpu_float64 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4964187Z test_consistency_SparseBSR_sqrt_cpu_int16 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4964353Z test_consistency_SparseBSR_sqrt_cpu_int32 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4964520Z test_consistency_SparseBSR_sqrt_cpu_int64 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4964682Z test_consistency_SparseBSR_sqrt_cpu_int8 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4964841Z test_consistency_SparseBSR_sqrt_cpu_uint8 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4965007Z test_consistency_SparseBSR_tan_cpu_bfloat16 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4965171Z test_consistency_SparseBSR_tan_cpu_bool (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4965341Z test_consistency_SparseBSR_tan_cpu_complex128 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4965497Z test_consistency_SparseBSR_tan_cpu_complex64 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4965697Z test_consistency_SparseBSR_tan_cpu_float32 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4965861Z test_consistency_SparseBSR_tan_cpu_float64 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4966023Z test_consistency_SparseBSR_tan_cpu_int16 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4966182Z test_consistency_SparseBSR_tan_cpu_int32 (__main__.TestSparseCompressedCPU) ... ok (0.009s) 2023-01-11T21:22:05.4966337Z test_consistency_SparseBSR_tan_cpu_int64 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4966497Z test_consistency_SparseBSR_tan_cpu_int8 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4966656Z test_consistency_SparseBSR_tan_cpu_uint8 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4966824Z test_consistency_SparseBSR_tanh_cpu_bfloat16 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4966974Z test_consistency_SparseBSR_tanh_cpu_bool (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4967170Z test_consistency_SparseBSR_tanh_cpu_complex128 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4967338Z test_consistency_SparseBSR_tanh_cpu_complex64 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4967506Z test_consistency_SparseBSR_tanh_cpu_float32 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4967671Z test_consistency_SparseBSR_tanh_cpu_float64 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4967834Z test_consistency_SparseBSR_tanh_cpu_int16 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4967995Z test_consistency_SparseBSR_tanh_cpu_int32 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4968156Z test_consistency_SparseBSR_tanh_cpu_int64 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4968317Z test_consistency_SparseBSR_tanh_cpu_int8 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4968467Z test_consistency_SparseBSR_tanh_cpu_uint8 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4968715Z test_consistency_SparseBSR_to_sparse_cpu_bfloat16 (__main__.TestSparseCompressedCPU) ... skip: to_sparse does not support input with torch.sparse_bsr layout (0.003s) 2023-01-11T21:22:05.4968954Z test_consistency_SparseBSR_to_sparse_cpu_bool (__main__.TestSparseCompressedCPU) ... skip: to_sparse does not support input with torch.sparse_bsr layout (0.003s) 2023-01-11T21:22:05.4969197Z test_consistency_SparseBSR_to_sparse_cpu_complex128 (__main__.TestSparseCompressedCPU) ... skip: to_sparse does not support input with torch.sparse_bsr layout (0.003s) 2023-01-11T21:22:05.4969442Z test_consistency_SparseBSR_to_sparse_cpu_complex64 (__main__.TestSparseCompressedCPU) ... skip: to_sparse does not support input with torch.sparse_bsr layout (0.003s) 2023-01-11T21:22:05.4969683Z test_consistency_SparseBSR_to_sparse_cpu_float16 (__main__.TestSparseCompressedCPU) ... skip: to_sparse does not support input with torch.sparse_bsr layout (0.003s) 2023-01-11T21:22:05.4969923Z test_consistency_SparseBSR_to_sparse_cpu_float32 (__main__.TestSparseCompressedCPU) ... skip: to_sparse does not support input with torch.sparse_bsr layout (0.003s) 2023-01-11T21:22:05.4970161Z test_consistency_SparseBSR_to_sparse_cpu_float64 (__main__.TestSparseCompressedCPU) ... skip: to_sparse does not support input with torch.sparse_bsr layout (0.003s) 2023-01-11T21:22:05.4970395Z test_consistency_SparseBSR_to_sparse_cpu_int16 (__main__.TestSparseCompressedCPU) ... skip: to_sparse does not support input with torch.sparse_bsr layout (0.003s) 2023-01-11T21:22:05.4970624Z test_consistency_SparseBSR_to_sparse_cpu_int32 (__main__.TestSparseCompressedCPU) ... skip: to_sparse does not support input with torch.sparse_bsr layout (0.003s) 2023-01-11T21:22:05.4970850Z test_consistency_SparseBSR_to_sparse_cpu_int64 (__main__.TestSparseCompressedCPU) ... skip: to_sparse does not support input with torch.sparse_bsr layout (0.003s) 2023-01-11T21:22:05.4971107Z test_consistency_SparseBSR_to_sparse_cpu_int8 (__main__.TestSparseCompressedCPU) ... skip: to_sparse does not support input with torch.sparse_bsr layout (0.003s) 2023-01-11T21:22:05.4971341Z test_consistency_SparseBSR_to_sparse_cpu_uint8 (__main__.TestSparseCompressedCPU) ... skip: to_sparse does not support input with torch.sparse_bsr layout (0.003s) 2023-01-11T21:22:05.4971511Z test_consistency_SparseBSR_trunc_cpu_bfloat16 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4971677Z test_consistency_SparseBSR_trunc_cpu_float32 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4971847Z test_consistency_SparseBSR_trunc_cpu_float64 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4972012Z test_consistency_SparseBSR_trunc_cpu_int16 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.4972181Z test_consistency_SparseBSR_trunc_cpu_int32 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.4972369Z test_consistency_SparseBSR_trunc_cpu_int64 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.4972532Z test_consistency_SparseBSR_trunc_cpu_int8 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.4972682Z test_consistency_SparseBSR_trunc_cpu_uint8 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.4972848Z test_consistency_SparseCSC_abs_cpu_bfloat16 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.4973017Z test_consistency_SparseCSC_abs_cpu_complex128 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4973181Z test_consistency_SparseCSC_abs_cpu_complex32 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4973347Z test_consistency_SparseCSC_abs_cpu_complex64 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4973512Z test_consistency_SparseCSC_abs_cpu_float16 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.4973675Z test_consistency_SparseCSC_abs_cpu_float32 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.4973840Z test_consistency_SparseCSC_abs_cpu_float64 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.4974001Z test_consistency_SparseCSC_abs_cpu_int16 (__main__.TestSparseCompressedCPU) ... ok (0.008s) 2023-01-11T21:22:05.4974151Z test_consistency_SparseCSC_abs_cpu_int32 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.4974311Z test_consistency_SparseCSC_abs_cpu_int64 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.4974472Z test_consistency_SparseCSC_abs_cpu_int8 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.4974631Z test_consistency_SparseCSC_abs_cpu_uint8 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.4974802Z test_consistency_SparseCSC_angle_cpu_bfloat16 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.4974968Z test_consistency_SparseCSC_angle_cpu_bool (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.4975144Z test_consistency_SparseCSC_angle_cpu_complex128 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4975313Z test_consistency_SparseCSC_angle_cpu_complex64 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4975478Z test_consistency_SparseCSC_angle_cpu_float16 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.4975631Z test_consistency_SparseCSC_angle_cpu_float32 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.4975797Z test_consistency_SparseCSC_angle_cpu_float64 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.4975959Z test_consistency_SparseCSC_angle_cpu_int16 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.4976122Z test_consistency_SparseCSC_angle_cpu_int32 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.4976314Z test_consistency_SparseCSC_angle_cpu_int64 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.4976479Z test_consistency_SparseCSC_angle_cpu_int8 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.4976639Z test_consistency_SparseCSC_angle_cpu_uint8 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.4976806Z test_consistency_SparseCSC_asin_cpu_bfloat16 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.4976967Z test_consistency_SparseCSC_asin_cpu_bool (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4977127Z test_consistency_SparseCSC_asin_cpu_complex128 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4977383Z test_consistency_SparseCSC_asin_cpu_complex64 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4977553Z test_consistency_SparseCSC_asin_cpu_float32 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4977723Z test_consistency_SparseCSC_asin_cpu_float64 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4977921Z test_consistency_SparseCSC_asin_cpu_int16 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4978084Z test_consistency_SparseCSC_asin_cpu_int32 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4978246Z test_consistency_SparseCSC_asin_cpu_int64 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4978407Z test_consistency_SparseCSC_asin_cpu_int8 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4978554Z test_consistency_SparseCSC_asin_cpu_uint8 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.4978724Z test_consistency_SparseCSC_asinh_cpu_bfloat16 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.4978886Z test_consistency_SparseCSC_asinh_cpu_bool (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.4979060Z test_consistency_SparseCSC_asinh_cpu_complex128 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4979231Z test_consistency_SparseCSC_asinh_cpu_complex64 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4979396Z test_consistency_SparseCSC_asinh_cpu_float32 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.4979562Z test_consistency_SparseCSC_asinh_cpu_float64 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.4979725Z test_consistency_SparseCSC_asinh_cpu_int16 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.4979889Z test_consistency_SparseCSC_asinh_cpu_int32 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.4980040Z test_consistency_SparseCSC_asinh_cpu_int64 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.4980202Z test_consistency_SparseCSC_asinh_cpu_int8 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.4980364Z test_consistency_SparseCSC_asinh_cpu_uint8 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.4980530Z test_consistency_SparseCSC_atan_cpu_bfloat16 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.4980691Z test_consistency_SparseCSC_atan_cpu_bool (__main__.TestSparseCompressedCPU) ... ok (0.009s) 2023-01-11T21:22:05.4980860Z test_consistency_SparseCSC_atan_cpu_complex128 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4981029Z test_consistency_SparseCSC_atan_cpu_complex64 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4981197Z test_consistency_SparseCSC_atan_cpu_float32 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4981364Z test_consistency_SparseCSC_atan_cpu_float64 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.4981515Z test_consistency_SparseCSC_atan_cpu_int16 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4981707Z test_consistency_SparseCSC_atan_cpu_int32 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.4981867Z test_consistency_SparseCSC_atan_cpu_int64 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.4982032Z test_consistency_SparseCSC_atan_cpu_int8 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4982192Z test_consistency_SparseCSC_atan_cpu_uint8 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4982358Z test_consistency_SparseCSC_atanh_cpu_bfloat16 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.4982522Z test_consistency_SparseCSC_atanh_cpu_bool (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.4982694Z test_consistency_SparseCSC_atanh_cpu_complex128 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4982853Z test_consistency_SparseCSC_atanh_cpu_complex64 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4983018Z test_consistency_SparseCSC_atanh_cpu_float32 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.4983183Z test_consistency_SparseCSC_atanh_cpu_float64 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.4983375Z test_consistency_SparseCSC_atanh_cpu_int16 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.4983539Z test_consistency_SparseCSC_atanh_cpu_int32 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.4983701Z test_consistency_SparseCSC_atanh_cpu_int64 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.4983861Z test_consistency_SparseCSC_atanh_cpu_int8 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.4984022Z test_consistency_SparseCSC_atanh_cpu_uint8 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.4984186Z test_consistency_SparseCSC_ceil_cpu_bfloat16 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.4984339Z test_consistency_SparseCSC_ceil_cpu_float32 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.4984507Z test_consistency_SparseCSC_ceil_cpu_float64 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.4984669Z test_consistency_SparseCSC_ceil_cpu_int16 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.4984830Z test_consistency_SparseCSC_ceil_cpu_int32 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.4984991Z test_consistency_SparseCSC_ceil_cpu_int64 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.4985149Z test_consistency_SparseCSC_ceil_cpu_int8 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.4985310Z test_consistency_SparseCSC_ceil_cpu_uint8 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.4985492Z test_consistency_SparseCSC_conj_physical_cpu_bfloat16 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.4985667Z test_consistency_SparseCSC_conj_physical_cpu_bool (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.4985839Z test_consistency_SparseCSC_conj_physical_cpu_complex128 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4986021Z test_consistency_SparseCSC_conj_physical_cpu_complex32 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4986199Z test_consistency_SparseCSC_conj_physical_cpu_complex64 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4986374Z test_consistency_SparseCSC_conj_physical_cpu_float16 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.4986551Z test_consistency_SparseCSC_conj_physical_cpu_float32 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.4986723Z test_consistency_SparseCSC_conj_physical_cpu_float64 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.4986897Z test_consistency_SparseCSC_conj_physical_cpu_int16 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.4987099Z test_consistency_SparseCSC_conj_physical_cpu_int32 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.4987275Z test_consistency_SparseCSC_conj_physical_cpu_int64 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.4987438Z test_consistency_SparseCSC_conj_physical_cpu_int8 (__main__.TestSparseCompressedCPU) ... ok (0.008s) 2023-01-11T21:22:05.4987611Z test_consistency_SparseCSC_conj_physical_cpu_uint8 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.4987785Z test_consistency_SparseCSC_deg2rad_cpu_bfloat16 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.4987951Z test_consistency_SparseCSC_deg2rad_cpu_bool (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.4988121Z test_consistency_SparseCSC_deg2rad_cpu_float16 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.4988286Z test_consistency_SparseCSC_deg2rad_cpu_float32 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.4988456Z test_consistency_SparseCSC_deg2rad_cpu_float64 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.4988655Z test_consistency_SparseCSC_deg2rad_cpu_int16 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.4988823Z test_consistency_SparseCSC_deg2rad_cpu_int32 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.4988976Z test_consistency_SparseCSC_deg2rad_cpu_int64 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.4989144Z test_consistency_SparseCSC_deg2rad_cpu_int8 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.4989308Z test_consistency_SparseCSC_deg2rad_cpu_uint8 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.4989473Z test_consistency_SparseCSC_erf_cpu_bfloat16 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.4989636Z test_consistency_SparseCSC_erf_cpu_bool (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4989802Z test_consistency_SparseCSC_erf_cpu_float32 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.4989966Z test_consistency_SparseCSC_erf_cpu_float64 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4990125Z test_consistency_SparseCSC_erf_cpu_int16 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4990274Z test_consistency_SparseCSC_erf_cpu_int32 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4990434Z test_consistency_SparseCSC_erf_cpu_int64 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4990595Z test_consistency_SparseCSC_erf_cpu_int8 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4990753Z test_consistency_SparseCSC_erf_cpu_uint8 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4990921Z test_consistency_SparseCSC_erfinv_cpu_bfloat16 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.4991085Z test_consistency_SparseCSC_erfinv_cpu_bool (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4991253Z test_consistency_SparseCSC_erfinv_cpu_float32 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4991419Z test_consistency_SparseCSC_erfinv_cpu_float64 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4991583Z test_consistency_SparseCSC_erfinv_cpu_int16 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4991734Z test_consistency_SparseCSC_erfinv_cpu_int32 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4991897Z test_consistency_SparseCSC_erfinv_cpu_int64 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4992061Z test_consistency_SparseCSC_erfinv_cpu_int8 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4992229Z test_consistency_SparseCSC_erfinv_cpu_uint8 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.4992397Z test_consistency_SparseCSC_expm1_cpu_bfloat16 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4992589Z test_consistency_SparseCSC_expm1_cpu_bool (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4992759Z test_consistency_SparseCSC_expm1_cpu_float32 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4992926Z test_consistency_SparseCSC_expm1_cpu_float64 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4993091Z test_consistency_SparseCSC_expm1_cpu_int16 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4993241Z test_consistency_SparseCSC_expm1_cpu_int32 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4993404Z test_consistency_SparseCSC_expm1_cpu_int64 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4993567Z test_consistency_SparseCSC_expm1_cpu_int8 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4993730Z test_consistency_SparseCSC_expm1_cpu_uint8 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.4993901Z test_consistency_SparseCSC_floor_cpu_bfloat16 (__main__.TestSparseCompressedCPU) ... ok (0.008s) 2023-01-11T21:22:05.4994096Z test_consistency_SparseCSC_floor_cpu_float32 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.4994264Z test_consistency_SparseCSC_floor_cpu_float64 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.4994424Z test_consistency_SparseCSC_floor_cpu_int16 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.4994574Z test_consistency_SparseCSC_floor_cpu_int32 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.4994736Z test_consistency_SparseCSC_floor_cpu_int64 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.4994898Z test_consistency_SparseCSC_floor_cpu_int8 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.4995060Z test_consistency_SparseCSC_floor_cpu_uint8 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.4995228Z test_consistency_SparseCSC_frac_cpu_bfloat16 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.4995400Z test_consistency_SparseCSC_frac_cpu_float16 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.4995570Z test_consistency_SparseCSC_frac_cpu_float32 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.4995735Z test_consistency_SparseCSC_frac_cpu_float64 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.4995905Z test_consistency_SparseCSC_isinf_cpu_bfloat16 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.4996056Z test_consistency_SparseCSC_isinf_cpu_bool (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.4996233Z test_consistency_SparseCSC_isinf_cpu_complex128 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.4996403Z test_consistency_SparseCSC_isinf_cpu_complex32 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.4996572Z test_consistency_SparseCSC_isinf_cpu_complex64 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.4996741Z test_consistency_SparseCSC_isinf_cpu_float16 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.4996906Z test_consistency_SparseCSC_isinf_cpu_float32 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.4997072Z test_consistency_SparseCSC_isinf_cpu_float64 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.4997236Z test_consistency_SparseCSC_isinf_cpu_int16 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.4997398Z test_consistency_SparseCSC_isinf_cpu_int32 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.4997548Z test_consistency_SparseCSC_isinf_cpu_int64 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.4997713Z test_consistency_SparseCSC_isinf_cpu_int8 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.4997913Z test_consistency_SparseCSC_isinf_cpu_uint8 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.4998085Z test_consistency_SparseCSC_isnan_cpu_bfloat16 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.4998250Z test_consistency_SparseCSC_isnan_cpu_bool (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.4998425Z test_consistency_SparseCSC_isnan_cpu_complex128 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.4998596Z test_consistency_SparseCSC_isnan_cpu_complex64 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.4998764Z test_consistency_SparseCSC_isnan_cpu_float16 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.4998930Z test_consistency_SparseCSC_isnan_cpu_float32 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.4999084Z test_consistency_SparseCSC_isnan_cpu_float64 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.4999247Z test_consistency_SparseCSC_isnan_cpu_int16 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.4999435Z test_consistency_SparseCSC_isnan_cpu_int32 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.4999601Z test_consistency_SparseCSC_isnan_cpu_int64 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.4999765Z test_consistency_SparseCSC_isnan_cpu_int8 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.4999925Z test_consistency_SparseCSC_isnan_cpu_uint8 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5000102Z test_consistency_SparseCSC_isneginf_cpu_bfloat16 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5000269Z test_consistency_SparseCSC_isneginf_cpu_bool (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5000430Z test_consistency_SparseCSC_isneginf_cpu_float16 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5000714Z test_consistency_SparseCSC_isneginf_cpu_float32 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5000992Z test_consistency_SparseCSC_isneginf_cpu_float64 (__main__.TestSparseCompressedCPU) ... ok (0.007s) 2023-01-11T21:22:05.5001165Z test_consistency_SparseCSC_isneginf_cpu_int16 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5001332Z test_consistency_SparseCSC_isneginf_cpu_int32 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5001493Z test_consistency_SparseCSC_isneginf_cpu_int64 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5001662Z test_consistency_SparseCSC_isneginf_cpu_int8 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5001830Z test_consistency_SparseCSC_isneginf_cpu_uint8 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5002003Z test_consistency_SparseCSC_isposinf_cpu_bfloat16 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5002205Z test_consistency_SparseCSC_isposinf_cpu_bool (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5002379Z test_consistency_SparseCSC_isposinf_cpu_float16 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5002550Z test_consistency_SparseCSC_isposinf_cpu_float32 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5002715Z test_consistency_SparseCSC_isposinf_cpu_float64 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5002880Z test_consistency_SparseCSC_isposinf_cpu_int16 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5003043Z test_consistency_SparseCSC_isposinf_cpu_int32 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5003203Z test_consistency_SparseCSC_isposinf_cpu_int64 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5003366Z test_consistency_SparseCSC_isposinf_cpu_int8 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5003595Z test_consistency_SparseCSC_isposinf_cpu_uint8 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5003755Z test_consistency_SparseCSC_log1p_cpu_bfloat16 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5003920Z test_consistency_SparseCSC_log1p_cpu_bool (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.5004091Z test_consistency_SparseCSC_log1p_cpu_complex128 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.5004262Z test_consistency_SparseCSC_log1p_cpu_complex64 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.5004430Z test_consistency_SparseCSC_log1p_cpu_float32 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.5004595Z test_consistency_SparseCSC_log1p_cpu_float64 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.5004761Z test_consistency_SparseCSC_log1p_cpu_int16 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.5004928Z test_consistency_SparseCSC_log1p_cpu_int32 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.5005127Z test_consistency_SparseCSC_log1p_cpu_int64 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.5005280Z test_consistency_SparseCSC_log1p_cpu_int8 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.5005443Z test_consistency_SparseCSC_log1p_cpu_uint8 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.5005693Z test_consistency_SparseCSC_masked_amax_cpu_bfloat16 (__main__.TestSparseCompressedCPU) ... skip: masked.amax does not support input with torch.sparse_csc layout (0.003s) 2023-01-11T21:22:05.5005942Z test_consistency_SparseCSC_masked_amax_cpu_float16 (__main__.TestSparseCompressedCPU) ... skip: masked.amax does not support input with torch.sparse_csc layout (0.003s) 2023-01-11T21:22:05.5006187Z test_consistency_SparseCSC_masked_amax_cpu_float32 (__main__.TestSparseCompressedCPU) ... skip: masked.amax does not support input with torch.sparse_csc layout (0.003s) 2023-01-11T21:22:05.5006437Z test_consistency_SparseCSC_masked_amax_cpu_float64 (__main__.TestSparseCompressedCPU) ... skip: masked.amax does not support input with torch.sparse_csc layout (0.003s) 2023-01-11T21:22:05.5006681Z test_consistency_SparseCSC_masked_amax_cpu_int16 (__main__.TestSparseCompressedCPU) ... skip: masked.amax does not support input with torch.sparse_csc layout (0.003s) 2023-01-11T21:22:05.5006924Z test_consistency_SparseCSC_masked_amax_cpu_int32 (__main__.TestSparseCompressedCPU) ... skip: masked.amax does not support input with torch.sparse_csc layout (0.003s) 2023-01-11T21:22:05.5007156Z test_consistency_SparseCSC_masked_amax_cpu_int64 (__main__.TestSparseCompressedCPU) ... skip: masked.amax does not support input with torch.sparse_csc layout (0.003s) 2023-01-11T21:22:05.5007396Z test_consistency_SparseCSC_masked_amax_cpu_int8 (__main__.TestSparseCompressedCPU) ... skip: masked.amax does not support input with torch.sparse_csc layout (0.003s) 2023-01-11T21:22:05.5007642Z test_consistency_SparseCSC_masked_amax_cpu_uint8 (__main__.TestSparseCompressedCPU) ... skip: masked.amax does not support input with torch.sparse_csc layout (0.003s) 2023-01-11T21:22:05.5007877Z test_consistency_SparseCSC_masked_amin_cpu_bfloat16 (__main__.TestSparseCompressedCPU) ... skip: masked.amin does not support input with torch.sparse_csc layout (0.003s) 2023-01-11T21:22:05.5008117Z test_consistency_SparseCSC_masked_amin_cpu_float16 (__main__.TestSparseCompressedCPU) ... skip: masked.amin does not support input with torch.sparse_csc layout (0.003s) 2023-01-11T21:22:05.5008358Z test_consistency_SparseCSC_masked_amin_cpu_float32 (__main__.TestSparseCompressedCPU) ... skip: masked.amin does not support input with torch.sparse_csc layout (0.003s) 2023-01-11T21:22:05.5008600Z test_consistency_SparseCSC_masked_amin_cpu_float64 (__main__.TestSparseCompressedCPU) ... skip: masked.amin does not support input with torch.sparse_csc layout (0.003s) 2023-01-11T21:22:05.5008876Z test_consistency_SparseCSC_masked_amin_cpu_int16 (__main__.TestSparseCompressedCPU) ... skip: masked.amin does not support input with torch.sparse_csc layout (0.003s) 2023-01-11T21:22:05.5009116Z test_consistency_SparseCSC_masked_amin_cpu_int32 (__main__.TestSparseCompressedCPU) ... skip: masked.amin does not support input with torch.sparse_csc layout (0.003s) 2023-01-11T21:22:05.5009344Z test_consistency_SparseCSC_masked_amin_cpu_int64 (__main__.TestSparseCompressedCPU) ... skip: masked.amin does not support input with torch.sparse_csc layout (0.003s) 2023-01-11T21:22:05.5009588Z test_consistency_SparseCSC_masked_amin_cpu_int8 (__main__.TestSparseCompressedCPU) ... skip: masked.amin does not support input with torch.sparse_csc layout (0.006s) 2023-01-11T21:22:05.5009826Z test_consistency_SparseCSC_masked_amin_cpu_uint8 (__main__.TestSparseCompressedCPU) ... skip: masked.amin does not support input with torch.sparse_csc layout (0.003s) 2023-01-11T21:22:05.5010070Z test_consistency_SparseCSC_masked_mean_cpu_bfloat16 (__main__.TestSparseCompressedCPU) ... skip: masked.mean does not support input with torch.sparse_csc layout (0.003s) 2023-01-11T21:22:05.5010338Z test_consistency_SparseCSC_masked_mean_cpu_bool (__main__.TestSparseCompressedCPU) ... skip: masked.mean does not support input with torch.sparse_csc layout (0.003s) 2023-01-11T21:22:05.5010587Z test_consistency_SparseCSC_masked_mean_cpu_complex128 (__main__.TestSparseCompressedCPU) ... skip: masked.mean does not support input with torch.sparse_csc layout (0.003s) 2023-01-11T21:22:05.5010832Z test_consistency_SparseCSC_masked_mean_cpu_complex64 (__main__.TestSparseCompressedCPU) ... skip: masked.mean does not support input with torch.sparse_csc layout (0.003s) 2023-01-11T21:22:05.5011063Z test_consistency_SparseCSC_masked_mean_cpu_float16 (__main__.TestSparseCompressedCPU) ... skip: masked.mean does not support input with torch.sparse_csc layout (0.003s) 2023-01-11T21:22:05.5011309Z test_consistency_SparseCSC_masked_mean_cpu_float32 (__main__.TestSparseCompressedCPU) ... skip: masked.mean does not support input with torch.sparse_csc layout (0.003s) 2023-01-11T21:22:05.5011553Z test_consistency_SparseCSC_masked_mean_cpu_float64 (__main__.TestSparseCompressedCPU) ... skip: masked.mean does not support input with torch.sparse_csc layout (0.003s) 2023-01-11T21:22:05.5011794Z test_consistency_SparseCSC_masked_mean_cpu_int16 (__main__.TestSparseCompressedCPU) ... skip: masked.mean does not support input with torch.sparse_csc layout (0.003s) 2023-01-11T21:22:05.5012031Z test_consistency_SparseCSC_masked_mean_cpu_int32 (__main__.TestSparseCompressedCPU) ... skip: masked.mean does not support input with torch.sparse_csc layout (0.003s) 2023-01-11T21:22:05.5012263Z test_consistency_SparseCSC_masked_mean_cpu_int64 (__main__.TestSparseCompressedCPU) ... skip: masked.mean does not support input with torch.sparse_csc layout (0.003s) 2023-01-11T21:22:05.5012505Z test_consistency_SparseCSC_masked_mean_cpu_int8 (__main__.TestSparseCompressedCPU) ... skip: masked.mean does not support input with torch.sparse_csc layout (0.003s) 2023-01-11T21:22:05.5012748Z test_consistency_SparseCSC_masked_mean_cpu_uint8 (__main__.TestSparseCompressedCPU) ... skip: masked.mean does not support input with torch.sparse_csc layout (0.003s) 2023-01-11T21:22:05.5012996Z test_consistency_SparseCSC_masked_prod_cpu_bfloat16 (__main__.TestSparseCompressedCPU) ... skip: masked.prod does not support input with torch.sparse_csc layout (0.003s) 2023-01-11T21:22:05.5013237Z test_consistency_SparseCSC_masked_prod_cpu_bool (__main__.TestSparseCompressedCPU) ... skip: masked.prod does not support input with torch.sparse_csc layout (0.003s) 2023-01-11T21:22:05.5013487Z test_consistency_SparseCSC_masked_prod_cpu_complex128 (__main__.TestSparseCompressedCPU) ... skip: masked.prod does not support input with torch.sparse_csc layout (0.003s) 2023-01-11T21:22:05.5013733Z test_consistency_SparseCSC_masked_prod_cpu_complex64 (__main__.TestSparseCompressedCPU) ... skip: masked.prod does not support input with torch.sparse_csc layout (0.003s) 2023-01-11T21:22:05.5014006Z test_consistency_SparseCSC_masked_prod_cpu_float32 (__main__.TestSparseCompressedCPU) ... skip: masked.prod does not support input with torch.sparse_csc layout (0.003s) 2023-01-11T21:22:05.5014238Z test_consistency_SparseCSC_masked_prod_cpu_float64 (__main__.TestSparseCompressedCPU) ... skip: masked.prod does not support input with torch.sparse_csc layout (0.003s) 2023-01-11T21:22:05.5014480Z test_consistency_SparseCSC_masked_prod_cpu_int16 (__main__.TestSparseCompressedCPU) ... skip: masked.prod does not support input with torch.sparse_csc layout (0.003s) 2023-01-11T21:22:05.5014717Z test_consistency_SparseCSC_masked_prod_cpu_int32 (__main__.TestSparseCompressedCPU) ... skip: masked.prod does not support input with torch.sparse_csc layout (0.003s) 2023-01-11T21:22:05.5014958Z test_consistency_SparseCSC_masked_prod_cpu_int64 (__main__.TestSparseCompressedCPU) ... skip: masked.prod does not support input with torch.sparse_csc layout (0.003s) 2023-01-11T21:22:05.5015266Z test_consistency_SparseCSC_masked_prod_cpu_int8 (__main__.TestSparseCompressedCPU) ... skip: masked.prod does not support input with torch.sparse_csc layout (0.003s) 2023-01-11T21:22:05.5015509Z test_consistency_SparseCSC_masked_prod_cpu_uint8 (__main__.TestSparseCompressedCPU) ... skip: masked.prod does not support input with torch.sparse_csc layout (0.003s) 2023-01-11T21:22:05.5015751Z test_consistency_SparseCSC_masked_sum_cpu_bfloat16 (__main__.TestSparseCompressedCPU) ... skip: masked.sum does not support input with torch.sparse_csc layout (0.003s) 2023-01-11T21:22:05.5015988Z test_consistency_SparseCSC_masked_sum_cpu_bool (__main__.TestSparseCompressedCPU) ... skip: masked.sum does not support input with torch.sparse_csc layout (0.003s) 2023-01-11T21:22:05.5016235Z test_consistency_SparseCSC_masked_sum_cpu_complex128 (__main__.TestSparseCompressedCPU) ... skip: masked.sum does not support input with torch.sparse_csc layout (0.003s) 2023-01-11T21:22:05.5016487Z test_consistency_SparseCSC_masked_sum_cpu_complex64 (__main__.TestSparseCompressedCPU) ... skip: masked.sum does not support input with torch.sparse_csc layout (0.003s) 2023-01-11T21:22:05.5016729Z test_consistency_SparseCSC_masked_sum_cpu_float16 (__main__.TestSparseCompressedCPU) ... skip: masked.sum does not support input with torch.sparse_csc layout (0.003s) 2023-01-11T21:22:05.5016971Z test_consistency_SparseCSC_masked_sum_cpu_float32 (__main__.TestSparseCompressedCPU) ... skip: masked.sum does not support input with torch.sparse_csc layout (0.003s) 2023-01-11T21:22:05.5017286Z test_consistency_SparseCSC_masked_sum_cpu_float64 (__main__.TestSparseCompressedCPU) ... skip: masked.sum does not support input with torch.sparse_csc layout (0.003s) 2023-01-11T21:22:05.5017527Z test_consistency_SparseCSC_masked_sum_cpu_int16 (__main__.TestSparseCompressedCPU) ... skip: masked.sum does not support input with torch.sparse_csc layout (0.003s) 2023-01-11T21:22:05.5017772Z test_consistency_SparseCSC_masked_sum_cpu_int32 (__main__.TestSparseCompressedCPU) ... skip: masked.sum does not support input with torch.sparse_csc layout (0.003s) 2023-01-11T21:22:05.5018015Z test_consistency_SparseCSC_masked_sum_cpu_int64 (__main__.TestSparseCompressedCPU) ... skip: masked.sum does not support input with torch.sparse_csc layout (0.003s) 2023-01-11T21:22:05.5018253Z test_consistency_SparseCSC_masked_sum_cpu_int8 (__main__.TestSparseCompressedCPU) ... skip: masked.sum does not support input with torch.sparse_csc layout (0.003s) 2023-01-11T21:22:05.5018489Z test_consistency_SparseCSC_masked_sum_cpu_uint8 (__main__.TestSparseCompressedCPU) ... skip: masked.sum does not support input with torch.sparse_csc layout (0.003s) 2023-01-11T21:22:05.5018659Z test_consistency_SparseCSC_neg_cpu_bfloat16 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.5018830Z test_consistency_SparseCSC_neg_cpu_complex128 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.5019035Z test_consistency_SparseCSC_neg_cpu_complex32 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.5019207Z test_consistency_SparseCSC_neg_cpu_complex64 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.5019372Z test_consistency_SparseCSC_neg_cpu_float16 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.5019526Z test_consistency_SparseCSC_neg_cpu_float32 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.5019692Z test_consistency_SparseCSC_neg_cpu_float64 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.5019853Z test_consistency_SparseCSC_neg_cpu_int16 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5020013Z test_consistency_SparseCSC_neg_cpu_int32 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5020169Z test_consistency_SparseCSC_neg_cpu_int64 (__main__.TestSparseCompressedCPU) ... ok (0.008s) 2023-01-11T21:22:05.5020331Z test_consistency_SparseCSC_neg_cpu_int8 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5020519Z test_consistency_SparseCSC_neg_cpu_uint8 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5020707Z test_consistency_SparseCSC_nn_functional_relu_cpu_bfloat16 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5020878Z test_consistency_SparseCSC_nn_functional_relu_cpu_float32 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5021061Z test_consistency_SparseCSC_nn_functional_relu_cpu_float64 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5021239Z test_consistency_SparseCSC_nn_functional_relu_cpu_int16 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5021417Z test_consistency_SparseCSC_nn_functional_relu_cpu_int32 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5021595Z test_consistency_SparseCSC_nn_functional_relu_cpu_int64 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5021775Z test_consistency_SparseCSC_nn_functional_relu_cpu_int8 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5021952Z test_consistency_SparseCSC_nn_functional_relu_cpu_uint8 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5022125Z test_consistency_SparseCSC_positive_cpu_bfloat16 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.5022302Z test_consistency_SparseCSC_positive_cpu_complex128 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.5022466Z test_consistency_SparseCSC_positive_cpu_complex32 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.5022639Z test_consistency_SparseCSC_positive_cpu_complex64 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.5022811Z test_consistency_SparseCSC_positive_cpu_float16 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5022981Z test_consistency_SparseCSC_positive_cpu_float32 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5023152Z test_consistency_SparseCSC_positive_cpu_float64 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5023324Z test_consistency_SparseCSC_positive_cpu_int16 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5023487Z test_consistency_SparseCSC_positive_cpu_int32 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5023648Z test_consistency_SparseCSC_positive_cpu_int64 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5023814Z test_consistency_SparseCSC_positive_cpu_int8 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5023969Z test_consistency_SparseCSC_positive_cpu_uint8 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5024139Z test_consistency_SparseCSC_rad2deg_cpu_bfloat16 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.5024337Z test_consistency_SparseCSC_rad2deg_cpu_bool (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.5024508Z test_consistency_SparseCSC_rad2deg_cpu_float16 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.5024675Z test_consistency_SparseCSC_rad2deg_cpu_float32 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.5024845Z test_consistency_SparseCSC_rad2deg_cpu_float64 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.5025010Z test_consistency_SparseCSC_rad2deg_cpu_int16 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.5025177Z test_consistency_SparseCSC_rad2deg_cpu_int32 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.5025343Z test_consistency_SparseCSC_rad2deg_cpu_int64 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.5025498Z test_consistency_SparseCSC_rad2deg_cpu_int8 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.5025662Z test_consistency_SparseCSC_rad2deg_cpu_uint8 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.5025941Z test_consistency_SparseCSC_randn_like_cpu_bfloat16 (__main__.TestSparseCompressedCPU) ... skip: randn_like does not support input with torch.sparse_csc layout (0.003s) 2023-01-11T21:22:05.5026189Z test_consistency_SparseCSC_randn_like_cpu_complex128 (__main__.TestSparseCompressedCPU) ... skip: randn_like does not support input with torch.sparse_csc layout (0.003s) 2023-01-11T21:22:05.5026434Z test_consistency_SparseCSC_randn_like_cpu_complex32 (__main__.TestSparseCompressedCPU) ... skip: randn_like does not support input with torch.sparse_csc layout (0.003s) 2023-01-11T21:22:05.5026678Z test_consistency_SparseCSC_randn_like_cpu_complex64 (__main__.TestSparseCompressedCPU) ... skip: randn_like does not support input with torch.sparse_csc layout (0.003s) 2023-01-11T21:22:05.5026921Z test_consistency_SparseCSC_randn_like_cpu_float16 (__main__.TestSparseCompressedCPU) ... skip: randn_like does not support input with torch.sparse_csc layout (0.003s) 2023-01-11T21:22:05.5027158Z test_consistency_SparseCSC_randn_like_cpu_float32 (__main__.TestSparseCompressedCPU) ... skip: randn_like does not support input with torch.sparse_csc layout (0.003s) 2023-01-11T21:22:05.5027397Z test_consistency_SparseCSC_randn_like_cpu_float64 (__main__.TestSparseCompressedCPU) ... skip: randn_like does not support input with torch.sparse_csc layout (0.003s) 2023-01-11T21:22:05.5027568Z test_consistency_SparseCSC_round_cpu_bfloat16 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.5027735Z test_consistency_SparseCSC_round_cpu_float32 (__main__.TestSparseCompressedCPU) ... ok (0.008s) 2023-01-11T21:22:05.5027890Z test_consistency_SparseCSC_round_cpu_float64 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.5028053Z test_consistency_SparseCSC_round_cpu_int16 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5028218Z test_consistency_SparseCSC_round_cpu_int32 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5028387Z test_consistency_SparseCSC_round_cpu_int64 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5028553Z test_consistency_SparseCSC_round_cpu_int8 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5028713Z test_consistency_SparseCSC_round_cpu_uint8 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5028881Z test_consistency_SparseCSC_sgn_cpu_bfloat16 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.5029044Z test_consistency_SparseCSC_sgn_cpu_bool (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5029214Z test_consistency_SparseCSC_sgn_cpu_complex128 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.5029369Z test_consistency_SparseCSC_sgn_cpu_complex32 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.5029535Z test_consistency_SparseCSC_sgn_cpu_complex64 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.5029725Z test_consistency_SparseCSC_sgn_cpu_float16 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5029892Z test_consistency_SparseCSC_sgn_cpu_float32 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5030054Z test_consistency_SparseCSC_sgn_cpu_float64 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5030217Z test_consistency_SparseCSC_sgn_cpu_int16 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5030377Z test_consistency_SparseCSC_sgn_cpu_int32 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5030539Z test_consistency_SparseCSC_sgn_cpu_int64 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5030690Z test_consistency_SparseCSC_sgn_cpu_int8 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5030847Z test_consistency_SparseCSC_sgn_cpu_uint8 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5031015Z test_consistency_SparseCSC_sign_cpu_bfloat16 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.5031197Z test_consistency_SparseCSC_sign_cpu_bool (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5031363Z test_consistency_SparseCSC_sign_cpu_float16 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.5031529Z test_consistency_SparseCSC_sign_cpu_float32 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5031696Z test_consistency_SparseCSC_sign_cpu_float64 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5031861Z test_consistency_SparseCSC_sign_cpu_int16 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5032025Z test_consistency_SparseCSC_sign_cpu_int32 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5032174Z test_consistency_SparseCSC_sign_cpu_int64 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5032337Z test_consistency_SparseCSC_sign_cpu_int8 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5032498Z test_consistency_SparseCSC_sign_cpu_uint8 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5032670Z test_consistency_SparseCSC_signbit_cpu_bfloat16 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5032836Z test_consistency_SparseCSC_signbit_cpu_bool (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5033005Z test_consistency_SparseCSC_signbit_cpu_float16 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5033170Z test_consistency_SparseCSC_signbit_cpu_float32 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5033331Z test_consistency_SparseCSC_signbit_cpu_float64 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5033496Z test_consistency_SparseCSC_signbit_cpu_int16 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5033652Z test_consistency_SparseCSC_signbit_cpu_int32 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5033819Z test_consistency_SparseCSC_signbit_cpu_int64 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5033984Z test_consistency_SparseCSC_signbit_cpu_int8 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5034149Z test_consistency_SparseCSC_signbit_cpu_uint8 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5034313Z test_consistency_SparseCSC_sin_cpu_bfloat16 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.5034473Z test_consistency_SparseCSC_sin_cpu_bool (__main__.TestSparseCompressedCPU) ... ok (0.009s) 2023-01-11T21:22:05.5034642Z test_consistency_SparseCSC_sin_cpu_complex128 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.5034806Z test_consistency_SparseCSC_sin_cpu_complex64 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.5035001Z test_consistency_SparseCSC_sin_cpu_float32 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.5035166Z test_consistency_SparseCSC_sin_cpu_float64 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.5035328Z test_consistency_SparseCSC_sin_cpu_int16 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.5035493Z test_consistency_SparseCSC_sin_cpu_int32 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.5035648Z test_consistency_SparseCSC_sin_cpu_int64 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.5035810Z test_consistency_SparseCSC_sin_cpu_int8 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.5035965Z test_consistency_SparseCSC_sin_cpu_uint8 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.5036129Z test_consistency_SparseCSC_sinh_cpu_bfloat16 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5036287Z test_consistency_SparseCSC_sinh_cpu_bool (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.5036447Z test_consistency_SparseCSC_sinh_cpu_complex128 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.5036648Z test_consistency_SparseCSC_sinh_cpu_complex64 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.5036815Z test_consistency_SparseCSC_sinh_cpu_float32 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5036980Z test_consistency_SparseCSC_sinh_cpu_float64 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5037142Z test_consistency_SparseCSC_sinh_cpu_int16 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.5037302Z test_consistency_SparseCSC_sinh_cpu_int32 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5037464Z test_consistency_SparseCSC_sinh_cpu_int64 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.5037622Z test_consistency_SparseCSC_sinh_cpu_int8 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.5037783Z test_consistency_SparseCSC_sinh_cpu_uint8 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.5037939Z test_consistency_SparseCSC_sqrt_cpu_bfloat16 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5038099Z test_consistency_SparseCSC_sqrt_cpu_bool (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.5038268Z test_consistency_SparseCSC_sqrt_cpu_complex128 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.5038435Z test_consistency_SparseCSC_sqrt_cpu_complex64 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.5038600Z test_consistency_SparseCSC_sqrt_cpu_float32 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.5038770Z test_consistency_SparseCSC_sqrt_cpu_float64 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.5038932Z test_consistency_SparseCSC_sqrt_cpu_int16 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.5039093Z test_consistency_SparseCSC_sqrt_cpu_int32 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.5039247Z test_consistency_SparseCSC_sqrt_cpu_int64 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.5039407Z test_consistency_SparseCSC_sqrt_cpu_int8 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.5039565Z test_consistency_SparseCSC_sqrt_cpu_uint8 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.5039731Z test_consistency_SparseCSC_tan_cpu_bfloat16 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.5039890Z test_consistency_SparseCSC_tan_cpu_bool (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.5040056Z test_consistency_SparseCSC_tan_cpu_complex128 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.5040217Z test_consistency_SparseCSC_tan_cpu_complex64 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.5040410Z test_consistency_SparseCSC_tan_cpu_float32 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.5040574Z test_consistency_SparseCSC_tan_cpu_float64 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.5040861Z test_consistency_SparseCSC_tan_cpu_int16 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.5041023Z test_consistency_SparseCSC_tan_cpu_int32 (__main__.TestSparseCompressedCPU) ... ok (0.008s) 2023-01-11T21:22:05.5041183Z test_consistency_SparseCSC_tan_cpu_int64 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.5041343Z test_consistency_SparseCSC_tan_cpu_int8 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.5041504Z test_consistency_SparseCSC_tan_cpu_uint8 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.5041670Z test_consistency_SparseCSC_tanh_cpu_bfloat16 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5041835Z test_consistency_SparseCSC_tanh_cpu_bool (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.5042005Z test_consistency_SparseCSC_tanh_cpu_complex128 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.5042220Z test_consistency_SparseCSC_tanh_cpu_complex64 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.5042375Z test_consistency_SparseCSC_tanh_cpu_float32 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5042541Z test_consistency_SparseCSC_tanh_cpu_float64 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5042703Z test_consistency_SparseCSC_tanh_cpu_int16 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.5042865Z test_consistency_SparseCSC_tanh_cpu_int32 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.5043026Z test_consistency_SparseCSC_tanh_cpu_int64 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.5043187Z test_consistency_SparseCSC_tanh_cpu_int8 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.5043351Z test_consistency_SparseCSC_tanh_cpu_uint8 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.5043531Z test_consistency_SparseCSC_to_sparse_cpu_bfloat16 (__main__.TestSparseCompressedCPU) ... ok (0.006s) 2023-01-11T21:22:05.5043702Z test_consistency_SparseCSC_to_sparse_cpu_bool (__main__.TestSparseCompressedCPU) ... ok (0.006s) 2023-01-11T21:22:05.5043868Z test_consistency_SparseCSC_to_sparse_cpu_complex128 (__main__.TestSparseCompressedCPU) ... ok (0.007s) 2023-01-11T21:22:05.5044045Z test_consistency_SparseCSC_to_sparse_cpu_complex64 (__main__.TestSparseCompressedCPU) ... ok (0.007s) 2023-01-11T21:22:05.5044219Z test_consistency_SparseCSC_to_sparse_cpu_float16 (__main__.TestSparseCompressedCPU) ... ok (0.006s) 2023-01-11T21:22:05.5044388Z test_consistency_SparseCSC_to_sparse_cpu_float32 (__main__.TestSparseCompressedCPU) ... ok (0.006s) 2023-01-11T21:22:05.5044563Z test_consistency_SparseCSC_to_sparse_cpu_float64 (__main__.TestSparseCompressedCPU) ... ok (0.006s) 2023-01-11T21:22:05.5044731Z test_consistency_SparseCSC_to_sparse_cpu_int16 (__main__.TestSparseCompressedCPU) ... ok (0.006s) 2023-01-11T21:22:05.5044899Z test_consistency_SparseCSC_to_sparse_cpu_int32 (__main__.TestSparseCompressedCPU) ... ok (0.006s) 2023-01-11T21:22:05.5045063Z test_consistency_SparseCSC_to_sparse_cpu_int64 (__main__.TestSparseCompressedCPU) ... ok (0.006s) 2023-01-11T21:22:05.5045218Z test_consistency_SparseCSC_to_sparse_cpu_int8 (__main__.TestSparseCompressedCPU) ... ok (0.006s) 2023-01-11T21:22:05.5045386Z test_consistency_SparseCSC_to_sparse_cpu_uint8 (__main__.TestSparseCompressedCPU) ... ok (0.006s) 2023-01-11T21:22:05.5045552Z test_consistency_SparseCSC_trunc_cpu_bfloat16 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5045719Z test_consistency_SparseCSC_trunc_cpu_float32 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5045922Z test_consistency_SparseCSC_trunc_cpu_float64 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5046089Z test_consistency_SparseCSC_trunc_cpu_int16 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5046256Z test_consistency_SparseCSC_trunc_cpu_int32 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5046423Z test_consistency_SparseCSC_trunc_cpu_int64 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5046590Z test_consistency_SparseCSC_trunc_cpu_int8 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5046742Z test_consistency_SparseCSC_trunc_cpu_uint8 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5046909Z test_consistency_SparseCSR_abs_cpu_bfloat16 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5047080Z test_consistency_SparseCSR_abs_cpu_complex128 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5047250Z test_consistency_SparseCSR_abs_cpu_complex32 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5047421Z test_consistency_SparseCSR_abs_cpu_complex64 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5047615Z test_consistency_SparseCSR_abs_cpu_float16 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5047782Z test_consistency_SparseCSR_abs_cpu_float32 (__main__.TestSparseCompressedCPU) ... ok (0.008s) 2023-01-11T21:22:05.5047946Z test_consistency_SparseCSR_abs_cpu_float64 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5048108Z test_consistency_SparseCSR_abs_cpu_int16 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5048257Z test_consistency_SparseCSR_abs_cpu_int32 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5048416Z test_consistency_SparseCSR_abs_cpu_int64 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5048579Z test_consistency_SparseCSR_abs_cpu_int8 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5048743Z test_consistency_SparseCSR_abs_cpu_uint8 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5048916Z test_consistency_SparseCSR_angle_cpu_bfloat16 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5049079Z test_consistency_SparseCSR_angle_cpu_bool (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5049250Z test_consistency_SparseCSR_angle_cpu_complex128 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5049421Z test_consistency_SparseCSR_angle_cpu_complex64 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5049588Z test_consistency_SparseCSR_angle_cpu_float16 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5049742Z test_consistency_SparseCSR_angle_cpu_float32 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5049908Z test_consistency_SparseCSR_angle_cpu_float64 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5050075Z test_consistency_SparseCSR_angle_cpu_int16 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5050243Z test_consistency_SparseCSR_angle_cpu_int32 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5050408Z test_consistency_SparseCSR_angle_cpu_int64 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5050572Z test_consistency_SparseCSR_angle_cpu_int8 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5050736Z test_consistency_SparseCSR_angle_cpu_uint8 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5050901Z test_consistency_SparseCSR_asin_cpu_bfloat16 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5051051Z test_consistency_SparseCSR_asin_cpu_bool (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5051223Z test_consistency_SparseCSR_asin_cpu_complex128 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.5051428Z test_consistency_SparseCSR_asin_cpu_complex64 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5051598Z test_consistency_SparseCSR_asin_cpu_float32 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5051765Z test_consistency_SparseCSR_asin_cpu_float64 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5051928Z test_consistency_SparseCSR_asin_cpu_int16 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5052091Z test_consistency_SparseCSR_asin_cpu_int32 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5052254Z test_consistency_SparseCSR_asin_cpu_int64 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5052418Z test_consistency_SparseCSR_asin_cpu_int8 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5052567Z test_consistency_SparseCSR_asin_cpu_uint8 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5052739Z test_consistency_SparseCSR_asinh_cpu_bfloat16 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5052903Z test_consistency_SparseCSR_asinh_cpu_bool (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5053109Z test_consistency_SparseCSR_asinh_cpu_complex128 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5053282Z test_consistency_SparseCSR_asinh_cpu_complex64 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5053451Z test_consistency_SparseCSR_asinh_cpu_float32 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5053619Z test_consistency_SparseCSR_asinh_cpu_float64 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5053782Z test_consistency_SparseCSR_asinh_cpu_int16 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5053943Z test_consistency_SparseCSR_asinh_cpu_int32 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5054096Z test_consistency_SparseCSR_asinh_cpu_int64 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5054262Z test_consistency_SparseCSR_asinh_cpu_int8 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5054428Z test_consistency_SparseCSR_asinh_cpu_uint8 (__main__.TestSparseCompressedCPU) ... ok (0.008s) 2023-01-11T21:22:05.5054597Z test_consistency_SparseCSR_atan_cpu_bfloat16 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5054758Z test_consistency_SparseCSR_atan_cpu_bool (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5054928Z test_consistency_SparseCSR_atan_cpu_complex128 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.5055098Z test_consistency_SparseCSR_atan_cpu_complex64 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5055268Z test_consistency_SparseCSR_atan_cpu_float32 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5055425Z test_consistency_SparseCSR_atan_cpu_float64 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5055589Z test_consistency_SparseCSR_atan_cpu_int16 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5055752Z test_consistency_SparseCSR_atan_cpu_int32 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5055914Z test_consistency_SparseCSR_atan_cpu_int64 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5056073Z test_consistency_SparseCSR_atan_cpu_int8 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5056231Z test_consistency_SparseCSR_atan_cpu_uint8 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5056401Z test_consistency_SparseCSR_atanh_cpu_bfloat16 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5056564Z test_consistency_SparseCSR_atanh_cpu_bool (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5056737Z test_consistency_SparseCSR_atanh_cpu_complex128 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.5056923Z test_consistency_SparseCSR_atanh_cpu_complex64 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.5057092Z test_consistency_SparseCSR_atanh_cpu_float32 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5057327Z test_consistency_SparseCSR_atanh_cpu_float64 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5057497Z test_consistency_SparseCSR_atanh_cpu_int16 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5057662Z test_consistency_SparseCSR_atanh_cpu_int32 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5057826Z test_consistency_SparseCSR_atanh_cpu_int64 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5057988Z test_consistency_SparseCSR_atanh_cpu_int8 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5058150Z test_consistency_SparseCSR_atanh_cpu_uint8 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5058320Z test_consistency_SparseCSR_ceil_cpu_bfloat16 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5058507Z test_consistency_SparseCSR_ceil_cpu_float32 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5058675Z test_consistency_SparseCSR_ceil_cpu_float64 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5058839Z test_consistency_SparseCSR_ceil_cpu_int16 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5059000Z test_consistency_SparseCSR_ceil_cpu_int32 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5059161Z test_consistency_SparseCSR_ceil_cpu_int64 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5059325Z test_consistency_SparseCSR_ceil_cpu_int8 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5059486Z test_consistency_SparseCSR_ceil_cpu_uint8 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5059669Z test_consistency_SparseCSR_conj_physical_cpu_bfloat16 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5059848Z test_consistency_SparseCSR_conj_physical_cpu_bool (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5060020Z test_consistency_SparseCSR_conj_physical_cpu_complex128 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5060202Z test_consistency_SparseCSR_conj_physical_cpu_complex32 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.5060383Z test_consistency_SparseCSR_conj_physical_cpu_complex64 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5060566Z test_consistency_SparseCSR_conj_physical_cpu_float16 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5060745Z test_consistency_SparseCSR_conj_physical_cpu_float32 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5060922Z test_consistency_SparseCSR_conj_physical_cpu_float64 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5061098Z test_consistency_SparseCSR_conj_physical_cpu_int16 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5061275Z test_consistency_SparseCSR_conj_physical_cpu_int32 (__main__.TestSparseCompressedCPU) ... ok (0.009s) 2023-01-11T21:22:05.5061441Z test_consistency_SparseCSR_conj_physical_cpu_int64 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5061605Z test_consistency_SparseCSR_conj_physical_cpu_int8 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5061779Z test_consistency_SparseCSR_conj_physical_cpu_uint8 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5061955Z test_consistency_SparseCSR_deg2rad_cpu_bfloat16 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5062122Z test_consistency_SparseCSR_deg2rad_cpu_bool (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5062319Z test_consistency_SparseCSR_deg2rad_cpu_float16 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5062484Z test_consistency_SparseCSR_deg2rad_cpu_float32 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5062648Z test_consistency_SparseCSR_deg2rad_cpu_float64 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5062813Z test_consistency_SparseCSR_deg2rad_cpu_int16 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5062966Z test_consistency_SparseCSR_deg2rad_cpu_int32 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5063132Z test_consistency_SparseCSR_deg2rad_cpu_int64 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5063295Z test_consistency_SparseCSR_deg2rad_cpu_int8 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5063459Z test_consistency_SparseCSR_deg2rad_cpu_uint8 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5063626Z test_consistency_SparseCSR_erf_cpu_bfloat16 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5063789Z test_consistency_SparseCSR_erf_cpu_bool (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5063979Z test_consistency_SparseCSR_erf_cpu_float32 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5064147Z test_consistency_SparseCSR_erf_cpu_float64 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5064307Z test_consistency_SparseCSR_erf_cpu_int16 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5064454Z test_consistency_SparseCSR_erf_cpu_int32 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5064610Z test_consistency_SparseCSR_erf_cpu_int64 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5064769Z test_consistency_SparseCSR_erf_cpu_int8 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5064929Z test_consistency_SparseCSR_erf_cpu_uint8 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5065100Z test_consistency_SparseCSR_erfinv_cpu_bfloat16 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5065264Z test_consistency_SparseCSR_erfinv_cpu_bool (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5065433Z test_consistency_SparseCSR_erfinv_cpu_float32 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5065603Z test_consistency_SparseCSR_erfinv_cpu_float64 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5065768Z test_consistency_SparseCSR_erfinv_cpu_int16 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5065921Z test_consistency_SparseCSR_erfinv_cpu_int32 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5066085Z test_consistency_SparseCSR_erfinv_cpu_int64 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5066248Z test_consistency_SparseCSR_erfinv_cpu_int8 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5066412Z test_consistency_SparseCSR_erfinv_cpu_uint8 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5066583Z test_consistency_SparseCSR_expm1_cpu_bfloat16 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5066748Z test_consistency_SparseCSR_expm1_cpu_bool (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5066914Z test_consistency_SparseCSR_expm1_cpu_float32 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5067079Z test_consistency_SparseCSR_expm1_cpu_float64 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5067230Z test_consistency_SparseCSR_expm1_cpu_int16 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5067389Z test_consistency_SparseCSR_expm1_cpu_int32 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5067551Z test_consistency_SparseCSR_expm1_cpu_int64 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5067740Z test_consistency_SparseCSR_expm1_cpu_int8 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5067902Z test_consistency_SparseCSR_expm1_cpu_uint8 (__main__.TestSparseCompressedCPU) ... ok (0.008s) 2023-01-11T21:22:05.5068073Z test_consistency_SparseCSR_floor_cpu_bfloat16 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5068238Z test_consistency_SparseCSR_floor_cpu_float32 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5068403Z test_consistency_SparseCSR_floor_cpu_float64 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5068562Z test_consistency_SparseCSR_floor_cpu_int16 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5068710Z test_consistency_SparseCSR_floor_cpu_int32 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5068872Z test_consistency_SparseCSR_floor_cpu_int64 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5069034Z test_consistency_SparseCSR_floor_cpu_int8 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5069224Z test_consistency_SparseCSR_floor_cpu_uint8 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5069390Z test_consistency_SparseCSR_frac_cpu_bfloat16 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5069553Z test_consistency_SparseCSR_frac_cpu_float16 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5069717Z test_consistency_SparseCSR_frac_cpu_float32 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5069883Z test_consistency_SparseCSR_frac_cpu_float64 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5070050Z test_consistency_SparseCSR_isinf_cpu_bfloat16 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5070200Z test_consistency_SparseCSR_isinf_cpu_bool (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5070376Z test_consistency_SparseCSR_isinf_cpu_complex128 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5070546Z test_consistency_SparseCSR_isinf_cpu_complex32 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5070710Z test_consistency_SparseCSR_isinf_cpu_complex64 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5070874Z test_consistency_SparseCSR_isinf_cpu_float16 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5071038Z test_consistency_SparseCSR_isinf_cpu_float32 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5071201Z test_consistency_SparseCSR_isinf_cpu_float64 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5071362Z test_consistency_SparseCSR_isinf_cpu_int16 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5071523Z test_consistency_SparseCSR_isinf_cpu_int32 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5071674Z test_consistency_SparseCSR_isinf_cpu_int64 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5071841Z test_consistency_SparseCSR_isinf_cpu_int8 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5072004Z test_consistency_SparseCSR_isinf_cpu_uint8 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5072174Z test_consistency_SparseCSR_isnan_cpu_bfloat16 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5072336Z test_consistency_SparseCSR_isnan_cpu_bool (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5072505Z test_consistency_SparseCSR_isnan_cpu_complex128 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5072672Z test_consistency_SparseCSR_isnan_cpu_complex64 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5072836Z test_consistency_SparseCSR_isnan_cpu_float16 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5073033Z test_consistency_SparseCSR_isnan_cpu_float32 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5073197Z test_consistency_SparseCSR_isnan_cpu_float64 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5073360Z test_consistency_SparseCSR_isnan_cpu_int16 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5073523Z test_consistency_SparseCSR_isnan_cpu_int32 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5073686Z test_consistency_SparseCSR_isnan_cpu_int64 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5073849Z test_consistency_SparseCSR_isnan_cpu_int8 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5074010Z test_consistency_SparseCSR_isnan_cpu_uint8 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5074183Z test_consistency_SparseCSR_isneginf_cpu_bfloat16 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5074350Z test_consistency_SparseCSR_isneginf_cpu_bool (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5074511Z test_consistency_SparseCSR_isneginf_cpu_float16 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5074708Z test_consistency_SparseCSR_isneginf_cpu_float32 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5074877Z test_consistency_SparseCSR_isneginf_cpu_float64 (__main__.TestSparseCompressedCPU) ... ok (0.007s) 2023-01-11T21:22:05.5075043Z test_consistency_SparseCSR_isneginf_cpu_int16 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5075206Z test_consistency_SparseCSR_isneginf_cpu_int32 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5075364Z test_consistency_SparseCSR_isneginf_cpu_int64 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5075533Z test_consistency_SparseCSR_isneginf_cpu_int8 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5075701Z test_consistency_SparseCSR_isneginf_cpu_uint8 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5075870Z test_consistency_SparseCSR_isposinf_cpu_bfloat16 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5076026Z test_consistency_SparseCSR_isposinf_cpu_bool (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5076196Z test_consistency_SparseCSR_isposinf_cpu_float16 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5076364Z test_consistency_SparseCSR_isposinf_cpu_float32 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5076528Z test_consistency_SparseCSR_isposinf_cpu_float64 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5076693Z test_consistency_SparseCSR_isposinf_cpu_int16 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5076854Z test_consistency_SparseCSR_isposinf_cpu_int32 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5077015Z test_consistency_SparseCSR_isposinf_cpu_int64 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5077180Z test_consistency_SparseCSR_isposinf_cpu_int8 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5077353Z test_consistency_SparseCSR_isposinf_cpu_uint8 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5077506Z test_consistency_SparseCSR_log1p_cpu_bfloat16 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5077671Z test_consistency_SparseCSR_log1p_cpu_bool (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5077843Z test_consistency_SparseCSR_log1p_cpu_complex128 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5078011Z test_consistency_SparseCSR_log1p_cpu_complex64 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5078174Z test_consistency_SparseCSR_log1p_cpu_float32 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5078371Z test_consistency_SparseCSR_log1p_cpu_float64 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5078535Z test_consistency_SparseCSR_log1p_cpu_int16 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5078701Z test_consistency_SparseCSR_log1p_cpu_int32 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5078853Z test_consistency_SparseCSR_log1p_cpu_int64 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5079013Z test_consistency_SparseCSR_log1p_cpu_int8 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5079174Z test_consistency_SparseCSR_log1p_cpu_uint8 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5079940Z test_consistency_SparseCSR_masked_amax_cpu_bfloat16 (__main__.TestSparseCompressedCPU) ... /opt/conda/lib/python3.7/site-packages/torch/masked/_ops.py:768: UserWarning: scatter_reduce() is in beta and the API may change at any time. (Triggered internally at /var/lib/jenkins/workspace/aten/src/ATen/native/TensorAdvancedIndexing.cpp:1739.) 2023-01-11T21:22:05.5080062Z 0, scatter_indices, values, reduce, include_self=False 2023-01-11T21:22:05.5080130Z ok (0.060s) 2023-01-11T21:22:05.5080340Z test_consistency_SparseCSR_masked_amax_cpu_float16 (__main__.TestSparseCompressedCPU) ... ok (0.043s) 2023-01-11T21:22:05.5080514Z test_consistency_SparseCSR_masked_amax_cpu_float32 (__main__.TestSparseCompressedCPU) ... ok (0.044s) 2023-01-11T21:22:05.5080854Z test_consistency_SparseCSR_masked_amax_cpu_float64 (__main__.TestSparseCompressedCPU) ... ok (0.043s) 2023-01-11T21:22:05.5081124Z test_consistency_SparseCSR_masked_amax_cpu_int16 (__main__.TestSparseCompressedCPU) ... skip: masked.amax does not support input with torch.sparse_csr layout (0.003s) 2023-01-11T21:22:05.5081351Z test_consistency_SparseCSR_masked_amax_cpu_int32 (__main__.TestSparseCompressedCPU) ... skip: masked.amax does not support input with torch.sparse_csr layout (0.003s) 2023-01-11T21:22:05.5081599Z test_consistency_SparseCSR_masked_amax_cpu_int64 (__main__.TestSparseCompressedCPU) ... skip: masked.amax does not support input with torch.sparse_csr layout (0.003s) 2023-01-11T21:22:05.5081845Z test_consistency_SparseCSR_masked_amax_cpu_int8 (__main__.TestSparseCompressedCPU) ... skip: masked.amax does not support input with torch.sparse_csr layout (0.003s) 2023-01-11T21:22:05.5082089Z test_consistency_SparseCSR_masked_amax_cpu_uint8 (__main__.TestSparseCompressedCPU) ... skip: masked.amax does not support input with torch.sparse_csr layout (0.006s) 2023-01-11T21:22:05.5082267Z test_consistency_SparseCSR_masked_amin_cpu_bfloat16 (__main__.TestSparseCompressedCPU) ... ok (0.045s) 2023-01-11T21:22:05.5082444Z test_consistency_SparseCSR_masked_amin_cpu_float16 (__main__.TestSparseCompressedCPU) ... ok (0.047s) 2023-01-11T21:22:05.5082620Z test_consistency_SparseCSR_masked_amin_cpu_float32 (__main__.TestSparseCompressedCPU) ... ok (0.047s) 2023-01-11T21:22:05.5082792Z test_consistency_SparseCSR_masked_amin_cpu_float64 (__main__.TestSparseCompressedCPU) ... ok (0.046s) 2023-01-11T21:22:05.5083034Z test_consistency_SparseCSR_masked_amin_cpu_int16 (__main__.TestSparseCompressedCPU) ... skip: masked.amin does not support input with torch.sparse_csr layout (0.003s) 2023-01-11T21:22:05.5083279Z test_consistency_SparseCSR_masked_amin_cpu_int32 (__main__.TestSparseCompressedCPU) ... skip: masked.amin does not support input with torch.sparse_csr layout (0.003s) 2023-01-11T21:22:05.5083517Z test_consistency_SparseCSR_masked_amin_cpu_int64 (__main__.TestSparseCompressedCPU) ... skip: masked.amin does not support input with torch.sparse_csr layout (0.003s) 2023-01-11T21:22:05.5083745Z test_consistency_SparseCSR_masked_amin_cpu_int8 (__main__.TestSparseCompressedCPU) ... skip: masked.amin does not support input with torch.sparse_csr layout (0.003s) 2023-01-11T21:22:05.5083987Z test_consistency_SparseCSR_masked_amin_cpu_uint8 (__main__.TestSparseCompressedCPU) ... skip: masked.amin does not support input with torch.sparse_csr layout (0.003s) 2023-01-11T21:22:05.5084220Z test_consistency_SparseCSR_masked_mean_cpu_bfloat16 (__main__.TestSparseCompressedCPU) ... ok (0.048s) 2023-01-11T21:22:05.5084465Z test_consistency_SparseCSR_masked_mean_cpu_bool (__main__.TestSparseCompressedCPU) ... skip: masked.mean does not support input with torch.sparse_csr layout (0.003s) 2023-01-11T21:22:05.5084714Z test_consistency_SparseCSR_masked_mean_cpu_complex128 (__main__.TestSparseCompressedCPU) ... skip: masked.mean does not support input with torch.sparse_csr layout (0.003s) 2023-01-11T21:22:05.5084963Z test_consistency_SparseCSR_masked_mean_cpu_complex64 (__main__.TestSparseCompressedCPU) ... skip: masked.mean does not support input with torch.sparse_csr layout (0.003s) 2023-01-11T21:22:05.5085141Z test_consistency_SparseCSR_masked_mean_cpu_float16 (__main__.TestSparseCompressedCPU) ... ok (0.048s) 2023-01-11T21:22:05.5085315Z test_consistency_SparseCSR_masked_mean_cpu_float32 (__main__.TestSparseCompressedCPU) ... ok (0.049s) 2023-01-11T21:22:05.5085489Z test_consistency_SparseCSR_masked_mean_cpu_float64 (__main__.TestSparseCompressedCPU) ... ok (0.048s) 2023-01-11T21:22:05.5085769Z test_consistency_SparseCSR_masked_mean_cpu_int16 (__main__.TestSparseCompressedCPU) ... skip: masked.mean does not support input with torch.sparse_csr layout (0.003s) 2023-01-11T21:22:05.5086010Z test_consistency_SparseCSR_masked_mean_cpu_int32 (__main__.TestSparseCompressedCPU) ... skip: masked.mean does not support input with torch.sparse_csr layout (0.003s) 2023-01-11T21:22:05.5086241Z test_consistency_SparseCSR_masked_mean_cpu_int64 (__main__.TestSparseCompressedCPU) ... skip: masked.mean does not support input with torch.sparse_csr layout (0.003s) 2023-01-11T21:22:05.5086479Z test_consistency_SparseCSR_masked_mean_cpu_int8 (__main__.TestSparseCompressedCPU) ... skip: masked.mean does not support input with torch.sparse_csr layout (0.003s) 2023-01-11T21:22:05.5086722Z test_consistency_SparseCSR_masked_mean_cpu_uint8 (__main__.TestSparseCompressedCPU) ... skip: masked.mean does not support input with torch.sparse_csr layout (0.003s) 2023-01-11T21:22:05.5086906Z test_consistency_SparseCSR_masked_prod_cpu_bfloat16 (__main__.TestSparseCompressedCPU) ... ok (0.044s) 2023-01-11T21:22:05.5087078Z test_consistency_SparseCSR_masked_prod_cpu_bool (__main__.TestSparseCompressedCPU) ... ok (0.019s) 2023-01-11T21:22:05.5087257Z test_consistency_SparseCSR_masked_prod_cpu_complex128 (__main__.TestSparseCompressedCPU) ... ok (0.017s) 2023-01-11T21:22:05.5087440Z test_consistency_SparseCSR_masked_prod_cpu_complex64 (__main__.TestSparseCompressedCPU) ... ok (0.017s) 2023-01-11T21:22:05.5087614Z test_consistency_SparseCSR_masked_prod_cpu_float32 (__main__.TestSparseCompressedCPU) ... ok (0.045s) 2023-01-11T21:22:05.5087787Z test_consistency_SparseCSR_masked_prod_cpu_float64 (__main__.TestSparseCompressedCPU) ... ok (0.069s) 2023-01-11T21:22:05.5087959Z test_consistency_SparseCSR_masked_prod_cpu_int16 (__main__.TestSparseCompressedCPU) ... ok (0.016s) 2023-01-11T21:22:05.5088120Z test_consistency_SparseCSR_masked_prod_cpu_int32 (__main__.TestSparseCompressedCPU) ... ok (0.016s) 2023-01-11T21:22:05.5088289Z test_consistency_SparseCSR_masked_prod_cpu_int64 (__main__.TestSparseCompressedCPU) ... ok (0.016s) 2023-01-11T21:22:05.5088462Z test_consistency_SparseCSR_masked_prod_cpu_int8 (__main__.TestSparseCompressedCPU) ... ok (0.017s) 2023-01-11T21:22:05.5088632Z test_consistency_SparseCSR_masked_prod_cpu_uint8 (__main__.TestSparseCompressedCPU) ... ok (0.016s) 2023-01-11T21:22:05.5088804Z test_consistency_SparseCSR_masked_sum_cpu_bfloat16 (__main__.TestSparseCompressedCPU) ... ok (0.047s) 2023-01-11T21:22:05.5088973Z test_consistency_SparseCSR_masked_sum_cpu_bool (__main__.TestSparseCompressedCPU) ... ok (0.017s) 2023-01-11T21:22:05.5089151Z test_consistency_SparseCSR_masked_sum_cpu_complex128 (__main__.TestSparseCompressedCPU) ... ok (0.017s) 2023-01-11T21:22:05.5089326Z test_consistency_SparseCSR_masked_sum_cpu_complex64 (__main__.TestSparseCompressedCPU) ... ok (0.016s) 2023-01-11T21:22:05.5089529Z test_consistency_SparseCSR_masked_sum_cpu_float16 (__main__.TestSparseCompressedCPU) ... ok (0.043s) 2023-01-11T21:22:05.5089693Z test_consistency_SparseCSR_masked_sum_cpu_float32 (__main__.TestSparseCompressedCPU) ... ok (0.053s) 2023-01-11T21:22:05.5089861Z test_consistency_SparseCSR_masked_sum_cpu_float64 (__main__.TestSparseCompressedCPU) ... ok (0.044s) 2023-01-11T21:22:05.5090031Z test_consistency_SparseCSR_masked_sum_cpu_int16 (__main__.TestSparseCompressedCPU) ... ok (0.017s) 2023-01-11T21:22:05.5090196Z test_consistency_SparseCSR_masked_sum_cpu_int32 (__main__.TestSparseCompressedCPU) ... ok (0.016s) 2023-01-11T21:22:05.5090359Z test_consistency_SparseCSR_masked_sum_cpu_int64 (__main__.TestSparseCompressedCPU) ... ok (0.016s) 2023-01-11T21:22:05.5090527Z test_consistency_SparseCSR_masked_sum_cpu_int8 (__main__.TestSparseCompressedCPU) ... ok (0.017s) 2023-01-11T21:22:05.5090697Z test_consistency_SparseCSR_masked_sum_cpu_uint8 (__main__.TestSparseCompressedCPU) ... ok (0.016s) 2023-01-11T21:22:05.5090865Z test_consistency_SparseCSR_neg_cpu_bfloat16 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5091063Z test_consistency_SparseCSR_neg_cpu_complex128 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.5091219Z test_consistency_SparseCSR_neg_cpu_complex32 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.5091387Z test_consistency_SparseCSR_neg_cpu_complex64 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5091551Z test_consistency_SparseCSR_neg_cpu_float16 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5091716Z test_consistency_SparseCSR_neg_cpu_float32 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5091878Z test_consistency_SparseCSR_neg_cpu_float64 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5092042Z test_consistency_SparseCSR_neg_cpu_int16 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5092206Z test_consistency_SparseCSR_neg_cpu_int32 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5092370Z test_consistency_SparseCSR_neg_cpu_int64 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5092519Z test_consistency_SparseCSR_neg_cpu_int8 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5092677Z test_consistency_SparseCSR_neg_cpu_uint8 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5092861Z test_consistency_SparseCSR_nn_functional_relu_cpu_bfloat16 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5093045Z test_consistency_SparseCSR_nn_functional_relu_cpu_float32 (__main__.TestSparseCompressedCPU) ... ok (0.008s) 2023-01-11T21:22:05.5093227Z test_consistency_SparseCSR_nn_functional_relu_cpu_float64 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5093410Z test_consistency_SparseCSR_nn_functional_relu_cpu_int16 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5093591Z test_consistency_SparseCSR_nn_functional_relu_cpu_int32 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5093772Z test_consistency_SparseCSR_nn_functional_relu_cpu_int64 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5093955Z test_consistency_SparseCSR_nn_functional_relu_cpu_int8 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5094122Z test_consistency_SparseCSR_nn_functional_relu_cpu_uint8 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5094295Z test_consistency_SparseCSR_positive_cpu_bfloat16 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5094469Z test_consistency_SparseCSR_positive_cpu_complex128 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5094644Z test_consistency_SparseCSR_positive_cpu_complex32 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5094847Z test_consistency_SparseCSR_positive_cpu_complex64 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5095021Z test_consistency_SparseCSR_positive_cpu_float16 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5095191Z test_consistency_SparseCSR_positive_cpu_float32 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5095355Z test_consistency_SparseCSR_positive_cpu_float64 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5095523Z test_consistency_SparseCSR_positive_cpu_int16 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5095680Z test_consistency_SparseCSR_positive_cpu_int32 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5095842Z test_consistency_SparseCSR_positive_cpu_int64 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5096011Z test_consistency_SparseCSR_positive_cpu_int8 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5096184Z test_consistency_SparseCSR_positive_cpu_uint8 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5096384Z test_consistency_SparseCSR_rad2deg_cpu_bfloat16 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5096555Z test_consistency_SparseCSR_rad2deg_cpu_bool (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5096730Z test_consistency_SparseCSR_rad2deg_cpu_float16 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5096896Z test_consistency_SparseCSR_rad2deg_cpu_float32 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5097061Z test_consistency_SparseCSR_rad2deg_cpu_float64 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5097280Z test_consistency_SparseCSR_rad2deg_cpu_int16 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5097449Z test_consistency_SparseCSR_rad2deg_cpu_int32 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5097617Z test_consistency_SparseCSR_rad2deg_cpu_int64 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5097787Z test_consistency_SparseCSR_rad2deg_cpu_int8 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5097956Z test_consistency_SparseCSR_rad2deg_cpu_uint8 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5098134Z test_consistency_SparseCSR_randn_like_cpu_bfloat16 (__main__.TestSparseCompressedCPU) ... ok (0.014s) 2023-01-11T21:22:05.5098313Z test_consistency_SparseCSR_randn_like_cpu_complex128 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.5098494Z test_consistency_SparseCSR_randn_like_cpu_complex32 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.5098672Z test_consistency_SparseCSR_randn_like_cpu_complex64 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.5098834Z test_consistency_SparseCSR_randn_like_cpu_float16 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.5099019Z test_consistency_SparseCSR_randn_like_cpu_float32 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.5099190Z test_consistency_SparseCSR_randn_like_cpu_float64 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.5099363Z test_consistency_SparseCSR_round_cpu_bfloat16 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5099531Z test_consistency_SparseCSR_round_cpu_float32 (__main__.TestSparseCompressedCPU) ... ok (0.008s) 2023-01-11T21:22:05.5099699Z test_consistency_SparseCSR_round_cpu_float64 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5099867Z test_consistency_SparseCSR_round_cpu_int16 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5100034Z test_consistency_SparseCSR_round_cpu_int32 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5100202Z test_consistency_SparseCSR_round_cpu_int64 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5100423Z test_consistency_SparseCSR_round_cpu_int8 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5100590Z test_consistency_SparseCSR_round_cpu_uint8 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5100760Z test_consistency_SparseCSR_sgn_cpu_bfloat16 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5100924Z test_consistency_SparseCSR_sgn_cpu_bool (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5101097Z test_consistency_SparseCSR_sgn_cpu_complex128 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5101266Z test_consistency_SparseCSR_sgn_cpu_complex32 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.5101432Z test_consistency_SparseCSR_sgn_cpu_complex64 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5101597Z test_consistency_SparseCSR_sgn_cpu_float16 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5101753Z test_consistency_SparseCSR_sgn_cpu_float32 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5101946Z test_consistency_SparseCSR_sgn_cpu_float64 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5102111Z test_consistency_SparseCSR_sgn_cpu_int16 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5102273Z test_consistency_SparseCSR_sgn_cpu_int32 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5102432Z test_consistency_SparseCSR_sgn_cpu_int64 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5102593Z test_consistency_SparseCSR_sgn_cpu_int8 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5102754Z test_consistency_SparseCSR_sgn_cpu_uint8 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5102922Z test_consistency_SparseCSR_sign_cpu_bfloat16 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5103085Z test_consistency_SparseCSR_sign_cpu_bool (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5103238Z test_consistency_SparseCSR_sign_cpu_float16 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5103408Z test_consistency_SparseCSR_sign_cpu_float32 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5103575Z test_consistency_SparseCSR_sign_cpu_float64 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5103740Z test_consistency_SparseCSR_sign_cpu_int16 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5103904Z test_consistency_SparseCSR_sign_cpu_int32 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5104067Z test_consistency_SparseCSR_sign_cpu_int64 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5104231Z test_consistency_SparseCSR_sign_cpu_int8 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5104391Z test_consistency_SparseCSR_sign_cpu_uint8 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5104566Z test_consistency_SparseCSR_signbit_cpu_bfloat16 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5104723Z test_consistency_SparseCSR_signbit_cpu_bool (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5104891Z test_consistency_SparseCSR_signbit_cpu_float16 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5105061Z test_consistency_SparseCSR_signbit_cpu_float32 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5105225Z test_consistency_SparseCSR_signbit_cpu_float64 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5105391Z test_consistency_SparseCSR_signbit_cpu_int16 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5105555Z test_consistency_SparseCSR_signbit_cpu_int32 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5105724Z test_consistency_SparseCSR_signbit_cpu_int64 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5105917Z test_consistency_SparseCSR_signbit_cpu_int8 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5106071Z test_consistency_SparseCSR_signbit_cpu_uint8 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5106235Z test_consistency_SparseCSR_sin_cpu_bfloat16 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5106395Z test_consistency_SparseCSR_sin_cpu_bool (__main__.TestSparseCompressedCPU) ... ok (0.012s) 2023-01-11T21:22:05.5106561Z test_consistency_SparseCSR_sin_cpu_complex128 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.5106730Z test_consistency_SparseCSR_sin_cpu_complex64 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5106893Z test_consistency_SparseCSR_sin_cpu_float32 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5107055Z test_consistency_SparseCSR_sin_cpu_float64 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5107217Z test_consistency_SparseCSR_sin_cpu_int16 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5107406Z test_consistency_SparseCSR_sin_cpu_int32 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5107556Z test_consistency_SparseCSR_sin_cpu_int64 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5107717Z test_consistency_SparseCSR_sin_cpu_int8 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5107875Z test_consistency_SparseCSR_sin_cpu_uint8 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5108041Z test_consistency_SparseCSR_sinh_cpu_bfloat16 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5108199Z test_consistency_SparseCSR_sinh_cpu_bool (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5108366Z test_consistency_SparseCSR_sinh_cpu_complex128 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.5108535Z test_consistency_SparseCSR_sinh_cpu_complex64 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5108700Z test_consistency_SparseCSR_sinh_cpu_float32 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5108864Z test_consistency_SparseCSR_sinh_cpu_float64 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5109016Z test_consistency_SparseCSR_sinh_cpu_int16 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5109179Z test_consistency_SparseCSR_sinh_cpu_int32 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5109338Z test_consistency_SparseCSR_sinh_cpu_int64 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5109498Z test_consistency_SparseCSR_sinh_cpu_int8 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5109656Z test_consistency_SparseCSR_sinh_cpu_uint8 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5109822Z test_consistency_SparseCSR_sqrt_cpu_bfloat16 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5109985Z test_consistency_SparseCSR_sqrt_cpu_bool (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5110154Z test_consistency_SparseCSR_sqrt_cpu_complex128 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.5110322Z test_consistency_SparseCSR_sqrt_cpu_complex64 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.5110472Z test_consistency_SparseCSR_sqrt_cpu_float32 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5110636Z test_consistency_SparseCSR_sqrt_cpu_float64 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5110795Z test_consistency_SparseCSR_sqrt_cpu_int16 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5110955Z test_consistency_SparseCSR_sqrt_cpu_int32 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5111160Z test_consistency_SparseCSR_sqrt_cpu_int64 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5111319Z test_consistency_SparseCSR_sqrt_cpu_int8 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.5111482Z test_consistency_SparseCSR_sqrt_cpu_uint8 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5111647Z test_consistency_SparseCSR_tan_cpu_bfloat16 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5111796Z test_consistency_SparseCSR_tan_cpu_bool (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.5111963Z test_consistency_SparseCSR_tan_cpu_complex128 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.5112127Z test_consistency_SparseCSR_tan_cpu_complex64 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.5112291Z test_consistency_SparseCSR_tan_cpu_float32 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5112457Z test_consistency_SparseCSR_tan_cpu_float64 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5112615Z test_consistency_SparseCSR_tan_cpu_int16 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.5112804Z test_consistency_SparseCSR_tan_cpu_int32 (__main__.TestSparseCompressedCPU) ... ok (0.009s) 2023-01-11T21:22:05.5112961Z test_consistency_SparseCSR_tan_cpu_int64 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5113122Z test_consistency_SparseCSR_tan_cpu_int8 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.5113270Z test_consistency_SparseCSR_tan_cpu_uint8 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5113437Z test_consistency_SparseCSR_tanh_cpu_bfloat16 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5113594Z test_consistency_SparseCSR_tanh_cpu_bool (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5113764Z test_consistency_SparseCSR_tanh_cpu_complex128 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.5113934Z test_consistency_SparseCSR_tanh_cpu_complex64 (__main__.TestSparseCompressedCPU) ... ok (0.005s) 2023-01-11T21:22:05.5114102Z test_consistency_SparseCSR_tanh_cpu_float32 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5114268Z test_consistency_SparseCSR_tanh_cpu_float64 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5114430Z test_consistency_SparseCSR_tanh_cpu_int16 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5114592Z test_consistency_SparseCSR_tanh_cpu_int32 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5114741Z test_consistency_SparseCSR_tanh_cpu_int64 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5114900Z test_consistency_SparseCSR_tanh_cpu_int8 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5115058Z test_consistency_SparseCSR_tanh_cpu_uint8 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5115236Z test_consistency_SparseCSR_to_sparse_cpu_bfloat16 (__main__.TestSparseCompressedCPU) ... ok (0.007s) 2023-01-11T21:22:05.5115407Z test_consistency_SparseCSR_to_sparse_cpu_bool (__main__.TestSparseCompressedCPU) ... ok (0.006s) 2023-01-11T21:22:05.5115584Z test_consistency_SparseCSR_to_sparse_cpu_complex128 (__main__.TestSparseCompressedCPU) ... ok (0.006s) 2023-01-11T21:22:05.5115758Z test_consistency_SparseCSR_to_sparse_cpu_complex64 (__main__.TestSparseCompressedCPU) ... ok (0.007s) 2023-01-11T21:22:05.5115929Z test_consistency_SparseCSR_to_sparse_cpu_float16 (__main__.TestSparseCompressedCPU) ... ok (0.006s) 2023-01-11T21:22:05.5116086Z test_consistency_SparseCSR_to_sparse_cpu_float32 (__main__.TestSparseCompressedCPU) ... ok (0.006s) 2023-01-11T21:22:05.5116249Z test_consistency_SparseCSR_to_sparse_cpu_float64 (__main__.TestSparseCompressedCPU) ... ok (0.006s) 2023-01-11T21:22:05.5116416Z test_consistency_SparseCSR_to_sparse_cpu_int16 (__main__.TestSparseCompressedCPU) ... ok (0.006s) 2023-01-11T21:22:05.5116614Z test_consistency_SparseCSR_to_sparse_cpu_int32 (__main__.TestSparseCompressedCPU) ... ok (0.006s) 2023-01-11T21:22:05.5116780Z test_consistency_SparseCSR_to_sparse_cpu_int64 (__main__.TestSparseCompressedCPU) ... ok (0.006s) 2023-01-11T21:22:05.5116946Z test_consistency_SparseCSR_to_sparse_cpu_int8 (__main__.TestSparseCompressedCPU) ... ok (0.006s) 2023-01-11T21:22:05.5117112Z test_consistency_SparseCSR_to_sparse_cpu_uint8 (__main__.TestSparseCompressedCPU) ... ok (0.006s) 2023-01-11T21:22:05.5117276Z test_consistency_SparseCSR_trunc_cpu_bfloat16 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5117440Z test_consistency_SparseCSR_trunc_cpu_float32 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5117594Z test_consistency_SparseCSR_trunc_cpu_float64 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5117758Z test_consistency_SparseCSR_trunc_cpu_int16 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5117921Z test_consistency_SparseCSR_trunc_cpu_int32 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5118111Z test_consistency_SparseCSR_trunc_cpu_int64 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5118274Z test_consistency_SparseCSR_trunc_cpu_int8 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5118435Z test_consistency_SparseCSR_trunc_cpu_uint8 (__main__.TestSparseCompressedCPU) ... ok (0.004s) 2023-01-11T21:22:05.5118589Z test_copy_SparseBSC_cpu_bfloat16 (__main__.TestSparseCompressedCPU) ... ok (0.069s) 2023-01-11T21:22:05.5118739Z test_copy_SparseBSC_cpu_bool (__main__.TestSparseCompressedCPU) ... ok (0.070s) 2023-01-11T21:22:05.5118895Z test_copy_SparseBSC_cpu_complex128 (__main__.TestSparseCompressedCPU) ... ok (0.074s) 2023-01-11T21:22:05.5119038Z test_copy_SparseBSC_cpu_complex64 (__main__.TestSparseCompressedCPU) ... ok (0.070s) 2023-01-11T21:22:05.5119192Z test_copy_SparseBSC_cpu_float16 (__main__.TestSparseCompressedCPU) ... ok (0.070s) 2023-01-11T21:22:05.5119343Z test_copy_SparseBSC_cpu_float32 (__main__.TestSparseCompressedCPU) ... ok (0.069s) 2023-01-11T21:22:05.5119490Z test_copy_SparseBSC_cpu_float64 (__main__.TestSparseCompressedCPU) ... ok (0.067s) 2023-01-11T21:22:05.5119645Z test_copy_SparseBSC_cpu_int16 (__main__.TestSparseCompressedCPU) ... ok (0.067s) 2023-01-11T21:22:05.5119796Z test_copy_SparseBSC_cpu_int32 (__main__.TestSparseCompressedCPU) ... ok (0.069s) 2023-01-11T21:22:05.5119944Z test_copy_SparseBSC_cpu_int64 (__main__.TestSparseCompressedCPU) ... ok (0.067s) 2023-01-11T21:22:05.5120092Z test_copy_SparseBSC_cpu_int8 (__main__.TestSparseCompressedCPU) ... ok (0.067s) 2023-01-11T21:22:05.5120231Z test_copy_SparseBSC_cpu_uint8 (__main__.TestSparseCompressedCPU) ... ok (0.066s) 2023-01-11T21:22:05.5120384Z test_copy_SparseBSR_cpu_bfloat16 (__main__.TestSparseCompressedCPU) ... ok (0.056s) 2023-01-11T21:22:05.5120534Z test_copy_SparseBSR_cpu_bool (__main__.TestSparseCompressedCPU) ... ok (0.054s) 2023-01-11T21:22:05.5120812Z test_copy_SparseBSR_cpu_complex128 (__main__.TestSparseCompressedCPU) ... ok (0.057s) 2023-01-11T21:22:05.5120971Z test_copy_SparseBSR_cpu_complex64 (__main__.TestSparseCompressedCPU) ... ok (0.059s) 2023-01-11T21:22:05.5121125Z test_copy_SparseBSR_cpu_float16 (__main__.TestSparseCompressedCPU) ... ok (0.055s) 2023-01-11T21:22:05.5121278Z test_copy_SparseBSR_cpu_float32 (__main__.TestSparseCompressedCPU) ... ok (0.057s) 2023-01-11T21:22:05.5121428Z test_copy_SparseBSR_cpu_float64 (__main__.TestSparseCompressedCPU) ... ok (0.057s) 2023-01-11T21:22:05.5121566Z test_copy_SparseBSR_cpu_int16 (__main__.TestSparseCompressedCPU) ... ok (0.055s) 2023-01-11T21:22:05.5121715Z test_copy_SparseBSR_cpu_int32 (__main__.TestSparseCompressedCPU) ... ok (0.055s) 2023-01-11T21:22:05.5121861Z test_copy_SparseBSR_cpu_int64 (__main__.TestSparseCompressedCPU) ... ok (0.055s) 2023-01-11T21:22:05.5122057Z test_copy_SparseBSR_cpu_int8 (__main__.TestSparseCompressedCPU) ... ok (0.055s) 2023-01-11T21:22:05.5122207Z test_copy_SparseBSR_cpu_uint8 (__main__.TestSparseCompressedCPU) ... ok (0.054s) 2023-01-11T21:22:05.5122367Z test_copy_SparseCSC_cpu_bfloat16 (__main__.TestSparseCompressedCPU) ... ok (0.040s) 2023-01-11T21:22:05.5122523Z test_copy_SparseCSC_cpu_bool (__main__.TestSparseCompressedCPU) ... ok (0.038s) 2023-01-11T21:22:05.5122681Z test_copy_SparseCSC_cpu_complex128 (__main__.TestSparseCompressedCPU) ... ok (0.039s) 2023-01-11T21:22:05.5122837Z test_copy_SparseCSC_cpu_complex64 (__main__.TestSparseCompressedCPU) ... ok (0.040s) 2023-01-11T21:22:05.5122979Z test_copy_SparseCSC_cpu_float16 (__main__.TestSparseCompressedCPU) ... ok (0.040s) 2023-01-11T21:22:05.5123129Z test_copy_SparseCSC_cpu_float32 (__main__.TestSparseCompressedCPU) ... ok (0.040s) 2023-01-11T21:22:05.5123275Z test_copy_SparseCSC_cpu_float64 (__main__.TestSparseCompressedCPU) ... ok (0.039s) 2023-01-11T21:22:05.5123428Z test_copy_SparseCSC_cpu_int16 (__main__.TestSparseCompressedCPU) ... ok (0.038s) 2023-01-11T21:22:05.5123575Z test_copy_SparseCSC_cpu_int32 (__main__.TestSparseCompressedCPU) ... ok (0.038s) 2023-01-11T21:22:05.5123755Z test_copy_SparseCSC_cpu_int64 (__main__.TestSparseCompressedCPU) ... ok (0.042s) 2023-01-11T21:22:05.5123904Z test_copy_SparseCSC_cpu_int8 (__main__.TestSparseCompressedCPU) ... ok (0.038s) 2023-01-11T21:22:05.5124053Z test_copy_SparseCSC_cpu_uint8 (__main__.TestSparseCompressedCPU) ... ok (0.038s) 2023-01-11T21:22:05.5124195Z test_copy_SparseCSR_cpu_bfloat16 (__main__.TestSparseCompressedCPU) ... ok (0.038s) 2023-01-11T21:22:05.5124343Z test_copy_SparseCSR_cpu_bool (__main__.TestSparseCompressedCPU) ... ok (0.037s) 2023-01-11T21:22:05.5124497Z test_copy_SparseCSR_cpu_complex128 (__main__.TestSparseCompressedCPU) ... ok (0.039s) 2023-01-11T21:22:05.5124650Z test_copy_SparseCSR_cpu_complex64 (__main__.TestSparseCompressedCPU) ... ok (0.039s) 2023-01-11T21:22:05.5124804Z test_copy_SparseCSR_cpu_float16 (__main__.TestSparseCompressedCPU) ... ok (0.040s) 2023-01-11T21:22:05.5124951Z test_copy_SparseCSR_cpu_float32 (__main__.TestSparseCompressedCPU) ... ok (0.040s) 2023-01-11T21:22:05.5125099Z test_copy_SparseCSR_cpu_float64 (__main__.TestSparseCompressedCPU) ... ok (0.040s) 2023-01-11T21:22:05.5125250Z test_copy_SparseCSR_cpu_int16 (__main__.TestSparseCompressedCPU) ... ok (0.041s) 2023-01-11T21:22:05.5125385Z test_copy_SparseCSR_cpu_int32 (__main__.TestSparseCompressedCPU) ... ok (0.041s) 2023-01-11T21:22:05.5125525Z test_copy_SparseCSR_cpu_int64 (__main__.TestSparseCompressedCPU) ... ok (0.040s) 2023-01-11T21:22:05.5125670Z test_copy_SparseCSR_cpu_int8 (__main__.TestSparseCompressedCPU) ... ok (0.042s) 2023-01-11T21:22:05.5125819Z test_copy_SparseCSR_cpu_uint8 (__main__.TestSparseCompressedCPU) ... ok (0.041s) 2023-01-11T21:22:05.5125981Z test_copy_errors_SparseBSC_cpu_bfloat16 (__main__.TestSparseCompressedCPU) ... ok (0.128s) 2023-01-11T21:22:05.5126140Z test_copy_errors_SparseBSC_cpu_bool (__main__.TestSparseCompressedCPU) ... ok (0.127s) 2023-01-11T21:22:05.5126304Z test_copy_errors_SparseBSC_cpu_complex128 (__main__.TestSparseCompressedCPU) ... ok (0.126s) 2023-01-11T21:22:05.5126466Z test_copy_errors_SparseBSC_cpu_complex64 (__main__.TestSparseCompressedCPU) ... ok (0.125s) 2023-01-11T21:22:05.5126613Z test_copy_errors_SparseBSC_cpu_float16 (__main__.TestSparseCompressedCPU) ... ok (0.125s) 2023-01-11T21:22:05.5126770Z test_copy_errors_SparseBSC_cpu_float32 (__main__.TestSparseCompressedCPU) ... ok (0.133s) 2023-01-11T21:22:05.5126927Z test_copy_errors_SparseBSC_cpu_float64 (__main__.TestSparseCompressedCPU) ... ok (0.123s) 2023-01-11T21:22:05.5127082Z test_copy_errors_SparseBSC_cpu_int16 (__main__.TestSparseCompressedCPU) ... ok (0.124s) 2023-01-11T21:22:05.5127235Z test_copy_errors_SparseBSC_cpu_int32 (__main__.TestSparseCompressedCPU) ... ok (0.123s) 2023-01-11T21:22:05.5127391Z test_copy_errors_SparseBSC_cpu_int64 (__main__.TestSparseCompressedCPU) ... ok (0.123s) 2023-01-11T21:22:05.5127575Z test_copy_errors_SparseBSC_cpu_int8 (__main__.TestSparseCompressedCPU) ... ok (0.121s) 2023-01-11T21:22:05.5127731Z test_copy_errors_SparseBSC_cpu_uint8 (__main__.TestSparseCompressedCPU) ... ok (0.121s) 2023-01-11T21:22:05.5127892Z test_copy_errors_SparseBSR_cpu_bfloat16 (__main__.TestSparseCompressedCPU) ... ok (0.124s) 2023-01-11T21:22:05.5128039Z test_copy_errors_SparseBSR_cpu_bool (__main__.TestSparseCompressedCPU) ... ok (0.122s) 2023-01-11T21:22:05.5128201Z test_copy_errors_SparseBSR_cpu_complex128 (__main__.TestSparseCompressedCPU) ... ok (0.124s) 2023-01-11T21:22:05.5128364Z test_copy_errors_SparseBSR_cpu_complex64 (__main__.TestSparseCompressedCPU) ... ok (0.124s) 2023-01-11T21:22:05.5128523Z test_copy_errors_SparseBSR_cpu_float16 (__main__.TestSparseCompressedCPU) ... ok (0.122s) 2023-01-11T21:22:05.5128680Z test_copy_errors_SparseBSR_cpu_float32 (__main__.TestSparseCompressedCPU) ... ok (0.123s) 2023-01-11T21:22:05.5128835Z test_copy_errors_SparseBSR_cpu_float64 (__main__.TestSparseCompressedCPU) ... ok (0.123s) 2023-01-11T21:22:05.5128989Z test_copy_errors_SparseBSR_cpu_int16 (__main__.TestSparseCompressedCPU) ... ok (0.123s) 2023-01-11T21:22:05.5129171Z test_copy_errors_SparseBSR_cpu_int32 (__main__.TestSparseCompressedCPU) ... ok (0.122s) 2023-01-11T21:22:05.5129323Z test_copy_errors_SparseBSR_cpu_int64 (__main__.TestSparseCompressedCPU) ... ok (0.121s) 2023-01-11T21:22:05.5129466Z test_copy_errors_SparseBSR_cpu_int8 (__main__.TestSparseCompressedCPU) ... ok (0.156s) 2023-01-11T21:22:05.5129621Z test_copy_errors_SparseBSR_cpu_uint8 (__main__.TestSparseCompressedCPU) ... ok (0.122s) 2023-01-11T21:22:05.5129781Z test_copy_errors_SparseCSC_cpu_bfloat16 (__main__.TestSparseCompressedCPU) ... ok (0.088s) 2023-01-11T21:22:05.5129934Z test_copy_errors_SparseCSC_cpu_bool (__main__.TestSparseCompressedCPU) ... ok (0.088s) 2023-01-11T21:22:05.5130096Z test_copy_errors_SparseCSC_cpu_complex128 (__main__.TestSparseCompressedCPU) ... ok (0.088s) 2023-01-11T21:22:05.5130260Z test_copy_errors_SparseCSC_cpu_complex64 (__main__.TestSparseCompressedCPU) ... ok (0.087s) 2023-01-11T21:22:05.5130418Z test_copy_errors_SparseCSC_cpu_float16 (__main__.TestSparseCompressedCPU) ... ok (0.087s) 2023-01-11T21:22:05.5130573Z test_copy_errors_SparseCSC_cpu_float32 (__main__.TestSparseCompressedCPU) ... ok (0.087s) 2023-01-11T21:22:05.5130714Z test_copy_errors_SparseCSC_cpu_float64 (__main__.TestSparseCompressedCPU) ... ok (0.087s) 2023-01-11T21:22:05.5130909Z test_copy_errors_SparseCSC_cpu_int16 (__main__.TestSparseCompressedCPU) ... ok (0.087s) 2023-01-11T21:22:05.5131065Z test_copy_errors_SparseCSC_cpu_int32 (__main__.TestSparseCompressedCPU) ... ok (0.087s) 2023-01-11T21:22:05.5131221Z test_copy_errors_SparseCSC_cpu_int64 (__main__.TestSparseCompressedCPU) ... ok (0.087s) 2023-01-11T21:22:05.5131377Z test_copy_errors_SparseCSC_cpu_int8 (__main__.TestSparseCompressedCPU) ... ok (0.087s) 2023-01-11T21:22:05.5131531Z test_copy_errors_SparseCSC_cpu_uint8 (__main__.TestSparseCompressedCPU) ... ok (0.104s) 2023-01-11T21:22:05.5131690Z test_copy_errors_SparseCSR_cpu_bfloat16 (__main__.TestSparseCompressedCPU) ... ok (0.088s) 2023-01-11T21:22:05.5131847Z test_copy_errors_SparseCSR_cpu_bool (__main__.TestSparseCompressedCPU) ... ok (0.088s) 2023-01-11T21:22:05.5131999Z test_copy_errors_SparseCSR_cpu_complex128 (__main__.TestSparseCompressedCPU) ... ok (0.087s) 2023-01-11T21:22:05.5132159Z test_copy_errors_SparseCSR_cpu_complex64 (__main__.TestSparseCompressedCPU) ... ok (0.087s) 2023-01-11T21:22:05.5132315Z test_copy_errors_SparseCSR_cpu_float16 (__main__.TestSparseCompressedCPU) ... ok (0.086s) 2023-01-11T21:22:05.5132471Z test_copy_errors_SparseCSR_cpu_float32 (__main__.TestSparseCompressedCPU) ... ok (0.086s) 2023-01-11T21:22:05.5132627Z test_copy_errors_SparseCSR_cpu_float64 (__main__.TestSparseCompressedCPU) ... ok (0.086s) 2023-01-11T21:22:05.5132781Z test_copy_errors_SparseCSR_cpu_int16 (__main__.TestSparseCompressedCPU) ... ok (0.086s) 2023-01-11T21:22:05.5132965Z test_copy_errors_SparseCSR_cpu_int32 (__main__.TestSparseCompressedCPU) ... ok (0.096s) 2023-01-11T21:22:05.5133123Z test_copy_errors_SparseCSR_cpu_int64 (__main__.TestSparseCompressedCPU) ... ok (0.086s) 2023-01-11T21:22:05.5133278Z test_copy_errors_SparseCSR_cpu_int8 (__main__.TestSparseCompressedCPU) ... ok (0.086s) 2023-01-11T21:22:05.5133420Z test_copy_errors_SparseCSR_cpu_uint8 (__main__.TestSparseCompressedCPU) ... ok (0.087s) 2023-01-11T21:22:05.5133563Z test_dim_SparseBSC_cpu (__main__.TestSparseCompressedCPU) ... ok (0.102s) 2023-01-11T21:22:05.5133705Z test_dim_SparseBSR_cpu (__main__.TestSparseCompressedCPU) ... ok (0.101s) 2023-01-11T21:22:05.5133843Z test_dim_SparseCSC_cpu (__main__.TestSparseCompressedCPU) ... ok (0.088s) 2023-01-11T21:22:05.5133980Z test_dim_SparseCSR_cpu (__main__.TestSparseCompressedCPU) ... ok (0.088s) 2023-01-11T21:22:05.5134134Z test_empty_SparseCSC_cpu_bfloat16 (__main__.TestSparseCompressedCPU) ... ok (0.033s) 2023-01-11T21:22:05.5134287Z test_empty_SparseCSC_cpu_bool (__main__.TestSparseCompressedCPU) ... ok (0.032s) 2023-01-11T21:22:05.5134471Z test_empty_SparseCSC_cpu_complex128 (__main__.TestSparseCompressedCPU) ... ok (0.032s) 2023-01-11T21:22:05.5134618Z test_empty_SparseCSC_cpu_complex64 (__main__.TestSparseCompressedCPU) ... ok (0.036s) 2023-01-11T21:22:05.5134770Z test_empty_SparseCSC_cpu_float16 (__main__.TestSparseCompressedCPU) ... ok (0.032s) 2023-01-11T21:22:05.5134924Z test_empty_SparseCSC_cpu_float32 (__main__.TestSparseCompressedCPU) ... ok (0.032s) 2023-01-11T21:22:05.5135073Z test_empty_SparseCSC_cpu_float64 (__main__.TestSparseCompressedCPU) ... ok (0.032s) 2023-01-11T21:22:05.5135223Z test_empty_SparseCSC_cpu_int16 (__main__.TestSparseCompressedCPU) ... ok (0.031s) 2023-01-11T21:22:05.5135371Z test_empty_SparseCSC_cpu_int32 (__main__.TestSparseCompressedCPU) ... ok (0.031s) 2023-01-11T21:22:05.5135515Z test_empty_SparseCSC_cpu_int64 (__main__.TestSparseCompressedCPU) ... ok (0.032s) 2023-01-11T21:22:05.5135667Z test_empty_SparseCSC_cpu_int8 (__main__.TestSparseCompressedCPU) ... ok (0.037s) 2023-01-11T21:22:05.5135808Z test_empty_SparseCSC_cpu_uint8 (__main__.TestSparseCompressedCPU) ... ok (0.032s) 2023-01-11T21:22:05.5135961Z test_empty_SparseCSR_cpu_bfloat16 (__main__.TestSparseCompressedCPU) ... ok (0.033s) 2023-01-11T21:22:05.5136108Z test_empty_SparseCSR_cpu_bool (__main__.TestSparseCompressedCPU) ... ok (0.033s) 2023-01-11T21:22:05.5136265Z test_empty_SparseCSR_cpu_complex128 (__main__.TestSparseCompressedCPU) ... ok (0.032s) 2023-01-11T21:22:05.5136421Z test_empty_SparseCSR_cpu_complex64 (__main__.TestSparseCompressedCPU) ... ok (0.033s) 2023-01-11T21:22:05.5136572Z test_empty_SparseCSR_cpu_float16 (__main__.TestSparseCompressedCPU) ... ok (0.033s) 2023-01-11T21:22:05.5136721Z test_empty_SparseCSR_cpu_float32 (__main__.TestSparseCompressedCPU) ... ok (0.033s) 2023-01-11T21:22:05.5136866Z test_empty_SparseCSR_cpu_float64 (__main__.TestSparseCompressedCPU) ... ok (0.037s) 2023-01-11T21:22:05.5137018Z test_empty_SparseCSR_cpu_int16 (__main__.TestSparseCompressedCPU) ... ok (0.060s) 2023-01-11T21:22:05.5137153Z test_empty_SparseCSR_cpu_int32 (__main__.TestSparseCompressedCPU) ... ok (0.033s) 2023-01-11T21:22:05.5137361Z test_empty_SparseCSR_cpu_int64 (__main__.TestSparseCompressedCPU) ... ok (0.033s) 2023-01-11T21:22:05.5137511Z test_empty_SparseCSR_cpu_int8 (__main__.TestSparseCompressedCPU) ... ok (0.033s) 2023-01-11T21:22:05.5137665Z test_empty_SparseCSR_cpu_uint8 (__main__.TestSparseCompressedCPU) ... ok (0.033s) 2023-01-11T21:22:05.5137829Z test_empty_errors_SparseCSC_cpu_bfloat16 (__main__.TestSparseCompressedCPU) ... ok (0.010s) 2023-01-11T21:22:05.5137986Z test_empty_errors_SparseCSC_cpu_bool (__main__.TestSparseCompressedCPU) ... ok (0.008s) 2023-01-11T21:22:05.5138153Z test_empty_errors_SparseCSC_cpu_complex128 (__main__.TestSparseCompressedCPU) ... ok (0.008s) 2023-01-11T21:22:05.5138319Z test_empty_errors_SparseCSC_cpu_complex64 (__main__.TestSparseCompressedCPU) ... ok (0.008s) 2023-01-11T21:22:05.5138506Z test_empty_errors_SparseCSC_cpu_float16 (__main__.TestSparseCompressedCPU) ... ok (0.008s) 2023-01-11T21:22:05.5138670Z test_empty_errors_SparseCSC_cpu_float32 (__main__.TestSparseCompressedCPU) ... ok (0.008s) 2023-01-11T21:22:05.5138827Z test_empty_errors_SparseCSC_cpu_float64 (__main__.TestSparseCompressedCPU) ... ok (0.008s) 2023-01-11T21:22:05.5138988Z test_empty_errors_SparseCSC_cpu_int16 (__main__.TestSparseCompressedCPU) ... ok (0.008s) 2023-01-11T21:22:05.5139147Z test_empty_errors_SparseCSC_cpu_int32 (__main__.TestSparseCompressedCPU) ... ok (0.008s) 2023-01-11T21:22:05.5139308Z test_empty_errors_SparseCSC_cpu_int64 (__main__.TestSparseCompressedCPU) ... ok (0.008s) 2023-01-11T21:22:05.5139466Z test_empty_errors_SparseCSC_cpu_int8 (__main__.TestSparseCompressedCPU) ... ok (0.008s) 2023-01-11T21:22:05.5139622Z test_empty_errors_SparseCSC_cpu_uint8 (__main__.TestSparseCompressedCPU) ... ok (0.008s) 2023-01-11T21:22:05.5139787Z test_empty_errors_SparseCSR_cpu_bfloat16 (__main__.TestSparseCompressedCPU) ... ok (0.008s) 2023-01-11T21:22:05.5139957Z test_empty_errors_SparseCSR_cpu_bool (__main__.TestSparseCompressedCPU) ... ok (0.008s) 2023-01-11T21:22:05.5140124Z test_empty_errors_SparseCSR_cpu_complex128 (__main__.TestSparseCompressedCPU) ... ok (0.008s) 2023-01-11T21:22:05.5140286Z test_empty_errors_SparseCSR_cpu_complex64 (__main__.TestSparseCompressedCPU) ... ok (0.008s) 2023-01-11T21:22:05.5140444Z test_empty_errors_SparseCSR_cpu_float16 (__main__.TestSparseCompressedCPU) ... ok (0.008s) 2023-01-11T21:22:05.5140603Z test_empty_errors_SparseCSR_cpu_float32 (__main__.TestSparseCompressedCPU) ... ok (0.008s) 2023-01-11T21:22:05.5140761Z test_empty_errors_SparseCSR_cpu_float64 (__main__.TestSparseCompressedCPU) ... ok (0.008s) 2023-01-11T21:22:05.5140919Z test_empty_errors_SparseCSR_cpu_int16 (__main__.TestSparseCompressedCPU) ... ok (0.008s) 2023-01-11T21:22:05.5141077Z test_empty_errors_SparseCSR_cpu_int32 (__main__.TestSparseCompressedCPU) ... ok (0.008s) 2023-01-11T21:22:05.5141218Z test_empty_errors_SparseCSR_cpu_int64 (__main__.TestSparseCompressedCPU) ... ok (0.008s) 2023-01-11T21:22:05.5141376Z test_empty_errors_SparseCSR_cpu_int8 (__main__.TestSparseCompressedCPU) ... ok (0.008s) 2023-01-11T21:22:05.5141531Z test_empty_errors_SparseCSR_cpu_uint8 (__main__.TestSparseCompressedCPU) ... ok (0.008s) 2023-01-11T21:22:05.5141703Z test_empty_like_SparseBSC_SparseBSC_cpu_bfloat16 (__main__.TestSparseCompressedCPU) ... ok (0.126s) 2023-01-11T21:22:05.5141869Z test_empty_like_SparseBSC_SparseBSC_cpu_bool (__main__.TestSparseCompressedCPU) ... ok (0.116s) 2023-01-11T21:22:05.5142043Z test_empty_like_SparseBSC_SparseBSC_cpu_complex128 (__main__.TestSparseCompressedCPU) ... ok (0.117s) 2023-01-11T21:22:05.5142216Z test_empty_like_SparseBSC_SparseBSC_cpu_complex64 (__main__.TestSparseCompressedCPU) ... ok (0.118s) 2023-01-11T21:22:05.5142388Z test_empty_like_SparseBSC_SparseBSC_cpu_float16 (__main__.TestSparseCompressedCPU) ... ok (0.118s) 2023-01-11T21:22:05.5142555Z test_empty_like_SparseBSC_SparseBSC_cpu_float32 (__main__.TestSparseCompressedCPU) ... ok (0.134s) 2023-01-11T21:22:05.5142709Z test_empty_like_SparseBSC_SparseBSC_cpu_float64 (__main__.TestSparseCompressedCPU) ... ok (0.121s) 2023-01-11T21:22:05.5142878Z test_empty_like_SparseBSC_SparseBSC_cpu_int16 (__main__.TestSparseCompressedCPU) ... ok (0.137s) 2023-01-11T21:22:05.5143045Z test_empty_like_SparseBSC_SparseBSC_cpu_int32 (__main__.TestSparseCompressedCPU) ... ok (0.116s) 2023-01-11T21:22:05.5143215Z test_empty_like_SparseBSC_SparseBSC_cpu_int64 (__main__.TestSparseCompressedCPU) ... ok (0.115s) 2023-01-11T21:22:05.5143384Z test_empty_like_SparseBSC_SparseBSC_cpu_int8 (__main__.TestSparseCompressedCPU) ... ok (0.116s) 2023-01-11T21:22:05.5143553Z test_empty_like_SparseBSC_SparseBSC_cpu_uint8 (__main__.TestSparseCompressedCPU) ... ok (0.117s) 2023-01-11T21:22:05.5143727Z test_empty_like_SparseBSC_SparseBSR_cpu_bfloat16 (__main__.TestSparseCompressedCPU) ... ok (0.333s) 2023-01-11T21:22:05.5143925Z test_empty_like_SparseBSC_SparseBSR_cpu_bool (__main__.TestSparseCompressedCPU) ... ok (0.370s) 2023-01-11T21:22:05.5144105Z test_empty_like_SparseBSC_SparseBSR_cpu_complex128 (__main__.TestSparseCompressedCPU) ... ok (0.326s) 2023-01-11T21:22:05.5144268Z test_empty_like_SparseBSC_SparseBSR_cpu_complex64 (__main__.TestSparseCompressedCPU) ... ok (0.329s) 2023-01-11T21:22:05.5144441Z test_empty_like_SparseBSC_SparseBSR_cpu_float16 (__main__.TestSparseCompressedCPU) ... ok (0.328s) 2023-01-11T21:22:05.5144610Z test_empty_like_SparseBSC_SparseBSR_cpu_float32 (__main__.TestSparseCompressedCPU) ... ok (0.339s) 2023-01-11T21:22:05.5144777Z test_empty_like_SparseBSC_SparseBSR_cpu_float64 (__main__.TestSparseCompressedCPU) ... ok (0.329s) 2023-01-11T21:22:05.5144946Z test_empty_like_SparseBSC_SparseBSR_cpu_int16 (__main__.TestSparseCompressedCPU) ... ok (0.331s) 2023-01-11T21:22:05.5145112Z test_empty_like_SparseBSC_SparseBSR_cpu_int32 (__main__.TestSparseCompressedCPU) ... ok (0.331s) 2023-01-11T21:22:05.5145274Z test_empty_like_SparseBSC_SparseBSR_cpu_int64 (__main__.TestSparseCompressedCPU) ... ok (0.345s) 2023-01-11T21:22:05.5145474Z test_empty_like_SparseBSC_SparseBSR_cpu_int8 (__main__.TestSparseCompressedCPU) ... ok (0.327s) 2023-01-11T21:22:05.5145643Z test_empty_like_SparseBSC_SparseBSR_cpu_uint8 (__main__.TestSparseCompressedCPU) ... ok (0.324s) 2023-01-11T21:22:05.5145803Z test_empty_like_SparseBSC_SparseCSC_cpu_bfloat16 (__main__.TestSparseCompressedCPU) ... ok (0.330s) 2023-01-11T21:22:05.5145970Z test_empty_like_SparseBSC_SparseCSC_cpu_bool (__main__.TestSparseCompressedCPU) ... ok (0.334s) 2023-01-11T21:22:05.5146148Z test_empty_like_SparseBSC_SparseCSC_cpu_complex128 (__main__.TestSparseCompressedCPU) ... ok (0.330s) 2023-01-11T21:22:05.5146325Z test_empty_like_SparseBSC_SparseCSC_cpu_complex64 (__main__.TestSparseCompressedCPU) ... ok (0.325s) 2023-01-11T21:22:05.5146500Z test_empty_like_SparseBSC_SparseCSC_cpu_float16 (__main__.TestSparseCompressedCPU) ... ok (0.328s) 2023-01-11T21:22:05.5146670Z test_empty_like_SparseBSC_SparseCSC_cpu_float32 (__main__.TestSparseCompressedCPU) ... ok (0.366s) 2023-01-11T21:22:05.5146840Z test_empty_like_SparseBSC_SparseCSC_cpu_float64 (__main__.TestSparseCompressedCPU) ... ok (0.329s) 2023-01-11T21:22:05.5147006Z test_empty_like_SparseBSC_SparseCSC_cpu_int16 (__main__.TestSparseCompressedCPU) ... ok (0.327s) 2023-01-11T21:22:05.5147169Z test_empty_like_SparseBSC_SparseCSC_cpu_int32 (__main__.TestSparseCompressedCPU) ... ok (0.342s) 2023-01-11T21:22:05.5147317Z test_empty_like_SparseBSC_SparseCSC_cpu_int64 (__main__.TestSparseCompressedCPU) ... ok (0.347s) 2023-01-11T21:22:05.5147484Z test_empty_like_SparseBSC_SparseCSC_cpu_int8 (__main__.TestSparseCompressedCPU) ... ok (0.357s) 2023-01-11T21:22:05.5147652Z test_empty_like_SparseBSC_SparseCSC_cpu_uint8 (__main__.TestSparseCompressedCPU) ... ok (0.338s) 2023-01-11T21:22:05.5147827Z test_empty_like_SparseBSC_SparseCSR_cpu_bfloat16 (__main__.TestSparseCompressedCPU) ... ok (0.334s) 2023-01-11T21:22:05.5147994Z test_empty_like_SparseBSC_SparseCSR_cpu_bool (__main__.TestSparseCompressedCPU) ... ok (0.357s) 2023-01-11T21:22:05.5148171Z test_empty_like_SparseBSC_SparseCSR_cpu_complex128 (__main__.TestSparseCompressedCPU) ... ok (0.332s) 2023-01-11T21:22:05.5148346Z test_empty_like_SparseBSC_SparseCSR_cpu_complex64 (__main__.TestSparseCompressedCPU) ... ok (0.334s) 2023-01-11T21:22:05.5148517Z test_empty_like_SparseBSC_SparseCSR_cpu_float16 (__main__.TestSparseCompressedCPU) ... ok (0.334s) 2023-01-11T21:22:05.5148673Z test_empty_like_SparseBSC_SparseCSR_cpu_float32 (__main__.TestSparseCompressedCPU) ... ok (0.351s) 2023-01-11T21:22:05.5148840Z test_empty_like_SparseBSC_SparseCSR_cpu_float64 (__main__.TestSparseCompressedCPU) ... ok (0.324s) 2023-01-11T21:22:05.5149005Z test_empty_like_SparseBSC_SparseCSR_cpu_int16 (__main__.TestSparseCompressedCPU) ... ok (0.328s) 2023-01-11T21:22:05.5149224Z test_empty_like_SparseBSC_SparseCSR_cpu_int32 (__main__.TestSparseCompressedCPU) ... ok (0.360s) 2023-01-11T21:22:05.5149387Z test_empty_like_SparseBSC_SparseCSR_cpu_int64 (__main__.TestSparseCompressedCPU) ... ok (0.377s) 2023-01-11T21:22:05.5149556Z test_empty_like_SparseBSC_SparseCSR_cpu_int8 (__main__.TestSparseCompressedCPU) ... ok (0.330s) 2023-01-11T21:22:05.5149721Z test_empty_like_SparseBSC_SparseCSR_cpu_uint8 (__main__.TestSparseCompressedCPU) ... ok (0.356s) 2023-01-11T21:22:05.5149896Z test_empty_like_SparseBSR_SparseBSC_cpu_bfloat16 (__main__.TestSparseCompressedCPU) ... ok (0.332s) 2023-01-11T21:22:05.5150064Z test_empty_like_SparseBSR_SparseBSC_cpu_bool (__main__.TestSparseCompressedCPU) ... ok (0.346s) 2023-01-11T21:22:05.5150228Z test_empty_like_SparseBSR_SparseBSC_cpu_complex128 (__main__.TestSparseCompressedCPU) ... ok (0.332s) 2023-01-11T21:22:05.5150404Z test_empty_like_SparseBSR_SparseBSC_cpu_complex64 (__main__.TestSparseCompressedCPU) ... ok (0.332s) 2023-01-11T21:22:05.5150578Z test_empty_like_SparseBSR_SparseBSC_cpu_float16 (__main__.TestSparseCompressedCPU) ... ok (0.327s) 2023-01-11T21:22:05.5150774Z test_empty_like_SparseBSR_SparseBSC_cpu_float32 (__main__.TestSparseCompressedCPU) ... ok (0.370s) 2023-01-11T21:22:05.5150948Z test_empty_like_SparseBSR_SparseBSC_cpu_float64 (__main__.TestSparseCompressedCPU) ... ok (0.328s) 2023-01-11T21:22:05.5151116Z test_empty_like_SparseBSR_SparseBSC_cpu_int16 (__main__.TestSparseCompressedCPU) ... ok (0.325s) 2023-01-11T21:22:05.5151281Z test_empty_like_SparseBSR_SparseBSC_cpu_int32 (__main__.TestSparseCompressedCPU) ... ok (0.326s) 2023-01-11T21:22:05.5151442Z test_empty_like_SparseBSR_SparseBSC_cpu_int64 (__main__.TestSparseCompressedCPU) ... ok (0.339s) 2023-01-11T21:22:05.5151608Z test_empty_like_SparseBSR_SparseBSC_cpu_int8 (__main__.TestSparseCompressedCPU) ... ok (0.326s) 2023-01-11T21:22:05.5151761Z test_empty_like_SparseBSR_SparseBSC_cpu_uint8 (__main__.TestSparseCompressedCPU) ... ok (0.332s) 2023-01-11T21:22:05.5151934Z test_empty_like_SparseBSR_SparseBSR_cpu_bfloat16 (__main__.TestSparseCompressedCPU) ... ok (0.117s) 2023-01-11T21:22:05.5152100Z test_empty_like_SparseBSR_SparseBSR_cpu_bool (__main__.TestSparseCompressedCPU) ... ok (0.117s) 2023-01-11T21:22:05.5152275Z test_empty_like_SparseBSR_SparseBSR_cpu_complex128 (__main__.TestSparseCompressedCPU) ... ok (0.151s) 2023-01-11T21:22:05.5152449Z test_empty_like_SparseBSR_SparseBSR_cpu_complex64 (__main__.TestSparseCompressedCPU) ... ok (0.114s) 2023-01-11T21:22:05.5152618Z test_empty_like_SparseBSR_SparseBSR_cpu_float16 (__main__.TestSparseCompressedCPU) ... ok (0.116s) 2023-01-11T21:22:05.5152785Z test_empty_like_SparseBSR_SparseBSR_cpu_float32 (__main__.TestSparseCompressedCPU) ... ok (0.121s) 2023-01-11T21:22:05.5152949Z test_empty_like_SparseBSR_SparseBSR_cpu_float64 (__main__.TestSparseCompressedCPU) ... ok (0.122s) 2023-01-11T21:22:05.5153117Z test_empty_like_SparseBSR_SparseBSR_cpu_int16 (__main__.TestSparseCompressedCPU) ... ok (0.120s) 2023-01-11T21:22:05.5153270Z test_empty_like_SparseBSR_SparseBSR_cpu_int32 (__main__.TestSparseCompressedCPU) ... ok (0.118s) 2023-01-11T21:22:05.5153436Z test_empty_like_SparseBSR_SparseBSR_cpu_int64 (__main__.TestSparseCompressedCPU) ... ok (0.128s) 2023-01-11T21:22:05.5153601Z test_empty_like_SparseBSR_SparseBSR_cpu_int8 (__main__.TestSparseCompressedCPU) ... ok (0.113s) 2023-01-11T21:22:05.5153765Z test_empty_like_SparseBSR_SparseBSR_cpu_uint8 (__main__.TestSparseCompressedCPU) ... ok (0.113s) 2023-01-11T21:22:05.5153935Z test_empty_like_SparseBSR_SparseCSC_cpu_bfloat16 (__main__.TestSparseCompressedCPU) ... ok (0.325s) 2023-01-11T21:22:05.5154099Z test_empty_like_SparseBSR_SparseCSC_cpu_bool (__main__.TestSparseCompressedCPU) ... ok (0.330s) 2023-01-11T21:22:05.5154272Z test_empty_like_SparseBSR_SparseCSC_cpu_complex128 (__main__.TestSparseCompressedCPU) ... ok (0.343s) 2023-01-11T21:22:05.5154448Z test_empty_like_SparseBSR_SparseCSC_cpu_complex64 (__main__.TestSparseCompressedCPU) ... ok (0.332s) 2023-01-11T21:22:05.5154648Z test_empty_like_SparseBSR_SparseCSC_cpu_float16 (__main__.TestSparseCompressedCPU) ... ok (0.328s) 2023-01-11T21:22:05.5154805Z test_empty_like_SparseBSR_SparseCSC_cpu_float32 (__main__.TestSparseCompressedCPU) ... ok (0.324s) 2023-01-11T21:22:05.5154966Z test_empty_like_SparseBSR_SparseCSC_cpu_float64 (__main__.TestSparseCompressedCPU) ... ok (0.342s) 2023-01-11T21:22:05.5155132Z test_empty_like_SparseBSR_SparseCSC_cpu_int16 (__main__.TestSparseCompressedCPU) ... ok (0.329s) 2023-01-11T21:22:05.5155293Z test_empty_like_SparseBSR_SparseCSC_cpu_int32 (__main__.TestSparseCompressedCPU) ... ok (0.328s) 2023-01-11T21:22:05.5155454Z test_empty_like_SparseBSR_SparseCSC_cpu_int64 (__main__.TestSparseCompressedCPU) ... ok (0.324s) 2023-01-11T21:22:05.5155617Z test_empty_like_SparseBSR_SparseCSC_cpu_int8 (__main__.TestSparseCompressedCPU) ... ok (0.344s) 2023-01-11T21:22:05.5155781Z test_empty_like_SparseBSR_SparseCSC_cpu_uint8 (__main__.TestSparseCompressedCPU) ... ok (0.329s) 2023-01-11T21:22:05.5155954Z test_empty_like_SparseBSR_SparseCSR_cpu_bfloat16 (__main__.TestSparseCompressedCPU) ... ok (0.341s) 2023-01-11T21:22:05.5156148Z test_empty_like_SparseBSR_SparseCSR_cpu_bool (__main__.TestSparseCompressedCPU) ... ok (0.341s) 2023-01-11T21:22:05.5156311Z test_empty_like_SparseBSR_SparseCSR_cpu_complex128 (__main__.TestSparseCompressedCPU) ... ok (0.366s) 2023-01-11T21:22:05.5156485Z test_empty_like_SparseBSR_SparseCSR_cpu_complex64 (__main__.TestSparseCompressedCPU) ... ok (0.330s) 2023-01-11T21:22:05.5156653Z test_empty_like_SparseBSR_SparseCSR_cpu_float16 (__main__.TestSparseCompressedCPU) ... ok (0.329s) 2023-01-11T21:22:05.5156824Z test_empty_like_SparseBSR_SparseCSR_cpu_float32 (__main__.TestSparseCompressedCPU) ... ok (0.328s) 2023-01-11T21:22:05.5156991Z test_empty_like_SparseBSR_SparseCSR_cpu_float64 (__main__.TestSparseCompressedCPU) ... ok (0.344s) 2023-01-11T21:22:05.5157156Z test_empty_like_SparseBSR_SparseCSR_cpu_int16 (__main__.TestSparseCompressedCPU) ... ok (0.326s) 2023-01-11T21:22:05.5157320Z test_empty_like_SparseBSR_SparseCSR_cpu_int32 (__main__.TestSparseCompressedCPU) ... ok (0.321s) 2023-01-11T21:22:05.5157487Z test_empty_like_SparseBSR_SparseCSR_cpu_int64 (__main__.TestSparseCompressedCPU) ... ok (0.324s) 2023-01-11T21:22:05.5157640Z test_empty_like_SparseBSR_SparseCSR_cpu_int8 (__main__.TestSparseCompressedCPU) ... ok (0.334s) 2023-01-11T21:22:05.5157803Z test_empty_like_SparseBSR_SparseCSR_cpu_uint8 (__main__.TestSparseCompressedCPU) ... ok (0.321s) 2023-01-11T21:22:05.5157971Z test_empty_like_SparseCSC_SparseBSC_cpu_bfloat16 (__main__.TestSparseCompressedCPU) ... ok (0.307s) 2023-01-11T21:22:05.5158134Z test_empty_like_SparseCSC_SparseBSC_cpu_bool (__main__.TestSparseCompressedCPU) ... ok (0.312s) 2023-01-11T21:22:05.5158308Z test_empty_like_SparseCSC_SparseBSC_cpu_complex128 (__main__.TestSparseCompressedCPU) ... ok (0.326s) 2023-01-11T21:22:05.5158479Z test_empty_like_SparseCSC_SparseBSC_cpu_complex64 (__main__.TestSparseCompressedCPU) ... ok (0.312s) 2023-01-11T21:22:05.5158651Z test_empty_like_SparseCSC_SparseBSC_cpu_float16 (__main__.TestSparseCompressedCPU) ... ok (0.315s) 2023-01-11T21:22:05.5158818Z test_empty_like_SparseCSC_SparseBSC_cpu_float32 (__main__.TestSparseCompressedCPU) ... ok (0.309s) 2023-01-11T21:22:05.5158980Z test_empty_like_SparseCSC_SparseBSC_cpu_float64 (__main__.TestSparseCompressedCPU) ... ok (0.309s) 2023-01-11T21:22:05.5159135Z test_empty_like_SparseCSC_SparseBSC_cpu_int16 (__main__.TestSparseCompressedCPU) ... ok (0.340s) 2023-01-11T21:22:05.5159298Z test_empty_like_SparseCSC_SparseBSC_cpu_int32 (__main__.TestSparseCompressedCPU) ... ok (0.316s) 2023-01-11T21:22:05.5159461Z test_empty_like_SparseCSC_SparseBSC_cpu_int64 (__main__.TestSparseCompressedCPU) ... ok (0.313s) 2023-01-11T21:22:05.5159625Z test_empty_like_SparseCSC_SparseBSC_cpu_int8 (__main__.TestSparseCompressedCPU) ... ok (0.313s) 2023-01-11T21:22:05.5159788Z test_empty_like_SparseCSC_SparseBSC_cpu_uint8 (__main__.TestSparseCompressedCPU) ... ok (0.326s) 2023-01-11T21:22:05.5159986Z test_empty_like_SparseCSC_SparseBSR_cpu_bfloat16 (__main__.TestSparseCompressedCPU) ... ok (0.311s) 2023-01-11T21:22:05.5160153Z test_empty_like_SparseCSC_SparseBSR_cpu_bool (__main__.TestSparseCompressedCPU) ... ok (0.314s) 2023-01-11T21:22:05.5160326Z test_empty_like_SparseCSC_SparseBSR_cpu_complex128 (__main__.TestSparseCompressedCPU) ... ok (0.311s) 2023-01-11T21:22:05.5160499Z test_empty_like_SparseCSC_SparseBSR_cpu_complex64 (__main__.TestSparseCompressedCPU) ... ok (0.328s) 2023-01-11T21:22:05.5160814Z test_empty_like_SparseCSC_SparseBSR_cpu_float16 (__main__.TestSparseCompressedCPU) ... ok (0.316s) 2023-01-11T21:22:05.5161008Z test_empty_like_SparseCSC_SparseBSR_cpu_float32 (__main__.TestSparseCompressedCPU) ... ok (0.315s) 2023-01-11T21:22:05.5161183Z test_empty_like_SparseCSC_SparseBSR_cpu_float64 (__main__.TestSparseCompressedCPU) ... ok (0.315s) 2023-01-11T21:22:05.5161354Z test_empty_like_SparseCSC_SparseBSR_cpu_int16 (__main__.TestSparseCompressedCPU) ... ok (0.325s) 2023-01-11T21:22:05.5161518Z test_empty_like_SparseCSC_SparseBSR_cpu_int32 (__main__.TestSparseCompressedCPU) ... ok (0.309s) 2023-01-11T21:22:05.5161732Z test_empty_like_SparseCSC_SparseBSR_cpu_int64 (__main__.TestSparseCompressedCPU) ... ok (0.313s) 2023-01-11T21:22:05.5161902Z test_empty_like_SparseCSC_SparseBSR_cpu_int8 (__main__.TestSparseCompressedCPU) ... ok (0.309s) 2023-01-11T21:22:05.5162067Z test_empty_like_SparseCSC_SparseBSR_cpu_uint8 (__main__.TestSparseCompressedCPU) ... ok (0.346s) 2023-01-11T21:22:05.5162240Z test_empty_like_SparseCSC_SparseCSC_cpu_bfloat16 (__main__.TestSparseCompressedCPU) ... ok (0.105s) 2023-01-11T21:22:05.5162394Z test_empty_like_SparseCSC_SparseCSC_cpu_bool (__main__.TestSparseCompressedCPU) ... ok (0.105s) 2023-01-11T21:22:05.5162568Z test_empty_like_SparseCSC_SparseCSC_cpu_complex128 (__main__.TestSparseCompressedCPU) ... ok (0.105s) 2023-01-11T21:22:05.5162745Z test_empty_like_SparseCSC_SparseCSC_cpu_complex64 (__main__.TestSparseCompressedCPU) ... ok (0.105s) 2023-01-11T21:22:05.5162914Z test_empty_like_SparseCSC_SparseCSC_cpu_float16 (__main__.TestSparseCompressedCPU) ... ok (0.106s) 2023-01-11T21:22:05.5163084Z test_empty_like_SparseCSC_SparseCSC_cpu_float32 (__main__.TestSparseCompressedCPU) ... ok (0.111s) 2023-01-11T21:22:05.5163248Z test_empty_like_SparseCSC_SparseCSC_cpu_float64 (__main__.TestSparseCompressedCPU) ... ok (0.111s) 2023-01-11T21:22:05.5163414Z test_empty_like_SparseCSC_SparseCSC_cpu_int16 (__main__.TestSparseCompressedCPU) ... ok (0.120s) 2023-01-11T21:22:05.5163579Z test_empty_like_SparseCSC_SparseCSC_cpu_int32 (__main__.TestSparseCompressedCPU) ... ok (0.103s) 2023-01-11T21:22:05.5163750Z test_empty_like_SparseCSC_SparseCSC_cpu_int64 (__main__.TestSparseCompressedCPU) ... ok (0.103s) 2023-01-11T21:22:05.5163903Z test_empty_like_SparseCSC_SparseCSC_cpu_int8 (__main__.TestSparseCompressedCPU) ... ok (0.105s) 2023-01-11T21:22:05.5164072Z test_empty_like_SparseCSC_SparseCSC_cpu_uint8 (__main__.TestSparseCompressedCPU) ... ok (0.105s) 2023-01-11T21:22:05.5164244Z test_empty_like_SparseCSC_SparseCSR_cpu_bfloat16 (__main__.TestSparseCompressedCPU) ... ok (0.315s) 2023-01-11T21:22:05.5164410Z test_empty_like_SparseCSC_SparseCSR_cpu_bool (__main__.TestSparseCompressedCPU) ... ok (0.316s) 2023-01-11T21:22:05.5164585Z test_empty_like_SparseCSC_SparseCSR_cpu_complex128 (__main__.TestSparseCompressedCPU) ... ok (0.321s) 2023-01-11T21:22:05.5164758Z test_empty_like_SparseCSC_SparseCSR_cpu_complex64 (__main__.TestSparseCompressedCPU) ... ok (0.306s) 2023-01-11T21:22:05.5164929Z test_empty_like_SparseCSC_SparseCSR_cpu_float16 (__main__.TestSparseCompressedCPU) ... ok (0.316s) 2023-01-11T21:22:05.5165094Z test_empty_like_SparseCSC_SparseCSR_cpu_float32 (__main__.TestSparseCompressedCPU) ... ok (0.312s) 2023-01-11T21:22:05.5165258Z test_empty_like_SparseCSC_SparseCSR_cpu_float64 (__main__.TestSparseCompressedCPU) ... ok (0.324s) 2023-01-11T21:22:05.5165450Z test_empty_like_SparseCSC_SparseCSR_cpu_int16 (__main__.TestSparseCompressedCPU) ... ok (0.330s) 2023-01-11T21:22:05.5165617Z test_empty_like_SparseCSC_SparseCSR_cpu_int32 (__main__.TestSparseCompressedCPU) ... ok (0.324s) 2023-01-11T21:22:05.5165776Z test_empty_like_SparseCSC_SparseCSR_cpu_int64 (__main__.TestSparseCompressedCPU) ... ok (0.320s) 2023-01-11T21:22:05.5165940Z test_empty_like_SparseCSC_SparseCSR_cpu_int8 (__main__.TestSparseCompressedCPU) ... ok (0.332s) 2023-01-11T21:22:05.5166107Z test_empty_like_SparseCSC_SparseCSR_cpu_uint8 (__main__.TestSparseCompressedCPU) ... ok (0.316s) 2023-01-11T21:22:05.5166276Z test_empty_like_SparseCSR_SparseBSC_cpu_bfloat16 (__main__.TestSparseCompressedCPU) ... ok (0.315s) 2023-01-11T21:22:05.5166440Z test_empty_like_SparseCSR_SparseBSC_cpu_bool (__main__.TestSparseCompressedCPU) ... ok (0.312s) 2023-01-11T21:22:05.5166613Z test_empty_like_SparseCSR_SparseBSC_cpu_complex128 (__main__.TestSparseCompressedCPU) ... ok (0.369s) 2023-01-11T21:22:05.5166775Z test_empty_like_SparseCSR_SparseBSC_cpu_complex64 (__main__.TestSparseCompressedCPU) ... ok (0.319s) 2023-01-11T21:22:05.5166976Z test_empty_like_SparseCSR_SparseBSC_cpu_float16 (__main__.TestSparseCompressedCPU) ... ok (0.310s) 2023-01-11T21:22:05.5167145Z test_empty_like_SparseCSR_SparseBSC_cpu_float32 (__main__.TestSparseCompressedCPU) ... ok (0.310s) 2023-01-11T21:22:05.5167310Z test_empty_like_SparseCSR_SparseBSC_cpu_float64 (__main__.TestSparseCompressedCPU) ... ok (0.326s) 2023-01-11T21:22:05.5167476Z test_empty_like_SparseCSR_SparseBSC_cpu_int16 (__main__.TestSparseCompressedCPU) ... ok (0.311s) 2023-01-11T21:22:05.5167639Z test_empty_like_SparseCSR_SparseBSC_cpu_int32 (__main__.TestSparseCompressedCPU) ... ok (0.311s) 2023-01-11T21:22:05.5167799Z test_empty_like_SparseCSR_SparseBSC_cpu_int64 (__main__.TestSparseCompressedCPU) ... ok (0.310s) 2023-01-11T21:22:05.5167965Z test_empty_like_SparseCSR_SparseBSC_cpu_int8 (__main__.TestSparseCompressedCPU) ... ok (0.310s) 2023-01-11T21:22:05.5168131Z test_empty_like_SparseCSR_SparseBSC_cpu_uint8 (__main__.TestSparseCompressedCPU) ... ok (0.321s) 2023-01-11T21:22:05.5168291Z test_empty_like_SparseCSR_SparseBSR_cpu_bfloat16 (__main__.TestSparseCompressedCPU) ... ok (0.316s) 2023-01-11T21:22:05.5168456Z test_empty_like_SparseCSR_SparseBSR_cpu_bool (__main__.TestSparseCompressedCPU) ... ok (0.312s) 2023-01-11T21:22:05.5168629Z test_empty_like_SparseCSR_SparseBSR_cpu_complex128 (__main__.TestSparseCompressedCPU) ... ok (0.310s) 2023-01-11T21:22:05.5168801Z test_empty_like_SparseCSR_SparseBSR_cpu_complex64 (__main__.TestSparseCompressedCPU) ... ok (0.323s) 2023-01-11T21:22:05.5168971Z test_empty_like_SparseCSR_SparseBSR_cpu_float16 (__main__.TestSparseCompressedCPU) ... ok (0.312s) 2023-01-11T21:22:05.5169136Z test_empty_like_SparseCSR_SparseBSR_cpu_float32 (__main__.TestSparseCompressedCPU) ... ok (0.314s) 2023-01-11T21:22:05.5169299Z test_empty_like_SparseCSR_SparseBSR_cpu_float64 (__main__.TestSparseCompressedCPU) ... ok (0.313s) 2023-01-11T21:22:05.5169466Z test_empty_like_SparseCSR_SparseBSR_cpu_int16 (__main__.TestSparseCompressedCPU) ... ok (0.342s) 2023-01-11T21:22:05.5169635Z test_empty_like_SparseCSR_SparseBSR_cpu_int32 (__main__.TestSparseCompressedCPU) ... ok (0.311s) 2023-01-11T21:22:05.5169785Z test_empty_like_SparseCSR_SparseBSR_cpu_int64 (__main__.TestSparseCompressedCPU) ... ok (0.310s) 2023-01-11T21:22:05.5169951Z test_empty_like_SparseCSR_SparseBSR_cpu_int8 (__main__.TestSparseCompressedCPU) ... ok (0.310s) 2023-01-11T21:22:05.5170117Z test_empty_like_SparseCSR_SparseBSR_cpu_uint8 (__main__.TestSparseCompressedCPU) ... ok (0.328s) 2023-01-11T21:22:05.5170285Z test_empty_like_SparseCSR_SparseCSC_cpu_bfloat16 (__main__.TestSparseCompressedCPU) ... ok (0.316s) 2023-01-11T21:22:05.5170449Z test_empty_like_SparseCSR_SparseCSC_cpu_bool (__main__.TestSparseCompressedCPU) ... ok (0.314s) 2023-01-11T21:22:05.5170623Z test_empty_like_SparseCSR_SparseCSC_cpu_complex128 (__main__.TestSparseCompressedCPU) ... ok (0.314s) 2023-01-11T21:22:05.5170824Z test_empty_like_SparseCSR_SparseCSC_cpu_complex64 (__main__.TestSparseCompressedCPU) ... ok (0.328s) 2023-01-11T21:22:05.5170995Z test_empty_like_SparseCSR_SparseCSC_cpu_float16 (__main__.TestSparseCompressedCPU) ... ok (0.308s) 2023-01-11T21:22:05.5171161Z test_empty_like_SparseCSR_SparseCSC_cpu_float32 (__main__.TestSparseCompressedCPU) ... ok (0.310s) 2023-01-11T21:22:05.5171317Z test_empty_like_SparseCSR_SparseCSC_cpu_float64 (__main__.TestSparseCompressedCPU) ... ok (0.309s) 2023-01-11T21:22:05.5171481Z test_empty_like_SparseCSR_SparseCSC_cpu_int16 (__main__.TestSparseCompressedCPU) ... ok (0.312s) 2023-01-11T21:22:05.5171642Z test_empty_like_SparseCSR_SparseCSC_cpu_int32 (__main__.TestSparseCompressedCPU) ... ok (0.327s) 2023-01-11T21:22:05.5171801Z test_empty_like_SparseCSR_SparseCSC_cpu_int64 (__main__.TestSparseCompressedCPU) ... ok (0.316s) 2023-01-11T21:22:05.5171964Z test_empty_like_SparseCSR_SparseCSC_cpu_int8 (__main__.TestSparseCompressedCPU) ... ok (0.311s) 2023-01-11T21:22:05.5172129Z test_empty_like_SparseCSR_SparseCSC_cpu_uint8 (__main__.TestSparseCompressedCPU) ... ok (0.311s) 2023-01-11T21:22:05.5172329Z test_empty_like_SparseCSR_SparseCSR_cpu_bfloat16 (__main__.TestSparseCompressedCPU) ... ok (0.138s) 2023-01-11T21:22:05.5172494Z test_empty_like_SparseCSR_SparseCSR_cpu_bool (__main__.TestSparseCompressedCPU) ... ok (0.101s) 2023-01-11T21:22:05.5172667Z test_empty_like_SparseCSR_SparseCSR_cpu_complex128 (__main__.TestSparseCompressedCPU) ... ok (0.102s) 2023-01-11T21:22:05.5172827Z test_empty_like_SparseCSR_SparseCSR_cpu_complex64 (__main__.TestSparseCompressedCPU) ... ok (0.103s) 2023-01-11T21:22:05.5172994Z test_empty_like_SparseCSR_SparseCSR_cpu_float16 (__main__.TestSparseCompressedCPU) ... ok (0.107s) 2023-01-11T21:22:05.5173160Z test_empty_like_SparseCSR_SparseCSR_cpu_float32 (__main__.TestSparseCompressedCPU) ... ok (0.106s) 2023-01-11T21:22:05.5173321Z test_empty_like_SparseCSR_SparseCSR_cpu_float64 (__main__.TestSparseCompressedCPU) ... ok (0.104s) 2023-01-11T21:22:05.5173488Z test_empty_like_SparseCSR_SparseCSR_cpu_int16 (__main__.TestSparseCompressedCPU) ... ok (0.107s) 2023-01-11T21:22:05.5173652Z test_empty_like_SparseCSR_SparseCSR_cpu_int32 (__main__.TestSparseCompressedCPU) ... ok (0.116s) 2023-01-11T21:22:05.5173817Z test_empty_like_SparseCSR_SparseCSR_cpu_int64 (__main__.TestSparseCompressedCPU) ... ok (0.101s) 2023-01-11T21:22:05.5173982Z test_empty_like_SparseCSR_SparseCSR_cpu_int8 (__main__.TestSparseCompressedCPU) ... ok (0.101s) 2023-01-11T21:22:05.5174143Z test_empty_like_SparseCSR_SparseCSR_cpu_uint8 (__main__.TestSparseCompressedCPU) ... ok (0.102s) 2023-01-11T21:22:05.5174324Z test_invalid_input_SparseBSC_target_sparse_compressed_tensor_cpu (__main__.TestSparseCompressedCPU) ... ok (0.194s) 2023-01-11T21:22:05.5174524Z test_invalid_input_SparseBSC_target_sparse_compressed_tensor_no_size_cpu (__main__.TestSparseCompressedCPU) ... ok (0.145s) 2023-01-11T21:22:05.5174736Z test_invalid_input_SparseBSC_target_validate_sparse_compressed_tensor_args_cpu (__main__.TestSparseCompressedCPU) ... ok (0.182s) 2023-01-11T21:22:05.5174928Z test_invalid_input_SparseBSR_target_sparse_compressed_tensor_cpu (__main__.TestSparseCompressedCPU) ... ok (0.193s) 2023-01-11T21:22:05.5175126Z test_invalid_input_SparseBSR_target_sparse_compressed_tensor_no_size_cpu (__main__.TestSparseCompressedCPU) ... ok (0.148s) 2023-01-11T21:22:05.5175334Z test_invalid_input_SparseBSR_target_validate_sparse_compressed_tensor_args_cpu (__main__.TestSparseCompressedCPU) ... ok (0.184s) 2023-01-11T21:22:05.5175522Z test_invalid_input_SparseCSC_target_sparse_compressed_tensor_cpu (__main__.TestSparseCompressedCPU) ... ok (0.186s) 2023-01-11T21:22:05.5175719Z test_invalid_input_SparseCSC_target_sparse_compressed_tensor_no_size_cpu (__main__.TestSparseCompressedCPU) ... ok (0.158s) 2023-01-11T21:22:05.5175925Z test_invalid_input_SparseCSC_target_validate_sparse_compressed_tensor_args_cpu (__main__.TestSparseCompressedCPU) ... ok (0.177s) 2023-01-11T21:22:05.5176146Z test_invalid_input_SparseCSR_target_sparse_compressed_tensor_cpu (__main__.TestSparseCompressedCPU) ... ok (0.182s) 2023-01-11T21:22:05.5176336Z test_invalid_input_SparseCSR_target_sparse_compressed_tensor_no_size_cpu (__main__.TestSparseCompressedCPU) ... ok (0.144s) 2023-01-11T21:22:05.5176545Z test_invalid_input_SparseCSR_target_validate_sparse_compressed_tensor_args_cpu (__main__.TestSparseCompressedCPU) ... ok (0.176s) 2023-01-11T21:22:05.5176694Z test_layout_SparseBSC_cpu (__main__.TestSparseCompressedCPU) ... ok (0.001s) 2023-01-11T21:22:05.5176840Z test_layout_SparseBSR_cpu (__main__.TestSparseCompressedCPU) ... ok (0.001s) 2023-01-11T21:22:05.5176988Z test_layout_SparseCSC_cpu (__main__.TestSparseCompressedCPU) ... ok (0.001s) 2023-01-11T21:22:05.5177129Z test_layout_SparseCSR_cpu (__main__.TestSparseCompressedCPU) ... ok (0.001s) 2023-01-11T21:22:05.5177361Z test_pickle_SparseBSC_cpu_float64 (__main__.TestSparseCompressedCPU) ... ok (0.554s) 2023-01-11T21:22:05.5177525Z test_pickle_SparseBSR_cpu_float64 (__main__.TestSparseCompressedCPU) ... ok (0.477s) 2023-01-11T21:22:05.5177698Z test_pickle_SparseCSC_cpu_float64 (__main__.TestSparseCompressedCPU) ... ok (0.367s) 2023-01-11T21:22:05.5177857Z test_pickle_SparseCSR_cpu_float64 (__main__.TestSparseCompressedCPU) ... ok (0.305s) 2023-01-11T21:22:05.5178005Z test_print_SparseBSC_cpu (__main__.TestSparseCompressedCPU) ... ok (0.525s) 2023-01-11T21:22:05.5178155Z test_print_SparseBSR_cpu (__main__.TestSparseCompressedCPU) ... ok (0.501s) 2023-01-11T21:22:05.5178298Z test_print_SparseCSC_cpu (__main__.TestSparseCompressedCPU) ... ok (0.445s) 2023-01-11T21:22:05.5178442Z test_print_SparseCSR_cpu (__main__.TestSparseCompressedCPU) ... ok (0.442s) 2023-01-11T21:22:05.5178615Z test_select_copy_SparseBSC_int32_cpu_bfloat16 (__main__.TestSparseCompressedCPU) ... ok (1.958s) 2023-01-11T21:22:05.5178779Z test_select_copy_SparseBSC_int32_cpu_bool (__main__.TestSparseCompressedCPU) ... ok (1.870s) 2023-01-11T21:22:05.5178954Z test_select_copy_SparseBSC_int32_cpu_complex128 (__main__.TestSparseCompressedCPU) ... ok (2.009s) 2023-01-11T21:22:05.5179114Z test_select_copy_SparseBSC_int32_cpu_complex64 (__main__.TestSparseCompressedCPU) ... ok (2.005s) 2023-01-11T21:22:05.5179279Z test_select_copy_SparseBSC_int32_cpu_float16 (__main__.TestSparseCompressedCPU) ... ok (1.981s) 2023-01-11T21:22:05.5179445Z test_select_copy_SparseBSC_int32_cpu_float32 (__main__.TestSparseCompressedCPU) ... ok (1.980s) 2023-01-11T21:22:05.5179612Z test_select_copy_SparseBSC_int32_cpu_float64 (__main__.TestSparseCompressedCPU) ... ok (1.903s) 2023-01-11T21:22:05.5179775Z test_select_copy_SparseBSC_int32_cpu_int16 (__main__.TestSparseCompressedCPU) ... ok (1.877s) 2023-01-11T21:22:05.5179939Z test_select_copy_SparseBSC_int32_cpu_int32 (__main__.TestSparseCompressedCPU) ... ok (1.863s) 2023-01-11T21:22:05.5180100Z test_select_copy_SparseBSC_int32_cpu_int64 (__main__.TestSparseCompressedCPU) ... ok (1.828s) 2023-01-11T21:22:05.5180264Z test_select_copy_SparseBSC_int32_cpu_int8 (__main__.TestSparseCompressedCPU) ... ok (1.868s) 2023-01-11T21:22:05.5180415Z test_select_copy_SparseBSC_int32_cpu_uint8 (__main__.TestSparseCompressedCPU) ... ok (1.829s) 2023-01-11T21:22:05.5180581Z test_select_copy_SparseBSC_int64_cpu_bfloat16 (__main__.TestSparseCompressedCPU) ... ok (1.884s) 2023-01-11T21:22:05.5180742Z test_select_copy_SparseBSC_int64_cpu_bool (__main__.TestSparseCompressedCPU) ... ok (1.846s) 2023-01-11T21:22:05.5180912Z test_select_copy_SparseBSC_int64_cpu_complex128 (__main__.TestSparseCompressedCPU) ... ok (1.909s) 2023-01-11T21:22:05.5181079Z test_select_copy_SparseBSC_int64_cpu_complex64 (__main__.TestSparseCompressedCPU) ... ok (1.950s) 2023-01-11T21:22:05.5181241Z test_select_copy_SparseBSC_int64_cpu_float16 (__main__.TestSparseCompressedCPU) ... ok (1.880s) 2023-01-11T21:22:05.5181404Z test_select_copy_SparseBSC_int64_cpu_float32 (__main__.TestSparseCompressedCPU) ... ok (1.861s) 2023-01-11T21:22:05.5181599Z test_select_copy_SparseBSC_int64_cpu_float64 (__main__.TestSparseCompressedCPU) ... ok (1.863s) 2023-01-11T21:22:05.5181762Z test_select_copy_SparseBSC_int64_cpu_int16 (__main__.TestSparseCompressedCPU) ... ok (1.803s) 2023-01-11T21:22:05.5181909Z test_select_copy_SparseBSC_int64_cpu_int32 (__main__.TestSparseCompressedCPU) ... ok (1.798s) 2023-01-11T21:22:05.5182070Z test_select_copy_SparseBSC_int64_cpu_int64 (__main__.TestSparseCompressedCPU) ... ok (1.833s) 2023-01-11T21:22:05.5182229Z test_select_copy_SparseBSC_int64_cpu_int8 (__main__.TestSparseCompressedCPU) ... ok (1.804s) 2023-01-11T21:22:05.5182388Z test_select_copy_SparseBSC_int64_cpu_uint8 (__main__.TestSparseCompressedCPU) ... ok (1.784s) 2023-01-11T21:22:05.5182556Z test_select_copy_SparseBSR_int32_cpu_bfloat16 (__main__.TestSparseCompressedCPU) ... ok (1.868s) 2023-01-11T21:22:05.5182717Z test_select_copy_SparseBSR_int32_cpu_bool (__main__.TestSparseCompressedCPU) ... ok (1.764s) 2023-01-11T21:22:05.5182888Z test_select_copy_SparseBSR_int32_cpu_complex128 (__main__.TestSparseCompressedCPU) ... ok (1.969s) 2023-01-11T21:22:05.5183117Z test_select_copy_SparseBSR_int32_cpu_complex64 (__main__.TestSparseCompressedCPU) ... ok (1.938s) 2023-01-11T21:22:05.5183280Z test_select_copy_SparseBSR_int32_cpu_float16 (__main__.TestSparseCompressedCPU) ... ok (1.862s) 2023-01-11T21:22:05.5183432Z test_select_copy_SparseBSR_int32_cpu_float32 (__main__.TestSparseCompressedCPU) ... ok (1.960s) 2023-01-11T21:22:05.5183597Z test_select_copy_SparseBSR_int32_cpu_float64 (__main__.TestSparseCompressedCPU) ... ok (1.904s) 2023-01-11T21:22:05.5183758Z test_select_copy_SparseBSR_int32_cpu_int16 (__main__.TestSparseCompressedCPU) ... ok (1.845s) 2023-01-11T21:22:05.5183918Z test_select_copy_SparseBSR_int32_cpu_int32 (__main__.TestSparseCompressedCPU) ... ok (1.829s) 2023-01-11T21:22:05.5184081Z test_select_copy_SparseBSR_int32_cpu_int64 (__main__.TestSparseCompressedCPU) ... ok (1.800s) 2023-01-11T21:22:05.5184245Z test_select_copy_SparseBSR_int32_cpu_int8 (__main__.TestSparseCompressedCPU) ... ok (1.829s) 2023-01-11T21:22:05.5184407Z test_select_copy_SparseBSR_int32_cpu_uint8 (__main__.TestSparseCompressedCPU) ... ok (1.823s) 2023-01-11T21:22:05.5184577Z test_select_copy_SparseBSR_int64_cpu_bfloat16 (__main__.TestSparseCompressedCPU) ... ok (1.884s) 2023-01-11T21:22:05.5184730Z test_select_copy_SparseBSR_int64_cpu_bool (__main__.TestSparseCompressedCPU) ... ok (1.780s) 2023-01-11T21:22:05.5184900Z test_select_copy_SparseBSR_int64_cpu_complex128 (__main__.TestSparseCompressedCPU) ... ok (1.939s) 2023-01-11T21:22:05.5185067Z test_select_copy_SparseBSR_int64_cpu_complex64 (__main__.TestSparseCompressedCPU) ... ok (1.958s) 2023-01-11T21:22:05.5185231Z test_select_copy_SparseBSR_int64_cpu_float16 (__main__.TestSparseCompressedCPU) ... ok (1.853s) 2023-01-11T21:22:05.5185395Z test_select_copy_SparseBSR_int64_cpu_float32 (__main__.TestSparseCompressedCPU) ... ok (1.857s) 2023-01-11T21:22:05.5185560Z test_select_copy_SparseBSR_int64_cpu_float64 (__main__.TestSparseCompressedCPU) ... ok (1.819s) 2023-01-11T21:22:05.5185719Z test_select_copy_SparseBSR_int64_cpu_int16 (__main__.TestSparseCompressedCPU) ... ok (1.724s) 2023-01-11T21:22:05.5185881Z test_select_copy_SparseBSR_int64_cpu_int32 (__main__.TestSparseCompressedCPU) ... ok (1.685s) 2023-01-11T21:22:05.5186040Z test_select_copy_SparseBSR_int64_cpu_int64 (__main__.TestSparseCompressedCPU) ... ok (1.669s) 2023-01-11T21:22:05.5186187Z test_select_copy_SparseBSR_int64_cpu_int8 (__main__.TestSparseCompressedCPU) ... ok (1.684s) 2023-01-11T21:22:05.5186344Z test_select_copy_SparseBSR_int64_cpu_uint8 (__main__.TestSparseCompressedCPU) ... ok (1.698s) 2023-01-11T21:22:05.5186511Z test_select_copy_SparseCSC_int32_cpu_bfloat16 (__main__.TestSparseCompressedCPU) ... ok (1.540s) 2023-01-11T21:22:05.5186670Z test_select_copy_SparseCSC_int32_cpu_bool (__main__.TestSparseCompressedCPU) ... ok (1.418s) 2023-01-11T21:22:05.5186840Z test_select_copy_SparseCSC_int32_cpu_complex128 (__main__.TestSparseCompressedCPU) ... ok (1.529s) 2023-01-11T21:22:05.5187052Z test_select_copy_SparseCSC_int32_cpu_complex64 (__main__.TestSparseCompressedCPU) ... ok (1.565s) 2023-01-11T21:22:05.5187218Z test_select_copy_SparseCSC_int32_cpu_float16 (__main__.TestSparseCompressedCPU) ... ok (1.534s) 2023-01-11T21:22:05.5187381Z test_select_copy_SparseCSC_int32_cpu_float32 (__main__.TestSparseCompressedCPU) ... ok (1.520s) 2023-01-11T21:22:05.5187542Z test_select_copy_SparseCSC_int32_cpu_float64 (__main__.TestSparseCompressedCPU) ... ok (1.477s) 2023-01-11T21:22:05.5187690Z test_select_copy_SparseCSC_int32_cpu_int16 (__main__.TestSparseCompressedCPU) ... ok (1.449s) 2023-01-11T21:22:05.5187847Z test_select_copy_SparseCSC_int32_cpu_int32 (__main__.TestSparseCompressedCPU) ... ok (1.382s) 2023-01-11T21:22:05.5188007Z test_select_copy_SparseCSC_int32_cpu_int64 (__main__.TestSparseCompressedCPU) ... ok (1.392s) 2023-01-11T21:22:05.5188167Z test_select_copy_SparseCSC_int32_cpu_int8 (__main__.TestSparseCompressedCPU) ... ok (1.387s) 2023-01-11T21:22:05.5188328Z test_select_copy_SparseCSC_int32_cpu_uint8 (__main__.TestSparseCompressedCPU) ... ok (1.396s) 2023-01-11T21:22:05.5188526Z test_select_copy_SparseCSC_int64_cpu_bfloat16 (__main__.TestSparseCompressedCPU) ... ok (1.488s) 2023-01-11T21:22:05.5188688Z test_select_copy_SparseCSC_int64_cpu_bool (__main__.TestSparseCompressedCPU) ... ok (1.384s) 2023-01-11T21:22:05.5188859Z test_select_copy_SparseCSC_int64_cpu_complex128 (__main__.TestSparseCompressedCPU) ... ok (1.509s) 2023-01-11T21:22:05.5189027Z test_select_copy_SparseCSC_int64_cpu_complex64 (__main__.TestSparseCompressedCPU) ... ok (1.515s) 2023-01-11T21:22:05.5189177Z test_select_copy_SparseCSC_int64_cpu_float16 (__main__.TestSparseCompressedCPU) ... ok (1.485s) 2023-01-11T21:22:05.5189341Z test_select_copy_SparseCSC_int64_cpu_float32 (__main__.TestSparseCompressedCPU) ... ok (1.577s) 2023-01-11T21:22:05.5189504Z test_select_copy_SparseCSC_int64_cpu_float64 (__main__.TestSparseCompressedCPU) ... ok (1.505s) 2023-01-11T21:22:05.5189663Z test_select_copy_SparseCSC_int64_cpu_int16 (__main__.TestSparseCompressedCPU) ... ok (1.386s) 2023-01-11T21:22:05.5189825Z test_select_copy_SparseCSC_int64_cpu_int32 (__main__.TestSparseCompressedCPU) ... ok (1.417s) 2023-01-11T21:22:05.5189985Z test_select_copy_SparseCSC_int64_cpu_int64 (__main__.TestSparseCompressedCPU) ... ok (1.382s) 2023-01-11T21:22:05.5190145Z test_select_copy_SparseCSC_int64_cpu_int8 (__main__.TestSparseCompressedCPU) ... ok (1.393s) 2023-01-11T21:22:05.5190301Z test_select_copy_SparseCSC_int64_cpu_uint8 (__main__.TestSparseCompressedCPU) ... ok (1.405s) 2023-01-11T21:22:05.5190452Z test_select_copy_SparseCSR_int32_cpu_bfloat16 (__main__.TestSparseCompressedCPU) ... ok (1.419s) 2023-01-11T21:22:05.5190611Z test_select_copy_SparseCSR_int32_cpu_bool (__main__.TestSparseCompressedCPU) ... ok (1.302s) 2023-01-11T21:22:05.5190779Z test_select_copy_SparseCSR_int32_cpu_complex128 (__main__.TestSparseCompressedCPU) ... ok (1.450s) 2023-01-11T21:22:05.5190949Z test_select_copy_SparseCSR_int32_cpu_complex64 (__main__.TestSparseCompressedCPU) ... ok (1.464s) 2023-01-11T21:22:05.5191113Z test_select_copy_SparseCSR_int32_cpu_float16 (__main__.TestSparseCompressedCPU) ... ok (1.472s) 2023-01-11T21:22:05.5191276Z test_select_copy_SparseCSR_int32_cpu_float32 (__main__.TestSparseCompressedCPU) ... ok (1.405s) 2023-01-11T21:22:05.5191436Z test_select_copy_SparseCSR_int32_cpu_float64 (__main__.TestSparseCompressedCPU) ... ok (1.382s) 2023-01-11T21:22:05.5191600Z test_select_copy_SparseCSR_int32_cpu_int16 (__main__.TestSparseCompressedCPU) ... ok (1.290s) 2023-01-11T21:22:05.5191760Z test_select_copy_SparseCSR_int32_cpu_int32 (__main__.TestSparseCompressedCPU) ... ok (1.331s) 2023-01-11T21:22:05.5191908Z test_select_copy_SparseCSR_int32_cpu_int64 (__main__.TestSparseCompressedCPU) ... ok (1.321s) 2023-01-11T21:22:05.5192069Z test_select_copy_SparseCSR_int32_cpu_int8 (__main__.TestSparseCompressedCPU) ... ok (1.303s) 2023-01-11T21:22:05.5192267Z test_select_copy_SparseCSR_int32_cpu_uint8 (__main__.TestSparseCompressedCPU) ... ok (1.321s) 2023-01-11T21:22:05.5192436Z test_select_copy_SparseCSR_int64_cpu_bfloat16 (__main__.TestSparseCompressedCPU) ... ok (1.399s) 2023-01-11T21:22:05.5198886Z test_select_copy_SparseCSR_int64_cpu_bool (__main__.TestSparseCompressedCPU) ... ok (1.279s) 2023-01-11T21:22:05.5199115Z test_select_copy_SparseCSR_int64_cpu_complex128 (__main__.TestSparseCompressedCPU) ... ok (1.442s) 2023-01-11T21:22:05.5199294Z test_select_copy_SparseCSR_int64_cpu_complex64 (__main__.TestSparseCompressedCPU) ... ok (1.492s) 2023-01-11T21:22:05.5199465Z test_select_copy_SparseCSR_int64_cpu_float16 (__main__.TestSparseCompressedCPU) ... ok (1.412s) 2023-01-11T21:22:05.5199636Z test_select_copy_SparseCSR_int64_cpu_float32 (__main__.TestSparseCompressedCPU) ... ok (1.385s) 2023-01-11T21:22:05.5199790Z test_select_copy_SparseCSR_int64_cpu_float64 (__main__.TestSparseCompressedCPU) ... ok (1.387s) 2023-01-11T21:22:05.5199960Z test_select_copy_SparseCSR_int64_cpu_int16 (__main__.TestSparseCompressedCPU) ... ok (1.308s) 2023-01-11T21:22:05.5200196Z test_select_copy_SparseCSR_int64_cpu_int32 (__main__.TestSparseCompressedCPU) ... ok (1.309s) 2023-01-11T21:22:05.5200360Z test_select_copy_SparseCSR_int64_cpu_int64 (__main__.TestSparseCompressedCPU) ... ok (1.267s) 2023-01-11T21:22:05.5200526Z test_select_copy_SparseCSR_int64_cpu_int8 (__main__.TestSparseCompressedCPU) ... ok (1.312s) 2023-01-11T21:22:05.5200863Z test_select_copy_SparseCSR_int64_cpu_uint8 (__main__.TestSparseCompressedCPU) ... ok (1.287s) 2023-01-11T21:22:05.5201078Z test_sparse_compressed_constructor_____from_list_SparseBSC_cpu_bfloat16 (__main__.TestSparseCompressedCPU) ... ok (0.161s) 2023-01-11T21:22:05.5201275Z test_sparse_compressed_constructor_____from_list_SparseBSC_cpu_bool (__main__.TestSparseCompressedCPU) ... ok (0.142s) 2023-01-11T21:22:05.5201474Z test_sparse_compressed_constructor_____from_list_SparseBSC_cpu_complex128 (__main__.TestSparseCompressedCPU) ... ok (0.184s) 2023-01-11T21:22:05.5201664Z test_sparse_compressed_constructor_____from_list_SparseBSC_cpu_complex64 (__main__.TestSparseCompressedCPU) ... ok (0.171s) 2023-01-11T21:22:05.5201860Z test_sparse_compressed_constructor_____from_list_SparseBSC_cpu_float16 (__main__.TestSparseCompressedCPU) ... ok (0.162s) 2023-01-11T21:22:05.5202056Z test_sparse_compressed_constructor_____from_list_SparseBSC_cpu_float32 (__main__.TestSparseCompressedCPU) ... ok (0.162s) 2023-01-11T21:22:05.5202252Z test_sparse_compressed_constructor_____from_list_SparseBSC_cpu_float64 (__main__.TestSparseCompressedCPU) ... ok (0.174s) 2023-01-11T21:22:05.5202440Z test_sparse_compressed_constructor_____from_list_SparseBSC_cpu_int16 (__main__.TestSparseCompressedCPU) ... ok (0.143s) 2023-01-11T21:22:05.5202632Z test_sparse_compressed_constructor_____from_list_SparseBSC_cpu_int32 (__main__.TestSparseCompressedCPU) ... ok (0.146s) 2023-01-11T21:22:05.5202820Z test_sparse_compressed_constructor_____from_list_SparseBSC_cpu_int64 (__main__.TestSparseCompressedCPU) ... ok (0.142s) 2023-01-11T21:22:05.5203013Z test_sparse_compressed_constructor_____from_list_SparseBSC_cpu_int8 (__main__.TestSparseCompressedCPU) ... ok (0.143s) 2023-01-11T21:22:05.5203203Z test_sparse_compressed_constructor_____from_list_SparseBSC_cpu_uint8 (__main__.TestSparseCompressedCPU) ... ok (0.159s) 2023-01-11T21:22:05.5203399Z test_sparse_compressed_constructor_____from_list_SparseBSR_cpu_bfloat16 (__main__.TestSparseCompressedCPU) ... ok (0.162s) 2023-01-11T21:22:05.5203578Z test_sparse_compressed_constructor_____from_list_SparseBSR_cpu_bool (__main__.TestSparseCompressedCPU) ... ok (0.143s) 2023-01-11T21:22:05.5203773Z test_sparse_compressed_constructor_____from_list_SparseBSR_cpu_complex128 (__main__.TestSparseCompressedCPU) ... ok (0.167s) 2023-01-11T21:22:05.5203970Z test_sparse_compressed_constructor_____from_list_SparseBSR_cpu_complex64 (__main__.TestSparseCompressedCPU) ... ok (0.197s) 2023-01-11T21:22:05.5204243Z test_sparse_compressed_constructor_____from_list_SparseBSR_cpu_float16 (__main__.TestSparseCompressedCPU) ... ok (0.159s) 2023-01-11T21:22:05.5204436Z test_sparse_compressed_constructor_____from_list_SparseBSR_cpu_float32 (__main__.TestSparseCompressedCPU) ... ok (0.162s) 2023-01-11T21:22:05.5204627Z test_sparse_compressed_constructor_____from_list_SparseBSR_cpu_float64 (__main__.TestSparseCompressedCPU) ... ok (0.158s) 2023-01-11T21:22:05.5204815Z test_sparse_compressed_constructor_____from_list_SparseBSR_cpu_int16 (__main__.TestSparseCompressedCPU) ... ok (0.151s) 2023-01-11T21:22:05.5205003Z test_sparse_compressed_constructor_____from_list_SparseBSR_cpu_int32 (__main__.TestSparseCompressedCPU) ... ok (0.172s) 2023-01-11T21:22:05.5205185Z test_sparse_compressed_constructor_____from_list_SparseBSR_cpu_int64 (__main__.TestSparseCompressedCPU) ... ok (0.147s) 2023-01-11T21:22:05.5205360Z test_sparse_compressed_constructor_____from_list_SparseBSR_cpu_int8 (__main__.TestSparseCompressedCPU) ... ok (0.159s) 2023-01-11T21:22:05.5205552Z test_sparse_compressed_constructor_____from_list_SparseBSR_cpu_uint8 (__main__.TestSparseCompressedCPU) ... ok (0.145s) 2023-01-11T21:22:05.5205781Z test_sparse_compressed_constructor_____from_list_SparseCSC_cpu_bfloat16 (__main__.TestSparseCompressedCPU) ... ok (0.150s) 2023-01-11T21:22:05.5205973Z test_sparse_compressed_constructor_____from_list_SparseCSC_cpu_bool (__main__.TestSparseCompressedCPU) ... ok (0.145s) 2023-01-11T21:22:05.5206172Z test_sparse_compressed_constructor_____from_list_SparseCSC_cpu_complex128 (__main__.TestSparseCompressedCPU) ... ok (0.154s) 2023-01-11T21:22:05.5206366Z test_sparse_compressed_constructor_____from_list_SparseCSC_cpu_complex64 (__main__.TestSparseCompressedCPU) ... ok (0.157s) 2023-01-11T21:22:05.5206558Z test_sparse_compressed_constructor_____from_list_SparseCSC_cpu_float16 (__main__.TestSparseCompressedCPU) ... ok (0.146s) 2023-01-11T21:22:05.5206749Z test_sparse_compressed_constructor_____from_list_SparseCSC_cpu_float32 (__main__.TestSparseCompressedCPU) ... ok (0.146s) 2023-01-11T21:22:05.5206942Z test_sparse_compressed_constructor_____from_list_SparseCSC_cpu_float64 (__main__.TestSparseCompressedCPU) ... ok (0.171s) 2023-01-11T21:22:05.5207130Z test_sparse_compressed_constructor_____from_list_SparseCSC_cpu_int16 (__main__.TestSparseCompressedCPU) ... ok (0.130s) 2023-01-11T21:22:05.5207304Z test_sparse_compressed_constructor_____from_list_SparseCSC_cpu_int32 (__main__.TestSparseCompressedCPU) ... ok (0.130s) 2023-01-11T21:22:05.5207486Z test_sparse_compressed_constructor_____from_list_SparseCSC_cpu_int64 (__main__.TestSparseCompressedCPU) ... ok (0.124s) 2023-01-11T21:22:05.5207672Z test_sparse_compressed_constructor_____from_list_SparseCSC_cpu_int8 (__main__.TestSparseCompressedCPU) ... ok (0.130s) 2023-01-11T21:22:05.5207861Z test_sparse_compressed_constructor_____from_list_SparseCSC_cpu_uint8 (__main__.TestSparseCompressedCPU) ... ok (0.146s) 2023-01-11T21:22:05.5208055Z test_sparse_compressed_constructor_____from_list_SparseCSR_cpu_bfloat16 (__main__.TestSparseCompressedCPU) ... ok (0.144s) 2023-01-11T21:22:05.5208244Z test_sparse_compressed_constructor_____from_list_SparseCSR_cpu_bool (__main__.TestSparseCompressedCPU) ... ok (0.130s) 2023-01-11T21:22:05.5208439Z test_sparse_compressed_constructor_____from_list_SparseCSR_cpu_complex128 (__main__.TestSparseCompressedCPU) ... ok (0.149s) 2023-01-11T21:22:05.5208633Z test_sparse_compressed_constructor_____from_list_SparseCSR_cpu_complex64 (__main__.TestSparseCompressedCPU) ... ok (0.152s) 2023-01-11T21:22:05.5208824Z test_sparse_compressed_constructor_____from_list_SparseCSR_cpu_float16 (__main__.TestSparseCompressedCPU) ... ok (0.162s) 2023-01-11T21:22:05.5209013Z test_sparse_compressed_constructor_____from_list_SparseCSR_cpu_float32 (__main__.TestSparseCompressedCPU) ... ok (0.145s) 2023-01-11T21:22:05.5209190Z test_sparse_compressed_constructor_____from_list_SparseCSR_cpu_float64 (__main__.TestSparseCompressedCPU) ... ok (0.143s) 2023-01-11T21:22:05.5209412Z test_sparse_compressed_constructor_____from_list_SparseCSR_cpu_int16 (__main__.TestSparseCompressedCPU) ... ok (0.128s) 2023-01-11T21:22:05.5209597Z test_sparse_compressed_constructor_____from_list_SparseCSR_cpu_int32 (__main__.TestSparseCompressedCPU) ... ok (0.139s) 2023-01-11T21:22:05.5209778Z test_sparse_compressed_constructor_____from_list_SparseCSR_cpu_int64 (__main__.TestSparseCompressedCPU) ... ok (0.138s) 2023-01-11T21:22:05.5209967Z test_sparse_compressed_constructor_____from_list_SparseCSR_cpu_int8 (__main__.TestSparseCompressedCPU) ... ok (0.125s) 2023-01-11T21:22:05.5210156Z test_sparse_compressed_constructor_____from_list_SparseCSR_cpu_uint8 (__main__.TestSparseCompressedCPU) ... ok (0.125s) 2023-01-11T21:22:05.5210351Z test_sparse_compressed_constructor_____from_tensor_SparseBSC_cpu_bfloat16 (__main__.TestSparseCompressedCPU) ... ok (0.329s) 2023-01-11T21:22:05.5210543Z test_sparse_compressed_constructor_____from_tensor_SparseBSC_cpu_bool (__main__.TestSparseCompressedCPU) ... ok (0.303s) 2023-01-11T21:22:05.5210744Z test_sparse_compressed_constructor_____from_tensor_SparseBSC_cpu_complex128 (__main__.TestSparseCompressedCPU) ... ok (0.344s) 2023-01-11T21:22:05.5210970Z test_sparse_compressed_constructor_____from_tensor_SparseBSC_cpu_complex64 (__main__.TestSparseCompressedCPU) ... ok (0.362s) 2023-01-11T21:22:05.5211153Z test_sparse_compressed_constructor_____from_tensor_SparseBSC_cpu_float16 (__main__.TestSparseCompressedCPU) ... ok (0.326s) 2023-01-11T21:22:05.5211348Z test_sparse_compressed_constructor_____from_tensor_SparseBSC_cpu_float32 (__main__.TestSparseCompressedCPU) ... ok (0.341s) 2023-01-11T21:22:05.5211539Z test_sparse_compressed_constructor_____from_tensor_SparseBSC_cpu_float64 (__main__.TestSparseCompressedCPU) ... ok (0.322s) 2023-01-11T21:22:05.5211729Z test_sparse_compressed_constructor_____from_tensor_SparseBSC_cpu_int16 (__main__.TestSparseCompressedCPU) ... ok (0.320s) 2023-01-11T21:22:05.5211921Z test_sparse_compressed_constructor_____from_tensor_SparseBSC_cpu_int32 (__main__.TestSparseCompressedCPU) ... ok (0.286s) 2023-01-11T21:22:05.5212113Z test_sparse_compressed_constructor_____from_tensor_SparseBSC_cpu_int64 (__main__.TestSparseCompressedCPU) ... ok (0.277s) 2023-01-11T21:22:05.5212306Z test_sparse_compressed_constructor_____from_tensor_SparseBSC_cpu_int8 (__main__.TestSparseCompressedCPU) ... ok (0.299s) 2023-01-11T21:22:05.5212495Z test_sparse_compressed_constructor_____from_tensor_SparseBSC_cpu_uint8 (__main__.TestSparseCompressedCPU) ... ok (0.285s) 2023-01-11T21:22:05.5212688Z test_sparse_compressed_constructor_____from_tensor_SparseBSR_cpu_bfloat16 (__main__.TestSparseCompressedCPU) ... ok (0.342s) 2023-01-11T21:22:05.5212881Z test_sparse_compressed_constructor_____from_tensor_SparseBSR_cpu_bool (__main__.TestSparseCompressedCPU) ... ok (0.286s) 2023-01-11T21:22:05.5213068Z test_sparse_compressed_constructor_____from_tensor_SparseBSR_cpu_complex128 (__main__.TestSparseCompressedCPU) ... ok (0.339s) 2023-01-11T21:22:05.5213266Z test_sparse_compressed_constructor_____from_tensor_SparseBSR_cpu_complex64 (__main__.TestSparseCompressedCPU) ... ok (0.363s) 2023-01-11T21:22:05.5213461Z test_sparse_compressed_constructor_____from_tensor_SparseBSR_cpu_float16 (__main__.TestSparseCompressedCPU) ... ok (0.330s) 2023-01-11T21:22:05.5213653Z test_sparse_compressed_constructor_____from_tensor_SparseBSR_cpu_float32 (__main__.TestSparseCompressedCPU) ... ok (0.343s) 2023-01-11T21:22:05.5213843Z test_sparse_compressed_constructor_____from_tensor_SparseBSR_cpu_float64 (__main__.TestSparseCompressedCPU) ... ok (0.324s) 2023-01-11T21:22:05.5214034Z test_sparse_compressed_constructor_____from_tensor_SparseBSR_cpu_int16 (__main__.TestSparseCompressedCPU) ... ok (0.301s) 2023-01-11T21:22:05.5214221Z test_sparse_compressed_constructor_____from_tensor_SparseBSR_cpu_int32 (__main__.TestSparseCompressedCPU) ... ok (0.287s) 2023-01-11T21:22:05.5214411Z test_sparse_compressed_constructor_____from_tensor_SparseBSR_cpu_int64 (__main__.TestSparseCompressedCPU) ... ok (0.303s) 2023-01-11T21:22:05.5214637Z test_sparse_compressed_constructor_____from_tensor_SparseBSR_cpu_int8 (__main__.TestSparseCompressedCPU) ... ok (0.285s) 2023-01-11T21:22:05.5214828Z test_sparse_compressed_constructor_____from_tensor_SparseBSR_cpu_uint8 (__main__.TestSparseCompressedCPU) ... ok (0.287s) 2023-01-11T21:22:05.5215011Z test_sparse_compressed_constructor_____from_tensor_SparseCSC_cpu_bfloat16 (__main__.TestSparseCompressedCPU) ... ok (0.328s) 2023-01-11T21:22:05.5215200Z test_sparse_compressed_constructor_____from_tensor_SparseCSC_cpu_bool (__main__.TestSparseCompressedCPU) ... ok (0.261s) 2023-01-11T21:22:05.5215396Z test_sparse_compressed_constructor_____from_tensor_SparseCSC_cpu_complex128 (__main__.TestSparseCompressedCPU) ... ok (0.325s) 2023-01-11T21:22:05.5215594Z test_sparse_compressed_constructor_____from_tensor_SparseCSC_cpu_complex64 (__main__.TestSparseCompressedCPU) ... ok (0.310s) 2023-01-11T21:22:05.5215788Z test_sparse_compressed_constructor_____from_tensor_SparseCSC_cpu_float16 (__main__.TestSparseCompressedCPU) ... ok (0.298s) 2023-01-11T21:22:05.5216006Z test_sparse_compressed_constructor_____from_tensor_SparseCSC_cpu_float32 (__main__.TestSparseCompressedCPU) ... ok (0.311s) 2023-01-11T21:22:05.5216197Z test_sparse_compressed_constructor_____from_tensor_SparseCSC_cpu_float64 (__main__.TestSparseCompressedCPU) ... ok (0.290s) 2023-01-11T21:22:05.5216385Z test_sparse_compressed_constructor_____from_tensor_SparseCSC_cpu_int16 (__main__.TestSparseCompressedCPU) ... ok (0.275s) 2023-01-11T21:22:05.5216574Z test_sparse_compressed_constructor_____from_tensor_SparseCSC_cpu_int32 (__main__.TestSparseCompressedCPU) ... ok (0.266s) 2023-01-11T21:22:05.5216764Z test_sparse_compressed_constructor_____from_tensor_SparseCSC_cpu_int64 (__main__.TestSparseCompressedCPU) ... ok (0.254s) 2023-01-11T21:22:05.5216943Z test_sparse_compressed_constructor_____from_tensor_SparseCSC_cpu_int8 (__main__.TestSparseCompressedCPU) ... ok (0.275s) 2023-01-11T21:22:05.5217134Z test_sparse_compressed_constructor_____from_tensor_SparseCSC_cpu_uint8 (__main__.TestSparseCompressedCPU) ... ok (0.277s) 2023-01-11T21:22:05.5217401Z test_sparse_compressed_constructor_____from_tensor_SparseCSR_cpu_bfloat16 (__main__.TestSparseCompressedCPU) ... ok (0.319s) 2023-01-11T21:22:05.5217594Z test_sparse_compressed_constructor_____from_tensor_SparseCSR_cpu_bool (__main__.TestSparseCompressedCPU) ... ok (0.283s) 2023-01-11T21:22:05.5217793Z test_sparse_compressed_constructor_____from_tensor_SparseCSR_cpu_complex128 (__main__.TestSparseCompressedCPU) ... ok (0.309s) 2023-01-11T21:22:05.5217989Z test_sparse_compressed_constructor_____from_tensor_SparseCSR_cpu_complex64 (__main__.TestSparseCompressedCPU) ... ok (0.327s) 2023-01-11T21:22:05.5218181Z test_sparse_compressed_constructor_____from_tensor_SparseCSR_cpu_float16 (__main__.TestSparseCompressedCPU) ... ok (0.297s) 2023-01-11T21:22:05.5218373Z test_sparse_compressed_constructor_____from_tensor_SparseCSR_cpu_float32 (__main__.TestSparseCompressedCPU) ... ok (0.325s) 2023-01-11T21:22:05.5218571Z test_sparse_compressed_constructor_____from_tensor_SparseCSR_cpu_float64 (__main__.TestSparseCompressedCPU) ... ok (0.290s) 2023-01-11T21:22:05.5218761Z test_sparse_compressed_constructor_____from_tensor_SparseCSR_cpu_int16 (__main__.TestSparseCompressedCPU) ... ok (0.263s) 2023-01-11T21:22:05.5218940Z test_sparse_compressed_constructor_____from_tensor_SparseCSR_cpu_int32 (__main__.TestSparseCompressedCPU) ... ok (0.276s) 2023-01-11T21:22:05.5219128Z test_sparse_compressed_constructor_____from_tensor_SparseCSR_cpu_int64 (__main__.TestSparseCompressedCPU) ... ok (0.252s) 2023-01-11T21:22:05.5219318Z test_sparse_compressed_constructor_____from_tensor_SparseCSR_cpu_int8 (__main__.TestSparseCompressedCPU) ... ok (0.287s) 2023-01-11T21:22:05.5219508Z test_sparse_compressed_constructor_____from_tensor_SparseCSR_cpu_uint8 (__main__.TestSparseCompressedCPU) ... ok (0.276s) 2023-01-11T21:22:05.5219746Z test_sparse_compressed_constructor___factory_from_list_SparseBSC_cpu_bfloat16 (__main__.TestSparseCompressedCPU) ... ok (0.159s) 2023-01-11T21:22:05.5219947Z test_sparse_compressed_constructor___factory_from_list_SparseBSC_cpu_bool (__main__.TestSparseCompressedCPU) ... ok (0.140s) 2023-01-11T21:22:05.5220152Z test_sparse_compressed_constructor___factory_from_list_SparseBSC_cpu_complex128 (__main__.TestSparseCompressedCPU) ... ok (0.164s) 2023-01-11T21:22:05.5220354Z test_sparse_compressed_constructor___factory_from_list_SparseBSC_cpu_complex64 (__main__.TestSparseCompressedCPU) ... ok (0.179s) 2023-01-11T21:22:05.5220554Z test_sparse_compressed_constructor___factory_from_list_SparseBSC_cpu_float16 (__main__.TestSparseCompressedCPU) ... ok (0.159s) 2023-01-11T21:22:05.5220753Z test_sparse_compressed_constructor___factory_from_list_SparseBSC_cpu_float32 (__main__.TestSparseCompressedCPU) ... ok (0.158s) 2023-01-11T21:22:05.5220941Z test_sparse_compressed_constructor___factory_from_list_SparseBSC_cpu_float64 (__main__.TestSparseCompressedCPU) ... ok (0.158s) 2023-01-11T21:22:05.5221172Z test_sparse_compressed_constructor___factory_from_list_SparseBSC_cpu_int16 (__main__.TestSparseCompressedCPU) ... ok (0.155s) 2023-01-11T21:22:05.5221370Z test_sparse_compressed_constructor___factory_from_list_SparseBSC_cpu_int32 (__main__.TestSparseCompressedCPU) ... ok (0.140s) 2023-01-11T21:22:05.5221565Z test_sparse_compressed_constructor___factory_from_list_SparseBSC_cpu_int64 (__main__.TestSparseCompressedCPU) ... ok (0.139s) 2023-01-11T21:22:05.5221759Z test_sparse_compressed_constructor___factory_from_list_SparseBSC_cpu_int8 (__main__.TestSparseCompressedCPU) ... ok (0.141s) 2023-01-11T21:22:05.5221954Z test_sparse_compressed_constructor___factory_from_list_SparseBSC_cpu_uint8 (__main__.TestSparseCompressedCPU) ... ok (0.143s) 2023-01-11T21:22:05.5222154Z test_sparse_compressed_constructor___factory_from_list_SparseBSR_cpu_bfloat16 (__main__.TestSparseCompressedCPU) ... ok (0.171s) 2023-01-11T21:22:05.5222353Z test_sparse_compressed_constructor___factory_from_list_SparseBSR_cpu_bool (__main__.TestSparseCompressedCPU) ... ok (0.138s) 2023-01-11T21:22:05.5222555Z test_sparse_compressed_constructor___factory_from_list_SparseBSR_cpu_complex128 (__main__.TestSparseCompressedCPU) ... ok (0.164s) 2023-01-11T21:22:05.5222759Z test_sparse_compressed_constructor___factory_from_list_SparseBSR_cpu_complex64 (__main__.TestSparseCompressedCPU) ... ok (0.170s) 2023-01-11T21:22:05.5222946Z test_sparse_compressed_constructor___factory_from_list_SparseBSR_cpu_float16 (__main__.TestSparseCompressedCPU) ... ok (0.174s) 2023-01-11T21:22:05.5223145Z test_sparse_compressed_constructor___factory_from_list_SparseBSR_cpu_float32 (__main__.TestSparseCompressedCPU) ... ok (0.160s) 2023-01-11T21:22:05.5223343Z test_sparse_compressed_constructor___factory_from_list_SparseBSR_cpu_float64 (__main__.TestSparseCompressedCPU) ... ok (0.157s) 2023-01-11T21:22:05.5223538Z test_sparse_compressed_constructor___factory_from_list_SparseBSR_cpu_int16 (__main__.TestSparseCompressedCPU) ... ok (0.140s) 2023-01-11T21:22:05.5223738Z test_sparse_compressed_constructor___factory_from_list_SparseBSR_cpu_int32 (__main__.TestSparseCompressedCPU) ... ok (0.139s) 2023-01-11T21:22:05.5223933Z test_sparse_compressed_constructor___factory_from_list_SparseBSR_cpu_int64 (__main__.TestSparseCompressedCPU) ... ok (0.165s) 2023-01-11T21:22:05.5224127Z test_sparse_compressed_constructor___factory_from_list_SparseBSR_cpu_int8 (__main__.TestSparseCompressedCPU) ... ok (0.140s) 2023-01-11T21:22:05.5224321Z test_sparse_compressed_constructor___factory_from_list_SparseBSR_cpu_uint8 (__main__.TestSparseCompressedCPU) ... ok (0.139s) 2023-01-11T21:22:05.5224521Z test_sparse_compressed_constructor___factory_from_list_SparseCSC_cpu_bfloat16 (__main__.TestSparseCompressedCPU) ... ok (0.143s) 2023-01-11T21:22:05.5224716Z test_sparse_compressed_constructor___factory_from_list_SparseCSC_cpu_bool (__main__.TestSparseCompressedCPU) ... ok (0.128s) 2023-01-11T21:22:05.5224934Z test_sparse_compressed_constructor___factory_from_list_SparseCSC_cpu_complex128 (__main__.TestSparseCompressedCPU) ... ok (0.162s) 2023-01-11T21:22:05.5225134Z test_sparse_compressed_constructor___factory_from_list_SparseCSC_cpu_complex64 (__main__.TestSparseCompressedCPU) ... ok (0.149s) 2023-01-11T21:22:05.5225332Z test_sparse_compressed_constructor___factory_from_list_SparseCSC_cpu_float16 (__main__.TestSparseCompressedCPU) ... ok (0.143s) 2023-01-11T21:22:05.5225530Z test_sparse_compressed_constructor___factory_from_list_SparseCSC_cpu_float32 (__main__.TestSparseCompressedCPU) ... ok (0.143s) 2023-01-11T21:22:05.5225729Z test_sparse_compressed_constructor___factory_from_list_SparseCSC_cpu_float64 (__main__.TestSparseCompressedCPU) ... ok (0.140s) 2023-01-11T21:22:05.5225929Z test_sparse_compressed_constructor___factory_from_list_SparseCSC_cpu_int16 (__main__.TestSparseCompressedCPU) ... ok (0.140s) 2023-01-11T21:22:05.5226123Z test_sparse_compressed_constructor___factory_from_list_SparseCSC_cpu_int32 (__main__.TestSparseCompressedCPU) ... ok (0.126s) 2023-01-11T21:22:05.5226347Z test_sparse_compressed_constructor___factory_from_list_SparseCSC_cpu_int64 (__main__.TestSparseCompressedCPU) ... ok (0.122s) 2023-01-11T21:22:05.5226544Z test_sparse_compressed_constructor___factory_from_list_SparseCSC_cpu_int8 (__main__.TestSparseCompressedCPU) ... ok (0.127s) 2023-01-11T21:22:05.5226740Z test_sparse_compressed_constructor___factory_from_list_SparseCSC_cpu_uint8 (__main__.TestSparseCompressedCPU) ... ok (0.128s) 2023-01-11T21:22:05.5226929Z test_sparse_compressed_constructor___factory_from_list_SparseCSR_cpu_bfloat16 (__main__.TestSparseCompressedCPU) ... ok (0.158s) 2023-01-11T21:22:05.5227124Z test_sparse_compressed_constructor___factory_from_list_SparseCSR_cpu_bool (__main__.TestSparseCompressedCPU) ... ok (0.128s) 2023-01-11T21:22:05.5227326Z test_sparse_compressed_constructor___factory_from_list_SparseCSR_cpu_complex128 (__main__.TestSparseCompressedCPU) ... ok (0.148s) 2023-01-11T21:22:05.5227531Z test_sparse_compressed_constructor___factory_from_list_SparseCSR_cpu_complex64 (__main__.TestSparseCompressedCPU) ... ok (0.150s) 2023-01-11T21:22:05.5227731Z test_sparse_compressed_constructor___factory_from_list_SparseCSR_cpu_float16 (__main__.TestSparseCompressedCPU) ... ok (0.146s) 2023-01-11T21:22:05.5227928Z test_sparse_compressed_constructor___factory_from_list_SparseCSR_cpu_float32 (__main__.TestSparseCompressedCPU) ... ok (0.157s) 2023-01-11T21:22:05.5228124Z test_sparse_compressed_constructor___factory_from_list_SparseCSR_cpu_float64 (__main__.TestSparseCompressedCPU) ... ok (0.141s) 2023-01-11T21:22:05.5228318Z test_sparse_compressed_constructor___factory_from_list_SparseCSR_cpu_int16 (__main__.TestSparseCompressedCPU) ... ok (0.126s) 2023-01-11T21:22:05.5228513Z test_sparse_compressed_constructor___factory_from_list_SparseCSR_cpu_int32 (__main__.TestSparseCompressedCPU) ... ok (0.127s) 2023-01-11T21:22:05.5228706Z test_sparse_compressed_constructor___factory_from_list_SparseCSR_cpu_int64 (__main__.TestSparseCompressedCPU) ... ok (0.124s) 2023-01-11T21:22:05.5228892Z test_sparse_compressed_constructor___factory_from_list_SparseCSR_cpu_int8 (__main__.TestSparseCompressedCPU) ... ok (0.142s) 2023-01-11T21:22:05.5229087Z test_sparse_compressed_constructor___factory_from_list_SparseCSR_cpu_uint8 (__main__.TestSparseCompressedCPU) ... ok (0.126s) 2023-01-11T21:22:05.5229293Z test_sparse_compressed_constructor___factory_from_tensor_SparseBSC_cpu_bfloat16 (__main__.TestSparseCompressedCPU) ... ok (0.328s) 2023-01-11T21:22:05.5229492Z test_sparse_compressed_constructor___factory_from_tensor_SparseBSC_cpu_bool (__main__.TestSparseCompressedCPU) ... ok (0.300s) 2023-01-11T21:22:05.5229698Z test_sparse_compressed_constructor___factory_from_tensor_SparseBSC_cpu_complex128 (__main__.TestSparseCompressedCPU) ... ok (0.339s) 2023-01-11T21:22:05.5229902Z test_sparse_compressed_constructor___factory_from_tensor_SparseBSC_cpu_complex64 (__main__.TestSparseCompressedCPU) ... ok (0.356s) 2023-01-11T21:22:05.5230147Z test_sparse_compressed_constructor___factory_from_tensor_SparseBSC_cpu_float16 (__main__.TestSparseCompressedCPU) ... ok (0.326s) 2023-01-11T21:22:05.5230348Z test_sparse_compressed_constructor___factory_from_tensor_SparseBSC_cpu_float32 (__main__.TestSparseCompressedCPU) ... ok (0.325s) 2023-01-11T21:22:05.5230543Z test_sparse_compressed_constructor___factory_from_tensor_SparseBSC_cpu_float64 (__main__.TestSparseCompressedCPU) ... ok (0.357s) 2023-01-11T21:22:05.5230743Z test_sparse_compressed_constructor___factory_from_tensor_SparseBSC_cpu_int16 (__main__.TestSparseCompressedCPU) ... ok (0.290s) 2023-01-11T21:22:05.5230928Z test_sparse_compressed_constructor___factory_from_tensor_SparseBSC_cpu_int32 (__main__.TestSparseCompressedCPU) ... ok (0.310s) 2023-01-11T21:22:05.5231124Z test_sparse_compressed_constructor___factory_from_tensor_SparseBSC_cpu_int64 (__main__.TestSparseCompressedCPU) ... ok (0.278s) 2023-01-11T21:22:05.5231326Z test_sparse_compressed_constructor___factory_from_tensor_SparseBSC_cpu_int8 (__main__.TestSparseCompressedCPU) ... ok (0.305s) 2023-01-11T21:22:05.5231550Z test_sparse_compressed_constructor___factory_from_tensor_SparseBSC_cpu_uint8 (__main__.TestSparseCompressedCPU) ... ok (0.287s) 2023-01-11T21:22:05.5231755Z test_sparse_compressed_constructor___factory_from_tensor_SparseBSR_cpu_bfloat16 (__main__.TestSparseCompressedCPU) ... ok (0.325s) 2023-01-11T21:22:05.5231954Z test_sparse_compressed_constructor___factory_from_tensor_SparseBSR_cpu_bool (__main__.TestSparseCompressedCPU) ... ok (0.321s) 2023-01-11T21:22:05.5232159Z test_sparse_compressed_constructor___factory_from_tensor_SparseBSR_cpu_complex128 (__main__.TestSparseCompressedCPU) ... ok (0.361s) 2023-01-11T21:22:05.5232363Z test_sparse_compressed_constructor___factory_from_tensor_SparseBSR_cpu_complex64 (__main__.TestSparseCompressedCPU) ... ok (0.367s) 2023-01-11T21:22:05.5232560Z test_sparse_compressed_constructor___factory_from_tensor_SparseBSR_cpu_float16 (__main__.TestSparseCompressedCPU) ... ok (0.332s) 2023-01-11T21:22:05.5232765Z test_sparse_compressed_constructor___factory_from_tensor_SparseBSR_cpu_float32 (__main__.TestSparseCompressedCPU) ... ok (0.343s) 2023-01-11T21:22:05.5232949Z test_sparse_compressed_constructor___factory_from_tensor_SparseBSR_cpu_float64 (__main__.TestSparseCompressedCPU) ... ok (0.330s) 2023-01-11T21:22:05.5233146Z test_sparse_compressed_constructor___factory_from_tensor_SparseBSR_cpu_int16 (__main__.TestSparseCompressedCPU) ... ok (0.329s) 2023-01-11T21:22:05.5233343Z test_sparse_compressed_constructor___factory_from_tensor_SparseBSR_cpu_int32 (__main__.TestSparseCompressedCPU) ... ok (0.298s) 2023-01-11T21:22:05.5233539Z test_sparse_compressed_constructor___factory_from_tensor_SparseBSR_cpu_int64 (__main__.TestSparseCompressedCPU) ... ok (0.288s) 2023-01-11T21:22:05.5233734Z test_sparse_compressed_constructor___factory_from_tensor_SparseBSR_cpu_int8 (__main__.TestSparseCompressedCPU) ... ok (0.327s) 2023-01-11T21:22:05.5233931Z test_sparse_compressed_constructor___factory_from_tensor_SparseBSR_cpu_uint8 (__main__.TestSparseCompressedCPU) ... ok (0.324s) 2023-01-11T21:22:05.5234136Z test_sparse_compressed_constructor___factory_from_tensor_SparseCSC_cpu_bfloat16 (__main__.TestSparseCompressedCPU) ... ok (0.323s) 2023-01-11T21:22:05.5234333Z test_sparse_compressed_constructor___factory_from_tensor_SparseCSC_cpu_bool (__main__.TestSparseCompressedCPU) ... ok (0.275s) 2023-01-11T21:22:05.5234537Z test_sparse_compressed_constructor___factory_from_tensor_SparseCSC_cpu_complex128 (__main__.TestSparseCompressedCPU) ... ok (0.313s) 2023-01-11T21:22:05.5234744Z test_sparse_compressed_constructor___factory_from_tensor_SparseCSC_cpu_complex64 (__main__.TestSparseCompressedCPU) ... ok (0.328s) 2023-01-11T21:22:05.5234943Z test_sparse_compressed_constructor___factory_from_tensor_SparseCSC_cpu_float16 (__main__.TestSparseCompressedCPU) ... ok (0.297s) 2023-01-11T21:22:05.5235160Z test_sparse_compressed_constructor___factory_from_tensor_SparseCSC_cpu_float32 (__main__.TestSparseCompressedCPU) ... ok (0.316s) 2023-01-11T21:22:05.5235358Z test_sparse_compressed_constructor___factory_from_tensor_SparseCSC_cpu_float64 (__main__.TestSparseCompressedCPU) ... ok (0.295s) 2023-01-11T21:22:05.5235551Z test_sparse_compressed_constructor___factory_from_tensor_SparseCSC_cpu_int16 (__main__.TestSparseCompressedCPU) ... ok (0.259s) 2023-01-11T21:22:05.5235746Z test_sparse_compressed_constructor___factory_from_tensor_SparseCSC_cpu_int32 (__main__.TestSparseCompressedCPU) ... ok (0.273s) 2023-01-11T21:22:05.5235942Z test_sparse_compressed_constructor___factory_from_tensor_SparseCSC_cpu_int64 (__main__.TestSparseCompressedCPU) ... ok (0.257s) 2023-01-11T21:22:05.5236140Z test_sparse_compressed_constructor___factory_from_tensor_SparseCSC_cpu_int8 (__main__.TestSparseCompressedCPU) ... ok (0.266s) 2023-01-11T21:22:05.5236336Z test_sparse_compressed_constructor___factory_from_tensor_SparseCSC_cpu_uint8 (__main__.TestSparseCompressedCPU) ... ok (0.279s) 2023-01-11T21:22:05.5236542Z test_sparse_compressed_constructor___factory_from_tensor_SparseCSR_cpu_bfloat16 (__main__.TestSparseCompressedCPU) ... ok (0.297s) 2023-01-11T21:22:05.5236767Z test_sparse_compressed_constructor___factory_from_tensor_SparseCSR_cpu_bool (__main__.TestSparseCompressedCPU) ... ok (0.278s) 2023-01-11T21:22:05.5236972Z test_sparse_compressed_constructor___factory_from_tensor_SparseCSR_cpu_complex128 (__main__.TestSparseCompressedCPU) ... ok (0.310s) 2023-01-11T21:22:05.5237163Z test_sparse_compressed_constructor___factory_from_tensor_SparseCSR_cpu_complex64 (__main__.TestSparseCompressedCPU) ... ok (0.344s) 2023-01-11T21:22:05.5237361Z test_sparse_compressed_constructor___factory_from_tensor_SparseCSR_cpu_float16 (__main__.TestSparseCompressedCPU) ... ok (0.300s) 2023-01-11T21:22:05.5237558Z test_sparse_compressed_constructor___factory_from_tensor_SparseCSR_cpu_float32 (__main__.TestSparseCompressedCPU) ... ok (0.296s) 2023-01-11T21:22:05.5237754Z test_sparse_compressed_constructor___factory_from_tensor_SparseCSR_cpu_float64 (__main__.TestSparseCompressedCPU) ... ok (0.304s) 2023-01-11T21:22:05.5237953Z test_sparse_compressed_constructor___factory_from_tensor_SparseCSR_cpu_int16 (__main__.TestSparseCompressedCPU) ... ok (0.260s) 2023-01-11T21:22:05.5238149Z test_sparse_compressed_constructor___factory_from_tensor_SparseCSR_cpu_int32 (__main__.TestSparseCompressedCPU) ... ok (0.263s) 2023-01-11T21:22:05.5238348Z test_sparse_compressed_constructor___factory_from_tensor_SparseCSR_cpu_int64 (__main__.TestSparseCompressedCPU) ... ok (0.268s) 2023-01-11T21:22:05.5238545Z test_sparse_compressed_constructor___factory_from_tensor_SparseCSR_cpu_int8 (__main__.TestSparseCompressedCPU) ... ok (0.263s) 2023-01-11T21:22:05.5238742Z test_sparse_compressed_constructor___factory_from_tensor_SparseCSR_cpu_uint8 (__main__.TestSparseCompressedCPU) ... ok (0.277s) 2023-01-11T21:22:05.5239005Z test_sparse_compressed_constructor_shape_and_device_inference___from_list_SparseBSC_cpu_bfloat16 (__main__.TestSparseCompressedCPU) ... skip: dtype not supported with list values (0.004s) 2023-01-11T21:22:05.5239220Z test_sparse_compressed_constructor_shape_and_device_inference___from_list_SparseBSC_cpu_bool (__main__.TestSparseCompressedCPU) ... ok (0.145s) 2023-01-11T21:22:05.5239483Z test_sparse_compressed_constructor_shape_and_device_inference___from_list_SparseBSC_cpu_complex128 (__main__.TestSparseCompressedCPU) ... skip: dtype not supported with list values (0.004s) 2023-01-11T21:22:05.5239709Z test_sparse_compressed_constructor_shape_and_device_inference___from_list_SparseBSC_cpu_complex64 (__main__.TestSparseCompressedCPU) ... ok (0.170s) 2023-01-11T21:22:05.5239971Z test_sparse_compressed_constructor_shape_and_device_inference___from_list_SparseBSC_cpu_float16 (__main__.TestSparseCompressedCPU) ... skip: dtype not supported with list values (0.004s) 2023-01-11T21:22:05.5240194Z test_sparse_compressed_constructor_shape_and_device_inference___from_list_SparseBSC_cpu_float32 (__main__.TestSparseCompressedCPU) ... ok (0.162s) 2023-01-11T21:22:05.5240485Z test_sparse_compressed_constructor_shape_and_device_inference___from_list_SparseBSC_cpu_float64 (__main__.TestSparseCompressedCPU) ... skip: dtype not supported with list values (0.004s) 2023-01-11T21:22:05.5240967Z test_sparse_compressed_constructor_shape_and_device_inference___from_list_SparseBSC_cpu_int16 (__main__.TestSparseCompressedCPU) ... skip: dtype not supported with list values (0.004s) 2023-01-11T21:22:05.5241226Z test_sparse_compressed_constructor_shape_and_device_inference___from_list_SparseBSC_cpu_int32 (__main__.TestSparseCompressedCPU) ... skip: dtype not supported with list values (0.004s) 2023-01-11T21:22:05.5241444Z test_sparse_compressed_constructor_shape_and_device_inference___from_list_SparseBSC_cpu_int64 (__main__.TestSparseCompressedCPU) ... ok (0.155s) 2023-01-11T21:22:05.5241704Z test_sparse_compressed_constructor_shape_and_device_inference___from_list_SparseBSC_cpu_int8 (__main__.TestSparseCompressedCPU) ... skip: dtype not supported with list values (0.004s) 2023-01-11T21:22:05.5242014Z test_sparse_compressed_constructor_shape_and_device_inference___from_list_SparseBSC_cpu_uint8 (__main__.TestSparseCompressedCPU) ... skip: dtype not supported with list values (0.003s) 2023-01-11T21:22:05.5242275Z test_sparse_compressed_constructor_shape_and_device_inference___from_list_SparseBSR_cpu_bfloat16 (__main__.TestSparseCompressedCPU) ... skip: dtype not supported with list values (0.005s) 2023-01-11T21:22:05.5242494Z test_sparse_compressed_constructor_shape_and_device_inference___from_list_SparseBSR_cpu_bool (__main__.TestSparseCompressedCPU) ... ok (0.147s) 2023-01-11T21:22:05.5242746Z test_sparse_compressed_constructor_shape_and_device_inference___from_list_SparseBSR_cpu_complex128 (__main__.TestSparseCompressedCPU) ... skip: dtype not supported with list values (0.005s) 2023-01-11T21:22:05.5242969Z test_sparse_compressed_constructor_shape_and_device_inference___from_list_SparseBSR_cpu_complex64 (__main__.TestSparseCompressedCPU) ... ok (0.173s) 2023-01-11T21:22:05.5243232Z test_sparse_compressed_constructor_shape_and_device_inference___from_list_SparseBSR_cpu_float16 (__main__.TestSparseCompressedCPU) ... skip: dtype not supported with list values (0.005s) 2023-01-11T21:22:05.5243452Z test_sparse_compressed_constructor_shape_and_device_inference___from_list_SparseBSR_cpu_float32 (__main__.TestSparseCompressedCPU) ... ok (0.161s) 2023-01-11T21:22:05.5243710Z test_sparse_compressed_constructor_shape_and_device_inference___from_list_SparseBSR_cpu_float64 (__main__.TestSparseCompressedCPU) ... skip: dtype not supported with list values (0.004s) 2023-01-11T21:22:05.5243967Z test_sparse_compressed_constructor_shape_and_device_inference___from_list_SparseBSR_cpu_int16 (__main__.TestSparseCompressedCPU) ... skip: dtype not supported with list values (0.004s) 2023-01-11T21:22:05.5244222Z test_sparse_compressed_constructor_shape_and_device_inference___from_list_SparseBSR_cpu_int32 (__main__.TestSparseCompressedCPU) ... skip: dtype not supported with list values (0.018s) 2023-01-11T21:22:05.5244444Z test_sparse_compressed_constructor_shape_and_device_inference___from_list_SparseBSR_cpu_int64 (__main__.TestSparseCompressedCPU) ... ok (0.139s) 2023-01-11T21:22:05.5244700Z test_sparse_compressed_constructor_shape_and_device_inference___from_list_SparseBSR_cpu_int8 (__main__.TestSparseCompressedCPU) ... skip: dtype not supported with list values (0.003s) 2023-01-11T21:22:05.5244957Z test_sparse_compressed_constructor_shape_and_device_inference___from_list_SparseBSR_cpu_uint8 (__main__.TestSparseCompressedCPU) ... skip: dtype not supported with list values (0.004s) 2023-01-11T21:22:05.5245213Z test_sparse_compressed_constructor_shape_and_device_inference___from_list_SparseCSC_cpu_bfloat16 (__main__.TestSparseCompressedCPU) ... skip: dtype not supported with list values (0.004s) 2023-01-11T21:22:05.5245475Z test_sparse_compressed_constructor_shape_and_device_inference___from_list_SparseCSC_cpu_bool (__main__.TestSparseCompressedCPU) ... ok (0.131s) 2023-01-11T21:22:05.5245920Z test_sparse_compressed_constructor_shape_and_device_inference___from_list_SparseCSC_cpu_complex128 (__main__.TestSparseCompressedCPU) ... skip: dtype not supported with list values (0.004s) 2023-01-11T21:22:05.5246225Z test_sparse_compressed_constructor_shape_and_device_inference___from_list_SparseCSC_cpu_complex64 (__main__.TestSparseCompressedCPU) ... ok (0.154s) 2023-01-11T21:22:05.5246581Z test_sparse_compressed_constructor_shape_and_device_inference___from_list_SparseCSC_cpu_float16 (__main__.TestSparseCompressedCPU) ... skip: dtype not supported with list values (0.004s) 2023-01-11T21:22:05.5246967Z test_sparse_compressed_constructor_shape_and_device_inference___from_list_SparseCSC_cpu_float32 (__main__.TestSparseCompressedCPU) ... ok (0.146s) 2023-01-11T21:22:05.5247446Z test_sparse_compressed_constructor_shape_and_device_inference___from_list_SparseCSC_cpu_float64 (__main__.TestSparseCompressedCPU) ... skip: dtype not supported with list values (0.004s) 2023-01-11T21:22:05.5248012Z test_sparse_compressed_constructor_shape_and_device_inference___from_list_SparseCSC_cpu_int16 (__main__.TestSparseCompressedCPU) ... skip: dtype not supported with list values (0.019s) 2023-01-11T21:22:05.5248294Z test_sparse_compressed_constructor_shape_and_device_inference___from_list_SparseCSC_cpu_int32 (__main__.TestSparseCompressedCPU) ... skip: dtype not supported with list values (0.003s) 2023-01-11T21:22:05.5248512Z test_sparse_compressed_constructor_shape_and_device_inference___from_list_SparseCSC_cpu_int64 (__main__.TestSparseCompressedCPU) ... ok (0.126s) 2023-01-11T21:22:05.5248906Z test_sparse_compressed_constructor_shape_and_device_inference___from_list_SparseCSC_cpu_int8 (__main__.TestSparseCompressedCPU) ... skip: dtype not supported with list values (0.004s) 2023-01-11T21:22:05.5249378Z test_sparse_compressed_constructor_shape_and_device_inference___from_list_SparseCSC_cpu_uint8 (__main__.TestSparseCompressedCPU) ... skip: dtype not supported with list values (0.004s) 2023-01-11T21:22:05.5249826Z test_sparse_compressed_constructor_shape_and_device_inference___from_list_SparseCSR_cpu_bfloat16 (__main__.TestSparseCompressedCPU) ... skip: dtype not supported with list values (0.004s) 2023-01-11T21:22:05.5250046Z test_sparse_compressed_constructor_shape_and_device_inference___from_list_SparseCSR_cpu_bool (__main__.TestSparseCompressedCPU) ... ok (0.128s) 2023-01-11T21:22:05.5250308Z test_sparse_compressed_constructor_shape_and_device_inference___from_list_SparseCSR_cpu_complex128 (__main__.TestSparseCompressedCPU) ... skip: dtype not supported with list values (0.004s) 2023-01-11T21:22:05.5250531Z test_sparse_compressed_constructor_shape_and_device_inference___from_list_SparseCSR_cpu_complex64 (__main__.TestSparseCompressedCPU) ... ok (0.151s) 2023-01-11T21:22:05.5250776Z test_sparse_compressed_constructor_shape_and_device_inference___from_list_SparseCSR_cpu_float16 (__main__.TestSparseCompressedCPU) ... skip: dtype not supported with list values (0.004s) 2023-01-11T21:22:05.5251001Z test_sparse_compressed_constructor_shape_and_device_inference___from_list_SparseCSR_cpu_float32 (__main__.TestSparseCompressedCPU) ... ok (0.145s) 2023-01-11T21:22:05.5251261Z test_sparse_compressed_constructor_shape_and_device_inference___from_list_SparseCSR_cpu_float64 (__main__.TestSparseCompressedCPU) ... skip: dtype not supported with list values (0.004s) 2023-01-11T21:22:05.5251517Z test_sparse_compressed_constructor_shape_and_device_inference___from_list_SparseCSR_cpu_int16 (__main__.TestSparseCompressedCPU) ... skip: dtype not supported with list values (0.018s) 2023-01-11T21:22:05.5251774Z test_sparse_compressed_constructor_shape_and_device_inference___from_list_SparseCSR_cpu_int32 (__main__.TestSparseCompressedCPU) ... skip: dtype not supported with list values (0.003s) 2023-01-11T21:22:05.5251992Z test_sparse_compressed_constructor_shape_and_device_inference___from_list_SparseCSR_cpu_int64 (__main__.TestSparseCompressedCPU) ... ok (0.126s) 2023-01-11T21:22:05.5252292Z test_sparse_compressed_constructor_shape_and_device_inference___from_list_SparseCSR_cpu_int8 (__main__.TestSparseCompressedCPU) ... skip: dtype not supported with list values (0.004s) 2023-01-11T21:22:05.5252546Z test_sparse_compressed_constructor_shape_and_device_inference___from_list_SparseCSR_cpu_uint8 (__main__.TestSparseCompressedCPU) ... skip: dtype not supported with list values (0.004s) 2023-01-11T21:22:05.5252772Z test_sparse_compressed_constructor_shape_and_device_inference___from_tensor_SparseBSC_cpu_bfloat16 (__main__.TestSparseCompressedCPU) ... ok (0.311s) 2023-01-11T21:22:05.5252992Z test_sparse_compressed_constructor_shape_and_device_inference___from_tensor_SparseBSC_cpu_bool (__main__.TestSparseCompressedCPU) ... ok (0.307s) 2023-01-11T21:22:05.5253217Z test_sparse_compressed_constructor_shape_and_device_inference___from_tensor_SparseBSC_cpu_complex128 (__main__.TestSparseCompressedCPU) ... ok (0.339s) 2023-01-11T21:22:05.5253445Z test_sparse_compressed_constructor_shape_and_device_inference___from_tensor_SparseBSC_cpu_complex64 (__main__.TestSparseCompressedCPU) ... ok (0.343s) 2023-01-11T21:22:05.5253689Z test_sparse_compressed_constructor_shape_and_device_inference___from_tensor_SparseBSC_cpu_float16 (__main__.TestSparseCompressedCPU) ... ok (0.311s) 2023-01-11T21:22:05.5253900Z test_sparse_compressed_constructor_shape_and_device_inference___from_tensor_SparseBSC_cpu_float32 (__main__.TestSparseCompressedCPU) ... ok (0.317s) 2023-01-11T21:22:05.5254124Z test_sparse_compressed_constructor_shape_and_device_inference___from_tensor_SparseBSC_cpu_float64 (__main__.TestSparseCompressedCPU) ... ok (0.339s) 2023-01-11T21:22:05.5254343Z test_sparse_compressed_constructor_shape_and_device_inference___from_tensor_SparseBSC_cpu_int16 (__main__.TestSparseCompressedCPU) ... ok (0.292s) 2023-01-11T21:22:05.5254557Z test_sparse_compressed_constructor_shape_and_device_inference___from_tensor_SparseBSC_cpu_int32 (__main__.TestSparseCompressedCPU) ... ok (0.299s) 2023-01-11T21:22:05.5254773Z test_sparse_compressed_constructor_shape_and_device_inference___from_tensor_SparseBSC_cpu_int64 (__main__.TestSparseCompressedCPU) ... ok (0.272s) 2023-01-11T21:22:05.5254989Z test_sparse_compressed_constructor_shape_and_device_inference___from_tensor_SparseBSC_cpu_int8 (__main__.TestSparseCompressedCPU) ... ok (0.278s) 2023-01-11T21:22:05.5255209Z test_sparse_compressed_constructor_shape_and_device_inference___from_tensor_SparseBSC_cpu_uint8 (__main__.TestSparseCompressedCPU) ... ok (0.292s) 2023-01-11T21:22:05.5255435Z test_sparse_compressed_constructor_shape_and_device_inference___from_tensor_SparseBSR_cpu_bfloat16 (__main__.TestSparseCompressedCPU) ... ok (0.310s) 2023-01-11T21:22:05.5255648Z test_sparse_compressed_constructor_shape_and_device_inference___from_tensor_SparseBSR_cpu_bool (__main__.TestSparseCompressedCPU) ... ok (0.276s) 2023-01-11T21:22:05.5255873Z test_sparse_compressed_constructor_shape_and_device_inference___from_tensor_SparseBSR_cpu_complex128 (__main__.TestSparseCompressedCPU) ... ok (0.337s) 2023-01-11T21:22:05.5256099Z test_sparse_compressed_constructor_shape_and_device_inference___from_tensor_SparseBSR_cpu_complex64 (__main__.TestSparseCompressedCPU) ... ok (0.330s) 2023-01-11T21:22:05.5256309Z test_sparse_compressed_constructor_shape_and_device_inference___from_tensor_SparseBSR_cpu_float16 (__main__.TestSparseCompressedCPU) ... ok (0.324s) 2023-01-11T21:22:05.5256529Z test_sparse_compressed_constructor_shape_and_device_inference___from_tensor_SparseBSR_cpu_float32 (__main__.TestSparseCompressedCPU) ... ok (0.315s) 2023-01-11T21:22:05.5256741Z test_sparse_compressed_constructor_shape_and_device_inference___from_tensor_SparseBSR_cpu_float64 (__main__.TestSparseCompressedCPU) ... ok (0.338s) 2023-01-11T21:22:05.5256962Z test_sparse_compressed_constructor_shape_and_device_inference___from_tensor_SparseBSR_cpu_int16 (__main__.TestSparseCompressedCPU) ... ok (0.276s) 2023-01-11T21:22:05.5257291Z test_sparse_compressed_constructor_shape_and_device_inference___from_tensor_SparseBSR_cpu_int32 (__main__.TestSparseCompressedCPU) ... ok (0.279s) 2023-01-11T21:22:05.5257507Z test_sparse_compressed_constructor_shape_and_device_inference___from_tensor_SparseBSR_cpu_int64 (__main__.TestSparseCompressedCPU) ... ok (0.279s) 2023-01-11T21:22:05.5257723Z test_sparse_compressed_constructor_shape_and_device_inference___from_tensor_SparseBSR_cpu_int8 (__main__.TestSparseCompressedCPU) ... ok (0.278s) 2023-01-11T21:22:05.5257939Z test_sparse_compressed_constructor_shape_and_device_inference___from_tensor_SparseBSR_cpu_uint8 (__main__.TestSparseCompressedCPU) ... ok (0.300s) 2023-01-11T21:22:05.5258158Z test_sparse_compressed_constructor_shape_and_device_inference___from_tensor_SparseCSC_cpu_bfloat16 (__main__.TestSparseCompressedCPU) ... ok (0.283s) 2023-01-11T21:22:05.5258379Z test_sparse_compressed_constructor_shape_and_device_inference___from_tensor_SparseCSC_cpu_bool (__main__.TestSparseCompressedCPU) ... ok (0.249s) 2023-01-11T21:22:05.5258604Z test_sparse_compressed_constructor_shape_and_device_inference___from_tensor_SparseCSC_cpu_complex128 (__main__.TestSparseCompressedCPU) ... ok (0.309s) 2023-01-11T21:22:05.5258847Z test_sparse_compressed_constructor_shape_and_device_inference___from_tensor_SparseCSC_cpu_complex64 (__main__.TestSparseCompressedCPU) ... ok (0.297s) 2023-01-11T21:22:05.5259064Z test_sparse_compressed_constructor_shape_and_device_inference___from_tensor_SparseCSC_cpu_float16 (__main__.TestSparseCompressedCPU) ... ok (0.283s) 2023-01-11T21:22:05.5259284Z test_sparse_compressed_constructor_shape_and_device_inference___from_tensor_SparseCSC_cpu_float32 (__main__.TestSparseCompressedCPU) ... ok (0.297s) 2023-01-11T21:22:05.5259505Z test_sparse_compressed_constructor_shape_and_device_inference___from_tensor_SparseCSC_cpu_float64 (__main__.TestSparseCompressedCPU) ... ok (0.277s) 2023-01-11T21:22:05.5259724Z test_sparse_compressed_constructor_shape_and_device_inference___from_tensor_SparseCSC_cpu_int16 (__main__.TestSparseCompressedCPU) ... ok (0.268s) 2023-01-11T21:22:05.5259945Z test_sparse_compressed_constructor_shape_and_device_inference___from_tensor_SparseCSC_cpu_int32 (__main__.TestSparseCompressedCPU) ... ok (0.249s) 2023-01-11T21:22:05.5260156Z test_sparse_compressed_constructor_shape_and_device_inference___from_tensor_SparseCSC_cpu_int64 (__main__.TestSparseCompressedCPU) ... ok (0.243s) 2023-01-11T21:22:05.5260372Z test_sparse_compressed_constructor_shape_and_device_inference___from_tensor_SparseCSC_cpu_int8 (__main__.TestSparseCompressedCPU) ... ok (0.268s) 2023-01-11T21:22:05.5260590Z test_sparse_compressed_constructor_shape_and_device_inference___from_tensor_SparseCSC_cpu_uint8 (__main__.TestSparseCompressedCPU) ... ok (0.251s) 2023-01-11T21:22:05.5260809Z test_sparse_compressed_constructor_shape_and_device_inference___from_tensor_SparseCSR_cpu_bfloat16 (__main__.TestSparseCompressedCPU) ... ok (0.288s) 2023-01-11T21:22:05.5261025Z test_sparse_compressed_constructor_shape_and_device_inference___from_tensor_SparseCSR_cpu_bool (__main__.TestSparseCompressedCPU) ... ok (0.284s) 2023-01-11T21:22:05.5261250Z test_sparse_compressed_constructor_shape_and_device_inference___from_tensor_SparseCSR_cpu_complex128 (__main__.TestSparseCompressedCPU) ... ok (0.294s) 2023-01-11T21:22:05.5261460Z test_sparse_compressed_constructor_shape_and_device_inference___from_tensor_SparseCSR_cpu_complex64 (__main__.TestSparseCompressedCPU) ... ok (0.300s) 2023-01-11T21:22:05.5261682Z test_sparse_compressed_constructor_shape_and_device_inference___from_tensor_SparseCSR_cpu_float16 (__main__.TestSparseCompressedCPU) ... ok (0.305s) 2023-01-11T21:22:05.5261898Z test_sparse_compressed_constructor_shape_and_device_inference___from_tensor_SparseCSR_cpu_float32 (__main__.TestSparseCompressedCPU) ... ok (0.287s) 2023-01-11T21:22:05.5262115Z test_sparse_compressed_constructor_shape_and_device_inference___from_tensor_SparseCSR_cpu_float64 (__main__.TestSparseCompressedCPU) ... ok (0.296s) 2023-01-11T21:22:05.5262363Z test_sparse_compressed_constructor_shape_and_device_inference___from_tensor_SparseCSR_cpu_int16 (__main__.TestSparseCompressedCPU) ... ok (0.252s) 2023-01-11T21:22:05.5262579Z test_sparse_compressed_constructor_shape_and_device_inference___from_tensor_SparseCSR_cpu_int32 (__main__.TestSparseCompressedCPU) ... ok (0.249s) 2023-01-11T21:22:05.5262790Z test_sparse_compressed_constructor_shape_and_device_inference___from_tensor_SparseCSR_cpu_int64 (__main__.TestSparseCompressedCPU) ... ok (0.261s) 2023-01-11T21:22:05.5263005Z test_sparse_compressed_constructor_shape_and_device_inference___from_tensor_SparseCSR_cpu_int8 (__main__.TestSparseCompressedCPU) ... ok (0.249s) 2023-01-11T21:22:05.5263220Z test_sparse_compressed_constructor_shape_and_device_inference___from_tensor_SparseCSR_cpu_uint8 (__main__.TestSparseCompressedCPU) ... ok (0.251s) 2023-01-11T21:22:05.5263488Z test_sparse_compressed_constructor_shape_and_device_inference_factory_from_list_SparseBSC_cpu_bfloat16 (__main__.TestSparseCompressedCPU) ... skip: dtype not supported with list values (0.004s) 2023-01-11T21:22:05.5263746Z test_sparse_compressed_constructor_shape_and_device_inference_factory_from_list_SparseBSC_cpu_bool (__main__.TestSparseCompressedCPU) ... ok (0.158s) 2023-01-11T21:22:05.5264005Z test_sparse_compressed_constructor_shape_and_device_inference_factory_from_list_SparseBSC_cpu_complex128 (__main__.TestSparseCompressedCPU) ... skip: dtype not supported with list values (0.004s) 2023-01-11T21:22:05.5264232Z test_sparse_compressed_constructor_shape_and_device_inference_factory_from_list_SparseBSC_cpu_complex64 (__main__.TestSparseCompressedCPU) ... ok (0.169s) 2023-01-11T21:22:05.5264502Z test_sparse_compressed_constructor_shape_and_device_inference_factory_from_list_SparseBSC_cpu_float16 (__main__.TestSparseCompressedCPU) ... skip: dtype not supported with list values (0.004s) 2023-01-11T21:22:05.5264728Z test_sparse_compressed_constructor_shape_and_device_inference_factory_from_list_SparseBSC_cpu_float32 (__main__.TestSparseCompressedCPU) ... ok (0.160s) 2023-01-11T21:22:05.5265000Z test_sparse_compressed_constructor_shape_and_device_inference_factory_from_list_SparseBSC_cpu_float64 (__main__.TestSparseCompressedCPU) ... skip: dtype not supported with list values (0.004s) 2023-01-11T21:22:05.5265265Z test_sparse_compressed_constructor_shape_and_device_inference_factory_from_list_SparseBSC_cpu_int16 (__main__.TestSparseCompressedCPU) ... skip: dtype not supported with list values (0.004s) 2023-01-11T21:22:05.5265530Z test_sparse_compressed_constructor_shape_and_device_inference_factory_from_list_SparseBSC_cpu_int32 (__main__.TestSparseCompressedCPU) ... skip: dtype not supported with list values (0.004s) 2023-01-11T21:22:05.5265753Z test_sparse_compressed_constructor_shape_and_device_inference_factory_from_list_SparseBSC_cpu_int64 (__main__.TestSparseCompressedCPU) ... ok (0.141s) 2023-01-11T21:22:05.5266014Z test_sparse_compressed_constructor_shape_and_device_inference_factory_from_list_SparseBSC_cpu_int8 (__main__.TestSparseCompressedCPU) ... skip: dtype not supported with list values (0.004s) 2023-01-11T21:22:05.5266286Z test_sparse_compressed_constructor_shape_and_device_inference_factory_from_list_SparseBSC_cpu_uint8 (__main__.TestSparseCompressedCPU) ... skip: dtype not supported with list values (0.004s) 2023-01-11T21:22:05.5266554Z test_sparse_compressed_constructor_shape_and_device_inference_factory_from_list_SparseBSR_cpu_bfloat16 (__main__.TestSparseCompressedCPU) ... skip: dtype not supported with list values (0.004s) 2023-01-11T21:22:05.5266779Z test_sparse_compressed_constructor_shape_and_device_inference_factory_from_list_SparseBSR_cpu_bool (__main__.TestSparseCompressedCPU) ... ok (0.161s) 2023-01-11T21:22:05.5267048Z test_sparse_compressed_constructor_shape_and_device_inference_factory_from_list_SparseBSR_cpu_complex128 (__main__.TestSparseCompressedCPU) ... skip: dtype not supported with list values (0.004s) 2023-01-11T21:22:05.5267334Z test_sparse_compressed_constructor_shape_and_device_inference_factory_from_list_SparseBSR_cpu_complex64 (__main__.TestSparseCompressedCPU) ... ok (0.169s) 2023-01-11T21:22:05.5267591Z test_sparse_compressed_constructor_shape_and_device_inference_factory_from_list_SparseBSR_cpu_float16 (__main__.TestSparseCompressedCPU) ... skip: dtype not supported with list values (0.004s) 2023-01-11T21:22:05.5267820Z test_sparse_compressed_constructor_shape_and_device_inference_factory_from_list_SparseBSR_cpu_float32 (__main__.TestSparseCompressedCPU) ... ok (0.160s) 2023-01-11T21:22:05.5268084Z test_sparse_compressed_constructor_shape_and_device_inference_factory_from_list_SparseBSR_cpu_float64 (__main__.TestSparseCompressedCPU) ... skip: dtype not supported with list values (0.004s) 2023-01-11T21:22:05.5268345Z test_sparse_compressed_constructor_shape_and_device_inference_factory_from_list_SparseBSR_cpu_int16 (__main__.TestSparseCompressedCPU) ... skip: dtype not supported with list values (0.004s) 2023-01-11T21:22:05.5268609Z test_sparse_compressed_constructor_shape_and_device_inference_factory_from_list_SparseBSR_cpu_int32 (__main__.TestSparseCompressedCPU) ... skip: dtype not supported with list values (0.004s) 2023-01-11T21:22:05.5268862Z test_sparse_compressed_constructor_shape_and_device_inference_factory_from_list_SparseBSR_cpu_int64 (__main__.TestSparseCompressedCPU) ... ok (0.137s) 2023-01-11T21:22:05.5269126Z test_sparse_compressed_constructor_shape_and_device_inference_factory_from_list_SparseBSR_cpu_int8 (__main__.TestSparseCompressedCPU) ... skip: dtype not supported with list values (0.004s) 2023-01-11T21:22:05.5269389Z test_sparse_compressed_constructor_shape_and_device_inference_factory_from_list_SparseBSR_cpu_uint8 (__main__.TestSparseCompressedCPU) ... skip: dtype not supported with list values (0.018s) 2023-01-11T21:22:05.5269655Z test_sparse_compressed_constructor_shape_and_device_inference_factory_from_list_SparseCSC_cpu_bfloat16 (__main__.TestSparseCompressedCPU) ... skip: dtype not supported with list values (0.003s) 2023-01-11T21:22:05.5269883Z test_sparse_compressed_constructor_shape_and_device_inference_factory_from_list_SparseCSC_cpu_bool (__main__.TestSparseCompressedCPU) ... ok (0.127s) 2023-01-11T21:22:05.5270150Z test_sparse_compressed_constructor_shape_and_device_inference_factory_from_list_SparseCSC_cpu_complex128 (__main__.TestSparseCompressedCPU) ... skip: dtype not supported with list values (0.004s) 2023-01-11T21:22:05.5270378Z test_sparse_compressed_constructor_shape_and_device_inference_factory_from_list_SparseCSC_cpu_complex64 (__main__.TestSparseCompressedCPU) ... ok (0.153s) 2023-01-11T21:22:05.5270646Z test_sparse_compressed_constructor_shape_and_device_inference_factory_from_list_SparseCSC_cpu_float16 (__main__.TestSparseCompressedCPU) ... skip: dtype not supported with list values (0.004s) 2023-01-11T21:22:05.5270861Z test_sparse_compressed_constructor_shape_and_device_inference_factory_from_list_SparseCSC_cpu_float32 (__main__.TestSparseCompressedCPU) ... ok (0.144s) 2023-01-11T21:22:05.5271130Z test_sparse_compressed_constructor_shape_and_device_inference_factory_from_list_SparseCSC_cpu_float64 (__main__.TestSparseCompressedCPU) ... skip: dtype not supported with list values (0.004s) 2023-01-11T21:22:05.5271390Z test_sparse_compressed_constructor_shape_and_device_inference_factory_from_list_SparseCSC_cpu_int16 (__main__.TestSparseCompressedCPU) ... skip: dtype not supported with list values (0.004s) 2023-01-11T21:22:05.5271650Z test_sparse_compressed_constructor_shape_and_device_inference_factory_from_list_SparseCSC_cpu_int32 (__main__.TestSparseCompressedCPU) ... skip: dtype not supported with list values (0.004s) 2023-01-11T21:22:05.5271874Z test_sparse_compressed_constructor_shape_and_device_inference_factory_from_list_SparseCSC_cpu_int64 (__main__.TestSparseCompressedCPU) ... ok (0.124s) 2023-01-11T21:22:05.5272135Z test_sparse_compressed_constructor_shape_and_device_inference_factory_from_list_SparseCSC_cpu_int8 (__main__.TestSparseCompressedCPU) ... skip: dtype not supported with list values (0.020s) 2023-01-11T21:22:05.5272471Z test_sparse_compressed_constructor_shape_and_device_inference_factory_from_list_SparseCSC_cpu_uint8 (__main__.TestSparseCompressedCPU) ... skip: dtype not supported with list values (0.003s) 2023-01-11T21:22:05.5272738Z test_sparse_compressed_constructor_shape_and_device_inference_factory_from_list_SparseCSR_cpu_bfloat16 (__main__.TestSparseCompressedCPU) ... skip: dtype not supported with list values (0.003s) 2023-01-11T21:22:05.5272962Z test_sparse_compressed_constructor_shape_and_device_inference_factory_from_list_SparseCSR_cpu_bool (__main__.TestSparseCompressedCPU) ... ok (0.131s) 2023-01-11T21:22:05.5273237Z test_sparse_compressed_constructor_shape_and_device_inference_factory_from_list_SparseCSR_cpu_complex128 (__main__.TestSparseCompressedCPU) ... skip: dtype not supported with list values (0.004s) 2023-01-11T21:22:05.5273466Z test_sparse_compressed_constructor_shape_and_device_inference_factory_from_list_SparseCSR_cpu_complex64 (__main__.TestSparseCompressedCPU) ... ok (0.154s) 2023-01-11T21:22:05.5273763Z test_sparse_compressed_constructor_shape_and_device_inference_factory_from_list_SparseCSR_cpu_float16 (__main__.TestSparseCompressedCPU) ... skip: dtype not supported with list values (0.004s) 2023-01-11T21:22:05.5273991Z test_sparse_compressed_constructor_shape_and_device_inference_factory_from_list_SparseCSR_cpu_float32 (__main__.TestSparseCompressedCPU) ... ok (0.146s) 2023-01-11T21:22:05.5274258Z test_sparse_compressed_constructor_shape_and_device_inference_factory_from_list_SparseCSR_cpu_float64 (__main__.TestSparseCompressedCPU) ... skip: dtype not supported with list values (0.004s) 2023-01-11T21:22:05.5274511Z test_sparse_compressed_constructor_shape_and_device_inference_factory_from_list_SparseCSR_cpu_int16 (__main__.TestSparseCompressedCPU) ... skip: dtype not supported with list values (0.004s) 2023-01-11T21:22:05.5274773Z test_sparse_compressed_constructor_shape_and_device_inference_factory_from_list_SparseCSR_cpu_int32 (__main__.TestSparseCompressedCPU) ... skip: dtype not supported with list values (0.004s) 2023-01-11T21:22:05.5275002Z test_sparse_compressed_constructor_shape_and_device_inference_factory_from_list_SparseCSR_cpu_int64 (__main__.TestSparseCompressedCPU) ... ok (0.126s) 2023-01-11T21:22:05.5275267Z test_sparse_compressed_constructor_shape_and_device_inference_factory_from_list_SparseCSR_cpu_int8 (__main__.TestSparseCompressedCPU) ... skip: dtype not supported with list values (0.035s) 2023-01-11T21:22:05.5275536Z test_sparse_compressed_constructor_shape_and_device_inference_factory_from_list_SparseCSR_cpu_uint8 (__main__.TestSparseCompressedCPU) ... skip: dtype not supported with list values (0.003s) 2023-01-11T21:22:05.5275766Z test_sparse_compressed_constructor_shape_and_device_inference_factory_from_tensor_SparseBSC_cpu_bfloat16 (__main__.TestSparseCompressedCPU) ... ok (0.312s) 2023-01-11T21:22:05.5275994Z test_sparse_compressed_constructor_shape_and_device_inference_factory_from_tensor_SparseBSC_cpu_bool (__main__.TestSparseCompressedCPU) ... ok (0.282s) 2023-01-11T21:22:05.5276231Z test_sparse_compressed_constructor_shape_and_device_inference_factory_from_tensor_SparseBSC_cpu_complex128 (__main__.TestSparseCompressedCPU) ... ok (0.364s) 2023-01-11T21:22:05.5276467Z test_sparse_compressed_constructor_shape_and_device_inference_factory_from_tensor_SparseBSC_cpu_complex64 (__main__.TestSparseCompressedCPU) ... ok (0.343s) 2023-01-11T21:22:05.5276699Z test_sparse_compressed_constructor_shape_and_device_inference_factory_from_tensor_SparseBSC_cpu_float16 (__main__.TestSparseCompressedCPU) ... ok (0.334s) 2023-01-11T21:22:05.5276928Z test_sparse_compressed_constructor_shape_and_device_inference_factory_from_tensor_SparseBSC_cpu_float32 (__main__.TestSparseCompressedCPU) ... ok (0.312s) 2023-01-11T21:22:05.5277152Z test_sparse_compressed_constructor_shape_and_device_inference_factory_from_tensor_SparseBSC_cpu_float64 (__main__.TestSparseCompressedCPU) ... ok (0.321s) 2023-01-11T21:22:05.5277397Z test_sparse_compressed_constructor_shape_and_device_inference_factory_from_tensor_SparseBSC_cpu_int16 (__main__.TestSparseCompressedCPU) ... ok (0.274s) 2023-01-11T21:22:05.5277623Z test_sparse_compressed_constructor_shape_and_device_inference_factory_from_tensor_SparseBSC_cpu_int32 (__main__.TestSparseCompressedCPU) ... ok (0.279s) 2023-01-11T21:22:05.5277847Z test_sparse_compressed_constructor_shape_and_device_inference_factory_from_tensor_SparseBSC_cpu_int64 (__main__.TestSparseCompressedCPU) ... ok (0.286s) 2023-01-11T21:22:05.5278071Z test_sparse_compressed_constructor_shape_and_device_inference_factory_from_tensor_SparseBSC_cpu_int8 (__main__.TestSparseCompressedCPU) ... ok (0.279s) 2023-01-11T21:22:05.5278293Z test_sparse_compressed_constructor_shape_and_device_inference_factory_from_tensor_SparseBSC_cpu_uint8 (__main__.TestSparseCompressedCPU) ... ok (0.276s) 2023-01-11T21:22:05.5278520Z test_sparse_compressed_constructor_shape_and_device_inference_factory_from_tensor_SparseBSR_cpu_bfloat16 (__main__.TestSparseCompressedCPU) ... ok (0.330s) 2023-01-11T21:22:05.5278772Z test_sparse_compressed_constructor_shape_and_device_inference_factory_from_tensor_SparseBSR_cpu_bool (__main__.TestSparseCompressedCPU) ... ok (0.278s) 2023-01-11T21:22:05.5279005Z test_sparse_compressed_constructor_shape_and_device_inference_factory_from_tensor_SparseBSR_cpu_complex128 (__main__.TestSparseCompressedCPU) ... ok (0.340s) 2023-01-11T21:22:05.5279240Z test_sparse_compressed_constructor_shape_and_device_inference_factory_from_tensor_SparseBSR_cpu_complex64 (__main__.TestSparseCompressedCPU) ... ok (0.328s) 2023-01-11T21:22:05.5279467Z test_sparse_compressed_constructor_shape_and_device_inference_factory_from_tensor_SparseBSR_cpu_float16 (__main__.TestSparseCompressedCPU) ... ok (0.341s) 2023-01-11T21:22:05.5279693Z test_sparse_compressed_constructor_shape_and_device_inference_factory_from_tensor_SparseBSR_cpu_float32 (__main__.TestSparseCompressedCPU) ... ok (0.315s) 2023-01-11T21:22:05.5279921Z test_sparse_compressed_constructor_shape_and_device_inference_factory_from_tensor_SparseBSR_cpu_float64 (__main__.TestSparseCompressedCPU) ... ok (0.317s) 2023-01-11T21:22:05.5280136Z test_sparse_compressed_constructor_shape_and_device_inference_factory_from_tensor_SparseBSR_cpu_int16 (__main__.TestSparseCompressedCPU) ... ok (0.288s) 2023-01-11T21:22:05.5280362Z test_sparse_compressed_constructor_shape_and_device_inference_factory_from_tensor_SparseBSR_cpu_int32 (__main__.TestSparseCompressedCPU) ... ok (0.274s) 2023-01-11T21:22:05.5280582Z test_sparse_compressed_constructor_shape_and_device_inference_factory_from_tensor_SparseBSR_cpu_int64 (__main__.TestSparseCompressedCPU) ... ok (0.286s) 2023-01-11T21:22:05.5280952Z test_sparse_compressed_constructor_shape_and_device_inference_factory_from_tensor_SparseBSR_cpu_int8 (__main__.TestSparseCompressedCPU) ... ok (0.277s) 2023-01-11T21:22:05.5281174Z test_sparse_compressed_constructor_shape_and_device_inference_factory_from_tensor_SparseBSR_cpu_uint8 (__main__.TestSparseCompressedCPU) ... ok (0.278s) 2023-01-11T21:22:05.5281405Z test_sparse_compressed_constructor_shape_and_device_inference_factory_from_tensor_SparseCSC_cpu_bfloat16 (__main__.TestSparseCompressedCPU) ... ok (0.300s) 2023-01-11T21:22:05.5281625Z test_sparse_compressed_constructor_shape_and_device_inference_factory_from_tensor_SparseCSC_cpu_bool (__main__.TestSparseCompressedCPU) ... ok (0.251s) 2023-01-11T21:22:05.5281855Z test_sparse_compressed_constructor_shape_and_device_inference_factory_from_tensor_SparseCSC_cpu_complex128 (__main__.TestSparseCompressedCPU) ... ok (0.293s) 2023-01-11T21:22:05.5282088Z test_sparse_compressed_constructor_shape_and_device_inference_factory_from_tensor_SparseCSC_cpu_complex64 (__main__.TestSparseCompressedCPU) ... ok (0.315s) 2023-01-11T21:22:05.5282316Z test_sparse_compressed_constructor_shape_and_device_inference_factory_from_tensor_SparseCSC_cpu_float16 (__main__.TestSparseCompressedCPU) ... ok (0.286s) 2023-01-11T21:22:05.5282603Z test_sparse_compressed_constructor_shape_and_device_inference_factory_from_tensor_SparseCSC_cpu_float32 (__main__.TestSparseCompressedCPU) ... ok (0.301s) 2023-01-11T21:22:05.5282819Z test_sparse_compressed_constructor_shape_and_device_inference_factory_from_tensor_SparseCSC_cpu_float64 (__main__.TestSparseCompressedCPU) ... ok (0.280s) 2023-01-11T21:22:05.5283043Z test_sparse_compressed_constructor_shape_and_device_inference_factory_from_tensor_SparseCSC_cpu_int16 (__main__.TestSparseCompressedCPU) ... ok (0.251s) 2023-01-11T21:22:05.5283267Z test_sparse_compressed_constructor_shape_and_device_inference_factory_from_tensor_SparseCSC_cpu_int32 (__main__.TestSparseCompressedCPU) ... ok (0.271s) 2023-01-11T21:22:05.5283489Z test_sparse_compressed_constructor_shape_and_device_inference_factory_from_tensor_SparseCSC_cpu_int64 (__main__.TestSparseCompressedCPU) ... ok (0.245s) 2023-01-11T21:22:05.5283712Z test_sparse_compressed_constructor_shape_and_device_inference_factory_from_tensor_SparseCSC_cpu_int8 (__main__.TestSparseCompressedCPU) ... ok (0.251s) 2023-01-11T21:22:05.5283968Z test_sparse_compressed_constructor_shape_and_device_inference_factory_from_tensor_SparseCSC_cpu_uint8 (__main__.TestSparseCompressedCPU) ... ok (0.286s) 2023-01-11T21:22:05.5284197Z test_sparse_compressed_constructor_shape_and_device_inference_factory_from_tensor_SparseCSR_cpu_bfloat16 (__main__.TestSparseCompressedCPU) ... ok (0.287s) 2023-01-11T21:22:05.5284417Z test_sparse_compressed_constructor_shape_and_device_inference_factory_from_tensor_SparseCSR_cpu_bool (__main__.TestSparseCompressedCPU) ... ok (0.253s) 2023-01-11T21:22:05.5284646Z test_sparse_compressed_constructor_shape_and_device_inference_factory_from_tensor_SparseCSR_cpu_complex128 (__main__.TestSparseCompressedCPU) ... ok (0.308s) 2023-01-11T21:22:05.5284878Z test_sparse_compressed_constructor_shape_and_device_inference_factory_from_tensor_SparseCSR_cpu_complex64 (__main__.TestSparseCompressedCPU) ... ok (0.297s) 2023-01-11T21:22:05.5285107Z test_sparse_compressed_constructor_shape_and_device_inference_factory_from_tensor_SparseCSR_cpu_float16 (__main__.TestSparseCompressedCPU) ... ok (0.299s) 2023-01-11T21:22:05.5285335Z test_sparse_compressed_constructor_shape_and_device_inference_factory_from_tensor_SparseCSR_cpu_float32 (__main__.TestSparseCompressedCPU) ... ok (0.284s) 2023-01-11T21:22:05.5285548Z test_sparse_compressed_constructor_shape_and_device_inference_factory_from_tensor_SparseCSR_cpu_float64 (__main__.TestSparseCompressedCPU) ... ok (0.278s) 2023-01-11T21:22:05.5285771Z test_sparse_compressed_constructor_shape_and_device_inference_factory_from_tensor_SparseCSR_cpu_int16 (__main__.TestSparseCompressedCPU) ... ok (0.268s) 2023-01-11T21:22:05.5285992Z test_sparse_compressed_constructor_shape_and_device_inference_factory_from_tensor_SparseCSR_cpu_int32 (__main__.TestSparseCompressedCPU) ... ok (0.250s) 2023-01-11T21:22:05.5286216Z test_sparse_compressed_constructor_shape_and_device_inference_factory_from_tensor_SparseCSR_cpu_int64 (__main__.TestSparseCompressedCPU) ... ok (0.245s) 2023-01-11T21:22:05.5286442Z test_sparse_compressed_constructor_shape_and_device_inference_factory_from_tensor_SparseCSR_cpu_int8 (__main__.TestSparseCompressedCPU) ... ok (0.264s) 2023-01-11T21:22:05.5286664Z test_sparse_compressed_constructor_shape_and_device_inference_factory_from_tensor_SparseCSR_cpu_uint8 (__main__.TestSparseCompressedCPU) ... ok (0.251s) 2023-01-11T21:22:05.5286824Z test_to_dtype_SparseBSC_cpu_bfloat16 (__main__.TestSparseCompressedCPU) ... ok (0.465s) 2023-01-11T21:22:05.5286980Z test_to_dtype_SparseBSC_cpu_bool (__main__.TestSparseCompressedCPU) ... ok (0.444s) 2023-01-11T21:22:05.5287141Z test_to_dtype_SparseBSC_cpu_complex128 (__main__.TestSparseCompressedCPU) ... ok (0.462s) 2023-01-11T21:22:05.5287299Z test_to_dtype_SparseBSC_cpu_complex64 (__main__.TestSparseCompressedCPU) ... ok (0.464s) 2023-01-11T21:22:05.5287443Z test_to_dtype_SparseBSC_cpu_float16 (__main__.TestSparseCompressedCPU) ... ok (0.501s) 2023-01-11T21:22:05.5287634Z test_to_dtype_SparseBSC_cpu_float32 (__main__.TestSparseCompressedCPU) ... ok (0.476s) 2023-01-11T21:22:05.5287790Z test_to_dtype_SparseBSC_cpu_float64 (__main__.TestSparseCompressedCPU) ... ok (0.447s) 2023-01-11T21:22:05.5287942Z test_to_dtype_SparseBSC_cpu_int16 (__main__.TestSparseCompressedCPU) ... ok (0.457s) 2023-01-11T21:22:05.5288097Z test_to_dtype_SparseBSC_cpu_int32 (__main__.TestSparseCompressedCPU) ... ok (0.446s) 2023-01-11T21:22:05.5288249Z test_to_dtype_SparseBSC_cpu_int64 (__main__.TestSparseCompressedCPU) ... ok (0.460s) 2023-01-11T21:22:05.5288399Z test_to_dtype_SparseBSC_cpu_int8 (__main__.TestSparseCompressedCPU) ... ok (0.440s) 2023-01-11T21:22:05.5288552Z test_to_dtype_SparseBSC_cpu_uint8 (__main__.TestSparseCompressedCPU) ... ok (0.457s) 2023-01-11T21:22:05.5288710Z test_to_dtype_SparseBSR_cpu_bfloat16 (__main__.TestSparseCompressedCPU) ... ok (0.459s) 2023-01-11T21:22:05.5288851Z test_to_dtype_SparseBSR_cpu_bool (__main__.TestSparseCompressedCPU) ... ok (0.441s) 2023-01-11T21:22:05.5289015Z test_to_dtype_SparseBSR_cpu_complex128 (__main__.TestSparseCompressedCPU) ... ok (0.456s) 2023-01-11T21:22:05.5289203Z test_to_dtype_SparseBSR_cpu_complex64 (__main__.TestSparseCompressedCPU) ... ok (0.471s) 2023-01-11T21:22:05.5289360Z test_to_dtype_SparseBSR_cpu_float16 (__main__.TestSparseCompressedCPU) ... ok (0.487s) 2023-01-11T21:22:05.5289511Z test_to_dtype_SparseBSR_cpu_float32 (__main__.TestSparseCompressedCPU) ... ok (0.449s) 2023-01-11T21:22:05.5289667Z test_to_dtype_SparseBSR_cpu_float64 (__main__.TestSparseCompressedCPU) ... ok (0.478s) 2023-01-11T21:22:05.5289819Z test_to_dtype_SparseBSR_cpu_int16 (__main__.TestSparseCompressedCPU) ... ok (0.458s) 2023-01-11T21:22:05.5289969Z test_to_dtype_SparseBSR_cpu_int32 (__main__.TestSparseCompressedCPU) ... ok (0.443s) 2023-01-11T21:22:05.5290108Z test_to_dtype_SparseBSR_cpu_int64 (__main__.TestSparseCompressedCPU) ... ok (0.464s) 2023-01-11T21:22:05.5290263Z test_to_dtype_SparseBSR_cpu_int8 (__main__.TestSparseCompressedCPU) ... ok (0.444s) 2023-01-11T21:22:05.5290412Z test_to_dtype_SparseBSR_cpu_uint8 (__main__.TestSparseCompressedCPU) ... ok (0.462s) 2023-01-11T21:22:05.5290570Z test_to_dtype_SparseCSC_cpu_bfloat16 (__main__.TestSparseCompressedCPU) ... ok (0.251s) 2023-01-11T21:22:05.5290723Z test_to_dtype_SparseCSC_cpu_bool (__main__.TestSparseCompressedCPU) ... ok (0.247s) 2023-01-11T21:22:05.5290885Z test_to_dtype_SparseCSC_cpu_complex128 (__main__.TestSparseCompressedCPU) ... ok (0.273s) 2023-01-11T21:22:05.5291044Z test_to_dtype_SparseCSC_cpu_complex64 (__main__.TestSparseCompressedCPU) ... ok (0.252s) 2023-01-11T21:22:05.5291197Z test_to_dtype_SparseCSC_cpu_float16 (__main__.TestSparseCompressedCPU) ... ok (0.249s) 2023-01-11T21:22:05.5291340Z test_to_dtype_SparseCSC_cpu_float32 (__main__.TestSparseCompressedCPU) ... ok (0.297s) 2023-01-11T21:22:05.5291494Z test_to_dtype_SparseCSC_cpu_float64 (__main__.TestSparseCompressedCPU) ... ok (0.246s) 2023-01-11T21:22:05.5291646Z test_to_dtype_SparseCSC_cpu_int16 (__main__.TestSparseCompressedCPU) ... ok (0.244s) 2023-01-11T21:22:05.5291793Z test_to_dtype_SparseCSC_cpu_int32 (__main__.TestSparseCompressedCPU) ... ok (0.245s) 2023-01-11T21:22:05.5291944Z test_to_dtype_SparseCSC_cpu_int64 (__main__.TestSparseCompressedCPU) ... ok (0.275s) 2023-01-11T21:22:05.5292094Z test_to_dtype_SparseCSC_cpu_int8 (__main__.TestSparseCompressedCPU) ... ok (0.251s) 2023-01-11T21:22:05.5292245Z test_to_dtype_SparseCSC_cpu_uint8 (__main__.TestSparseCompressedCPU) ... ok (0.249s) 2023-01-11T21:22:05.5292400Z test_to_dtype_SparseCSR_cpu_bfloat16 (__main__.TestSparseCompressedCPU) ... ok (0.243s) 2023-01-11T21:22:05.5292550Z test_to_dtype_SparseCSR_cpu_bool (__main__.TestSparseCompressedCPU) ... ok (0.217s) 2023-01-11T21:22:05.5292698Z test_to_dtype_SparseCSR_cpu_complex128 (__main__.TestSparseCompressedCPU) ... ok (0.225s) 2023-01-11T21:22:05.5292855Z test_to_dtype_SparseCSR_cpu_complex64 (__main__.TestSparseCompressedCPU) ... ok (0.225s) 2023-01-11T21:22:05.5293038Z test_to_dtype_SparseCSR_cpu_float16 (__main__.TestSparseCompressedCPU) ... ok (0.246s) 2023-01-11T21:22:05.5293194Z test_to_dtype_SparseCSR_cpu_float32 (__main__.TestSparseCompressedCPU) ... ok (0.224s) 2023-01-11T21:22:05.5293347Z test_to_dtype_SparseCSR_cpu_float64 (__main__.TestSparseCompressedCPU) ... ok (0.224s) 2023-01-11T21:22:05.5293497Z test_to_dtype_SparseCSR_cpu_int16 (__main__.TestSparseCompressedCPU) ... ok (0.226s) 2023-01-11T21:22:05.5293652Z test_to_dtype_SparseCSR_cpu_int32 (__main__.TestSparseCompressedCPU) ... ok (0.247s) 2023-01-11T21:22:05.5293802Z test_to_dtype_SparseCSR_cpu_int64 (__main__.TestSparseCompressedCPU) ... ok (0.222s) 2023-01-11T21:22:05.5293942Z test_to_dtype_SparseCSR_cpu_int8 (__main__.TestSparseCompressedCPU) ... ok (0.220s) 2023-01-11T21:22:05.5294090Z test_to_dtype_SparseCSR_cpu_uint8 (__main__.TestSparseCompressedCPU) ... ok (0.246s) 2023-01-11T21:22:05.5294249Z test_validate_SparseBSC_cpu_bfloat16 (__main__.TestSparseCompressedCPU) ... ok (0.211s) 2023-01-11T21:22:05.5294404Z test_validate_SparseBSC_cpu_bool (__main__.TestSparseCompressedCPU) ... ok (0.225s) 2023-01-11T21:22:05.5294597Z test_validate_SparseBSC_cpu_complex128 (__main__.TestSparseCompressedCPU) ... ok (0.210s) 2023-01-11T21:22:05.5294758Z test_validate_SparseBSC_cpu_complex64 (__main__.TestSparseCompressedCPU) ... ok (0.206s) 2023-01-11T21:22:05.5294912Z test_validate_SparseBSC_cpu_float16 (__main__.TestSparseCompressedCPU) ... ok (0.199s) 2023-01-11T21:22:05.5295067Z test_validate_SparseBSC_cpu_float32 (__main__.TestSparseCompressedCPU) ... ok (0.198s) 2023-01-11T21:22:05.5295223Z test_validate_SparseBSC_cpu_float64 (__main__.TestSparseCompressedCPU) ... ok (0.217s) 2023-01-11T21:22:05.5295362Z test_validate_SparseBSC_cpu_int16 (__main__.TestSparseCompressedCPU) ... ok (0.185s) 2023-01-11T21:22:05.5295514Z test_validate_SparseBSC_cpu_int32 (__main__.TestSparseCompressedCPU) ... ok (0.186s) 2023-01-11T21:22:05.5295666Z test_validate_SparseBSC_cpu_int64 (__main__.TestSparseCompressedCPU) ... ok (0.183s) 2023-01-11T21:22:05.5295818Z test_validate_SparseBSC_cpu_int8 (__main__.TestSparseCompressedCPU) ... ok (0.185s) 2023-01-11T21:22:05.5295973Z test_validate_SparseBSC_cpu_uint8 (__main__.TestSparseCompressedCPU) ... ok (0.217s) 2023-01-11T21:22:05.5296130Z test_validate_SparseBSR_cpu_bfloat16 (__main__.TestSparseCompressedCPU) ... ok (0.197s) 2023-01-11T21:22:05.5296283Z test_validate_SparseBSR_cpu_bool (__main__.TestSparseCompressedCPU) ... ok (0.186s) 2023-01-11T21:22:05.5296446Z test_validate_SparseBSR_cpu_complex128 (__main__.TestSparseCompressedCPU) ... ok (0.206s) 2023-01-11T21:22:05.5296594Z test_validate_SparseBSR_cpu_complex64 (__main__.TestSparseCompressedCPU) ... ok (0.205s) 2023-01-11T21:22:05.5296750Z test_validate_SparseBSR_cpu_float16 (__main__.TestSparseCompressedCPU) ... ok (0.226s) 2023-01-11T21:22:05.5296904Z test_validate_SparseBSR_cpu_float32 (__main__.TestSparseCompressedCPU) ... ok (0.205s) 2023-01-11T21:22:05.5297060Z test_validate_SparseBSR_cpu_float64 (__main__.TestSparseCompressedCPU) ... ok (0.201s) 2023-01-11T21:22:05.5297294Z test_validate_SparseBSR_cpu_int16 (__main__.TestSparseCompressedCPU) ... ok (0.188s) 2023-01-11T21:22:05.5297450Z test_validate_SparseBSR_cpu_int32 (__main__.TestSparseCompressedCPU) ... ok (0.188s) 2023-01-11T21:22:05.5297603Z test_validate_SparseBSR_cpu_int64 (__main__.TestSparseCompressedCPU) ... ok (0.185s) 2023-01-11T21:22:05.5297754Z test_validate_SparseBSR_cpu_int8 (__main__.TestSparseCompressedCPU) ... ok (0.206s) 2023-01-11T21:22:05.5297896Z test_validate_SparseBSR_cpu_uint8 (__main__.TestSparseCompressedCPU) ... ok (0.189s) 2023-01-11T21:22:05.5298053Z test_validate_SparseCSC_cpu_bfloat16 (__main__.TestSparseCompressedCPU) ... ok (0.182s) 2023-01-11T21:22:05.5298210Z test_validate_SparseCSC_cpu_bool (__main__.TestSparseCompressedCPU) ... ok (0.164s) 2023-01-11T21:22:05.5298371Z test_validate_SparseCSC_cpu_complex128 (__main__.TestSparseCompressedCPU) ... ok (0.176s) 2023-01-11T21:22:05.5298564Z test_validate_SparseCSC_cpu_complex64 (__main__.TestSparseCompressedCPU) ... ok (0.195s) 2023-01-11T21:22:05.5298721Z test_validate_SparseCSC_cpu_float16 (__main__.TestSparseCompressedCPU) ... ok (0.172s) 2023-01-11T21:22:05.5298873Z test_validate_SparseCSC_cpu_float32 (__main__.TestSparseCompressedCPU) ... ok (0.172s) 2023-01-11T21:22:05.5299026Z test_validate_SparseCSC_cpu_float64 (__main__.TestSparseCompressedCPU) ... ok (0.171s) 2023-01-11T21:22:05.5299177Z test_validate_SparseCSC_cpu_int16 (__main__.TestSparseCompressedCPU) ... ok (0.170s) 2023-01-11T21:22:05.5299317Z test_validate_SparseCSC_cpu_int32 (__main__.TestSparseCompressedCPU) ... ok (0.167s) 2023-01-11T21:22:05.5299468Z test_validate_SparseCSC_cpu_int64 (__main__.TestSparseCompressedCPU) ... ok (0.162s) 2023-01-11T21:22:05.5299619Z test_validate_SparseCSC_cpu_int8 (__main__.TestSparseCompressedCPU) ... ok (0.186s) 2023-01-11T21:22:05.5299774Z test_validate_SparseCSC_cpu_uint8 (__main__.TestSparseCompressedCPU) ... ok (0.165s) 2023-01-11T21:22:05.5299934Z test_validate_SparseCSR_cpu_bfloat16 (__main__.TestSparseCompressedCPU) ... ok (0.174s) 2023-01-11T21:22:05.5300117Z test_validate_SparseCSR_cpu_bool (__main__.TestSparseCompressedCPU) ... ok (0.165s) 2023-01-11T21:22:05.5300278Z test_validate_SparseCSR_cpu_complex128 (__main__.TestSparseCompressedCPU) ... ok (0.179s) 2023-01-11T21:22:05.5300440Z test_validate_SparseCSR_cpu_complex64 (__main__.TestSparseCompressedCPU) ... ok (0.181s) 2023-01-11T21:22:05.5300582Z test_validate_SparseCSR_cpu_float16 (__main__.TestSparseCompressedCPU) ... ok (0.209s) 2023-01-11T21:22:05.5300737Z test_validate_SparseCSR_cpu_float32 (__main__.TestSparseCompressedCPU) ... ok (0.177s) 2023-01-11T21:22:05.5300892Z test_validate_SparseCSR_cpu_float64 (__main__.TestSparseCompressedCPU) ... ok (0.171s) 2023-01-11T21:22:05.5301042Z test_validate_SparseCSR_cpu_int16 (__main__.TestSparseCompressedCPU) ... ok (0.162s) 2023-01-11T21:22:05.5301192Z test_validate_SparseCSR_cpu_int32 (__main__.TestSparseCompressedCPU) ... ok (0.162s) 2023-01-11T21:22:05.5301346Z test_validate_SparseCSR_cpu_int64 (__main__.TestSparseCompressedCPU) ... ok (0.159s) 2023-01-11T21:22:05.5301500Z test_validate_SparseCSR_cpu_int8 (__main__.TestSparseCompressedCPU) ... ok (0.178s) 2023-01-11T21:22:05.5301654Z test_validate_SparseCSR_cpu_uint8 (__main__.TestSparseCompressedCPU) ... ok (0.161s) 2023-01-11T21:22:05.5301665Z 2023-01-11T21:22:05.5301965Z ---------------------------------------------------------------------- 2023-01-11T21:22:05.5302032Z Ran 4351 tests in 1007.546s 2023-01-11T21:22:05.5302037Z 2023-01-11T21:22:05.5302108Z OK (skipped=475) 2023-01-11T21:22:05.5302113Z 2023-01-11T21:22:05.5302199Z Generating XML reports... 2023-01-11T21:22:05.5302507Z Generated XML report: test-reports/python-unittest/test_sparse_csr/TEST-TestSparseCSRCPU-20230111210516.xml 2023-01-11T21:22:05.5302811Z Generated XML report: test-reports/python-unittest/test_sparse_csr/TEST-TestSparseCSRSampler-20230111210516.xml 2023-01-11T21:22:05.5303125Z Generated XML report: test-reports/python-unittest/test_sparse_csr/TEST-TestSparseCompressedCPU-20230111210516.xml 2023-01-11T21:22:05.5303130Z 2023-01-11T21:22:05.5303540Z ##[endgroup] 2023-01-11T21:22:05.5303822Z FINISHED PRINTING LOG FILE of test_sparse_csr (/var/lib/jenkins/workspace/test/test-reports/test_sparse_csr_1aons3sa) 2023-01-11T21:22:05.5303827Z 2023-01-11T21:22:05.5303968Z Running test_torch ... [2023-01-11 21:22:05.427010] 2023-01-11T21:22:05.5304292Z Executing ['/opt/conda/bin/python', '-bb', 'test_torch.py', '-v', '--import-slow-tests', '--import-disabled-tests'] ... [2023-01-11 21:22:05.427466] 2023-01-11T21:23:04.6542772Z 2023-01-11T21:23:04.6543211Z Expand the folded group to see the log file of test_torch 2023-01-11T21:23:04.6544913Z ##[group]PRINTING LOG FILE of test_torch (/var/lib/jenkins/workspace/test/test-reports/test_torch_74lr60y8) 2023-01-11T21:23:04.6547944Z Test results will be stored in test-reports/python-unittest/test_torch 2023-01-11T21:23:04.6548486Z 2023-01-11T21:23:04.6548631Z Running tests... 2023-01-11T21:23:04.6549124Z ---------------------------------------------------------------------- 2023-01-11T21:23:04.6549610Z test_basic_vitals (__main__.TestBasicVitalSigns) ... ok (0.002s) 2023-01-11T21:23:04.6550075Z test_basic_vitals_read_write (__main__.TestBasicVitalSigns) ... ok (0.001s) 2023-01-11T21:23:04.6550562Z test_dataloader_vitals (__main__.TestBasicVitalSigns) ... ok (0.002s) 2023-01-11T21:23:04.6550979Z test_RNGState (__main__.TestTorch) ... ok (0.004s) 2023-01-11T21:23:04.6551379Z test_RNGStateAliasing (__main__.TestTorch) ... ok (0.005s) 2023-01-11T21:23:04.6551768Z test_RNG_after_pickle (__main__.TestTorch) ... ok (0.003s) 2023-01-11T21:23:04.6552155Z test_Size (__main__.TestTorch) ... ok (0.004s) 2023-01-11T21:23:04.6552501Z test_Size_iter (__main__.TestTorch) ... ok (0.001s) 2023-01-11T21:23:04.6552868Z test_Size_scalar (__main__.TestTorch) ... ok (0.001s) 2023-01-11T21:23:04.6553289Z test_add_meta_scalar (__main__.TestTorch) ... ok (0.002s) 2023-01-11T21:23:04.6553722Z test_allow_tensor_metadata_change (__main__.TestTorch) ... ok (0.001s) 2023-01-11T21:23:04.6554305Z test_apply (__main__.TestTorch) ... ok (0.001s) 2023-01-11T21:23:04.6554692Z test_as_subclass (__main__.TestTorch) ... ok (0.008s) 2023-01-11T21:23:04.6555046Z test_assert_async (__main__.TestTorch) ... ok (0.028s) 2023-01-11T21:23:04.6555350Z test_backward_hooks_traverse (__main__.TestTorch) ... ok (0.062s) 2023-01-11T21:23:04.6555628Z test_batch_norm_cpu_inference (__main__.TestTorch) ... ok (0.017s) 2023-01-11T21:23:04.6556739Z test_bmm_multithreaded (__main__.TestTorch) ... test_torch.py:8590: UserWarning: An output with one or more elements was resized since it had shape [1, 23, 12], which does not match the required output shape [1, 23, 0]. This behavior is deprecated, and in a future PyTorch release outputs will not be resized unless they have zero elements. You can explicitly reuse an out tensor t by resizing it, inplace, to zero elements with t.resize_(0). (Triggered internally at /var/lib/jenkins/workspace/aten/src/ATen/native/Resize.cpp:33.) 2023-01-11T21:23:04.6557729Z torch.bmm(b1, b2, out=res2) 2023-01-11T21:23:04.6558743Z test_torch.py:8590: UserWarning: An output with one or more elements was resized since it had shape [1, 23, 12], which does not match the required output shape [1, 0, 12]. This behavior is deprecated, and in a future PyTorch release outputs will not be resized unless they have zero elements. You can explicitly reuse an out tensor t by resizing it, inplace, to zero elements with t.resize_(0). (Triggered internally at /var/lib/jenkins/workspace/aten/src/ATen/native/Resize.cpp:33.) 2023-01-11T21:23:04.6559585Z torch.bmm(b1, b2, out=res2) 2023-01-11T21:23:04.6560562Z test_torch.py:8590: UserWarning: An output with one or more elements was resized since it had shape [1, 23, 12], which does not match the required output shape [1, 0, 0]. This behavior is deprecated, and in a future PyTorch release outputs will not be resized unless they have zero elements. You can explicitly reuse an out tensor t by resizing it, inplace, to zero elements with t.resize_(0). (Triggered internally at /var/lib/jenkins/workspace/aten/src/ATen/native/Resize.cpp:33.) 2023-01-11T21:23:04.6561612Z torch.bmm(b1, b2, out=res2) 2023-01-11T21:23:04.6562474Z test_torch.py:8590: UserWarning: An output with one or more elements was resized since it had shape [1, 23, 12], which does not match the required output shape [0, 23, 12]. This behavior is deprecated, and in a future PyTorch release outputs will not be resized unless they have zero elements. You can explicitly reuse an out tensor t by resizing it, inplace, to zero elements with t.resize_(0). (Triggered internally at /var/lib/jenkins/workspace/aten/src/ATen/native/Resize.cpp:33.) 2023-01-11T21:23:04.6563355Z torch.bmm(b1, b2, out=res2) 2023-01-11T21:23:04.6564342Z test_torch.py:8590: UserWarning: An output with one or more elements was resized since it had shape [1, 23, 12], which does not match the required output shape [0, 23, 0]. This behavior is deprecated, and in a future PyTorch release outputs will not be resized unless they have zero elements. You can explicitly reuse an out tensor t by resizing it, inplace, to zero elements with t.resize_(0). (Triggered internally at /var/lib/jenkins/workspace/aten/src/ATen/native/Resize.cpp:33.) 2023-01-11T21:23:04.6565351Z torch.bmm(b1, b2, out=res2) 2023-01-11T21:23:04.6566773Z test_torch.py:8590: UserWarning: An output with one or more elements was resized since it had shape [1, 23, 12], which does not match the required output shape [0, 0, 12]. This behavior is deprecated, and in a future PyTorch release outputs will not be resized unless they have zero elements. You can explicitly reuse an out tensor t by resizing it, inplace, to zero elements with t.resize_(0). (Triggered internally at /var/lib/jenkins/workspace/aten/src/ATen/native/Resize.cpp:33.) 2023-01-11T21:23:04.6567621Z torch.bmm(b1, b2, out=res2) 2023-01-11T21:23:04.6568644Z test_torch.py:8590: UserWarning: An output with one or more elements was resized since it had shape [1, 23, 12], which does not match the required output shape [0, 0, 0]. This behavior is deprecated, and in a future PyTorch release outputs will not be resized unless they have zero elements. You can explicitly reuse an out tensor t by resizing it, inplace, to zero elements with t.resize_(0). (Triggered internally at /var/lib/jenkins/workspace/aten/src/ATen/native/Resize.cpp:33.) 2023-01-11T21:23:04.6569530Z torch.bmm(b1, b2, out=res2) 2023-01-11T21:23:04.6570473Z test_torch.py:8590: UserWarning: An output with one or more elements was resized since it had shape [10, 23, 12], which does not match the required output shape [10, 23, 0]. This behavior is deprecated, and in a future PyTorch release outputs will not be resized unless they have zero elements. You can explicitly reuse an out tensor t by resizing it, inplace, to zero elements with t.resize_(0). (Triggered internally at /var/lib/jenkins/workspace/aten/src/ATen/native/Resize.cpp:33.) 2023-01-11T21:23:04.6571317Z torch.bmm(b1, b2, out=res2) 2023-01-11T21:23:04.6572228Z test_torch.py:8590: UserWarning: An output with one or more elements was resized since it had shape [10, 23, 12], which does not match the required output shape [10, 0, 12]. This behavior is deprecated, and in a future PyTorch release outputs will not be resized unless they have zero elements. You can explicitly reuse an out tensor t by resizing it, inplace, to zero elements with t.resize_(0). (Triggered internally at /var/lib/jenkins/workspace/aten/src/ATen/native/Resize.cpp:33.) 2023-01-11T21:23:04.6573061Z torch.bmm(b1, b2, out=res2) 2023-01-11T21:23:04.6573990Z test_torch.py:8590: UserWarning: An output with one or more elements was resized since it had shape [10, 23, 12], which does not match the required output shape [10, 0, 0]. This behavior is deprecated, and in a future PyTorch release outputs will not be resized unless they have zero elements. You can explicitly reuse an out tensor t by resizing it, inplace, to zero elements with t.resize_(0). (Triggered internally at /var/lib/jenkins/workspace/aten/src/ATen/native/Resize.cpp:33.) 2023-01-11T21:23:04.6574611Z torch.bmm(b1, b2, out=res2) 2023-01-11T21:23:04.6575298Z test_torch.py:8590: UserWarning: An output with one or more elements was resized since it had shape [10, 23, 12], which does not match the required output shape [0, 23, 12]. This behavior is deprecated, and in a future PyTorch release outputs will not be resized unless they have zero elements. You can explicitly reuse an out tensor t by resizing it, inplace, to zero elements with t.resize_(0). (Triggered internally at /var/lib/jenkins/workspace/aten/src/ATen/native/Resize.cpp:33.) 2023-01-11T21:23:04.6575944Z torch.bmm(b1, b2, out=res2) 2023-01-11T21:23:04.6576636Z test_torch.py:8590: UserWarning: An output with one or more elements was resized since it had shape [10, 23, 12], which does not match the required output shape [0, 23, 0]. This behavior is deprecated, and in a future PyTorch release outputs will not be resized unless they have zero elements. You can explicitly reuse an out tensor t by resizing it, inplace, to zero elements with t.resize_(0). (Triggered internally at /var/lib/jenkins/workspace/aten/src/ATen/native/Resize.cpp:33.) 2023-01-11T21:23:04.6577425Z torch.bmm(b1, b2, out=res2) 2023-01-11T21:23:04.6578093Z test_torch.py:8590: UserWarning: An output with one or more elements was resized since it had shape [10, 23, 12], which does not match the required output shape [0, 0, 12]. This behavior is deprecated, and in a future PyTorch release outputs will not be resized unless they have zero elements. You can explicitly reuse an out tensor t by resizing it, inplace, to zero elements with t.resize_(0). (Triggered internally at /var/lib/jenkins/workspace/aten/src/ATen/native/Resize.cpp:33.) 2023-01-11T21:23:04.6578722Z torch.bmm(b1, b2, out=res2) 2023-01-11T21:23:04.6579429Z test_torch.py:8590: UserWarning: An output with one or more elements was resized since it had shape [10, 23, 12], which does not match the required output shape [0, 0, 0]. This behavior is deprecated, and in a future PyTorch release outputs will not be resized unless they have zero elements. You can explicitly reuse an out tensor t by resizing it, inplace, to zero elements with t.resize_(0). (Triggered internally at /var/lib/jenkins/workspace/aten/src/ATen/native/Resize.cpp:33.) 2023-01-11T21:23:04.6580174Z torch.bmm(b1, b2, out=res2) 2023-01-11T21:23:04.6580386Z ok (4.492s) 2023-01-11T21:23:04.6580592Z test_boxMullerState (__main__.TestTorch) ... ok (0.002s) 2023-01-11T21:23:04.6580926Z test_c10_layer_norm (__main__.TestTorch) ... skip: Pytorch is compiled without Caffe2 (0.001s) 2023-01-11T21:23:04.6581261Z test_cat_neg_dim (__main__.TestTorch) ... ok (0.004s) 2023-01-11T21:23:04.6581493Z test_chunk_neg_dim (__main__.TestTorch) ... ok (0.031s) 2023-01-11T21:23:04.6581746Z test_conj_neg_tolist (__main__.TestTorch) ... ok (0.005s) 2023-01-11T21:23:04.6581995Z test_contains (__main__.TestTorch) ... ok (0.003s) 2023-01-11T21:23:04.6582243Z test_copy_broadcast (__main__.TestTorch) ... ok (0.017s) 2023-01-11T21:23:04.6582479Z test_copy_dtypes (__main__.TestTorch) ... ok (0.001s) 2023-01-11T21:23:04.6582721Z test_copy_float16 (__main__.TestTorch) ... ok (0.273s) 2023-01-11T21:23:04.6582969Z test_copy_many_to_one (__main__.TestTorch) ... ok (0.016s) 2023-01-11T21:23:04.6583629Z test_copy_transpose (__main__.TestTorch) ... test_torch.py:7754: UserWarning: ComplexHalf support is experimental and many operators don't support it yet. (Triggered internally at /var/lib/jenkins/workspace/aten/src/ATen/EmptyTensor.cpp:32.) 2023-01-11T21:23:04.6584093Z x = torch.arange(100 * 100).reshape(100, 100).to(dtype=torch.complex32).t() 2023-01-11T21:23:04.6584318Z ok (0.010s) 2023-01-11T21:23:04.6584528Z test_cuda_not_built (__main__.TestTorch) ... ok (0.005s) 2023-01-11T21:23:04.6584763Z test_cummax_neg_dim (__main__.TestTorch) ... ok (0.007s) 2023-01-11T21:23:04.6585014Z test_cummin_neg_dim (__main__.TestTorch) ... ok (0.005s) 2023-01-11T21:23:04.6585259Z test_cumprod_neg_dim (__main__.TestTorch) ... ok (0.005s) 2023-01-11T21:23:04.6585500Z test_cumsum_neg_dim (__main__.TestTorch) ... ok (0.004s) 2023-01-11T21:23:04.6585734Z test_cxx_flags (__main__.TestTorch) ... ok (0.001s) 2023-01-11T21:23:04.6586516Z test_dead_weak_ref (__main__.TestTorch) ... [W python_variable.cpp:319] Warning: Deallocating Tensor that still has live PyObject references. This probably happened because you took out a weak reference to Tensor and didn't call _fix_weakref() after dereferencing it. Subsequent accesses to this tensor via the PyObject will now fail. (function decref) 2023-01-11T21:23:04.6587000Z ok (0.007s) 2023-01-11T21:23:04.6587201Z test_deepcopy_gradient (__main__.TestTorch) ... ok (0.004s) 2023-01-11T21:23:04.6587464Z test_deepcopy_parameter (__main__.TestTorch) ... ok (0.002s) 2023-01-11T21:23:04.6587729Z test_deterministic_flag (__main__.TestTorch) ... ok (0.007s) 2023-01-11T21:23:04.6588024Z test_device (__main__.TestTorch) ... ok (0.035s) 2023-01-11T21:23:04.6588240Z test_dir (__main__.TestTorch) ... ok (0.001s) 2023-01-11T21:23:04.6588465Z test_doc (__main__.TestTorch) ... ok (0.002s) 2023-01-11T21:23:04.6588685Z test_doc_template (__main__.TestTorch) 2023-01-11T21:23:04.6588949Z Test that all public API doc strings use the same standard template for ... ok (0.026s) 2023-01-11T21:23:04.6589234Z test_dot_data_use (__main__.TestTorch) ... ok (0.027s) 2023-01-11T21:23:04.6589484Z test_dtype_is_signed (__main__.TestTorch) ... ok (0.007s) 2023-01-11T21:23:04.6590032Z test_element_size (__main__.TestTorch) ... test_torch.py:5939: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:23:04.6590559Z byte = torch.ByteStorage().element_size() 2023-01-11T21:23:04.6591104Z test_torch.py:5940: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:23:04.6591586Z char = torch.CharStorage().element_size() 2023-01-11T21:23:04.6592090Z test_torch.py:5941: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:23:04.6592554Z short = torch.ShortStorage().element_size() 2023-01-11T21:23:04.6593065Z test_torch.py:5942: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:23:04.6593541Z int = torch.IntStorage().element_size() 2023-01-11T21:23:04.6594040Z test_torch.py:5943: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:23:04.6594511Z long = torch.LongStorage().element_size() 2023-01-11T21:23:04.6594994Z test_torch.py:5944: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:23:04.6595479Z float = torch.FloatStorage().element_size() 2023-01-11T21:23:04.6595984Z test_torch.py:5945: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:23:04.6596459Z double = torch.DoubleStorage().element_size() 2023-01-11T21:23:04.6596944Z test_torch.py:5946: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:23:04.6597416Z bool = torch.BoolStorage().element_size() 2023-01-11T21:23:04.6597912Z test_torch.py:5947: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:23:04.6598434Z bfloat16 = torch.BFloat16Storage().element_size() 2023-01-11T21:23:04.6598940Z test_torch.py:5948: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:23:04.6599431Z complexfloat = torch.ComplexFloatStorage().element_size() 2023-01-11T21:23:04.6599948Z test_torch.py:5949: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:23:04.6600451Z complexdouble = torch.ComplexDoubleStorage().element_size() 2023-01-11T21:23:04.6600821Z ok (0.004s) 2023-01-11T21:23:04.6601016Z test_empty_meta (__main__.TestTorch) ... ok (0.011s) 2023-01-11T21:23:04.6601328Z test_empty_storage_view (__main__.TestTorch) ... ok (0.001s) 2023-01-11T21:23:04.6601576Z test_equal (__main__.TestTorch) ... ok (0.003s) 2023-01-11T21:23:04.6601820Z test_error_msg_type_translation (__main__.TestTorch) ... ok (0.024s) 2023-01-11T21:23:04.6602084Z test_fill_diagonal (__main__.TestTorch) ... ok (0.007s) 2023-01-11T21:23:04.6602345Z test_fix_weakref_no_leak (__main__.TestTorch) ... ok (0.001s) 2023-01-11T21:23:04.6602603Z test_format_scalar_meta (__main__.TestTorch) ... ok (0.001s) 2023-01-11T21:23:04.6603144Z test_from_buffer (__main__.TestTorch) ... test_torch.py:6322: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:23:04.6603698Z self.assertEqual(torch.ByteStorage.from_buffer(a).tolist(), [1, 2, 3, 4]) 2023-01-11T21:23:04.6604528Z /opt/conda/lib/python3.7/site-packages/torch/storage.py:675: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:23:04.6605023Z return list(self) 2023-01-11T21:23:04.6605751Z /opt/conda/lib/python3.7/site-packages/torch/storage.py:649: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:23:04.6606278Z return iter(map(lambda i: self[i], range(self.size()))) 2023-01-11T21:23:04.6606794Z test_torch.py:6323: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:23:04.6607341Z shorts = torch.ShortStorage.from_buffer(a, 'big') 2023-01-11T21:23:04.6607860Z test_torch.py:6324: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:23:04.6608328Z self.assertEqual(shorts.size(), 2) 2023-01-11T21:23:04.6608816Z test_torch.py:6325: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:23:04.6609346Z self.assertEqual(shorts.tolist(), [258, 772]) 2023-01-11T21:23:04.6609843Z test_torch.py:6326: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:23:04.6610373Z ints = torch.IntStorage.from_buffer(a, 'little') 2023-01-11T21:23:04.6610870Z test_torch.py:6327: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:23:04.6611337Z self.assertEqual(ints.size(), 1) 2023-01-11T21:23:04.6611865Z test_torch.py:6328: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:23:04.6612331Z self.assertEqual(ints[0], 67305985) 2023-01-11T21:23:04.6612822Z test_torch.py:6330: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:23:04.6613350Z floats = torch.FloatStorage.from_buffer(f, 'big') 2023-01-11T21:23:04.6613857Z test_torch.py:6331: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:23:04.6614324Z self.assertEqual(floats.size(), 1) 2023-01-11T21:23:04.6614822Z test_torch.py:6332: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:23:04.6615276Z self.assertEqual(floats[0], 2.25) 2023-01-11T21:23:04.6615765Z test_torch.py:6335: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:23:04.6616294Z bools = torch.BoolStorage.from_buffer(f, 'big') 2023-01-11T21:23:04.6616802Z test_torch.py:6336: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:23:04.6617324Z self.assertEqual(bools.size(), 8) 2023-01-11T21:23:04.6617811Z test_torch.py:6337: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:23:04.6618335Z self.assertEqual(bools.tolist(), [False, True, True, True, True, True, True, True]) 2023-01-11T21:23:04.6618875Z test_torch.py:6338: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:23:04.6619455Z self.assertEqual(bools.type(), 'torch.BoolStorage') 2023-01-11T21:23:04.6620240Z /opt/conda/lib/python3.7/site-packages/torch/storage.py:959: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:23:04.6620796Z if self.device.type not in ['cpu', 'cuda']: 2023-01-11T21:23:04.6621544Z /opt/conda/lib/python3.7/site-packages/torch/storage.py:962: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:23:04.6622147Z module = torch if self.device.type == 'cpu' else torch.cuda 2023-01-11T21:23:04.6622973Z /opt/conda/lib/python3.7/site-packages/torch/storage.py:978: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:23:04.6623548Z return (cls_device == instance.device.type) and (cls.dtype == instance.dtype) 2023-01-11T21:23:04.6624337Z /opt/conda/lib/python3.7/site-packages/torch/_utils.py:768: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:23:04.6624861Z return self.fget.__get__(instance, owner)() 2023-01-11T21:23:04.6625364Z test_torch.py:6342: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:23:04.6625893Z bools = torch.BoolStorage.from_buffer(f, 'big') 2023-01-11T21:23:04.6626389Z test_torch.py:6343: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:23:04.6626848Z self.assertEqual(bools.size(), 19) 2023-01-11T21:23:04.6627342Z test_torch.py:6346: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:23:04.6627882Z bools = torch.BoolStorage.from_buffer(f, 'big') 2023-01-11T21:23:04.6628388Z test_torch.py:6347: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:23:04.6628840Z self.assertEqual(bools.size(), 4) 2023-01-11T21:23:04.6629330Z test_torch.py:6348: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:23:04.6629857Z self.assertEqual(bools.tolist(), [False, True, True, True]) 2023-01-11T21:23:04.6630373Z test_torch.py:6349: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:23:04.6630856Z bytes = torch.ByteStorage.from_buffer(a) 2023-01-11T21:23:04.6631343Z test_torch.py:6350: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:23:04.6631809Z self.assertEqual(bytes.nbytes(), 4) 2023-01-11T21:23:04.6632299Z test_torch.py:6351: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:23:04.6632811Z self.assertEqual(bytes.tolist(), [1, 2, 3, 4]) 2023-01-11T21:23:04.6632998Z ok (0.011s) 2023-01-11T21:23:04.6633504Z test_from_file (__main__.TestTorch) ... test_torch.py:6663: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:23:04.6634034Z s1 = torch.FloatStorage.from_file(filename, True, size) 2023-01-11T21:23:04.6634820Z /opt/conda/lib/python3.7/site-packages/torch/storage.py:899: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:23:04.6635352Z storage = cls(wrap_storage=untyped_storage) 2023-01-11T21:23:04.6635844Z test_torch.py:6665: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:23:04.6636359Z self.assertEqual(s1.data_ptr(), torch.FloatTensor(s1).data_ptr()) 2023-01-11T21:23:04.6636892Z test_torch.py:6668: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:23:04.6637394Z s2 = torch.FloatStorage.from_file(filename, True, size) 2023-01-11T21:23:04.6637605Z ok (0.015s) 2023-01-11T21:23:04.6637821Z test_gather_neg_dim (__main__.TestTorch) ... ok (0.005s) 2023-01-11T21:23:04.6638075Z test_generator_cpu (__main__.TestTorch) ... ok (0.003s) 2023-01-11T21:23:04.6638325Z test_has_internal_overlap (__main__.TestTorch) ... ok (0.002s) 2023-01-11T21:23:04.6638890Z test_has_storage (__main__.TestTorch) ... test_torch.py:7615: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:23:04.6639419Z self.assertIsNotNone(torch.tensor([]).storage()) 2023-01-11T21:23:04.6639937Z test_torch.py:7616: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:23:04.6640468Z self.assertIsNotNone(torch.empty(0).storage()) 2023-01-11T21:23:04.6641075Z test_torch.py:7617: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:23:04.6641577Z self.assertIsNotNone(torch.tensor([]).clone().storage()) 2023-01-11T21:23:04.6642100Z test_torch.py:7618: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:23:04.6642607Z self.assertIsNotNone(torch.tensor([0, 0, 0]).nonzero().storage()) 2023-01-11T21:23:04.6643189Z test_torch.py:7619: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:23:04.6643668Z self.assertIsNotNone(torch.tensor([]).new().storage()) 2023-01-11T21:23:04.6643882Z ok (0.001s) 2023-01-11T21:23:04.6644090Z test_index_add (__main__.TestTorch) ... ok (0.070s) 2023-01-11T21:23:04.6644336Z test_index_add_all_dtypes (__main__.TestTorch) ... ok (0.018s) 2023-01-11T21:23:04.6645196Z test_index_add_correctness (__main__.TestTorch) ... skip: Test is disabled because an issue exists disabling it: https://github.com/pytorch/pytorch/issues/91184 for platform(s) linux, rocm, win, windows. If you're seeing this on your local machine and would like to enable this test, please make sure CI is not set and you are not using the flag --import-disabled-tests. (0.003s) 2023-01-11T21:23:04.6645756Z test_index_add_neg_dim (__main__.TestTorch) ... ok (0.004s) 2023-01-11T21:23:04.6646019Z test_index_copy_neg_dim (__main__.TestTorch) ... ok (0.005s) 2023-01-11T21:23:04.6646269Z test_index_fill_neg_dim (__main__.TestTorch) ... ok (0.005s) 2023-01-11T21:23:04.6646533Z test_index_select_neg_dim (__main__.TestTorch) ... ok (0.005s) 2023-01-11T21:23:04.6646805Z test_invalid_generator_raises (__main__.TestTorch) ... ok (0.003s) 2023-01-11T21:23:04.6647064Z test_is_nonzero (__main__.TestTorch) ... ok (0.010s) 2023-01-11T21:23:04.6647520Z test_is_same_size (__main__.TestTorch) ... test_torch.py:5821: UserWarning: The PyTorch API of nested tensors is in prototype stage and will change in the near future. (Triggered internally at /var/lib/jenkins/workspace/aten/src/ATen/NestedTensorImpl.cpp:179.) 2023-01-11T21:23:04.6648010Z nt1 = torch.nested.nested_tensor([torch.ones(2, 4), torch.ones(3, 4), torch.ones(5, 4)]) 2023-01-11T21:23:04.6648250Z ok (0.011s) 2023-01-11T21:23:04.6648431Z test_iter (__main__.TestTorch) ... ok (0.004s) 2023-01-11T21:23:04.6648677Z test_kthvalue_neg_dim (__main__.TestTorch) ... ok (0.005s) 2023-01-11T21:23:04.6648939Z test_logcumsumexp_neg_dim (__main__.TestTorch) ... ok (0.005s) 2023-01-11T21:23:04.6649194Z test_manual_seed (__main__.TestTorch) ... ok (0.004s) 2023-01-11T21:23:04.6649416Z test_map (__main__.TestTorch) ... ok (0.002s) 2023-01-11T21:23:04.6649644Z test_map2 (__main__.TestTorch) ... ok (0.002s) 2023-01-11T21:23:04.6649876Z test_max_neg_dim (__main__.TestTorch) ... ok (0.005s) 2023-01-11T21:23:04.6650100Z test_mean_neg_dim (__main__.TestTorch) ... ok (0.005s) 2023-01-11T21:23:04.6650345Z test_median_neg_dim (__main__.TestTorch) ... ok (0.006s) 2023-01-11T21:23:04.6650590Z test_memory_format (__main__.TestTorch) ... ok (0.006s) 2023-01-11T21:23:04.6650883Z test_memory_format_contiguous_returns_same_tensor_if_already_satisfies (__main__.TestTorch) ... ok (0.005s) 2023-01-11T21:23:04.6651236Z test_memory_format_empty (__main__.TestTorch) ... ok (0.019s) 2023-01-11T21:23:04.6651488Z test_min_neg_dim (__main__.TestTorch) ... ok (0.005s) 2023-01-11T21:23:04.6651731Z test_mode_neg_dim (__main__.TestTorch) ... ok (0.006s) 2023-01-11T21:23:04.6652048Z test_multinomial_invalid_probs (__main__.TestTorch) ... skip: test is slow; run with PYTORCH_TEST_WITH_SLOW to enable test (0.002s) 2023-01-11T21:23:04.6652373Z test_nanmedian_neg_dim (__main__.TestTorch) ... ok (0.005s) 2023-01-11T21:23:04.6652628Z test_narrow_neg_dim (__main__.TestTorch) ... ok (0.006s) 2023-01-11T21:23:04.6652851Z test_ndim (__main__.TestTorch) ... ok (0.001s) 2023-01-11T21:23:04.6653385Z test_new (__main__.TestTorch) ... test_torch.py:7016: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:23:04.6653915Z self.assertEqual(x.new(y.storage()).data_ptr(), y.data_ptr()) 2023-01-11T21:23:04.6654468Z test_torch.py:7022: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:23:04.6654980Z self.assertRaises(RuntimeError, lambda: x.new(z.storage())) 2023-01-11T21:23:04.6655187Z ok (0.009s) 2023-01-11T21:23:04.6655411Z test_newaxis_numpy_comparison (__main__.TestTorch) ... ok (0.011s) 2023-01-11T21:23:04.6655668Z test_newindex (__main__.TestTorch) ... ok (0.026s) 2023-01-11T21:23:04.6655908Z test_no_cuda_monkeypatch (__main__.TestTorch) ... ok (0.001s) 2023-01-11T21:23:04.6656160Z test_norm_neg_dim (__main__.TestTorch) ... ok (0.004s) 2023-01-11T21:23:04.6656405Z test_normal_shape (__main__.TestTorch) ... ok (0.057s) 2023-01-11T21:23:04.6656630Z test_numel (__main__.TestTorch) ... ok (0.001s) 2023-01-11T21:23:04.6656868Z test_parallel_info (__main__.TestTorch) ... ok (0.001s) 2023-01-11T21:23:04.6657119Z test_parsing_double (__main__.TestTorch) ... ok (0.005s) 2023-01-11T21:23:04.6657431Z test_parsing_int64 (__main__.TestTorch) ... ok (0.004s) 2023-01-11T21:23:04.6657670Z test_parsing_intlist (__main__.TestTorch) ... ok (0.027s) 2023-01-11T21:23:04.6657913Z test_permute (__main__.TestTorch) ... ok (0.002s) 2023-01-11T21:23:04.6658149Z test_pickle (__main__.TestTorch) ... ok (0.002s) 2023-01-11T21:23:04.6658381Z test_pickle_dtype (__main__.TestTorch) ... ok (0.001s) 2023-01-11T21:23:04.6658633Z test_pickle_function (__main__.TestTorch) ... ok (0.001s) 2023-01-11T21:23:04.6658892Z test_pickle_parameter (__main__.TestTorch) ... ok (0.002s) 2023-01-11T21:23:04.6659156Z test_pickle_parameter_no_requires_grad (__main__.TestTorch) ... ok (0.002s) 2023-01-11T21:23:04.6659427Z test_pickle_size (__main__.TestTorch) ... ok (0.001s) 2023-01-11T21:23:04.6659672Z test_pin_memory (__main__.TestTorch) ... ok (0.013s) 2023-01-11T21:23:04.6659901Z test_print (__main__.TestTorch) ... ok (0.152s) 2023-01-11T21:23:04.6660130Z test_prod_neg_dim (__main__.TestTorch) ... ok (0.005s) 2023-01-11T21:23:04.6660380Z test_pyobj_preserved (__main__.TestTorch) ... ok (0.001s) 2023-01-11T21:23:04.6660619Z test_qengine (__main__.TestTorch) ... ok (0.001s) 2023-01-11T21:23:04.6660848Z test_renorm_neg_dim (__main__.TestTorch) ... ok (0.008s) 2023-01-11T21:23:04.6661104Z test_resurrected_weak_ref (__main__.TestTorch) ... ok (0.001s) 2023-01-11T21:23:04.6661353Z test_reversed (__main__.TestTorch) ... ok (0.002s) 2023-01-11T21:23:04.6661584Z test_scatter_neg_dim (__main__.TestTorch) ... ok (0.004s) 2023-01-11T21:23:04.6661830Z test_select_neg_dim (__main__.TestTorch) ... ok (0.003s) 2023-01-11T21:23:04.6662119Z test_set_flush_denormal (__main__.TestTorch) ... skip: flush_denormal not supported (0.002s) 2023-01-11T21:23:04.6662464Z test_setting_real_imag_to_a_number (__main__.TestTorch) ... ok (0.002s) 2023-01-11T21:23:04.6662714Z test_show_config (__main__.TestTorch) ... ok (0.001s) 2023-01-11T21:23:04.6662960Z test_size_neg_dim (__main__.TestTorch) ... ok (0.002s) 2023-01-11T21:23:04.6663509Z test_sizeof (__main__.TestTorch) ... test_torch.py:6980: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:23:04.6664025Z sizeof_empty = torch.randn(0).storage().__sizeof__() 2023-01-11T21:23:04.6664802Z /opt/conda/lib/python3.7/site-packages/torch/storage.py:665: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:23:04.6665354Z return super(TypedStorage, self).__sizeof__() + self.nbytes() 2023-01-11T21:23:04.6665909Z test_torch.py:6981: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:23:04.6666395Z sizeof_10 = torch.randn(10).storage().__sizeof__() 2023-01-11T21:23:04.6666889Z test_torch.py:6982: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:23:04.6667371Z sizeof_100 = torch.randn(100).storage().__sizeof__() 2023-01-11T21:23:04.6667875Z test_torch.py:6986: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:23:04.6668370Z sizeof_empty = torch.randn(0).to(torch.uint8).storage().__sizeof__() 2023-01-11T21:23:04.6668890Z test_torch.py:6987: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:23:04.6669375Z sizeof_10 = torch.randn(10).to(torch.uint8).storage().__sizeof__() 2023-01-11T21:23:04.6669891Z test_torch.py:6988: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:23:04.6670391Z sizeof_100 = torch.randn(100).to(torch.uint8).storage().__sizeof__() 2023-01-11T21:23:04.6670607Z ok (0.004s) 2023-01-11T21:23:04.6670795Z test_slice (__main__.TestTorch) ... ok (0.005s) 2023-01-11T21:23:04.6671104Z test_slow_test (__main__.TestTorch) ... skip: test is slow; run with PYTORCH_TEST_WITH_SLOW to enable test (0.001s) 2023-01-11T21:23:04.6671417Z test_sobolengine_bounds (__main__.TestTorch) ... ok (0.008s) 2023-01-11T21:23:04.6671690Z test_sobolengine_bounds_scrambled (__main__.TestTorch) ... ok (0.018s) 2023-01-11T21:23:04.6671953Z test_sobolengine_continuing (__main__.TestTorch) ... ok (0.002s) 2023-01-11T21:23:04.6672237Z test_sobolengine_continuing_scrambled (__main__.TestTorch) ... ok (0.002s) 2023-01-11T21:23:04.6672523Z test_sobolengine_distribution (__main__.TestTorch) ... ok (0.007s) 2023-01-11T21:23:04.6672839Z test_sobolengine_distribution_scrambled (__main__.TestTorch) ... ok (0.012s) 2023-01-11T21:23:04.6673118Z test_sobolengine_draw (__main__.TestTorch) ... ok (0.002s) 2023-01-11T21:23:04.6673380Z test_sobolengine_draw_base2 (__main__.TestTorch) ... ok (0.003s) 2023-01-11T21:23:04.6673645Z test_sobolengine_draw_base2_scrambled (__main__.TestTorch) ... ok (0.003s) 2023-01-11T21:23:04.6673932Z test_sobolengine_draw_scrambled (__main__.TestTorch) ... ok (0.002s) 2023-01-11T21:23:04.6674210Z test_sobolengine_fast_forward (__main__.TestTorch) ... ok (0.003s) 2023-01-11T21:23:04.6674494Z test_sobolengine_fast_forward_scrambled (__main__.TestTorch) ... ok (0.003s) 2023-01-11T21:23:04.6674766Z test_sobolengine_first_point (__main__.TestTorch) ... ok (0.004s) 2023-01-11T21:23:04.6675035Z test_sobolengine_high_dim (__main__.TestTorch) ... ok (0.008s) 2023-01-11T21:23:04.6675295Z test_sobolengine_raise (__main__.TestTorch) ... ok (0.001s) 2023-01-11T21:23:04.6675549Z test_sobolengine_reset (__main__.TestTorch) ... ok (0.002s) 2023-01-11T21:23:04.6675827Z test_sobolengine_reset_scrambled (__main__.TestTorch) ... ok (0.002s) 2023-01-11T21:23:04.6676089Z test_sort_neg_dim (__main__.TestTorch) ... ok (0.008s) 2023-01-11T21:23:04.6676358Z test_split_neg_dim (__main__.TestTorch) ... ok (0.008s) 2023-01-11T21:23:04.6676607Z test_squeeze_neg_dim (__main__.TestTorch) ... ok (0.009s) 2023-01-11T21:23:04.6676849Z test_std_neg_dim (__main__.TestTorch) ... ok (0.005s) 2023-01-11T21:23:04.6677403Z test_storage_casts (__main__.TestTorch) ... test_torch.py:6470: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:23:04.6677976Z storage = torch.IntStorage([-1, 0, 1, 2, 3, 4]) 2023-01-11T21:23:04.6678480Z test_torch.py:6471: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:23:04.6678958Z self.assertEqual(storage.size(), 6) 2023-01-11T21:23:04.6679455Z test_torch.py:6472: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:23:04.6679994Z self.assertEqual(storage.tolist(), [-1, 0, 1, 2, 3, 4]) 2023-01-11T21:23:04.6680848Z /opt/conda/lib/python3.7/site-packages/torch/storage.py:675: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:23:04.6681347Z return list(self) 2023-01-11T21:23:04.6682087Z /opt/conda/lib/python3.7/site-packages/torch/storage.py:649: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:23:04.6682629Z return iter(map(lambda i: self[i], range(self.size()))) 2023-01-11T21:23:04.6683149Z test_torch.py:6473: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:23:04.6683684Z self.assertEqual(storage.type(), 'torch.IntStorage') 2023-01-11T21:23:04.6684527Z /opt/conda/lib/python3.7/site-packages/torch/storage.py:959: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:23:04.6685092Z if self.device.type not in ['cpu', 'cuda']: 2023-01-11T21:23:04.6685840Z /opt/conda/lib/python3.7/site-packages/torch/storage.py:962: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:23:04.6686436Z module = torch if self.device.type == 'cpu' else torch.cuda 2023-01-11T21:23:04.6686939Z test_torch.py:6476: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:23:04.6687456Z floatStorage = storage.float() 2023-01-11T21:23:04.6688338Z /opt/conda/lib/python3.7/site-packages/torch/storage.py:808: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:23:04.6688930Z storage = torch.tensor([], dtype=self.dtype, device=self.device).set_(self).to(dtype)._typed_storage() 2023-01-11T21:23:04.6689744Z /opt/conda/lib/python3.7/site-packages/torch/storage.py:809: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:23:04.6690243Z if storage.data_ptr() == self.data_ptr(): 2023-01-11T21:23:04.6690746Z test_torch.py:6477: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:23:04.6691235Z self.assertEqual(floatStorage.size(), 6) 2023-01-11T21:23:04.6691742Z test_torch.py:6478: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:23:04.6692305Z self.assertEqual(floatStorage.tolist(), [-1, 0, 1, 2, 3, 4]) 2023-01-11T21:23:04.6692814Z test_torch.py:6479: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:23:04.6693378Z self.assertEqual(floatStorage.type(), 'torch.FloatStorage') 2023-01-11T21:23:04.6693915Z test_torch.py:6480: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:23:04.6694476Z self.assertEqual(floatStorage.int().tolist(), [-1, 0, 1, 2, 3, 4]) 2023-01-11T21:23:04.6694989Z test_torch.py:6483: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:23:04.6695498Z halfStorage = storage.half() 2023-01-11T21:23:04.6695984Z test_torch.py:6484: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:23:04.6696469Z self.assertEqual(halfStorage.size(), 6) 2023-01-11T21:23:04.6696975Z test_torch.py:6485: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:23:04.6697628Z self.assertEqual(halfStorage.tolist(), [-1, 0, 1, 2, 3, 4]) 2023-01-11T21:23:04.6698197Z test_torch.py:6486: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:23:04.6698914Z self.assertEqual(halfStorage.type(), 'torch.HalfStorage') 2023-01-11T21:23:04.6699468Z test_torch.py:6487: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:23:04.6700034Z self.assertEqual(halfStorage.int().tolist(), [-1, 0, 1, 2, 3, 4]) 2023-01-11T21:23:04.6700538Z test_torch.py:6490: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:23:04.6701020Z bfloat16Storage = storage.bfloat16() 2023-01-11T21:23:04.6701518Z test_torch.py:6491: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:23:04.6702003Z self.assertEqual(bfloat16Storage.size(), 6) 2023-01-11T21:23:04.6702498Z test_torch.py:6492: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:23:04.6703060Z self.assertEqual(bfloat16Storage.tolist(), [-1, 0, 1, 2, 3, 4]) 2023-01-11T21:23:04.6703583Z test_torch.py:6493: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:23:04.6704161Z self.assertEqual(bfloat16Storage.type(), 'torch.BFloat16Storage') 2023-01-11T21:23:04.6704701Z test_torch.py:6494: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:23:04.6705252Z self.assertEqual(bfloat16Storage.int().tolist(), [-1, 0, 1, 2, 3, 4]) 2023-01-11T21:23:04.6705780Z test_torch.py:6497: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:23:04.6706302Z longStorage = storage.long() 2023-01-11T21:23:04.6706785Z test_torch.py:6498: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:23:04.6707262Z self.assertEqual(longStorage.size(), 6) 2023-01-11T21:23:04.6707753Z test_torch.py:6499: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:23:04.6708301Z self.assertEqual(longStorage.tolist(), [-1, 0, 1, 2, 3, 4]) 2023-01-11T21:23:04.6708850Z test_torch.py:6500: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:23:04.6709404Z self.assertEqual(longStorage.type(), 'torch.LongStorage') 2023-01-11T21:23:04.6709910Z test_torch.py:6501: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:23:04.6710462Z self.assertEqual(longStorage.int().tolist(), [-1, 0, 1, 2, 3, 4]) 2023-01-11T21:23:04.6710981Z test_torch.py:6504: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:23:04.6711441Z shortStorage = storage.short() 2023-01-11T21:23:04.6711926Z test_torch.py:6505: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:23:04.6712386Z self.assertEqual(shortStorage.size(), 6) 2023-01-11T21:23:04.6712890Z test_torch.py:6506: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:23:04.6713432Z self.assertEqual(shortStorage.tolist(), [-1, 0, 1, 2, 3, 4]) 2023-01-11T21:23:04.6713949Z test_torch.py:6507: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:23:04.6714509Z self.assertEqual(shortStorage.type(), 'torch.ShortStorage') 2023-01-11T21:23:04.6715020Z test_torch.py:6508: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:23:04.6715571Z self.assertEqual(shortStorage.int().tolist(), [-1, 0, 1, 2, 3, 4]) 2023-01-11T21:23:04.6716126Z test_torch.py:6511: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:23:04.6716595Z doubleStorage = storage.double() 2023-01-11T21:23:04.6717070Z test_torch.py:6512: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:23:04.6717546Z self.assertEqual(doubleStorage.size(), 6) 2023-01-11T21:23:04.6718049Z test_torch.py:6513: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:23:04.6718617Z self.assertEqual(doubleStorage.tolist(), [-1.0, 0.0, 1.0, 2.0, 3.0, 4.0]) 2023-01-11T21:23:04.6719171Z test_torch.py:6514: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:23:04.6719785Z self.assertEqual(doubleStorage.type(), 'torch.DoubleStorage') 2023-01-11T21:23:04.6720773Z test_torch.py:6515: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:23:04.6721666Z self.assertEqual(doubleStorage.int().tolist(), [-1, 0, 1, 2, 3, 4]) 2023-01-11T21:23:04.6722233Z test_torch.py:6518: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:23:04.6722703Z charStorage = storage.char() 2023-01-11T21:23:04.6723180Z test_torch.py:6519: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:23:04.6723659Z self.assertEqual(charStorage.size(), 6) 2023-01-11T21:23:04.6724158Z test_torch.py:6520: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:23:04.6724734Z self.assertEqual(charStorage.tolist(), [-1.0, 0.0, 1.0, 2.0, 3.0, 4.0]) 2023-01-11T21:23:04.6725244Z test_torch.py:6521: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:23:04.6725798Z self.assertEqual(charStorage.type(), 'torch.CharStorage') 2023-01-11T21:23:04.6726326Z test_torch.py:6522: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:23:04.6726974Z self.assertEqual(charStorage.int().tolist(), [-1, 0, 1, 2, 3, 4]) 2023-01-11T21:23:04.6727497Z test_torch.py:6525: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:23:04.6727951Z byteStorage = storage.byte() 2023-01-11T21:23:04.6728436Z test_torch.py:6526: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:23:04.6728916Z self.assertEqual(byteStorage.size(), 6) 2023-01-11T21:23:04.6729417Z test_torch.py:6527: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:23:04.6729956Z self.assertEqual(byteStorage.tolist(), [255, 0, 1, 2, 3, 4]) 2023-01-11T21:23:04.6730453Z test_torch.py:6528: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:23:04.6731005Z self.assertEqual(byteStorage.type(), 'torch.ByteStorage') 2023-01-11T21:23:04.6731531Z test_torch.py:6529: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:23:04.6732030Z self.assertEqual(byteStorage.int().tolist(), [255, 0, 1, 2, 3, 4]) 2023-01-11T21:23:04.6732542Z test_torch.py:6532: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:23:04.6733011Z boolStorage = storage.bool() 2023-01-11T21:23:04.6733505Z test_torch.py:6533: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:23:04.6733981Z self.assertEqual(boolStorage.size(), 6) 2023-01-11T21:23:04.6734471Z test_torch.py:6534: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:23:04.6734987Z self.assertEqual(boolStorage.tolist(), [True, False, True, True, True, True]) 2023-01-11T21:23:04.6735519Z test_torch.py:6535: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:23:04.6736066Z self.assertEqual(boolStorage.type(), 'torch.BoolStorage') 2023-01-11T21:23:04.6736586Z test_torch.py:6536: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:23:04.6737111Z self.assertEqual(boolStorage.int().tolist(), [1, 0, 1, 1, 1, 1]) 2023-01-11T21:23:04.6737692Z test_torch.py:6539: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:23:04.6738287Z complexfloat_storage = torch.ComplexFloatStorage([-1, 0, 1 + 2j, 2.5j, 3.5, 4 - 2j]) 2023-01-11T21:23:04.6738845Z test_torch.py:6540: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:23:04.6739336Z self.assertEqual(complexfloat_storage.size(), 6) 2023-01-11T21:23:04.6739889Z test_torch.py:6541: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:23:04.6740466Z self.assertEqual(complexfloat_storage.tolist(), [-1, 0, 1 + 2j, 2.5j, 3.5, 4 - 2j]) 2023-01-11T21:23:04.6741000Z test_torch.py:6542: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:23:04.6741599Z self.assertEqual(complexfloat_storage.type(), 'torch.ComplexFloatStorage') 2023-01-11T21:23:04.6742153Z test_torch.py:6545: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:23:04.6742670Z complexdouble_storage = complexfloat_storage.complex_double() 2023-01-11T21:23:04.6743182Z test_torch.py:6546: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:23:04.6743676Z self.assertEqual(complexdouble_storage.size(), 6) 2023-01-11T21:23:04.6744186Z test_torch.py:6547: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:23:04.6744779Z self.assertEqual(complexdouble_storage.tolist(), [-1, 0, 1 + 2j, 2.5j, 3.5, 4 - 2j]) 2023-01-11T21:23:04.6745305Z test_torch.py:6548: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:23:04.6745901Z self.assertEqual(complexdouble_storage.type(), 'torch.ComplexDoubleStorage') 2023-01-11T21:23:04.6746152Z ok (0.025s) 2023-01-11T21:23:04.6746655Z test_storage_error (__main__.TestTorch) ... test_torch.py:6364: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:23:04.6747197Z torch.storage._LegacyStorage() 2023-01-11T21:23:04.6747931Z /opt/conda/lib/python3.7/site-packages/torch/_utils.py:768: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:23:04.6748445Z return self.fget.__get__(instance, owner)() 2023-01-11T21:23:04.6748945Z test_torch.py:6378: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:23:04.6749436Z storage_class(device='cpu') 2023-01-11T21:23:04.6749906Z test_torch.py:6381: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:23:04.6750406Z storage_class(dtype=torch.float) 2023-01-11T21:23:04.6750893Z test_torch.py:6387: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:23:04.6751334Z storage_class(0, 0) 2023-01-11T21:23:04.6751810Z test_torch.py:6390: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:23:04.6752281Z storage_class('string') 2023-01-11T21:23:04.6752758Z test_torch.py:6393: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:23:04.6753220Z storage_class(torch.tensor([])) 2023-01-11T21:23:04.6753703Z test_torch.py:6395: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:23:04.6754129Z s = storage_class() 2023-01-11T21:23:04.6754597Z test_torch.py:6398: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:23:04.6755061Z storage_class(0, wrap_storage=s.untyped()) 2023-01-11T21:23:04.6755555Z test_torch.py:6401: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:23:04.6756015Z storage_class(wrap_storage=s) 2023-01-11T21:23:04.6756481Z test_torch.py:6420: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:23:04.6756988Z torch.TypedStorage(0, wrap_storage=s.untyped(), dtype=dtype) 2023-01-11T21:23:04.6757545Z test_torch.py:6423: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:23:04.6758020Z torch.TypedStorage(wrap_storage=s.untyped()) 2023-01-11T21:23:04.6758506Z test_torch.py:6426: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:23:04.6758996Z torch.TypedStorage(wrap_storage=s.untyped(), dtype=0) 2023-01-11T21:23:04.6759510Z test_torch.py:6429: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:23:04.6760032Z torch.TypedStorage(wrap_storage=s.untyped(), dtype=dtype, device=device) 2023-01-11T21:23:04.6760728Z test_torch.py:6432: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:23:04.6761222Z torch.TypedStorage(wrap_storage=s, dtype=dtype) 2023-01-11T21:23:04.6761730Z test_torch.py:6435: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:23:04.6762272Z torch.TypedStorage(dtype=dtype, device='xla') 2023-01-11T21:23:04.6762788Z test_torch.py:6443: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:23:04.6763291Z torch.TypedStorage(torch.tensor([]), dtype=dtype, device=device) 2023-01-11T21:23:04.6763805Z test_torch.py:6446: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:23:04.6764290Z torch.TypedStorage(0, 0, dtype=dtype, device=device) 2023-01-11T21:23:04.6764799Z test_torch.py:6449: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:23:04.6765307Z s_other = torch.TypedStorage([1, 2, 3, 4], device=device, dtype=dtype) 2023-01-11T21:23:04.6765814Z test_torch.py:6452: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:23:04.6766253Z s.fill_(s_other) 2023-01-11T21:23:04.6766421Z ok (0.079s) 2023-01-11T21:23:04.6766949Z test_storage_error_no_attribute (__main__.TestTorch) ... test_torch.py:6461: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:23:04.6767529Z storage_class.from_buffer() 2023-01-11T21:23:04.6767702Z ok (0.001s) 2023-01-11T21:23:04.6767922Z test_structseq_repr (__main__.TestTorch) ... ok (0.003s) 2023-01-11T21:23:04.6768186Z test_subclass_preserved (__main__.TestTorch) ... ok (0.001s) 2023-01-11T21:23:04.6768434Z test_subclass_tensors (__main__.TestTorch) ... ok (0.001s) 2023-01-11T21:23:04.6768684Z test_sum_neg_dim (__main__.TestTorch) ... ok (0.005s) 2023-01-11T21:23:04.6768935Z test_t_not_2d_error (__main__.TestTorch) ... ok (0.022s) 2023-01-11T21:23:04.6769175Z test_tensor_base_init (__main__.TestTorch) ... ok (0.003s) 2023-01-11T21:23:04.6769431Z test_tensor_base_new (__main__.TestTorch) ... ok (0.001s) 2023-01-11T21:23:04.6769688Z test_tensor_ctor_scalar (__main__.TestTorch) ... ok (0.001s) 2023-01-11T21:23:04.6769943Z test_tensor_cycle_via_dict (__main__.TestTorch) ... ok (0.108s) 2023-01-11T21:23:04.6770215Z test_tensor_cycle_via_slots (__main__.TestTorch) ... ok (0.050s) 2023-01-11T21:23:04.6770485Z test_tensor_dict_dealloc (__main__.TestTorch) ... ok (0.001s) 2023-01-11T21:23:04.6770816Z test_tensor_finalizer_dealloc (__main__.TestTorch) ... ok (0.001s) 2023-01-11T21:23:04.6771379Z test_tensor_set (__main__.TestTorch) ... test_torch.py:5839: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:23:04.6771925Z self.assertEqual(t1.storage()._cdata, t2.storage()._cdata) 2023-01-11T21:23:04.6772452Z test_torch.py:5841: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:23:04.6772920Z t1.set_(t2.storage(), 0, size) 2023-01-11T21:23:04.6773409Z test_torch.py:5843: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:23:04.6773858Z t1.set_(t2.storage(), 0, tuple(size)) 2023-01-11T21:23:04.6774355Z test_torch.py:5847: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:23:04.6774827Z t1.set_(t2.storage(), 0, size, stride) 2023-01-11T21:23:04.6775314Z test_torch.py:5849: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:23:04.6775788Z t1.set_(t2.storage(), 0, size=size, stride=stride) 2023-01-11T21:23:04.6776292Z test_torch.py:5857: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:23:04.6776794Z self.assertEqual(t1.storage()._cdata, t2.storage()._cdata) 2023-01-11T21:23:04.6777369Z test_torch.py:5859: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:23:04.6777867Z t1.set_(source=t2.storage()) 2023-01-11T21:23:04.6778333Z test_torch.py:5860: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:23:04.6778826Z self.assertEqual(t1.storage()._cdata, t2.storage()._cdata) 2023-01-11T21:23:04.6779334Z test_torch.py:5862: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:23:04.6779836Z t1.set_(source=t2.storage(), storage_offset=0, size=size, stride=stride) 2023-01-11T21:23:04.6780388Z test_torch.py:5869: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:23:04.6780867Z self.assertEqual(t1.storage()._cdata, t2.storage()._cdata) 2023-01-11T21:23:04.6781077Z ok (0.005s) 2023-01-11T21:23:04.6781585Z test_tensor_set_errors (__main__.TestTorch) ... test_torch.py:5876: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:23:04.6782140Z self.assertRaises(RuntimeError, lambda: f_cpu.set_(d_cpu.storage())) 2023-01-11T21:23:04.6782663Z test_torch.py:5878: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:23:04.6783175Z lambda: f_cpu.set_(d_cpu.storage(), 0, d_cpu.size(), d_cpu.stride())) 2023-01-11T21:23:04.6783396Z ok (0.008s) 2023-01-11T21:23:04.6783616Z test_tensor_slot_dealloc (__main__.TestTorch) ... ok (0.001s) 2023-01-11T21:23:04.6783867Z test_tensor_weakref_dealloc (__main__.TestTorch) ... ok (0.001s) 2023-01-11T21:23:04.6784143Z test_tensoriterator_output_setup (__main__.TestTorch) ... ok (0.624s) 2023-01-11T21:23:04.6784400Z test_to (__main__.TestTorch) ... ok (0.002s) 2023-01-11T21:23:04.6784623Z test_to_with_tensor (__main__.TestTorch) ... ok (0.001s) 2023-01-11T21:23:04.6784869Z test_topk_neg_dim (__main__.TestTorch) ... ok (0.005s) 2023-01-11T21:23:04.6785118Z test_torch_from_file (__main__.TestTorch) ... ok (0.016s) 2023-01-11T21:23:04.6785359Z test_transpose_neg_dim (__main__.TestTorch) ... ok (0.032s) 2023-01-11T21:23:04.6785602Z test_type (__main__.TestTorch) ... ok (0.002s) 2023-01-11T21:23:04.6785836Z test_type_alias (__main__.TestTorch) ... ok (0.001s) 2023-01-11T21:23:04.6786107Z test_type_conversion_via_dtype_name (__main__.TestTorch) ... ok (0.006s) 2023-01-11T21:23:04.6786698Z test_typed_storage_deprecation_warning (__main__.TestTorch) ... test_torch.py:6624: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:23:04.6787225Z s0 = torch.FloatStorage(10) 2023-01-11T21:23:04.6787412Z ok (0.003s) 2023-01-11T21:23:04.6787934Z test_typed_storage_internal_no_warning (__main__.TestTorch) ... test_torch.py:6554: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:23:04.6788474Z s0 = torch.FloatStorage(10) 2023-01-11T21:23:04.6788963Z test_torch.py:6555: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:23:04.6789421Z s0_untyped = s0.untyped() 2023-01-11T21:23:04.6789602Z ok (0.004s) 2023-01-11T21:23:04.6789797Z test_unbind_neg_dim (__main__.TestTorch) ... ok (0.006s) 2023-01-11T21:23:04.6790041Z test_unflatten (__main__.TestTorch) ... ok (0.043s) 2023-01-11T21:23:04.6790285Z test_unfold_neg_dim (__main__.TestTorch) ... ok (0.004s) 2023-01-11T21:23:04.6790521Z test_unsqueeze_neg_dim (__main__.TestTorch) ... ok (0.008s) 2023-01-11T21:23:04.6790787Z test_upsample_nearest1d_meta (__main__.TestTorch) ... ok (0.020s) 2023-01-11T21:23:04.6791060Z test_upsample_nearest2d_meta (__main__.TestTorch) ... ok (0.042s) 2023-01-11T21:23:04.6791347Z test_var_neg_dim (__main__.TestTorch) ... ok (0.005s) 2023-01-11T21:23:04.6791578Z test_warn_types (__main__.TestTorch) ... ok (0.002s) 2023-01-11T21:23:04.6791823Z test_wildcard_import (__main__.TestTorch) ... ok (0.001s) 2023-01-11T21:23:04.6792116Z test_addcdiv_cpu_complex128 (__main__.TestTorchDeviceTypeCPU) ... ok (0.010s) 2023-01-11T21:23:04.6792424Z test_addcdiv_cpu_complex64 (__main__.TestTorchDeviceTypeCPU) ... ok (0.005s) 2023-01-11T21:23:04.6792737Z test_addcdiv_cpu_float32 (__main__.TestTorchDeviceTypeCPU) ... ok (0.005s) 2023-01-11T21:23:04.6793044Z test_addcdiv_cpu_float64 (__main__.TestTorchDeviceTypeCPU) ... ok (0.005s) 2023-01-11T21:23:04.6793337Z test_addcdiv_cpu_int16 (__main__.TestTorchDeviceTypeCPU) ... ok (0.013s) 2023-01-11T21:23:04.6793639Z test_addcdiv_cpu_int32 (__main__.TestTorchDeviceTypeCPU) ... ok (0.011s) 2023-01-11T21:23:04.6793945Z test_addcdiv_cpu_int64 (__main__.TestTorchDeviceTypeCPU) ... ok (0.011s) 2023-01-11T21:23:04.6794246Z test_addcdiv_cpu_int8 (__main__.TestTorchDeviceTypeCPU) ... ok (0.011s) 2023-01-11T21:23:04.6794537Z test_addcdiv_cpu_uint8 (__main__.TestTorchDeviceTypeCPU) ... ok (0.011s) 2023-01-11T21:23:04.6794848Z test_addcmul_cpu_complex128 (__main__.TestTorchDeviceTypeCPU) ... ok (0.006s) 2023-01-11T21:23:04.6795159Z test_addcmul_cpu_complex64 (__main__.TestTorchDeviceTypeCPU) ... ok (0.004s) 2023-01-11T21:23:04.6795460Z test_addcmul_cpu_float32 (__main__.TestTorchDeviceTypeCPU) ... ok (0.004s) 2023-01-11T21:23:04.6795766Z test_addcmul_cpu_float64 (__main__.TestTorchDeviceTypeCPU) ... ok (0.004s) 2023-01-11T21:23:04.6796062Z test_addcmul_cpu_int16 (__main__.TestTorchDeviceTypeCPU) ... ok (0.004s) 2023-01-11T21:23:04.6796363Z test_addcmul_cpu_int32 (__main__.TestTorchDeviceTypeCPU) ... ok (0.004s) 2023-01-11T21:23:04.6796649Z test_addcmul_cpu_int64 (__main__.TestTorchDeviceTypeCPU) ... ok (0.003s) 2023-01-11T21:23:04.6796946Z test_addcmul_cpu_int8 (__main__.TestTorchDeviceTypeCPU) ... ok (0.004s) 2023-01-11T21:23:04.6797246Z test_addcmul_cpu_uint8 (__main__.TestTorchDeviceTypeCPU) ... ok (0.004s) 2023-01-11T21:23:04.6797576Z test_assertRaisesRegex_ignore_msg_non_native_device_cpu (__main__.TestTorchDeviceTypeCPU) ... ok (0.021s) 2023-01-11T21:23:04.6798005Z test_bernoulli_edge_cases_cpu_float32 (__main__.TestTorchDeviceTypeCPU) ... skip: test is slow; run with PYTORCH_TEST_WITH_SLOW to enable test (0.001s) 2023-01-11T21:23:04.6798464Z test_bernoulli_edge_cases_cpu_float64 (__main__.TestTorchDeviceTypeCPU) ... skip: test is slow; run with PYTORCH_TEST_WITH_SLOW to enable test (0.001s) 2023-01-11T21:23:04.6798848Z test_bernoulli_mem_overlap_cpu (__main__.TestTorchDeviceTypeCPU) ... ok (0.044s) 2023-01-11T21:23:04.6799159Z test_bernoulli_p_cpu_bfloat16 (__main__.TestTorchDeviceTypeCPU) ... ok (0.004s) 2023-01-11T21:23:04.6799512Z test_bernoulli_p_cpu_float32 (__main__.TestTorchDeviceTypeCPU) ... ok (0.003s) 2023-01-11T21:23:04.6799824Z test_bernoulli_p_cpu_float64 (__main__.TestTorchDeviceTypeCPU) ... ok (0.004s) 2023-01-11T21:23:04.6800133Z test_bernoulli_self_cpu_bool (__main__.TestTorchDeviceTypeCPU) ... ok (0.004s) 2023-01-11T21:23:04.6800438Z test_bernoulli_self_cpu_float32 (__main__.TestTorchDeviceTypeCPU) ... ok (0.004s) 2023-01-11T21:23:04.6800897Z test_bernoulli_self_cpu_float64 (__main__.TestTorchDeviceTypeCPU) ... ok (0.004s) 2023-01-11T21:23:04.6801219Z test_bernoulli_self_cpu_int16 (__main__.TestTorchDeviceTypeCPU) ... ok (0.004s) 2023-01-11T21:23:04.6801521Z test_bernoulli_self_cpu_int32 (__main__.TestTorchDeviceTypeCPU) ... ok (0.005s) 2023-01-11T21:23:04.6801832Z test_bernoulli_self_cpu_int64 (__main__.TestTorchDeviceTypeCPU) ... ok (0.003s) 2023-01-11T21:23:04.6802143Z test_bernoulli_self_cpu_int8 (__main__.TestTorchDeviceTypeCPU) ... ok (0.004s) 2023-01-11T21:23:04.6802458Z test_bernoulli_self_cpu_uint8 (__main__.TestTorchDeviceTypeCPU) ... ok (0.004s) 2023-01-11T21:23:04.6802758Z test_bfloat16_float_copy_cpu (__main__.TestTorchDeviceTypeCPU) ... ok (0.497s) 2023-01-11T21:23:04.6803139Z test_bool_tensor_value_change_cpu (__main__.TestTorchDeviceTypeCPU) ... ok (0.002s) 2023-01-11T21:23:04.6803460Z test_broadcast_fn_add_cpu (__main__.TestTorchDeviceTypeCPU) ... ok (0.058s) 2023-01-11T21:23:04.6803761Z test_broadcast_fn_addcdiv_cpu (__main__.TestTorchDeviceTypeCPU) ... ok (0.065s) 2023-01-11T21:23:04.6804075Z test_broadcast_fn_addcmul_cpu (__main__.TestTorchDeviceTypeCPU) ... ok (0.064s) 2023-01-11T21:23:04.6804392Z test_broadcast_fn_atan2_cpu (__main__.TestTorchDeviceTypeCPU) ... ok (0.056s) 2023-01-11T21:23:04.6804708Z test_broadcast_fn_copy_cpu (__main__.TestTorchDeviceTypeCPU) ... ok (0.059s) 2023-01-11T21:23:04.6805004Z test_broadcast_fn_dist_cpu (__main__.TestTorchDeviceTypeCPU) ... ok (0.009s) 2023-01-11T21:23:04.6805315Z test_broadcast_fn_div_cpu (__main__.TestTorchDeviceTypeCPU) ... ok (0.055s) 2023-01-11T21:23:04.6805628Z test_broadcast_fn_eq_cpu (__main__.TestTorchDeviceTypeCPU) ... ok (0.054s) 2023-01-11T21:23:04.6805929Z test_broadcast_fn_fmod_cpu (__main__.TestTorchDeviceTypeCPU) ... ok (0.056s) 2023-01-11T21:23:04.6806243Z test_broadcast_fn_ge_cpu (__main__.TestTorchDeviceTypeCPU) ... ok (0.055s) 2023-01-11T21:23:04.6806548Z test_broadcast_fn_gt_cpu (__main__.TestTorchDeviceTypeCPU) ... ok (0.056s) 2023-01-11T21:23:04.6806848Z test_broadcast_fn_le_cpu (__main__.TestTorchDeviceTypeCPU) ... ok (0.064s) 2023-01-11T21:23:04.6807136Z test_broadcast_fn_lerp_cpu (__main__.TestTorchDeviceTypeCPU) ... ok (0.058s) 2023-01-11T21:23:04.6807443Z test_broadcast_fn_lt_cpu (__main__.TestTorchDeviceTypeCPU) ... ok (0.056s) 2023-01-11T21:23:04.6807745Z test_broadcast_fn_map2_cpu (__main__.TestTorchDeviceTypeCPU) ... ok (0.051s) 2023-01-11T21:23:04.6808044Z test_broadcast_fn_map_cpu (__main__.TestTorchDeviceTypeCPU) ... ok (0.050s) 2023-01-11T21:23:04.6808366Z test_broadcast_fn_masked_fill_cpu (__main__.TestTorchDeviceTypeCPU) ... ok (0.059s) 2023-01-11T21:23:04.6808697Z test_broadcast_fn_masked_scatter_cpu (__main__.TestTorchDeviceTypeCPU) ... ok (0.062s) 2023-01-11T21:23:04.6809034Z test_broadcast_fn_masked_select_cpu (__main__.TestTorchDeviceTypeCPU) ... ok (0.010s) 2023-01-11T21:23:04.6809341Z test_broadcast_fn_max_cpu (__main__.TestTorchDeviceTypeCPU) ... ok (0.008s) 2023-01-11T21:23:04.6809648Z test_broadcast_fn_min_cpu (__main__.TestTorchDeviceTypeCPU) ... ok (0.008s) 2023-01-11T21:23:04.6809953Z test_broadcast_fn_mul_cpu (__main__.TestTorchDeviceTypeCPU) ... ok (0.055s) 2023-01-11T21:23:04.6810245Z test_broadcast_fn_ne_cpu (__main__.TestTorchDeviceTypeCPU) ... ok (0.054s) 2023-01-11T21:23:04.6810549Z test_broadcast_fn_pow_cpu (__main__.TestTorchDeviceTypeCPU) ... ok (0.055s) 2023-01-11T21:23:04.6810864Z test_broadcast_fn_remainder_cpu (__main__.TestTorchDeviceTypeCPU) ... ok (0.056s) 2023-01-11T21:23:04.6811178Z test_broadcast_fn_sub_cpu (__main__.TestTorchDeviceTypeCPU) ... ok (0.058s) 2023-01-11T21:23:04.6811832Z test_bytes_to_scalar_cpu_bool (__main__.TestTorchDeviceTypeCPU) ... test_torch.py:161: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:23:04.6812417Z self.assertEqual(scalar.storage().untyped().tolist(), bytes_list) 2023-01-11T21:23:04.6812643Z ok (0.004s) 2023-01-11T21:23:04.6812895Z test_bytes_to_scalar_cpu_complex128 (__main__.TestTorchDeviceTypeCPU) ... ok (0.014s) 2023-01-11T21:23:04.6813211Z test_bytes_to_scalar_cpu_complex64 (__main__.TestTorchDeviceTypeCPU) ... ok (0.014s) 2023-01-11T21:23:04.6813541Z test_bytes_to_scalar_cpu_float32 (__main__.TestTorchDeviceTypeCPU) ... ok (0.006s) 2023-01-11T21:23:04.6813861Z test_bytes_to_scalar_cpu_float64 (__main__.TestTorchDeviceTypeCPU) ... ok (0.008s) 2023-01-11T21:23:04.6814166Z test_bytes_to_scalar_cpu_int16 (__main__.TestTorchDeviceTypeCPU) ... ok (0.004s) 2023-01-11T21:23:04.6814513Z test_bytes_to_scalar_cpu_int32 (__main__.TestTorchDeviceTypeCPU) ... ok (0.006s) 2023-01-11T21:23:04.6814828Z test_bytes_to_scalar_cpu_int64 (__main__.TestTorchDeviceTypeCPU) ... ok (0.008s) 2023-01-11T21:23:04.6815141Z test_bytes_to_scalar_cpu_int8 (__main__.TestTorchDeviceTypeCPU) ... ok (0.003s) 2023-01-11T21:23:04.6815441Z test_bytes_to_scalar_cpu_uint8 (__main__.TestTorchDeviceTypeCPU) ... ok (0.003s) 2023-01-11T21:23:04.6815760Z test_cauchy_kstest_cpu_bfloat16 (__main__.TestTorchDeviceTypeCPU) ... ok (0.196s) 2023-01-11T21:23:04.6816081Z test_cauchy_kstest_cpu_float16 (__main__.TestTorchDeviceTypeCPU) ... ok (0.011s) 2023-01-11T21:23:04.6816382Z test_cauchy_kstest_cpu_float32 (__main__.TestTorchDeviceTypeCPU) ... ok (0.011s) 2023-01-11T21:23:04.6816696Z test_cauchy_kstest_cpu_float64 (__main__.TestTorchDeviceTypeCPU) ... ok (0.010s) 2023-01-11T21:23:04.6817083Z test_cauchy_no_inf_cpu_bfloat16 (__main__.TestTorchDeviceTypeCPU) ... skip: test is slow; run with PYTORCH_TEST_WITH_SLOW to enable test (0.002s) 2023-01-11T21:23:04.6817592Z test_cauchy_no_inf_cpu_float32 (__main__.TestTorchDeviceTypeCPU) ... skip: test is slow; run with PYTORCH_TEST_WITH_SLOW to enable test (0.001s) 2023-01-11T21:23:04.6817977Z test_cdist_cuda_backward_cpu (__main__.TestTorchDeviceTypeCPU) ... skip: Only runs on cuda (0.002s) 2023-01-11T21:23:04.6818313Z test_cdist_empty_cpu (__main__.TestTorchDeviceTypeCPU) ... ok (0.005s) 2023-01-11T21:23:04.6818631Z test_cdist_euclidean_large_cpu (__main__.TestTorchDeviceTypeCPU) ... ok (0.102s) 2023-01-11T21:23:04.6818956Z test_cdist_grad_p_lt_1_no_nan_cpu (__main__.TestTorchDeviceTypeCPU) ... ok (0.009s) 2023-01-11T21:23:04.6819327Z test_cdist_large_batch_cpu (__main__.TestTorchDeviceTypeCPU) ... skip: test is slow; run with PYTORCH_TEST_WITH_SLOW to enable test (0.002s) 2023-01-11T21:23:04.6819697Z test_cdist_large_cpu (__main__.TestTorchDeviceTypeCPU) ... ok (0.836s) 2023-01-11T21:23:04.6820016Z test_cdist_non_contiguous_batch_cpu (__main__.TestTorchDeviceTypeCPU) ... ok (0.015s) 2023-01-11T21:23:04.6820337Z test_cdist_non_contiguous_cpu (__main__.TestTorchDeviceTypeCPU) ... ok (0.008s) 2023-01-11T21:23:04.6820657Z test_cdist_norm_batch_cpu (__main__.TestTorchDeviceTypeCPU) ... ok (1.592s) 2023-01-11T21:23:04.6820962Z test_cdist_norm_cpu (__main__.TestTorchDeviceTypeCPU) ... ok (0.408s) 2023-01-11T21:23:04.6821274Z test_cdist_same_inputs_cpu (__main__.TestTorchDeviceTypeCPU) ... ok (0.014s) 2023-01-11T21:23:04.6821591Z test_clone_all_dtypes_and_devices_cpu (__main__.TestTorchDeviceTypeCPU) ... ok (0.006s) 2023-01-11T21:23:04.6821926Z test_clone_not_memory_dense_cpu (__main__.TestTorchDeviceTypeCPU) ... ok (0.001s) 2023-01-11T21:23:04.6822249Z test_clone_zero_stride_dim_cpu (__main__.TestTorchDeviceTypeCPU) ... ok (0.002s) 2023-01-11T21:23:04.6822580Z test_complex_half_experimental_warning_cpu (__main__.TestTorchDeviceTypeCPU) ... ok (0.003s) 2023-01-11T21:23:04.6822947Z test_constants_cpu (__main__.TestTorchDeviceTypeCPU) ... ok (0.001s) 2023-01-11T21:23:04.6823298Z test_conv_transposed_backward_agnostic_to_memory_format_cpu (__main__.TestTorchDeviceTypeCPU) ... ok (0.091s) 2023-01-11T21:23:04.6823680Z test_conv_transposed_large_cpu (__main__.TestTorchDeviceTypeCPU) ... skip: Only runs on cuda (0.001s) 2023-01-11T21:23:04.6824183Z test_copy__cpu_bfloat16 (__main__.TestTorchDeviceTypeCPU) ... test_torch.py:5264: UserWarning: Casting complex values to real discards the imaginary part (Triggered internally at /var/lib/jenkins/workspace/aten/src/ATen/native/Copy.cpp:276.) 2023-01-11T21:23:04.6824581Z t.copy_(src) 2023-01-11T21:23:04.6824751Z ok (0.010s) 2023-01-11T21:23:04.6824972Z test_copy__cpu_bool (__main__.TestTorchDeviceTypeCPU) ... ok (0.004s) 2023-01-11T21:23:04.6825277Z test_copy__cpu_complex128 (__main__.TestTorchDeviceTypeCPU) ... ok (0.009s) 2023-01-11T21:23:04.6825592Z test_copy__cpu_complex32 (__main__.TestTorchDeviceTypeCPU) ... ok (0.010s) 2023-01-11T21:23:04.6825903Z test_copy__cpu_complex64 (__main__.TestTorchDeviceTypeCPU) ... ok (0.009s) 2023-01-11T21:23:04.6826225Z test_copy__cpu_float16 (__main__.TestTorchDeviceTypeCPU) ... ok (0.008s) 2023-01-11T21:23:04.6826529Z test_copy__cpu_float32 (__main__.TestTorchDeviceTypeCPU) ... ok (0.007s) 2023-01-11T21:23:04.6826831Z test_copy__cpu_float64 (__main__.TestTorchDeviceTypeCPU) ... ok (0.007s) 2023-01-11T21:23:04.6827109Z test_copy__cpu_int16 (__main__.TestTorchDeviceTypeCPU) ... ok (0.005s) 2023-01-11T21:23:04.6827403Z test_copy__cpu_int32 (__main__.TestTorchDeviceTypeCPU) ... ok (0.005s) 2023-01-11T21:23:04.6827692Z test_copy__cpu_int64 (__main__.TestTorchDeviceTypeCPU) ... ok (0.005s) 2023-01-11T21:23:04.6827987Z test_copy__cpu_int8 (__main__.TestTorchDeviceTypeCPU) ... ok (0.005s) 2023-01-11T21:23:04.6828269Z test_copy__cpu_uint8 (__main__.TestTorchDeviceTypeCPU) ... ok (0.003s) 2023-01-11T21:23:04.6828586Z test_copy_all_dtypes_and_devices_cpu (__main__.TestTorchDeviceTypeCPU) ... ok (0.007s) 2023-01-11T21:23:04.6828905Z test_copy_math_view_cpu (__main__.TestTorchDeviceTypeCPU) ... ok (0.013s) 2023-01-11T21:23:04.6829210Z test_copy_mem_overlap_cpu_float64 (__main__.TestTorchDeviceTypeCPU) ... ok (0.048s) 2023-01-11T21:23:04.6829547Z test_copy_transpose_math_view_cpu_complex64 (__main__.TestTorchDeviceTypeCPU) ... ok (0.071s) 2023-01-11T21:23:04.6829889Z test_copy_transpose_math_view_cpu_float32 (__main__.TestTorchDeviceTypeCPU) ... ok (0.018s) 2023-01-11T21:23:04.6830223Z test_copy_transpose_math_view_cpu_int64 (__main__.TestTorchDeviceTypeCPU) ... ok (0.004s) 2023-01-11T21:23:04.6830691Z test_corrcoef_cpu_complex64 (__main__.TestTorchDeviceTypeCPU) ... test_torch.py:1944: UserWarning: cov(): degrees of freedom is <= 0 (Triggered internally at /var/lib/jenkins/workspace/aten/src/ATen/native/Correlation.cpp:117.) 2023-01-11T21:23:04.6831082Z res = torch.corrcoef(x) 2023-01-11T21:23:04.6831500Z /opt/conda/lib/python3.7/site-packages/numpy/lib/function_base.py:393: RuntimeWarning: Mean of empty slice. 2023-01-11T21:23:04.6831775Z avg = a.mean(axis) 2023-01-11T21:23:04.6832158Z /opt/conda/lib/python3.7/site-packages/numpy/core/_methods.py:154: RuntimeWarning: invalid value encountered in true_divide 2023-01-11T21:23:04.6832544Z ret, rcount, out=ret, casting='unsafe', subok=False) 2023-01-11T21:23:04.6832970Z /opt/conda/lib/python3.7/site-packages/numpy/lib/function_base.py:2526: RuntimeWarning: Degrees of freedom <= 0 for slice 2023-01-11T21:23:04.6833239Z c = cov(x, y, rowvar) 2023-01-11T21:23:04.6833639Z /opt/conda/lib/python3.7/site-packages/numpy/lib/function_base.py:2455: RuntimeWarning: divide by zero encountered in true_divide 2023-01-11T21:23:04.6833943Z c *= np.true_divide(1, fact) 2023-01-11T21:23:04.6834341Z /opt/conda/lib/python3.7/site-packages/numpy/lib/function_base.py:2455: RuntimeWarning: invalid value encountered in multiply 2023-01-11T21:23:04.6834662Z c *= np.true_divide(1, fact) 2023-01-11T21:23:04.6834839Z ok (0.016s) 2023-01-11T21:23:04.6835083Z test_corrcoef_cpu_float32 (__main__.TestTorchDeviceTypeCPU) ... ok (0.012s) 2023-01-11T21:23:04.6835386Z test_corrcoef_cpu_int32 (__main__.TestTorchDeviceTypeCPU) ... ok (0.011s) 2023-01-11T21:23:04.6835850Z test_cov_cpu_complex64 (__main__.TestTorchDeviceTypeCPU) ... test_torch.py:1951: UserWarning: cov(): degrees of freedom is <= 0 (Triggered internally at /var/lib/jenkins/workspace/aten/src/ATen/native/Correlation.cpp:117.) 2023-01-11T21:23:04.6836300Z res = torch.cov(t, correction=correction, fweights=fweights, aweights=aweights) 2023-01-11T21:23:04.6836606Z test_torch.py:1955: RuntimeWarning: Degrees of freedom <= 0 for slice 2023-01-11T21:23:04.6836884Z ref = np.cov(t, ddof=correction, fweights=fweights, aweights=aweights) 2023-01-11T21:23:04.6837334Z /opt/conda/lib/python3.7/site-packages/numpy/lib/function_base.py:425: RuntimeWarning: invalid value encountered in multiply 2023-01-11T21:23:04.6837673Z avg = np.multiply(a, wgt, dtype=result_dtype).sum(axis)/scl 2023-01-11T21:23:04.6837871Z ok (0.156s) 2023-01-11T21:23:04.6838103Z test_cov_cpu_float32 (__main__.TestTorchDeviceTypeCPU) ... ok (0.136s) 2023-01-11T21:23:04.6838433Z test_cov_cpu_int32 (__main__.TestTorchDeviceTypeCPU) ... ok (0.122s) 2023-01-11T21:23:04.6838743Z test_cpp_warnings_have_python_context_cpu (__main__.TestTorchDeviceTypeCPU) ... ok (0.444s) 2023-01-11T21:23:04.6839119Z test_cublas_config_nondeterministic_alert_cpu (__main__.TestTorchDeviceTypeCPU) ... skip: Only runs on cuda (0.002s) 2023-01-11T21:23:04.6839468Z test_cummax_cummin_cpu (__main__.TestTorchDeviceTypeCPU) ... ok (0.053s) 2023-01-11T21:23:04.6839779Z test_cummax_discontiguous_cpu (__main__.TestTorchDeviceTypeCPU) ... ok (0.003s) 2023-01-11T21:23:04.6840087Z test_cummin_discontiguous_cpu (__main__.TestTorchDeviceTypeCPU) ... ok (0.003s) 2023-01-11T21:23:04.6840394Z test_cumprod_cpu (__main__.TestTorchDeviceTypeCPU) ... ok (0.042s) 2023-01-11T21:23:04.6840824Z test_cumsum_cpu (__main__.TestTorchDeviceTypeCPU) ... ok (0.020s) 2023-01-11T21:23:04.6841439Z test_deepcopy_cpu_complex64 (__main__.TestTorchDeviceTypeCPU) ... test_torch.py:385: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:23:04.6841972Z q = [a, [a.storage(), b.storage()], b, c] 2023-01-11T21:23:04.6842488Z /opt/conda/lib/python3.7/copy.py:161: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:23:04.6842959Z y = copier(memo) 2023-01-11T21:23:04.6843737Z /opt/conda/lib/python3.7/site-packages/torch/testing/_internal/common_utils.py:1904: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:23:04.6844271Z device=typed_storage.device, 2023-01-11T21:23:04.6844751Z test_torch.py:396: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:23:04.6845221Z self.assertEqual(w[1][0][i], q[1][0][i] + 1) 2023-01-11T21:23:04.6845710Z test_torch.py:400: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:23:04.6846297Z self.assertEqual(w[1][1][i], q[1][1][i] - 1) 2023-01-11T21:23:04.6846478Z ok (0.016s) 2023-01-11T21:23:04.6846725Z test_deepcopy_cpu_float32 (__main__.TestTorchDeviceTypeCPU) ... ok (0.015s) 2023-01-11T21:23:04.6847052Z test_deepcopy_scalar_cpu_complex64 (__main__.TestTorchDeviceTypeCPU) ... ok (0.002s) 2023-01-11T21:23:04.6847388Z test_deepcopy_scalar_cpu_float32 (__main__.TestTorchDeviceTypeCPU) ... ok (0.002s) 2023-01-11T21:23:04.6847728Z test_device_guard_cpu (__main__.TestTorchDeviceTypeCPU) ... skip: fewer than 2 devices detected (0.004s) 2023-01-11T21:23:04.6848067Z test_diff_cpu_bool (__main__.TestTorchDeviceTypeCPU) ... ok (0.116s) 2023-01-11T21:23:04.6848373Z test_diff_cpu_complex128 (__main__.TestTorchDeviceTypeCPU) ... ok (0.169s) 2023-01-11T21:23:04.6848668Z test_diff_cpu_complex64 (__main__.TestTorchDeviceTypeCPU) ... ok (0.176s) 2023-01-11T21:23:04.6848977Z test_diff_cpu_float16 (__main__.TestTorchDeviceTypeCPU) ... ok (0.159s) 2023-01-11T21:23:04.6849285Z test_diff_cpu_float32 (__main__.TestTorchDeviceTypeCPU) ... ok (0.159s) 2023-01-11T21:23:04.6849638Z test_diff_cpu_float64 (__main__.TestTorchDeviceTypeCPU) ... ok (0.149s) 2023-01-11T21:23:04.6849938Z test_diff_cpu_int16 (__main__.TestTorchDeviceTypeCPU) ... ok (0.137s) 2023-01-11T21:23:04.6850285Z test_diff_cpu_int32 (__main__.TestTorchDeviceTypeCPU) ... ok (0.113s) 2023-01-11T21:23:04.6850605Z test_diff_cpu_int64 (__main__.TestTorchDeviceTypeCPU) ... ok (0.105s) 2023-01-11T21:23:04.6850888Z test_diff_cpu_int8 (__main__.TestTorchDeviceTypeCPU) ... ok (0.112s) 2023-01-11T21:23:04.6851179Z test_diff_cpu_uint8 (__main__.TestTorchDeviceTypeCPU) ... ok (0.115s) 2023-01-11T21:23:04.6851484Z test_diff_noncontig_cpu_bool (__main__.TestTorchDeviceTypeCPU) ... ok (0.104s) 2023-01-11T21:23:04.6851800Z test_diff_noncontig_cpu_complex128 (__main__.TestTorchDeviceTypeCPU) ... ok (0.168s) 2023-01-11T21:23:04.6852134Z test_diff_noncontig_cpu_complex64 (__main__.TestTorchDeviceTypeCPU) ... ok (0.166s) 2023-01-11T21:23:04.6852458Z test_diff_noncontig_cpu_float16 (__main__.TestTorchDeviceTypeCPU) ... ok (0.170s) 2023-01-11T21:23:04.6852781Z test_diff_noncontig_cpu_float32 (__main__.TestTorchDeviceTypeCPU) ... ok (0.144s) 2023-01-11T21:23:04.6853088Z test_diff_noncontig_cpu_float64 (__main__.TestTorchDeviceTypeCPU) ... ok (0.134s) 2023-01-11T21:23:04.6853410Z test_diff_noncontig_cpu_int16 (__main__.TestTorchDeviceTypeCPU) ... ok (0.097s) 2023-01-11T21:23:04.6853728Z test_diff_noncontig_cpu_int32 (__main__.TestTorchDeviceTypeCPU) ... ok (0.107s) 2023-01-11T21:23:04.6854028Z test_diff_noncontig_cpu_int64 (__main__.TestTorchDeviceTypeCPU) ... ok (0.086s) 2023-01-11T21:23:04.6854340Z test_diff_noncontig_cpu_int8 (__main__.TestTorchDeviceTypeCPU) ... ok (0.095s) 2023-01-11T21:23:04.6854649Z test_diff_noncontig_cpu_uint8 (__main__.TestTorchDeviceTypeCPU) ... ok (0.096s) 2023-01-11T21:23:04.6854964Z test_dim_function_empty_cpu (__main__.TestTorchDeviceTypeCPU) ... ok (0.054s) 2023-01-11T21:23:04.6855273Z test_discontiguous_out_cumsum_cpu (__main__.TestTorchDeviceTypeCPU) ... ok (0.002s) 2023-01-11T21:23:04.6855579Z test_dist_cpu (__main__.TestTorchDeviceTypeCPU) ... ok (0.010s) 2023-01-11T21:23:04.6855877Z test_errors_index_copy_cpu (__main__.TestTorchDeviceTypeCPU) ... ok (0.060s) 2023-01-11T21:23:04.6856182Z test_expected_failure_xla_cpu (__main__.TestTorchDeviceTypeCPU) ... ok (0.001s) 2023-01-11T21:23:04.6856503Z test_exponential_cpu_bfloat16 (__main__.TestTorchDeviceTypeCPU) ... ok (0.017s) 2023-01-11T21:23:04.6856822Z test_exponential_cpu_float16 (__main__.TestTorchDeviceTypeCPU) ... ok (0.015s) 2023-01-11T21:23:04.6857137Z test_exponential_cpu_float32 (__main__.TestTorchDeviceTypeCPU) ... ok (0.015s) 2023-01-11T21:23:04.6857514Z test_exponential_cpu_float64 (__main__.TestTorchDeviceTypeCPU) ... ok (0.015s) 2023-01-11T21:23:04.6857836Z test_exponential_kstest_cpu_bfloat16 (__main__.TestTorchDeviceTypeCPU) ... ok (0.024s) 2023-01-11T21:23:04.6858225Z test_exponential_kstest_cpu_float16 (__main__.TestTorchDeviceTypeCPU) ... ok (0.004s) 2023-01-11T21:23:04.6858548Z test_exponential_kstest_cpu_float32 (__main__.TestTorchDeviceTypeCPU) ... ok (0.004s) 2023-01-11T21:23:04.6858878Z test_exponential_kstest_cpu_float64 (__main__.TestTorchDeviceTypeCPU) ... ok (0.004s) 2023-01-11T21:23:04.6859233Z test_exponential_no_zero_cpu_float16 (__main__.TestTorchDeviceTypeCPU) ... skip: Only runs on cuda (0.001s) 2023-01-11T21:23:04.6859606Z test_exponential_no_zero_cpu_float32 (__main__.TestTorchDeviceTypeCPU) ... skip: Only runs on cuda (0.001s) 2023-01-11T21:23:04.6859957Z test_gather_backward_deterministic_path_cpu (__main__.TestTorchDeviceTypeCPU) ... ok (3.458s) 2023-01-11T21:23:04.6860301Z test_gather_backward_one_dim_cpu (__main__.TestTorchDeviceTypeCPU) ... ok (3.434s) 2023-01-11T21:23:04.6860621Z test_geometric_cpu_bfloat16 (__main__.TestTorchDeviceTypeCPU) ... ok (0.002s) 2023-01-11T21:23:04.6860938Z test_geometric_cpu_float16 (__main__.TestTorchDeviceTypeCPU) ... ok (0.001s) 2023-01-11T21:23:04.6861234Z test_geometric_cpu_float32 (__main__.TestTorchDeviceTypeCPU) ... ok (0.001s) 2023-01-11T21:23:04.6861573Z test_geometric_cpu_float64 (__main__.TestTorchDeviceTypeCPU) ... ok (0.001s) 2023-01-11T21:23:04.6861881Z test_geometric_cpu_int16 (__main__.TestTorchDeviceTypeCPU) ... ok (0.001s) 2023-01-11T21:23:04.6862172Z test_geometric_cpu_int32 (__main__.TestTorchDeviceTypeCPU) ... ok (0.001s) 2023-01-11T21:23:04.6862614Z test_geometric_cpu_int64 (__main__.TestTorchDeviceTypeCPU) ... ok (0.001s) 2023-01-11T21:23:04.6863115Z test_geometric_cpu_int8 (__main__.TestTorchDeviceTypeCPU) ... ok (0.001s) 2023-01-11T21:23:04.6863560Z test_geometric_cpu_uint8 (__main__.TestTorchDeviceTypeCPU) ... ok (0.001s) 2023-01-11T21:23:04.6864046Z test_geometric_kstest_cpu_bfloat16 (__main__.TestTorchDeviceTypeCPU) ... ok (0.006s) 2023-01-11T21:23:04.6864534Z test_geometric_kstest_cpu_float16 (__main__.TestTorchDeviceTypeCPU) ... ok (0.005s) 2023-01-11T21:23:04.6865037Z test_geometric_kstest_cpu_float32 (__main__.TestTorchDeviceTypeCPU) ... ok (0.006s) 2023-01-11T21:23:04.6865501Z test_geometric_kstest_cpu_float64 (__main__.TestTorchDeviceTypeCPU) ... ok (0.005s) 2023-01-11T21:23:04.6866024Z test_geometric_kstest_cpu_int16 (__main__.TestTorchDeviceTypeCPU) ... ok (0.005s) 2023-01-11T21:23:04.6866528Z test_geometric_kstest_cpu_int32 (__main__.TestTorchDeviceTypeCPU) ... ok (0.005s) 2023-01-11T21:23:04.6866979Z test_geometric_kstest_cpu_int64 (__main__.TestTorchDeviceTypeCPU) ... ok (0.005s) 2023-01-11T21:23:04.6867450Z test_geometric_kstest_cpu_int8 (__main__.TestTorchDeviceTypeCPU) ... ok (0.005s) 2023-01-11T21:23:04.6867954Z test_geometric_kstest_cpu_uint8 (__main__.TestTorchDeviceTypeCPU) ... ok (0.005s) 2023-01-11T21:23:04.6868451Z test_gradient_all_cpu_complex64 (__main__.TestTorchDeviceTypeCPU) ... ok (0.576s) 2023-01-11T21:23:04.6868947Z test_gradient_all_cpu_float32 (__main__.TestTorchDeviceTypeCPU) ... ok (0.417s) 2023-01-11T21:23:04.6869882Z test_gradient_all_cpu_int64 (__main__.TestTorchDeviceTypeCPU) ... /opt/conda/lib/python3.7/site-packages/numpy/lib/function_base.py:1061: RuntimeWarning: divide by zero encountered in true_divide 2023-01-11T21:23:04.6870475Z a = -(dx2)/(dx1 * (dx1 + dx2)) 2023-01-11T21:23:04.6871074Z /opt/conda/lib/python3.7/site-packages/numpy/lib/function_base.py:1062: RuntimeWarning: divide by zero encountered in true_divide 2023-01-11T21:23:04.6871514Z b = (dx2 - dx1) / (dx1 * dx2) 2023-01-11T21:23:04.6872139Z /opt/conda/lib/python3.7/site-packages/numpy/lib/function_base.py:1063: RuntimeWarning: divide by zero encountered in true_divide 2023-01-11T21:23:04.6872582Z c = dx1 / (dx2 * (dx1 + dx2)) 2023-01-11T21:23:04.6873184Z /opt/conda/lib/python3.7/site-packages/numpy/lib/function_base.py:1069: RuntimeWarning: invalid value encountered in add 2023-01-11T21:23:04.6873690Z out[tuple(slice1)] = a * f[tuple(slice2)] + b * f[tuple(slice3)] + c * f[tuple(slice4)] 2023-01-11T21:23:04.6898062Z /opt/conda/lib/python3.7/site-packages/numpy/lib/function_base.py:1117: RuntimeWarning: divide by zero encountered in double_scalars 2023-01-11T21:23:04.6898654Z a = (dx2) / (dx1 * (dx1 + dx2)) 2023-01-11T21:23:04.6899308Z /opt/conda/lib/python3.7/site-packages/numpy/lib/function_base.py:1118: RuntimeWarning: divide by zero encountered in double_scalars 2023-01-11T21:23:04.6899795Z b = - (dx2 + dx1) / (dx1 * dx2) 2023-01-11T21:23:04.6900383Z /opt/conda/lib/python3.7/site-packages/numpy/lib/function_base.py:1121: RuntimeWarning: invalid value encountered in double_scalars 2023-01-11T21:23:04.6900930Z out[tuple(slice1)] = a * f[tuple(slice2)] + b * f[tuple(slice3)] + c * f[tuple(slice4)] 2023-01-11T21:23:04.6901643Z /opt/conda/lib/python3.7/site-packages/numpy/lib/function_base.py:1100: RuntimeWarning: divide by zero encountered in double_scalars 2023-01-11T21:23:04.6902223Z a = -(2. * dx1 + dx2)/(dx1 * (dx1 + dx2)) 2023-01-11T21:23:04.6902804Z /opt/conda/lib/python3.7/site-packages/numpy/lib/function_base.py:1101: RuntimeWarning: divide by zero encountered in double_scalars 2023-01-11T21:23:04.6903213Z b = (dx1 + dx2) / (dx1 * dx2) 2023-01-11T21:23:04.6903917Z /opt/conda/lib/python3.7/site-packages/numpy/lib/function_base.py:1104: RuntimeWarning: invalid value encountered in add 2023-01-11T21:23:04.6904401Z out[tuple(slice1)] = a * f[tuple(slice2)] + b * f[tuple(slice3)] + c * f[tuple(slice4)] 2023-01-11T21:23:04.6904998Z /opt/conda/lib/python3.7/site-packages/numpy/lib/function_base.py:1121: RuntimeWarning: invalid value encountered in add 2023-01-11T21:23:04.6905469Z out[tuple(slice1)] = a * f[tuple(slice2)] + b * f[tuple(slice3)] + c * f[tuple(slice4)] 2023-01-11T21:23:04.6906093Z /opt/conda/lib/python3.7/site-packages/numpy/lib/function_base.py:1078: RuntimeWarning: divide by zero encountered in true_divide 2023-01-11T21:23:04.6906633Z out[tuple(slice1)] = (f[tuple(slice2)] - f[tuple(slice3)]) / dx_0 2023-01-11T21:23:04.6907231Z /opt/conda/lib/python3.7/site-packages/numpy/lib/function_base.py:1078: RuntimeWarning: invalid value encountered in true_divide 2023-01-11T21:23:04.6907769Z out[tuple(slice1)] = (f[tuple(slice2)] - f[tuple(slice3)]) / dx_0 2023-01-11T21:23:04.6908368Z /opt/conda/lib/python3.7/site-packages/numpy/lib/function_base.py:1069: RuntimeWarning: invalid value encountered in multiply 2023-01-11T21:23:04.6908827Z out[tuple(slice1)] = a * f[tuple(slice2)] + b * f[tuple(slice3)] + c * f[tuple(slice4)] 2023-01-11T21:23:04.6909446Z /opt/conda/lib/python3.7/site-packages/numpy/lib/function_base.py:1102: RuntimeWarning: divide by zero encountered in double_scalars 2023-01-11T21:23:04.6909917Z c = - dx1 / (dx2 * (dx1 + dx2)) 2023-01-11T21:23:04.6910457Z /opt/conda/lib/python3.7/site-packages/numpy/lib/function_base.py:1104: RuntimeWarning: invalid value encountered in multiply 2023-01-11T21:23:04.6910942Z out[tuple(slice1)] = a * f[tuple(slice2)] + b * f[tuple(slice3)] + c * f[tuple(slice4)] 2023-01-11T21:23:04.6911645Z /opt/conda/lib/python3.7/site-packages/numpy/lib/function_base.py:1121: RuntimeWarning: invalid value encountered in multiply 2023-01-11T21:23:04.6912215Z out[tuple(slice1)] = a * f[tuple(slice2)] + b * f[tuple(slice3)] + c * f[tuple(slice4)] 2023-01-11T21:23:04.6912957Z /opt/conda/lib/python3.7/site-packages/numpy/lib/function_base.py:1119: RuntimeWarning: divide by zero encountered in double_scalars 2023-01-11T21:23:04.6913364Z c = (2. * dx2 + dx1) / (dx2 * (dx1 + dx2)) 2023-01-11T21:23:04.6913952Z /opt/conda/lib/python3.7/site-packages/numpy/lib/function_base.py:1085: RuntimeWarning: divide by zero encountered in true_divide 2023-01-11T21:23:04.6914510Z out[tuple(slice1)] = (f[tuple(slice2)] - f[tuple(slice3)]) / dx_n 2023-01-11T21:23:04.6915099Z /opt/conda/lib/python3.7/site-packages/numpy/lib/function_base.py:1085: RuntimeWarning: invalid value encountered in true_divide 2023-01-11T21:23:04.6915668Z out[tuple(slice1)] = (f[tuple(slice2)] - f[tuple(slice3)]) / dx_n 2023-01-11T21:23:04.6916095Z ok (0.504s) 2023-01-11T21:23:04.6916451Z test_gradient_extreme_cases_cpu_complex64 (__main__.TestTorchDeviceTypeCPU) ... ok (0.315s) 2023-01-11T21:23:04.6916911Z test_gradient_extreme_cases_cpu_float32 (__main__.TestTorchDeviceTypeCPU) ... ok (0.234s) 2023-01-11T21:23:04.6917368Z test_gradient_extreme_cases_cpu_int64 (__main__.TestTorchDeviceTypeCPU) ... ok (0.218s) 2023-01-11T21:23:04.6918234Z test_gradient_type_promotion_cpu (__main__.TestTorchDeviceTypeCPU) ... /opt/conda/lib/python3.7/site-packages/numpy/lib/function_base.py:1057: ComplexWarning: Casting complex values to real discards the imaginary part 2023-01-11T21:23:04.6918946Z out[tuple(slice1)] = (f[tuple(slice4)] - f[tuple(slice2)]) / (2. * ax_dx) 2023-01-11T21:23:04.6919608Z /opt/conda/lib/python3.7/site-packages/numpy/lib/function_base.py:1078: ComplexWarning: Casting complex values to real discards the imaginary part 2023-01-11T21:23:04.6920179Z out[tuple(slice1)] = (f[tuple(slice2)] - f[tuple(slice3)]) / dx_0 2023-01-11T21:23:04.6920991Z /opt/conda/lib/python3.7/site-packages/numpy/lib/function_base.py:1085: ComplexWarning: Casting complex values to real discards the imaginary part 2023-01-11T21:23:04.6921668Z out[tuple(slice1)] = (f[tuple(slice2)] - f[tuple(slice3)]) / dx_n 2023-01-11T21:23:04.6923346Z /opt/conda/lib/python3.7/site-packages/torch/testing/_comparison.py:679: UserWarning: The given NumPy array is not writable, and PyTorch does not support non-writable tensors. This means writing to this tensor will result in undefined behavior. You may want to copy the array to protect its data or make it writable before converting it to a tensor. This type of warning will be suppressed for the rest of this program. (Triggered internally at /var/lib/jenkins/workspace/torch/csrc/utils/tensor_numpy.cpp:210.) 2023-01-11T21:23:04.6924307Z return torch.as_tensor(tensor_like) 2023-01-11T21:23:04.6924929Z /opt/conda/lib/python3.7/site-packages/numpy/lib/function_base.py:1104: ComplexWarning: Casting complex values to real discards the imaginary part 2023-01-11T21:23:04.6925458Z out[tuple(slice1)] = a * f[tuple(slice2)] + b * f[tuple(slice3)] + c * f[tuple(slice4)] 2023-01-11T21:23:04.6926117Z /opt/conda/lib/python3.7/site-packages/numpy/lib/function_base.py:1121: ComplexWarning: Casting complex values to real discards the imaginary part 2023-01-11T21:23:04.6926618Z out[tuple(slice1)] = a * f[tuple(slice2)] + b * f[tuple(slice3)] + c * f[tuple(slice4)] 2023-01-11T21:23:04.6927271Z /opt/conda/lib/python3.7/site-packages/numpy/lib/function_base.py:1069: ComplexWarning: Casting complex values to real discards the imaginary part 2023-01-11T21:23:04.6927766Z out[tuple(slice1)] = a * f[tuple(slice2)] + b * f[tuple(slice3)] + c * f[tuple(slice4)] 2023-01-11T21:23:04.6928047Z ok (0.164s) 2023-01-11T21:23:04.6928364Z test_hook_remove_cpu (__main__.TestTorchDeviceTypeCPU) ... ok (0.005s) 2023-01-11T21:23:04.6928793Z test_index_add_deterministic_cpu (__main__.TestTorchDeviceTypeCPU) ... ok (1.541s) 2023-01-11T21:23:04.6929225Z test_index_add_mem_overlap_cpu (__main__.TestTorchDeviceTypeCPU) ... ok (0.061s) 2023-01-11T21:23:04.6929675Z test_index_copy_cpu_bfloat16 (__main__.TestTorchDeviceTypeCPU) ... ok (0.026s) 2023-01-11T21:23:04.6930094Z test_index_copy_cpu_bool (__main__.TestTorchDeviceTypeCPU) ... ok (0.019s) 2023-01-11T21:23:04.6930525Z test_index_copy_cpu_complex128 (__main__.TestTorchDeviceTypeCPU) ... ok (0.026s) 2023-01-11T21:23:04.6930948Z test_index_copy_cpu_complex64 (__main__.TestTorchDeviceTypeCPU) ... ok (0.026s) 2023-01-11T21:23:04.6931382Z test_index_copy_cpu_float16 (__main__.TestTorchDeviceTypeCPU) ... ok (0.024s) 2023-01-11T21:23:04.6931806Z test_index_copy_cpu_float32 (__main__.TestTorchDeviceTypeCPU) ... ok (0.024s) 2023-01-11T21:23:04.6932229Z test_index_copy_cpu_float64 (__main__.TestTorchDeviceTypeCPU) ... ok (0.023s) 2023-01-11T21:23:04.6932691Z test_index_copy_cpu_int16 (__main__.TestTorchDeviceTypeCPU) ... ok (0.019s) 2023-01-11T21:23:04.6933155Z test_index_copy_cpu_int32 (__main__.TestTorchDeviceTypeCPU) ... ok (0.019s) 2023-01-11T21:23:04.6933760Z test_index_copy_cpu_int64 (__main__.TestTorchDeviceTypeCPU) ... ok (0.018s) 2023-01-11T21:23:04.6934239Z test_index_copy_cpu_int8 (__main__.TestTorchDeviceTypeCPU) ... ok (0.019s) 2023-01-11T21:23:04.6934663Z test_index_copy_cpu_uint8 (__main__.TestTorchDeviceTypeCPU) ... ok (0.019s) 2023-01-11T21:23:04.6935091Z test_index_copy_deterministic_cpu (__main__.TestTorchDeviceTypeCPU) ... ok (8.830s) 2023-01-11T21:23:04.6935535Z test_index_copy_mem_overlap_cpu (__main__.TestTorchDeviceTypeCPU) ... ok (0.053s) 2023-01-11T21:23:04.6935973Z test_index_copy_scalars_cpu_bfloat16 (__main__.TestTorchDeviceTypeCPU) ... ok (0.003s) 2023-01-11T21:23:04.6936410Z test_index_copy_scalars_cpu_bool (__main__.TestTorchDeviceTypeCPU) ... ok (0.003s) 2023-01-11T21:23:04.6936854Z test_index_copy_scalars_cpu_complex128 (__main__.TestTorchDeviceTypeCPU) ... ok (0.003s) 2023-01-11T21:23:04.6937367Z test_index_copy_scalars_cpu_complex64 (__main__.TestTorchDeviceTypeCPU) ... ok (0.003s) 2023-01-11T21:23:04.6937835Z test_index_copy_scalars_cpu_float16 (__main__.TestTorchDeviceTypeCPU) ... ok (0.003s) 2023-01-11T21:23:04.6938357Z test_index_copy_scalars_cpu_float32 (__main__.TestTorchDeviceTypeCPU) ... ok (0.003s) 2023-01-11T21:23:04.6938791Z test_index_copy_scalars_cpu_float64 (__main__.TestTorchDeviceTypeCPU) ... ok (0.003s) 2023-01-11T21:23:04.6939231Z test_index_copy_scalars_cpu_int16 (__main__.TestTorchDeviceTypeCPU) ... ok (0.003s) 2023-01-11T21:23:04.6939669Z test_index_copy_scalars_cpu_int32 (__main__.TestTorchDeviceTypeCPU) ... ok (0.003s) 2023-01-11T21:23:04.6940106Z test_index_copy_scalars_cpu_int64 (__main__.TestTorchDeviceTypeCPU) ... ok (0.003s) 2023-01-11T21:23:04.6940517Z test_index_copy_scalars_cpu_int8 (__main__.TestTorchDeviceTypeCPU) ... ok (0.003s) 2023-01-11T21:23:04.6940951Z test_index_copy_scalars_cpu_uint8 (__main__.TestTorchDeviceTypeCPU) ... ok (0.003s) 2023-01-11T21:23:04.6941396Z test_index_fill_cpu_bfloat16 (__main__.TestTorchDeviceTypeCPU) ... ok (0.015s) 2023-01-11T21:23:04.6941798Z test_index_fill_cpu_bool (__main__.TestTorchDeviceTypeCPU) ... ok (0.014s) 2023-01-11T21:23:04.6942233Z test_index_fill_cpu_complex128 (__main__.TestTorchDeviceTypeCPU) ... ok (0.002s) 2023-01-11T21:23:04.6942654Z test_index_fill_cpu_complex64 (__main__.TestTorchDeviceTypeCPU) ... ok (0.002s) 2023-01-11T21:23:04.6943124Z test_index_fill_cpu_float16 (__main__.TestTorchDeviceTypeCPU) ... ok (0.015s) 2023-01-11T21:23:04.6943588Z test_index_fill_cpu_float32 (__main__.TestTorchDeviceTypeCPU) ... ok (0.015s) 2023-01-11T21:23:04.6944067Z test_index_fill_cpu_float64 (__main__.TestTorchDeviceTypeCPU) ... ok (0.015s) 2023-01-11T21:23:04.6944559Z test_index_fill_cpu_int16 (__main__.TestTorchDeviceTypeCPU) ... ok (0.014s) 2023-01-11T21:23:04.6944998Z test_index_fill_cpu_int32 (__main__.TestTorchDeviceTypeCPU) ... ok (0.014s) 2023-01-11T21:23:04.6945429Z test_index_fill_cpu_int64 (__main__.TestTorchDeviceTypeCPU) ... ok (0.014s) 2023-01-11T21:23:04.6945847Z test_index_fill_cpu_int8 (__main__.TestTorchDeviceTypeCPU) ... ok (0.014s) 2023-01-11T21:23:04.6946268Z test_index_fill_cpu_uint8 (__main__.TestTorchDeviceTypeCPU) ... ok (0.015s) 2023-01-11T21:23:04.6946677Z test_index_fill_mem_overlap_cpu (__main__.TestTorchDeviceTypeCPU) ... ok (0.017s) 2023-01-11T21:23:04.6947113Z test_index_put_mem_overlap_cpu (__main__.TestTorchDeviceTypeCPU) ... ok (0.087s) 2023-01-11T21:23:04.6947581Z test_index_put_non_accumulate_deterministic_cpu (__main__.TestTorchDeviceTypeCPU) ... ok (0.019s) 2023-01-11T21:23:04.6948337Z test_index_reduce_reduce_amax_cpu_bfloat16 (__main__.TestTorchDeviceTypeCPU) ... test_torch.py:2997: UserWarning: index_reduce() is in beta and the API may change at any time. (Triggered internally at /var/lib/jenkins/workspace/aten/src/ATen/native/TensorAdvancedIndexing.cpp:1128.) 2023-01-11T21:23:04.6949052Z dest.index_reduce_(dim, idx, src, reduce, include_self=include_self) 2023-01-11T21:23:04.6949374Z ok (0.168s) 2023-01-11T21:23:04.6949823Z test_index_reduce_reduce_amax_cpu_float16 (__main__.TestTorchDeviceTypeCPU) ... ok (0.155s) 2023-01-11T21:23:04.6950262Z test_index_reduce_reduce_amax_cpu_float32 (__main__.TestTorchDeviceTypeCPU) ... ok (0.157s) 2023-01-11T21:23:04.6950717Z test_index_reduce_reduce_amax_cpu_float64 (__main__.TestTorchDeviceTypeCPU) ... ok (0.155s) 2023-01-11T21:23:04.6951172Z test_index_reduce_reduce_amax_cpu_int16 (__main__.TestTorchDeviceTypeCPU) ... ok (0.129s) 2023-01-11T21:23:04.6951621Z test_index_reduce_reduce_amax_cpu_int32 (__main__.TestTorchDeviceTypeCPU) ... ok (0.129s) 2023-01-11T21:23:04.6952050Z test_index_reduce_reduce_amax_cpu_int64 (__main__.TestTorchDeviceTypeCPU) ... ok (0.131s) 2023-01-11T21:23:04.6952499Z test_index_reduce_reduce_amax_cpu_int8 (__main__.TestTorchDeviceTypeCPU) ... ok (0.129s) 2023-01-11T21:23:04.6952945Z test_index_reduce_reduce_amax_cpu_uint8 (__main__.TestTorchDeviceTypeCPU) ... ok (0.130s) 2023-01-11T21:23:04.6953384Z test_index_reduce_reduce_amin_cpu_bfloat16 (__main__.TestTorchDeviceTypeCPU) ... ok (0.156s) 2023-01-11T21:23:04.6953891Z test_index_reduce_reduce_amin_cpu_float16 (__main__.TestTorchDeviceTypeCPU) ... ok (0.158s) 2023-01-11T21:23:04.6954493Z test_index_reduce_reduce_amin_cpu_float32 (__main__.TestTorchDeviceTypeCPU) ... ok (0.160s) 2023-01-11T21:23:04.6955043Z test_index_reduce_reduce_amin_cpu_float64 (__main__.TestTorchDeviceTypeCPU) ... ok (0.161s) 2023-01-11T21:23:04.6955551Z test_index_reduce_reduce_amin_cpu_int16 (__main__.TestTorchDeviceTypeCPU) ... ok (0.130s) 2023-01-11T21:23:04.6955997Z test_index_reduce_reduce_amin_cpu_int32 (__main__.TestTorchDeviceTypeCPU) ... ok (0.128s) 2023-01-11T21:23:04.6956439Z test_index_reduce_reduce_amin_cpu_int64 (__main__.TestTorchDeviceTypeCPU) ... ok (0.124s) 2023-01-11T21:23:04.6956907Z test_index_reduce_reduce_amin_cpu_int8 (__main__.TestTorchDeviceTypeCPU) ... ok (0.128s) 2023-01-11T21:23:04.6957370Z test_index_reduce_reduce_amin_cpu_uint8 (__main__.TestTorchDeviceTypeCPU) ... ok (0.128s) 2023-01-11T21:23:04.6957856Z test_index_reduce_reduce_mean_cpu_bfloat16 (__main__.TestTorchDeviceTypeCPU) ... ok (0.189s) 2023-01-11T21:23:04.6958321Z test_index_reduce_reduce_mean_cpu_float16 (__main__.TestTorchDeviceTypeCPU) ... ok (0.184s) 2023-01-11T21:23:04.6958775Z test_index_reduce_reduce_mean_cpu_float32 (__main__.TestTorchDeviceTypeCPU) ... ok (0.185s) 2023-01-11T21:23:04.6959250Z test_index_reduce_reduce_mean_cpu_float64 (__main__.TestTorchDeviceTypeCPU) ... ok (0.183s) 2023-01-11T21:23:04.6959694Z test_index_reduce_reduce_mean_cpu_int16 (__main__.TestTorchDeviceTypeCPU) ... ok (0.157s) 2023-01-11T21:23:04.6960140Z test_index_reduce_reduce_mean_cpu_int32 (__main__.TestTorchDeviceTypeCPU) ... ok (0.155s) 2023-01-11T21:23:04.6960570Z test_index_reduce_reduce_mean_cpu_int64 (__main__.TestTorchDeviceTypeCPU) ... ok (0.170s) 2023-01-11T21:23:04.6961180Z test_index_reduce_reduce_mean_cpu_int8 (__main__.TestTorchDeviceTypeCPU) ... ok (0.158s) 2023-01-11T21:23:04.6961639Z test_index_reduce_reduce_mean_cpu_uint8 (__main__.TestTorchDeviceTypeCPU) ... ok (0.156s) 2023-01-11T21:23:04.6962087Z test_index_reduce_reduce_prod_cpu_bfloat16 (__main__.TestTorchDeviceTypeCPU) ... ok (0.155s) 2023-01-11T21:23:04.6962562Z test_index_reduce_reduce_prod_cpu_float16 (__main__.TestTorchDeviceTypeCPU) ... ok (0.160s) 2023-01-11T21:23:04.6963044Z test_index_reduce_reduce_prod_cpu_float32 (__main__.TestTorchDeviceTypeCPU) ... ok (0.155s) 2023-01-11T21:23:04.6963513Z test_index_reduce_reduce_prod_cpu_float64 (__main__.TestTorchDeviceTypeCPU) ... ok (0.158s) 2023-01-11T21:23:04.6963947Z test_index_reduce_reduce_prod_cpu_int16 (__main__.TestTorchDeviceTypeCPU) ... ok (0.127s) 2023-01-11T21:23:04.6964468Z test_index_reduce_reduce_prod_cpu_int32 (__main__.TestTorchDeviceTypeCPU) ... ok (0.125s) 2023-01-11T21:23:04.6964984Z test_index_reduce_reduce_prod_cpu_int64 (__main__.TestTorchDeviceTypeCPU) ... ok (0.121s) 2023-01-11T21:23:04.6965521Z test_index_reduce_reduce_prod_cpu_int8 (__main__.TestTorchDeviceTypeCPU) ... ok (0.126s) 2023-01-11T21:23:04.6966107Z test_index_reduce_reduce_prod_cpu_uint8 (__main__.TestTorchDeviceTypeCPU) ... ok (0.126s) 2023-01-11T21:23:04.6966570Z test_index_select_cpu_bfloat16 (__main__.TestTorchDeviceTypeCPU) ... ok (0.014s) 2023-01-11T21:23:04.6967010Z test_index_select_cpu_bool (__main__.TestTorchDeviceTypeCPU) ... ok (0.010s) 2023-01-11T21:23:04.6967425Z test_index_select_cpu_complex128 (__main__.TestTorchDeviceTypeCPU) ... ok (0.015s) 2023-01-11T21:23:04.6967872Z test_index_select_cpu_complex64 (__main__.TestTorchDeviceTypeCPU) ... ok (0.015s) 2023-01-11T21:23:04.6968318Z test_index_select_cpu_float16 (__main__.TestTorchDeviceTypeCPU) ... ok (0.013s) 2023-01-11T21:23:04.6968744Z test_index_select_cpu_float32 (__main__.TestTorchDeviceTypeCPU) ... ok (0.013s) 2023-01-11T21:23:04.6969175Z test_index_select_cpu_float64 (__main__.TestTorchDeviceTypeCPU) ... ok (0.013s) 2023-01-11T21:23:04.6969609Z test_index_select_cpu_int16 (__main__.TestTorchDeviceTypeCPU) ... ok (0.010s) 2023-01-11T21:23:04.6970028Z test_index_select_cpu_int32 (__main__.TestTorchDeviceTypeCPU) ... ok (0.024s) 2023-01-11T21:23:04.6970450Z test_index_select_cpu_int64 (__main__.TestTorchDeviceTypeCPU) ... ok (0.010s) 2023-01-11T21:23:04.6970972Z test_index_select_cpu_int8 (__main__.TestTorchDeviceTypeCPU) ... ok (0.011s) 2023-01-11T21:23:04.6971397Z test_index_select_cpu_uint8 (__main__.TestTorchDeviceTypeCPU) ... ok (0.011s) 2023-01-11T21:23:04.6971830Z test_invalid_shapes_grid_sampler_cpu (__main__.TestTorchDeviceTypeCPU) ... ok (0.078s) 2023-01-11T21:23:04.6972250Z test_is_set_to_cpu (__main__.TestTorchDeviceTypeCPU) ... ok (0.003s) 2023-01-11T21:23:04.6972658Z test_is_signed_cpu (__main__.TestTorchDeviceTypeCPU) ... ok (0.002s) 2023-01-11T21:23:04.6973068Z test_item_cpu_bfloat16 (__main__.TestTorchDeviceTypeCPU) ... ok (0.001s) 2023-01-11T21:23:04.6973461Z test_item_cpu_bool (__main__.TestTorchDeviceTypeCPU) ... ok (0.001s) 2023-01-11T21:23:04.6973872Z test_item_cpu_complex128 (__main__.TestTorchDeviceTypeCPU) ... ok (0.001s) 2023-01-11T21:23:04.6974294Z test_item_cpu_complex32 (__main__.TestTorchDeviceTypeCPU) ... ok (0.001s) 2023-01-11T21:23:04.6974712Z test_item_cpu_complex64 (__main__.TestTorchDeviceTypeCPU) ... ok (0.001s) 2023-01-11T21:23:04.6975160Z test_item_cpu_float16 (__main__.TestTorchDeviceTypeCPU) ... ok (0.001s) 2023-01-11T21:23:04.6975619Z test_item_cpu_float32 (__main__.TestTorchDeviceTypeCPU) ... ok (0.001s) 2023-01-11T21:23:04.6976082Z test_item_cpu_float64 (__main__.TestTorchDeviceTypeCPU) ... ok (0.001s) 2023-01-11T21:23:04.6976558Z test_item_cpu_int16 (__main__.TestTorchDeviceTypeCPU) ... ok (0.001s) 2023-01-11T21:23:04.6976970Z test_item_cpu_int32 (__main__.TestTorchDeviceTypeCPU) ... ok (0.001s) 2023-01-11T21:23:04.6977474Z test_item_cpu_int64 (__main__.TestTorchDeviceTypeCPU) ... ok (0.001s) 2023-01-11T21:23:04.6977860Z test_item_cpu_int8 (__main__.TestTorchDeviceTypeCPU) ... ok (0.001s) 2023-01-11T21:23:04.6978265Z test_item_cpu_uint8 (__main__.TestTorchDeviceTypeCPU) ... ok (0.001s) 2023-01-11T21:23:04.6978724Z test_large_cumprod_cpu_float16 (__main__.TestTorchDeviceTypeCPU) ... skip: Only runs on cuda (0.001s) 2023-01-11T21:23:04.6979218Z test_large_cumsum_cpu_float16 (__main__.TestTorchDeviceTypeCPU) ... skip: Only runs on cuda (0.001s) 2023-01-11T21:23:04.6979664Z test_log_normal_cpu_bfloat16 (__main__.TestTorchDeviceTypeCPU) ... ok (0.001s) 2023-01-11T21:23:04.6980088Z test_log_normal_cpu_float16 (__main__.TestTorchDeviceTypeCPU) ... ok (0.001s) 2023-01-11T21:23:04.6980516Z test_log_normal_cpu_float32 (__main__.TestTorchDeviceTypeCPU) ... ok (0.001s) 2023-01-11T21:23:04.6980949Z test_log_normal_cpu_float64 (__main__.TestTorchDeviceTypeCPU) ... ok (0.001s) 2023-01-11T21:23:04.6981370Z test_logcumsumexp_cpu (__main__.TestTorchDeviceTypeCPU) ... ok (0.022s) 2023-01-11T21:23:04.6981810Z test_lognormal_kstest_cpu_bfloat16 (__main__.TestTorchDeviceTypeCPU) ... ok (0.014s) 2023-01-11T21:23:04.6982254Z test_lognormal_kstest_cpu_float16 (__main__.TestTorchDeviceTypeCPU) ... ok (0.014s) 2023-01-11T21:23:04.6982774Z test_lognormal_kstest_cpu_float32 (__main__.TestTorchDeviceTypeCPU) ... ok (0.013s) 2023-01-11T21:23:04.6983237Z test_lognormal_kstest_cpu_float64 (__main__.TestTorchDeviceTypeCPU) ... ok (0.012s) 2023-01-11T21:23:04.6983661Z test_masked_fill_bool_tensor_cpu (__main__.TestTorchDeviceTypeCPU) ... ok (0.002s) 2023-01-11T21:23:04.6984096Z test_masked_fill_cpu_bfloat16_bool (__main__.TestTorchDeviceTypeCPU) ... ok (0.005s) 2023-01-11T21:23:04.6984526Z test_masked_fill_cpu_bfloat16_uint8 (__main__.TestTorchDeviceTypeCPU) ... ok (0.005s) 2023-01-11T21:23:04.6984980Z test_masked_fill_cpu_bool_bool (__main__.TestTorchDeviceTypeCPU) ... ok (0.004s) 2023-01-11T21:23:04.6985423Z test_masked_fill_cpu_bool_uint8 (__main__.TestTorchDeviceTypeCPU) ... ok (0.004s) 2023-01-11T21:23:04.6985910Z test_masked_fill_cpu_complex128_bool (__main__.TestTorchDeviceTypeCPU) ... ok (0.005s) 2023-01-11T21:23:04.6986424Z test_masked_fill_cpu_complex128_uint8 (__main__.TestTorchDeviceTypeCPU) ... ok (0.005s) 2023-01-11T21:23:04.6986951Z test_masked_fill_cpu_complex64_bool (__main__.TestTorchDeviceTypeCPU) ... ok (0.005s) 2023-01-11T21:23:04.6987540Z test_masked_fill_cpu_complex64_uint8 (__main__.TestTorchDeviceTypeCPU) ... ok (0.005s) 2023-01-11T21:23:04.6987993Z test_masked_fill_cpu_float16_bool (__main__.TestTorchDeviceTypeCPU) ... ok (0.004s) 2023-01-11T21:23:04.6988447Z test_masked_fill_cpu_float16_uint8 (__main__.TestTorchDeviceTypeCPU) ... ok (0.005s) 2023-01-11T21:23:04.6988887Z test_masked_fill_cpu_float32_bool (__main__.TestTorchDeviceTypeCPU) ... ok (0.004s) 2023-01-11T21:23:04.6989308Z test_masked_fill_cpu_float32_uint8 (__main__.TestTorchDeviceTypeCPU) ... ok (0.005s) 2023-01-11T21:23:04.6989747Z test_masked_fill_cpu_float64_bool (__main__.TestTorchDeviceTypeCPU) ... ok (0.004s) 2023-01-11T21:23:04.6990191Z test_masked_fill_cpu_float64_uint8 (__main__.TestTorchDeviceTypeCPU) ... ok (0.005s) 2023-01-11T21:23:04.6990636Z test_masked_fill_cpu_int16_bool (__main__.TestTorchDeviceTypeCPU) ... ok (0.004s) 2023-01-11T21:23:04.6991060Z test_masked_fill_cpu_int16_uint8 (__main__.TestTorchDeviceTypeCPU) ... ok (0.004s) 2023-01-11T21:23:04.6991501Z test_masked_fill_cpu_int32_bool (__main__.TestTorchDeviceTypeCPU) ... ok (0.011s) 2023-01-11T21:23:04.6991935Z test_masked_fill_cpu_int32_uint8 (__main__.TestTorchDeviceTypeCPU) ... ok (0.025s) 2023-01-11T21:23:04.6992356Z test_masked_fill_cpu_int64_bool (__main__.TestTorchDeviceTypeCPU) ... ok (0.004s) 2023-01-11T21:23:04.6992788Z test_masked_fill_cpu_int64_uint8 (__main__.TestTorchDeviceTypeCPU) ... ok (0.004s) 2023-01-11T21:23:04.6993224Z test_masked_fill_cpu_int8_bool (__main__.TestTorchDeviceTypeCPU) ... ok (0.004s) 2023-01-11T21:23:04.6993661Z test_masked_fill_cpu_int8_uint8 (__main__.TestTorchDeviceTypeCPU) ... ok (0.004s) 2023-01-11T21:23:04.6994079Z test_masked_fill_cpu_uint8_bool (__main__.TestTorchDeviceTypeCPU) ... ok (0.004s) 2023-01-11T21:23:04.6994516Z test_masked_fill_cpu_uint8_uint8 (__main__.TestTorchDeviceTypeCPU) ... ok (0.004s) 2023-01-11T21:23:04.6994967Z test_masked_fill_mem_overlap_cpu (__main__.TestTorchDeviceTypeCPU) ... ok (0.019s) 2023-01-11T21:23:04.6995460Z test_masked_scatter_bool_tensor_cpu (__main__.TestTorchDeviceTypeCPU) ... ok (0.002s) 2023-01-11T21:23:04.6995975Z test_masked_scatter_cpu_bfloat16 (__main__.TestTorchDeviceTypeCPU) ... ok (0.037s) 2023-01-11T21:23:04.6996523Z test_masked_scatter_cpu_bool (__main__.TestTorchDeviceTypeCPU) ... ok (0.004s) 2023-01-11T21:23:04.6996966Z test_masked_scatter_cpu_complex128 (__main__.TestTorchDeviceTypeCPU) ... ok (0.037s) 2023-01-11T21:23:04.6997416Z test_masked_scatter_cpu_complex64 (__main__.TestTorchDeviceTypeCPU) ... ok (0.037s) 2023-01-11T21:23:04.6997861Z test_masked_scatter_cpu_float16 (__main__.TestTorchDeviceTypeCPU) ... ok (0.037s) 2023-01-11T21:23:04.6998303Z test_masked_scatter_cpu_float32 (__main__.TestTorchDeviceTypeCPU) ... ok (0.037s) 2023-01-11T21:23:04.6998801Z test_masked_scatter_cpu_float64 (__main__.TestTorchDeviceTypeCPU) ... ok (0.037s) 2023-01-11T21:23:04.6999234Z test_masked_scatter_cpu_int16 (__main__.TestTorchDeviceTypeCPU) ... ok (0.037s) 2023-01-11T21:23:04.6999669Z test_masked_scatter_cpu_int32 (__main__.TestTorchDeviceTypeCPU) ... ok (0.037s) 2023-01-11T21:23:04.7000100Z test_masked_scatter_cpu_int64 (__main__.TestTorchDeviceTypeCPU) ... ok (0.037s) 2023-01-11T21:23:04.7000519Z test_masked_scatter_cpu_int8 (__main__.TestTorchDeviceTypeCPU) ... ok (0.037s) 2023-01-11T21:23:04.7001095Z test_masked_scatter_cpu_uint8 (__main__.TestTorchDeviceTypeCPU) ... ok (0.037s) 2023-01-11T21:23:04.7001587Z test_masked_scatter_large_tensor_cpu (__main__.TestTorchDeviceTypeCPU) ... skip: Only runs on cuda (0.001s) 2023-01-11T21:23:04.7002059Z test_masked_scatter_mem_overlap_cpu (__main__.TestTorchDeviceTypeCPU) ... ok (0.013s) 2023-01-11T21:23:04.7003020Z test_masked_select_cpu_bfloat16 (__main__.TestTorchDeviceTypeCPU) ... test_torch.py:3641: UserWarning: masked_select received a mask with dtype torch.uint8, this behavior is now deprecated,please use a mask with dtype torch.bool instead. (Triggered internally at /var/lib/jenkins/workspace/aten/src/ATen/native/TensorAdvancedIndexing.cpp:1854.) 2023-01-11T21:23:04.7003776Z torch.masked_select(src, mask, out=dst3) 2023-01-11T21:23:04.7004046Z ok (0.011s) 2023-01-11T21:23:04.7004825Z test_masked_select_cpu_bool (__main__.TestTorchDeviceTypeCPU) ... test_torch.py:3641: UserWarning: masked_select received a mask with dtype torch.uint8, this behavior is now deprecated,please use a mask with dtype torch.bool instead. (Triggered internally at /var/lib/jenkins/workspace/aten/src/ATen/native/TensorAdvancedIndexing.cpp:1854.) 2023-01-11T21:23:04.7005628Z torch.masked_select(src, mask, out=dst3) 2023-01-11T21:23:04.7005936Z ok (0.009s) 2023-01-11T21:23:04.7006774Z test_masked_select_cpu_complex128 (__main__.TestTorchDeviceTypeCPU) ... test_torch.py:3641: UserWarning: masked_select received a mask with dtype torch.uint8, this behavior is now deprecated,please use a mask with dtype torch.bool instead. (Triggered internally at /var/lib/jenkins/workspace/aten/src/ATen/native/TensorAdvancedIndexing.cpp:1854.) 2023-01-11T21:23:04.7007521Z torch.masked_select(src, mask, out=dst3) 2023-01-11T21:23:04.7007775Z ok (0.010s) 2023-01-11T21:23:04.7008504Z test_masked_select_cpu_complex64 (__main__.TestTorchDeviceTypeCPU) ... test_torch.py:3641: UserWarning: masked_select received a mask with dtype torch.uint8, this behavior is now deprecated,please use a mask with dtype torch.bool instead. (Triggered internally at /var/lib/jenkins/workspace/aten/src/ATen/native/TensorAdvancedIndexing.cpp:1854.) 2023-01-11T21:23:04.7009247Z torch.masked_select(src, mask, out=dst3) 2023-01-11T21:23:04.7009508Z ok (0.010s) 2023-01-11T21:23:04.7010196Z test_masked_select_cpu_float16 (__main__.TestTorchDeviceTypeCPU) ... test_torch.py:3641: UserWarning: masked_select received a mask with dtype torch.uint8, this behavior is now deprecated,please use a mask with dtype torch.bool instead. (Triggered internally at /var/lib/jenkins/workspace/aten/src/ATen/native/TensorAdvancedIndexing.cpp:1854.) 2023-01-11T21:23:04.7010910Z torch.masked_select(src, mask, out=dst3) 2023-01-11T21:23:04.7011174Z ok (0.006s) 2023-01-11T21:23:04.7011882Z test_masked_select_cpu_float32 (__main__.TestTorchDeviceTypeCPU) ... test_torch.py:3641: UserWarning: masked_select received a mask with dtype torch.uint8, this behavior is now deprecated,please use a mask with dtype torch.bool instead. (Triggered internally at /var/lib/jenkins/workspace/aten/src/ATen/native/TensorAdvancedIndexing.cpp:1854.) 2023-01-11T21:23:04.7012578Z torch.masked_select(src, mask, out=dst3) 2023-01-11T21:23:04.7012841Z ok (0.010s) 2023-01-11T21:23:04.7013542Z test_masked_select_cpu_float64 (__main__.TestTorchDeviceTypeCPU) ... test_torch.py:3641: UserWarning: masked_select received a mask with dtype torch.uint8, this behavior is now deprecated,please use a mask with dtype torch.bool instead. (Triggered internally at /var/lib/jenkins/workspace/aten/src/ATen/native/TensorAdvancedIndexing.cpp:1854.) 2023-01-11T21:23:04.7014339Z torch.masked_select(src, mask, out=dst3) 2023-01-11T21:23:04.7014612Z ok (0.010s) 2023-01-11T21:23:04.7015432Z test_masked_select_cpu_int16 (__main__.TestTorchDeviceTypeCPU) ... test_torch.py:3641: UserWarning: masked_select received a mask with dtype torch.uint8, this behavior is now deprecated,please use a mask with dtype torch.bool instead. (Triggered internally at /var/lib/jenkins/workspace/aten/src/ATen/native/TensorAdvancedIndexing.cpp:1854.) 2023-01-11T21:23:04.7016310Z torch.masked_select(src, mask, out=dst3) 2023-01-11T21:23:04.7016574Z ok (0.015s) 2023-01-11T21:23:04.7017345Z test_masked_select_cpu_int32 (__main__.TestTorchDeviceTypeCPU) ... test_torch.py:3641: UserWarning: masked_select received a mask with dtype torch.uint8, this behavior is now deprecated,please use a mask with dtype torch.bool instead. (Triggered internally at /var/lib/jenkins/workspace/aten/src/ATen/native/TensorAdvancedIndexing.cpp:1854.) 2023-01-11T21:23:04.7018072Z torch.masked_select(src, mask, out=dst3) 2023-01-11T21:23:04.7018329Z ok (0.009s) 2023-01-11T21:23:04.7019093Z test_masked_select_cpu_int64 (__main__.TestTorchDeviceTypeCPU) ... test_torch.py:3641: UserWarning: masked_select received a mask with dtype torch.uint8, this behavior is now deprecated,please use a mask with dtype torch.bool instead. (Triggered internally at /var/lib/jenkins/workspace/aten/src/ATen/native/TensorAdvancedIndexing.cpp:1854.) 2023-01-11T21:23:04.7019792Z torch.masked_select(src, mask, out=dst3) 2023-01-11T21:23:04.7020051Z ok (0.008s) 2023-01-11T21:23:04.7020766Z test_masked_select_cpu_int8 (__main__.TestTorchDeviceTypeCPU) ... test_torch.py:3641: UserWarning: masked_select received a mask with dtype torch.uint8, this behavior is now deprecated,please use a mask with dtype torch.bool instead. (Triggered internally at /var/lib/jenkins/workspace/aten/src/ATen/native/TensorAdvancedIndexing.cpp:1854.) 2023-01-11T21:23:04.7021478Z torch.masked_select(src, mask, out=dst3) 2023-01-11T21:23:04.7021720Z ok (0.009s) 2023-01-11T21:23:04.7022426Z test_masked_select_cpu_uint8 (__main__.TestTorchDeviceTypeCPU) ... test_torch.py:3641: UserWarning: masked_select received a mask with dtype torch.uint8, this behavior is now deprecated,please use a mask with dtype torch.bool instead. (Triggered internally at /var/lib/jenkins/workspace/aten/src/ATen/native/TensorAdvancedIndexing.cpp:1854.) 2023-01-11T21:23:04.7023113Z torch.masked_select(src, mask, out=dst3) 2023-01-11T21:23:04.7023367Z ok (0.009s) 2023-01-11T21:23:04.7023689Z test_masked_select_discontiguous_cpu (__main__.TestTorchDeviceTypeCPU) ... ok (0.052s) 2023-01-11T21:23:04.7024125Z test_memory_format_clone_cpu (__main__.TestTorchDeviceTypeCPU) ... ok (0.050s) 2023-01-11T21:23:04.7024553Z test_memory_format_consistency_cpu (__main__.TestTorchDeviceTypeCPU) ... ok (0.002s) 2023-01-11T21:23:04.7025084Z test_memory_format_cpu_and_cuda_ops_cpu (__main__.TestTorchDeviceTypeCPU) ... skip: Only runs on cuda (0.001s) 2023-01-11T21:23:04.7025639Z test_memory_format_empty_like_cpu (__main__.TestTorchDeviceTypeCPU) ... ok (0.015s) 2023-01-11T21:23:04.7026222Z test_memory_format_factory_like_functions_preserve_cpu (__main__.TestTorchDeviceTypeCPU) ... ok (1.107s) 2023-01-11T21:23:04.7026742Z test_memory_format_operators_cpu (__main__.TestTorchDeviceTypeCPU) ... ok (0.738s) 2023-01-11T21:23:04.7027181Z test_memory_format_preserved_after_permute_cpu (__main__.TestTorchDeviceTypeCPU) ... ok (0.002s) 2023-01-11T21:23:04.7027640Z test_memory_format_propagation_rules_cpu (__main__.TestTorchDeviceTypeCPU) ... ok (0.005s) 2023-01-11T21:23:04.7028070Z test_memory_format_to_cpu (__main__.TestTorchDeviceTypeCPU) ... ok (0.047s) 2023-01-11T21:23:04.7028485Z test_memory_format_type_cpu (__main__.TestTorchDeviceTypeCPU) ... ok (0.052s) 2023-01-11T21:23:04.7028921Z test_memory_format_type_shortcuts_cpu (__main__.TestTorchDeviceTypeCPU) ... ok (0.385s) 2023-01-11T21:23:04.7029462Z test_module_share_memory_cpu (__main__.TestTorchDeviceTypeCPU) ... skip: Only runs on cuda (0.001s) 2023-01-11T21:23:04.7029664Z test_multinomial_cpu_cpu_bfloat16 (__main__.TestTorchDeviceTypeCPU) ... ok (0.002s) 2023-01-11T21:23:04.7029871Z test_multinomial_cpu_cpu_float32 (__main__.TestTorchDeviceTypeCPU) ... ok (0.002s) 2023-01-11T21:23:04.7030072Z test_multinomial_cpu_cpu_float64 (__main__.TestTorchDeviceTypeCPU) ... ok (0.002s) 2023-01-11T21:23:04.7030254Z test_multinomial_cpu_float32 (__main__.TestTorchDeviceTypeCPU) ... ok (0.043s) 2023-01-11T21:23:04.7030449Z test_multinomial_cpu_float64 (__main__.TestTorchDeviceTypeCPU) ... ok (0.042s) 2023-01-11T21:23:04.7030701Z test_multinomial_deterministic_cpu_float16 (__main__.TestTorchDeviceTypeCPU) ... skip: Only runs on cuda (0.002s) 2023-01-11T21:23:04.7030944Z test_multinomial_deterministic_cpu_float32 (__main__.TestTorchDeviceTypeCPU) ... skip: Only runs on cuda (0.001s) 2023-01-11T21:23:04.7031182Z test_multinomial_deterministic_cpu_float64 (__main__.TestTorchDeviceTypeCPU) ... skip: Only runs on cuda (0.001s) 2023-01-11T21:23:04.7031428Z test_multinomial_device_constrain_cpu (__main__.TestTorchDeviceTypeCPU) ... skip: Only runs on cuda (0.001s) 2023-01-11T21:23:04.7031691Z test_multinomial_empty_w_replacement_cpu (__main__.TestTorchDeviceTypeCPU) ... ok (0.001s) 2023-01-11T21:23:04.7031911Z test_multinomial_empty_wo_replacement_cpu (__main__.TestTorchDeviceTypeCPU) ... ok (0.001s) 2023-01-11T21:23:04.7032177Z test_multinomial_gpu_device_constrain_cpu (__main__.TestTorchDeviceTypeCPU) ... skip: fewer than 2 devices detected (0.001s) 2023-01-11T21:23:04.7032473Z test_multinomial_rng_state_advance_cpu_float32 (__main__.TestTorchDeviceTypeCPU) ... skip: test is slow; run with PYTORCH_TEST_WITH_SLOW to enable test (0.001s) 2023-01-11T21:23:04.7032658Z test_narrow_empty_cpu (__main__.TestTorchDeviceTypeCPU) ... ok (0.001s) 2023-01-11T21:23:04.7032902Z test_nondeterministic_alert_AdaptiveAvgPool2d_cpu (__main__.TestTorchDeviceTypeCPU) ... ok (0.002s) 2023-01-11T21:23:04.7033140Z test_nondeterministic_alert_AdaptiveAvgPool3d_cpu (__main__.TestTorchDeviceTypeCPU) ... ok (0.003s) 2023-01-11T21:23:04.7033374Z test_nondeterministic_alert_AdaptiveMaxPool2d_cpu (__main__.TestTorchDeviceTypeCPU) ... ok (0.002s) 2023-01-11T21:23:04.7033594Z test_nondeterministic_alert_AvgPool3d_cpu (__main__.TestTorchDeviceTypeCPU) ... ok (0.002s) 2023-01-11T21:23:04.7033810Z test_nondeterministic_alert_CTCLoss_cpu (__main__.TestTorchDeviceTypeCPU) ... ok (0.004s) 2023-01-11T21:23:04.7034043Z test_nondeterministic_alert_EmbeddingBag_max_cpu (__main__.TestTorchDeviceTypeCPU) ... ok (0.003s) 2023-01-11T21:23:04.7034287Z test_nondeterministic_alert_FractionalMaxPool2d_cpu (__main__.TestTorchDeviceTypeCPU) ... ok (0.004s) 2023-01-11T21:23:04.7034520Z test_nondeterministic_alert_FractionalMaxPool3d_cpu (__main__.TestTorchDeviceTypeCPU) ... ok (0.002s) 2023-01-11T21:23:04.7034743Z test_nondeterministic_alert_MaxPool3d_cpu (__main__.TestTorchDeviceTypeCPU) ... ok (0.003s) 2023-01-11T21:23:04.7035032Z test_nondeterministic_alert_MaxUnpool1d_cpu_float16 (__main__.TestTorchDeviceTypeCPU) ... skip: float16 not implemented on CPU (0.001s) 2023-01-11T21:23:04.7035273Z test_nondeterministic_alert_MaxUnpool1d_cpu_float32 (__main__.TestTorchDeviceTypeCPU) ... ok (0.013s) 2023-01-11T21:23:04.7035509Z test_nondeterministic_alert_MaxUnpool1d_cpu_float64 (__main__.TestTorchDeviceTypeCPU) ... ok (0.012s) 2023-01-11T21:23:04.7035788Z test_nondeterministic_alert_MaxUnpool2d_cpu_float16 (__main__.TestTorchDeviceTypeCPU) ... skip: float16 not implemented on CPU (0.001s) 2023-01-11T21:23:04.7036022Z test_nondeterministic_alert_MaxUnpool2d_cpu_float32 (__main__.TestTorchDeviceTypeCPU) ... ok (0.012s) 2023-01-11T21:23:04.7036256Z test_nondeterministic_alert_MaxUnpool2d_cpu_float64 (__main__.TestTorchDeviceTypeCPU) ... ok (0.012s) 2023-01-11T21:23:04.7036546Z test_nondeterministic_alert_MaxUnpool3d_cpu_float16 (__main__.TestTorchDeviceTypeCPU) ... skip: float16 not implemented on CPU (0.001s) 2023-01-11T21:23:04.7036880Z test_nondeterministic_alert_MaxUnpool3d_cpu_float32 (__main__.TestTorchDeviceTypeCPU) ... ok (0.013s) 2023-01-11T21:23:04.7037133Z test_nondeterministic_alert_MaxUnpool3d_cpu_float64 (__main__.TestTorchDeviceTypeCPU) ... ok (0.013s) 2023-01-11T21:23:04.7037382Z test_nondeterministic_alert_NLLLoss_cpu (__main__.TestTorchDeviceTypeCPU) ... ok (0.002s) 2023-01-11T21:23:04.7037663Z test_nondeterministic_alert_ReflectionPad1d_cpu (__main__.TestTorchDeviceTypeCPU) ... ok (0.005s) 2023-01-11T21:23:04.7037945Z test_nondeterministic_alert_ReflectionPad2d_cpu (__main__.TestTorchDeviceTypeCPU) ... ok (0.002s) 2023-01-11T21:23:04.7038241Z test_nondeterministic_alert_ReflectionPad3d_cpu (__main__.TestTorchDeviceTypeCPU) ... ok (0.005s) 2023-01-11T21:23:04.7038498Z test_nondeterministic_alert_ReplicationPad1d_cpu (__main__.TestTorchDeviceTypeCPU) ... ok (0.003s) 2023-01-11T21:23:04.7038733Z test_nondeterministic_alert_ReplicationPad2d_cpu (__main__.TestTorchDeviceTypeCPU) ... ok (0.004s) 2023-01-11T21:23:04.7038968Z test_nondeterministic_alert_ReplicationPad3d_cpu (__main__.TestTorchDeviceTypeCPU) ... ok (0.004s) 2023-01-11T21:23:04.7039232Z test_nondeterministic_alert_bincount_cpu (__main__.TestTorchDeviceTypeCPU) ... ok (0.001s) 2023-01-11T21:23:04.7039464Z test_nondeterministic_alert_cumsum_cpu_bool (__main__.TestTorchDeviceTypeCPU) ... ok (0.001s) 2023-01-11T21:23:04.7039698Z test_nondeterministic_alert_cumsum_cpu_complex128 (__main__.TestTorchDeviceTypeCPU) ... ok (0.001s) 2023-01-11T21:23:04.7039925Z test_nondeterministic_alert_cumsum_cpu_complex64 (__main__.TestTorchDeviceTypeCPU) ... ok (0.001s) 2023-01-11T21:23:04.7040153Z test_nondeterministic_alert_cumsum_cpu_float32 (__main__.TestTorchDeviceTypeCPU) ... ok (0.001s) 2023-01-11T21:23:04.7040373Z test_nondeterministic_alert_cumsum_cpu_float64 (__main__.TestTorchDeviceTypeCPU) ... ok (0.001s) 2023-01-11T21:23:04.7041100Z test_nondeterministic_alert_cumsum_cpu_int16 (__main__.TestTorchDeviceTypeCPU) ... ok (0.001s) 2023-01-11T21:23:04.7041326Z test_nondeterministic_alert_cumsum_cpu_int32 (__main__.TestTorchDeviceTypeCPU) ... ok (0.001s) 2023-01-11T21:23:04.7041549Z test_nondeterministic_alert_cumsum_cpu_int64 (__main__.TestTorchDeviceTypeCPU) ... ok (0.001s) 2023-01-11T21:23:04.7041775Z test_nondeterministic_alert_cumsum_cpu_int8 (__main__.TestTorchDeviceTypeCPU) ... ok (0.001s) 2023-01-11T21:23:04.7041977Z test_nondeterministic_alert_cumsum_cpu_uint8 (__main__.TestTorchDeviceTypeCPU) ... ok (0.001s) 2023-01-11T21:23:04.7042206Z test_nondeterministic_alert_grid_sample_2d_cpu (__main__.TestTorchDeviceTypeCPU) ... ok (0.007s) 2023-01-11T21:23:04.7042431Z test_nondeterministic_alert_grid_sample_3d_cpu (__main__.TestTorchDeviceTypeCPU) ... ok (0.006s) 2023-01-11T21:23:04.7042643Z test_nondeterministic_alert_histc_cpu (__main__.TestTorchDeviceTypeCPU) ... ok (0.002s) 2023-01-11T21:23:04.7042882Z test_nondeterministic_alert_interpolate_bicubic_cpu (__main__.TestTorchDeviceTypeCPU) ... ok (0.004s) 2023-01-11T21:23:04.7043126Z test_nondeterministic_alert_interpolate_bilinear_cpu (__main__.TestTorchDeviceTypeCPU) ... ok (0.003s) 2023-01-11T21:23:04.7043363Z test_nondeterministic_alert_interpolate_linear_cpu (__main__.TestTorchDeviceTypeCPU) ... ok (0.002s) 2023-01-11T21:23:04.7043606Z test_nondeterministic_alert_interpolate_trilinear_cpu (__main__.TestTorchDeviceTypeCPU) ... ok (0.004s) 2023-01-11T21:23:04.7043822Z test_nondeterministic_alert_kthvalue_cpu_float64 (__main__.TestTorchDeviceTypeCPU) ... ok (0.002s) 2023-01-11T21:23:04.7044636Z test_nondeterministic_alert_median_cpu_float64 (__main__.TestTorchDeviceTypeCPU) ... test_torch.py:1653: UserWarning: An output with one or more elements was resized since it had shape [10], which does not match the required output shape []. This behavior is deprecated, and in a future PyTorch release outputs will not be resized unless they have zero elements. You can explicitly reuse an out tensor t by resizing it, inplace, to zero elements with t.resize_(0). (Triggered internally at /var/lib/jenkins/workspace/aten/src/ATen/native/Resize.cpp:33.) 2023-01-11T21:23:04.7044868Z torch.median(a, 0, out=(result, indices)) 2023-01-11T21:23:04.7044959Z ok (0.003s) 2023-01-11T21:23:04.7045190Z test_nondeterministic_alert_put_accumulate_cpu (__main__.TestTorchDeviceTypeCPU) ... ok (0.003s) 2023-01-11T21:23:04.7045404Z test_nondeterministic_alert_put_cpu (__main__.TestTorchDeviceTypeCPU) ... ok (0.032s) 2023-01-11T21:23:04.7045602Z test_normal_kstest_cpu_float16 (__main__.TestTorchDeviceTypeCPU) ... ok (0.010s) 2023-01-11T21:23:04.7045794Z test_normal_kstest_cpu_float32 (__main__.TestTorchDeviceTypeCPU) ... ok (0.012s) 2023-01-11T21:23:04.7045990Z test_normal_kstest_cpu_float64 (__main__.TestTorchDeviceTypeCPU) ... ok (0.009s) 2023-01-11T21:23:04.7046189Z test_nullary_op_mem_overlap_cpu (__main__.TestTorchDeviceTypeCPU) ... ok (0.115s) 2023-01-11T21:23:04.7046381Z test_pairwise_distance_empty_cpu (__main__.TestTorchDeviceTypeCPU) ... ok (0.005s) 2023-01-11T21:23:04.7046569Z test_pdist_empty_cpu (__main__.TestTorchDeviceTypeCPU) ... ok (0.003s) 2023-01-11T21:23:04.7046848Z test_pdist_norm_large_cpu (__main__.TestTorchDeviceTypeCPU) ... skip: Only runs on cuda (0.001s) 2023-01-11T21:23:04.7047554Z test_pickle_gradscaler_cpu (__main__.TestTorchDeviceTypeCPU) ... /opt/conda/lib/python3.7/site-packages/torch/cuda/amp/grad_scaler.py:118: UserWarning: torch.cuda.amp.GradScaler is enabled, but CUDA is not available. Disabling. 2023-01-11T21:23:04.7047787Z warnings.warn("torch.cuda.amp.GradScaler is enabled, but CUDA is not available. Disabling.") 2023-01-11T21:23:04.7047876Z ok (0.004s) 2023-01-11T21:23:04.7048119Z test_pin_memory_from_constructor_cpu (__main__.TestTorchDeviceTypeCPU) ... skip: Only runs on cuda (0.002s) 2023-01-11T21:23:04.7048336Z test_put_accumulate_cpu_bfloat16 (__main__.TestTorchDeviceTypeCPU) ... ok (0.004s) 2023-01-11T21:23:04.7048576Z test_put_accumulate_cpu_complex128 (__main__.TestTorchDeviceTypeCPU) ... ok (0.004s) 2023-01-11T21:23:04.7048808Z test_put_accumulate_cpu_complex64 (__main__.TestTorchDeviceTypeCPU) ... ok (0.004s) 2023-01-11T21:23:04.7049051Z test_put_accumulate_cpu_float16 (__main__.TestTorchDeviceTypeCPU) ... ok (0.002s) 2023-01-11T21:23:04.7049283Z test_put_accumulate_cpu_float32 (__main__.TestTorchDeviceTypeCPU) ... ok (0.003s) 2023-01-11T21:23:04.7049505Z test_put_accumulate_cpu_float64 (__main__.TestTorchDeviceTypeCPU) ... ok (0.003s) 2023-01-11T21:23:04.7049733Z test_put_accumulate_cpu_int16 (__main__.TestTorchDeviceTypeCPU) ... ok (0.003s) 2023-01-11T21:23:04.7049979Z test_put_accumulate_cpu_int32 (__main__.TestTorchDeviceTypeCPU) ... ok (0.003s) 2023-01-11T21:23:04.7050232Z test_put_accumulate_cpu_int64 (__main__.TestTorchDeviceTypeCPU) ... ok (0.003s) 2023-01-11T21:23:04.7050430Z test_put_accumulate_cpu_int8 (__main__.TestTorchDeviceTypeCPU) ... ok (0.003s) 2023-01-11T21:23:04.7050610Z test_put_accumulate_cpu_uint8 (__main__.TestTorchDeviceTypeCPU) ... ok (0.003s) 2023-01-11T21:23:04.7050797Z test_put_cpu_bfloat16 (__main__.TestTorchDeviceTypeCPU) ... ok (0.118s) 2023-01-11T21:23:04.7050983Z test_put_cpu_complex128 (__main__.TestTorchDeviceTypeCPU) ... ok (0.128s) 2023-01-11T21:23:04.7051173Z test_put_cpu_complex64 (__main__.TestTorchDeviceTypeCPU) ... ok (0.135s) 2023-01-11T21:23:04.7051353Z test_put_cpu_float16 (__main__.TestTorchDeviceTypeCPU) ... ok (0.117s) 2023-01-11T21:23:04.7051529Z test_put_cpu_float32 (__main__.TestTorchDeviceTypeCPU) ... ok (0.117s) 2023-01-11T21:23:04.7051710Z test_put_cpu_float64 (__main__.TestTorchDeviceTypeCPU) ... ok (0.146s) 2023-01-11T21:23:04.7051886Z test_put_cpu_int16 (__main__.TestTorchDeviceTypeCPU) ... ok (0.084s) 2023-01-11T21:23:04.7052051Z test_put_cpu_int32 (__main__.TestTorchDeviceTypeCPU) ... ok (0.083s) 2023-01-11T21:23:04.7052227Z test_put_cpu_int64 (__main__.TestTorchDeviceTypeCPU) ... ok (0.077s) 2023-01-11T21:23:04.7052403Z test_put_cpu_int8 (__main__.TestTorchDeviceTypeCPU) ... ok (0.085s) 2023-01-11T21:23:04.7052651Z test_put_cpu_uint8 (__main__.TestTorchDeviceTypeCPU) ... ok (0.086s) 2023-01-11T21:23:04.7052831Z test_put_empty_cpu (__main__.TestTorchDeviceTypeCPU) ... ok (0.007s) 2023-01-11T21:23:04.7053022Z test_put_mem_overlap_cpu (__main__.TestTorchDeviceTypeCPU) ... ok (0.080s) 2023-01-11T21:23:04.7053217Z test_repeat_interleave_cpu (__main__.TestTorchDeviceTypeCPU) ... ok (0.004s) 2023-01-11T21:23:04.7053811Z test_scalar_check_cpu (__main__.TestTorchDeviceTypeCPU) ... test_torch.py:670: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:23:04.7053987Z self.assertEqual((), zero_d_clone.set_(one_d.storage(), 0, (), ()).shape) 2023-01-11T21:23:04.7054490Z test_torch.py:671: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:23:04.7054731Z self.assertEqual((1,), zero_d_clone.set_(one_d.storage(), 0, (1,), (1,)).shape) 2023-01-11T21:23:04.7055235Z test_torch.py:672: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:23:04.7055412Z self.assertEqual((), one_d_clone.set_(one_d.storage(), 0, (), ()).shape) 2023-01-11T21:23:04.7055906Z test_torch.py:673: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:23:04.7056090Z self.assertEqual((1,), one_d_clone.set_(one_d.storage(), 0, (1,), (1,)).shape) 2023-01-11T21:23:04.7056177Z ok (0.177s) 2023-01-11T21:23:04.7056375Z test_scatter_add_bool_cpu (__main__.TestTorchDeviceTypeCPU) ... ok (0.002s) 2023-01-11T21:23:04.7056586Z test_scatter_add_non_unique_index_cpu (__main__.TestTorchDeviceTypeCPU) ... ok (0.044s) 2023-01-11T21:23:04.7056808Z test_scatter_add_one_dim_deterministic_cpu (__main__.TestTorchDeviceTypeCPU) ... ok (3.492s) 2023-01-11T21:23:04.7057015Z test_scatter_add_to_large_input_cpu (__main__.TestTorchDeviceTypeCPU) ... ok (0.002s) 2023-01-11T21:23:04.7057187Z test_scatter_bool_cpu (__main__.TestTorchDeviceTypeCPU) ... ok (0.002s) 2023-01-11T21:23:04.7057461Z test_scatter_mem_overlap_cpu (__main__.TestTorchDeviceTypeCPU) ... ok (0.042s) 2023-01-11T21:23:04.7057747Z test_scatter_reduce_multiply_unsupported_dtypes_cpu_complex128 (__main__.TestTorchDeviceTypeCPU) ... skip: Only runs on cuda (0.001s) 2023-01-11T21:23:04.7058028Z test_scatter_reduce_multiply_unsupported_dtypes_cpu_complex64 (__main__.TestTorchDeviceTypeCPU) ... skip: Only runs on cuda (0.001s) 2023-01-11T21:23:04.7058260Z test_scatter_reduce_non_unique_index_cpu_bfloat16 (__main__.TestTorchDeviceTypeCPU) ... ok (0.008s) 2023-01-11T21:23:04.7058480Z test_scatter_reduce_non_unique_index_cpu_bool (__main__.TestTorchDeviceTypeCPU) ... ok (0.004s) 2023-01-11T21:23:04.7058711Z test_scatter_reduce_non_unique_index_cpu_complex128 (__main__.TestTorchDeviceTypeCPU) ... ok (0.009s) 2023-01-11T21:23:04.7058937Z test_scatter_reduce_non_unique_index_cpu_complex64 (__main__.TestTorchDeviceTypeCPU) ... ok (0.009s) 2023-01-11T21:23:04.7059161Z test_scatter_reduce_non_unique_index_cpu_float16 (__main__.TestTorchDeviceTypeCPU) ... ok (0.007s) 2023-01-11T21:23:04.7059367Z test_scatter_reduce_non_unique_index_cpu_float32 (__main__.TestTorchDeviceTypeCPU) ... ok (0.007s) 2023-01-11T21:23:04.7059646Z test_scatter_reduce_non_unique_index_cpu_float64 (__main__.TestTorchDeviceTypeCPU) ... ok (0.007s) 2023-01-11T21:23:04.7059867Z test_scatter_reduce_non_unique_index_cpu_int16 (__main__.TestTorchDeviceTypeCPU) ... ok (0.004s) 2023-01-11T21:23:04.7060083Z test_scatter_reduce_non_unique_index_cpu_int32 (__main__.TestTorchDeviceTypeCPU) ... ok (0.004s) 2023-01-11T21:23:04.7060320Z test_scatter_reduce_non_unique_index_cpu_int64 (__main__.TestTorchDeviceTypeCPU) ... ok (0.004s) 2023-01-11T21:23:04.7060580Z test_scatter_reduce_non_unique_index_cpu_int8 (__main__.TestTorchDeviceTypeCPU) ... ok (0.004s) 2023-01-11T21:23:04.7060834Z test_scatter_reduce_non_unique_index_cpu_uint8 (__main__.TestTorchDeviceTypeCPU) ... ok (0.004s) 2023-01-11T21:23:04.7061119Z test_scatter_reduce_operations_to_large_input_cpu_bfloat16 (__main__.TestTorchDeviceTypeCPU) ... ok (0.004s) 2023-01-11T21:23:04.7061396Z test_scatter_reduce_operations_to_large_input_cpu_bool (__main__.TestTorchDeviceTypeCPU) ... ok (0.003s) 2023-01-11T21:23:04.7061682Z test_scatter_reduce_operations_to_large_input_cpu_complex128 (__main__.TestTorchDeviceTypeCPU) ... ok (0.004s) 2023-01-11T21:23:04.7062057Z test_scatter_reduce_operations_to_large_input_cpu_complex64 (__main__.TestTorchDeviceTypeCPU) ... ok (0.004s) 2023-01-11T21:23:04.7062304Z test_scatter_reduce_operations_to_large_input_cpu_float16 (__main__.TestTorchDeviceTypeCPU) ... ok (0.003s) 2023-01-11T21:23:04.7062540Z test_scatter_reduce_operations_to_large_input_cpu_float32 (__main__.TestTorchDeviceTypeCPU) ... ok (0.004s) 2023-01-11T21:23:04.7062774Z test_scatter_reduce_operations_to_large_input_cpu_float64 (__main__.TestTorchDeviceTypeCPU) ... ok (0.003s) 2023-01-11T21:23:04.7063012Z test_scatter_reduce_operations_to_large_input_cpu_int16 (__main__.TestTorchDeviceTypeCPU) ... ok (0.003s) 2023-01-11T21:23:04.7063248Z test_scatter_reduce_operations_to_large_input_cpu_int32 (__main__.TestTorchDeviceTypeCPU) ... ok (0.003s) 2023-01-11T21:23:04.7063480Z test_scatter_reduce_operations_to_large_input_cpu_int64 (__main__.TestTorchDeviceTypeCPU) ... ok (0.003s) 2023-01-11T21:23:04.7063718Z test_scatter_reduce_operations_to_large_input_cpu_int8 (__main__.TestTorchDeviceTypeCPU) ... ok (0.003s) 2023-01-11T21:23:04.7063936Z test_scatter_reduce_operations_to_large_input_cpu_uint8 (__main__.TestTorchDeviceTypeCPU) ... ok (0.003s) 2023-01-11T21:23:04.7064154Z test_scatter_reduce_scalar_cpu_bfloat16 (__main__.TestTorchDeviceTypeCPU) ... ok (0.004s) 2023-01-11T21:23:04.7064360Z test_scatter_reduce_scalar_cpu_bool (__main__.TestTorchDeviceTypeCPU) ... ok (0.003s) 2023-01-11T21:23:04.7064573Z test_scatter_reduce_scalar_cpu_complex128 (__main__.TestTorchDeviceTypeCPU) ... ok (0.003s) 2023-01-11T21:23:04.7064786Z test_scatter_reduce_scalar_cpu_complex64 (__main__.TestTorchDeviceTypeCPU) ... ok (0.004s) 2023-01-11T21:23:04.7064996Z test_scatter_reduce_scalar_cpu_float16 (__main__.TestTorchDeviceTypeCPU) ... ok (0.003s) 2023-01-11T21:23:04.7065204Z test_scatter_reduce_scalar_cpu_float32 (__main__.TestTorchDeviceTypeCPU) ... ok (0.003s) 2023-01-11T21:23:04.7065411Z test_scatter_reduce_scalar_cpu_float64 (__main__.TestTorchDeviceTypeCPU) ... ok (0.003s) 2023-01-11T21:23:04.7065606Z test_scatter_reduce_scalar_cpu_int16 (__main__.TestTorchDeviceTypeCPU) ... ok (0.003s) 2023-01-11T21:23:04.7065810Z test_scatter_reduce_scalar_cpu_int32 (__main__.TestTorchDeviceTypeCPU) ... ok (0.003s) 2023-01-11T21:23:04.7066015Z test_scatter_reduce_scalar_cpu_int64 (__main__.TestTorchDeviceTypeCPU) ... ok (0.003s) 2023-01-11T21:23:04.7066219Z test_scatter_reduce_scalar_cpu_int8 (__main__.TestTorchDeviceTypeCPU) ... ok (0.003s) 2023-01-11T21:23:04.7066423Z test_scatter_reduce_scalar_cpu_uint8 (__main__.TestTorchDeviceTypeCPU) ... ok (0.003s) 2023-01-11T21:23:04.7066620Z test_scatter_to_large_input_cpu (__main__.TestTorchDeviceTypeCPU) ... ok (0.002s) 2023-01-11T21:23:04.7066822Z test_scatter_zero_size_index_cpu (__main__.TestTorchDeviceTypeCPU) ... ok (0.002s) 2023-01-11T21:23:04.7067097Z test_serialization_cpu (__main__.TestTorchDeviceTypeCPU) ... skip: Only runs on cuda (0.001s) 2023-01-11T21:23:04.7067696Z test_set_storage_cpu_bfloat16 (__main__.TestTorchDeviceTypeCPU) ... test_torch.py:257: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:23:04.7067793Z a_s = a.storage() 2023-01-11T21:23:04.7068273Z test_torch.py:260: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:23:04.7068475Z c = torch.tensor([], device=device, dtype=dtype).set_(a_s.untyped()).reshape(a.size()) 2023-01-11T21:23:04.7069008Z test_torch.py:267: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:23:04.7069150Z error_storage = a.to(error_dtype).storage() 2023-01-11T21:23:04.7069238Z ok (0.025s) 2023-01-11T21:23:04.7069430Z test_set_storage_cpu_bool (__main__.TestTorchDeviceTypeCPU) ... ok (0.024s) 2023-01-11T21:23:04.7069632Z test_set_storage_cpu_complex128 (__main__.TestTorchDeviceTypeCPU) ... ok (0.033s) 2023-01-11T21:23:04.7069831Z test_set_storage_cpu_complex64 (__main__.TestTorchDeviceTypeCPU) ... ok (0.025s) 2023-01-11T21:23:04.7070026Z test_set_storage_cpu_float16 (__main__.TestTorchDeviceTypeCPU) ... ok (0.025s) 2023-01-11T21:23:04.7070208Z test_set_storage_cpu_float32 (__main__.TestTorchDeviceTypeCPU) ... ok (0.025s) 2023-01-11T21:23:04.7070401Z test_set_storage_cpu_float64 (__main__.TestTorchDeviceTypeCPU) ... ok (0.025s) 2023-01-11T21:23:04.7070596Z test_set_storage_cpu_int16 (__main__.TestTorchDeviceTypeCPU) ... ok (0.024s) 2023-01-11T21:23:04.7070789Z test_set_storage_cpu_int32 (__main__.TestTorchDeviceTypeCPU) ... ok (0.024s) 2023-01-11T21:23:04.7070978Z test_set_storage_cpu_int64 (__main__.TestTorchDeviceTypeCPU) ... ok (0.024s) 2023-01-11T21:23:04.7071164Z test_set_storage_cpu_int8 (__main__.TestTorchDeviceTypeCPU) ... ok (0.024s) 2023-01-11T21:23:04.7071351Z test_set_storage_cpu_uint8 (__main__.TestTorchDeviceTypeCPU) ... ok (0.024s) 2023-01-11T21:23:04.7071544Z test_shift_mem_overlap_cpu (__main__.TestTorchDeviceTypeCPU) ... ok (0.027s) 2023-01-11T21:23:04.7071711Z test_skip_xla_cpu (__main__.TestTorchDeviceTypeCPU) ... ok (0.001s) 2023-01-11T21:23:04.7071962Z test_storage_all_devices_cpu (__main__.TestTorchDeviceTypeCPU) ... skip: Only runs on cuda (0.001s) 2023-01-11T21:23:04.7072672Z test_storage_cpu_bool (__main__.TestTorchDeviceTypeCPU) ... test_torch.py:168: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:23:04.7072833Z self.assertEqual(v.storage()[0], v[0][0]) 2023-01-11T21:23:04.7073442Z test_torch.py:169: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:23:04.7073616Z self.assertEqual(v.storage()[14], v[2][4]) 2023-01-11T21:23:04.7074149Z test_torch.py:170: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:23:04.7074308Z v_s = v.storage() 2023-01-11T21:23:04.7074809Z test_torch.py:176: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:23:04.7074899Z v_s[el_num], 2023-01-11T21:23:04.7075387Z test_torch.py:179: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:23:04.7075503Z v_s_byte = v.storage().untyped() 2023-01-11T21:23:04.7075576Z ok (0.011s) 2023-01-11T21:23:04.7075773Z test_storage_cpu_complex128 (__main__.TestTorchDeviceTypeCPU) ... ok (0.026s) 2023-01-11T21:23:04.7075970Z test_storage_cpu_complex64 (__main__.TestTorchDeviceTypeCPU) ... ok (0.021s) 2023-01-11T21:23:04.7076208Z test_storage_cpu_float32 (__main__.TestTorchDeviceTypeCPU) ... ok (0.017s) 2023-01-11T21:23:04.7076401Z test_storage_cpu_float64 (__main__.TestTorchDeviceTypeCPU) ... ok (0.019s) 2023-01-11T21:23:04.7076586Z test_storage_cpu_int16 (__main__.TestTorchDeviceTypeCPU) ... ok (0.011s) 2023-01-11T21:23:04.7076767Z test_storage_cpu_int32 (__main__.TestTorchDeviceTypeCPU) ... ok (0.013s) 2023-01-11T21:23:04.7076950Z test_storage_cpu_int64 (__main__.TestTorchDeviceTypeCPU) ... ok (0.015s) 2023-01-11T21:23:04.7077119Z test_storage_cpu_int8 (__main__.TestTorchDeviceTypeCPU) ... ok (0.010s) 2023-01-11T21:23:04.7077304Z test_storage_cpu_uint8 (__main__.TestTorchDeviceTypeCPU) ... ok (0.010s) 2023-01-11T21:23:04.7077914Z test_storage_meta_errors_cpu_bfloat16 (__main__.TestTorchDeviceTypeCPU) ... test_torch.py:331: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:23:04.7078197Z s0 = torch.TypedStorage([1, 2, 3, 4], device='meta', dtype=dtype) 2023-01-11T21:23:04.7078693Z test_torch.py:334: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:23:04.7078783Z s0.cpu() 2023-01-11T21:23:04.7079277Z test_torch.py:353: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:23:04.7079373Z s0.resize_(10) 2023-01-11T21:23:04.7079870Z test_torch.py:356: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:23:04.7079968Z s0.share_memory_() 2023-01-11T21:23:04.7080469Z test_torch.py:359: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:23:04.7080557Z s0.tolist() 2023-01-11T21:23:04.7081566Z /opt/conda/lib/python3.7/site-packages/torch/storage.py:675: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:23:04.7081780Z return list(self) 2023-01-11T21:23:04.7082650Z /opt/conda/lib/python3.7/site-packages/torch/storage.py:649: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:23:04.7082812Z return iter(map(lambda i: self[i], range(self.size()))) 2023-01-11T21:23:04.7083309Z test_torch.py:363: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:23:04.7083471Z s0._write_file(f, True, True, s0.element_size()) 2023-01-11T21:23:04.7084116Z test_torch.py:366: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:23:04.7084312Z s1 = torch.TypedStorage([1, 2, 3, 4], device=device, dtype=dtype) 2023-01-11T21:23:04.7084901Z test_torch.py:369: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:23:04.7085005Z s1.copy_(s0) 2023-01-11T21:23:04.7085104Z ok (0.056s) 2023-01-11T21:23:04.7085349Z test_storage_meta_errors_cpu_bool (__main__.TestTorchDeviceTypeCPU) ... ok (0.054s) 2023-01-11T21:23:04.7085612Z test_storage_meta_errors_cpu_complex128 (__main__.TestTorchDeviceTypeCPU) ... ok (0.054s) 2023-01-11T21:23:04.7085852Z test_storage_meta_errors_cpu_complex64 (__main__.TestTorchDeviceTypeCPU) ... ok (0.053s) 2023-01-11T21:23:04.7086075Z test_storage_meta_errors_cpu_float16 (__main__.TestTorchDeviceTypeCPU) ... ok (0.053s) 2023-01-11T21:23:04.7086287Z test_storage_meta_errors_cpu_float32 (__main__.TestTorchDeviceTypeCPU) ... ok (0.053s) 2023-01-11T21:23:04.7086496Z test_storage_meta_errors_cpu_float64 (__main__.TestTorchDeviceTypeCPU) ... ok (0.060s) 2023-01-11T21:23:04.7086698Z test_storage_meta_errors_cpu_int16 (__main__.TestTorchDeviceTypeCPU) ... ok (0.053s) 2023-01-11T21:23:04.7086904Z test_storage_meta_errors_cpu_int32 (__main__.TestTorchDeviceTypeCPU) ... ok (0.053s) 2023-01-11T21:23:04.7087106Z test_storage_meta_errors_cpu_int64 (__main__.TestTorchDeviceTypeCPU) ... ok (0.053s) 2023-01-11T21:23:04.7087306Z test_storage_meta_errors_cpu_int8 (__main__.TestTorchDeviceTypeCPU) ... ok (0.053s) 2023-01-11T21:23:04.7087511Z test_storage_meta_errors_cpu_uint8 (__main__.TestTorchDeviceTypeCPU) ... ok (0.053s) 2023-01-11T21:23:04.7088129Z test_storage_meta_from_tensor_cpu_bfloat16 (__main__.TestTorchDeviceTypeCPU) ... test_torch.py:324: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:23:04.7088245Z s_check = t_check.storage() 2023-01-11T21:23:04.7088741Z test_torch.py:325: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:23:04.7088901Z s = t.storage() 2023-01-11T21:23:04.7089411Z test_torch.py:279: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:23:04.7089639Z self.assertEqual(s.device.type, 'meta') 2023-01-11T21:23:04.7090154Z test_torch.py:280: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:23:04.7090305Z self.assertEqual(s.nbytes(), s_check.nbytes()) 2023-01-11T21:23:04.7090798Z test_torch.py:281: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:23:04.7090941Z self.assertEqual(s.size(), s_check.size()) 2023-01-11T21:23:04.7091485Z test_torch.py:282: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:23:04.7091597Z self.assertEqual(s.data_ptr(), 0) 2023-01-11T21:23:04.7092099Z test_torch.py:285: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:23:04.7092201Z s[0] 2023-01-11T21:23:04.7092834Z test_torch.py:289: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:23:04.7093039Z self._check_storage_meta(s.untyped(), s_check.untyped()) 2023-01-11T21:23:04.7093146Z ok (0.002s) 2023-01-11T21:23:04.7093414Z test_storage_meta_from_tensor_cpu_bool (__main__.TestTorchDeviceTypeCPU) ... ok (0.002s) 2023-01-11T21:23:04.7093693Z test_storage_meta_from_tensor_cpu_complex128 (__main__.TestTorchDeviceTypeCPU) ... ok (0.002s) 2023-01-11T21:23:04.7093974Z test_storage_meta_from_tensor_cpu_complex64 (__main__.TestTorchDeviceTypeCPU) ... ok (0.002s) 2023-01-11T21:23:04.7094232Z test_storage_meta_from_tensor_cpu_float16 (__main__.TestTorchDeviceTypeCPU) ... ok (0.002s) 2023-01-11T21:23:04.7094482Z test_storage_meta_from_tensor_cpu_float32 (__main__.TestTorchDeviceTypeCPU) ... ok (0.002s) 2023-01-11T21:23:04.7094733Z test_storage_meta_from_tensor_cpu_float64 (__main__.TestTorchDeviceTypeCPU) ... ok (0.002s) 2023-01-11T21:23:04.7094998Z test_storage_meta_from_tensor_cpu_int16 (__main__.TestTorchDeviceTypeCPU) ... ok (0.002s) 2023-01-11T21:23:04.7095258Z test_storage_meta_from_tensor_cpu_int32 (__main__.TestTorchDeviceTypeCPU) ... ok (0.002s) 2023-01-11T21:23:04.7095506Z test_storage_meta_from_tensor_cpu_int64 (__main__.TestTorchDeviceTypeCPU) ... ok (0.002s) 2023-01-11T21:23:04.7095768Z test_storage_meta_from_tensor_cpu_int8 (__main__.TestTorchDeviceTypeCPU) ... ok (0.002s) 2023-01-11T21:23:04.7096025Z test_storage_meta_from_tensor_cpu_uint8 (__main__.TestTorchDeviceTypeCPU) ... ok (0.002s) 2023-01-11T21:23:04.7096745Z test_storage_setitem_cpu_bool (__main__.TestTorchDeviceTypeCPU) ... test_torch.py:210: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:23:04.7096936Z s = storage_type(N) 2023-01-11T21:23:04.7097567Z test_torch.py:211: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:23:04.7097664Z s[:] = 0 2023-01-11T21:23:04.7098207Z test_torch.py:213: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:23:04.7098347Z self.assertEqual(s, storage_type(l)) 2023-01-11T21:23:04.7099500Z /opt/conda/lib/python3.7/site-packages/torch/testing/_internal/common_utils.py:1904: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:23:04.7099646Z device=typed_storage.device, 2023-01-11T21:23:04.7100242Z test_torch.py:216: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:23:04.7100343Z s[i] = i 2023-01-11T21:23:04.7100930Z test_torch.py:219: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:23:04.7101081Z self.assertEqual(s, storage_type(l)) 2023-01-11T21:23:04.7101661Z test_torch.py:222: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:23:04.7101779Z s[2:7] = 1 2023-01-11T21:23:04.7102391Z test_torch.py:223: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:23:04.7102519Z self.assertEqual(s, storage_type(l)) 2023-01-11T21:23:04.7102630Z ok (0.005s) 2023-01-11T21:23:04.7102879Z test_storage_setitem_cpu_complex128 (__main__.TestTorchDeviceTypeCPU) ... ok (0.006s) 2023-01-11T21:23:04.7103140Z test_storage_setitem_cpu_complex64 (__main__.TestTorchDeviceTypeCPU) ... ok (0.005s) 2023-01-11T21:23:04.7103430Z test_storage_setitem_cpu_float32 (__main__.TestTorchDeviceTypeCPU) ... ok (0.005s) 2023-01-11T21:23:04.7103719Z test_storage_setitem_cpu_float64 (__main__.TestTorchDeviceTypeCPU) ... ok (0.005s) 2023-01-11T21:23:04.7103981Z test_storage_setitem_cpu_int16 (__main__.TestTorchDeviceTypeCPU) ... ok (0.004s) 2023-01-11T21:23:04.7104240Z test_storage_setitem_cpu_int32 (__main__.TestTorchDeviceTypeCPU) ... ok (0.004s) 2023-01-11T21:23:04.7104474Z test_storage_setitem_cpu_int64 (__main__.TestTorchDeviceTypeCPU) ... ok (0.004s) 2023-01-11T21:23:04.7104738Z test_storage_setitem_cpu_int8 (__main__.TestTorchDeviceTypeCPU) ... ok (0.004s) 2023-01-11T21:23:04.7105011Z test_storage_setitem_cpu_qint32 (__main__.TestTorchDeviceTypeCPU) ... ok (0.004s) 2023-01-11T21:23:04.7105266Z test_storage_setitem_cpu_qint8 (__main__.TestTorchDeviceTypeCPU) ... ok (0.004s) 2023-01-11T21:23:04.7105657Z test_storage_setitem_cpu_quint4x2 (__main__.TestTorchDeviceTypeCPU) ... ok (0.004s) 2023-01-11T21:23:04.7105922Z test_storage_setitem_cpu_quint8 (__main__.TestTorchDeviceTypeCPU) ... ok (0.004s) 2023-01-11T21:23:04.7106199Z test_storage_setitem_cpu_uint8 (__main__.TestTorchDeviceTypeCPU) ... ok (0.004s) 2023-01-11T21:23:04.7106493Z test_strides_propagation_cpu (__main__.TestTorchDeviceTypeCPU) ... ok (0.162s) 2023-01-11T21:23:04.7106781Z test_sync_warning_cpu (__main__.TestTorchDeviceTypeCPU) ... skip: Only runs on cuda (0.003s) 2023-01-11T21:23:04.7107029Z test_take_cpu_bfloat16 (__main__.TestTorchDeviceTypeCPU) ... ok (0.020s) 2023-01-11T21:23:04.7107270Z test_take_cpu_bool (__main__.TestTorchDeviceTypeCPU) ... ok (0.014s) 2023-01-11T21:23:04.7107518Z test_take_cpu_complex128 (__main__.TestTorchDeviceTypeCPU) ... ok (0.020s) 2023-01-11T21:23:04.7107768Z test_take_cpu_complex64 (__main__.TestTorchDeviceTypeCPU) ... ok (0.020s) 2023-01-11T21:23:04.7108013Z test_take_cpu_float16 (__main__.TestTorchDeviceTypeCPU) ... ok (0.018s) 2023-01-11T21:23:04.7108253Z test_take_cpu_float32 (__main__.TestTorchDeviceTypeCPU) ... ok (0.018s) 2023-01-11T21:23:04.7108567Z test_take_cpu_float64 (__main__.TestTorchDeviceTypeCPU) ... ok (0.017s) 2023-01-11T21:23:04.7108765Z test_take_cpu_int16 (__main__.TestTorchDeviceTypeCPU) ... ok (0.014s) 2023-01-11T21:23:04.7108987Z test_take_cpu_int32 (__main__.TestTorchDeviceTypeCPU) ... ok (0.014s) 2023-01-11T21:23:04.7109207Z test_take_cpu_int64 (__main__.TestTorchDeviceTypeCPU) ... ok (0.013s) 2023-01-11T21:23:04.7109436Z test_take_cpu_int8 (__main__.TestTorchDeviceTypeCPU) ... ok (0.014s) 2023-01-11T21:23:04.7109664Z test_take_cpu_uint8 (__main__.TestTorchDeviceTypeCPU) ... ok (0.014s) 2023-01-11T21:23:04.7109874Z test_take_empty_cpu (__main__.TestTorchDeviceTypeCPU) ... ok (0.004s) 2023-01-11T21:23:04.7110622Z test_tensor_from_storage_cpu_bfloat16 (__main__.TestTorchDeviceTypeCPU) ... test_torch.py:240: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:23:04.7110737Z a_s = a.storage() 2023-01-11T21:23:04.7111388Z test_torch.py:241: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:23:04.7111607Z b = torch.tensor(a_s, device=device, dtype=dtype).reshape(a.size()) 2023-01-11T21:23:04.7112225Z test_torch.py:243: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:23:04.7112475Z c = torch.tensor(a_s.untyped(), device=device, dtype=dtype).reshape(a.size()) 2023-01-11T21:23:04.7113132Z test_torch.py:250: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:23:04.7113302Z error_storage = a.to(error_dtype).storage() 2023-01-11T21:23:04.7113953Z test_torch.py:251: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:23:04.7114157Z torch.tensor(error_storage, device=device, dtype=dtype) 2023-01-11T21:23:04.7114336Z ok (0.029s) 2023-01-11T21:23:04.7114599Z test_tensor_from_storage_cpu_bool (__main__.TestTorchDeviceTypeCPU) ... ok (0.028s) 2023-01-11T21:23:04.7114877Z test_tensor_from_storage_cpu_complex128 (__main__.TestTorchDeviceTypeCPU) ... ok (0.029s) 2023-01-11T21:23:04.7115155Z test_tensor_from_storage_cpu_complex64 (__main__.TestTorchDeviceTypeCPU) ... ok (0.029s) 2023-01-11T21:23:04.7115406Z test_tensor_from_storage_cpu_float16 (__main__.TestTorchDeviceTypeCPU) ... ok (0.029s) 2023-01-11T21:23:04.7115664Z test_tensor_from_storage_cpu_float32 (__main__.TestTorchDeviceTypeCPU) ... ok (0.029s) 2023-01-11T21:23:04.7115932Z test_tensor_from_storage_cpu_float64 (__main__.TestTorchDeviceTypeCPU) ... ok (0.029s) 2023-01-11T21:23:04.7116190Z test_tensor_from_storage_cpu_int16 (__main__.TestTorchDeviceTypeCPU) ... ok (0.028s) 2023-01-11T21:23:04.7116433Z test_tensor_from_storage_cpu_int32 (__main__.TestTorchDeviceTypeCPU) ... ok (0.028s) 2023-01-11T21:23:04.7116688Z test_tensor_from_storage_cpu_int64 (__main__.TestTorchDeviceTypeCPU) ... ok (0.028s) 2023-01-11T21:23:04.7116925Z test_tensor_from_storage_cpu_int8 (__main__.TestTorchDeviceTypeCPU) ... ok (0.028s) 2023-01-11T21:23:04.7117221Z test_tensor_from_storage_cpu_uint8 (__main__.TestTorchDeviceTypeCPU) ... ok (0.028s) 2023-01-11T21:23:04.7117540Z test_tensor_set_errors_multigpu_cpu (__main__.TestTorchDeviceTypeCPU) ... skip: fewer than 2 devices detected (0.001s) 2023-01-11T21:23:04.7117767Z test_tensor_shape_empty_cpu (__main__.TestTorchDeviceTypeCPU) ... ok (0.025s) 2023-01-11T21:23:04.7118519Z test_tensor_storage_type_cpu_bfloat16 (__main__.TestTorchDeviceTypeCPU) ... test_torch.py:234: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:23:04.7118729Z self.assertEqual(a.storage_type(), expected_storage_type) 2023-01-11T21:23:04.7119834Z /opt/conda/lib/python3.7/site-packages/torch/storage.py:959: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:23:04.7120112Z if self.device.type not in ['cpu', 'cuda']: 2023-01-11T21:23:04.7121385Z /opt/conda/lib/python3.7/site-packages/torch/storage.py:962: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:23:04.7121686Z module = torch if self.device.type == 'cpu' else torch.cuda 2023-01-11T21:23:04.7121802Z ok (0.008s) 2023-01-11T21:23:04.7122078Z test_tensor_storage_type_cpu_bool (__main__.TestTorchDeviceTypeCPU) ... ok (0.001s) 2023-01-11T21:23:04.7122362Z test_tensor_storage_type_cpu_complex128 (__main__.TestTorchDeviceTypeCPU) ... ok (0.001s) 2023-01-11T21:23:04.7122648Z test_tensor_storage_type_cpu_complex64 (__main__.TestTorchDeviceTypeCPU) ... ok (0.001s) 2023-01-11T21:23:04.7122890Z test_tensor_storage_type_cpu_float16 (__main__.TestTorchDeviceTypeCPU) ... ok (0.001s) 2023-01-11T21:23:04.7123164Z test_tensor_storage_type_cpu_float32 (__main__.TestTorchDeviceTypeCPU) ... ok (0.001s) 2023-01-11T21:23:04.7123448Z test_tensor_storage_type_cpu_float64 (__main__.TestTorchDeviceTypeCPU) ... ok (0.001s) 2023-01-11T21:23:04.7123726Z test_tensor_storage_type_cpu_int16 (__main__.TestTorchDeviceTypeCPU) ... ok (0.001s) 2023-01-11T21:23:04.7124005Z test_tensor_storage_type_cpu_int32 (__main__.TestTorchDeviceTypeCPU) ... ok (0.001s) 2023-01-11T21:23:04.7124280Z test_tensor_storage_type_cpu_int64 (__main__.TestTorchDeviceTypeCPU) ... ok (0.001s) 2023-01-11T21:23:04.7124688Z test_tensor_storage_type_cpu_int8 (__main__.TestTorchDeviceTypeCPU) ... ok (0.001s) 2023-01-11T21:23:04.7124975Z test_tensor_storage_type_cpu_uint8 (__main__.TestTorchDeviceTypeCPU) ... ok (0.001s) 2023-01-11T21:23:04.7125259Z test_ternary_op_mem_overlap_cpu_float64 (__main__.TestTorchDeviceTypeCPU) ... ok (0.331s) 2023-01-11T21:23:04.7126116Z test_typed_storage_meta_cpu_bfloat16 (__main__.TestTorchDeviceTypeCPU) ... test_torch.py:301: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:23:04.7126360Z s_check = torch.TypedStorage(*args, dtype=dtype, device=device) 2023-01-11T21:23:04.7126980Z test_torch.py:302: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:23:04.7127405Z s = torch.TypedStorage(*args, dtype=dtype, device='meta') 2023-01-11T21:23:04.7127525Z ok (0.004s) 2023-01-11T21:23:04.7127815Z test_typed_storage_meta_cpu_bool (__main__.TestTorchDeviceTypeCPU) ... ok (0.003s) 2023-01-11T21:23:04.7128111Z test_typed_storage_meta_cpu_complex128 (__main__.TestTorchDeviceTypeCPU) ... ok (0.003s) 2023-01-11T21:23:04.7128405Z test_typed_storage_meta_cpu_complex64 (__main__.TestTorchDeviceTypeCPU) ... ok (0.003s) 2023-01-11T21:23:04.7128694Z test_typed_storage_meta_cpu_float16 (__main__.TestTorchDeviceTypeCPU) ... ok (0.003s) 2023-01-11T21:23:04.7128969Z test_typed_storage_meta_cpu_float32 (__main__.TestTorchDeviceTypeCPU) ... ok (0.003s) 2023-01-11T21:23:04.7129253Z test_typed_storage_meta_cpu_float64 (__main__.TestTorchDeviceTypeCPU) ... ok (0.003s) 2023-01-11T21:23:04.7129540Z test_typed_storage_meta_cpu_int16 (__main__.TestTorchDeviceTypeCPU) ... ok (0.003s) 2023-01-11T21:23:04.7129816Z test_typed_storage_meta_cpu_int32 (__main__.TestTorchDeviceTypeCPU) ... ok (0.003s) 2023-01-11T21:23:04.7130090Z test_typed_storage_meta_cpu_int64 (__main__.TestTorchDeviceTypeCPU) ... ok (0.003s) 2023-01-11T21:23:04.7130354Z test_typed_storage_meta_cpu_int8 (__main__.TestTorchDeviceTypeCPU) ... ok (0.003s) 2023-01-11T21:23:04.7130609Z test_typed_storage_meta_cpu_uint8 (__main__.TestTorchDeviceTypeCPU) ... ok (0.003s) 2023-01-11T21:23:04.7130890Z test_unfold_all_devices_and_dtypes_cpu (__main__.TestTorchDeviceTypeCPU) ... ok (0.003s) 2023-01-11T21:23:04.7131133Z test_unfold_scalars_cpu (__main__.TestTorchDeviceTypeCPU) ... ok (0.003s) 2023-01-11T21:23:04.7131372Z test_uniform_kstest_cpu_bfloat16 (__main__.TestTorchDeviceTypeCPU) ... ok (0.006s) 2023-01-11T21:23:04.7131625Z test_uniform_kstest_cpu_float16 (__main__.TestTorchDeviceTypeCPU) ... ok (0.006s) 2023-01-11T21:23:04.7131876Z test_uniform_kstest_cpu_float32 (__main__.TestTorchDeviceTypeCPU) ... ok (0.006s) 2023-01-11T21:23:04.7132124Z test_uniform_kstest_cpu_float64 (__main__.TestTorchDeviceTypeCPU) ... ok (0.006s) 2023-01-11T21:23:04.7132376Z test_untyped_storage_meta_cpu (__main__.TestTorchDeviceTypeCPU) ... ok (0.003s) 2023-01-11T21:23:04.7132623Z test_warn_always_caught_cpu (__main__.TestTorchDeviceTypeCPU) ... ok (0.001s) 2023-01-11T21:23:04.7132903Z test_where_scalar_handcrafted_values_cpu (__main__.TestTorchDeviceTypeCPU) ... ok (0.043s) 2023-01-11T21:23:04.7133174Z test_cuda_vitals_gpu_only_cpu (__main__.TestVitalSignsCudaCPU) ... skip: Only runs on cuda (0.001s) 2023-01-11T21:23:04.7133188Z 2023-01-11T21:23:04.7133521Z ---------------------------------------------------------------------- 2023-01-11T21:23:04.7133655Z Ran 832 tests in 54.353s 2023-01-11T21:23:04.7133666Z 2023-01-11T21:23:04.7133804Z OK (skipped=39) 2023-01-11T21:23:04.7133811Z 2023-01-11T21:23:04.7134055Z Generating XML reports... 2023-01-11T21:23:04.7134543Z Generated XML report: test-reports/python-unittest/test_torch/TEST-TestBasicVitalSigns-20230111212209.xml 2023-01-11T21:23:04.7134986Z Generated XML report: test-reports/python-unittest/test_torch/TEST-TestTorch-20230111212209.xml 2023-01-11T21:23:04.7135493Z Generated XML report: test-reports/python-unittest/test_torch/TEST-TestTorchDeviceTypeCPU-20230111212209.xml 2023-01-11T21:23:04.7135984Z Generated XML report: test-reports/python-unittest/test_torch/TEST-TestVitalSignsCudaCPU-20230111212209.xml 2023-01-11T21:23:04.7136165Z [TORCH_VITAL] Dataloader.enabled True 2023-01-11T21:23:04.7136369Z [TORCH_VITAL] Dataloader.basic_unit_test TEST_VALUE_STRING 2023-01-11T21:23:04.7136535Z [TORCH_VITAL] CUDA.used False 2023-01-11T21:23:04.7136543Z 2023-01-11T21:23:04.7137064Z ##[endgroup] 2023-01-11T21:23:04.7137653Z FINISHED PRINTING LOG FILE of test_torch (/var/lib/jenkins/workspace/test/test-reports/test_torch_74lr60y8) 2023-01-11T21:23:04.7137662Z 2023-01-11T21:23:04.7137953Z Running test_ops_gradients ... [2023-01-11 21:23:04.657922] 2023-01-11T21:23:08.7661176Z No CUDA runtime is found, using CUDA_HOME='/usr/local/cuda' 2023-01-11T21:23:08.7796547Z No CUDA runtime is found, using CUDA_HOME='/usr/local/cuda' 2023-01-11T21:23:08.9256148Z Ignoring disabled issues: ['91003'] 2023-01-11T21:23:08.9347291Z Ignoring disabled issues: ['91003'] 2023-01-11T21:23:08.9477717Z Executing ['/opt/conda/bin/python', '-bb', 'test_ops_gradients.py', '-v', '--use-pytest', '-vv', '-rfEX', '-x', '--reruns=2', '--shard-id=0', '--num-shards=2', '-k=not _linalg_cholesky_', '--import-slow-tests', '--import-disabled-tests'] ... [2023-01-11 21:23:08.947429] 2023-01-11T21:23:08.9569073Z Executing ['/opt/conda/bin/python', '-bb', 'test_ops_gradients.py', '-v', '--use-pytest', '-vv', '-rfEX', '-x', '--reruns=2', '--shard-id=1', '--num-shards=2', '-k=not _linalg_cholesky_', '--import-slow-tests', '--import-disabled-tests'] ... [2023-01-11 21:23:08.956518] 2023-01-11T21:41:34.2746801Z 2023-01-11T21:41:34.2747223Z Expand the folded group to see the log file of test_ops_gradients 2023-01-11T21:41:34.2747890Z ##[group]PRINTING LOG FILE of test_ops_gradients (/var/lib/jenkins/workspace/test/test-reports/test_ops_gradients_5y0iga9b) 2023-01-11T21:41:34.2765078Z Test results will be stored in test-reports/python-pytest/test_ops_gradients/test_ops_gradients-9b1ea14156fe1d78.xml 2023-01-11T21:41:34.2765642Z ============================= test session starts ============================== 2023-01-11T21:41:34.2766229Z platform linux -- Python 3.7.15, pytest-7.2.0, pluggy-1.0.0 -- /opt/conda/bin/python 2023-01-11T21:41:34.2766633Z cachedir: .pytest_cache 2023-01-11T21:41:34.2767295Z hypothesis profile 'pytorch_ci' -> database=None, max_examples=50, derandomize=True, suppress_health_check=[HealthCheck.too_slow] 2023-01-11T21:41:34.2767868Z rootdir: /var/lib/jenkins/workspace, configfile: pytest.ini 2023-01-11T21:41:34.2768526Z plugins: hypothesis-5.35.1, flakefinder-1.1.0, rerunfailures-10.3, shard-0.1.2, xdist-3.1.0, xdoctest-1.1.0 2023-01-11T21:41:34.2769026Z collecting ... collected 4945 items / 12 deselected / 4933 selected 2023-01-11T21:41:34.3089691Z Running 2416 items in this shard: test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_H_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_T_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad___getitem___cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad___radd___cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad___rdiv___cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad___rmatmul___cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad___rmul___cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad___rsub___cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_abs_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_acos_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_acosh_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_add_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_addbmm_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_addcdiv_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_addcdiv_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_addcmul_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_addcmul_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_addmm_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_addmm_decomposed_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_addmm_decomposed_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_addr_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_allclose_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_aminmax_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_angle_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_any_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_any_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_arange_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_argmax_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_argwhere_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_as_strided_partial_views_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_as_strided_scatter_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_as_strided_scatter_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_asinh_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_atan_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_atan_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_atanh_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_atanh_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_atleast_1d_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_atleast_1d_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_atleast_2d_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_atleast_3d_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_atleast_3d_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_baddbmm_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_baddbmm_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_bfloat16_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_block_diag_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_block_diag_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_bmm_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_bool_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_broadcast_tensors_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_broadcast_tensors_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_broadcast_to_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_bucketize_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_byte_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_cartesian_prod_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_cfloat_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_cfloat_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_chalf_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_chalf_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_cholesky_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_cholesky_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_cholesky_inverse_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_cholesky_solve_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_cholesky_solve_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_chunk_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_chunk_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_clamp_min_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_clone_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_combinations_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_conj_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_conj_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_conj_physical_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_constant_pad_nd_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_contiguous_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_contiguous_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_cos_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_cov_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_cummin_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_cumprod_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_cumprod_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_cumsum_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_cumulative_trapezoid_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_diag_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_diag_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_diag_embed_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_diag_embed_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_diagonal_copy_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_diagonal_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_diagonal_scatter_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_diagonal_scatter_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_diff_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_diff_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_dist_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_dist_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_div_floor_rounding_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_div_no_rounding_mode_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_dot_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_dot_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_double_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_double_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_dstack_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_einsum_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_eq_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_eq_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_erfinv_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_exp_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_expand_as_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_expand_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_expm1_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_eye_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_fft_fft2_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_fft_fftn_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_fft_fftshift_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_fft_fftshift_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_fft_hfft_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_fft_hfftn_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_fft_ifft2_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_fft_ihfft2_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_fft_ihfft_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_fft_irfft2_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_fft_irfft_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_fft_irfftn_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_fill_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_fill_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_flatten_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_fliplr_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_fliplr_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_flipud_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_flipud_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_float_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_float_power_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_floor_divide_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_fmax_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_fmin_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_full_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_full_like_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_geqrf_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_gradient_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_gradient_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_grid_sampler_2d_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_gt_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_heaviside_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_histc_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_histogram_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_hsplit_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_hstack_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_i0_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_igamma_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_index_add_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_index_add_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_index_copy_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_index_copy_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_index_fill_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_index_reduce_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_index_select_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_inner_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_inner_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_int_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_isclose_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_isclose_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_isin_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_isinf_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_isnan_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_isnan_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_isposinf_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_isreal_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_isreal_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_istft_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_jiterator_4inputs_with_extra_args_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_jiterator_unary_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_kron_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_kron_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_ldexp_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_lerp_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_lerp_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_lgamma_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_linalg_cond_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_linalg_cond_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_linalg_det_singular_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_linalg_det_singular_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_linalg_eigh_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_linalg_eigvalsh_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_linalg_eigvalsh_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_linalg_householder_product_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_linalg_inv_ex_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_linalg_ldl_factor_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_linalg_lstsq_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_linalg_lstsq_grad_oriented_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_linalg_lu_factor_ex_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_linalg_lu_solve_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_linalg_lu_solve_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_linalg_matrix_power_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_linalg_matrix_rank_hermitian_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_linalg_norm_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_linalg_norm_subgradients_at_zero_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_linalg_norm_subgradients_at_zero_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_linalg_pinv_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_linalg_pinv_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_linalg_pinv_hermitian_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_linalg_pinv_singular_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_linalg_qr_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_linalg_slogdet_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_linalg_solve_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_linalg_solve_triangular_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_linalg_svdvals_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_linalg_tensorsolve_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_linalg_tensorsolve_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_linspace_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_linspace_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_log10_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_log10_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_log2_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_log_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_log_softmax_with_dtype_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_logaddexp2_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_logdet_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_logdet_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_logical_and_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_logical_and_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_logical_not_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_logical_not_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_logical_or_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_logical_xor_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_logit_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_long_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_long_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_lt_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_lu_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_lu_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_lu_unpack_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_mH_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_mT_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_masked_amin_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_masked_argmax_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_masked_cumsum_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_masked_log_softmax_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_masked_logaddexp_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_masked_logsumexp_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_masked_mean_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_masked_median_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_masked_norm_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_masked_prod_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_masked_prod_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_masked_scatter_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_masked_select_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_masked_select_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_masked_softmin_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_masked_std_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_masked_std_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_masked_sum_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_masked_var_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_masked_var_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_matmul_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_matmul_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_max_pool2d_with_indices_backward_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_max_reduction_no_dim_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_maximum_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_meshgrid_list_of_tensors_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_meshgrid_variadic_tensors_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_meshgrid_variadic_tensors_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_min_reduction_with_dim_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_movedim_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_mul_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_mv_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_mvlgamma_mvlgamma_p_3_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_mvlgamma_mvlgamma_p_5_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_nanmean_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_narrow_copy_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_narrow_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_narrow_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_native_batch_norm_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_ne_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_ne_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_neg_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_neg_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_new_empty_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_new_full_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_new_ones_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_new_ones_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_nextafter_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_nn_functional__scaled_dot_product_attention_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_nn_functional_adaptive_max_pool1d_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_nn_functional_alpha_dropout_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_nn_functional_avg_pool3d_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_nn_functional_batch_norm_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_nn_functional_binary_cross_entropy_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_nn_functional_binary_cross_entropy_with_logits_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_nn_functional_celu_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_nn_functional_conv1d_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_nn_functional_conv1d_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_nn_functional_conv_transpose2d_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_nn_functional_conv_transpose3d_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_nn_functional_conv_transpose3d_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_nn_functional_cosine_embedding_loss_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_nn_functional_cross_entropy_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_nn_functional_dropout2d_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_nn_functional_dropout3d_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_nn_functional_dropout_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_nn_functional_feature_alpha_dropout_without_train_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_nn_functional_feature_alpha_dropout_without_train_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_nn_functional_fractional_max_pool2d_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_nn_functional_fractional_max_pool3d_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_nn_functional_gaussian_nll_loss_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_nn_functional_gelu_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_nn_functional_glu_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_nn_functional_grid_sample_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_nn_functional_hardsigmoid_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_nn_functional_hardswish_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_nn_functional_hardtanh_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_nn_functional_instance_norm_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_nn_functional_interpolate_bicubic_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_nn_functional_interpolate_bilinear_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_nn_functional_interpolate_linear_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_nn_functional_interpolate_nearest_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_nn_functional_l1_loss_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_nn_functional_layer_norm_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_nn_functional_linear_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_nn_functional_linear_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_nn_functional_logsigmoid_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_nn_functional_margin_ranking_loss_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_nn_functional_max_pool2d_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_nn_functional_max_pool3d_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_nn_functional_max_unpool2d_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_nn_functional_max_unpool2d_grad_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_nn_functional_max_unpool3d_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_nn_functional_mish_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_nn_functional_normalize_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_nn_functional_normalize_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_nn_functional_pad_circular_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_nn_functional_pad_reflect_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_nn_functional_pad_reflect_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_nn_functional_pad_replicate_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_nn_functional_pdist_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_nn_functional_pixel_shuffle_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_nn_functional_poisson_nll_loss_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_nn_functional_relu6_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_nn_functional_silu_complex_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_nn_functional_silu_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_nn_functional_smooth_l1_loss_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_nn_functional_softmin_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_nn_functional_softmin_with_dtype_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_nn_functional_softmin_with_dtype_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_nn_functional_softshrink_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_nn_functional_softsign_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_nn_functional_tanhshrink_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_nn_functional_triplet_margin_loss_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_nn_functional_triplet_margin_with_distance_loss_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_nn_functional_unfold_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_nonzero_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_nonzero_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_norm_nuc_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_normal_number_mean_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_ones_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_ones_like_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_ormqr_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_ormqr_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_outer_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_pca_lowrank_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_permute_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_pinverse_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_polygamma_polygamma_n_1_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_polygamma_polygamma_n_4_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_positive_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_pow_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_pow_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_put_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_quantile_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_rad2deg_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_rand_like_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_rand_like_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_randint_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_randint_like_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_randn_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_ravel_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_ravel_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_real_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_reciprocal_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_remainder_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_renorm_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_renorm_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_repeat_interleave_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_reshape_as_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_resolve_conj_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_resolve_neg_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_roll_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_roll_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_rot90_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_round_decimals_0_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_round_decimals_3_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_rsub_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_scalar_tensor_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_scatter_add_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_scatter_reduce_amax_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_scatter_reduce_amin_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_scatter_reduce_mean_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_searchsorted_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_segment_reduce_lengths_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_select_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_select_scatter_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_sigmoid_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_sign_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_signal_windows_blackman_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_signal_windows_cosine_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_signal_windows_exponential_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_signal_windows_general_cosine_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_signal_windows_general_hamming_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_signal_windows_hann_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_signal_windows_kaiser_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_signal_windows_nuttall_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_signbit_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_sin_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_sinc_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_sinh_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_slice_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_slice_scatter_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_softmax_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_softmax_with_dtype_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_softmax_with_dtype_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_sort_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_sparse_sampled_addmm_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_sparse_sampled_addmm_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_special_airy_ai_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_special_bessel_j0_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_special_bessel_y1_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_special_chebyshev_polynomial_u_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_special_chebyshev_polynomial_v_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_special_entr_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_special_hermite_polynomial_he_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_special_i0e_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_special_i1_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_special_legendre_polynomial_p_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_special_modified_bessel_i1_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_special_modified_bessel_k0_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_special_modified_bessel_k1_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_special_ndtr_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_special_polygamma_special_polygamma_n_0_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_special_scaled_modified_bessel_k0_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_special_shifted_chebyshev_polynomial_t_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_special_shifted_chebyshev_polynomial_u_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_special_shifted_chebyshev_polynomial_w_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_special_spherical_bessel_j0_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_special_xlog1py_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_split_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_split_list_args_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_split_list_args_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_square_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_squeeze_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_squeeze_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_stack_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_std_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_std_mean_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_std_mean_unbiased_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_stft_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_stft_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_sub_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_sum_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_symeig_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_take_along_dim_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_tanh_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_tensor_split_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_tensordot_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_tile_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_tile_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_to_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_to_sparse_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_trace_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_transpose_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_trapezoid_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_triangular_solve_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_tril_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_tril_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_triu_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_true_divide_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_unbind_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_unflatten_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_unfold_copy_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_unfold_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_unique_consecutive_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_unique_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_var_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_var_mean_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_var_unbiased_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_var_unbiased_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_vdot_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_vdot_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_view_as_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_view_as_real_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_vstack_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_where_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_xlogy_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_zeros_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_zeros_like_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_H_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_T_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_T_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad___getitem___cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad___radd___cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad___radd___cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad___rdiv___cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad___rdiv___cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad___rmod___cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad___rmul___cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad___rmul___cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad___rpow___cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad___rpow___cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad__native_batch_norm_legit_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad__softmax_backward_data_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_abs_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_acosh_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_add_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_addbmm_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_addcmul_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_addmv_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_addr_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_all_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_all_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_allclose_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_amax_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_aminmax_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_any_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_argmax_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_argsort_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_as_strided_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_as_strided_partial_views_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_asin_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_asinh_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_atanh_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_atleast_1d_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_atleast_2d_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_atleast_2d_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_atleast_3d_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_baddbmm_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_bernoulli_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_bfloat16_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_block_diag_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_block_diag_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_broadcast_tensors_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_broadcast_tensors_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_broadcast_to_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_bucketize_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_byte_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_cartesian_prod_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_cdist_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_cdouble_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_cdouble_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_ceil_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_chalf_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_cholesky_inverse_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_cholesky_solve_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_chunk_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_clamp_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_clone_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_clone_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_combinations_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_combinations_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_conj_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_conj_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_conj_physical_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_constant_pad_nd_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_contiguous_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_contiguous_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_copysign_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_corrcoef_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_cos_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_cos_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_cosh_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_count_nonzero_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_cov_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_cross_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_cummax_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_cumprod_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_cumsum_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_cumulative_trapezoid_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_deg2rad_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_diag_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_diag_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_diag_embed_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_diagflat_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_diagflat_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_diagonal_copy_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_diagonal_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_diff_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_digamma_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_div_no_rounding_mode_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_div_trunc_rounding_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_double_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_double_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_dsplit_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_dsplit_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_dstack_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_einsum_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_einsum_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_empty_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_eq_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_equal_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_erf_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_erfc_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_erfinv_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_exp2_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_expand_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_expm1_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_eye_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_eye_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_fft_fft2_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_fft_fft_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_fft_hfft2_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_fft_hfft_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_fft_hfft_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_fft_ifft_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_fft_ifftn_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_fft_ihfft_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_fft_irfft2_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_fft_irfft_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_fft_irfft_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_fft_irfftn_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_fft_rfftn_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_flip_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_flip_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_fliplr_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_flipud_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_float_power_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_floor_divide_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_fmod_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_frexp_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_full_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_gather_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_gather_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_ge_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_geqrf_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_geqrf_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_gradient_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_gradient_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_grid_sampler_2d_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_gt_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_half_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_half_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_histc_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_histogram_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_imag_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_index_add_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_index_copy_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_index_fill_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_index_put_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_index_select_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_inner_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_inner_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_isclose_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_isfinite_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_isfinite_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_isin_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_isinf_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_isnan_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_isreal_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_jiterator_4inputs_with_extra_args_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_jiterator_binary_return_by_ref_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_jiterator_binary_return_by_ref_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_jiterator_unary_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_kthvalue_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_ldexp_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_linalg_cond_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_linalg_cross_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_linalg_det_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_linalg_det_singular_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_linalg_eigvals_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_linalg_eigvalsh_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_linalg_householder_product_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_linalg_householder_product_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_linalg_inv_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_linalg_inv_ex_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_linalg_ldl_factor_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_linalg_ldl_factor_ex_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_linalg_lstsq_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_linalg_lu_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_linalg_lu_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_linalg_lu_factor_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_linalg_lu_factor_ex_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_linalg_lu_solve_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_linalg_lu_solve_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_linalg_matrix_norm_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_linalg_matrix_power_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_linalg_matrix_rank_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_linalg_matrix_rank_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_linalg_matrix_rank_hermitian_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_linalg_multi_dot_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_linalg_norm_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_linalg_norm_subgradients_at_zero_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_linalg_norm_subgradients_at_zero_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_linalg_pinv_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_linalg_pinv_hermitian_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_linalg_pinv_singular_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_linalg_qr_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_linalg_slogdet_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_linalg_solve_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_linalg_solve_ex_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_linalg_solve_ex_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_linalg_solve_triangular_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_linalg_svdvals_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_linalg_tensorinv_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_linalg_tensorsolve_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_linalg_tensorsolve_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_linalg_vecdot_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_linspace_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_log1p_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_log2_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_log2_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_log_softmax_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_log_softmax_with_dtype_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_logaddexp2_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_logical_and_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_logical_not_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_logical_or_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_logical_or_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_logical_xor_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_logical_xor_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_logspace_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_logsumexp_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_long_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_long_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_lt_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_lu_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_lu_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_lu_unpack_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_mH_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_masked_argmin_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_masked_cumprod_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_masked_cumsum_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_masked_log_softmax_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_masked_logaddexp_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_masked_logsumexp_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_masked_mean_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_masked_median_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_masked_norm_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_masked_normalize_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_masked_prod_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_masked_select_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_masked_softmax_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_masked_std_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_masked_std_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_masked_sum_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_masked_sum_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_masked_var_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_matmul_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_max_pool2d_with_indices_backward_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_maximum_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_mean_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_median_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_meshgrid_list_of_tensors_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_meshgrid_list_of_tensors_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_meshgrid_variadic_tensors_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_mm_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_mm_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_movedim_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_mul_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_mvlgamma_mvlgamma_p_3_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_mvlgamma_mvlgamma_p_5_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_nan_to_num_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_nanmean_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_nanmedian_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_nanquantile_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_nansum_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_narrow_copy_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_narrow_copy_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_narrow_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_native_dropout_backward_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_ne_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_ne_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_new_empty_strided_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_new_full_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_new_full_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_new_zeros_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_new_zeros_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_nn_functional__scaled_dot_product_attention_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_nn_functional_adaptive_avg_pool2d_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_nn_functional_adaptive_avg_pool3d_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_nn_functional_adaptive_max_pool2d_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_nn_functional_adaptive_max_pool3d_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_nn_functional_batch_norm_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_nn_functional_binary_cross_entropy_with_logits_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_nn_functional_celu_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_nn_functional_conv1d_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_nn_functional_conv_transpose3d_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_nn_functional_cosine_embedding_loss_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_nn_functional_cross_entropy_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_nn_functional_ctc_loss_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_nn_functional_dropout2d_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_nn_functional_dropout_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_nn_functional_elu_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_nn_functional_embedding_bag_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_nn_functional_embedding_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_nn_functional_feature_alpha_dropout_without_train_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_nn_functional_fractional_max_pool2d_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_nn_functional_gaussian_nll_loss_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_nn_functional_glu_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_nn_functional_grid_sample_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_nn_functional_group_norm_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_nn_functional_hardshrink_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_nn_functional_hardsigmoid_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_nn_functional_hardswish_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_nn_functional_hardtanh_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_nn_functional_huber_loss_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_nn_functional_instance_norm_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_nn_functional_interpolate_linear_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_nn_functional_kl_div_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_nn_functional_l1_loss_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_nn_functional_l1_loss_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_nn_functional_layer_norm_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_nn_functional_leaky_relu_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_nn_functional_linear_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_nn_functional_margin_ranking_loss_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_nn_functional_max_unpool1d_grad_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_nn_functional_max_unpool2d_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_nn_functional_max_unpool3d_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_nn_functional_mse_loss_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_nn_functional_multi_margin_loss_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_nn_functional_multilabel_soft_margin_loss_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_nn_functional_pad_circular_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_nn_functional_pad_circular_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_nn_functional_pad_reflect_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_nn_functional_pad_reflect_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_nn_functional_pad_replicate_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_nn_functional_pairwise_distance_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_nn_functional_pdist_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_nn_functional_pixel_shuffle_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_nn_functional_pixel_shuffle_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_nn_functional_prelu_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_nn_functional_selu_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_nn_functional_soft_margin_loss_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_nn_functional_softmin_with_dtype_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_nn_functional_softplus_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_nn_functional_softsign_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_nn_functional_tanhshrink_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_nn_functional_threshold_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_nn_functional_triplet_margin_loss_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_nn_functional_triplet_margin_with_distance_loss_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_nn_functional_unfold_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_nn_functional_upsample_nearest_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_norm_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_norm_fro_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_norm_nuc_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_ones_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_ones_like_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_ones_like_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_ormqr_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_ormqr_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_outer_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_pca_lowrank_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_permute_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_pinverse_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_polygamma_polygamma_n_3_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_polygamma_polygamma_n_4_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_positive_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_positive_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_pow_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_put_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_put_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_qr_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_qr_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_quantile_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_rad2deg_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_randint_like_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_real_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_real_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_reciprocal_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_renorm_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_repeat_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_repeat_interleave_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_reshape_as_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_reshape_as_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_resize__cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_resolve_conj_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_resolve_conj_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_resolve_neg_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_roll_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_roll_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_rot90_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_round_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_rsub_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_scalar_tensor_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_scalar_tensor_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_scatter_add_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_scatter_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_scatter_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_scatter_reduce_amax_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_scatter_reduce_amin_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_scatter_reduce_prod_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_searchsorted_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_segment_reduce_lengths_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_segment_reduce_offsets_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_select_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_short_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_sign_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_signal_windows_blackman_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_signal_windows_general_cosine_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_signal_windows_kaiser_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_signal_windows_nuttall_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_sin_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_sinc_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_sinc_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_sinh_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_slice_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_slice_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_softmax_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_softmax_with_dtype_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_softmax_with_dtype_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_sparse_sampled_addmm_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_special_bessel_j1_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_special_bessel_y1_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_special_chebyshev_polynomial_u_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_special_chebyshev_polynomial_v_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_special_erfcx_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_special_hermite_polynomial_he_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_special_laguerre_polynomial_l_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_special_log_ndtr_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_special_modified_bessel_i1_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_special_modified_bessel_k0_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_special_polygamma_special_polygamma_n_0_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_special_shifted_chebyshev_polynomial_w_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_special_zeta_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_split_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_split_list_args_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_split_list_args_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_sqrt_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_square_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_square_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_std_mean_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_std_mean_unbiased_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_std_unbiased_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_sub_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_sum_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_sum_to_size_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_svd_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_svd_lowrank_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_symeig_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_t_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_take_along_dim_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_take_along_dim_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_tanh_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_tanh_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_tensor_split_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_tensordot_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_tile_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_to_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_to_sparse_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_topk_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_trace_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_transpose_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_transpose_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_trapezoid_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_triangular_solve_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_triangular_solve_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_triu_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_triu_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_true_divide_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_true_divide_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_unbind_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_unflatten_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_unfold_copy_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_uniform_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_var_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_var_mean_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_var_mean_unbiased_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_var_mean_unbiased_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_var_unbiased_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_view_as_complex_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_vsplit_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_zeros_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_zeros_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_T_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad___getitem___cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad___rdiv___cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad___rdiv___cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad___rmod___cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad___rmul___cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad___rmul___cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad___rpow___cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad___rpow___cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad___rsub___cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad__softmax_backward_data_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_abs_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_acos_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_acosh_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_acosh_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_addcdiv_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_addcdiv_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_addmm_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_addmm_decomposed_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_addmm_decomposed_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_addmv_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_all_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_all_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_allclose_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_aminmax_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_any_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_any_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_argmax_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_as_strided_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_as_strided_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_asin_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_asinh_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_atanh_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_atleast_1d_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_atleast_2d_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_atleast_3d_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_atleast_3d_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_baddbmm_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_bernoulli_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_bfloat16_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_block_diag_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_bmm_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_byte_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_ceil_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_cfloat_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_cfloat_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_char_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_cholesky_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_chunk_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_clamp_max_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_clamp_min_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_clone_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_column_stack_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_combinations_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_conj_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_conj_physical_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_constant_pad_nd_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_constant_pad_nd_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_contiguous_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_copysign_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_corrcoef_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_corrcoef_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_cosh_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_count_nonzero_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_cov_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_cov_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_cross_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_cumprod_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_cumsum_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_cumulative_trapezoid_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_cumulative_trapezoid_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_diag_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_diag_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_diag_embed_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_diagflat_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_diagonal_copy_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_diagonal_copy_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_diagonal_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_diagonal_scatter_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_diff_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_dist_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_dist_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_div_floor_rounding_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_div_no_rounding_mode_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_div_trunc_rounding_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_dot_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_double_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_dstack_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_dstack_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_einsum_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_empty_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_empty_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_empty_like_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_empty_like_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_eq_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_equal_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_equal_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_erfinv_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_exp2_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_exp_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_exp_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_expand_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_expm1_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_eye_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_fft_fftn_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_fft_fftshift_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_fft_fftshift_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_fft_hfft2_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_fft_hfft_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_fft_ifft2_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_fft_ifft_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_fft_ifftn_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_fft_ihfft2_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_fft_ihfftn_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_fft_irfft2_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_fft_irfft2_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_fft_irfft_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_fft_rfftn_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_fill_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_fill_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_flatten_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_flip_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_flipud_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_flipud_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_float_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_float_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_float_power_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_floor_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_fmax_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_fmin_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_frac_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_full_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_full_like_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_gather_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_ge_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_geqrf_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_gradient_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_half_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_heaviside_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_histc_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_hsplit_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_hsplit_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_hstack_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_igammac_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_index_add_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_index_add_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_index_copy_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_index_fill_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_index_put_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_int_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_isclose_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_isclose_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_isfinite_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_isfinite_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_isinf_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_isnan_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_isneginf_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_jiterator_2inputs_2outputs_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_jiterator_4inputs_with_extra_args_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_jiterator_4inputs_with_extra_args_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_jiterator_binary_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_jiterator_binary_return_by_ref_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_jiterator_binary_return_by_ref_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_jiterator_unary_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_kron_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_kthvalue_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_ldexp_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_ldexp_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_lerp_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_linalg_cond_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_linalg_cross_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_linalg_det_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_linalg_det_singular_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_linalg_det_singular_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_linalg_eigh_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_linalg_eigvals_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_linalg_eigvalsh_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_linalg_eigvalsh_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_linalg_householder_product_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_linalg_inv_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_linalg_inv_ex_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_linalg_inv_ex_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_linalg_ldl_factor_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_linalg_ldl_factor_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_linalg_ldl_factor_ex_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_linalg_ldl_solve_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_linalg_lstsq_grad_oriented_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_linalg_lu_factor_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_linalg_matrix_norm_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_linalg_matrix_power_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_linalg_matrix_rank_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_linalg_matrix_rank_hermitian_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_linalg_matrix_rank_hermitian_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_linalg_multi_dot_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_linalg_multi_dot_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_linalg_norm_subgradients_at_zero_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_linalg_pinv_hermitian_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_linalg_pinv_singular_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_linalg_qr_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_linalg_qr_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_linalg_slogdet_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_linalg_solve_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_linalg_solve_ex_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_linalg_solve_triangular_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_linalg_tensorinv_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_linalg_tensorsolve_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_linalg_vander_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_linalg_vecdot_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_linalg_vector_norm_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_linalg_vector_norm_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_log10_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_log1p_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_log1p_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_log2_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_log_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_log_softmax_with_dtype_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_logaddexp_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_logdet_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_logdet_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_logical_and_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_logical_not_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_logical_xor_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_logit_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_logspace_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_logspace_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_logsumexp_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_long_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_lt_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_lu_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_lu_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_lu_solve_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_lu_solve_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_mH_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_mH_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_masked_argmax_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_masked_argmin_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_masked_cumprod_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_masked_cumsum_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_masked_fill_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_masked_log_softmax_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_masked_mean_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_masked_median_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_masked_normalize_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_masked_normalize_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_masked_prod_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_masked_select_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_masked_std_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_masked_sum_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_matmul_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_matmul_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_matrix_exp_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_matrix_exp_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_max_binary_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_max_pool2d_with_indices_backward_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_max_reduction_no_dim_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_maximum_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_mean_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_meshgrid_list_of_tensors_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_min_binary_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_mm_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_mode_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_mul_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_mul_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_multinomial_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_mvlgamma_mvlgamma_p_1_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_mvlgamma_mvlgamma_p_5_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_nanmedian_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_nansum_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_narrow_copy_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_narrow_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_narrow_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_native_dropout_backward_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_neg_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_neg_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_new_empty_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_new_full_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_new_full_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_new_ones_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_new_ones_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_new_zeros_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_new_zeros_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_nn_functional__scaled_dot_product_attention_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_nn_functional_adaptive_avg_pool3d_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_nn_functional_adaptive_max_pool2d_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_nn_functional_avg_pool1d_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_nn_functional_conv1d_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_nn_functional_conv2d_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_nn_functional_conv_transpose1d_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_nn_functional_conv_transpose2d_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_nn_functional_conv_transpose2d_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_nn_functional_conv_transpose3d_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_nn_functional_conv_transpose3d_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_nn_functional_cosine_embedding_loss_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_nn_functional_cosine_similarity_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_nn_functional_cross_entropy_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_nn_functional_ctc_loss_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_nn_functional_dropout2d_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_nn_functional_dropout3d_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_nn_functional_gaussian_nll_loss_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_nn_functional_glu_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_nn_functional_grid_sample_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_nn_functional_group_norm_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_nn_functional_hardshrink_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_nn_functional_hardswish_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_nn_functional_interpolate_bicubic_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_nn_functional_interpolate_nearest_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_nn_functional_layer_norm_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_nn_functional_linear_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_nn_functional_local_response_norm_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_nn_functional_logsigmoid_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_nn_functional_margin_ranking_loss_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_nn_functional_max_pool1d_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_nn_functional_max_pool2d_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_nn_functional_max_pool3d_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_nn_functional_max_unpool1d_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_nn_functional_max_unpool3d_grad_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_nn_functional_multi_margin_loss_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_nn_functional_multilabel_soft_margin_loss_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_nn_functional_normalize_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_nn_functional_pad_circular_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_nn_functional_pad_constant_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_nn_functional_pad_constant_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_nn_functional_pad_reflect_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_nn_functional_pdist_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_nn_functional_pixel_unshuffle_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_nn_functional_pixel_unshuffle_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_nn_functional_relu6_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_nn_functional_relu_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_nn_functional_rrelu_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_nn_functional_softmin_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_nn_functional_softmin_with_dtype_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_nn_functional_softmin_with_dtype_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_nn_functional_softshrink_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_nn_functional_softsign_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_nn_functional_softsign_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_nn_functional_tanhshrink_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_nn_functional_tanhshrink_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_nn_functional_triplet_margin_loss_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_nn_functional_triplet_margin_with_distance_loss_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_nn_functional_unfold_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_nn_functional_upsample_bilinear_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_nonzero_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_norm_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_norm_fro_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_norm_inf_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_norm_inf_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_norm_nuc_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_normal_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_outer_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_permute_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_pinverse_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_polygamma_polygamma_n_1_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_polygamma_polygamma_n_2_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_put_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_quantile_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_rad2deg_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_randint_like_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_randn_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_ravel_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_real_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_reciprocal_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_reciprocal_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_renorm_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_repeat_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_repeat_interleave_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_reshape_as_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_reshape_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_resize__cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_resolve_neg_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_resolve_neg_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_rot90_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_round_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_round_decimals_neg_3_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_scalar_tensor_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_scatter_add_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_scatter_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_scatter_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_scatter_reduce_amax_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_scatter_reduce_mean_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_scatter_reduce_sum_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_segment_reduce_offsets_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_select_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_select_scatter_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_sgn_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_short_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_short_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_sigmoid_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_sign_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_signal_windows_blackman_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_signal_windows_general_hamming_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_signbit_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_sin_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_sinc_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_sinc_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_sinh_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_slice_scatter_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_softmax_with_dtype_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_softmax_with_dtype_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_sparse_sampled_addmm_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_special_airy_ai_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_special_bessel_j1_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_special_bessel_y0_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_special_erfcx_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_special_hermite_polynomial_he_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_special_i1_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_special_laguerre_polynomial_l_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_special_log_ndtr_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_special_modified_bessel_i1_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_special_ndtr_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_special_polygamma_special_polygamma_n_0_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_special_shifted_chebyshev_polynomial_t_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_special_shifted_chebyshev_polynomial_u_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_special_shifted_chebyshev_polynomial_v_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_special_spherical_bessel_j0_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_special_xlog1py_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_split_list_args_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_split_with_sizes_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_stack_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_std_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_std_unbiased_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_std_unbiased_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_stft_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_stft_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_sub_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_sum_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_sum_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_sum_to_size_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_svd_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_svd_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_symeig_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_symeig_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_t_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_take_along_dim_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_take_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_tan_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_tanh_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_tanh_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_tensor_split_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_tensordot_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_tile_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_to_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_to_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_to_sparse_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_to_sparse_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_trace_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_transpose_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_transpose_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_trapezoid_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_trapz_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_trapz_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_triangular_solve_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_triangular_solve_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_tril_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_triu_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_trunc_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_unflatten_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_unflatten_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_unfold_copy_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_unfold_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_uniform_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_unique_consecutive_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_unsqueeze_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_unsqueeze_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_var_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_var_mean_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_var_mean_unbiased_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_vdot_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_view_as_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_view_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_vsplit_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_vstack_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_vstack_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_where_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_where_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_xlogy_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_zeros_like_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_T_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad___radd___cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad___rdiv___cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad___rdiv___cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad___rmatmul___cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad___rmod___cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad___rpow___cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad__native_batch_norm_legit_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_acos_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_acos_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_acosh_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_add_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_add_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_addbmm_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_addbmm_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_addcdiv_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_addcmul_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_addmm_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_addmm_decomposed_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_addmm_decomposed_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_addmv_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_addr_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_addr_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_all_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_allclose_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_angle_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_angle_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_any_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_arange_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_argsort_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_as_strided_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_asin_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_asinh_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_atanh_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_atleast_1d_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_atleast_2d_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_atleast_3d_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_baddbmm_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_bfloat16_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_bfloat16_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_block_diag_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_bmm_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_bmm_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_bool_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_broadcast_tensors_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_broadcast_tensors_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_broadcast_to_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_byte_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_byte_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_cartesian_prod_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_cdouble_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_cdouble_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_cfloat_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_char_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_cholesky_solve_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_chunk_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_clamp_min_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_combinations_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_complex_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_conj_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_conj_physical_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_constant_pad_nd_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_contiguous_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_contiguous_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_corrcoef_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_cosh_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_count_nonzero_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_count_nonzero_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_cov_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_cov_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_cummax_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_cummin_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_cumprod_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_cumprod_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_cumsum_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_cumsum_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_cumulative_trapezoid_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_diagonal_copy_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_diagonal_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_diagonal_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_diagonal_scatter_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_diff_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_dist_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_div_floor_rounding_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_div_no_rounding_mode_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_div_no_rounding_mode_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_div_trunc_rounding_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_dot_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_double_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_dstack_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_einsum_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_einsum_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_empty_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_eq_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_eq_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_equal_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_equal_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_erfc_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_expand_as_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_expand_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_expand_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_expm1_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_fft_fft2_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_fft_fft_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_fft_fft_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_fft_fftn_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_fft_fftn_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_fft_fftshift_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_fft_fftshift_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_fft_hfft2_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_fft_hfftn_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_fft_ifft2_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_fft_ifft_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_fft_ifftn_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_fft_ifftshift_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_fft_ihfft2_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_fft_ihfftn_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_fft_irfft2_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_fft_irfft_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_fft_irfftn_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_fft_rfft2_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_fft_rfft_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_fft_rfftn_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_fill_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_fill_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_flatten_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_fliplr_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_flipud_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_flipud_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_float_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_float_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_float_power_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_floor_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_fmax_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_fmod_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_frexp_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_full_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_full_like_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_gather_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_gather_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_geqrf_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_geqrf_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_gradient_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_grid_sampler_2d_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_heaviside_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_histc_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_histogramdd_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_hsplit_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_hstack_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_hstack_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_i0_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_igamma_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_igammac_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_imag_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_index_add_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_index_copy_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_index_put_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_index_reduce_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_index_select_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_inner_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_inner_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_int_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_int_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_isfinite_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_isinf_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_isinf_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_isnan_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_isneginf_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_isposinf_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_jiterator_2inputs_2outputs_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_jiterator_4inputs_with_extra_args_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_jiterator_binary_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_jiterator_binary_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_jiterator_binary_return_by_ref_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_jiterator_binary_return_by_ref_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_kron_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_ldexp_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_le_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_linalg_cond_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_linalg_cross_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_linalg_det_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_linalg_det_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_linalg_det_singular_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_linalg_eig_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_linalg_eigh_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_linalg_eigvals_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_linalg_eigvalsh_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_linalg_eigvalsh_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_linalg_inv_ex_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_linalg_inv_ex_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_linalg_ldl_factor_ex_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_linalg_ldl_solve_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_linalg_ldl_solve_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_linalg_lstsq_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_linalg_lstsq_grad_oriented_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_linalg_lu_factor_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_linalg_lu_factor_ex_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_linalg_lu_factor_ex_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_linalg_lu_solve_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_linalg_lu_solve_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_linalg_matrix_norm_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_linalg_matrix_rank_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_linalg_multi_dot_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_linalg_multi_dot_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_linalg_norm_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_linalg_norm_subgradients_at_zero_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_linalg_pinv_hermitian_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_linalg_pinv_hermitian_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_linalg_pinv_singular_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_linalg_qr_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_linalg_slogdet_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_linalg_solve_ex_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_linalg_solve_triangular_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_linalg_svd_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_linalg_svd_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_linalg_svdvals_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_linalg_vander_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_linalg_vander_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_linalg_vecdot_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_linalg_vecdot_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_linspace_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_log10_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_log10_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_log1p_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_log_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_log_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_log_softmax_with_dtype_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_log_softmax_with_dtype_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_logaddexp2_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_logdet_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_logdet_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_logical_and_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_logical_not_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_logical_or_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_logical_xor_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_logical_xor_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_logspace_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_long_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_lu_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_lu_solve_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_lu_unpack_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_mH_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_mT_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_masked_amax_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_masked_argmin_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_masked_cumprod_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_masked_cumsum_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_masked_fill_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_masked_log_softmax_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_masked_logaddexp_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_masked_logsumexp_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_masked_mean_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_masked_norm_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_masked_prod_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_masked_scatter_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_masked_select_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_masked_softmax_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_masked_softmin_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_masked_sum_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_matrix_exp_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_max_pool2d_with_indices_backward_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_max_reduction_no_dim_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_max_reduction_with_dim_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_maximum_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_meshgrid_list_of_tensors_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_min_reduction_no_dim_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_minimum_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_mm_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_mm_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_msort_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_mul_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_mv_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_mvlgamma_mvlgamma_p_1_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_mvlgamma_mvlgamma_p_3_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_mvlgamma_mvlgamma_p_5_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_nanmean_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_nanmedian_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_narrow_copy_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_narrow_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_narrow_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_native_batch_norm_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_native_layer_norm_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_ne_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_new_full_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_new_full_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_nextafter_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_nn_functional_adaptive_avg_pool1d_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_nn_functional_adaptive_avg_pool2d_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_nn_functional_adaptive_avg_pool3d_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_nn_functional_adaptive_max_pool1d_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_nn_functional_adaptive_max_pool2d_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_nn_functional_adaptive_max_pool3d_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_nn_functional_avg_pool1d_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_nn_functional_batch_norm_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_nn_functional_bilinear_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_nn_functional_binary_cross_entropy_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_nn_functional_binary_cross_entropy_with_logits_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_nn_functional_celu_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_nn_functional_conv1d_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_nn_functional_conv_transpose1d_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_nn_functional_conv_transpose2d_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_nn_functional_conv_transpose3d_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_nn_functional_cosine_embedding_loss_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_nn_functional_cosine_similarity_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_nn_functional_cross_entropy_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_nn_functional_dropout_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_nn_functional_elu_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_nn_functional_feature_alpha_dropout_without_train_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_nn_functional_fractional_max_pool2d_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_nn_functional_fractional_max_pool3d_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_nn_functional_gaussian_nll_loss_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_nn_functional_glu_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_nn_functional_hardshrink_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_nn_functional_hardswish_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_nn_functional_hinge_embedding_loss_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_nn_functional_huber_loss_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_nn_functional_interpolate_bilinear_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_nn_functional_interpolate_linear_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_nn_functional_interpolate_trilinear_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_nn_functional_kl_div_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_nn_functional_layer_norm_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_nn_functional_linear_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_nn_functional_margin_ranking_loss_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_nn_functional_max_pool1d_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_nn_functional_max_pool2d_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_nn_functional_max_unpool1d_grad_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_nn_functional_max_unpool2d_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_nn_functional_max_unpool3d_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_nn_functional_multi_margin_loss_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_nn_functional_multilabel_margin_loss_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_nn_functional_nll_loss_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_nn_functional_normalize_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_nn_functional_normalize_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_nn_functional_pad_circular_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_nn_functional_pairwise_distance_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_nn_functional_pairwise_distance_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_nn_functional_pixel_shuffle_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_nn_functional_pixel_unshuffle_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_nn_functional_poisson_nll_loss_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_nn_functional_prelu_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_nn_functional_relu6_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_nn_functional_rrelu_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_nn_functional_silu_complex_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_nn_functional_silu_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_nn_functional_smooth_l1_loss_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_nn_functional_softmin_with_dtype_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_nn_functional_softmin_with_dtype_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_nn_functional_softshrink_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_nn_functional_softsign_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_nn_functional_tanhshrink_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_nn_functional_threshold_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_nn_functional_triplet_margin_loss_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_nn_functional_upsample_bilinear_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_nn_functional_upsample_nearest_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_nonzero_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_nonzero_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_norm_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_norm_fro_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_norm_inf_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_norm_nuc_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_normal_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_normal_number_mean_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_ones_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_ones_like_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_outer_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_pca_lowrank_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_permute_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_permute_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_polar_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_polygamma_polygamma_n_3_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_positive_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_prod_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_prod_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_qr_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_qr_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_rad2deg_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_rand_like_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_rand_like_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_randint_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_randint_like_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_randn_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_randn_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_ravel_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_reciprocal_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_renorm_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_repeat_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_repeat_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_resize__cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_resize_as__cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_resize_as__cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_resolve_neg_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_rot90_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_rot90_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_round_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_round_decimals_3_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_rsqrt_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_rsub_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_scalar_tensor_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_scalar_tensor_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_scatter_add_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_scatter_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_scatter_reduce_amax_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_scatter_reduce_amin_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_scatter_reduce_prod_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_select_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_select_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_short_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_short_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_sigmoid_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_sigmoid_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_signal_windows_bartlett_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_signal_windows_cosine_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_signal_windows_hamming_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_signal_windows_hann_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_signbit_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_sin_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_sinc_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_sinh_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_sort_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_sparse_sampled_addmm_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_special_bessel_j0_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_special_bessel_y0_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_special_chebyshev_polynomial_u_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_special_chebyshev_polynomial_v_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_special_entr_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_special_hermite_polynomial_h_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_special_hermite_polynomial_he_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_special_i0e_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_special_log_ndtr_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_special_modified_bessel_i0_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_special_modified_bessel_k1_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_special_ndtr_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_special_scaled_modified_bessel_k0_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_special_shifted_chebyshev_polynomial_t_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_special_shifted_chebyshev_polynomial_v_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_special_shifted_chebyshev_polynomial_w_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_special_xlog1py_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_split_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_split_with_sizes_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_split_with_sizes_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_sqrt_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_square_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_std_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_std_mean_unbiased_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_std_unbiased_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_stft_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_sub_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_sub_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_sum_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_sum_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_sum_to_size_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_svd_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_svd_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_symeig_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_t_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_take_along_dim_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_take_along_dim_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_take_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_tan_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_tanh_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_tensor_split_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_to_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_trace_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_trace_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_trapezoid_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_trapz_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_trapz_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_triangular_solve_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_true_divide_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_trunc_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_unbind_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_unflatten_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_unfold_copy_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_unfold_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_unique_consecutive_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_unique_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_var_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_var_mean_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_var_unbiased_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_var_unbiased_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_vdot_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_vdot_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_view_as_complex_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_view_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_vsplit_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_vstack_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_where_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_where_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_xlogy_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_zero__cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_zeros_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_zeros_like_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_zeros_like_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_H_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_H_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_T_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_T_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad___getitem___cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad___getitem___cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad___radd___cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad___radd___cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad___rmatmul___cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad___rmatmul___cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad___rpow___cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad___rsub___cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad__softmax_backward_data_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_acos_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_add_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_addbmm_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_addcdiv_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_addmm_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_addmm_decomposed_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_addmv_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_addr_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_addr_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_all_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_all_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_allclose_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_any_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_arange_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_argmax_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_argsort_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_argwhere_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_as_strided_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_as_strided_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_as_strided_partial_views_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_as_strided_scatter_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_as_strided_scatter_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_asin_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_asinh_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_asinh_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_atanh_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_atleast_1d_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_atleast_1d_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_atleast_2d_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_baddbmm_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_bfloat16_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_bfloat16_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_block_diag_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_bmm_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_bmm_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_bool_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_broadcast_tensors_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_broadcast_to_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_byte_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_byte_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_cartesian_prod_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_cat_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_cdist_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_cdouble_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_ceil_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_chalf_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_char_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_char_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_cholesky_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_cholesky_inverse_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_chunk_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_clamp_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_clamp_max_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_clone_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_column_stack_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_combinations_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_combinations_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_complex_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_conj_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_conj_physical_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_conj_physical_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_constant_pad_nd_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_contiguous_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_cos_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_cos_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_cosh_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_cosh_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_count_nonzero_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_cov_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_cross_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_cummax_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_cummin_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_cumulative_trapezoid_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_deg2rad_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_diag_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_diag_embed_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_diagflat_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_diagonal_copy_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_diagonal_copy_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_diagonal_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_diff_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_diff_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_digamma_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_dist_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_div_no_rounding_mode_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_div_no_rounding_mode_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_div_trunc_rounding_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_dot_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_dot_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_double_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_double_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_dsplit_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_dsplit_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_empty_like_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_eq_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_equal_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_equal_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_erfc_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_erfinv_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_exp_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_expand_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_expm1_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_eye_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_fft_fft_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_fft_fftshift_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_fft_hfft2_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_fft_hfft_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_fft_hfftn_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_fft_ifftn_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_fft_ihfft2_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_fft_ihfft_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_fft_ihfftn_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_fft_irfft_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_fft_irfft_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_fft_irfftn_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_fft_rfft_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_flatten_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_flatten_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_flip_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_flipud_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_float_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_float_power_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_floor_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_full_like_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_ge_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_half_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_heaviside_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_histc_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_histogram_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_index_add_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_index_copy_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_index_fill_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_index_put_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_index_reduce_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_index_select_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_index_select_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_inner_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_inner_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_int_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_int_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_isclose_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_isfinite_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_isinf_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_isinf_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_isnan_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_isnan_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_jiterator_2inputs_2outputs_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_jiterator_4inputs_with_extra_args_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_jiterator_4inputs_with_extra_args_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_jiterator_binary_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_jiterator_binary_return_by_ref_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_jiterator_unary_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_ldexp_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_le_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_lgamma_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_linalg_cond_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_linalg_cond_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_linalg_cross_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_linalg_det_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_linalg_eig_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_linalg_eig_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_linalg_eigvals_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_linalg_eigvalsh_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_linalg_inv_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_linalg_inv_ex_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_linalg_inv_ex_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_linalg_ldl_factor_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_linalg_ldl_solve_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_linalg_lstsq_grad_oriented_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_linalg_lu_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_linalg_lu_factor_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_linalg_matrix_norm_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_linalg_matrix_power_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_linalg_matrix_rank_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_linalg_matrix_rank_hermitian_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_linalg_multi_dot_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_linalg_norm_subgradients_at_zero_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_linalg_pinv_hermitian_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_linalg_pinv_hermitian_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_linalg_pinv_singular_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_linalg_qr_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_linalg_slogdet_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_linalg_solve_ex_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_linalg_solve_triangular_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_linalg_solve_triangular_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_linalg_svd_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_linalg_tensorinv_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_linalg_vander_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_linalg_vector_norm_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_linspace_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_linspace_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_log1p_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_log2_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_log_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_log_softmax_with_dtype_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_logaddexp2_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_logaddexp_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_logcumsumexp_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_logdet_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_logdet_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_logical_not_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_logical_xor_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_logspace_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_long_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_lu_solve_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_lu_solve_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_lu_unpack_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_mH_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_masked_amax_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_masked_amin_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_masked_argmin_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_masked_cumprod_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_masked_cumsum_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_masked_fill_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_masked_median_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_masked_norm_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_masked_scatter_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_masked_select_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_masked_select_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_masked_softmax_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_masked_softmin_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_masked_var_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_masked_var_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_matmul_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_matrix_exp_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_max_pool2d_with_indices_backward_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_mean_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_meshgrid_list_of_tensors_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_meshgrid_variadic_tensors_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_min_binary_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_min_reduction_no_dim_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_min_reduction_with_dim_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_mm_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_mm_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_movedim_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_movedim_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_msort_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_mul_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_mul_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_multinomial_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_nan_to_num_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_nanmean_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_nanquantile_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_ne_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_neg_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_new_empty_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_new_empty_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_new_empty_strided_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_nextafter_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_nn_functional_adaptive_avg_pool1d_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_nn_functional_adaptive_avg_pool3d_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_nn_functional_adaptive_max_pool1d_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_nn_functional_adaptive_max_pool3d_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_nn_functional_avg_pool1d_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_nn_functional_avg_pool3d_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_nn_functional_bilinear_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_nn_functional_binary_cross_entropy_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_nn_functional_binary_cross_entropy_with_logits_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_nn_functional_conv1d_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_nn_functional_conv2d_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_nn_functional_conv2d_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_nn_functional_conv_transpose1d_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_nn_functional_conv_transpose2d_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_nn_functional_conv_transpose2d_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_nn_functional_conv_transpose3d_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_nn_functional_cosine_embedding_loss_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_nn_functional_cross_entropy_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_nn_functional_ctc_loss_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_nn_functional_dropout3d_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_nn_functional_dropout_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_nn_functional_embedding_bag_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_nn_functional_feature_alpha_dropout_with_train_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_nn_functional_feature_alpha_dropout_without_train_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_nn_functional_fractional_max_pool2d_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_nn_functional_fractional_max_pool3d_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_nn_functional_gaussian_nll_loss_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_nn_functional_gelu_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_nn_functional_huber_loss_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_nn_functional_instance_norm_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_nn_functional_interpolate_nearest_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_nn_functional_interpolate_trilinear_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_nn_functional_kl_div_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_nn_functional_l1_loss_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_nn_functional_l1_loss_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_nn_functional_leaky_relu_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_nn_functional_linear_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_nn_functional_local_response_norm_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_nn_functional_logsigmoid_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_nn_functional_margin_ranking_loss_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_nn_functional_max_pool2d_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_nn_functional_max_unpool1d_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_nn_functional_max_unpool1d_grad_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_nn_functional_max_unpool2d_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_nn_functional_max_unpool2d_grad_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_nn_functional_max_unpool3d_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_nn_functional_max_unpool3d_grad_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_nn_functional_mish_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_nn_functional_multilabel_soft_margin_loss_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_nn_functional_pad_circular_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_nn_functional_pad_constant_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_nn_functional_pad_reflect_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_nn_functional_pad_reflect_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_nn_functional_pairwise_distance_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_nn_functional_pixel_shuffle_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_nn_functional_pixel_shuffle_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_nn_functional_pixel_unshuffle_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_nn_functional_pixel_unshuffle_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_nn_functional_poisson_nll_loss_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_nn_functional_prelu_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_nn_functional_relu6_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_nn_functional_relu_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_nn_functional_rrelu_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_nn_functional_selu_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_nn_functional_silu_complex_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_nn_functional_silu_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_nn_functional_smooth_l1_loss_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_nn_functional_softmin_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_nn_functional_softmin_with_dtype_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_nn_functional_softplus_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_nn_functional_softsign_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_nn_functional_tanhshrink_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_nn_functional_tanhshrink_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_nn_functional_unfold_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_nn_functional_upsample_nearest_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_nonzero_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_nonzero_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_norm_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_norm_fro_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_normal_number_mean_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_ones_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_ones_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_ones_like_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_ormqr_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_outer_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_outer_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_permute_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_pinverse_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_polygamma_polygamma_n_0_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_polygamma_polygamma_n_1_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_polygamma_polygamma_n_3_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_polygamma_polygamma_n_4_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_positive_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_positive_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_put_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_qr_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_rand_like_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_randint_like_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_randn_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_randn_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_randn_like_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_ravel_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_renorm_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_renorm_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_repeat_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_repeat_interleave_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_repeat_interleave_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_reshape_as_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_reshape_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_resize__cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_resolve_conj_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_roll_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_rot90_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_rot90_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_round_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_round_decimals_3_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_round_decimals_neg_3_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_rsub_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_scalar_tensor_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_scatter_add_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_scatter_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_scatter_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_scatter_reduce_mean_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_searchsorted_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_segment_reduce_lengths_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_segment_reduce_offsets_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_select_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_sgn_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_sgn_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_short_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_sign_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_signal_windows_cosine_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_signal_windows_exponential_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_signal_windows_kaiser_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_sin_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_sinc_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_sinh_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_slice_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_slice_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_slice_scatter_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_softmax_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_sparse_sampled_addmm_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_special_bessel_j0_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_special_bessel_y1_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_special_chebyshev_polynomial_t_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_special_erfcx_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_special_i1_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_special_laguerre_polynomial_l_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_special_log_ndtr_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_special_modified_bessel_i1_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_special_modified_bessel_k0_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_special_polygamma_special_polygamma_n_0_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_special_scaled_modified_bessel_k1_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_special_shifted_chebyshev_polynomial_t_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_special_shifted_chebyshev_polynomial_w_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_split_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_split_list_args_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_square_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_stack_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_stack_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_std_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_std_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_std_mean_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_std_unbiased_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_stft_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_stft_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_sub_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_sum_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_sum_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_sum_to_size_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_sum_to_size_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_svd_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_symeig_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_symeig_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_take_along_dim_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_take_along_dim_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_take_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_take_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_tan_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_tanh_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_tensor_split_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_tensordot_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_tensordot_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_tile_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_tile_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_to_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_topk_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_trace_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_trace_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_trapezoid_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_trapezoid_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_trapz_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_trapz_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_triangular_solve_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_triu_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_triu_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_true_divide_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_trunc_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_unfold_copy_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_unfold_copy_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_unfold_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_uniform_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_uniform_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_unique_consecutive_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_unique_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_var_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_var_mean_unbiased_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_var_mean_unbiased_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_var_unbiased_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_var_unbiased_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_view_as_real_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_view_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_vsplit_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_vstack_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_xlogy_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_zero__cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_zeros_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_zeros_like_cpu_float64 2023-01-11T21:41:34.3340349Z 2023-01-11T21:41:34.3340642Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_H_cpu_complex128 SKIPPED (Skipped! Operation does support gradgrad) [ 0%] 2023-01-11T21:41:34.3341238Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_T_cpu_complex128 SKIPPED (Skipped! Operation does support gradgrad) [ 0%] 2023-01-11T21:41:34.3341699Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad___getitem___cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 0%] 2023-01-11T21:41:34.3343661Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad___radd___cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 0%] 2023-01-11T21:41:34.3344111Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad___rdiv___cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 0%] 2023-01-11T21:41:34.3344860Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad___rmatmul___cpu_complex128 SKIPPED (Skipped! Operation does support gradgrad) [ 0%] 2023-01-11T21:41:34.3345334Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad___rmul___cpu_complex128 SKIPPED (Skipped! Operation does support gradgrad) [ 0%] 2023-01-11T21:41:34.3345790Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad___rsub___cpu_complex128 SKIPPED (Skipped! Operation does support gradgrad) [ 0%] 2023-01-11T21:41:34.3346236Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_abs_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 0%] 2023-01-11T21:41:34.3346685Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_acos_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 0%] 2023-01-11T21:41:34.3347142Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_acosh_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 0%] 2023-01-11T21:41:34.3347671Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_add_cpu_complex128 SKIPPED (Skipped! Operation does support gradgrad) [ 0%] 2023-01-11T21:41:34.3348122Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_addbmm_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 0%] 2023-01-11T21:41:34.3348586Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_addcdiv_cpu_complex128 SKIPPED (Skipped! Operation does support gradgrad) [ 0%] 2023-01-11T21:41:34.3349050Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_addcdiv_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 0%] 2023-01-11T21:41:34.3349509Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_addcmul_cpu_complex128 SKIPPED (Skipped! Operation does support gradgrad) [ 0%] 2023-01-11T21:41:34.3350056Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_addcmul_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 0%] 2023-01-11T21:41:34.3350539Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_addmm_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 0%] 2023-01-11T21:41:34.3351014Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_addmm_decomposed_cpu_complex128 SKIPPED (Skipped! Operation does support gradgrad) [ 0%] 2023-01-11T21:41:34.3351497Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_addmm_decomposed_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 0%] 2023-01-11T21:41:34.3352067Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_addr_cpu_complex128 SKIPPED (Skipped! Operation does support gradgrad) [ 0%] 2023-01-11T21:41:34.3352746Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_allclose_cpu_complex128 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 0%] 2023-01-11T21:41:34.3353339Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_aminmax_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 0%] 2023-01-11T21:41:34.3353807Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_angle_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 0%] 2023-01-11T21:41:34.3354384Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_any_cpu_complex128 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 1%] 2023-01-11T21:41:34.3354950Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_any_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 1%] 2023-01-11T21:41:34.3355535Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_arange_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 1%] 2023-01-11T21:41:34.3356123Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_argmax_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 1%] 2023-01-11T21:41:34.3356772Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_argwhere_cpu_complex128 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 1%] 2023-01-11T21:41:34.3357254Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_as_strided_partial_views_cpu_complex128 SKIPPED (Skipped! Operation does support gradgrad) [ 1%] 2023-01-11T21:41:34.3357752Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_as_strided_scatter_cpu_complex128 SKIPPED (Skipped! Operation does support gradgrad) [ 1%] 2023-01-11T21:41:34.3358235Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_as_strided_scatter_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 1%] 2023-01-11T21:41:34.3358698Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_asinh_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 1%] 2023-01-11T21:41:34.3359159Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_atan_cpu_complex128 SKIPPED (Skipped! Operation does support gradgrad) [ 1%] 2023-01-11T21:41:34.3359640Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_atan_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 1%] 2023-01-11T21:41:34.3360103Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_atanh_cpu_complex128 SKIPPED (Skipped! Operation does support gradgrad) [ 1%] 2023-01-11T21:41:34.3360599Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_atanh_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 1%] 2023-01-11T21:41:34.3361251Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_atleast_1d_cpu_complex128 SKIPPED (Skipped! Operation does support gradgrad) [ 1%] 2023-01-11T21:41:34.3361709Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_atleast_1d_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 1%] 2023-01-11T21:41:34.3362176Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_atleast_2d_cpu_complex128 SKIPPED (Skipped! Operation does support gradgrad) [ 1%] 2023-01-11T21:41:34.3362641Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_atleast_3d_cpu_complex128 SKIPPED (Skipped! Operation does support gradgrad) [ 1%] 2023-01-11T21:41:34.3363101Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_atleast_3d_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 1%] 2023-01-11T21:41:34.3363552Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_baddbmm_cpu_complex128 SKIPPED (Skipped! Operation does support gradgrad) [ 1%] 2023-01-11T21:41:34.3364012Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_baddbmm_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 1%] 2023-01-11T21:41:34.3364472Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_bfloat16_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 1%] 2023-01-11T21:41:34.3364934Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_block_diag_cpu_complex128 SKIPPED (Skipped! Operation does support gradgrad) [ 1%] 2023-01-11T21:41:34.3365410Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_block_diag_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 1%] 2023-01-11T21:41:34.3365915Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_bmm_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 1%] 2023-01-11T21:41:34.3366495Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_bool_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 2%] 2023-01-11T21:41:34.3366977Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_broadcast_tensors_cpu_complex128 SKIPPED (Skipped! Operation does support gradgrad) [ 2%] 2023-01-11T21:41:34.3367461Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_broadcast_tensors_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 2%] 2023-01-11T21:41:34.3367990Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_broadcast_to_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 2%] 2023-01-11T21:41:34.3368579Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_bucketize_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 2%] 2023-01-11T21:41:34.3369162Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_byte_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 2%] 2023-01-11T21:41:34.3369637Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_cartesian_prod_cpu_complex128 SKIPPED (Skipped! Operation does support gradgrad) [ 2%] 2023-01-11T21:41:34.3370100Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_cfloat_cpu_complex128 SKIPPED (Skipped! Operation does support gradgrad) [ 2%] 2023-01-11T21:41:34.3370558Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_cfloat_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 2%] 2023-01-11T21:41:34.3371058Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_chalf_cpu_complex128 SKIPPED (Skipped! Operation does support gradgrad) [ 2%] 2023-01-11T21:41:34.3371520Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_chalf_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 2%] 2023-01-11T21:41:34.3372055Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_cholesky_cpu_complex128 SKIPPED (Skipped! Operation does support gradgrad) [ 2%] 2023-01-11T21:41:34.3372516Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_cholesky_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 2%] 2023-01-11T21:41:34.3372988Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_cholesky_inverse_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 2%] 2023-01-11T21:41:34.3373467Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_cholesky_solve_cpu_complex128 SKIPPED (Skipped! Operation does support gradgrad) [ 2%] 2023-01-11T21:41:34.3373931Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_cholesky_solve_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 2%] 2023-01-11T21:41:34.3374393Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_chunk_cpu_complex128 SKIPPED (Skipped! Operation does support gradgrad) [ 2%] 2023-01-11T21:41:34.3374846Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_chunk_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 2%] 2023-01-11T21:41:34.3375307Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_clamp_min_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 2%] 2023-01-11T21:41:34.3375817Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_clone_cpu_complex128 SKIPPED (Skipped! Operation does support gradgrad) [ 2%] 2023-01-11T21:41:34.3376357Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_combinations_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 2%] 2023-01-11T21:41:34.3376825Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_conj_cpu_complex128 SKIPPED (Skipped! Operation does support gradgrad) [ 2%] 2023-01-11T21:41:34.3377279Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_conj_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 2%] 2023-01-11T21:41:34.3377745Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_conj_physical_cpu_complex128 SKIPPED (Skipped! Operation does support gradgrad) [ 2%] 2023-01-11T21:41:34.3378207Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_constant_pad_nd_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 3%] 2023-01-11T21:41:34.3378681Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_contiguous_cpu_complex128 SKIPPED (Skipped! Operation does support gradgrad) [ 3%] 2023-01-11T21:41:34.3379215Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_contiguous_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 3%] 2023-01-11T21:41:34.3379675Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_cos_cpu_complex128 SKIPPED (Skipped! Operation does support gradgrad) [ 3%] 2023-01-11T21:41:34.3380119Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_cov_cpu_complex128 SKIPPED (Skipped! Operation does support gradgrad) [ 3%] 2023-01-11T21:41:34.3380566Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_cummin_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 3%] 2023-01-11T21:41:34.3381028Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_cumprod_cpu_complex128 SKIPPED (Skipped! Operation does support gradgrad) [ 3%] 2023-01-11T21:41:34.3381485Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_cumprod_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 3%] 2023-01-11T21:41:34.3381971Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_cumsum_cpu_complex128 SKIPPED (Skipped! Operation does support gradgrad) [ 3%] 2023-01-11T21:41:34.3382450Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_cumulative_trapezoid_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 3%] 2023-01-11T21:41:34.3382926Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_diag_cpu_complex128 SKIPPED (Skipped! Operation does support gradgrad) [ 3%] 2023-01-11T21:41:34.3383381Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_diag_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 3%] 2023-01-11T21:41:34.3383828Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_diag_embed_cpu_complex128 SKIPPED (Skipped! Operation does support gradgrad) [ 3%] 2023-01-11T21:41:34.3384290Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_diag_embed_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 3%] 2023-01-11T21:41:34.3384789Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_diagonal_copy_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 3%] 2023-01-11T21:41:34.3385309Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_diagonal_cpu_complex128 SKIPPED (Skipped! Operation does support gradgrad) [ 3%] 2023-01-11T21:41:34.3385782Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_diagonal_scatter_cpu_complex128 SKIPPED (Skipped! Operation does support gradgrad) [ 3%] 2023-01-11T21:41:34.3386247Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_diagonal_scatter_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 3%] 2023-01-11T21:41:34.3386715Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_diff_cpu_complex128 SKIPPED (Skipped! Operation does support gradgrad) [ 3%] 2023-01-11T21:41:34.3387171Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_diff_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 3%] 2023-01-11T21:41:34.3387625Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_dist_cpu_complex128 SKIPPED (Skipped! Operation does support gradgrad) [ 3%] 2023-01-11T21:41:34.3388062Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_dist_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 3%] 2023-01-11T21:41:34.3388525Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_div_floor_rounding_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 3%] 2023-01-11T21:41:34.3389006Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_div_no_rounding_mode_cpu_complex128 SKIPPED (Skipped! Operation does support gradgrad) [ 3%] 2023-01-11T21:41:34.3389537Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_dot_cpu_complex128 SKIPPED (Skipped! Operation does support gradgrad) [ 4%] 2023-01-11T21:41:34.3390032Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_dot_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 4%] 2023-01-11T21:41:34.3390490Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_double_cpu_complex128 SKIPPED (Skipped! Operation does support gradgrad) [ 4%] 2023-01-11T21:41:34.3390945Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_double_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 4%] 2023-01-11T21:41:34.3391400Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_dstack_cpu_complex128 SKIPPED (Skipped! Operation does support gradgrad) [ 4%] 2023-01-11T21:41:34.3391844Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_einsum_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 4%] 2023-01-11T21:41:34.3392438Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_eq_cpu_complex128 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 4%] 2023-01-11T21:41:34.3393017Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_eq_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 4%] 2023-01-11T21:41:34.3393516Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_erfinv_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 4%] 2023-01-11T21:41:34.3393960Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_exp_cpu_complex128 SKIPPED (Skipped! Operation does support gradgrad) [ 4%] 2023-01-11T21:41:34.3394420Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_expand_as_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 4%] 2023-01-11T21:41:34.3394941Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_expand_cpu_complex128 SKIPPED (Skipped! Operation does support gradgrad) [ 4%] 2023-01-11T21:41:34.3395400Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_expm1_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 4%] 2023-01-11T21:41:34.3395976Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_eye_cpu_complex128 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 4%] 2023-01-11T21:41:34.3396437Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_fft_fft2_cpu_complex128 SKIPPED (Skipped! Operation does support gradgrad) [ 4%] 2023-01-11T21:41:34.3396893Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_fft_fftn_cpu_complex128 SKIPPED (Skipped! Operation does support gradgrad) [ 4%] 2023-01-11T21:41:34.3397357Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_fft_fftshift_cpu_complex128 SKIPPED (Skipped! Operation does support gradgrad) [ 4%] 2023-01-11T21:41:34.3397821Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_fft_fftshift_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 4%] 2023-01-11T21:41:34.3398271Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_fft_hfft_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 4%] 2023-01-11T21:41:34.3398734Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_fft_hfftn_cpu_complex128 SKIPPED (Skipped! Operation does support gradgrad) [ 4%] 2023-01-11T21:41:34.3399273Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_fft_ifft2_cpu_complex128 SKIPPED (Skipped! Operation does support gradgrad) [ 4%] 2023-01-11T21:41:34.3399742Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_fft_ihfft2_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 4%] 2023-01-11T21:41:34.3400186Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_fft_ihfft_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 4%] 2023-01-11T21:41:34.3400760Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_fft_irfft2_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 4%] 2023-01-11T21:41:34.3401257Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_fft_irfft_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 5%] 2023-01-11T21:41:34.3401791Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_fft_irfftn_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 5%] 2023-01-11T21:41:34.3402234Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_fill_cpu_complex128 SKIPPED (Skipped! Operation does support gradgrad) [ 5%] 2023-01-11T21:41:34.3402684Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_fill_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 5%] 2023-01-11T21:41:34.3403135Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_flatten_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 5%] 2023-01-11T21:41:34.3403586Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_fliplr_cpu_complex128 SKIPPED (Skipped! Operation does support gradgrad) [ 5%] 2023-01-11T21:41:34.3404034Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_fliplr_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 5%] 2023-01-11T21:41:34.3404526Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_flipud_cpu_complex128 SKIPPED (Skipped! Operation does support gradgrad) [ 5%] 2023-01-11T21:41:34.3404987Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_flipud_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 5%] 2023-01-11T21:41:34.3405445Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_float_cpu_complex128 SKIPPED (Skipped! Operation does support gradgrad) [ 5%] 2023-01-11T21:41:34.3405901Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_float_power_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 5%] 2023-01-11T21:41:34.3406486Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_floor_divide_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 5%] 2023-01-11T21:41:34.3406956Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_fmax_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 5%] 2023-01-11T21:41:34.3407409Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_fmin_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 5%] 2023-01-11T21:41:34.3407972Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_full_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 5%] 2023-01-11T21:41:34.3408670Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_full_like_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 5%] 2023-01-11T21:41:34.3409259Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_geqrf_cpu_complex128 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 5%] 2023-01-11T21:41:34.3409732Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_gradient_cpu_complex128 SKIPPED (Skipped! Operation does support gradgrad) [ 5%] 2023-01-11T21:41:34.3410312Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_gradient_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 5%] 2023-01-11T21:41:34.3410727Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_grid_sampler_2d_cpu_float64 PASSED [ 5%] 2023-01-11T21:41:34.3411268Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_gt_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 5%] 2023-01-11T21:41:34.3411852Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_heaviside_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 5%] 2023-01-11T21:41:34.3412443Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_histc_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 5%] 2023-01-11T21:41:34.3413019Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_histogram_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 5%] 2023-01-11T21:41:34.3413536Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_hsplit_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 6%] 2023-01-11T21:41:34.3413993Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_hstack_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 6%] 2023-01-11T21:41:34.3414447Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_i0_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 6%] 2023-01-11T21:41:34.3414999Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_igamma_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 6%] 2023-01-11T21:41:34.3415472Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_index_add_cpu_complex128 SKIPPED (Skipped! Operation does support gradgrad) [ 6%] 2023-01-11T21:41:34.3415998Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_index_add_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 6%] 2023-01-11T21:41:34.3416546Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_index_copy_cpu_complex128 SKIPPED (Skipped! Operation does support gradgrad) [ 6%] 2023-01-11T21:41:34.3417122Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_index_copy_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 6%] 2023-01-11T21:41:34.3417576Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_index_fill_cpu_complex128 SKIPPED (Skipped! Operation does support gradgrad) [ 6%] 2023-01-11T21:41:34.3418045Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_index_reduce_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 6%] 2023-01-11T21:41:34.3418510Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_index_select_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 6%] 2023-01-11T21:41:34.3418977Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_inner_cpu_complex128 SKIPPED (Skipped! Operation does support gradgrad) [ 6%] 2023-01-11T21:41:34.3419425Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_inner_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 6%] 2023-01-11T21:41:34.3420002Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_int_cpu_complex128 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 6%] 2023-01-11T21:41:34.3420592Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_isclose_cpu_complex128 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 6%] 2023-01-11T21:41:34.3421180Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_isclose_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 6%] 2023-01-11T21:41:34.3421744Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_isin_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 6%] 2023-01-11T21:41:34.3422329Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_isinf_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 6%] 2023-01-11T21:41:34.3422916Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_isnan_cpu_complex128 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 6%] 2023-01-11T21:41:34.3423503Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_isnan_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 6%] 2023-01-11T21:41:34.3424073Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_isposinf_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 6%] 2023-01-11T21:41:34.3424665Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_isreal_cpu_complex128 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 6%] 2023-01-11T21:41:34.3425251Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_isreal_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 6%] 2023-01-11T21:41:34.3425766Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_istft_cpu_complex128 SKIPPED (Skipped! Operation does support gradgrad) [ 6%] 2023-01-11T21:41:34.3426330Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_jiterator_4inputs_with_extra_args_cpu_float64 SKIPPED (Only runs on cuda) [ 6%] 2023-01-11T21:41:34.3426760Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_jiterator_unary_cpu_complex128 SKIPPED (Only runs on cuda) [ 7%] 2023-01-11T21:41:34.3427203Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_kron_cpu_complex128 SKIPPED (Skipped! Operation does support gradgrad) [ 7%] 2023-01-11T21:41:34.3427655Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_kron_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 7%] 2023-01-11T21:41:34.3428110Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_ldexp_cpu_complex128 SKIPPED (Skipped! Operation does support gradgrad) [ 7%] 2023-01-11T21:41:34.3428598Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_lerp_cpu_complex128 SKIPPED (Skipped! Operation does support gradgrad) [ 7%] 2023-01-11T21:41:34.3429059Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_lerp_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 7%] 2023-01-11T21:41:34.3429511Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_lgamma_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 7%] 2023-01-11T21:41:34.3429977Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_linalg_cond_cpu_complex128 SKIPPED (Skipped! Operation does support gradgrad) [ 7%] 2023-01-11T21:41:34.3430433Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_linalg_cond_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 7%] 2023-01-11T21:41:34.3430909Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_linalg_det_singular_cpu_complex128 SKIPPED (Skipped! Operation does support gradgrad) [ 7%] 2023-01-11T21:41:34.3431394Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_linalg_det_singular_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 7%] 2023-01-11T21:41:34.3431901Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_linalg_eigh_cpu_complex128 SKIPPED (Skipped! Operation does support gradgrad) [ 7%] 2023-01-11T21:41:34.3432368Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_linalg_eigvalsh_cpu_complex128 SKIPPED (Skipped! Operation does support gradgrad) [ 7%] 2023-01-11T21:41:34.3432846Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_linalg_eigvalsh_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 7%] 2023-01-11T21:41:34.3433334Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_linalg_householder_product_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 7%] 2023-01-11T21:41:34.3433820Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_linalg_inv_ex_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 7%] 2023-01-11T21:41:34.3434425Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_linalg_ldl_factor_cpu_complex128 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 7%] 2023-01-11T21:41:34.3434867Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_linalg_lstsq_cpu_complex128 SKIPPED (Skipped!) [ 7%] 2023-01-11T21:41:34.3435325Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_linalg_lstsq_grad_oriented_cpu_complex128 SKIPPED (Skipped! Operation does support gradgrad) [ 7%] 2023-01-11T21:41:34.3435929Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_linalg_lu_factor_ex_cpu_complex128 SKIPPED (Skipped! Operation does support gradgrad) [ 7%] 2023-01-11T21:41:34.3436410Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_linalg_lu_solve_cpu_complex128 SKIPPED (Skipped! Operation does support gradgrad) [ 7%] 2023-01-11T21:41:34.3436912Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_linalg_lu_solve_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 7%] 2023-01-11T21:41:34.3437383Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_linalg_matrix_power_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 7%] 2023-01-11T21:41:34.3438005Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_linalg_matrix_rank_hermitian_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 7%] 2023-01-11T21:41:34.3438497Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_linalg_norm_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 8%] 2023-01-11T21:41:34.3438973Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_linalg_norm_subgradients_at_zero_cpu_complex128 SKIPPED (Skipped! Operation does support gradgrad) [ 8%] 2023-01-11T21:41:34.3439516Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_linalg_norm_subgradients_at_zero_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 8%] 2023-01-11T21:41:34.3440009Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_linalg_pinv_cpu_complex128 SKIPPED (Skipped! Operation does support gradgrad) [ 8%] 2023-01-11T21:41:34.3440477Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_linalg_pinv_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 8%] 2023-01-11T21:41:34.3441159Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_linalg_pinv_hermitian_cpu_complex128 SKIPPED (Skipped! Operation does support gradgrad) [ 8%] 2023-01-11T21:41:34.3441654Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_linalg_pinv_singular_cpu_float64 SKIPPED (test is slow; run with PYTORCH_TEST_WITH_SLOW to enable test) [ 8%] 2023-01-11T21:41:34.3442141Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_linalg_qr_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 8%] 2023-01-11T21:41:34.3442607Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_linalg_slogdet_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 8%] 2023-01-11T21:41:34.3443070Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_linalg_solve_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 8%] 2023-01-11T21:41:34.3443538Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_linalg_solve_triangular_cpu_complex128 SKIPPED (Skipped! Operation does support gradgrad) [ 8%] 2023-01-11T21:41:34.3444027Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_linalg_svdvals_cpu_complex128 SKIPPED (Skipped! Operation does support gradgrad) [ 8%] 2023-01-11T21:41:34.3444506Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_linalg_tensorsolve_cpu_complex128 SKIPPED (Skipped! Operation does support gradgrad) [ 8%] 2023-01-11T21:41:34.3444993Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_linalg_tensorsolve_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 8%] 2023-01-11T21:41:34.3445585Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_linspace_cpu_complex128 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 8%] 2023-01-11T21:41:34.3446179Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_linspace_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 8%] 2023-01-11T21:41:34.3446712Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_log10_cpu_complex128 SKIPPED (Skipped! Operation does support gradgrad) [ 8%] 2023-01-11T21:41:34.3447191Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_log10_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 8%] 2023-01-11T21:41:34.3447705Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_log2_cpu_complex128 SKIPPED (Skipped! Operation does support gradgrad) [ 8%] 2023-01-11T21:41:34.3448224Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_log_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 8%] 2023-01-11T21:41:34.3448696Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_log_softmax_with_dtype_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 8%] 2023-01-11T21:41:34.3449172Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_logaddexp2_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 8%] 2023-01-11T21:41:34.3449636Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_logdet_cpu_complex128 SKIPPED (Skipped! Operation does support gradgrad) [ 8%] 2023-01-11T21:41:34.3450085Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_logdet_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 8%] 2023-01-11T21:41:34.3450681Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_logical_and_cpu_complex128 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 9%] 2023-01-11T21:41:34.3451427Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_logical_and_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 9%] 2023-01-11T21:41:34.3452031Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_logical_not_cpu_complex128 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 9%] 2023-01-11T21:41:34.3452622Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_logical_not_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 9%] 2023-01-11T21:41:34.3453212Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_logical_or_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 9%] 2023-01-11T21:41:34.3453798Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_logical_xor_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 9%] 2023-01-11T21:41:34.3454270Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_logit_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 9%] 2023-01-11T21:41:34.3454835Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_long_cpu_complex128 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 9%] 2023-01-11T21:41:34.3455412Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_long_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 9%] 2023-01-11T21:41:34.3456087Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_lt_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 9%] 2023-01-11T21:41:34.3456551Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_lu_cpu_complex128 SKIPPED (Skipped! Operation does support gradgrad) [ 9%] 2023-01-11T21:41:34.3457001Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_lu_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 9%] 2023-01-11T21:41:34.3457448Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_lu_unpack_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 9%] 2023-01-11T21:41:34.3457904Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_mH_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 9%] 2023-01-11T21:41:34.3458353Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_mT_cpu_complex128 SKIPPED (Skipped! Operation does support gradgrad) [ 9%] 2023-01-11T21:41:34.3458812Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_masked_amin_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 9%] 2023-01-11T21:41:34.3459392Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_masked_argmax_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 9%] 2023-01-11T21:41:34.3460004Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_masked_cumsum_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 9%] 2023-01-11T21:41:34.3460483Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_masked_log_softmax_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 9%] 2023-01-11T21:41:34.3460963Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_masked_logaddexp_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 9%] 2023-01-11T21:41:34.3461497Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_masked_logsumexp_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 9%] 2023-01-11T21:41:34.3461972Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_masked_mean_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 9%] 2023-01-11T21:41:34.3462437Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_masked_median_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 9%] 2023-01-11T21:41:34.3462902Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_masked_norm_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 9%] 2023-01-11T21:41:34.3463392Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_masked_prod_cpu_complex128 SKIPPED (Skipped! Operation does support gradgrad) [ 10%] 2023-01-11T21:41:34.3463863Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_masked_prod_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 10%] 2023-01-11T21:41:34.3464332Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_masked_scatter_cpu_complex128 SKIPPED (Skipped! Operation does support gradgrad) [ 10%] 2023-01-11T21:41:34.3464816Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_masked_select_cpu_complex128 SKIPPED (Skipped! Operation does support gradgrad) [ 10%] 2023-01-11T21:41:34.3465287Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_masked_select_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 10%] 2023-01-11T21:41:34.3465752Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_masked_softmin_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 10%] 2023-01-11T21:41:34.3466220Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_masked_std_cpu_complex128 SKIPPED (Skipped! Operation does support gradgrad) [ 10%] 2023-01-11T21:41:34.3466687Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_masked_std_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 10%] 2023-01-11T21:41:34.3467149Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_masked_sum_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 10%] 2023-01-11T21:41:34.3467597Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_masked_var_cpu_complex128 SKIPPED (Skipped! Operation does support gradgrad) [ 10%] 2023-01-11T21:41:34.3468062Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_masked_var_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 10%] 2023-01-11T21:41:34.3468527Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_matmul_cpu_complex128 SKIPPED (Skipped! Operation does support gradgrad) [ 10%] 2023-01-11T21:41:34.3468987Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_matmul_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 10%] 2023-01-11T21:41:34.3469526Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_max_pool2d_with_indices_backward_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 10%] 2023-01-11T21:41:34.3470027Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_max_reduction_no_dim_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 10%] 2023-01-11T21:41:34.3470497Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_maximum_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 10%] 2023-01-11T21:41:34.3471011Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_meshgrid_list_of_tensors_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 10%] 2023-01-11T21:41:34.3471509Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_meshgrid_variadic_tensors_cpu_complex128 SKIPPED (Skipped! Operation does support gradgrad) [ 10%] 2023-01-11T21:41:34.3471995Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_meshgrid_variadic_tensors_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 10%] 2023-01-11T21:41:34.3472484Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_min_reduction_with_dim_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 10%] 2023-01-11T21:41:34.3472955Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_movedim_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 10%] 2023-01-11T21:41:34.3473414Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_mul_cpu_complex128 SKIPPED (Skipped! Operation does support gradgrad) [ 10%] 2023-01-11T21:41:34.3473958Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_mv_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 10%] 2023-01-11T21:41:34.3474427Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_mvlgamma_mvlgamma_p_3_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 10%] 2023-01-11T21:41:34.3474905Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_mvlgamma_mvlgamma_p_5_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 11%] 2023-01-11T21:41:34.3475371Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_nanmean_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 11%] 2023-01-11T21:41:34.3475952Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_narrow_copy_cpu_complex128 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 11%] 2023-01-11T21:41:34.3476434Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_narrow_cpu_complex128 SKIPPED (Skipped! Operation does support gradgrad) [ 11%] 2023-01-11T21:41:34.3476893Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_narrow_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 11%] 2023-01-11T21:41:34.3477363Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_native_batch_norm_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 11%] 2023-01-11T21:41:34.3477928Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_ne_cpu_complex128 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 11%] 2023-01-11T21:41:34.3478505Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_ne_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 11%] 2023-01-11T21:41:34.3478967Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_neg_cpu_complex128 SKIPPED (Skipped! Operation does support gradgrad) [ 11%] 2023-01-11T21:41:34.3479431Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_neg_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 11%] 2023-01-11T21:41:34.3480079Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_new_empty_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 11%] 2023-01-11T21:41:34.3480795Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_new_full_cpu_complex128 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 11%] 2023-01-11T21:41:34.3481418Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_new_ones_cpu_complex128 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 11%] 2023-01-11T21:41:34.3482009Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_new_ones_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 11%] 2023-01-11T21:41:34.3482598Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_nextafter_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 11%] 2023-01-11T21:41:34.3483166Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_nn_functional__scaled_dot_product_attention_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 11%] 2023-01-11T21:41:34.3483791Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_nn_functional_adaptive_max_pool1d_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 11%] 2023-01-11T21:41:34.3484300Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_nn_functional_alpha_dropout_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 11%] 2023-01-11T21:41:34.3484790Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_nn_functional_avg_pool3d_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 11%] 2023-01-11T21:41:34.3485267Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_nn_functional_batch_norm_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 11%] 2023-01-11T21:41:34.3485813Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_nn_functional_binary_cross_entropy_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 11%] 2023-01-11T21:41:34.3486345Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_nn_functional_binary_cross_entropy_with_logits_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 11%] 2023-01-11T21:41:34.3486848Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_nn_functional_celu_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 11%] 2023-01-11T21:41:34.3487332Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_nn_functional_conv1d_cpu_complex128 SKIPPED (Skipped! Operation does support gradgrad) [ 11%] 2023-01-11T21:41:34.3487805Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_nn_functional_conv1d_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 12%] 2023-01-11T21:41:34.3488300Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_nn_functional_conv_transpose2d_cpu_complex128 SKIPPED (Skipped! Operation does support gradgrad) [ 12%] 2023-01-11T21:41:34.3488810Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_nn_functional_conv_transpose3d_cpu_complex128 SKIPPED (Skipped! Operation does support gradgrad) [ 12%] 2023-01-11T21:41:34.3489322Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_nn_functional_conv_transpose3d_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 12%] 2023-01-11T21:41:34.3489815Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_nn_functional_cosine_embedding_loss_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 12%] 2023-01-11T21:41:34.3490319Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_nn_functional_cross_entropy_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 12%] 2023-01-11T21:41:34.3490812Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_nn_functional_dropout2d_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 12%] 2023-01-11T21:41:34.3491306Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_nn_functional_dropout3d_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 12%] 2023-01-11T21:41:34.3491796Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_nn_functional_dropout_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 12%] 2023-01-11T21:41:34.3492337Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_nn_functional_feature_alpha_dropout_without_train_cpu_complex128 SKIPPED (Skipped! Operation does support gradgrad) [ 12%] 2023-01-11T21:41:34.3492948Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_nn_functional_feature_alpha_dropout_without_train_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 12%] 2023-01-11T21:41:34.3493473Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_nn_functional_fractional_max_pool2d_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 12%] 2023-01-11T21:41:34.3494024Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_nn_functional_fractional_max_pool3d_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 12%] 2023-01-11T21:41:34.3494513Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_nn_functional_gaussian_nll_loss_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 12%] 2023-01-11T21:41:34.3495003Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_nn_functional_gelu_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 12%] 2023-01-11T21:41:34.3495478Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_nn_functional_glu_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 12%] 2023-01-11T21:41:34.3495916Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_nn_functional_grid_sample_cpu_float64 PASSED [ 12%] 2023-01-11T21:41:34.3496390Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_nn_functional_hardsigmoid_cpu_float64 PASSED [ 12%] 2023-01-11T21:41:34.3496973Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_nn_functional_hardswish_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 12%] 2023-01-11T21:41:34.3497469Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_nn_functional_hardtanh_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 12%] 2023-01-11T21:41:34.3497961Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_nn_functional_instance_norm_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 12%] 2023-01-11T21:41:34.3498459Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_nn_functional_interpolate_bicubic_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 12%] 2023-01-11T21:41:34.3498953Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_nn_functional_interpolate_bilinear_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 12%] 2023-01-11T21:41:34.3499477Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_nn_functional_interpolate_linear_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 12%] 2023-01-11T21:41:34.3499989Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_nn_functional_interpolate_nearest_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 12%] 2023-01-11T21:41:34.3500490Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_nn_functional_l1_loss_cpu_complex128 SKIPPED (Skipped! Operation does support gradgrad) [ 13%] 2023-01-11T21:41:34.3500960Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_nn_functional_layer_norm_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 13%] 2023-01-11T21:41:34.3501450Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_nn_functional_linear_cpu_complex128 SKIPPED (Skipped! Operation does support gradgrad) [ 13%] 2023-01-11T21:41:34.3502020Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_nn_functional_linear_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 13%] 2023-01-11T21:41:34.3502519Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_nn_functional_logsigmoid_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 13%] 2023-01-11T21:41:34.3503018Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_nn_functional_margin_ranking_loss_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 13%] 2023-01-11T21:41:34.3503501Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_nn_functional_max_pool2d_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 13%] 2023-01-11T21:41:34.3503994Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_nn_functional_max_pool3d_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 13%] 2023-01-11T21:41:34.3504518Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_nn_functional_max_unpool2d_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 13%] 2023-01-11T21:41:34.3505022Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_nn_functional_max_unpool2d_grad_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 13%] 2023-01-11T21:41:34.3505503Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_nn_functional_max_unpool3d_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 13%] 2023-01-11T21:41:34.3505983Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_nn_functional_mish_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 13%] 2023-01-11T21:41:34.3506578Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_nn_functional_normalize_cpu_complex128 SKIPPED (Skipped! Operation does support gradgrad) [ 13%] 2023-01-11T21:41:34.3507081Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_nn_functional_normalize_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 13%] 2023-01-11T21:41:34.3507614Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_nn_functional_pad_circular_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 13%] 2023-01-11T21:41:34.3508100Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_nn_functional_pad_reflect_cpu_complex128 SKIPPED (Skipped! Operation does support gradgrad) [ 13%] 2023-01-11T21:41:34.3508593Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_nn_functional_pad_reflect_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 13%] 2023-01-11T21:41:34.3509092Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_nn_functional_pad_replicate_cpu_complex128 SKIPPED (Skipped! Operation does support gradgrad) [ 13%] 2023-01-11T21:41:34.3509547Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_nn_functional_pdist_cpu_float64 PASSED [ 13%] 2023-01-11T21:41:34.3509986Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_nn_functional_pixel_shuffle_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 13%] 2023-01-11T21:41:34.3510485Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_nn_functional_poisson_nll_loss_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 13%] 2023-01-11T21:41:34.3510972Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_nn_functional_relu6_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 13%] 2023-01-11T21:41:34.3511626Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_nn_functional_silu_complex_cpu_complex128 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 13%] 2023-01-11T21:41:34.3512112Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_nn_functional_silu_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 13%] 2023-01-11T21:41:34.3512598Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_nn_functional_smooth_l1_loss_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 14%] 2023-01-11T21:41:34.3513093Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_nn_functional_softmin_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 14%] 2023-01-11T21:41:34.3513592Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_nn_functional_softmin_with_dtype_cpu_complex128 SKIPPED (Skipped! Operation does support gradgrad) [ 14%] 2023-01-11T21:41:34.3514101Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_nn_functional_softmin_with_dtype_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 14%] 2023-01-11T21:41:34.3514586Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_nn_functional_softshrink_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 14%] 2023-01-11T21:41:34.3515177Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_nn_functional_softsign_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 14%] 2023-01-11T21:41:34.3515709Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_nn_functional_tanhshrink_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 14%] 2023-01-11T21:41:34.3516207Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_nn_functional_triplet_margin_loss_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 14%] 2023-01-11T21:41:34.3516817Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_nn_functional_triplet_margin_with_distance_loss_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 14%] 2023-01-11T21:41:34.3517331Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_nn_functional_unfold_cpu_complex128 SKIPPED (Skipped! Operation does support gradgrad) [ 14%] 2023-01-11T21:41:34.3517944Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_nonzero_cpu_complex128 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 14%] 2023-01-11T21:41:34.3518543Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_nonzero_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 14%] 2023-01-11T21:41:34.3519047Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_norm_nuc_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 14%] 2023-01-11T21:41:34.3519486Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_normal_number_mean_cpu_float64 SKIPPED (Gradients are incorrect!) [ 14%] 2023-01-11T21:41:34.3520049Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_ones_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 14%] 2023-01-11T21:41:34.3520729Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_ones_like_cpu_complex128 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 14%] 2023-01-11T21:41:34.3521211Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_ormqr_cpu_complex128 SKIPPED (Skipped! Operation does support gradgrad) [ 14%] 2023-01-11T21:41:34.3521665Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_ormqr_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 14%] 2023-01-11T21:41:34.3522112Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_outer_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 14%] 2023-01-11T21:41:34.3522569Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_pca_lowrank_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 14%] 2023-01-11T21:41:34.3523033Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_permute_cpu_complex128 SKIPPED (Skipped! Operation does support gradgrad) [ 14%] 2023-01-11T21:41:34.3523577Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_pinverse_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 14%] 2023-01-11T21:41:34.3524022Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_polygamma_polygamma_n_1_cpu_float64 SKIPPED (Skipped!) [ 14%] 2023-01-11T21:41:34.3524447Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_polygamma_polygamma_n_4_cpu_float64 SKIPPED (Skipped!) [ 14%] 2023-01-11T21:41:34.3524901Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_positive_cpu_complex128 SKIPPED (Skipped! Operation does support gradgrad) [ 15%] 2023-01-11T21:41:34.3525349Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_pow_cpu_complex128 SKIPPED (Skipped! Operation does support gradgrad) [ 15%] 2023-01-11T21:41:34.3525800Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_pow_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 15%] 2023-01-11T21:41:34.3526250Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_put_cpu_complex128 SKIPPED (Skipped! Operation does support gradgrad) [ 15%] 2023-01-11T21:41:34.3526702Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_quantile_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 15%] 2023-01-11T21:41:34.3527230Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_rad2deg_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 15%] 2023-01-11T21:41:34.3527822Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_rand_like_cpu_complex128 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 15%] 2023-01-11T21:41:34.3528414Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_rand_like_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 15%] 2023-01-11T21:41:34.3529004Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_randint_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 15%] 2023-01-11T21:41:34.3529598Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_randint_like_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 15%] 2023-01-11T21:41:34.3530180Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_randn_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 15%] 2023-01-11T21:41:34.3530696Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_ravel_cpu_complex128 SKIPPED (Skipped! Operation does support gradgrad) [ 15%] 2023-01-11T21:41:34.3531226Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_ravel_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 15%] 2023-01-11T21:41:34.3531693Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_real_cpu_complex128 SKIPPED (Skipped! Operation does support gradgrad) [ 15%] 2023-01-11T21:41:34.3532146Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_reciprocal_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 15%] 2023-01-11T21:41:34.3532610Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_remainder_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 15%] 2023-01-11T21:41:34.3533076Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_renorm_cpu_complex128 SKIPPED (Skipped! Operation does support gradgrad) [ 15%] 2023-01-11T21:41:34.3533536Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_renorm_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 15%] 2023-01-11T21:41:34.3533993Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_repeat_interleave_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 15%] 2023-01-11T21:41:34.3534468Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_reshape_as_cpu_complex128 SKIPPED (Skipped! Operation does support gradgrad) [ 15%] 2023-01-11T21:41:34.3534941Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_resolve_conj_cpu_complex128 SKIPPED (Skipped! Operation does support gradgrad) [ 15%] 2023-01-11T21:41:34.3535412Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_resolve_neg_cpu_complex128 SKIPPED (Skipped! Operation does support gradgrad) [ 15%] 2023-01-11T21:41:34.3535866Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_roll_cpu_complex128 SKIPPED (Skipped! Operation does support gradgrad) [ 15%] 2023-01-11T21:41:34.3536395Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_roll_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 15%] 2023-01-11T21:41:34.3536853Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_rot90_cpu_complex128 SKIPPED (Skipped! Operation does support gradgrad) [ 16%] 2023-01-11T21:41:34.3537315Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_round_decimals_0_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 16%] 2023-01-11T21:41:34.3537756Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_round_decimals_3_cpu_float64 SKIPPED (Skipped!) [ 16%] 2023-01-11T21:41:34.3538176Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_rsub_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 16%] 2023-01-11T21:41:34.3538840Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_scalar_tensor_cpu_complex128 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 16%] 2023-01-11T21:41:34.3539325Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_scatter_add_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 16%] 2023-01-11T21:41:34.3539799Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_scatter_reduce_amax_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 16%] 2023-01-11T21:41:34.3540263Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_scatter_reduce_amin_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 16%] 2023-01-11T21:41:34.3540742Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_scatter_reduce_mean_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 16%] 2023-01-11T21:41:34.3541436Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_searchsorted_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 16%] 2023-01-11T21:41:34.3541925Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_segment_reduce_lengths_cpu_float64 PASSED [ 16%] 2023-01-11T21:41:34.3542347Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_select_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 16%] 2023-01-11T21:41:34.3542816Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_select_scatter_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 16%] 2023-01-11T21:41:34.3543284Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_sigmoid_cpu_complex128 SKIPPED (Skipped! Operation does support gradgrad) [ 16%] 2023-01-11T21:41:34.3543741Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_sign_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 16%] 2023-01-11T21:41:34.3544332Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_signal_windows_blackman_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 16%] 2023-01-11T21:41:34.3544960Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_signal_windows_cosine_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 16%] 2023-01-11T21:41:34.3545586Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_signal_windows_exponential_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 16%] 2023-01-11T21:41:34.3546295Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_signal_windows_general_cosine_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 16%] 2023-01-11T21:41:34.3546939Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_signal_windows_general_hamming_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 16%] 2023-01-11T21:41:34.3547557Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_signal_windows_hann_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 16%] 2023-01-11T21:41:34.3548177Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_signal_windows_kaiser_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 16%] 2023-01-11T21:41:34.3548799Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_signal_windows_nuttall_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 16%] 2023-01-11T21:41:34.3549396Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_signbit_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 16%] 2023-01-11T21:41:34.3549847Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_sin_cpu_complex128 SKIPPED (Skipped! Operation does support gradgrad) [ 17%] 2023-01-11T21:41:34.3550305Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_sinc_cpu_complex128 SKIPPED (Skipped! Operation does support gradgrad) [ 17%] 2023-01-11T21:41:34.3550797Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_sinh_cpu_complex128 SKIPPED (Skipped! Operation does support gradgrad) [ 17%] 2023-01-11T21:41:34.3551259Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_slice_cpu_complex128 SKIPPED (Skipped! Operation does support gradgrad) [ 17%] 2023-01-11T21:41:34.3551777Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_slice_scatter_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 17%] 2023-01-11T21:41:34.3552245Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_softmax_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 17%] 2023-01-11T21:41:34.3552713Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_softmax_with_dtype_cpu_complex128 SKIPPED (Skipped! Operation does support gradgrad) [ 17%] 2023-01-11T21:41:34.3553194Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_softmax_with_dtype_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 17%] 2023-01-11T21:41:34.3553689Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_sort_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 17%] 2023-01-11T21:41:34.3554152Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_sparse_sampled_addmm_cpu_complex128 SKIPPED (Skipped! Operation does support gradgrad) [ 17%] 2023-01-11T21:41:34.3554645Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_sparse_sampled_addmm_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 17%] 2023-01-11T21:41:34.3555249Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_special_airy_ai_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 17%] 2023-01-11T21:41:34.3555930Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_special_bessel_j0_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 17%] 2023-01-11T21:41:34.3556524Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_special_bessel_y1_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 17%] 2023-01-11T21:41:34.3557151Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_special_chebyshev_polynomial_u_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 17%] 2023-01-11T21:41:34.3557809Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_special_chebyshev_polynomial_v_cpu_float64 SKIPPED (Skipping - testing takes an unreasonably long time, #79528) [ 17%] 2023-01-11T21:41:34.3558306Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_special_entr_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 17%] 2023-01-11T21:41:34.3558924Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_special_hermite_polynomial_he_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 17%] 2023-01-11T21:41:34.3559408Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_special_i0e_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 17%] 2023-01-11T21:41:34.3559874Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_special_i1_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 17%] 2023-01-11T21:41:34.3560502Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_special_legendre_polynomial_p_cpu_float64 SKIPPED (Skipping - testing takes an unreasonably long time, #79528) [ 17%] 2023-01-11T21:41:34.3561314Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_special_modified_bessel_i1_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 17%] 2023-01-11T21:41:34.3561936Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_special_modified_bessel_k0_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 17%] 2023-01-11T21:41:34.3562566Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_special_modified_bessel_k1_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 17%] 2023-01-11T21:41:34.3563128Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_special_ndtr_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 18%] 2023-01-11T21:41:34.3563629Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_special_polygamma_special_polygamma_n_0_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 18%] 2023-01-11T21:41:34.3564279Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_special_scaled_modified_bessel_k0_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 18%] 2023-01-11T21:41:34.3565053Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_special_shifted_chebyshev_polynomial_t_cpu_float64 SKIPPED (Skipping - testing takes an unreasonably long time, #79528) [ 18%] 2023-01-11T21:41:34.3565733Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_special_shifted_chebyshev_polynomial_u_cpu_float64 SKIPPED (Skipping - testing takes an unreasonably long time, #79528) [ 18%] 2023-01-11T21:41:34.3566567Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_special_shifted_chebyshev_polynomial_w_cpu_float64 SKIPPED (Skipping - testing takes an unreasonably long time, #79528) [ 18%] 2023-01-11T21:41:34.3567233Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_special_spherical_bessel_j0_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 18%] 2023-01-11T21:41:34.3567722Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_special_xlog1py_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 18%] 2023-01-11T21:41:34.3568188Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_split_cpu_complex128 SKIPPED (Skipped! Operation does support gradgrad) [ 18%] 2023-01-11T21:41:34.3568661Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_split_list_args_cpu_complex128 SKIPPED (Skipped! Operation does support gradgrad) [ 18%] 2023-01-11T21:41:34.3569145Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_split_list_args_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 18%] 2023-01-11T21:41:34.3569610Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_square_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 18%] 2023-01-11T21:41:34.3570055Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_squeeze_cpu_complex128 SKIPPED (Skipped! Operation does support gradgrad) [ 18%] 2023-01-11T21:41:34.3570518Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_squeeze_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 18%] 2023-01-11T21:41:34.3570970Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_stack_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 18%] 2023-01-11T21:41:34.3571427Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_std_cpu_complex128 SKIPPED (Skipped! Operation does support gradgrad) [ 18%] 2023-01-11T21:41:34.3571876Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_std_mean_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 18%] 2023-01-11T21:41:34.3572348Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_std_mean_unbiased_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 18%] 2023-01-11T21:41:34.3572816Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_stft_cpu_complex128 SKIPPED (Skipped! Operation does support gradgrad) [ 18%] 2023-01-11T21:41:34.3573273Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_stft_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 18%] 2023-01-11T21:41:34.3573708Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_sub_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 18%] 2023-01-11T21:41:34.3574196Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_sum_cpu_complex128 SKIPPED (Skipped! Operation does support gradgrad) [ 18%] 2023-01-11T21:41:34.3574768Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_symeig_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 18%] 2023-01-11T21:41:34.3575239Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_take_along_dim_cpu_complex128 SKIPPED (Skipped! Operation does support gradgrad) [ 18%] 2023-01-11T21:41:34.3575692Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_tanh_cpu_complex128 SKIPPED (Skipped! Operation does support gradgrad) [ 18%] 2023-01-11T21:41:34.3576230Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_tensor_split_cpu_complex128 SKIPPED (Skipped! Operation does support gradgrad) [ 19%] 2023-01-11T21:41:34.3576704Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_tensordot_cpu_complex128 SKIPPED (Skipped! Operation does support gradgrad) [ 19%] 2023-01-11T21:41:34.3577171Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_tile_cpu_complex128 SKIPPED (Skipped! Operation does support gradgrad) [ 19%] 2023-01-11T21:41:34.3577647Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_tile_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 19%] 2023-01-11T21:41:34.3578097Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_to_cpu_complex128 SKIPPED (Skipped! Operation does support gradgrad) [ 19%] 2023-01-11T21:41:34.3578687Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_to_sparse_cpu_complex128 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 19%] 2023-01-11T21:41:34.3579274Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_trace_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 19%] 2023-01-11T21:41:34.3579729Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_transpose_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 19%] 2023-01-11T21:41:34.3580185Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_trapezoid_cpu_complex128 SKIPPED (Skipped! Operation does support gradgrad) [ 19%] 2023-01-11T21:41:34.3580664Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_triangular_solve_cpu_complex128 SKIPPED (Skipped! Operation does support gradgrad) [ 19%] 2023-01-11T21:41:34.3581130Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_tril_cpu_complex128 SKIPPED (Skipped! Operation does support gradgrad) [ 19%] 2023-01-11T21:41:34.3581584Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_tril_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 19%] 2023-01-11T21:41:34.3582027Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_triu_cpu_complex128 SKIPPED (Skipped! Operation does support gradgrad) [ 19%] 2023-01-11T21:41:34.3582484Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_true_divide_cpu_complex128 SKIPPED (Skipped! Operation does support gradgrad) [ 19%] 2023-01-11T21:41:34.3582952Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_unbind_cpu_complex128 SKIPPED (Skipped! Operation does support gradgrad) [ 19%] 2023-01-11T21:41:34.3583420Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_unflatten_cpu_complex128 SKIPPED (Skipped! Operation does support gradgrad) [ 19%] 2023-01-11T21:41:34.3583880Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_unfold_copy_cpu_complex128 SKIPPED (Skipped! Operation does support gradgrad) [ 19%] 2023-01-11T21:41:34.3584341Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_unfold_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 19%] 2023-01-11T21:41:34.3585055Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_unique_consecutive_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 19%] 2023-01-11T21:41:34.3585650Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_unique_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 19%] 2023-01-11T21:41:34.3586144Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_var_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 19%] 2023-01-11T21:41:34.3586608Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_var_mean_cpu_complex128 SKIPPED (Skipped! Operation does support gradgrad) [ 19%] 2023-01-11T21:41:34.3587073Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_var_unbiased_cpu_complex128 SKIPPED (Skipped! Operation does support gradgrad) [ 19%] 2023-01-11T21:41:34.3587537Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_var_unbiased_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 19%] 2023-01-11T21:41:34.3587984Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_vdot_cpu_complex128 SKIPPED (Skipped! Operation does support gradgrad) [ 20%] 2023-01-11T21:41:34.3588535Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_vdot_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 20%] 2023-01-11T21:41:34.3589026Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_view_as_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 20%] 2023-01-11T21:41:34.3589488Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_view_as_real_cpu_complex128 SKIPPED (Skipped! Operation does support gradgrad) [ 20%] 2023-01-11T21:41:34.3589948Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_vstack_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 20%] 2023-01-11T21:41:34.3590392Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_where_cpu_complex128 SKIPPED (Skipped! Operation does support gradgrad) [ 20%] 2023-01-11T21:41:34.3590846Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_xlogy_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 20%] 2023-01-11T21:41:34.3591429Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_zeros_cpu_complex128 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 20%] 2023-01-11T21:41:34.3592020Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_zeros_like_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 20%] 2023-01-11T21:41:34.3592417Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_H_cpu_complex128 PASSED [ 20%] 2023-01-11T21:41:34.3592765Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_T_cpu_complex128 PASSED [ 20%] 2023-01-11T21:41:34.3593108Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_T_cpu_float64 PASSED [ 20%] 2023-01-11T21:41:34.3593446Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad___getitem___cpu_complex128 PASSED [ 20%] 2023-01-11T21:41:34.3593808Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad___radd___cpu_complex128 PASSED [ 20%] 2023-01-11T21:41:34.3594162Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad___radd___cpu_float64 PASSED [ 20%] 2023-01-11T21:41:34.3594516Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad___rdiv___cpu_complex128 PASSED [ 20%] 2023-01-11T21:41:34.3594857Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad___rdiv___cpu_float64 PASSED [ 20%] 2023-01-11T21:41:34.3595200Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad___rmod___cpu_float64 PASSED [ 20%] 2023-01-11T21:41:34.3595546Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad___rmul___cpu_complex128 PASSED [ 20%] 2023-01-11T21:41:34.3595888Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad___rmul___cpu_float64 PASSED [ 20%] 2023-01-11T21:41:34.3596239Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad___rpow___cpu_complex128 SKIPPED (Skipped!) [ 20%] 2023-01-11T21:41:34.3596618Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad___rpow___cpu_float64 SKIPPED (Skipped!) [ 20%] 2023-01-11T21:41:34.3596998Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad__native_batch_norm_legit_cpu_float64 PASSED [ 20%] 2023-01-11T21:41:34.3597547Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad__softmax_backward_data_cpu_float64 PASSED [ 20%] 2023-01-11T21:41:34.3597906Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_abs_cpu_float64 PASSED [ 21%] 2023-01-11T21:41:34.3598248Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_acosh_cpu_float64 PASSED [ 21%] 2023-01-11T21:41:34.3598590Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_add_cpu_float64 PASSED [ 21%] 2023-01-11T21:41:34.3598924Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_addbmm_cpu_complex128 PASSED [ 21%] 2023-01-11T21:41:34.3599278Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_addcmul_cpu_complex128 PASSED [ 21%] 2023-01-11T21:41:34.3599632Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_addmv_cpu_complex128 PASSED [ 21%] 2023-01-11T21:41:34.3599976Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_addr_cpu_float64 PASSED [ 21%] 2023-01-11T21:41:34.3600373Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_all_cpu_complex128 SKIPPED (Skipped! Dtype is not in supported backward dtypes!) [ 21%] 2023-01-11T21:41:34.3600973Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_all_cpu_float64 SKIPPED (Skipped! Dtype is not in supported backward dtypes!) [ 21%] 2023-01-11T21:41:34.3601438Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_allclose_cpu_float64 SKIPPED (Skipped! Dtype is not in supported backward dtypes!) [ 21%] 2023-01-11T21:41:34.3601935Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_amax_cpu_float64 PASSED [ 21%] 2023-01-11T21:41:34.3602332Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_aminmax_cpu_float64 SKIPPED (Skipped! Dtype is not in supported backward dtypes!) [ 21%] 2023-01-11T21:41:34.3602785Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_any_cpu_float64 SKIPPED (Skipped! Dtype is not in supported backward dtypes!) [ 21%] 2023-01-11T21:41:34.3603239Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_argmax_cpu_float64 SKIPPED (Skipped! Dtype is not in supported backward dtypes!) [ 21%] 2023-01-11T21:41:34.3603701Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_argsort_cpu_float64 SKIPPED (Skipped! Dtype is not in supported backward dtypes!) [ 21%] 2023-01-11T21:41:34.3604119Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_as_strided_cpu_float64 SKIPPED (Numerous errors) [ 21%] 2023-01-11T21:41:34.3604509Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_as_strided_partial_views_cpu_float64 PASSED [ 21%] 2023-01-11T21:41:34.3604875Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_asin_cpu_complex128 PASSED [ 21%] 2023-01-11T21:41:34.3605209Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_asinh_cpu_float64 PASSED [ 21%] 2023-01-11T21:41:34.3605551Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_atanh_cpu_float64 PASSED [ 21%] 2023-01-11T21:41:34.3605905Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_atleast_1d_cpu_complex128 PASSED [ 21%] 2023-01-11T21:41:34.3606267Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_atleast_2d_cpu_complex128 PASSED [ 21%] 2023-01-11T21:41:34.3606612Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_atleast_2d_cpu_float64 PASSED [ 21%] 2023-01-11T21:41:34.3606974Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_atleast_3d_cpu_float64 PASSED [ 21%] 2023-01-11T21:41:34.3607364Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_baddbmm_cpu_float64 PASSED [ 22%] 2023-01-11T21:41:34.3607711Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_bernoulli_cpu_float64 PASSED [ 22%] 2023-01-11T21:41:34.3608041Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_bfloat16_cpu_float64 XFAIL [ 22%] 2023-01-11T21:41:34.3608396Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_block_diag_cpu_complex128 PASSED [ 22%] 2023-01-11T21:41:34.3608751Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_block_diag_cpu_float64 PASSED [ 22%] 2023-01-11T21:41:34.3609153Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_broadcast_tensors_cpu_complex128 PASSED [ 22%] 2023-01-11T21:41:34.3609534Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_broadcast_tensors_cpu_float64 PASSED [ 22%] 2023-01-11T21:41:34.3609897Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_broadcast_to_cpu_float64 PASSED [ 22%] 2023-01-11T21:41:34.3610313Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_bucketize_cpu_float64 SKIPPED (Skipped! Dtype is not in supported backward dtypes!) [ 22%] 2023-01-11T21:41:34.3610762Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_byte_cpu_float64 SKIPPED (Skipped! Dtype is not in supported backward dtypes!) [ 22%] 2023-01-11T21:41:34.3611171Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_cartesian_prod_cpu_complex128 PASSED [ 22%] 2023-01-11T21:41:34.3611610Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_cdist_cpu_float64 PASSED [ 22%] 2023-01-11T21:41:34.3611964Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_cdouble_cpu_complex128 PASSED [ 22%] 2023-01-11T21:41:34.3612301Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_cdouble_cpu_float64 PASSED [ 22%] 2023-01-11T21:41:34.3612682Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_ceil_cpu_float64 PASSED [ 22%] 2023-01-11T21:41:34.3613029Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_chalf_cpu_complex128 XFAIL [ 22%] 2023-01-11T21:41:34.3613382Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_cholesky_inverse_cpu_complex128 PASSED [ 22%] 2023-01-11T21:41:34.3613750Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_cholesky_solve_cpu_float64 PASSED [ 22%] 2023-01-11T21:41:34.3614102Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_chunk_cpu_float64 PASSED [ 22%] 2023-01-11T21:41:34.3614448Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_clamp_cpu_float64 PASSED [ 22%] 2023-01-11T21:41:34.3614779Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_clone_cpu_complex128 PASSED [ 22%] 2023-01-11T21:41:34.3615128Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_clone_cpu_float64 PASSED [ 22%] 2023-01-11T21:41:34.3615491Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_combinations_cpu_complex128 PASSED [ 22%] 2023-01-11T21:41:34.3615857Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_combinations_cpu_float64 PASSED [ 22%] 2023-01-11T21:41:34.3616275Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_conj_cpu_complex128 PASSED [ 23%] 2023-01-11T21:41:34.3616620Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_conj_cpu_float64 PASSED [ 23%] 2023-01-11T21:41:34.3616970Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_conj_physical_cpu_float64 PASSED [ 23%] 2023-01-11T21:41:34.3617319Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_constant_pad_nd_cpu_float64 PASSED [ 23%] 2023-01-11T21:41:34.3617686Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_contiguous_cpu_complex128 PASSED [ 23%] 2023-01-11T21:41:34.3618051Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_contiguous_cpu_float64 PASSED [ 23%] 2023-01-11T21:41:34.3618405Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_copysign_cpu_float64 PASSED [ 23%] 2023-01-11T21:41:34.3618742Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_corrcoef_cpu_float64 PASSED [ 23%] 2023-01-11T21:41:34.3619086Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_cos_cpu_complex128 PASSED [ 23%] 2023-01-11T21:41:34.3619426Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_cos_cpu_float64 PASSED [ 23%] 2023-01-11T21:41:34.3619753Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_cosh_cpu_float64 PASSED [ 23%] 2023-01-11T21:41:34.3620252Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_count_nonzero_cpu_complex128 SKIPPED (Skipped! Dtype is not in supported backward dtypes!) [ 23%] 2023-01-11T21:41:34.3620658Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_cov_cpu_complex128 XFAIL [ 23%] 2023-01-11T21:41:34.3621072Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_cross_cpu_float64 PASSED [ 23%] 2023-01-11T21:41:34.3621400Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_cummax_cpu_float64 PASSED [ 23%] 2023-01-11T21:41:34.3621829Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_cumprod_cpu_float64 PASSED [ 23%] 2023-01-11T21:41:34.3622180Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_cumsum_cpu_complex128 PASSED [ 23%] 2023-01-11T21:41:34.3622548Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_cumulative_trapezoid_cpu_float64 PASSED [ 23%] 2023-01-11T21:41:34.3622897Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_deg2rad_cpu_float64 PASSED [ 23%] 2023-01-11T21:41:34.3623245Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_diag_cpu_complex128 PASSED [ 23%] 2023-01-11T21:41:34.3623586Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_diag_cpu_float64 PASSED [ 23%] 2023-01-11T21:41:34.3623923Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_diag_embed_cpu_complex128 PASSED [ 23%] 2023-01-11T21:41:34.3624286Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_diagflat_cpu_complex128 PASSED [ 23%] 2023-01-11T21:41:34.3624676Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_diagflat_cpu_float64 PASSED [ 23%] 2023-01-11T21:41:34.3625041Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_diagonal_copy_cpu_complex128 PASSED [ 24%] 2023-01-11T21:41:34.3625391Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_diagonal_cpu_complex128 PASSED [ 24%] 2023-01-11T21:41:34.3625739Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_diff_cpu_float64 PASSED [ 24%] 2023-01-11T21:41:34.3626079Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_digamma_cpu_float64 PASSED [ 24%] 2023-01-11T21:41:34.3626445Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_div_no_rounding_mode_cpu_complex128 PASSED [ 24%] 2023-01-11T21:41:34.3626811Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_div_trunc_rounding_cpu_float64 PASSED [ 24%] 2023-01-11T21:41:34.3627172Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_double_cpu_complex128 PASSED [ 24%] 2023-01-11T21:41:34.3627521Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_double_cpu_float64 PASSED [ 24%] 2023-01-11T21:41:34.3627857Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_dsplit_cpu_complex128 PASSED [ 24%] 2023-01-11T21:41:34.3628277Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_dsplit_cpu_float64 PASSED [ 24%] 2023-01-11T21:41:34.3628625Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_dstack_cpu_float64 PASSED [ 24%] 2023-01-11T21:41:34.3628977Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_einsum_cpu_complex128 PASSED [ 24%] 2023-01-11T21:41:34.3629311Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_einsum_cpu_float64 PASSED [ 24%] 2023-01-11T21:41:34.3629718Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_empty_cpu_complex128 SKIPPED (Skipped! Dtype is not in supported backward dtypes!) [ 24%] 2023-01-11T21:41:34.3630178Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_eq_cpu_float64 SKIPPED (Skipped! Dtype is not in supported backward dtypes!) [ 24%] 2023-01-11T21:41:34.3630634Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_equal_cpu_complex128 SKIPPED (Skipped! Dtype is not in supported backward dtypes!) [ 24%] 2023-01-11T21:41:34.3631018Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_erf_cpu_float64 PASSED [ 24%] 2023-01-11T21:41:34.3631364Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_erfc_cpu_float64 PASSED [ 24%] 2023-01-11T21:41:34.3631706Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_erfinv_cpu_float64 PASSED [ 24%] 2023-01-11T21:41:34.3632035Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_exp2_cpu_float64 PASSED [ 24%] 2023-01-11T21:41:34.3632376Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_expand_cpu_float64 PASSED [ 24%] 2023-01-11T21:41:34.3632721Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_expm1_cpu_float64 PASSED [ 24%] 2023-01-11T21:41:34.3633167Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_eye_cpu_complex128 SKIPPED (Skipped! Dtype is not in supported backward dtypes!) [ 24%] 2023-01-11T21:41:34.3633614Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_eye_cpu_float64 SKIPPED (Skipped! Dtype is not in supported backward dtypes!) [ 24%] 2023-01-11T21:41:34.3634017Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_fft_fft2_cpu_complex128 PASSED [ 25%] 2023-01-11T21:41:34.3634368Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_fft_fft_cpu_float64 PASSED [ 25%] 2023-01-11T21:41:34.3634714Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_fft_hfft2_cpu_float64 PASSED [ 25%] 2023-01-11T21:41:34.3635054Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_fft_hfft_cpu_complex128 PASSED [ 25%] 2023-01-11T21:41:34.3635400Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_fft_hfft_cpu_float64 PASSED [ 25%] 2023-01-11T21:41:34.3635819Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_fft_ifft_cpu_float64 PASSED [ 25%] 2023-01-11T21:41:34.3636165Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_fft_ifftn_cpu_float64 PASSED [ 25%] 2023-01-11T21:41:34.3636544Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_fft_ihfft_cpu_float64 PASSED [ 25%] 2023-01-11T21:41:34.3636904Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_fft_irfft2_cpu_complex128 PASSED [ 25%] 2023-01-11T21:41:34.3637262Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_fft_irfft_cpu_complex128 PASSED [ 25%] 2023-01-11T21:41:34.3637604Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_fft_irfft_cpu_float64 PASSED [ 25%] 2023-01-11T21:41:34.3637950Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_fft_irfftn_cpu_float64 PASSED [ 25%] 2023-01-11T21:41:34.3638300Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_fft_rfftn_cpu_float64 PASSED [ 25%] 2023-01-11T21:41:34.3638645Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_flip_cpu_complex128 PASSED [ 25%] 2023-01-11T21:41:34.3638980Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_flip_cpu_float64 PASSED [ 25%] 2023-01-11T21:41:34.3639326Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_fliplr_cpu_complex128 PASSED [ 25%] 2023-01-11T21:41:34.3639674Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_flipud_cpu_float64 PASSED [ 25%] 2023-01-11T21:41:34.3640014Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_float_power_cpu_complex128 PASSED [ 25%] 2023-01-11T21:41:34.3640437Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_floor_divide_cpu_float64 SKIPPED (Skipped! Dtype is not in supported backward dtypes!) [ 25%] 2023-01-11T21:41:34.3641019Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_fmod_cpu_float64 PASSED [ 25%] 2023-01-11T21:41:34.3641362Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_frexp_cpu_float64 PASSED [ 25%] 2023-01-11T21:41:34.3641752Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_full_cpu_float64 SKIPPED (Skipped! Dtype is not in supported backward dtypes!) [ 25%] 2023-01-11T21:41:34.3642156Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_gather_cpu_complex128 PASSED [ 25%] 2023-01-11T21:41:34.3642506Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_gather_cpu_float64 PASSED [ 25%] 2023-01-11T21:41:34.3642910Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_ge_cpu_float64 SKIPPED (Skipped! Dtype is not in supported backward dtypes!) [ 25%] 2023-01-11T21:41:34.3643351Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_geqrf_cpu_complex128 SKIPPED (Skipped! Dtype is not in supported backward dtypes!) [ 26%] 2023-01-11T21:41:34.3643811Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_geqrf_cpu_float64 SKIPPED (Skipped! Dtype is not in supported backward dtypes!) [ 26%] 2023-01-11T21:41:34.3644215Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_gradient_cpu_complex128 PASSED [ 26%] 2023-01-11T21:41:34.3644634Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_gradient_cpu_float64 PASSED [ 26%] 2023-01-11T21:41:34.3644982Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_grid_sampler_2d_cpu_float64 PASSED [ 26%] 2023-01-11T21:41:34.3645395Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_gt_cpu_float64 SKIPPED (Skipped! Dtype is not in supported backward dtypes!) [ 26%] 2023-01-11T21:41:34.3645900Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_half_cpu_complex128 XFAIL [ 26%] 2023-01-11T21:41:34.3646244Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_half_cpu_float64 XFAIL [ 26%] 2023-01-11T21:41:34.3646636Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_histc_cpu_float64 SKIPPED (Skipped! Dtype is not in supported backward dtypes!) [ 26%] 2023-01-11T21:41:34.3647097Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_histogram_cpu_float64 SKIPPED (Skipped! Dtype is not in supported backward dtypes!) [ 26%] 2023-01-11T21:41:34.3647504Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_imag_cpu_complex128 PASSED [ 26%] 2023-01-11T21:41:34.3647847Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_index_add_cpu_complex128 PASSED [ 26%] 2023-01-11T21:41:34.3648249Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_index_copy_cpu_float64 PASSED [ 26%] 2023-01-11T21:41:34.3648607Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_index_fill_cpu_complex128 PASSED [ 26%] 2023-01-11T21:41:34.3648966Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_index_put_cpu_complex128 PASSED [ 26%] 2023-01-11T21:41:34.3649311Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_index_select_cpu_float64 PASSED [ 26%] 2023-01-11T21:41:34.3649657Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_inner_cpu_complex128 PASSED [ 26%] 2023-01-11T21:41:34.3650003Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_inner_cpu_float64 PASSED [ 26%] 2023-01-11T21:41:34.3650413Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_isclose_cpu_complex128 SKIPPED (Skipped! Dtype is not in supported backward dtypes!) [ 26%] 2023-01-11T21:41:34.3650981Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_isfinite_cpu_complex128 SKIPPED (Skipped! Dtype is not in supported backward dtypes!) [ 26%] 2023-01-11T21:41:34.3651442Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_isfinite_cpu_float64 SKIPPED (Skipped! Dtype is not in supported backward dtypes!) [ 26%] 2023-01-11T21:41:34.3651895Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_isin_cpu_float64 SKIPPED (Skipped! Dtype is not in supported backward dtypes!) [ 26%] 2023-01-11T21:41:34.3652341Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_isinf_cpu_float64 SKIPPED (Skipped! Dtype is not in supported backward dtypes!) [ 26%] 2023-01-11T21:41:34.3652787Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_isnan_cpu_complex128 SKIPPED (Skipped! Dtype is not in supported backward dtypes!) [ 26%] 2023-01-11T21:41:34.3653247Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_isreal_cpu_complex128 SKIPPED (Skipped! Dtype is not in supported backward dtypes!) [ 27%] 2023-01-11T21:41:34.3653703Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_jiterator_4inputs_with_extra_args_cpu_complex128 SKIPPED (Only runs on cuda) [ 27%] 2023-01-11T21:41:34.3654143Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_jiterator_binary_return_by_ref_cpu_complex128 SKIPPED (Only runs on cuda) [ 27%] 2023-01-11T21:41:34.3654561Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_jiterator_binary_return_by_ref_cpu_float64 SKIPPED (Only runs on cuda) [ 27%] 2023-01-11T21:41:34.3654976Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_jiterator_unary_cpu_float64 SKIPPED (Only runs on cuda) [ 27%] 2023-01-11T21:41:34.3655349Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_kthvalue_cpu_float64 PASSED [ 27%] 2023-01-11T21:41:34.3655698Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_ldexp_cpu_float64 PASSED [ 27%] 2023-01-11T21:41:34.3656150Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_linalg_cond_cpu_complex128 PASSED [ 27%] 2023-01-11T21:41:34.3656614Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_linalg_cross_cpu_float64 PASSED [ 27%] 2023-01-11T21:41:34.3656975Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_linalg_det_cpu_complex128 PASSED [ 27%] 2023-01-11T21:41:34.3657347Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_linalg_det_singular_cpu_float64 PASSED [ 27%] 2023-01-11T21:41:34.3657707Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_linalg_eigvals_cpu_complex128 PASSED [ 27%] 2023-01-11T21:41:34.3658077Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_linalg_eigvalsh_cpu_complex128 PASSED [ 27%] 2023-01-11T21:41:34.3658462Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_linalg_householder_product_cpu_complex128 PASSED [ 27%] 2023-01-11T21:41:34.3658846Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_linalg_householder_product_cpu_float64 PASSED [ 27%] 2023-01-11T21:41:34.3659217Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_linalg_inv_cpu_float64 PASSED [ 27%] 2023-01-11T21:41:34.3659617Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_linalg_inv_ex_cpu_float64 PASSED [ 27%] 2023-01-11T21:41:34.3660041Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_linalg_ldl_factor_cpu_float64 SKIPPED (Skipped! Dtype is not in supported backward dtypes!) [ 27%] 2023-01-11T21:41:34.3660516Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_linalg_ldl_factor_ex_cpu_complex128 SKIPPED (Skipped! Dtype is not in supported backward dtypes!) [ 27%] 2023-01-11T21:41:34.3661059Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_linalg_lstsq_cpu_complex128 SKIPPED (Skipped!) [ 27%] 2023-01-11T21:41:34.3661433Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_linalg_lu_cpu_complex128 PASSED [ 27%] 2023-01-11T21:41:34.3661789Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_linalg_lu_cpu_float64 PASSED [ 27%] 2023-01-11T21:41:34.3662135Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_linalg_lu_factor_cpu_float64 PASSED [ 27%] 2023-01-11T21:41:34.3662512Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_linalg_lu_factor_ex_cpu_complex128 PASSED [ 27%] 2023-01-11T21:41:34.3662885Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_linalg_lu_solve_cpu_complex128 PASSED [ 28%] 2023-01-11T21:41:34.3663249Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_linalg_lu_solve_cpu_float64 PASSED [ 28%] 2023-01-11T21:41:34.3663604Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_linalg_matrix_norm_cpu_float64 PASSED [ 28%] 2023-01-11T21:41:34.3663974Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_linalg_matrix_power_cpu_complex128 PASSED [ 28%] 2023-01-11T21:41:34.3664414Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_linalg_matrix_rank_cpu_complex128 SKIPPED (Skipped! Dtype is not in supported backward dtypes!) [ 28%] 2023-01-11T21:41:34.3664901Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_linalg_matrix_rank_cpu_float64 SKIPPED (Skipped! Dtype is not in supported backward dtypes!) [ 28%] 2023-01-11T21:41:34.3665380Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_linalg_matrix_rank_hermitian_cpu_complex128 SKIPPED (Skipped! Dtype is not in supported backward dtypes!) [ 28%] 2023-01-11T21:41:34.3665821Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_linalg_multi_dot_cpu_complex128 PASSED [ 28%] 2023-01-11T21:41:34.3666189Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_linalg_norm_cpu_complex128 PASSED [ 28%] 2023-01-11T21:41:34.3666575Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_linalg_norm_subgradients_at_zero_cpu_complex128 XFAIL [ 28%] 2023-01-11T21:41:34.3666963Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_linalg_norm_subgradients_at_zero_cpu_float64 XFAIL [ 28%] 2023-01-11T21:41:34.3667341Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_linalg_pinv_cpu_complex128 PASSED [ 28%] 2023-01-11T21:41:34.3667752Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_linalg_pinv_hermitian_cpu_complex128 PASSED [ 28%] 2023-01-11T21:41:34.3668186Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_linalg_pinv_singular_cpu_float64 SKIPPED (test is slow; run with PYTORCH_TEST_WITH_SLOW to enable test) [ 28%] 2023-01-11T21:41:34.3668606Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_linalg_qr_cpu_float64 PASSED [ 28%] 2023-01-11T21:41:34.3668963Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_linalg_slogdet_cpu_float64 PASSED [ 28%] 2023-01-11T21:41:34.3669429Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_linalg_solve_cpu_complex128 PASSED [ 28%] 2023-01-11T21:41:34.3669789Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_linalg_solve_ex_cpu_complex128 PASSED [ 28%] 2023-01-11T21:41:34.3670151Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_linalg_solve_ex_cpu_float64 PASSED [ 28%] 2023-01-11T21:41:34.3670522Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_linalg_solve_triangular_cpu_float64 PASSED [ 28%] 2023-01-11T21:41:34.3670941Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_linalg_svdvals_cpu_complex128 PASSED [ 28%] 2023-01-11T21:41:34.3671394Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_linalg_tensorinv_cpu_float64 PASSED [ 28%] 2023-01-11T21:41:34.3671773Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_linalg_tensorsolve_cpu_complex128 PASSED [ 28%] 2023-01-11T21:41:34.3672146Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_linalg_tensorsolve_cpu_float64 PASSED [ 28%] 2023-01-11T21:41:34.3672510Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_linalg_vecdot_cpu_complex128 PASSED [ 29%] 2023-01-11T21:41:34.3672918Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_linspace_cpu_float64 SKIPPED (Skipped! Dtype is not in supported backward dtypes!) [ 29%] 2023-01-11T21:41:34.3673327Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_log1p_cpu_complex128 PASSED [ 29%] 2023-01-11T21:41:34.3673682Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_log2_cpu_complex128 PASSED [ 29%] 2023-01-11T21:41:34.3674015Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_log2_cpu_float64 PASSED [ 29%] 2023-01-11T21:41:34.3674365Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_log_softmax_cpu_float64 PASSED [ 29%] 2023-01-11T21:41:34.3674730Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_log_softmax_with_dtype_cpu_float64 PASSED [ 29%] 2023-01-11T21:41:34.3675094Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_logaddexp2_cpu_float64 PASSED [ 29%] 2023-01-11T21:41:34.3675505Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_logical_and_cpu_complex128 SKIPPED (Skipped! Dtype is not in supported backward dtypes!) [ 29%] 2023-01-11T21:41:34.3675976Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_logical_not_cpu_complex128 SKIPPED (Skipped! Dtype is not in supported backward dtypes!) [ 29%] 2023-01-11T21:41:34.3676449Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_logical_or_cpu_complex128 SKIPPED (Skipped! Dtype is not in supported backward dtypes!) [ 29%] 2023-01-11T21:41:34.3676917Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_logical_or_cpu_float64 SKIPPED (Skipped! Dtype is not in supported backward dtypes!) [ 29%] 2023-01-11T21:41:34.3677371Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_logical_xor_cpu_complex128 SKIPPED (Skipped! Dtype is not in supported backward dtypes!) [ 29%] 2023-01-11T21:41:34.3677836Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_logical_xor_cpu_float64 SKIPPED (Skipped! Dtype is not in supported backward dtypes!) [ 29%] 2023-01-11T21:41:34.3678300Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_logspace_cpu_float64 SKIPPED (Skipped! Dtype is not in supported backward dtypes!) [ 29%] 2023-01-11T21:41:34.3678709Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_logsumexp_cpu_float64 PASSED [ 29%] 2023-01-11T21:41:34.3679213Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_long_cpu_complex128 SKIPPED (Skipped! Dtype is not in supported backward dtypes!) [ 29%] 2023-01-11T21:41:34.3679707Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_long_cpu_float64 SKIPPED (Skipped! Dtype is not in supported backward dtypes!) [ 29%] 2023-01-11T21:41:34.3680153Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_lt_cpu_float64 SKIPPED (Skipped! Dtype is not in supported backward dtypes!) [ 29%] 2023-01-11T21:41:34.3680549Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_lu_cpu_complex128 PASSED [ 29%] 2023-01-11T21:41:34.3680981Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_lu_cpu_float64 PASSED [ 29%] 2023-01-11T21:41:34.3681326Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_lu_unpack_cpu_float64 PASSED [ 29%] 2023-01-11T21:41:34.3681667Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_mH_cpu_float64 PASSED [ 29%] 2023-01-11T21:41:34.3682072Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_masked_argmin_cpu_float64 SKIPPED (Skipped! Dtype is not in supported backward dtypes!) [ 29%] 2023-01-11T21:41:34.3682477Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_masked_cumprod_cpu_float64 PASSED [ 30%] 2023-01-11T21:41:34.3682896Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_masked_cumsum_cpu_complex128 PASSED [ 30%] 2023-01-11T21:41:34.3683273Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_masked_log_softmax_cpu_float64 PASSED [ 30%] 2023-01-11T21:41:34.3683641Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_masked_logaddexp_cpu_float64 PASSED [ 30%] 2023-01-11T21:41:34.3684098Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_masked_logsumexp_cpu_float64 PASSED [ 30%] 2023-01-11T21:41:34.3684465Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_masked_mean_cpu_complex128 PASSED [ 30%] 2023-01-11T21:41:34.3684826Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_masked_median_cpu_float64 PASSED [ 30%] 2023-01-11T21:41:34.3685176Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_masked_norm_cpu_float64 PASSED [ 30%] 2023-01-11T21:41:34.3685539Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_masked_normalize_cpu_float64 PASSED [ 30%] 2023-01-11T21:41:34.3685906Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_masked_prod_cpu_complex128 PASSED [ 30%] 2023-01-11T21:41:34.3686267Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_masked_select_cpu_float64 PASSED [ 30%] 2023-01-11T21:41:34.3686617Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_masked_softmax_cpu_float64 PASSED [ 30%] 2023-01-11T21:41:34.3686977Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_masked_std_cpu_complex128 PASSED [ 30%] 2023-01-11T21:41:34.3687332Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_masked_std_cpu_float64 PASSED [ 30%] 2023-01-11T21:41:34.3687688Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_masked_sum_cpu_complex128 PASSED [ 30%] 2023-01-11T21:41:34.3688034Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_masked_sum_cpu_float64 PASSED [ 30%] 2023-01-11T21:41:34.3688389Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_masked_var_cpu_complex128 PASSED [ 30%] 2023-01-11T21:41:34.3688749Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_matmul_cpu_complex128 PASSED [ 30%] 2023-01-11T21:41:34.3689119Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_max_pool2d_with_indices_backward_cpu_float64 PASSED [ 30%] 2023-01-11T21:41:34.3689492Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_maximum_cpu_float64 PASSED [ 30%] 2023-01-11T21:41:34.3689919Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_mean_cpu_complex128 PASSED [ 30%] 2023-01-11T21:41:34.3690261Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_median_cpu_float64 PASSED [ 30%] 2023-01-11T21:41:34.3690618Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_meshgrid_list_of_tensors_cpu_complex128 PASSED [ 30%] 2023-01-11T21:41:34.3691004Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_meshgrid_list_of_tensors_cpu_float64 PASSED [ 30%] 2023-01-11T21:41:34.3691447Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_meshgrid_variadic_tensors_cpu_complex128 PASSED [ 31%] 2023-01-11T21:41:34.3691819Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_mm_cpu_complex128 PASSED [ 31%] 2023-01-11T21:41:34.3692152Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_mm_cpu_float64 PASSED [ 31%] 2023-01-11T21:41:34.3692498Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_movedim_cpu_complex128 PASSED [ 31%] 2023-01-11T21:41:34.3692847Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_mul_cpu_complex128 PASSED [ 31%] 2023-01-11T21:41:34.3693201Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_mvlgamma_mvlgamma_p_3_cpu_float64 PASSED [ 31%] 2023-01-11T21:41:34.3693646Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_mvlgamma_mvlgamma_p_5_cpu_float64 PASSED [ 31%] 2023-01-11T21:41:34.3694007Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_nan_to_num_cpu_float64 PASSED [ 31%] 2023-01-11T21:41:34.3694359Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_nanmean_cpu_float64 PASSED [ 31%] 2023-01-11T21:41:34.3694732Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_nanmedian_cpu_float64 PASSED [ 31%] 2023-01-11T21:41:34.3695093Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_nanquantile_cpu_float64 PASSED [ 31%] 2023-01-11T21:41:34.3695445Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_nansum_cpu_float64 PASSED [ 31%] 2023-01-11T21:41:34.3695847Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_narrow_copy_cpu_complex128 SKIPPED (Skipped! Dtype is not in supported backward dtypes!) [ 31%] 2023-01-11T21:41:34.3696386Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_narrow_copy_cpu_float64 SKIPPED (Skipped! Dtype is not in supported backward dtypes!) [ 31%] 2023-01-11T21:41:34.3696791Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_narrow_cpu_float64 PASSED [ 31%] 2023-01-11T21:41:34.3697160Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_native_dropout_backward_cpu_float64 PASSED [ 31%] 2023-01-11T21:41:34.3697575Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_ne_cpu_complex128 SKIPPED (Skipped! Dtype is not in supported backward dtypes!) [ 31%] 2023-01-11T21:41:34.3698033Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_ne_cpu_float64 SKIPPED (Skipped! Dtype is not in supported backward dtypes!) [ 31%] 2023-01-11T21:41:34.3698501Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_new_empty_strided_cpu_float64 SKIPPED (Skipped! Dtype is not in supported backward dtypes!) [ 31%] 2023-01-11T21:41:34.3698973Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_new_full_cpu_complex128 SKIPPED (Skipped! Dtype is not in supported backward dtypes!) [ 31%] 2023-01-11T21:41:34.3699439Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_new_full_cpu_float64 SKIPPED (Skipped! Dtype is not in supported backward dtypes!) [ 31%] 2023-01-11T21:41:34.3699889Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_new_zeros_cpu_complex128 SKIPPED (Skipped! Dtype is not in supported backward dtypes!) [ 31%] 2023-01-11T21:41:34.3700352Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_new_zeros_cpu_float64 SKIPPED (Skipped! Dtype is not in supported backward dtypes!) [ 31%] 2023-01-11T21:41:34.3700791Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_nn_functional__scaled_dot_product_attention_cpu_float64 PASSED [ 31%] 2023-01-11T21:41:34.3701205Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_nn_functional_adaptive_avg_pool2d_cpu_float64 PASSED [ 31%] 2023-01-11T21:41:34.3701592Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_nn_functional_adaptive_avg_pool3d_cpu_float64 PASSED [ 32%] 2023-01-11T21:41:34.3701990Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_nn_functional_adaptive_max_pool2d_cpu_float64 PASSED [ 32%] 2023-01-11T21:41:34.3702470Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_nn_functional_adaptive_max_pool3d_cpu_float64 PASSED [ 32%] 2023-01-11T21:41:34.3702921Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_nn_functional_batch_norm_cpu_float64 PASSED [ 32%] 2023-01-11T21:41:34.3703319Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_nn_functional_binary_cross_entropy_with_logits_cpu_float64 PASSED [ 32%] 2023-01-11T21:41:34.3703715Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_nn_functional_celu_cpu_float64 PASSED [ 32%] 2023-01-11T21:41:34.3704098Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_nn_functional_conv1d_cpu_complex128 PASSED [ 32%] 2023-01-11T21:41:34.3704484Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_nn_functional_conv_transpose3d_cpu_complex128 PASSED [ 32%] 2023-01-11T21:41:34.3704888Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_nn_functional_cosine_embedding_loss_cpu_float64 PASSED [ 32%] 2023-01-11T21:41:34.3705285Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_nn_functional_cross_entropy_cpu_float64 PASSED [ 32%] 2023-01-11T21:41:34.3705671Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_nn_functional_ctc_loss_cpu_float64 XFAIL [ 32%] 2023-01-11T21:41:34.3706071Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_nn_functional_dropout2d_cpu_float64 PASSED [ 32%] 2023-01-11T21:41:34.3706520Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_nn_functional_dropout_cpu_float64 PASSED [ 32%] 2023-01-11T21:41:34.3706898Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_nn_functional_elu_cpu_float64 PASSED [ 32%] 2023-01-11T21:41:34.3707278Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_nn_functional_embedding_bag_cpu_float64 PASSED [ 32%] 2023-01-11T21:41:34.3707652Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_nn_functional_embedding_cpu_float64 PASSED [ 32%] 2023-01-11T21:41:34.3708065Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_nn_functional_feature_alpha_dropout_without_train_cpu_complex128 PASSED [ 32%] 2023-01-11T21:41:34.3708494Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_nn_functional_fractional_max_pool2d_cpu_float64 PASSED [ 32%] 2023-01-11T21:41:34.3708895Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_nn_functional_gaussian_nll_loss_cpu_float64 PASSED [ 32%] 2023-01-11T21:41:34.3709265Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_nn_functional_glu_cpu_float64 PASSED [ 32%] 2023-01-11T21:41:34.3709643Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_nn_functional_grid_sample_cpu_float64 PASSED [ 32%] 2023-01-11T21:41:34.3710029Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_nn_functional_group_norm_cpu_float64 PASSED [ 32%] 2023-01-11T21:41:34.3710411Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_nn_functional_hardshrink_cpu_float64 PASSED [ 32%] 2023-01-11T21:41:34.3710780Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_nn_functional_hardsigmoid_cpu_float64 PASSED [ 32%] 2023-01-11T21:41:34.3711168Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_nn_functional_hardswish_cpu_float64 PASSED [ 33%] 2023-01-11T21:41:34.3711552Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_nn_functional_hardtanh_cpu_float64 PASSED [ 33%] 2023-01-11T21:41:34.3711985Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_nn_functional_huber_loss_cpu_float64 PASSED [ 33%] 2023-01-11T21:41:34.3712366Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_nn_functional_instance_norm_cpu_float64 PASSED [ 33%] 2023-01-11T21:41:34.3712760Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_nn_functional_interpolate_linear_cpu_float64 PASSED [ 33%] 2023-01-11T21:41:34.3713146Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_nn_functional_kl_div_cpu_float64 PASSED [ 33%] 2023-01-11T21:41:34.3713508Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_nn_functional_l1_loss_cpu_complex128 PASSED [ 33%] 2023-01-11T21:41:34.3713882Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_nn_functional_l1_loss_cpu_float64 PASSED [ 33%] 2023-01-11T21:41:34.3714296Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_nn_functional_layer_norm_cpu_float64 PASSED [ 33%] 2023-01-11T21:41:34.3714677Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_nn_functional_leaky_relu_cpu_float64 PASSED [ 33%] 2023-01-11T21:41:34.3715045Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_nn_functional_linear_cpu_complex128 PASSED [ 33%] 2023-01-11T21:41:34.3715435Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_nn_functional_margin_ranking_loss_cpu_float64 PASSED [ 33%] 2023-01-11T21:41:34.3715827Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_nn_functional_max_unpool1d_grad_cpu_float64 PASSED [ 33%] 2023-01-11T21:41:34.3716258Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_nn_functional_max_unpool2d_cpu_float64 SKIPPED (Skipped!) [ 33%] 2023-01-11T21:41:34.3716704Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_nn_functional_max_unpool3d_cpu_float64 SKIPPED (Skipped!) [ 33%] 2023-01-11T21:41:34.3717097Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_nn_functional_mse_loss_cpu_float64 PASSED [ 33%] 2023-01-11T21:41:34.3717514Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_nn_functional_multi_margin_loss_cpu_float64 PASSED [ 33%] 2023-01-11T21:41:34.3717908Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_nn_functional_multilabel_soft_margin_loss_cpu_float64 PASSED [ 33%] 2023-01-11T21:41:34.3718318Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_nn_functional_pad_circular_cpu_complex128 PASSED [ 33%] 2023-01-11T21:41:34.3718710Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_nn_functional_pad_circular_cpu_float64 PASSED [ 33%] 2023-01-11T21:41:34.3719098Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_nn_functional_pad_reflect_cpu_complex128 PASSED [ 33%] 2023-01-11T21:41:34.3719471Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_nn_functional_pad_reflect_cpu_float64 PASSED [ 33%] 2023-01-11T21:41:34.3719864Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_nn_functional_pad_replicate_cpu_float64 PASSED [ 33%] 2023-01-11T21:41:34.3720267Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_nn_functional_pairwise_distance_cpu_complex128 PASSED [ 33%] 2023-01-11T21:41:34.3720791Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_nn_functional_pdist_cpu_float64 PASSED [ 34%] 2023-01-11T21:41:34.3721208Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_nn_functional_pixel_shuffle_cpu_complex128 PASSED [ 34%] 2023-01-11T21:41:34.3721601Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_nn_functional_pixel_shuffle_cpu_float64 PASSED [ 34%] 2023-01-11T21:41:34.3721984Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_nn_functional_prelu_cpu_float64 PASSED [ 34%] 2023-01-11T21:41:34.3722359Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_nn_functional_selu_cpu_float64 PASSED [ 34%] 2023-01-11T21:41:34.3722727Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_nn_functional_soft_margin_loss_cpu_float64 PASSED [ 34%] 2023-01-11T21:41:34.3723130Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_nn_functional_softmin_with_dtype_cpu_float64 PASSED [ 34%] 2023-01-11T21:41:34.3723518Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_nn_functional_softplus_cpu_float64 PASSED [ 34%] 2023-01-11T21:41:34.3723899Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_nn_functional_softsign_cpu_float64 PASSED [ 34%] 2023-01-11T21:41:34.3724272Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_nn_functional_tanhshrink_cpu_complex128 PASSED [ 34%] 2023-01-11T21:41:34.3724656Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_nn_functional_threshold_cpu_float64 PASSED [ 34%] 2023-01-11T21:41:34.3725144Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_nn_functional_triplet_margin_loss_cpu_float64 PASSED [ 34%] 2023-01-11T21:41:34.3725555Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_nn_functional_triplet_margin_with_distance_loss_cpu_complex128 PASSED [ 34%] 2023-01-11T21:41:34.3726032Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_nn_functional_unfold_cpu_complex128 PASSED [ 34%] 2023-01-11T21:41:34.3726426Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_nn_functional_upsample_nearest_cpu_float64 PASSED [ 34%] 2023-01-11T21:41:34.3726891Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_norm_cpu_float64 PASSED [ 34%] 2023-01-11T21:41:34.3727230Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_norm_fro_cpu_float64 PASSED [ 34%] 2023-01-11T21:41:34.3727581Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_norm_nuc_cpu_complex128 PASSED [ 34%] 2023-01-11T21:41:34.3727991Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_ones_cpu_complex128 SKIPPED (Skipped! Dtype is not in supported backward dtypes!) [ 34%] 2023-01-11T21:41:34.3728461Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_ones_like_cpu_complex128 SKIPPED (Skipped! Dtype is not in supported backward dtypes!) [ 34%] 2023-01-11T21:41:34.3728917Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_ones_like_cpu_float64 SKIPPED (Skipped! Dtype is not in supported backward dtypes!) [ 34%] 2023-01-11T21:41:34.3729366Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_ormqr_cpu_complex128 PASSED [ 34%] 2023-01-11T21:41:34.3729718Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_ormqr_cpu_float64 PASSED [ 34%] 2023-01-11T21:41:34.3730066Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_outer_cpu_complex128 PASSED [ 34%] 2023-01-11T21:41:34.3730409Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_pca_lowrank_cpu_float64 PASSED [ 35%] 2023-01-11T21:41:34.3730764Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_permute_cpu_complex128 PASSED [ 35%] 2023-01-11T21:41:34.3731119Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_pinverse_cpu_complex128 PASSED [ 35%] 2023-01-11T21:41:34.3731493Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_polygamma_polygamma_n_3_cpu_float64 SKIPPED (Skipped!) [ 35%] 2023-01-11T21:41:34.3731900Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_polygamma_polygamma_n_4_cpu_float64 SKIPPED (Skipped!) [ 35%] 2023-01-11T21:41:34.3732281Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_positive_cpu_complex128 PASSED [ 35%] 2023-01-11T21:41:34.3732633Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_positive_cpu_float64 PASSED [ 35%] 2023-01-11T21:41:34.3732966Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_pow_cpu_float64 PASSED [ 35%] 2023-01-11T21:41:34.3733377Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_put_cpu_complex128 PASSED [ 35%] 2023-01-11T21:41:34.3733740Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_put_cpu_float64 PASSED [ 35%] 2023-01-11T21:41:34.3734081Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_qr_cpu_complex128 PASSED [ 35%] 2023-01-11T21:41:34.3734405Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_qr_cpu_float64 PASSED [ 35%] 2023-01-11T21:41:34.3734747Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_quantile_cpu_float64 PASSED [ 35%] 2023-01-11T21:41:34.3735091Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_rad2deg_cpu_float64 PASSED [ 35%] 2023-01-11T21:41:34.3735489Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_randint_like_cpu_float64 SKIPPED (Skipped! Dtype is not in supported backward dtypes!) [ 35%] 2023-01-11T21:41:34.3735898Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_real_cpu_complex128 PASSED [ 35%] 2023-01-11T21:41:34.3736305Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_real_cpu_float64 PASSED [ 35%] 2023-01-11T21:41:34.3736659Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_reciprocal_cpu_complex128 PASSED [ 35%] 2023-01-11T21:41:34.3737001Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_renorm_cpu_float64 PASSED [ 35%] 2023-01-11T21:41:34.3737351Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_repeat_cpu_complex128 PASSED [ 35%] 2023-01-11T21:41:34.3737770Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_repeat_interleave_cpu_float64 PASSED [ 35%] 2023-01-11T21:41:34.3738137Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_reshape_as_cpu_complex128 PASSED [ 35%] 2023-01-11T21:41:34.3738479Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_reshape_as_cpu_float64 PASSED [ 35%] 2023-01-11T21:41:34.3738891Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_resize__cpu_complex128 SKIPPED (Skipped! Dtype is not in supported backward dtypes!) [ 35%] 2023-01-11T21:41:34.3739306Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_resolve_conj_cpu_complex128 PASSED [ 36%] 2023-01-11T21:41:34.3739657Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_resolve_conj_cpu_float64 PASSED [ 36%] 2023-01-11T21:41:34.3740013Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_resolve_neg_cpu_float64 PASSED [ 36%] 2023-01-11T21:41:34.3740359Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_roll_cpu_complex128 PASSED [ 36%] 2023-01-11T21:41:34.3740708Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_roll_cpu_float64 PASSED [ 36%] 2023-01-11T21:41:34.3741071Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_rot90_cpu_complex128 PASSED [ 36%] 2023-01-11T21:41:34.3741418Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_round_cpu_float64 PASSED [ 36%] 2023-01-11T21:41:34.3741762Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_rsub_cpu_float64 PASSED [ 36%] 2023-01-11T21:41:34.3742173Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_scalar_tensor_cpu_complex128 SKIPPED (Skipped! Dtype is not in supported backward dtypes!) [ 36%] 2023-01-11T21:41:34.3742641Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_scalar_tensor_cpu_float64 SKIPPED (Skipped! Dtype is not in supported backward dtypes!) [ 36%] 2023-01-11T21:41:34.3743051Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_scatter_add_cpu_float64 PASSED [ 36%] 2023-01-11T21:41:34.3743410Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_scatter_cpu_complex128 PASSED [ 36%] 2023-01-11T21:41:34.3743760Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_scatter_cpu_float64 PASSED [ 36%] 2023-01-11T21:41:34.3744109Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_scatter_reduce_amax_cpu_float64 PASSED [ 36%] 2023-01-11T21:41:34.3744481Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_scatter_reduce_amin_cpu_float64 PASSED [ 36%] 2023-01-11T21:41:34.3744853Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_scatter_reduce_prod_cpu_float64 PASSED [ 36%] 2023-01-11T21:41:34.3745268Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_searchsorted_cpu_float64 SKIPPED (Skipped! Dtype is not in supported backward dtypes!) [ 36%] 2023-01-11T21:41:34.3745693Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_segment_reduce_lengths_cpu_float64 PASSED [ 36%] 2023-01-11T21:41:34.3746071Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_segment_reduce_offsets_cpu_float64 PASSED [ 36%] 2023-01-11T21:41:34.3746434Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_select_cpu_float64 PASSED [ 36%] 2023-01-11T21:41:34.3746828Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_short_cpu_complex128 SKIPPED (Skipped! Dtype is not in supported backward dtypes!) [ 36%] 2023-01-11T21:41:34.3747231Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_sign_cpu_float64 PASSED [ 36%] 2023-01-11T21:41:34.3747651Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_signal_windows_blackman_cpu_float64 SKIPPED (Skipped! Dtype is not in supported backward dtypes!) [ 36%] 2023-01-11T21:41:34.3748146Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_signal_windows_general_cosine_cpu_float64 SKIPPED (Skipped! Dtype is not in supported backward dtypes!) [ 36%] 2023-01-11T21:41:34.3748623Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_signal_windows_kaiser_cpu_float64 SKIPPED (Skipped! Dtype is not in supported backward dtypes!) [ 37%] 2023-01-11T21:41:34.3749150Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_signal_windows_nuttall_cpu_float64 SKIPPED (Skipped! Dtype is not in supported backward dtypes!) [ 37%] 2023-01-11T21:41:34.3749563Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_sin_cpu_complex128 PASSED [ 37%] 2023-01-11T21:41:34.3749913Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_sinc_cpu_complex128 PASSED [ 37%] 2023-01-11T21:41:34.3750246Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_sinc_cpu_float64 PASSED [ 37%] 2023-01-11T21:41:34.3750591Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_sinh_cpu_complex128 PASSED [ 37%] 2023-01-11T21:41:34.3750940Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_slice_cpu_complex128 PASSED [ 37%] 2023-01-11T21:41:34.3751287Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_slice_cpu_float64 PASSED [ 37%] 2023-01-11T21:41:34.3751621Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_softmax_cpu_float64 PASSED [ 37%] 2023-01-11T21:41:34.3751985Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_softmax_with_dtype_cpu_complex128 PASSED [ 37%] 2023-01-11T21:41:34.3752390Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_softmax_with_dtype_cpu_float64 PASSED [ 37%] 2023-01-11T21:41:34.3752768Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_sparse_sampled_addmm_cpu_float64 SKIPPED (Skipped!) [ 37%] 2023-01-11T21:41:34.3753210Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_special_bessel_j1_cpu_float64 SKIPPED (Skipped! Dtype is not in supported backward dtypes!) [ 37%] 2023-01-11T21:41:34.3753688Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_special_bessel_y1_cpu_float64 SKIPPED (Skipped! Dtype is not in supported backward dtypes!) [ 37%] 2023-01-11T21:41:34.3754179Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_special_chebyshev_polynomial_u_cpu_float64 SKIPPED (Skipped! Dtype is not in supported backward dtypes!) [ 37%] 2023-01-11T21:41:34.3754903Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_special_chebyshev_polynomial_v_cpu_float64 SKIPPED (Skipping - testing takes an unreasonably long time, #79528) [ 37%] 2023-01-11T21:41:34.3755331Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_special_erfcx_cpu_float64 PASSED [ 37%] 2023-01-11T21:41:34.3755765Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_special_hermite_polynomial_he_cpu_float64 SKIPPED (Skipped! Dtype is not in supported backward dtypes!) [ 37%] 2023-01-11T21:41:34.3756268Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_special_laguerre_polynomial_l_cpu_float64 SKIPPED (Skipped! Dtype is not in supported backward dtypes!) [ 37%] 2023-01-11T21:41:34.3756698Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_special_log_ndtr_cpu_float64 PASSED [ 37%] 2023-01-11T21:41:34.3757121Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_special_modified_bessel_i1_cpu_float64 SKIPPED (Skipped! Dtype is not in supported backward dtypes!) [ 37%] 2023-01-11T21:41:34.3757607Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_special_modified_bessel_k0_cpu_float64 SKIPPED (Skipped! Dtype is not in supported backward dtypes!) [ 37%] 2023-01-11T21:41:34.3758060Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_special_polygamma_special_polygamma_n_0_cpu_float64 PASSED [ 37%] 2023-01-11T21:41:34.3758664Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_special_shifted_chebyshev_polynomial_w_cpu_float64 SKIPPED (Skipping - testing takes an unreasonably long time, #79528) [ 37%] 2023-01-11T21:41:34.3759152Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_special_zeta_cpu_float64 SKIPPED (Skipped! Dtype is not in supported backward dtypes!) [ 37%] 2023-01-11T21:41:34.3759560Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_split_cpu_float64 PASSED [ 38%] 2023-01-11T21:41:34.3759924Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_split_list_args_cpu_complex128 PASSED [ 38%] 2023-01-11T21:41:34.3760293Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_split_list_args_cpu_float64 PASSED [ 38%] 2023-01-11T21:41:34.3760768Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_sqrt_cpu_float64 PASSED [ 38%] 2023-01-11T21:41:34.3761123Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_square_cpu_complex128 PASSED [ 38%] 2023-01-11T21:41:34.3761472Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_square_cpu_float64 PASSED [ 38%] 2023-01-11T21:41:34.3761821Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_std_mean_cpu_complex128 PASSED [ 38%] 2023-01-11T21:41:34.3762175Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_std_mean_unbiased_cpu_float64 PASSED [ 38%] 2023-01-11T21:41:34.3762541Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_std_unbiased_cpu_float64 PASSED [ 38%] 2023-01-11T21:41:34.3762888Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_sub_cpu_float64 PASSED [ 38%] 2023-01-11T21:41:34.3763215Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_sum_cpu_float64 PASSED [ 38%] 2023-01-11T21:41:34.3763564Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_sum_to_size_cpu_float64 PASSED [ 38%] 2023-01-11T21:41:34.3763960Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_svd_cpu_complex128 PASSED [ 38%] 2023-01-11T21:41:34.3764316Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_svd_lowrank_cpu_float64 PASSED [ 38%] 2023-01-11T21:41:34.3764651Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_symeig_cpu_float64 PASSED [ 38%] 2023-01-11T21:41:34.3764991Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_t_cpu_float64 PASSED [ 38%] 2023-01-11T21:41:34.3765349Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_take_along_dim_cpu_complex128 PASSED [ 38%] 2023-01-11T21:41:34.3765699Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_take_along_dim_cpu_float64 PASSED [ 38%] 2023-01-11T21:41:34.3766051Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_tanh_cpu_complex128 PASSED [ 38%] 2023-01-11T21:41:34.3766397Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_tanh_cpu_float64 PASSED [ 38%] 2023-01-11T21:41:34.3766747Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_tensor_split_cpu_float64 PASSED [ 38%] 2023-01-11T21:41:34.3767096Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_tensordot_cpu_complex128 PASSED [ 38%] 2023-01-11T21:41:34.3767446Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_tile_cpu_complex128 PASSED [ 38%] 2023-01-11T21:41:34.3767786Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_to_cpu_float64 PASSED [ 38%] 2023-01-11T21:41:34.3768196Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_to_sparse_cpu_complex128 SKIPPED (Skipped! Dtype is not in supported backward dtypes!) [ 39%] 2023-01-11T21:41:34.3768584Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_topk_cpu_float64 PASSED [ 39%] 2023-01-11T21:41:34.3768928Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_trace_cpu_complex128 PASSED [ 39%] 2023-01-11T21:41:34.3769291Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_transpose_cpu_complex128 PASSED [ 39%] 2023-01-11T21:41:34.3769637Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_transpose_cpu_float64 PASSED [ 39%] 2023-01-11T21:41:34.3769992Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_trapezoid_cpu_float64 PASSED [ 39%] 2023-01-11T21:41:34.3770358Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_triangular_solve_cpu_complex128 PASSED [ 39%] 2023-01-11T21:41:34.3770730Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_triangular_solve_cpu_float64 PASSED [ 39%] 2023-01-11T21:41:34.3771074Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_triu_cpu_complex128 PASSED [ 39%] 2023-01-11T21:41:34.3771418Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_triu_cpu_float64 PASSED [ 39%] 2023-01-11T21:41:34.3771772Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_true_divide_cpu_complex128 PASSED [ 39%] 2023-01-11T21:41:34.3772128Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_true_divide_cpu_float64 PASSED [ 39%] 2023-01-11T21:41:34.3772512Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_unbind_cpu_complex128 PASSED [ 39%] 2023-01-11T21:41:34.3772868Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_unflatten_cpu_float64 PASSED [ 39%] 2023-01-11T21:41:34.3773220Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_unfold_copy_cpu_float64 PASSED [ 39%] 2023-01-11T21:41:34.3773618Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_uniform_cpu_float64 SKIPPED (Skipped! Dtype is not in supported backward dtypes!) [ 39%] 2023-01-11T21:41:34.3774015Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_var_cpu_float64 PASSED [ 39%] 2023-01-11T21:41:34.3774360Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_var_mean_cpu_float64 PASSED [ 39%] 2023-01-11T21:41:34.3774725Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_var_mean_unbiased_cpu_complex128 PASSED [ 39%] 2023-01-11T21:41:34.3775084Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_var_mean_unbiased_cpu_float64 PASSED [ 39%] 2023-01-11T21:41:34.3775456Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_var_unbiased_cpu_complex128 PASSED [ 39%] 2023-01-11T21:41:34.3775880Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_view_as_complex_cpu_float64 PASSED [ 39%] 2023-01-11T21:41:34.3776313Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_vsplit_cpu_complex128 PASSED [ 39%] 2023-01-11T21:41:34.3776717Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_zeros_cpu_complex128 SKIPPED (Skipped! Dtype is not in supported backward dtypes!) [ 39%] 2023-01-11T21:41:34.3777176Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_zeros_cpu_float64 SKIPPED (Skipped! Dtype is not in supported backward dtypes!) [ 40%] 2023-01-11T21:41:34.3777573Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_T_cpu_complex128 PASSED [ 40%] 2023-01-11T21:41:34.3777926Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad___getitem___cpu_complex128 PASSED [ 40%] 2023-01-11T21:41:34.3778300Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad___rdiv___cpu_complex128 PASSED [ 40%] 2023-01-11T21:41:34.3778661Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad___rdiv___cpu_float64 PASSED [ 40%] 2023-01-11T21:41:34.3779014Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad___rmod___cpu_float64 PASSED [ 40%] 2023-01-11T21:41:34.3779360Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad___rmul___cpu_complex128 PASSED [ 40%] 2023-01-11T21:41:34.3779715Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad___rmul___cpu_float64 PASSED [ 40%] 2023-01-11T21:41:34.3780086Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad___rpow___cpu_complex128 SKIPPED (Skipped!) [ 40%] 2023-01-11T21:41:34.3780472Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad___rpow___cpu_float64 SKIPPED (Skipped!) [ 40%] 2023-01-11T21:41:34.3780834Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad___rsub___cpu_complex128 PASSED [ 40%] 2023-01-11T21:41:34.3781212Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad__softmax_backward_data_cpu_float64 PASSED [ 40%] 2023-01-11T21:41:34.3781582Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_abs_cpu_complex128 PASSED [ 40%] 2023-01-11T21:41:34.3781937Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_acos_cpu_complex128 PASSED [ 40%] 2023-01-11T21:41:34.3782282Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_acosh_cpu_complex128 PASSED [ 40%] 2023-01-11T21:41:34.3782635Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_acosh_cpu_float64 PASSED [ 40%] 2023-01-11T21:41:34.3782994Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_addcdiv_cpu_complex128 PASSED [ 40%] 2023-01-11T21:41:34.3783342Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_addcdiv_cpu_float64 PASSED [ 40%] 2023-01-11T21:41:34.3783694Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_addmm_cpu_float64 PASSED [ 40%] 2023-01-11T21:41:34.3784125Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_addmm_decomposed_cpu_complex128 PASSED [ 40%] 2023-01-11T21:41:34.3784507Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_addmm_decomposed_cpu_float64 PASSED [ 40%] 2023-01-11T21:41:34.3784866Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_addmv_cpu_complex128 PASSED [ 40%] 2023-01-11T21:41:34.3785411Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_all_cpu_complex128 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 40%] 2023-01-11T21:41:34.3785985Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_all_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 40%] 2023-01-11T21:41:34.3786562Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_allclose_cpu_complex128 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 41%] 2023-01-11T21:41:34.3787128Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_aminmax_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 41%] 2023-01-11T21:41:34.3787733Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_any_cpu_complex128 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 41%] 2023-01-11T21:41:34.3788296Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_any_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 41%] 2023-01-11T21:41:34.3788860Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_argmax_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 41%] 2023-01-11T21:41:34.3789285Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_as_strided_cpu_complex128 SKIPPED (Numerous errors) [ 41%] 2023-01-11T21:41:34.3789696Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_as_strided_cpu_float64 SKIPPED (Numerous errors) [ 41%] 2023-01-11T21:41:34.3790072Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_asin_cpu_float64 PASSED [ 41%] 2023-01-11T21:41:34.3790430Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_asinh_cpu_float64 PASSED [ 41%] 2023-01-11T21:41:34.3790776Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_atanh_cpu_complex128 PASSED [ 41%] 2023-01-11T21:41:34.3791136Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_atleast_1d_cpu_float64 PASSED [ 41%] 2023-01-11T21:41:34.3791503Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_atleast_2d_cpu_complex128 PASSED [ 41%] 2023-01-11T21:41:34.3791870Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_atleast_3d_cpu_complex128 PASSED [ 41%] 2023-01-11T21:41:34.3792223Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_atleast_3d_cpu_float64 PASSED [ 41%] 2023-01-11T21:41:34.3792583Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_baddbmm_cpu_float64 PASSED [ 41%] 2023-01-11T21:41:34.3792944Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_bernoulli_cpu_float64 PASSED [ 41%] 2023-01-11T21:41:34.3793292Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_bfloat16_cpu_float64 XFAIL [ 41%] 2023-01-11T21:41:34.3793781Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_block_diag_cpu_complex128 PASSED [ 41%] 2023-01-11T21:41:34.3794145Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_bmm_cpu_float64 PASSED [ 41%] 2023-01-11T21:41:34.3794666Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_byte_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 41%] 2023-01-11T21:41:34.3795062Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_ceil_cpu_float64 PASSED [ 41%] 2023-01-11T21:41:34.3795421Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_cfloat_cpu_complex128 XFAIL [ 41%] 2023-01-11T21:41:34.3795778Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_cfloat_cpu_float64 XFAIL [ 41%] 2023-01-11T21:41:34.3796299Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_char_cpu_complex128 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 41%] 2023-01-11T21:41:34.3796506Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_cholesky_cpu_complex128 PASSED [ 42%] 2023-01-11T21:41:34.3796681Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_chunk_cpu_float64 PASSED [ 42%] 2023-01-11T21:41:34.3796856Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_clamp_max_cpu_float64 PASSED [ 42%] 2023-01-11T21:41:34.3797026Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_clamp_min_cpu_float64 PASSED [ 42%] 2023-01-11T21:41:34.3797193Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_clone_cpu_float64 PASSED [ 42%] 2023-01-11T21:41:34.3797370Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_column_stack_cpu_float64 PASSED [ 42%] 2023-01-11T21:41:34.3797553Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_combinations_cpu_complex128 PASSED [ 42%] 2023-01-11T21:41:34.3797723Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_conj_cpu_complex128 PASSED [ 42%] 2023-01-11T21:41:34.3797906Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_conj_physical_cpu_complex128 PASSED [ 42%] 2023-01-11T21:41:34.3798107Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_constant_pad_nd_cpu_complex128 PASSED [ 42%] 2023-01-11T21:41:34.3798291Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_constant_pad_nd_cpu_float64 PASSED [ 42%] 2023-01-11T21:41:34.3798472Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_contiguous_cpu_complex128 PASSED [ 42%] 2023-01-11T21:41:34.3798642Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_copysign_cpu_float64 PASSED [ 42%] 2023-01-11T21:41:34.3798819Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_corrcoef_cpu_complex128 PASSED [ 42%] 2023-01-11T21:41:34.3798991Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_corrcoef_cpu_float64 PASSED [ 42%] 2023-01-11T21:41:34.3799160Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_cosh_cpu_float64 PASSED [ 42%] 2023-01-11T21:41:34.3799519Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_count_nonzero_cpu_complex128 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 42%] 2023-01-11T21:41:34.3799687Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_cov_cpu_complex128 XFAIL [ 42%] 2023-01-11T21:41:34.3799838Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_cov_cpu_float64 XFAIL [ 42%] 2023-01-11T21:41:34.3800006Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_cross_cpu_float64 PASSED [ 42%] 2023-01-11T21:41:34.3800176Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_cumprod_cpu_float64 PASSED [ 42%] 2023-01-11T21:41:34.3800343Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_cumsum_cpu_float64 PASSED [ 42%] 2023-01-11T21:41:34.3800536Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_cumulative_trapezoid_cpu_complex128 PASSED [ 42%] 2023-01-11T21:41:34.3800885Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_cumulative_trapezoid_cpu_float64 PASSED [ 42%] 2023-01-11T21:41:34.3801064Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_diag_cpu_complex128 PASSED [ 43%] 2023-01-11T21:41:34.3801231Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_diag_cpu_float64 PASSED [ 43%] 2023-01-11T21:41:34.3801397Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_diag_embed_cpu_complex128 PASSED [ 43%] 2023-01-11T21:41:34.3801567Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_diagflat_cpu_float64 PASSED [ 43%] 2023-01-11T21:41:34.3801750Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_diagonal_copy_cpu_complex128 PASSED [ 43%] 2023-01-11T21:41:34.3801927Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_diagonal_copy_cpu_float64 PASSED [ 43%] 2023-01-11T21:41:34.3802094Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_diagonal_cpu_float64 PASSED [ 43%] 2023-01-11T21:41:34.3802337Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_diagonal_scatter_cpu_complex128 PASSED [ 43%] 2023-01-11T21:41:34.3802510Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_diff_cpu_complex128 PASSED [ 43%] 2023-01-11T21:41:34.3802680Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_dist_cpu_complex128 PASSED [ 43%] 2023-01-11T21:41:34.3802846Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_dist_cpu_float64 PASSED [ 43%] 2023-01-11T21:41:34.3803016Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_div_floor_rounding_cpu_float64 PASSED [ 43%] 2023-01-11T21:41:34.3803205Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_div_no_rounding_mode_cpu_complex128 PASSED [ 43%] 2023-01-11T21:41:34.3803389Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_div_trunc_rounding_cpu_float64 PASSED [ 43%] 2023-01-11T21:41:34.3803553Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_dot_cpu_float64 PASSED [ 43%] 2023-01-11T21:41:34.3803725Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_double_cpu_float64 PASSED [ 43%] 2023-01-11T21:41:34.3803938Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_dstack_cpu_complex128 PASSED [ 43%] 2023-01-11T21:41:34.3804107Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_dstack_cpu_float64 PASSED [ 43%] 2023-01-11T21:41:34.3804371Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_einsum_cpu_complex128 PASSED [ 43%] 2023-01-11T21:41:34.3804777Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_empty_cpu_complex128 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 43%] 2023-01-11T21:41:34.3805100Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_empty_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 43%] 2023-01-11T21:41:34.3805450Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_empty_like_cpu_complex128 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 43%] 2023-01-11T21:41:34.3805798Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_empty_like_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 43%] 2023-01-11T21:41:34.3806132Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_eq_cpu_complex128 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 43%] 2023-01-11T21:41:34.3806474Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_equal_cpu_complex128 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 43%] 2023-01-11T21:41:34.3806803Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_equal_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 44%] 2023-01-11T21:41:34.3806974Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_erfinv_cpu_float64 PASSED [ 44%] 2023-01-11T21:41:34.3807142Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_exp2_cpu_float64 PASSED [ 44%] 2023-01-11T21:41:34.3807315Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_exp_cpu_complex128 PASSED [ 44%] 2023-01-11T21:41:34.3807481Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_exp_cpu_float64 PASSED [ 44%] 2023-01-11T21:41:34.3807645Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_expand_cpu_complex128 PASSED [ 44%] 2023-01-11T21:41:34.3807814Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_expm1_cpu_float64 PASSED [ 44%] 2023-01-11T21:41:34.3808144Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_eye_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 44%] 2023-01-11T21:41:34.3808321Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_fft_fftn_cpu_complex128 PASSED [ 44%] 2023-01-11T21:41:34.3808503Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_fft_fftshift_cpu_complex128 PASSED [ 44%] 2023-01-11T21:41:34.3808681Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_fft_fftshift_cpu_float64 PASSED [ 44%] 2023-01-11T21:41:34.3808891Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_fft_hfft2_cpu_float64 PASSED [ 44%] 2023-01-11T21:41:34.3809064Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_fft_hfft_cpu_float64 PASSED [ 44%] 2023-01-11T21:41:34.3809240Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_fft_ifft2_cpu_complex128 PASSED [ 44%] 2023-01-11T21:41:34.3809398Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_fft_ifft_cpu_float64 PASSED [ 44%] 2023-01-11T21:41:34.3809569Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_fft_ifftn_cpu_float64 PASSED [ 44%] 2023-01-11T21:41:34.3809741Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_fft_ihfft2_cpu_float64 PASSED [ 44%] 2023-01-11T21:41:34.3809914Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_fft_ihfftn_cpu_float64 PASSED [ 44%] 2023-01-11T21:41:34.3810093Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_fft_irfft2_cpu_complex128 PASSED [ 44%] 2023-01-11T21:41:34.3810265Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_fft_irfft2_cpu_float64 PASSED [ 44%] 2023-01-11T21:41:34.3810477Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_fft_irfft_cpu_float64 PASSED [ 44%] 2023-01-11T21:41:34.3810652Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_fft_rfftn_cpu_float64 PASSED [ 44%] 2023-01-11T21:41:34.3810823Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_fill_cpu_complex128 PASSED [ 44%] 2023-01-11T21:41:34.3810977Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_fill_cpu_float64 PASSED [ 44%] 2023-01-11T21:41:34.3811149Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_flatten_cpu_float64 PASSED [ 45%] 2023-01-11T21:41:34.3811316Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_flip_cpu_float64 PASSED [ 45%] 2023-01-11T21:41:34.3811490Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_flipud_cpu_complex128 PASSED [ 45%] 2023-01-11T21:41:34.3811662Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_flipud_cpu_float64 PASSED [ 45%] 2023-01-11T21:41:34.3811832Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_float_cpu_complex128 XFAIL [ 45%] 2023-01-11T21:41:34.3811999Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_float_cpu_float64 XFAIL [ 45%] 2023-01-11T21:41:34.3812179Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_float_power_cpu_float64 PASSED [ 45%] 2023-01-11T21:41:34.3812334Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_floor_cpu_float64 PASSED [ 45%] 2023-01-11T21:41:34.3812497Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_fmax_cpu_float64 PASSED [ 45%] 2023-01-11T21:41:34.3812662Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_fmin_cpu_float64 PASSED [ 45%] 2023-01-11T21:41:34.3812826Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_frac_cpu_float64 PASSED [ 45%] 2023-01-11T21:41:34.3813163Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_full_cpu_complex128 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 45%] 2023-01-11T21:41:34.3813514Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_full_like_cpu_complex128 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 45%] 2023-01-11T21:41:34.3813689Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_gather_cpu_float64 PASSED [ 45%] 2023-01-11T21:41:34.3814017Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_ge_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 45%] 2023-01-11T21:41:34.3814354Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_geqrf_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 45%] 2023-01-11T21:41:34.3814532Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_gradient_cpu_complex128 PASSED [ 45%] 2023-01-11T21:41:34.3814687Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_half_cpu_complex128 XFAIL [ 45%] 2023-01-11T21:41:34.3815059Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_heaviside_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 45%] 2023-01-11T21:41:34.3815393Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_histc_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 45%] 2023-01-11T21:41:34.3815570Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_hsplit_cpu_complex128 PASSED [ 45%] 2023-01-11T21:41:34.3815744Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_hsplit_cpu_float64 PASSED [ 45%] 2023-01-11T21:41:34.3815915Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_hstack_cpu_complex128 PASSED [ 45%] 2023-01-11T21:41:34.3816308Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_igammac_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 45%] 2023-01-11T21:41:34.3816490Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_index_add_cpu_complex128 PASSED [ 46%] 2023-01-11T21:41:34.3816665Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_index_add_cpu_float64 PASSED [ 46%] 2023-01-11T21:41:34.3816858Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_index_copy_cpu_float64 PASSED [ 46%] 2023-01-11T21:41:34.3817039Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_index_fill_cpu_complex128 PASSED [ 46%] 2023-01-11T21:41:34.3817213Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_index_put_cpu_complex128 PASSED [ 46%] 2023-01-11T21:41:34.3817539Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_int_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 46%] 2023-01-11T21:41:34.3817883Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_isclose_cpu_complex128 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 46%] 2023-01-11T21:41:34.3818217Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_isclose_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 46%] 2023-01-11T21:41:34.3818565Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_isfinite_cpu_complex128 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 46%] 2023-01-11T21:41:34.3818906Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_isfinite_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 46%] 2023-01-11T21:41:34.3819245Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_isinf_cpu_complex128 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 46%] 2023-01-11T21:41:34.3819573Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_isnan_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 46%] 2023-01-11T21:41:34.3819908Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_isneginf_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 46%] 2023-01-11T21:41:34.3820108Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_jiterator_2inputs_2outputs_cpu_float64 SKIPPED (Only runs on cuda) [ 46%] 2023-01-11T21:41:34.3820336Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_jiterator_4inputs_with_extra_args_cpu_complex128 SKIPPED (Only runs on cuda) [ 46%] 2023-01-11T21:41:34.3820551Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_jiterator_4inputs_with_extra_args_cpu_float64 SKIPPED (Only runs on cuda) [ 46%] 2023-01-11T21:41:34.3820758Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_jiterator_binary_cpu_complex128 SKIPPED (Only runs on cuda) [ 46%] 2023-01-11T21:41:34.3820968Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_jiterator_binary_return_by_ref_cpu_complex128 SKIPPED (Only runs on cuda) [ 46%] 2023-01-11T21:41:34.3821181Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_jiterator_binary_return_by_ref_cpu_float64 SKIPPED (Only runs on cuda) [ 46%] 2023-01-11T21:41:34.3821379Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_jiterator_unary_cpu_float64 SKIPPED (Only runs on cuda) [ 46%] 2023-01-11T21:41:34.3821581Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_kron_cpu_float64 PASSED [ 46%] 2023-01-11T21:41:34.3821757Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_kthvalue_cpu_float64 PASSED [ 46%] 2023-01-11T21:41:34.3821930Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_ldexp_cpu_complex128 PASSED [ 46%] 2023-01-11T21:41:34.3822086Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_ldexp_cpu_float64 PASSED [ 46%] 2023-01-11T21:41:34.3822258Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_lerp_cpu_complex128 PASSED [ 47%] 2023-01-11T21:41:34.3822434Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_linalg_cond_cpu_float64 PASSED [ 47%] 2023-01-11T21:41:34.3822616Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_linalg_cross_cpu_complex128 PASSED [ 47%] 2023-01-11T21:41:34.3822791Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_linalg_det_cpu_float64 PASSED [ 47%] 2023-01-11T21:41:34.3822982Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_linalg_det_singular_cpu_complex128 XFAIL [ 47%] 2023-01-11T21:41:34.3823196Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_linalg_det_singular_cpu_float64 PASSED [ 47%] 2023-01-11T21:41:34.3823373Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_linalg_eigh_cpu_float64 PASSED [ 47%] 2023-01-11T21:41:34.3823554Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_linalg_eigvals_cpu_complex128 PASSED [ 47%] 2023-01-11T21:41:34.3823728Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_linalg_eigvalsh_cpu_complex128 PASSED [ 47%] 2023-01-11T21:41:34.3823907Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_linalg_eigvalsh_cpu_float64 PASSED [ 47%] 2023-01-11T21:41:34.3824107Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_linalg_householder_product_cpu_complex128 PASSED [ 47%] 2023-01-11T21:41:34.3824285Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_linalg_inv_cpu_float64 PASSED [ 47%] 2023-01-11T21:41:34.3824465Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_linalg_inv_ex_cpu_complex128 PASSED [ 47%] 2023-01-11T21:41:34.3824642Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_linalg_inv_ex_cpu_float64 PASSED [ 47%] 2023-01-11T21:41:34.3825002Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_linalg_ldl_factor_cpu_complex128 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 47%] 2023-01-11T21:41:34.3825356Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_linalg_ldl_factor_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 47%] 2023-01-11T21:41:34.3825782Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_linalg_ldl_factor_ex_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 47%] 2023-01-11T21:41:34.3826188Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_linalg_ldl_solve_cpu_complex128 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 47%] 2023-01-11T21:41:34.3826390Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_linalg_lstsq_grad_oriented_cpu_complex128 PASSED [ 47%] 2023-01-11T21:41:34.3826574Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_linalg_lu_factor_cpu_float64 PASSED [ 47%] 2023-01-11T21:41:34.3826761Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_linalg_matrix_norm_cpu_complex128 PASSED [ 47%] 2023-01-11T21:41:34.3826949Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_linalg_matrix_power_cpu_complex128 PASSED [ 47%] 2023-01-11T21:41:34.3827302Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_linalg_matrix_rank_cpu_complex128 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 47%] 2023-01-11T21:41:34.3827678Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_linalg_matrix_rank_hermitian_cpu_complex128 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 47%] 2023-01-11T21:41:34.3828085Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_linalg_matrix_rank_hermitian_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 48%] 2023-01-11T21:41:34.3828276Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_linalg_multi_dot_cpu_complex128 PASSED [ 48%] 2023-01-11T21:41:34.3828460Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_linalg_multi_dot_cpu_float64 PASSED [ 48%] 2023-01-11T21:41:34.3828663Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_linalg_norm_subgradients_at_zero_cpu_complex128 XFAIL [ 48%] 2023-01-11T21:41:34.3828843Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_linalg_pinv_hermitian_cpu_complex128 PASSED [ 48%] 2023-01-11T21:41:34.3829086Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_linalg_pinv_singular_cpu_float64 SKIPPED (test is slow; run with PYTORCH_TEST_WITH_SLOW to enable test) [ 48%] 2023-01-11T21:41:34.3829265Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_linalg_qr_cpu_complex128 PASSED [ 48%] 2023-01-11T21:41:34.3829437Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_linalg_qr_cpu_float64 PASSED [ 48%] 2023-01-11T21:41:34.3829646Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_linalg_slogdet_cpu_complex128 PASSED [ 48%] 2023-01-11T21:41:34.3829821Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_linalg_solve_cpu_float64 PASSED [ 48%] 2023-01-11T21:41:34.3830000Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_linalg_solve_ex_cpu_float64 PASSED [ 48%] 2023-01-11T21:41:34.3830188Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_linalg_solve_triangular_cpu_float64 PASSED [ 48%] 2023-01-11T21:41:34.3830373Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_linalg_tensorinv_cpu_complex128 PASSED [ 48%] 2023-01-11T21:41:34.3830548Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_linalg_tensorsolve_cpu_complex128 PASSED [ 48%] 2023-01-11T21:41:34.3830730Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_linalg_vander_cpu_complex128 PASSED [ 48%] 2023-01-11T21:41:34.3830908Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_linalg_vecdot_cpu_float64 PASSED [ 48%] 2023-01-11T21:41:34.3831094Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_linalg_vector_norm_cpu_complex128 PASSED [ 48%] 2023-01-11T21:41:34.3831275Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_linalg_vector_norm_cpu_float64 PASSED [ 48%] 2023-01-11T21:41:34.3831443Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_log10_cpu_float64 PASSED [ 48%] 2023-01-11T21:41:34.3831614Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_log1p_cpu_complex128 PASSED [ 48%] 2023-01-11T21:41:34.3831782Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_log1p_cpu_float64 PASSED [ 48%] 2023-01-11T21:41:34.3831948Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_log2_cpu_float64 PASSED [ 48%] 2023-01-11T21:41:34.3832103Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_log_cpu_float64 PASSED [ 48%] 2023-01-11T21:41:34.3832299Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_log_softmax_with_dtype_cpu_complex128 PASSED [ 48%] 2023-01-11T21:41:34.3832473Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_logaddexp_cpu_float64 PASSED [ 49%] 2023-01-11T21:41:34.3832647Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_logdet_cpu_complex128 PASSED [ 49%] 2023-01-11T21:41:34.3832815Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_logdet_cpu_float64 PASSED [ 49%] 2023-01-11T21:41:34.3833177Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_logical_and_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 49%] 2023-01-11T21:41:34.3833624Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_logical_not_cpu_complex128 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 49%] 2023-01-11T21:41:34.3834026Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_logical_xor_cpu_complex128 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 49%] 2023-01-11T21:41:34.3834201Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_logit_cpu_float64 PASSED [ 49%] 2023-01-11T21:41:34.3834633Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_logspace_cpu_complex128 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 49%] 2023-01-11T21:41:34.3834973Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_logspace_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 49%] 2023-01-11T21:41:34.3835150Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_logsumexp_cpu_float64 PASSED [ 49%] 2023-01-11T21:41:34.3835479Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_long_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 49%] 2023-01-11T21:41:34.3835806Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_lt_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 49%] 2023-01-11T21:41:34.3835979Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_lu_cpu_complex128 PASSED [ 49%] 2023-01-11T21:41:34.3836177Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_lu_cpu_float64 PASSED [ 49%] 2023-01-11T21:41:34.3836356Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_lu_solve_cpu_complex128 PASSED [ 49%] 2023-01-11T21:41:34.3836527Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_lu_solve_cpu_float64 PASSED [ 49%] 2023-01-11T21:41:34.3836694Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_mH_cpu_complex128 PASSED [ 49%] 2023-01-11T21:41:34.3836846Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_mH_cpu_float64 PASSED [ 49%] 2023-01-11T21:41:34.3837193Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_masked_argmax_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 49%] 2023-01-11T21:41:34.3837541Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_masked_argmin_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 49%] 2023-01-11T21:41:34.3837727Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_masked_cumprod_cpu_complex128 PASSED [ 49%] 2023-01-11T21:41:34.3837910Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_masked_cumsum_cpu_complex128 PASSED [ 49%] 2023-01-11T21:41:34.3838090Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_masked_fill_cpu_complex128 PASSED [ 49%] 2023-01-11T21:41:34.3838273Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_masked_log_softmax_cpu_float64 PASSED [ 49%] 2023-01-11T21:41:34.3838450Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_masked_mean_cpu_float64 PASSED [ 50%] 2023-01-11T21:41:34.3838627Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_masked_median_cpu_float64 PASSED [ 50%] 2023-01-11T21:41:34.3838803Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_masked_normalize_cpu_complex128 PASSED [ 50%] 2023-01-11T21:41:34.3838984Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_masked_normalize_cpu_float64 PASSED [ 50%] 2023-01-11T21:41:34.3839162Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_masked_prod_cpu_float64 PASSED [ 50%] 2023-01-11T21:41:34.3839341Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_masked_select_cpu_float64 PASSED [ 50%] 2023-01-11T21:41:34.3839512Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_masked_std_cpu_float64 PASSED [ 50%] 2023-01-11T21:41:34.3839684Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_masked_sum_cpu_float64 PASSED [ 50%] 2023-01-11T21:41:34.3839858Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_matmul_cpu_complex128 PASSED [ 50%] 2023-01-11T21:41:34.3840029Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_matmul_cpu_float64 PASSED [ 50%] 2023-01-11T21:41:34.3840237Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_matrix_exp_cpu_complex128 PASSED [ 50%] 2023-01-11T21:41:34.3840399Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_matrix_exp_cpu_float64 PASSED [ 50%] 2023-01-11T21:41:34.3840575Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_max_binary_cpu_float64 PASSED [ 50%] 2023-01-11T21:41:34.3840868Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_max_pool2d_with_indices_backward_cpu_float64 PASSED [ 50%] 2023-01-11T21:41:34.3841055Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_max_reduction_no_dim_cpu_float64 PASSED [ 50%] 2023-01-11T21:41:34.3841225Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_maximum_cpu_float64 PASSED [ 50%] 2023-01-11T21:41:34.3841395Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_mean_cpu_complex128 PASSED [ 50%] 2023-01-11T21:41:34.3841591Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_meshgrid_list_of_tensors_cpu_complex128 PASSED [ 50%] 2023-01-11T21:41:34.3841765Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_min_binary_cpu_float64 PASSED [ 50%] 2023-01-11T21:41:34.3841983Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_mm_cpu_complex128 PASSED [ 50%] 2023-01-11T21:41:34.3842141Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_mode_cpu_float64 PASSED [ 50%] 2023-01-11T21:41:34.3842314Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_mul_cpu_complex128 PASSED [ 50%] 2023-01-11T21:41:34.3842481Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_mul_cpu_float64 PASSED [ 50%] 2023-01-11T21:41:34.3842830Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_multinomial_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 50%] 2023-01-11T21:41:34.3843021Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_mvlgamma_mvlgamma_p_1_cpu_float64 PASSED [ 50%] 2023-01-11T21:41:34.3843210Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_mvlgamma_mvlgamma_p_5_cpu_float64 PASSED [ 51%] 2023-01-11T21:41:34.3843387Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_nanmedian_cpu_float64 PASSED [ 51%] 2023-01-11T21:41:34.3843560Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_nansum_cpu_float64 PASSED [ 51%] 2023-01-11T21:41:34.3843901Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_narrow_copy_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 51%] 2023-01-11T21:41:34.3844063Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_narrow_cpu_complex128 PASSED [ 51%] 2023-01-11T21:41:34.3844234Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_narrow_cpu_float64 PASSED [ 51%] 2023-01-11T21:41:34.3844517Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_native_dropout_backward_cpu_float64 PASSED [ 51%] 2023-01-11T21:41:34.3844687Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_neg_cpu_complex128 PASSED [ 51%] 2023-01-11T21:41:34.3844853Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_neg_cpu_float64 PASSED [ 51%] 2023-01-11T21:41:34.3845195Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_new_empty_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 51%] 2023-01-11T21:41:34.3845536Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_new_full_cpu_complex128 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 51%] 2023-01-11T21:41:34.3845872Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_new_full_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 51%] 2023-01-11T21:41:34.3846211Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_new_ones_cpu_complex128 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 51%] 2023-01-11T21:41:34.3846546Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_new_ones_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 51%] 2023-01-11T21:41:34.3846923Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_new_zeros_cpu_complex128 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 51%] 2023-01-11T21:41:34.3847262Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_new_zeros_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 51%] 2023-01-11T21:41:34.3847475Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_nn_functional__scaled_dot_product_attention_cpu_float64 PASSED [ 51%] 2023-01-11T21:41:34.3847673Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_nn_functional_adaptive_avg_pool3d_cpu_float64 PASSED [ 51%] 2023-01-11T21:41:34.3847874Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_nn_functional_adaptive_max_pool2d_cpu_float64 PASSED [ 51%] 2023-01-11T21:41:34.3848065Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_nn_functional_avg_pool1d_cpu_float64 PASSED [ 51%] 2023-01-11T21:41:34.3848253Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_nn_functional_conv1d_cpu_complex128 PASSED [ 51%] 2023-01-11T21:41:34.3848440Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_nn_functional_conv2d_cpu_float64 PASSED [ 51%] 2023-01-11T21:41:34.3848670Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_nn_functional_conv_transpose1d_cpu_complex128 PASSED [ 51%] 2023-01-11T21:41:34.3848866Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_nn_functional_conv_transpose2d_cpu_complex128 PASSED [ 51%] 2023-01-11T21:41:34.3849051Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_nn_functional_conv_transpose2d_cpu_float64 PASSED [ 52%] 2023-01-11T21:41:34.3849253Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_nn_functional_conv_transpose3d_cpu_complex128 PASSED [ 52%] 2023-01-11T21:41:34.3849447Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_nn_functional_conv_transpose3d_cpu_float64 PASSED [ 52%] 2023-01-11T21:41:34.3849647Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_nn_functional_cosine_embedding_loss_cpu_float64 PASSED [ 52%] 2023-01-11T21:41:34.3849846Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_nn_functional_cosine_similarity_cpu_float64 PASSED [ 52%] 2023-01-11T21:41:34.3850039Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_nn_functional_cross_entropy_cpu_float64 PASSED [ 52%] 2023-01-11T21:41:34.3850224Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_nn_functional_ctc_loss_cpu_float64 XFAIL [ 52%] 2023-01-11T21:41:34.3850415Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_nn_functional_dropout2d_cpu_float64 PASSED [ 52%] 2023-01-11T21:41:34.3850602Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_nn_functional_dropout3d_cpu_float64 PASSED [ 52%] 2023-01-11T21:41:34.3850784Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_nn_functional_gaussian_nll_loss_cpu_float64 PASSED [ 52%] 2023-01-11T21:41:34.3850968Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_nn_functional_glu_cpu_float64 PASSED [ 52%] 2023-01-11T21:41:34.3851349Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_nn_functional_grid_sample_cpu_float64 SKIPPED (Op claims it doesn't support gradgrad. This is not verified.) [ 52%] 2023-01-11T21:41:34.3851542Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_nn_functional_group_norm_cpu_float64 PASSED [ 52%] 2023-01-11T21:41:34.3851733Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_nn_functional_hardshrink_cpu_float64 PASSED [ 52%] 2023-01-11T21:41:34.3851921Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_nn_functional_hardswish_cpu_float64 PASSED [ 52%] 2023-01-11T21:41:34.3852120Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_nn_functional_interpolate_bicubic_cpu_float64 PASSED [ 52%] 2023-01-11T21:41:34.3852318Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_nn_functional_interpolate_nearest_cpu_float64 PASSED [ 52%] 2023-01-11T21:41:34.3852508Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_nn_functional_layer_norm_cpu_float64 PASSED [ 52%] 2023-01-11T21:41:34.3852726Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_nn_functional_linear_cpu_complex128 PASSED [ 52%] 2023-01-11T21:41:34.3852914Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_nn_functional_local_response_norm_cpu_float64 PASSED [ 52%] 2023-01-11T21:41:34.3853105Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_nn_functional_logsigmoid_cpu_float64 PASSED [ 52%] 2023-01-11T21:41:34.3853299Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_nn_functional_margin_ranking_loss_cpu_float64 PASSED [ 52%] 2023-01-11T21:41:34.3853484Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_nn_functional_max_pool1d_cpu_float64 PASSED [ 52%] 2023-01-11T21:41:34.3853669Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_nn_functional_max_pool2d_cpu_float64 PASSED [ 52%] 2023-01-11T21:41:34.3853937Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_nn_functional_max_pool3d_cpu_float64 PASSED [ 53%] 2023-01-11T21:41:34.3854146Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_nn_functional_max_unpool1d_cpu_float64 SKIPPED (Skipped!) [ 53%] 2023-01-11T21:41:34.3854372Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_nn_functional_max_unpool3d_grad_cpu_float64 PASSED [ 53%] 2023-01-11T21:41:34.3854763Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_nn_functional_multi_margin_loss_cpu_float64 SKIPPED (Op claims it doesn't support gradgrad. This is not verified.) [ 53%] 2023-01-11T21:41:34.3854972Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_nn_functional_multilabel_soft_margin_loss_cpu_float64 PASSED [ 53%] 2023-01-11T21:41:34.3855153Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_nn_functional_normalize_cpu_complex128 PASSED [ 53%] 2023-01-11T21:41:34.3855345Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_nn_functional_pad_circular_cpu_float64 PASSED [ 53%] 2023-01-11T21:41:34.3855543Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_nn_functional_pad_constant_cpu_complex128 PASSED [ 53%] 2023-01-11T21:41:34.3855735Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_nn_functional_pad_constant_cpu_float64 PASSED [ 53%] 2023-01-11T21:41:34.3855988Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_nn_functional_pad_reflect_cpu_float64 PASSED [ 53%] 2023-01-11T21:41:34.3856359Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_nn_functional_pdist_cpu_float64 SKIPPED (Op claims it doesn't support gradgrad. This is not verified.) [ 53%] 2023-01-11T21:41:34.3856562Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_nn_functional_pixel_unshuffle_cpu_complex128 PASSED [ 53%] 2023-01-11T21:41:34.3856754Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_nn_functional_pixel_unshuffle_cpu_float64 PASSED [ 53%] 2023-01-11T21:41:34.3856937Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_nn_functional_relu6_cpu_float64 PASSED [ 53%] 2023-01-11T21:41:34.3857123Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_nn_functional_relu_cpu_float64 PASSED [ 53%] 2023-01-11T21:41:34.3857296Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_nn_functional_rrelu_cpu_float64 PASSED [ 53%] 2023-01-11T21:41:34.3857482Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_nn_functional_softmin_cpu_float64 PASSED [ 53%] 2023-01-11T21:41:34.3857682Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_nn_functional_softmin_with_dtype_cpu_complex128 PASSED [ 53%] 2023-01-11T21:41:34.3857877Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_nn_functional_softmin_with_dtype_cpu_float64 PASSED [ 53%] 2023-01-11T21:41:34.3858066Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_nn_functional_softshrink_cpu_float64 PASSED [ 53%] 2023-01-11T21:41:34.3858257Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_nn_functional_softsign_cpu_complex128 PASSED [ 53%] 2023-01-11T21:41:34.3858479Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_nn_functional_softsign_cpu_float64 PASSED [ 53%] 2023-01-11T21:41:34.3858673Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_nn_functional_tanhshrink_cpu_complex128 PASSED [ 53%] 2023-01-11T21:41:34.3858862Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_nn_functional_tanhshrink_cpu_float64 PASSED [ 53%] 2023-01-11T21:41:34.3859048Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_nn_functional_triplet_margin_loss_cpu_float64 PASSED [ 54%] 2023-01-11T21:41:34.3859269Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_nn_functional_triplet_margin_with_distance_loss_cpu_complex128 PASSED [ 54%] 2023-01-11T21:41:34.3859454Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_nn_functional_unfold_cpu_float64 PASSED [ 54%] 2023-01-11T21:41:34.3859653Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_nn_functional_upsample_bilinear_cpu_float64 PASSED [ 54%] 2023-01-11T21:41:34.3859997Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_nonzero_cpu_complex128 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 54%] 2023-01-11T21:41:34.3860193Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_norm_cpu_float64 PASSED [ 54%] 2023-01-11T21:41:34.3860370Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_norm_fro_cpu_float64 PASSED [ 54%] 2023-01-11T21:41:34.3860549Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_norm_inf_cpu_complex128 PASSED [ 54%] 2023-01-11T21:41:34.3860719Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_norm_inf_cpu_float64 PASSED [ 54%] 2023-01-11T21:41:34.3860885Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_norm_nuc_cpu_complex128 PASSED [ 54%] 2023-01-11T21:41:34.3861085Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_normal_cpu_float64 SKIPPED (Gradients are incorrect!) [ 54%] 2023-01-11T21:41:34.3861253Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_outer_cpu_float64 PASSED [ 54%] 2023-01-11T21:41:34.3861430Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_permute_cpu_complex128 PASSED [ 54%] 2023-01-11T21:41:34.3861602Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_pinverse_cpu_float64 PASSED [ 54%] 2023-01-11T21:41:34.3861805Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_polygamma_polygamma_n_1_cpu_float64 SKIPPED (Skipped!) [ 54%] 2023-01-11T21:41:34.3862008Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_polygamma_polygamma_n_2_cpu_float64 SKIPPED (Skipped!) [ 54%] 2023-01-11T21:41:34.3862177Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_put_cpu_float64 PASSED [ 54%] 2023-01-11T21:41:34.3862347Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_quantile_cpu_float64 PASSED [ 54%] 2023-01-11T21:41:34.3862506Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_rad2deg_cpu_float64 PASSED [ 54%] 2023-01-11T21:41:34.3862854Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_randint_like_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 54%] 2023-01-11T21:41:34.3863188Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_randn_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 54%] 2023-01-11T21:41:34.3863356Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_ravel_cpu_float64 PASSED [ 54%] 2023-01-11T21:41:34.3863526Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_real_cpu_complex128 PASSED [ 54%] 2023-01-11T21:41:34.3863708Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_reciprocal_cpu_complex128 PASSED [ 54%] 2023-01-11T21:41:34.3863885Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_reciprocal_cpu_float64 PASSED [ 55%] 2023-01-11T21:41:34.3864055Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_renorm_cpu_float64 PASSED [ 55%] 2023-01-11T21:41:34.3864229Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_repeat_cpu_complex128 PASSED [ 55%] 2023-01-11T21:41:34.3864436Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_repeat_interleave_cpu_float64 PASSED [ 55%] 2023-01-11T21:41:34.3864619Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_reshape_as_cpu_complex128 PASSED [ 55%] 2023-01-11T21:41:34.3864791Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_reshape_cpu_float64 PASSED [ 55%] 2023-01-11T21:41:34.3865131Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_resize__cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 55%] 2023-01-11T21:41:34.3865312Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_resolve_neg_cpu_complex128 PASSED [ 55%] 2023-01-11T21:41:34.3865530Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_resolve_neg_cpu_float64 PASSED [ 55%] 2023-01-11T21:41:34.3865721Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_rot90_cpu_float64 PASSED [ 55%] 2023-01-11T21:41:34.3865894Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_round_cpu_float64 PASSED [ 55%] 2023-01-11T21:41:34.3866123Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_round_decimals_neg_3_cpu_float64 SKIPPED (Skipped!) [ 55%] 2023-01-11T21:41:34.3866478Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_scalar_tensor_cpu_complex128 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 55%] 2023-01-11T21:41:34.3866711Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_scatter_add_cpu_float64 PASSED [ 55%] 2023-01-11T21:41:34.3866889Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_scatter_cpu_complex128 PASSED [ 55%] 2023-01-11T21:41:34.3867059Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_scatter_cpu_float64 PASSED [ 55%] 2023-01-11T21:41:34.3867243Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_scatter_reduce_amax_cpu_float64 PASSED [ 55%] 2023-01-11T21:41:34.3867429Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_scatter_reduce_mean_cpu_float64 PASSED [ 55%] 2023-01-11T21:41:34.3867612Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_scatter_reduce_sum_cpu_float64 PASSED [ 55%] 2023-01-11T21:41:34.3867987Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_segment_reduce_offsets_cpu_float64 SKIPPED (Op claims it doesn't support gradgrad. This is not verified.) [ 55%] 2023-01-11T21:41:34.3868159Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_select_cpu_float64 PASSED [ 55%] 2023-01-11T21:41:34.3868336Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_select_scatter_cpu_float64 PASSED [ 55%] 2023-01-11T21:41:34.3868491Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_sgn_cpu_float64 PASSED [ 55%] 2023-01-11T21:41:34.3868833Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_short_cpu_complex128 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 55%] 2023-01-11T21:41:34.3869165Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_short_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 56%] 2023-01-11T21:41:34.3869347Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_sigmoid_cpu_complex128 PASSED [ 56%] 2023-01-11T21:41:34.3869514Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_sign_cpu_float64 PASSED [ 56%] 2023-01-11T21:41:34.3869872Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_signal_windows_blackman_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 56%] 2023-01-11T21:41:34.3870246Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_signal_windows_general_hamming_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 56%] 2023-01-11T21:41:34.3870581Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_signbit_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 56%] 2023-01-11T21:41:34.3870752Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_sin_cpu_complex128 PASSED [ 56%] 2023-01-11T21:41:34.3870962Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_sinc_cpu_complex128 PASSED [ 56%] 2023-01-11T21:41:34.3871119Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_sinc_cpu_float64 PASSED [ 56%] 2023-01-11T21:41:34.3871291Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_sinh_cpu_complex128 PASSED [ 56%] 2023-01-11T21:41:34.3871469Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_slice_scatter_cpu_float64 PASSED [ 56%] 2023-01-11T21:41:34.3871658Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_softmax_with_dtype_cpu_complex128 PASSED [ 56%] 2023-01-11T21:41:34.3871843Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_softmax_with_dtype_cpu_float64 PASSED [ 56%] 2023-01-11T21:41:34.3872046Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_sparse_sampled_addmm_cpu_complex128 SKIPPED (Skipped!) [ 56%] 2023-01-11T21:41:34.3872394Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_special_airy_ai_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 56%] 2023-01-11T21:41:34.3872776Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_special_bessel_j1_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 56%] 2023-01-11T21:41:34.3873129Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_special_bessel_y0_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 56%] 2023-01-11T21:41:34.3873308Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_special_erfcx_cpu_float64 PASSED [ 56%] 2023-01-11T21:41:34.3873668Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_special_hermite_polynomial_he_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 56%] 2023-01-11T21:41:34.3873888Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_special_i1_cpu_float64 PASSED [ 56%] 2023-01-11T21:41:34.3874295Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_special_laguerre_polynomial_l_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 56%] 2023-01-11T21:41:34.3874489Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_special_log_ndtr_cpu_float64 PASSED [ 56%] 2023-01-11T21:41:34.3874855Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_special_modified_bessel_i1_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 56%] 2023-01-11T21:41:34.3875032Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_special_ndtr_cpu_float64 PASSED [ 56%] 2023-01-11T21:41:34.3875238Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_special_polygamma_special_polygamma_n_0_cpu_float64 PASSED [ 56%] 2023-01-11T21:41:34.3875643Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_special_shifted_chebyshev_polynomial_t_cpu_float64 SKIPPED (Skipping - testing takes an unreasonably long time, #79528) [ 57%] 2023-01-11T21:41:34.3876039Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_special_shifted_chebyshev_polynomial_u_cpu_float64 SKIPPED (Skipping - testing takes an unreasonably long time, #79528) [ 57%] 2023-01-11T21:41:34.3876434Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_special_shifted_chebyshev_polynomial_v_cpu_float64 SKIPPED (Skipping - testing takes an unreasonably long time, #79528) [ 57%] 2023-01-11T21:41:34.3876803Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_special_spherical_bessel_j0_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 57%] 2023-01-11T21:41:34.3876972Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_special_xlog1py_cpu_float64 PASSED [ 57%] 2023-01-11T21:41:34.3877146Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_split_list_args_cpu_float64 PASSED [ 57%] 2023-01-11T21:41:34.3877329Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_split_with_sizes_cpu_float64 PASSED [ 57%] 2023-01-11T21:41:34.3877551Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_stack_cpu_float64 PASSED [ 57%] 2023-01-11T21:41:34.3877722Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_std_cpu_complex128 PASSED [ 57%] 2023-01-11T21:41:34.3877905Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_std_unbiased_cpu_complex128 PASSED [ 57%] 2023-01-11T21:41:34.3878080Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_std_unbiased_cpu_float64 PASSED [ 57%] 2023-01-11T21:41:34.3878250Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_stft_cpu_complex128 PASSED [ 57%] 2023-01-11T21:41:34.3878417Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_stft_cpu_float64 PASSED [ 57%] 2023-01-11T21:41:34.3878572Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_sub_cpu_float64 PASSED [ 57%] 2023-01-11T21:41:34.3878741Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_sum_cpu_complex128 PASSED [ 57%] 2023-01-11T21:41:34.3878905Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_sum_cpu_float64 PASSED [ 57%] 2023-01-11T21:41:34.3879087Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_sum_to_size_cpu_complex128 PASSED [ 57%] 2023-01-11T21:41:34.3879288Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_svd_cpu_complex128 PASSED [ 57%] 2023-01-11T21:41:34.3879453Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_svd_cpu_float64 PASSED [ 57%] 2023-01-11T21:41:34.3879624Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_symeig_cpu_complex128 PASSED [ 57%] 2023-01-11T21:41:34.3879793Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_symeig_cpu_float64 PASSED [ 57%] 2023-01-11T21:41:34.3879942Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_t_cpu_float64 PASSED [ 57%] 2023-01-11T21:41:34.3880127Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_take_along_dim_cpu_complex128 PASSED [ 57%] 2023-01-11T21:41:34.3880292Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_take_cpu_float64 PASSED [ 57%] 2023-01-11T21:41:34.3880462Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_tan_cpu_complex128 PASSED [ 58%] 2023-01-11T21:41:34.3880755Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_tanh_cpu_complex128 PASSED [ 58%] 2023-01-11T21:41:34.3880946Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_tanh_cpu_float64 PASSED [ 58%] 2023-01-11T21:41:34.3881129Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_tensor_split_cpu_complex128 PASSED [ 58%] 2023-01-11T21:41:34.3881305Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_tensordot_cpu_float64 PASSED [ 58%] 2023-01-11T21:41:34.3881475Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_tile_cpu_complex128 PASSED [ 58%] 2023-01-11T21:41:34.3881629Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_to_cpu_complex128 PASSED [ 58%] 2023-01-11T21:41:34.3881791Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_to_cpu_float64 PASSED [ 58%] 2023-01-11T21:41:34.3882148Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_to_sparse_cpu_complex128 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 58%] 2023-01-11T21:41:34.3882325Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_to_sparse_cpu_float64 PASSED [ 58%] 2023-01-11T21:41:34.3882492Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_trace_cpu_float64 PASSED [ 58%] 2023-01-11T21:41:34.3882672Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_transpose_cpu_complex128 PASSED [ 58%] 2023-01-11T21:41:34.3882846Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_transpose_cpu_float64 PASSED [ 58%] 2023-01-11T21:41:34.3883020Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_trapezoid_cpu_float64 PASSED [ 58%] 2023-01-11T21:41:34.3883192Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_trapz_cpu_complex128 PASSED [ 58%] 2023-01-11T21:41:34.3883350Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_trapz_cpu_float64 PASSED [ 58%] 2023-01-11T21:41:34.3883644Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_triangular_solve_cpu_complex128 PASSED [ 58%] 2023-01-11T21:41:34.3883882Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_triangular_solve_cpu_float64 PASSED [ 58%] 2023-01-11T21:41:34.3884098Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_tril_cpu_complex128 PASSED [ 58%] 2023-01-11T21:41:34.3884270Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_triu_cpu_complex128 PASSED [ 58%] 2023-01-11T21:41:34.3884437Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_trunc_cpu_float64 PASSED [ 58%] 2023-01-11T21:41:34.3884616Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_unflatten_cpu_complex128 PASSED [ 58%] 2023-01-11T21:41:34.3884787Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_unflatten_cpu_float64 PASSED [ 58%] 2023-01-11T21:41:34.3884962Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_unfold_copy_cpu_float64 PASSED [ 58%] 2023-01-11T21:41:34.3885125Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_unfold_cpu_complex128 PASSED [ 59%] 2023-01-11T21:41:34.3885516Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_uniform_cpu_complex128 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 59%] 2023-01-11T21:41:34.3885880Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_unique_consecutive_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 59%] 2023-01-11T21:41:34.3886060Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_unsqueeze_cpu_complex128 PASSED [ 59%] 2023-01-11T21:41:34.3886233Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_unsqueeze_cpu_float64 PASSED [ 59%] 2023-01-11T21:41:34.3886402Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_var_cpu_complex128 PASSED [ 59%] 2023-01-11T21:41:34.3886570Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_var_mean_cpu_float64 PASSED [ 59%] 2023-01-11T21:41:34.3886759Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_var_mean_unbiased_cpu_complex128 PASSED [ 59%] 2023-01-11T21:41:34.3886931Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_vdot_cpu_complex128 PASSED [ 59%] 2023-01-11T21:41:34.3887092Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_view_as_cpu_complex128 PASSED [ 59%] 2023-01-11T21:41:34.3887259Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_view_cpu_float64 PASSED [ 59%] 2023-01-11T21:41:34.3887431Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_vsplit_cpu_complex128 PASSED [ 59%] 2023-01-11T21:41:34.3887602Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_vstack_cpu_complex128 PASSED [ 59%] 2023-01-11T21:41:34.3887769Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_vstack_cpu_float64 PASSED [ 59%] 2023-01-11T21:41:34.3887940Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_where_cpu_complex128 PASSED [ 59%] 2023-01-11T21:41:34.3888111Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_where_cpu_float64 PASSED [ 59%] 2023-01-11T21:41:34.3888278Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_xlogy_cpu_float64 PASSED [ 59%] 2023-01-11T21:41:34.3888620Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_zeros_like_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 59%] 2023-01-11T21:41:34.3888810Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_T_cpu_complex128 SKIPPED (Op has no inplace variant!) [ 59%] 2023-01-11T21:41:34.3889019Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad___radd___cpu_complex128 SKIPPED (Op has no inplace variant!) [ 59%] 2023-01-11T21:41:34.3889224Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad___rdiv___cpu_complex128 SKIPPED (Op has no inplace variant!) [ 59%] 2023-01-11T21:41:34.3889427Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad___rdiv___cpu_float64 SKIPPED (Op has no inplace variant!) [ 59%] 2023-01-11T21:41:34.3889671Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad___rmatmul___cpu_complex128 SKIPPED (Op has no inplace variant!) [ 59%] 2023-01-11T21:41:34.3889873Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad___rmod___cpu_float64 SKIPPED (Op has no inplace variant!) [ 59%] 2023-01-11T21:41:34.3890064Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad___rpow___cpu_complex128 SKIPPED (Skipped!) [ 60%] 2023-01-11T21:41:34.3890281Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad__native_batch_norm_legit_cpu_float64 SKIPPED (Op has no inplace variant!) [ 60%] 2023-01-11T21:41:34.3890453Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_acos_cpu_complex128 PASSED [ 60%] 2023-01-11T21:41:34.3890608Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_acos_cpu_float64 PASSED [ 60%] 2023-01-11T21:41:34.3890782Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_acosh_cpu_complex128 PASSED [ 60%] 2023-01-11T21:41:34.3890955Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_add_cpu_complex128 PASSED [ 60%] 2023-01-11T21:41:34.3891150Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_add_cpu_float64 PASSED [ 60%] 2023-01-11T21:41:34.3891328Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_addbmm_cpu_complex128 PASSED [ 60%] 2023-01-11T21:41:34.3891495Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_addbmm_cpu_float64 PASSED [ 60%] 2023-01-11T21:41:34.3891670Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_addcdiv_cpu_complex128 PASSED [ 60%] 2023-01-11T21:41:34.3891840Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_addcmul_cpu_float64 PASSED [ 60%] 2023-01-11T21:41:34.3892012Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_addmm_cpu_complex128 PASSED [ 60%] 2023-01-11T21:41:34.3892188Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_addmm_decomposed_cpu_complex128 PASSED [ 60%] 2023-01-11T21:41:34.3892374Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_addmm_decomposed_cpu_float64 PASSED [ 60%] 2023-01-11T21:41:34.3892543Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_addmv_cpu_float64 PASSED [ 60%] 2023-01-11T21:41:34.3892715Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_addr_cpu_complex128 PASSED [ 60%] 2023-01-11T21:41:34.3892883Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_addr_cpu_float64 PASSED [ 60%] 2023-01-11T21:41:34.3893223Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_all_cpu_complex128 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 60%] 2023-01-11T21:41:34.3893564Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_allclose_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 60%] 2023-01-11T21:41:34.3893772Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_angle_cpu_complex128 SKIPPED (Op has no inplace variant!) [ 60%] 2023-01-11T21:41:34.3893975Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_angle_cpu_float64 SKIPPED (Op has no inplace variant!) [ 60%] 2023-01-11T21:41:34.3894325Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_any_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 60%] 2023-01-11T21:41:34.3894729Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_arange_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 60%] 2023-01-11T21:41:34.3895066Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_argsort_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 60%] 2023-01-11T21:41:34.3895299Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_as_strided_cpu_complex128 SKIPPED (Numerous errors) [ 61%] 2023-01-11T21:41:34.3895518Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_asin_cpu_complex128 PASSED [ 61%] 2023-01-11T21:41:34.3895692Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_asinh_cpu_complex128 PASSED [ 61%] 2023-01-11T21:41:34.3895898Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_atanh_cpu_float64 PASSED [ 61%] 2023-01-11T21:41:34.3896175Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_atleast_1d_cpu_complex128 SKIPPED (Op has no inplace variant!) [ 61%] 2023-01-11T21:41:34.3896381Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_atleast_2d_cpu_float64 SKIPPED (Op has no inplace variant!) [ 61%] 2023-01-11T21:41:34.3896591Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_atleast_3d_cpu_complex128 SKIPPED (Op has no inplace variant!) [ 61%] 2023-01-11T21:41:34.3896749Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_baddbmm_cpu_float64 PASSED [ 61%] 2023-01-11T21:41:34.3896957Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_bfloat16_cpu_complex128 SKIPPED (Op has no inplace variant!) [ 61%] 2023-01-11T21:41:34.3897159Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_bfloat16_cpu_float64 SKIPPED (Op has no inplace variant!) [ 61%] 2023-01-11T21:41:34.3897404Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_block_diag_cpu_float64 SKIPPED (Op has no inplace variant!) [ 61%] 2023-01-11T21:41:34.3897607Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_bmm_cpu_complex128 SKIPPED (Op has no inplace variant!) [ 61%] 2023-01-11T21:41:34.3897805Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_bmm_cpu_float64 SKIPPED (Op has no inplace variant!) [ 61%] 2023-01-11T21:41:34.3898143Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_bool_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 61%] 2023-01-11T21:41:34.3898358Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_broadcast_tensors_cpu_complex128 SKIPPED (Op has no inplace variant!) [ 61%] 2023-01-11T21:41:34.3898572Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_broadcast_tensors_cpu_float64 SKIPPED (Op has no inplace variant!) [ 61%] 2023-01-11T21:41:34.3898781Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_broadcast_to_cpu_float64 SKIPPED (Op has no inplace variant!) [ 61%] 2023-01-11T21:41:34.3899117Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_byte_cpu_complex128 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 61%] 2023-01-11T21:41:34.3899439Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_byte_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 61%] 2023-01-11T21:41:34.3899653Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_cartesian_prod_cpu_complex128 SKIPPED (Op has no inplace variant!) [ 61%] 2023-01-11T21:41:34.3899857Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_cdouble_cpu_complex128 SKIPPED (Op has no inplace variant!) [ 61%] 2023-01-11T21:41:34.3900057Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_cdouble_cpu_float64 SKIPPED (Op has no inplace variant!) [ 61%] 2023-01-11T21:41:34.3900257Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_cfloat_cpu_float64 SKIPPED (Op has no inplace variant!) [ 61%] 2023-01-11T21:41:34.3900595Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_char_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 61%] 2023-01-11T21:41:34.3900806Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_cholesky_solve_cpu_complex128 SKIPPED (Op has no inplace variant!) [ 62%] 2023-01-11T21:41:34.3901003Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_chunk_cpu_float64 SKIPPED (Op has no inplace variant!) [ 62%] 2023-01-11T21:41:34.3901178Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_clamp_min_cpu_float64 PASSED [ 62%] 2023-01-11T21:41:34.3901389Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_combinations_cpu_complex128 SKIPPED (Op has no inplace variant!) [ 62%] 2023-01-11T21:41:34.3901575Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_complex_cpu_float64 SKIPPED (Op has no inplace variant!) [ 62%] 2023-01-11T21:41:34.3901807Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_conj_cpu_complex128 SKIPPED (Op has no inplace variant!) [ 62%] 2023-01-11T21:41:34.3901986Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_conj_physical_cpu_float64 PASSED [ 62%] 2023-01-11T21:41:34.3902201Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_constant_pad_nd_cpu_complex128 SKIPPED (Op has no inplace variant!) [ 62%] 2023-01-11T21:41:34.3902408Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_contiguous_cpu_complex128 SKIPPED (Op has no inplace variant!) [ 62%] 2023-01-11T21:41:34.3902611Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_contiguous_cpu_float64 SKIPPED (Op has no inplace variant!) [ 62%] 2023-01-11T21:41:34.3902815Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_corrcoef_cpu_float64 SKIPPED (Op has no inplace variant!) [ 62%] 2023-01-11T21:41:34.3902991Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_cosh_cpu_complex128 PASSED [ 62%] 2023-01-11T21:41:34.3903369Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_count_nonzero_cpu_complex128 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 62%] 2023-01-11T21:41:34.3903714Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_count_nonzero_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 62%] 2023-01-11T21:41:34.3903906Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_cov_cpu_complex128 SKIPPED (Op has no inplace variant!) [ 62%] 2023-01-11T21:41:34.3904103Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_cov_cpu_float64 SKIPPED (Op has no inplace variant!) [ 62%] 2023-01-11T21:41:34.3904302Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_cummax_cpu_float64 SKIPPED (Op has no inplace variant!) [ 62%] 2023-01-11T21:41:34.3904501Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_cummin_cpu_float64 SKIPPED (Op has no inplace variant!) [ 62%] 2023-01-11T21:41:34.3904681Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_cumprod_cpu_complex128 PASSED [ 62%] 2023-01-11T21:41:34.3904857Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_cumprod_cpu_float64 PASSED [ 62%] 2023-01-11T21:41:34.3905102Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_cumsum_cpu_complex128 PASSED [ 62%] 2023-01-11T21:41:34.3905313Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_cumsum_cpu_float64 PASSED [ 62%] 2023-01-11T21:41:34.3905532Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_cumulative_trapezoid_cpu_float64 SKIPPED (Op has no inplace variant!) [ 62%] 2023-01-11T21:41:34.3905729Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_diagonal_copy_cpu_float64 SKIPPED (Op has no inplace variant!) [ 62%] 2023-01-11T21:41:34.3905937Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_diagonal_cpu_complex128 SKIPPED (Op has no inplace variant!) [ 62%] 2023-01-11T21:41:34.3906142Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_diagonal_cpu_float64 SKIPPED (Op has no inplace variant!) [ 63%] 2023-01-11T21:41:34.3906357Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_diagonal_scatter_cpu_complex128 SKIPPED (Op has no inplace variant!) [ 63%] 2023-01-11T21:41:34.3906558Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_diff_cpu_complex128 SKIPPED (Op has no inplace variant!) [ 63%] 2023-01-11T21:41:34.3906753Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_dist_cpu_float64 SKIPPED (Op has no inplace variant!) [ 63%] 2023-01-11T21:41:34.3906939Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_div_floor_rounding_cpu_float64 PASSED [ 63%] 2023-01-11T21:41:34.3907128Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_div_no_rounding_mode_cpu_complex128 PASSED [ 63%] 2023-01-11T21:41:34.3907366Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_div_no_rounding_mode_cpu_float64 PASSED [ 63%] 2023-01-11T21:41:34.3907610Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_div_trunc_rounding_cpu_float64 PASSED [ 63%] 2023-01-11T21:41:34.3907801Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_dot_cpu_complex128 SKIPPED (Op has no inplace variant!) [ 63%] 2023-01-11T21:41:34.3908000Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_double_cpu_float64 SKIPPED (Op has no inplace variant!) [ 63%] 2023-01-11T21:41:34.3908203Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_dstack_cpu_complex128 SKIPPED (Op has no inplace variant!) [ 63%] 2023-01-11T21:41:34.3908408Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_einsum_cpu_complex128 SKIPPED (Op has no inplace variant!) [ 63%] 2023-01-11T21:41:34.3908610Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_einsum_cpu_float64 SKIPPED (Op has no inplace variant!) [ 63%] 2023-01-11T21:41:34.3908955Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_empty_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 63%] 2023-01-11T21:41:34.3909332Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_eq_cpu_complex128 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 63%] 2023-01-11T21:41:34.3909659Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_eq_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 63%] 2023-01-11T21:41:34.3909997Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_equal_cpu_complex128 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 63%] 2023-01-11T21:41:34.3910323Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_equal_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 63%] 2023-01-11T21:41:34.3910493Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_erfc_cpu_float64 PASSED [ 63%] 2023-01-11T21:41:34.3910690Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_expand_as_cpu_complex128 SKIPPED (Op has no inplace variant!) [ 63%] 2023-01-11T21:41:34.3928519Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_expand_cpu_complex128 SKIPPED (Op has no inplace variant!) [ 63%] 2023-01-11T21:41:34.3928785Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_expand_cpu_float64 SKIPPED (Op has no inplace variant!) [ 63%] 2023-01-11T21:41:34.3928953Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_expm1_cpu_float64 PASSED [ 63%] 2023-01-11T21:41:34.3929160Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_fft_fft2_cpu_complex128 SKIPPED (Op has no inplace variant!) [ 63%] 2023-01-11T21:41:34.3929362Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_fft_fft_cpu_complex128 SKIPPED (Op has no inplace variant!) [ 64%] 2023-01-11T21:41:34.3929566Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_fft_fft_cpu_float64 SKIPPED (Op has no inplace variant!) [ 64%] 2023-01-11T21:41:34.3929776Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_fft_fftn_cpu_complex128 SKIPPED (Op has no inplace variant!) [ 64%] 2023-01-11T21:41:34.3929984Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_fft_fftn_cpu_float64 SKIPPED (Op has no inplace variant!) [ 64%] 2023-01-11T21:41:34.3930186Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_fft_fftshift_cpu_complex128 SKIPPED (Op has no inplace variant!) [ 64%] 2023-01-11T21:41:34.3930396Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_fft_fftshift_cpu_float64 SKIPPED (Op has no inplace variant!) [ 64%] 2023-01-11T21:41:34.3930599Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_fft_hfft2_cpu_float64 SKIPPED (Op has no inplace variant!) [ 64%] 2023-01-11T21:41:34.3930798Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_fft_hfftn_cpu_float64 SKIPPED (Op has no inplace variant!) [ 64%] 2023-01-11T21:41:34.3931001Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_fft_ifft2_cpu_float64 SKIPPED (Op has no inplace variant!) [ 64%] 2023-01-11T21:41:34.3931338Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_fft_ifft_cpu_float64 SKIPPED (Op has no inplace variant!) [ 64%] 2023-01-11T21:41:34.3931549Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_fft_ifftn_cpu_float64 SKIPPED (Op has no inplace variant!) [ 64%] 2023-01-11T21:41:34.3931760Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_fft_ifftshift_cpu_float64 SKIPPED (Op has no inplace variant!) [ 64%] 2023-01-11T21:41:34.3931964Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_fft_ihfft2_cpu_float64 SKIPPED (Op has no inplace variant!) [ 64%] 2023-01-11T21:41:34.3932166Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_fft_ihfftn_cpu_float64 SKIPPED (Op has no inplace variant!) [ 64%] 2023-01-11T21:41:34.3932377Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_fft_irfft2_cpu_complex128 SKIPPED (Op has no inplace variant!) [ 64%] 2023-01-11T21:41:34.3932575Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_fft_irfft_cpu_complex128 SKIPPED (Op has no inplace variant!) [ 64%] 2023-01-11T21:41:34.3932826Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_fft_irfftn_cpu_complex128 SKIPPED (Op has no inplace variant!) [ 64%] 2023-01-11T21:41:34.3933032Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_fft_rfft2_cpu_float64 SKIPPED (Op has no inplace variant!) [ 64%] 2023-01-11T21:41:34.3933229Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_fft_rfft_cpu_float64 SKIPPED (Op has no inplace variant!) [ 64%] 2023-01-11T21:41:34.3933419Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_fft_rfftn_cpu_float64 SKIPPED (Op has no inplace variant!) [ 64%] 2023-01-11T21:41:34.3933583Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_fill_cpu_complex128 PASSED [ 64%] 2023-01-11T21:41:34.3933743Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_fill_cpu_float64 PASSED [ 64%] 2023-01-11T21:41:34.3933943Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_flatten_cpu_float64 SKIPPED (Op has no inplace variant!) [ 64%] 2023-01-11T21:41:34.3934144Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_fliplr_cpu_float64 SKIPPED (Op has no inplace variant!) [ 64%] 2023-01-11T21:41:34.3934335Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_flipud_cpu_complex128 SKIPPED (Op has no inplace variant!) [ 65%] 2023-01-11T21:41:34.3934537Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_flipud_cpu_float64 SKIPPED (Op has no inplace variant!) [ 65%] 2023-01-11T21:41:34.3934739Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_float_cpu_complex128 SKIPPED (Op has no inplace variant!) [ 65%] 2023-01-11T21:41:34.3934937Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_float_cpu_float64 SKIPPED (Op has no inplace variant!) [ 65%] 2023-01-11T21:41:34.3935122Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_float_power_cpu_complex128 PASSED [ 65%] 2023-01-11T21:41:34.3935294Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_floor_cpu_float64 PASSED [ 65%] 2023-01-11T21:41:34.3935492Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_fmax_cpu_float64 SKIPPED (Op has no inplace variant!) [ 65%] 2023-01-11T21:41:34.3935662Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_fmod_cpu_float64 PASSED [ 65%] 2023-01-11T21:41:34.3935860Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_frexp_cpu_float64 SKIPPED (Op has no inplace variant!) [ 65%] 2023-01-11T21:41:34.3936351Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_full_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 65%] 2023-01-11T21:41:34.3936783Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_full_like_cpu_complex128 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 65%] 2023-01-11T21:41:34.3937000Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_gather_cpu_complex128 SKIPPED (Op has no inplace variant!) [ 65%] 2023-01-11T21:41:34.3937271Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_gather_cpu_float64 SKIPPED (Op has no inplace variant!) [ 65%] 2023-01-11T21:41:34.3937619Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_geqrf_cpu_complex128 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 65%] 2023-01-11T21:41:34.3937954Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_geqrf_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 65%] 2023-01-11T21:41:34.3938163Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_gradient_cpu_complex128 SKIPPED (Op has no inplace variant!) [ 65%] 2023-01-11T21:41:34.3938372Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_grid_sampler_2d_cpu_float64 SKIPPED (Op has no inplace variant!) [ 65%] 2023-01-11T21:41:34.3938715Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_heaviside_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 65%] 2023-01-11T21:41:34.3939082Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_histc_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 65%] 2023-01-11T21:41:34.3939426Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_histogramdd_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 65%] 2023-01-11T21:41:34.3939632Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_hsplit_cpu_complex128 SKIPPED (Op has no inplace variant!) [ 65%] 2023-01-11T21:41:34.3939825Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_hstack_cpu_complex128 SKIPPED (Op has no inplace variant!) [ 65%] 2023-01-11T21:41:34.3940025Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_hstack_cpu_float64 SKIPPED (Op has no inplace variant!) [ 65%] 2023-01-11T21:41:34.3940193Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_i0_cpu_float64 PASSED [ 65%] 2023-01-11T21:41:34.3940532Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_igamma_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 66%] 2023-01-11T21:41:34.3940871Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_igammac_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 66%] 2023-01-11T21:41:34.3941075Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_imag_cpu_complex128 SKIPPED (Op has no inplace variant!) [ 66%] 2023-01-11T21:41:34.3941249Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_index_add_cpu_float64 PASSED [ 66%] 2023-01-11T21:41:34.3941431Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_index_copy_cpu_complex128 PASSED [ 66%] 2023-01-11T21:41:34.3941611Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_index_put_cpu_complex128 PASSED [ 66%] 2023-01-11T21:41:34.3941773Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_index_reduce_cpu_float64 PASSED [ 66%] 2023-01-11T21:41:34.3941984Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_index_select_cpu_float64 SKIPPED (Op has no inplace variant!) [ 66%] 2023-01-11T21:41:34.3942191Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_inner_cpu_complex128 SKIPPED (Op has no inplace variant!) [ 66%] 2023-01-11T21:41:34.3942389Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_inner_cpu_float64 SKIPPED (Op has no inplace variant!) [ 66%] 2023-01-11T21:41:34.3942728Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_int_cpu_complex128 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 66%] 2023-01-11T21:41:34.3943061Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_int_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 66%] 2023-01-11T21:41:34.3943410Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_isfinite_cpu_complex128 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 66%] 2023-01-11T21:41:34.3943778Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_isinf_cpu_complex128 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 66%] 2023-01-11T21:41:34.3944112Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_isinf_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 66%] 2023-01-11T21:41:34.3944441Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_isnan_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 66%] 2023-01-11T21:41:34.3944777Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_isneginf_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 66%] 2023-01-11T21:41:34.3945101Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_isposinf_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 66%] 2023-01-11T21:41:34.3945316Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_jiterator_2inputs_2outputs_cpu_complex128 SKIPPED (Only runs on cuda) [ 66%] 2023-01-11T21:41:34.3945573Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_jiterator_4inputs_with_extra_args_cpu_complex128 SKIPPED (Only runs on cuda) [ 66%] 2023-01-11T21:41:34.3945784Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_jiterator_binary_cpu_complex128 SKIPPED (Only runs on cuda) [ 66%] 2023-01-11T21:41:34.3945985Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_jiterator_binary_cpu_float64 SKIPPED (Only runs on cuda) [ 66%] 2023-01-11T21:41:34.3946202Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_jiterator_binary_return_by_ref_cpu_complex128 SKIPPED (Only runs on cuda) [ 66%] 2023-01-11T21:41:34.3946414Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_jiterator_binary_return_by_ref_cpu_float64 SKIPPED (Only runs on cuda) [ 66%] 2023-01-11T21:41:34.3946618Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_kron_cpu_complex128 SKIPPED (Op has no inplace variant!) [ 67%] 2023-01-11T21:41:34.3946796Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_ldexp_cpu_complex128 PASSED [ 67%] 2023-01-11T21:41:34.3947127Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_le_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 67%] 2023-01-11T21:41:34.3947320Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_linalg_cond_cpu_float64 SKIPPED (Op has no inplace variant!) [ 67%] 2023-01-11T21:41:34.3947528Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_linalg_cross_cpu_float64 SKIPPED (Op has no inplace variant!) [ 67%] 2023-01-11T21:41:34.3947816Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_linalg_det_cpu_complex128 SKIPPED (Op has no inplace variant!) [ 67%] 2023-01-11T21:41:34.3948023Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_linalg_det_cpu_float64 SKIPPED (Op has no inplace variant!) [ 67%] 2023-01-11T21:41:34.3948242Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_linalg_det_singular_cpu_complex128 SKIPPED (Op has no inplace variant!) [ 67%] 2023-01-11T21:41:34.3948453Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_linalg_eig_cpu_float64 SKIPPED (Op has no inplace variant!) [ 67%] 2023-01-11T21:41:34.3948664Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_linalg_eigh_cpu_complex128 SKIPPED (Op has no inplace variant!) [ 67%] 2023-01-11T21:41:34.3948871Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_linalg_eigvals_cpu_float64 SKIPPED (Op has no inplace variant!) [ 67%] 2023-01-11T21:41:34.3949086Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_linalg_eigvalsh_cpu_complex128 SKIPPED (Op has no inplace variant!) [ 67%] 2023-01-11T21:41:34.3949293Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_linalg_eigvalsh_cpu_float64 SKIPPED (Op has no inplace variant!) [ 67%] 2023-01-11T21:41:34.3949503Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_linalg_inv_ex_cpu_complex128 SKIPPED (Op has no inplace variant!) [ 67%] 2023-01-11T21:41:34.3949730Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_linalg_inv_ex_cpu_float64 SKIPPED (Op has no inplace variant!) [ 67%] 2023-01-11T21:41:34.3950089Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_linalg_ldl_factor_ex_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 67%] 2023-01-11T21:41:34.3950442Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_linalg_ldl_solve_cpu_complex128 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 67%] 2023-01-11T21:41:34.3950788Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_linalg_ldl_solve_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 67%] 2023-01-11T21:41:34.3950980Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_linalg_lstsq_cpu_float64 SKIPPED (Skipped!) [ 67%] 2023-01-11T21:41:34.3951201Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_linalg_lstsq_grad_oriented_cpu_float64 SKIPPED (Op has no inplace variant!) [ 67%] 2023-01-11T21:41:34.3951444Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_linalg_lu_factor_cpu_complex128 SKIPPED (Op has no inplace variant!) [ 67%] 2023-01-11T21:41:34.3951659Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_linalg_lu_factor_ex_cpu_complex128 SKIPPED (Op has no inplace variant!) [ 67%] 2023-01-11T21:41:34.3951871Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_linalg_lu_factor_ex_cpu_float64 SKIPPED (Op has no inplace variant!) [ 67%] 2023-01-11T21:41:34.3952083Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_linalg_lu_solve_cpu_complex128 SKIPPED (Op has no inplace variant!) [ 67%] 2023-01-11T21:41:34.3952276Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_linalg_lu_solve_cpu_float64 SKIPPED (Op has no inplace variant!) [ 68%] 2023-01-11T21:41:34.3952484Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_linalg_matrix_norm_cpu_float64 SKIPPED (Op has no inplace variant!) [ 68%] 2023-01-11T21:41:34.3952840Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_linalg_matrix_rank_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 68%] 2023-01-11T21:41:34.3953051Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_linalg_multi_dot_cpu_complex128 SKIPPED (Op has no inplace variant!) [ 68%] 2023-01-11T21:41:34.3953260Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_linalg_multi_dot_cpu_float64 SKIPPED (Op has no inplace variant!) [ 68%] 2023-01-11T21:41:34.3953464Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_linalg_norm_cpu_float64 SKIPPED (Op has no inplace variant!) [ 68%] 2023-01-11T21:41:34.3953689Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_linalg_norm_subgradients_at_zero_cpu_float64 SKIPPED (Op has no inplace variant!) [ 68%] 2023-01-11T21:41:34.3953908Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_linalg_pinv_hermitian_cpu_complex128 SKIPPED (Op has no inplace variant!) [ 68%] 2023-01-11T21:41:34.3954125Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_linalg_pinv_hermitian_cpu_float64 SKIPPED (Op has no inplace variant!) [ 68%] 2023-01-11T21:41:34.3954376Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_linalg_pinv_singular_cpu_complex128 SKIPPED (test is slow; run with PYTORCH_TEST_WITH_SLOW to enable test) [ 68%] 2023-01-11T21:41:34.3954576Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_linalg_qr_cpu_float64 SKIPPED (Op has no inplace variant!) [ 68%] 2023-01-11T21:41:34.3954778Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_linalg_slogdet_cpu_complex128 SKIPPED (Op has no inplace variant!) [ 68%] 2023-01-11T21:41:34.3954988Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_linalg_solve_ex_cpu_complex128 SKIPPED (Op has no inplace variant!) [ 68%] 2023-01-11T21:41:34.3955213Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_linalg_solve_triangular_cpu_float64 SKIPPED (Op has no inplace variant!) [ 68%] 2023-01-11T21:41:34.3955506Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_linalg_svd_cpu_complex128 SKIPPED (Op has no inplace variant!) [ 68%] 2023-01-11T21:41:34.3955712Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_linalg_svd_cpu_float64 SKIPPED (Op has no inplace variant!) [ 68%] 2023-01-11T21:41:34.3955920Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_linalg_svdvals_cpu_float64 SKIPPED (Op has no inplace variant!) [ 68%] 2023-01-11T21:41:34.3956127Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_linalg_vander_cpu_complex128 SKIPPED (Op has no inplace variant!) [ 68%] 2023-01-11T21:41:34.3956397Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_linalg_vander_cpu_float64 SKIPPED (Op has no inplace variant!) [ 68%] 2023-01-11T21:41:34.3956618Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_linalg_vecdot_cpu_complex128 SKIPPED (Op has no inplace variant!) [ 68%] 2023-01-11T21:41:34.3956830Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_linalg_vecdot_cpu_float64 SKIPPED (Op has no inplace variant!) [ 68%] 2023-01-11T21:41:34.3957207Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_linspace_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 68%] 2023-01-11T21:41:34.3957370Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_log10_cpu_complex128 PASSED [ 68%] 2023-01-11T21:41:34.3957539Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_log10_cpu_float64 PASSED [ 68%] 2023-01-11T21:41:34.3957713Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_log1p_cpu_complex128 PASSED [ 68%] 2023-01-11T21:41:34.3957883Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_log_cpu_complex128 PASSED [ 69%] 2023-01-11T21:41:34.3958049Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_log_cpu_float64 PASSED [ 69%] 2023-01-11T21:41:34.3958271Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_log_softmax_with_dtype_cpu_complex128 SKIPPED (Op has no inplace variant!) [ 69%] 2023-01-11T21:41:34.3958491Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_log_softmax_with_dtype_cpu_float64 SKIPPED (Op has no inplace variant!) [ 69%] 2023-01-11T21:41:34.3958698Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_logaddexp2_cpu_float64 SKIPPED (Op has no inplace variant!) [ 69%] 2023-01-11T21:41:34.3958900Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_logdet_cpu_complex128 SKIPPED (Op has no inplace variant!) [ 69%] 2023-01-11T21:41:34.3959087Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_logdet_cpu_float64 SKIPPED (Op has no inplace variant!) [ 69%] 2023-01-11T21:41:34.3959437Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_logical_and_cpu_complex128 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 69%] 2023-01-11T21:41:34.3959786Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_logical_not_cpu_complex128 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 69%] 2023-01-11T21:41:34.3960133Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_logical_or_cpu_complex128 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 69%] 2023-01-11T21:41:34.3960476Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_logical_xor_cpu_complex128 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 69%] 2023-01-11T21:41:34.3961002Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_logical_xor_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 69%] 2023-01-11T21:41:34.3961352Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_logspace_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 69%] 2023-01-11T21:41:34.3961688Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_long_cpu_complex128 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 69%] 2023-01-11T21:41:34.3961954Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_lu_cpu_complex128 SKIPPED (Op has no inplace variant!) [ 69%] 2023-01-11T21:41:34.3962160Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_lu_solve_cpu_float64 SKIPPED (Op has no inplace variant!) [ 69%] 2023-01-11T21:41:34.3962365Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_lu_unpack_cpu_float64 SKIPPED (Op has no inplace variant!) [ 69%] 2023-01-11T21:41:34.3962552Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_mH_cpu_complex128 SKIPPED (Op has no inplace variant!) [ 69%] 2023-01-11T21:41:34.3962752Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_mT_cpu_complex128 SKIPPED (Op has no inplace variant!) [ 69%] 2023-01-11T21:41:34.3962958Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_masked_amax_cpu_float64 SKIPPED (Op has no inplace variant!) [ 69%] 2023-01-11T21:41:34.3963308Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_masked_argmin_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 69%] 2023-01-11T21:41:34.3963564Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_masked_cumprod_cpu_complex128 SKIPPED (Op has no inplace variant!) [ 69%] 2023-01-11T21:41:34.3963782Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_masked_cumsum_cpu_complex128 SKIPPED (Op has no inplace variant!) [ 69%] 2023-01-11T21:41:34.3963959Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_masked_fill_cpu_float64 PASSED [ 69%] 2023-01-11T21:41:34.3964173Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_masked_log_softmax_cpu_float64 SKIPPED (Op has no inplace variant!) [ 70%] 2023-01-11T21:41:34.3964386Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_masked_logaddexp_cpu_float64 SKIPPED (Op has no inplace variant!) [ 70%] 2023-01-11T21:41:34.3964600Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_masked_logsumexp_cpu_float64 SKIPPED (Op has no inplace variant!) [ 70%] 2023-01-11T21:41:34.3964794Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_masked_mean_cpu_float64 SKIPPED (Op has no inplace variant!) [ 70%] 2023-01-11T21:41:34.3965000Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_masked_norm_cpu_float64 SKIPPED (Op has no inplace variant!) [ 70%] 2023-01-11T21:41:34.3965205Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_masked_prod_cpu_float64 SKIPPED (Op has no inplace variant!) [ 70%] 2023-01-11T21:41:34.3965385Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_masked_scatter_cpu_float64 PASSED [ 70%] 2023-01-11T21:41:34.3965593Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_masked_select_cpu_complex128 SKIPPED (Op has no inplace variant!) [ 70%] 2023-01-11T21:41:34.3965799Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_masked_softmax_cpu_float64 SKIPPED (Op has no inplace variant!) [ 70%] 2023-01-11T21:41:34.3966003Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_masked_softmin_cpu_float64 SKIPPED (Op has no inplace variant!) [ 70%] 2023-01-11T21:41:34.3966207Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_masked_sum_cpu_float64 SKIPPED (Op has no inplace variant!) [ 70%] 2023-01-11T21:41:34.3966410Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_matrix_exp_cpu_float64 SKIPPED (Op has no inplace variant!) [ 70%] 2023-01-11T21:41:34.3966635Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_max_pool2d_with_indices_backward_cpu_float64 SKIPPED (Op has no inplace variant!) [ 70%] 2023-01-11T21:41:34.3966838Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_max_reduction_no_dim_cpu_float64 SKIPPED (Op has no inplace variant!) [ 70%] 2023-01-11T21:41:34.3967055Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_max_reduction_with_dim_cpu_float64 SKIPPED (Op has no inplace variant!) [ 70%] 2023-01-11T21:41:34.3967258Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_maximum_cpu_float64 SKIPPED (Op has no inplace variant!) [ 70%] 2023-01-11T21:41:34.3967519Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_meshgrid_list_of_tensors_cpu_float64 SKIPPED (Op has no inplace variant!) [ 70%] 2023-01-11T21:41:34.3967833Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_min_reduction_no_dim_cpu_float64 SKIPPED (Op has no inplace variant!) [ 70%] 2023-01-11T21:41:34.3968035Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_minimum_cpu_float64 SKIPPED (Op has no inplace variant!) [ 70%] 2023-01-11T21:41:34.3968235Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_mm_cpu_complex128 SKIPPED (Op has no inplace variant!) [ 70%] 2023-01-11T21:41:34.3968430Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_mm_cpu_float64 SKIPPED (Op has no inplace variant!) [ 70%] 2023-01-11T21:41:34.3968627Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_msort_cpu_float64 SKIPPED (Op has no inplace variant!) [ 70%] 2023-01-11T21:41:34.3968796Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_mul_cpu_float64 PASSED [ 70%] 2023-01-11T21:41:34.3969013Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_mv_cpu_float64 SKIPPED (Op has no inplace variant!) [ 70%] 2023-01-11T21:41:34.3969201Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_mvlgamma_mvlgamma_p_1_cpu_float64 PASSED [ 71%] 2023-01-11T21:41:34.3969386Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_mvlgamma_mvlgamma_p_3_cpu_float64 PASSED [ 71%] 2023-01-11T21:41:34.3969566Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_mvlgamma_mvlgamma_p_5_cpu_float64 PASSED [ 71%] 2023-01-11T21:41:34.3969764Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_nanmean_cpu_float64 SKIPPED (Op has no inplace variant!) [ 71%] 2023-01-11T21:41:34.3969967Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_nanmedian_cpu_float64 SKIPPED (Op has no inplace variant!) [ 71%] 2023-01-11T21:41:34.3970324Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_narrow_copy_cpu_complex128 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 71%] 2023-01-11T21:41:34.3970532Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_narrow_cpu_complex128 SKIPPED (Op has no inplace variant!) [ 71%] 2023-01-11T21:41:34.3970729Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_narrow_cpu_float64 SKIPPED (Op has no inplace variant!) [ 71%] 2023-01-11T21:41:34.3970940Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_native_batch_norm_cpu_float64 SKIPPED (Op has no inplace variant!) [ 71%] 2023-01-11T21:41:34.3971140Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_native_layer_norm_cpu_float64 SKIPPED (Op has no inplace variant!) [ 71%] 2023-01-11T21:41:34.3971476Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_ne_cpu_complex128 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 71%] 2023-01-11T21:41:34.3971818Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_new_full_cpu_complex128 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 71%] 2023-01-11T21:41:34.3972159Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_new_full_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 71%] 2023-01-11T21:41:34.3972495Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_nextafter_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 71%] 2023-01-11T21:41:34.3972726Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_nn_functional_adaptive_avg_pool1d_cpu_float64 SKIPPED (Op has no inplace variant!) [ 71%] 2023-01-11T21:41:34.3972950Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_nn_functional_adaptive_avg_pool2d_cpu_float64 SKIPPED (Op has no inplace variant!) [ 71%] 2023-01-11T21:41:34.3973181Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_nn_functional_adaptive_avg_pool3d_cpu_float64 SKIPPED (Op has no inplace variant!) [ 71%] 2023-01-11T21:41:34.3973458Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_nn_functional_adaptive_max_pool1d_cpu_float64 SKIPPED (Op has no inplace variant!) [ 71%] 2023-01-11T21:41:34.3973682Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_nn_functional_adaptive_max_pool2d_cpu_float64 SKIPPED (Op has no inplace variant!) [ 71%] 2023-01-11T21:41:34.3973910Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_nn_functional_adaptive_max_pool3d_cpu_float64 SKIPPED (Op has no inplace variant!) [ 71%] 2023-01-11T21:41:34.3974129Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_nn_functional_avg_pool1d_cpu_float64 SKIPPED (Op has no inplace variant!) [ 71%] 2023-01-11T21:41:34.3974333Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_nn_functional_batch_norm_cpu_float64 SKIPPED (Op has no inplace variant!) [ 71%] 2023-01-11T21:41:34.3974550Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_nn_functional_bilinear_cpu_float64 SKIPPED (Op has no inplace variant!) [ 71%] 2023-01-11T21:41:34.3974807Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_nn_functional_binary_cross_entropy_cpu_float64 SKIPPED (Op has no inplace variant!) [ 71%] 2023-01-11T21:41:34.3975050Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_nn_functional_binary_cross_entropy_with_logits_cpu_float64 SKIPPED (Op has no inplace variant!) [ 72%] 2023-01-11T21:41:34.3975235Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_nn_functional_celu_cpu_float64 PASSED [ 72%] 2023-01-11T21:41:34.3975456Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_nn_functional_conv1d_cpu_complex128 SKIPPED (Op has no inplace variant!) [ 72%] 2023-01-11T21:41:34.3975683Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_nn_functional_conv_transpose1d_cpu_float64 SKIPPED (Op has no inplace variant!) [ 72%] 2023-01-11T21:41:34.3975904Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_nn_functional_conv_transpose2d_cpu_float64 SKIPPED (Op has no inplace variant!) [ 72%] 2023-01-11T21:41:34.3976209Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_nn_functional_conv_transpose3d_cpu_float64 SKIPPED (Op has no inplace variant!) [ 72%] 2023-01-11T21:41:34.3976440Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_nn_functional_cosine_embedding_loss_cpu_float64 SKIPPED (Op has no inplace variant!) [ 72%] 2023-01-11T21:41:34.3976668Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_nn_functional_cosine_similarity_cpu_float64 SKIPPED (Op has no inplace variant!) [ 72%] 2023-01-11T21:41:34.3976873Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_nn_functional_cross_entropy_cpu_float64 SKIPPED (Op has no inplace variant!) [ 72%] 2023-01-11T21:41:34.3977063Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_nn_functional_dropout_cpu_float64 PASSED [ 72%] 2023-01-11T21:41:34.3977248Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_nn_functional_elu_cpu_float64 PASSED [ 72%] 2023-01-11T21:41:34.3977589Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_nn_functional_feature_alpha_dropout_without_train_cpu_complex128 PASSED [ 72%] 2023-01-11T21:41:34.3977826Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_nn_functional_fractional_max_pool2d_cpu_float64 SKIPPED (Op has no inplace variant!) [ 72%] 2023-01-11T21:41:34.3978048Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_nn_functional_fractional_max_pool3d_cpu_float64 SKIPPED (Op has no inplace variant!) [ 72%] 2023-01-11T21:41:34.3978271Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_nn_functional_gaussian_nll_loss_cpu_float64 SKIPPED (Op has no inplace variant!) [ 72%] 2023-01-11T21:41:34.3978478Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_nn_functional_glu_cpu_float64 SKIPPED (Op has no inplace variant!) [ 72%] 2023-01-11T21:41:34.3978699Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_nn_functional_hardshrink_cpu_float64 SKIPPED (Op has no inplace variant!) [ 72%] 2023-01-11T21:41:34.3978991Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_nn_functional_hardswish_cpu_float64 SKIPPED (Op has no inplace variant!) [ 72%] 2023-01-11T21:41:34.3979208Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_nn_functional_hinge_embedding_loss_cpu_float64 SKIPPED (Op has no inplace variant!) [ 72%] 2023-01-11T21:41:34.3979426Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_nn_functional_huber_loss_cpu_float64 SKIPPED (Op has no inplace variant!) [ 72%] 2023-01-11T21:41:34.3979656Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_nn_functional_interpolate_bilinear_cpu_float64 SKIPPED (Op has no inplace variant!) [ 72%] 2023-01-11T21:41:34.3979884Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_nn_functional_interpolate_linear_cpu_float64 SKIPPED (Op has no inplace variant!) [ 72%] 2023-01-11T21:41:34.3980116Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_nn_functional_interpolate_trilinear_cpu_float64 SKIPPED (Op has no inplace variant!) [ 72%] 2023-01-11T21:41:34.3980362Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_nn_functional_kl_div_cpu_float64 SKIPPED (Op has no inplace variant!) [ 72%] 2023-01-11T21:41:34.3980581Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_nn_functional_layer_norm_cpu_float64 SKIPPED (Op has no inplace variant!) [ 73%] 2023-01-11T21:41:34.3980793Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_nn_functional_linear_cpu_float64 SKIPPED (Op has no inplace variant!) [ 73%] 2023-01-11T21:41:34.3981022Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_nn_functional_margin_ranking_loss_cpu_float64 SKIPPED (Op has no inplace variant!) [ 73%] 2023-01-11T21:41:34.3981242Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_nn_functional_max_pool1d_cpu_float64 SKIPPED (Op has no inplace variant!) [ 73%] 2023-01-11T21:41:34.3981461Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_nn_functional_max_pool2d_cpu_float64 SKIPPED (Op has no inplace variant!) [ 73%] 2023-01-11T21:41:34.3981675Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_nn_functional_max_unpool1d_grad_cpu_float64 SKIPPED (Op has no inplace variant!) [ 73%] 2023-01-11T21:41:34.3981893Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_nn_functional_max_unpool2d_cpu_float64 SKIPPED (Op has no inplace variant!) [ 73%] 2023-01-11T21:41:34.3982114Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_nn_functional_max_unpool3d_cpu_float64 SKIPPED (Op has no inplace variant!) [ 73%] 2023-01-11T21:41:34.3982336Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_nn_functional_multi_margin_loss_cpu_float64 SKIPPED (Op has no inplace variant!) [ 73%] 2023-01-11T21:41:34.3982565Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_nn_functional_multilabel_margin_loss_cpu_float64 SKIPPED (Op has no inplace variant!) [ 73%] 2023-01-11T21:41:34.3982780Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_nn_functional_nll_loss_cpu_float64 SKIPPED (Op has no inplace variant!) [ 73%] 2023-01-11T21:41:34.3983001Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_nn_functional_normalize_cpu_complex128 SKIPPED (Op has no inplace variant!) [ 73%] 2023-01-11T21:41:34.3983220Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_nn_functional_normalize_cpu_float64 SKIPPED (Op has no inplace variant!) [ 73%] 2023-01-11T21:41:34.3983436Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_nn_functional_pad_circular_cpu_float64 SKIPPED (Op has no inplace variant!) [ 73%] 2023-01-11T21:41:34.3983666Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_nn_functional_pairwise_distance_cpu_complex128 SKIPPED (Op has no inplace variant!) [ 73%] 2023-01-11T21:41:34.3983889Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_nn_functional_pairwise_distance_cpu_float64 SKIPPED (Op has no inplace variant!) [ 73%] 2023-01-11T21:41:34.3984131Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_nn_functional_pixel_shuffle_cpu_complex128 SKIPPED (Op has no inplace variant!) [ 73%] 2023-01-11T21:41:34.3984358Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_nn_functional_pixel_unshuffle_cpu_complex128 SKIPPED (Op has no inplace variant!) [ 73%] 2023-01-11T21:41:34.3984576Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_nn_functional_poisson_nll_loss_cpu_float64 SKIPPED (Op has no inplace variant!) [ 73%] 2023-01-11T21:41:34.3984786Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_nn_functional_prelu_cpu_float64 SKIPPED (Op has no inplace variant!) [ 73%] 2023-01-11T21:41:34.3984998Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_nn_functional_relu6_cpu_float64 SKIPPED (Op has no inplace variant!) [ 73%] 2023-01-11T21:41:34.3985186Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_nn_functional_rrelu_cpu_float64 PASSED [ 73%] 2023-01-11T21:41:34.3985570Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_nn_functional_silu_complex_cpu_complex128 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 73%] 2023-01-11T21:41:34.3985785Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_nn_functional_silu_cpu_float64 PASSED [ 73%] 2023-01-11T21:41:34.3986008Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_nn_functional_smooth_l1_loss_cpu_float64 SKIPPED (Op has no inplace variant!) [ 74%] 2023-01-11T21:41:34.3986236Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_nn_functional_softmin_with_dtype_cpu_complex128 SKIPPED (Op has no inplace variant!) [ 74%] 2023-01-11T21:41:34.3986459Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_nn_functional_softmin_with_dtype_cpu_float64 SKIPPED (Op has no inplace variant!) [ 74%] 2023-01-11T21:41:34.3986663Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_nn_functional_softshrink_cpu_float64 SKIPPED (Op has no inplace variant!) [ 74%] 2023-01-11T21:41:34.3986889Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_nn_functional_softsign_cpu_complex128 SKIPPED (Op has no inplace variant!) [ 74%] 2023-01-11T21:41:34.3987114Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_nn_functional_tanhshrink_cpu_complex128 SKIPPED (Op has no inplace variant!) [ 74%] 2023-01-11T21:41:34.3987303Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_nn_functional_threshold_cpu_float64 PASSED [ 74%] 2023-01-11T21:41:34.3987529Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_nn_functional_triplet_margin_loss_cpu_float64 SKIPPED (Op has no inplace variant!) [ 74%] 2023-01-11T21:41:34.3987753Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_nn_functional_upsample_bilinear_cpu_float64 SKIPPED (Op has no inplace variant!) [ 74%] 2023-01-11T21:41:34.3987979Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_nn_functional_upsample_nearest_cpu_float64 SKIPPED (Op has no inplace variant!) [ 74%] 2023-01-11T21:41:34.3988323Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_nonzero_cpu_complex128 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 74%] 2023-01-11T21:41:34.3988659Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_nonzero_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 74%] 2023-01-11T21:41:34.3988857Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_norm_cpu_float64 SKIPPED (Op has no inplace variant!) [ 74%] 2023-01-11T21:41:34.3989147Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_norm_fro_cpu_float64 SKIPPED (Op has no inplace variant!) [ 74%] 2023-01-11T21:41:34.3989363Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_norm_inf_cpu_complex128 SKIPPED (Op has no inplace variant!) [ 74%] 2023-01-11T21:41:34.3989566Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_norm_nuc_cpu_float64 SKIPPED (Op has no inplace variant!) [ 74%] 2023-01-11T21:41:34.3989803Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_normal_cpu_float64 SKIPPED (Gradients are incorrect!) [ 74%] 2023-01-11T21:41:34.3990017Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_normal_number_mean_cpu_float64 SKIPPED (Gradients are incorrect!) [ 74%] 2023-01-11T21:41:34.3990461Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_ones_cpu_complex128 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 74%] 2023-01-11T21:41:34.3990816Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_ones_like_cpu_complex128 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 74%] 2023-01-11T21:41:34.3991017Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_outer_cpu_float64 SKIPPED (Op has no inplace variant!) [ 74%] 2023-01-11T21:41:34.3991223Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_pca_lowrank_cpu_float64 SKIPPED (Op has no inplace variant!) [ 74%] 2023-01-11T21:41:34.3991433Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_permute_cpu_complex128 SKIPPED (Op has no inplace variant!) [ 74%] 2023-01-11T21:41:34.3991709Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_permute_cpu_float64 SKIPPED (Op has no inplace variant!) [ 74%] 2023-01-11T21:41:34.3991899Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_polar_cpu_float64 SKIPPED (Op has no inplace variant!) [ 75%] 2023-01-11T21:41:34.3992100Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_polygamma_polygamma_n_3_cpu_float64 SKIPPED (Skipped!) [ 75%] 2023-01-11T21:41:34.3992306Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_positive_cpu_complex128 SKIPPED (Op has no inplace variant!) [ 75%] 2023-01-11T21:41:34.3992507Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_prod_cpu_complex128 SKIPPED (Op has no inplace variant!) [ 75%] 2023-01-11T21:41:34.3992705Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_prod_cpu_float64 SKIPPED (Op has no inplace variant!) [ 75%] 2023-01-11T21:41:34.3992907Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_qr_cpu_complex128 SKIPPED (Op has no inplace variant!) [ 75%] 2023-01-11T21:41:34.3993107Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_qr_cpu_float64 SKIPPED (Op has no inplace variant!) [ 75%] 2023-01-11T21:41:34.3993281Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_rad2deg_cpu_float64 PASSED [ 75%] 2023-01-11T21:41:34.3993628Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_rand_like_cpu_complex128 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 75%] 2023-01-11T21:41:34.3993968Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_rand_like_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 75%] 2023-01-11T21:41:34.3994292Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_randint_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 75%] 2023-01-11T21:41:34.3994640Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_randint_like_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 75%] 2023-01-11T21:41:34.3994983Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_randn_cpu_complex128 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 75%] 2023-01-11T21:41:34.3995316Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_randn_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 75%] 2023-01-11T21:41:34.3995521Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_ravel_cpu_complex128 SKIPPED (Op has no inplace variant!) [ 75%] 2023-01-11T21:41:34.3995705Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_reciprocal_cpu_complex128 PASSED [ 75%] 2023-01-11T21:41:34.3995881Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_renorm_cpu_complex128 PASSED [ 75%] 2023-01-11T21:41:34.3996086Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_repeat_cpu_complex128 SKIPPED (Op has no inplace variant!) [ 75%] 2023-01-11T21:41:34.3996320Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_repeat_cpu_float64 SKIPPED (Op has no inplace variant!) [ 75%] 2023-01-11T21:41:34.3996663Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_resize__cpu_complex128 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 75%] 2023-01-11T21:41:34.3997010Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_resize_as__cpu_complex128 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 75%] 2023-01-11T21:41:34.3997332Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_resize_as__cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 75%] 2023-01-11T21:41:34.3997541Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_resolve_neg_cpu_float64 SKIPPED (Op has no inplace variant!) [ 75%] 2023-01-11T21:41:34.3997819Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_rot90_cpu_complex128 SKIPPED (Op has no inplace variant!) [ 75%] 2023-01-11T21:41:34.3998077Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_rot90_cpu_float64 SKIPPED (Op has no inplace variant!) [ 75%] 2023-01-11T21:41:34.3998252Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_round_cpu_float64 PASSED [ 76%] 2023-01-11T21:41:34.3998447Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_round_decimals_3_cpu_float64 SKIPPED (Skipped!) [ 76%] 2023-01-11T21:41:34.3998615Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_rsqrt_cpu_float64 PASSED [ 76%] 2023-01-11T21:41:34.3998814Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_rsub_cpu_complex128 SKIPPED (Op has no inplace variant!) [ 76%] 2023-01-11T21:41:34.3999169Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_scalar_tensor_cpu_complex128 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 76%] 2023-01-11T21:41:34.3999517Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_scalar_tensor_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 76%] 2023-01-11T21:41:34.3999691Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_scatter_add_cpu_complex128 PASSED [ 76%] 2023-01-11T21:41:34.3999868Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_scatter_cpu_complex128 PASSED [ 76%] 2023-01-11T21:41:34.4000055Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_scatter_reduce_amax_cpu_float64 PASSED [ 76%] 2023-01-11T21:41:34.4000240Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_scatter_reduce_amin_cpu_float64 PASSED [ 76%] 2023-01-11T21:41:34.4000423Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_scatter_reduce_prod_cpu_float64 PASSED [ 76%] 2023-01-11T21:41:34.4000727Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_select_cpu_complex128 SKIPPED (Op has no inplace variant!) [ 76%] 2023-01-11T21:41:34.4000932Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_select_cpu_float64 SKIPPED (Op has no inplace variant!) [ 76%] 2023-01-11T21:41:34.4001277Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_short_cpu_complex128 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 76%] 2023-01-11T21:41:34.4001610Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_short_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 76%] 2023-01-11T21:41:34.4001776Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_sigmoid_cpu_complex128 PASSED [ 76%] 2023-01-11T21:41:34.4001948Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_sigmoid_cpu_float64 PASSED [ 76%] 2023-01-11T21:41:34.4002312Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_signal_windows_bartlett_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 76%] 2023-01-11T21:41:34.4002669Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_signal_windows_cosine_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 76%] 2023-01-11T21:41:34.4003089Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_signal_windows_hamming_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 76%] 2023-01-11T21:41:34.4003441Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_signal_windows_hann_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 76%] 2023-01-11T21:41:34.4003772Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_signbit_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 76%] 2023-01-11T21:41:34.4003940Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_sin_cpu_float64 PASSED [ 76%] 2023-01-11T21:41:34.4004110Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_sinc_cpu_float64 PASSED [ 76%] 2023-01-11T21:41:34.4004278Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_sinh_cpu_float64 PASSED [ 77%] 2023-01-11T21:41:34.4004481Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_sort_cpu_float64 SKIPPED (Op has no inplace variant!) [ 77%] 2023-01-11T21:41:34.4004721Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_sparse_sampled_addmm_cpu_float64 SKIPPED (Op has no inplace variant!) [ 77%] 2023-01-11T21:41:34.4005078Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_special_bessel_j0_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 77%] 2023-01-11T21:41:34.4005428Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_special_bessel_y0_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 77%] 2023-01-11T21:41:34.4005806Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_special_chebyshev_polynomial_u_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 77%] 2023-01-11T21:41:34.4006196Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_special_chebyshev_polynomial_v_cpu_float64 SKIPPED (Skipping - testing takes an unreasonably long time, #79528) [ 77%] 2023-01-11T21:41:34.4006410Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_special_entr_cpu_float64 SKIPPED (Op has no inplace variant!) [ 77%] 2023-01-11T21:41:34.4006781Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_special_hermite_polynomial_h_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 77%] 2023-01-11T21:41:34.4007152Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_special_hermite_polynomial_he_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 77%] 2023-01-11T21:41:34.4007357Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_special_i0e_cpu_float64 SKIPPED (Op has no inplace variant!) [ 77%] 2023-01-11T21:41:34.4007570Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_special_log_ndtr_cpu_float64 SKIPPED (Op has no inplace variant!) [ 77%] 2023-01-11T21:41:34.4007935Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_special_modified_bessel_i0_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 77%] 2023-01-11T21:41:34.4008290Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_special_modified_bessel_k1_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 77%] 2023-01-11T21:41:34.4008532Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_special_ndtr_cpu_float64 SKIPPED (Op has no inplace variant!) [ 77%] 2023-01-11T21:41:34.4008991Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_special_scaled_modified_bessel_k0_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 77%] 2023-01-11T21:41:34.4009391Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_special_shifted_chebyshev_polynomial_t_cpu_float64 SKIPPED (Skipping - testing takes an unreasonably long time, #79528) [ 77%] 2023-01-11T21:41:34.4009787Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_special_shifted_chebyshev_polynomial_v_cpu_float64 SKIPPED (Skipping - testing takes an unreasonably long time, #79528) [ 77%] 2023-01-11T21:41:34.4010226Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_special_shifted_chebyshev_polynomial_w_cpu_float64 SKIPPED (Skipping - testing takes an unreasonably long time, #79528) [ 77%] 2023-01-11T21:41:34.4010438Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_special_xlog1py_cpu_float64 SKIPPED (Op has no inplace variant!) [ 77%] 2023-01-11T21:41:34.4010641Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_split_cpu_float64 SKIPPED (Op has no inplace variant!) [ 77%] 2023-01-11T21:41:34.4010855Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_split_with_sizes_cpu_complex128 SKIPPED (Op has no inplace variant!) [ 77%] 2023-01-11T21:41:34.4011065Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_split_with_sizes_cpu_float64 SKIPPED (Op has no inplace variant!) [ 77%] 2023-01-11T21:41:34.4011236Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_sqrt_cpu_float64 PASSED [ 77%] 2023-01-11T21:41:34.4011396Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_square_cpu_float64 PASSED [ 78%] 2023-01-11T21:41:34.4011621Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_std_cpu_float64 SKIPPED (Op has no inplace variant!) [ 78%] 2023-01-11T21:41:34.4011840Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_std_mean_unbiased_cpu_complex128 SKIPPED (Op has no inplace variant!) [ 78%] 2023-01-11T21:41:34.4012048Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_std_unbiased_cpu_float64 SKIPPED (Op has no inplace variant!) [ 78%] 2023-01-11T21:41:34.4012254Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_stft_cpu_complex128 SKIPPED (Op has no inplace variant!) [ 78%] 2023-01-11T21:41:34.4012425Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_sub_cpu_complex128 PASSED [ 78%] 2023-01-11T21:41:34.4012594Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_sub_cpu_float64 PASSED [ 78%] 2023-01-11T21:41:34.4012798Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_sum_cpu_complex128 SKIPPED (Op has no inplace variant!) [ 78%] 2023-01-11T21:41:34.4012997Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_sum_cpu_float64 SKIPPED (Op has no inplace variant!) [ 78%] 2023-01-11T21:41:34.4013201Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_sum_to_size_cpu_float64 SKIPPED (Op has no inplace variant!) [ 78%] 2023-01-11T21:41:34.4013389Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_svd_cpu_complex128 SKIPPED (Op has no inplace variant!) [ 78%] 2023-01-11T21:41:34.4013584Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_svd_cpu_float64 SKIPPED (Op has no inplace variant!) [ 78%] 2023-01-11T21:41:34.4013782Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_symeig_cpu_float64 SKIPPED (Op has no inplace variant!) [ 78%] 2023-01-11T21:41:34.4013956Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_t_cpu_complex128 PASSED [ 78%] 2023-01-11T21:41:34.4014170Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_take_along_dim_cpu_complex128 SKIPPED (Op has no inplace variant!) [ 78%] 2023-01-11T21:41:34.4014379Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_take_along_dim_cpu_float64 SKIPPED (Op has no inplace variant!) [ 78%] 2023-01-11T21:41:34.4014579Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_take_cpu_complex128 SKIPPED (Op has no inplace variant!) [ 78%] 2023-01-11T21:41:34.4014751Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_tan_cpu_complex128 PASSED [ 78%] 2023-01-11T21:41:34.4014924Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_tanh_cpu_complex128 PASSED [ 78%] 2023-01-11T21:41:34.4015134Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_tensor_split_cpu_complex128 SKIPPED (Op has no inplace variant!) [ 78%] 2023-01-11T21:41:34.4015346Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_to_cpu_float64 SKIPPED (Op has no inplace variant!) [ 78%] 2023-01-11T21:41:34.4015551Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_trace_cpu_complex128 SKIPPED (Op has no inplace variant!) [ 78%] 2023-01-11T21:41:34.4015750Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_trace_cpu_float64 SKIPPED (Op has no inplace variant!) [ 78%] 2023-01-11T21:41:34.4016020Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_trapezoid_cpu_complex128 SKIPPED (Op has no inplace variant!) [ 78%] 2023-01-11T21:41:34.4016226Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_trapz_cpu_complex128 SKIPPED (Op has no inplace variant!) [ 79%] 2023-01-11T21:41:34.4016423Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_trapz_cpu_float64 SKIPPED (Op has no inplace variant!) [ 79%] 2023-01-11T21:41:34.4016636Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_triangular_solve_cpu_float64 SKIPPED (Op has no inplace variant!) [ 79%] 2023-01-11T21:41:34.4016815Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_true_divide_cpu_float64 PASSED [ 79%] 2023-01-11T21:41:34.4017015Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_trunc_cpu_float64 PASSED [ 79%] 2023-01-11T21:41:34.4017203Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_unbind_cpu_float64 SKIPPED (Op has no inplace variant!) [ 79%] 2023-01-11T21:41:34.4017425Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_unflatten_cpu_float64 SKIPPED (Op has no inplace variant!) [ 79%] 2023-01-11T21:41:34.4017752Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_unfold_copy_cpu_complex128 SKIPPED (Op has no inplace variant!) [ 79%] 2023-01-11T21:41:34.4017956Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_unfold_cpu_float64 SKIPPED (Op has no inplace variant!) [ 79%] 2023-01-11T21:41:34.4018323Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_unique_consecutive_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 79%] 2023-01-11T21:41:34.4018661Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_unique_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 79%] 2023-01-11T21:41:34.4018866Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_var_cpu_complex128 SKIPPED (Op has no inplace variant!) [ 79%] 2023-01-11T21:41:34.4019115Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_var_mean_cpu_float64 SKIPPED (Op has no inplace variant!) [ 79%] 2023-01-11T21:41:34.4019404Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_var_unbiased_cpu_complex128 SKIPPED (Op has no inplace variant!) [ 79%] 2023-01-11T21:41:34.4019611Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_var_unbiased_cpu_float64 SKIPPED (Op has no inplace variant!) [ 79%] 2023-01-11T21:41:34.4019812Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_vdot_cpu_complex128 SKIPPED (Op has no inplace variant!) [ 79%] 2023-01-11T21:41:34.4020000Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_vdot_cpu_float64 SKIPPED (Op has no inplace variant!) [ 79%] 2023-01-11T21:41:34.4020210Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_view_as_complex_cpu_float64 SKIPPED (Op has no inplace variant!) [ 79%] 2023-01-11T21:41:34.4020407Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_view_cpu_float64 SKIPPED (Op has no inplace variant!) [ 79%] 2023-01-11T21:41:34.4020611Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_vsplit_cpu_complex128 SKIPPED (Op has no inplace variant!) [ 79%] 2023-01-11T21:41:34.4020814Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_vstack_cpu_complex128 SKIPPED (Op has no inplace variant!) [ 79%] 2023-01-11T21:41:34.4021016Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_where_cpu_complex128 SKIPPED (Op has no inplace variant!) [ 79%] 2023-01-11T21:41:34.4021212Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_where_cpu_float64 SKIPPED (Op has no inplace variant!) [ 79%] 2023-01-11T21:41:34.4021446Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_xlogy_cpu_float64 PASSED [ 79%] 2023-01-11T21:41:34.4021615Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_zero__cpu_float64 PASSED [ 80%] 2023-01-11T21:41:34.4021950Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_zeros_cpu_complex128 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 80%] 2023-01-11T21:41:34.4022297Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_zeros_like_cpu_complex128 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 80%] 2023-01-11T21:41:34.4022640Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_zeros_like_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 80%] 2023-01-11T21:41:34.4022877Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_H_cpu_complex128 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 80%] 2023-01-11T21:41:34.4023113Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_H_cpu_float64 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 80%] 2023-01-11T21:41:34.4023389Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_T_cpu_complex128 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 80%] 2023-01-11T21:41:34.4023623Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_T_cpu_float64 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 80%] 2023-01-11T21:41:34.4023870Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad___getitem___cpu_complex128 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 80%] 2023-01-11T21:41:34.4024111Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad___getitem___cpu_float64 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 80%] 2023-01-11T21:41:34.4024353Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad___radd___cpu_complex128 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 80%] 2023-01-11T21:41:34.4024593Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad___radd___cpu_float64 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 80%] 2023-01-11T21:41:34.4024838Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad___rmatmul___cpu_complex128 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 80%] 2023-01-11T21:41:34.4025064Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad___rmatmul___cpu_float64 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 80%] 2023-01-11T21:41:34.4025259Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad___rpow___cpu_complex128 SKIPPED (Skipped!) [ 80%] 2023-01-11T21:41:34.4025496Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad___rsub___cpu_complex128 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 80%] 2023-01-11T21:41:34.4025751Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad__softmax_backward_data_cpu_float64 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 80%] 2023-01-11T21:41:34.4025927Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_acos_cpu_float64 PASSED [ 80%] 2023-01-11T21:41:34.4026100Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_add_cpu_float64 PASSED [ 80%] 2023-01-11T21:41:34.4026277Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_addbmm_cpu_float64 PASSED [ 80%] 2023-01-11T21:41:34.4026458Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_addcdiv_cpu_complex128 PASSED [ 80%] 2023-01-11T21:41:34.4026635Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_addmm_cpu_float64 PASSED [ 80%] 2023-01-11T21:41:34.4026831Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_addmm_decomposed_cpu_complex128 PASSED [ 80%] 2023-01-11T21:41:34.4027028Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_addmv_cpu_complex128 PASSED [ 80%] 2023-01-11T21:41:34.4027207Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_addr_cpu_complex128 PASSED [ 81%] 2023-01-11T21:41:34.4027380Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_addr_cpu_float64 PASSED [ 81%] 2023-01-11T21:41:34.4027727Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_all_cpu_complex128 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 81%] 2023-01-11T21:41:34.4028065Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_all_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 81%] 2023-01-11T21:41:34.4028418Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_allclose_cpu_complex128 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 81%] 2023-01-11T21:41:34.4028761Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_any_cpu_complex128 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 81%] 2023-01-11T21:41:34.4029132Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_arange_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 81%] 2023-01-11T21:41:34.4029474Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_argmax_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 81%] 2023-01-11T21:41:34.4029816Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_argsort_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 81%] 2023-01-11T21:41:34.4030148Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_argwhere_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 81%] 2023-01-11T21:41:34.4030353Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_as_strided_cpu_complex128 SKIPPED (Numerous errors) [ 81%] 2023-01-11T21:41:34.4030554Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_as_strided_cpu_float64 SKIPPED (Numerous errors) [ 81%] 2023-01-11T21:41:34.4030754Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_as_strided_partial_views_cpu_float64 XFAIL [ 81%] 2023-01-11T21:41:34.4031007Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_as_strided_scatter_cpu_complex128 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 81%] 2023-01-11T21:41:34.4031254Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_as_strided_scatter_cpu_float64 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 81%] 2023-01-11T21:41:34.4031435Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_asin_cpu_complex128 PASSED [ 81%] 2023-01-11T21:41:34.4031672Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_asinh_cpu_complex128 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 81%] 2023-01-11T21:41:34.4031906Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_asinh_cpu_float64 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 81%] 2023-01-11T21:41:34.4032145Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_atanh_cpu_float64 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 81%] 2023-01-11T21:41:34.4032386Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_atleast_1d_cpu_complex128 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 81%] 2023-01-11T21:41:34.4032614Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_atleast_1d_cpu_float64 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 81%] 2023-01-11T21:41:34.4032861Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_atleast_2d_cpu_float64 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 81%] 2023-01-11T21:41:34.4033037Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_baddbmm_cpu_float64 PASSED [ 81%] 2023-01-11T21:41:34.4033310Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_bfloat16_cpu_complex128 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 81%] 2023-01-11T21:41:34.4033547Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_bfloat16_cpu_float64 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 81%] 2023-01-11T21:41:34.4033789Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_block_diag_cpu_complex128 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 82%] 2023-01-11T21:41:34.4034024Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_bmm_cpu_complex128 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 82%] 2023-01-11T21:41:34.4034256Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_bmm_cpu_float64 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 82%] 2023-01-11T21:41:34.4034680Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_bool_cpu_complex128 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 82%] 2023-01-11T21:41:34.4034970Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_broadcast_tensors_cpu_complex128 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 82%] 2023-01-11T21:41:34.4035220Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_broadcast_to_cpu_complex128 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 82%] 2023-01-11T21:41:34.4035563Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_byte_cpu_complex128 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 82%] 2023-01-11T21:41:34.4035890Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_byte_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 82%] 2023-01-11T21:41:34.4036137Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_cartesian_prod_cpu_float64 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 82%] 2023-01-11T21:41:34.4036526Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_cat_cpu_float64 SKIPPED (TODO(whc) fix pre-existing bug with cat for newly added opinfo for empty+nonempty) [ 82%] 2023-01-11T21:41:34.4036764Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_cdist_cpu_float64 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 82%] 2023-01-11T21:41:34.4037002Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_cdouble_cpu_float64 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 82%] 2023-01-11T21:41:34.4037176Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_ceil_cpu_float64 PASSED [ 82%] 2023-01-11T21:41:34.4037410Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_chalf_cpu_float64 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 82%] 2023-01-11T21:41:34.4037752Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_char_cpu_complex128 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 82%] 2023-01-11T21:41:34.4038092Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_char_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 82%] 2023-01-11T21:41:34.4038337Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_cholesky_cpu_complex128 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 82%] 2023-01-11T21:41:34.4038582Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_cholesky_inverse_cpu_float64 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 82%] 2023-01-11T21:41:34.4038803Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_chunk_cpu_float64 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 82%] 2023-01-11T21:41:34.4038978Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_clamp_cpu_float64 PASSED [ 82%] 2023-01-11T21:41:34.4039161Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_clamp_max_cpu_float64 PASSED [ 82%] 2023-01-11T21:41:34.4039431Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_clone_cpu_complex128 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 82%] 2023-01-11T21:41:34.4039674Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_column_stack_cpu_float64 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 82%] 2023-01-11T21:41:34.4039918Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_combinations_cpu_complex128 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 82%] 2023-01-11T21:41:34.4040259Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_combinations_cpu_float64 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 83%] 2023-01-11T21:41:34.4040524Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_complex_cpu_float64 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 83%] 2023-01-11T21:41:34.4040954Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_conj_cpu_complex128 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 83%] 2023-01-11T21:41:34.4041243Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_conj_physical_cpu_complex128 PASSED [ 83%] 2023-01-11T21:41:34.4041433Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_conj_physical_cpu_float64 PASSED [ 83%] 2023-01-11T21:41:34.4041662Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_constant_pad_nd_cpu_float64 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 83%] 2023-01-11T21:41:34.4041900Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_contiguous_cpu_float64 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 83%] 2023-01-11T21:41:34.4042079Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_cos_cpu_complex128 PASSED [ 83%] 2023-01-11T21:41:34.4042254Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_cos_cpu_float64 PASSED [ 83%] 2023-01-11T21:41:34.4042435Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_cosh_cpu_complex128 PASSED [ 83%] 2023-01-11T21:41:34.4042610Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_cosh_cpu_float64 PASSED [ 83%] 2023-01-11T21:41:34.4042969Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_count_nonzero_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 83%] 2023-01-11T21:41:34.4043205Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_cov_cpu_float64 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 83%] 2023-01-11T21:41:34.4043445Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_cross_cpu_complex128 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 83%] 2023-01-11T21:41:34.4043682Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_cummax_cpu_float64 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 83%] 2023-01-11T21:41:34.4043908Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_cummin_cpu_float64 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 83%] 2023-01-11T21:41:34.4044164Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_cumulative_trapezoid_cpu_float64 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 83%] 2023-01-11T21:41:34.4044342Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_deg2rad_cpu_float64 PASSED [ 83%] 2023-01-11T21:41:34.4044581Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_diag_cpu_complex128 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 83%] 2023-01-11T21:41:34.4044822Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_diag_embed_cpu_float64 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 83%] 2023-01-11T21:41:34.4045060Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_diagflat_cpu_float64 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 83%] 2023-01-11T21:41:34.4045349Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_diagonal_copy_cpu_complex128 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 83%] 2023-01-11T21:41:34.4045592Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_diagonal_copy_cpu_float64 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 83%] 2023-01-11T21:41:34.4045836Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_diagonal_cpu_complex128 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 83%] 2023-01-11T21:41:34.4046073Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_diff_cpu_complex128 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 84%] 2023-01-11T21:41:34.4046306Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_diff_cpu_float64 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 84%] 2023-01-11T21:41:34.4046485Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_digamma_cpu_float64 PASSED [ 84%] 2023-01-11T21:41:34.4046733Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_dist_cpu_float64 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 84%] 2023-01-11T21:41:34.4046931Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_div_no_rounding_mode_cpu_complex128 PASSED [ 84%] 2023-01-11T21:41:34.4047122Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_div_no_rounding_mode_cpu_float64 PASSED [ 84%] 2023-01-11T21:41:34.4047312Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_div_trunc_rounding_cpu_float64 PASSED [ 84%] 2023-01-11T21:41:34.4047661Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_dot_cpu_complex128 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 84%] 2023-01-11T21:41:34.4047902Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_dot_cpu_float64 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 84%] 2023-01-11T21:41:34.4048148Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_double_cpu_complex128 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 84%] 2023-01-11T21:41:34.4048384Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_double_cpu_float64 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 84%] 2023-01-11T21:41:34.4048624Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_dsplit_cpu_complex128 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 84%] 2023-01-11T21:41:34.4048963Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_dsplit_cpu_float64 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 84%] 2023-01-11T21:41:34.4049313Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_empty_like_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 84%] 2023-01-11T21:41:34.4049640Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_eq_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 84%] 2023-01-11T21:41:34.4049982Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_equal_cpu_complex128 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 84%] 2023-01-11T21:41:34.4050323Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_equal_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 84%] 2023-01-11T21:41:34.4050499Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_erfc_cpu_float64 PASSED [ 84%] 2023-01-11T21:41:34.4050675Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_erfinv_cpu_float64 PASSED [ 84%] 2023-01-11T21:41:34.4050847Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_exp_cpu_float64 PASSED [ 84%] 2023-01-11T21:41:34.4051089Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_expand_cpu_complex128 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 84%] 2023-01-11T21:41:34.4051304Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_expm1_cpu_float64 PASSED [ 84%] 2023-01-11T21:41:34.4051649Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_eye_cpu_complex128 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 84%] 2023-01-11T21:41:34.4051891Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_fft_fft_cpu_complex128 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 84%] 2023-01-11T21:41:34.4052121Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_fft_fftshift_cpu_float64 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 85%] 2023-01-11T21:41:34.4052363Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_fft_hfft2_cpu_complex128 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 85%] 2023-01-11T21:41:34.4052605Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_fft_hfft_cpu_complex128 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 85%] 2023-01-11T21:41:34.4052879Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_fft_hfftn_cpu_complex128 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 85%] 2023-01-11T21:41:34.4053119Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_fft_ifftn_cpu_float64 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 85%] 2023-01-11T21:41:34.4053357Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_fft_ihfft2_cpu_float64 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 85%] 2023-01-11T21:41:34.4053592Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_fft_ihfft_cpu_float64 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 85%] 2023-01-11T21:41:34.4053828Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_fft_ihfftn_cpu_float64 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 85%] 2023-01-11T21:41:34.4054070Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_fft_irfft_cpu_complex128 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 85%] 2023-01-11T21:41:34.4054306Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_fft_irfft_cpu_float64 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 85%] 2023-01-11T21:41:34.4054541Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_fft_irfftn_cpu_float64 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 85%] 2023-01-11T21:41:34.4054774Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_fft_rfft_cpu_float64 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 85%] 2023-01-11T21:41:34.4054995Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_flatten_cpu_complex128 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 85%] 2023-01-11T21:41:34.4055232Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_flatten_cpu_float64 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 85%] 2023-01-11T21:41:34.4055470Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_flip_cpu_float64 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 85%] 2023-01-11T21:41:34.4055761Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_flipud_cpu_float64 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 85%] 2023-01-11T21:41:34.4056132Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_float_cpu_complex128 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 85%] 2023-01-11T21:41:34.4056324Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_float_power_cpu_complex128 PASSED [ 85%] 2023-01-11T21:41:34.4056502Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_floor_cpu_float64 PASSED [ 85%] 2023-01-11T21:41:34.4056851Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_full_like_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 85%] 2023-01-11T21:41:34.4057233Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_ge_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 85%] 2023-01-11T21:41:34.4057471Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_half_cpu_float64 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 85%] 2023-01-11T21:41:34.4057818Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_heaviside_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 85%] 2023-01-11T21:41:34.4058146Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_histc_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 85%] 2023-01-11T21:41:34.4058493Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_histogram_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 86%] 2023-01-11T21:41:34.4058767Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_index_add_cpu_float64 PASSED [ 86%] 2023-01-11T21:41:34.4059006Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_index_copy_cpu_float64 PASSED [ 86%] 2023-01-11T21:41:34.4059198Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_index_fill_cpu_complex128 PASSED [ 86%] 2023-01-11T21:41:34.4059382Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_index_put_cpu_complex128 PASSED [ 86%] 2023-01-11T21:41:34.4059569Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_index_reduce_cpu_float64 PASSED [ 86%] 2023-01-11T21:41:34.4059818Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_index_select_cpu_complex128 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 86%] 2023-01-11T21:41:34.4060060Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_index_select_cpu_float64 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 86%] 2023-01-11T21:41:34.4060301Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_inner_cpu_complex128 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 86%] 2023-01-11T21:41:34.4060526Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_inner_cpu_float64 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 86%] 2023-01-11T21:41:34.4060874Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_int_cpu_complex128 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 86%] 2023-01-11T21:41:34.4061208Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_int_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 86%] 2023-01-11T21:41:34.4061558Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_isclose_cpu_complex128 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 86%] 2023-01-11T21:41:34.4061901Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_isfinite_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 86%] 2023-01-11T21:41:34.4062253Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_isinf_cpu_complex128 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 86%] 2023-01-11T21:41:34.4062594Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_isinf_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 86%] 2023-01-11T21:41:34.4062934Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_isnan_cpu_complex128 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 86%] 2023-01-11T21:41:34.4063270Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_isnan_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 86%] 2023-01-11T21:41:34.4063488Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_jiterator_2inputs_2outputs_cpu_complex128 SKIPPED (Only runs on cuda) [ 86%] 2023-01-11T21:41:34.4063762Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_jiterator_4inputs_with_extra_args_cpu_complex128 SKIPPED (Only runs on cuda) [ 86%] 2023-01-11T21:41:34.4064092Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_jiterator_4inputs_with_extra_args_cpu_float64 SKIPPED (Only runs on cuda) [ 86%] 2023-01-11T21:41:34.4064290Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_jiterator_binary_cpu_float64 SKIPPED (Only runs on cuda) [ 86%] 2023-01-11T21:41:34.4064513Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_jiterator_binary_return_by_ref_cpu_complex128 SKIPPED (Only runs on cuda) [ 86%] 2023-01-11T21:41:34.4064720Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_jiterator_unary_cpu_complex128 SKIPPED (Only runs on cuda) [ 86%] 2023-01-11T21:41:34.4064956Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_ldexp_cpu_float64 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 87%] 2023-01-11T21:41:34.4065296Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_le_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 87%] 2023-01-11T21:41:34.4065507Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_lgamma_cpu_float64 PASSED [ 87%] 2023-01-11T21:41:34.4065756Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_linalg_cond_cpu_complex128 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 87%] 2023-01-11T21:41:34.4065997Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_linalg_cond_cpu_float64 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 87%] 2023-01-11T21:41:34.4066237Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_linalg_cross_cpu_float64 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 87%] 2023-01-11T21:41:34.4066475Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_linalg_det_cpu_float64 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 87%] 2023-01-11T21:41:34.4066791Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_linalg_eig_cpu_complex128 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 87%] 2023-01-11T21:41:34.4067039Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_linalg_eig_cpu_float64 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 87%] 2023-01-11T21:41:34.4067290Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_linalg_eigvals_cpu_complex128 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 87%] 2023-01-11T21:41:34.4067539Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_linalg_eigvalsh_cpu_complex128 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 87%] 2023-01-11T21:41:34.4067774Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_linalg_inv_cpu_float64 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 87%] 2023-01-11T21:41:34.4068018Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_linalg_inv_ex_cpu_complex128 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 87%] 2023-01-11T21:41:34.4068258Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_linalg_inv_ex_cpu_float64 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 87%] 2023-01-11T21:41:34.4068627Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_linalg_ldl_factor_cpu_complex128 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 87%] 2023-01-11T21:41:34.4068986Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_linalg_ldl_solve_cpu_complex128 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 87%] 2023-01-11T21:41:34.4069244Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_linalg_lstsq_grad_oriented_cpu_complex128 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 87%] 2023-01-11T21:41:34.4069514Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_linalg_lu_cpu_float64 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 87%] 2023-01-11T21:41:34.4069760Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_linalg_lu_factor_cpu_float64 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 87%] 2023-01-11T21:41:34.4070003Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_linalg_matrix_norm_cpu_float64 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 87%] 2023-01-11T21:41:34.4070241Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_linalg_matrix_power_cpu_complex128 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 87%] 2023-01-11T21:41:34.4070599Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_linalg_matrix_rank_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 87%] 2023-01-11T21:41:34.4070982Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_linalg_matrix_rank_hermitian_cpu_complex128 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 87%] 2023-01-11T21:41:34.4071260Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_linalg_multi_dot_cpu_float64 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 87%] 2023-01-11T21:41:34.4071522Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_linalg_norm_subgradients_at_zero_cpu_float64 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 87%] 2023-01-11T21:41:34.4071774Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_linalg_pinv_hermitian_cpu_complex128 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 88%] 2023-01-11T21:41:34.4072024Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_linalg_pinv_hermitian_cpu_float64 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 88%] 2023-01-11T21:41:34.4072280Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_linalg_pinv_singular_cpu_float64 SKIPPED (test is slow; run with PYTORCH_TEST_WITH_SLOW to enable test) [ 88%] 2023-01-11T21:41:34.4072525Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_linalg_qr_cpu_complex128 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 88%] 2023-01-11T21:41:34.4072776Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_linalg_slogdet_cpu_complex128 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 88%] 2023-01-11T21:41:34.4073020Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_linalg_solve_ex_cpu_float64 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 88%] 2023-01-11T21:41:34.4073277Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_linalg_solve_triangular_cpu_complex128 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 88%] 2023-01-11T21:41:34.4073532Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_linalg_solve_triangular_cpu_float64 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 88%] 2023-01-11T21:41:34.4073873Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_linalg_svd_cpu_float64 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 88%] 2023-01-11T21:41:34.4074119Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_linalg_tensorinv_cpu_float64 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 88%] 2023-01-11T21:41:34.4074360Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_linalg_vander_cpu_float64 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 88%] 2023-01-11T21:41:34.4074604Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_linalg_vector_norm_cpu_float64 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 88%] 2023-01-11T21:41:34.4074960Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_linspace_cpu_complex128 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 88%] 2023-01-11T21:41:34.4075348Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_linspace_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 88%] 2023-01-11T21:41:34.4075528Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_log1p_cpu_float64 PASSED [ 88%] 2023-01-11T21:41:34.4075705Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_log2_cpu_float64 PASSED [ 88%] 2023-01-11T21:41:34.4075884Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_log_cpu_complex128 PASSED [ 88%] 2023-01-11T21:41:34.4076142Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_log_softmax_with_dtype_cpu_complex128 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 88%] 2023-01-11T21:41:34.4076382Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_logaddexp2_cpu_float64 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 88%] 2023-01-11T21:41:34.4076612Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_logaddexp_cpu_float64 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 88%] 2023-01-11T21:41:34.4076887Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_logcumsumexp_cpu_float64 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 88%] 2023-01-11T21:41:34.4077128Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_logdet_cpu_complex128 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 88%] 2023-01-11T21:41:34.4077367Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_logdet_cpu_float64 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 88%] 2023-01-11T21:41:34.4077828Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_logical_not_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 88%] 2023-01-11T21:41:34.4078184Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_logical_xor_cpu_complex128 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 89%] 2023-01-11T21:41:34.4078534Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_logspace_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 89%] 2023-01-11T21:41:34.4078878Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_long_cpu_complex128 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 89%] 2023-01-11T21:41:34.4079120Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_lu_solve_cpu_complex128 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 89%] 2023-01-11T21:41:34.4079359Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_lu_solve_cpu_float64 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 89%] 2023-01-11T21:41:34.4079596Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_lu_unpack_cpu_float64 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 89%] 2023-01-11T21:41:34.4079830Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_mH_cpu_float64 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 89%] 2023-01-11T21:41:34.4080058Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_masked_amax_cpu_float64 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 89%] 2023-01-11T21:41:34.4080300Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_masked_amin_cpu_float64 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 89%] 2023-01-11T21:41:34.4080754Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_masked_argmin_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 89%] 2023-01-11T21:41:34.4081002Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_masked_cumprod_cpu_float64 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 89%] 2023-01-11T21:41:34.4081243Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_masked_cumsum_cpu_float64 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 89%] 2023-01-11T21:41:34.4081497Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_masked_fill_cpu_complex128 PASSED [ 89%] 2023-01-11T21:41:34.4081788Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_masked_median_cpu_float64 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 89%] 2023-01-11T21:41:34.4082062Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_masked_norm_cpu_float64 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 89%] 2023-01-11T21:41:34.4082252Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_masked_scatter_cpu_float64 PASSED [ 89%] 2023-01-11T21:41:34.4082500Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_masked_select_cpu_complex128 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 89%] 2023-01-11T21:41:34.4082741Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_masked_select_cpu_float64 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 89%] 2023-01-11T21:41:34.4083012Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_masked_softmax_cpu_float64 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 89%] 2023-01-11T21:41:34.4083256Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_masked_softmin_cpu_float64 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 89%] 2023-01-11T21:41:34.4083497Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_masked_var_cpu_complex128 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 89%] 2023-01-11T21:41:34.4083734Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_masked_var_cpu_float64 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 89%] 2023-01-11T21:41:34.4083973Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_matmul_cpu_complex128 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 89%] 2023-01-11T21:41:34.4084217Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_matrix_exp_cpu_float64 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 89%] 2023-01-11T21:41:34.4084481Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_max_pool2d_with_indices_backward_cpu_float64 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 90%] 2023-01-11T21:41:34.4084724Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_mean_cpu_complex128 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 90%] 2023-01-11T21:41:34.4084983Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_meshgrid_list_of_tensors_cpu_complex128 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 90%] 2023-01-11T21:41:34.4085237Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_meshgrid_variadic_tensors_cpu_float64 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 90%] 2023-01-11T21:41:34.4085476Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_min_binary_cpu_float64 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 90%] 2023-01-11T21:41:34.4085728Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_min_reduction_no_dim_cpu_float64 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 90%] 2023-01-11T21:41:34.4086039Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_min_reduction_with_dim_cpu_float64 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 90%] 2023-01-11T21:41:34.4086287Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_mm_cpu_complex128 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 90%] 2023-01-11T21:41:34.4086520Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_mm_cpu_float64 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 90%] 2023-01-11T21:41:34.4086758Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_movedim_cpu_complex128 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 90%] 2023-01-11T21:41:34.4087065Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_movedim_cpu_float64 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 90%] 2023-01-11T21:41:34.4087296Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_msort_cpu_float64 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 90%] 2023-01-11T21:41:34.4087475Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_mul_cpu_complex128 PASSED [ 90%] 2023-01-11T21:41:34.4087649Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_mul_cpu_float64 PASSED [ 90%] 2023-01-11T21:41:34.4088008Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_multinomial_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 90%] 2023-01-11T21:41:34.4088191Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_nan_to_num_cpu_float64 PASSED [ 90%] 2023-01-11T21:41:34.4088461Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_nanmean_cpu_float64 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 90%] 2023-01-11T21:41:34.4088695Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_nanquantile_cpu_float64 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 90%] 2023-01-11T21:41:34.4089034Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_ne_cpu_complex128 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 90%] 2023-01-11T21:41:34.4089209Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_neg_cpu_float64 PASSED [ 90%] 2023-01-11T21:41:34.4089561Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_new_empty_cpu_complex128 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 90%] 2023-01-11T21:41:34.4089907Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_new_empty_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 90%] 2023-01-11T21:41:34.4090279Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_new_empty_strided_cpu_complex128 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 90%] 2023-01-11T21:41:34.4090632Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_nextafter_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 90%] 2023-01-11T21:41:34.4090903Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_nn_functional_adaptive_avg_pool1d_cpu_float64 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 91%] 2023-01-11T21:41:34.4091162Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_nn_functional_adaptive_avg_pool3d_cpu_float64 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 91%] 2023-01-11T21:41:34.4091425Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_nn_functional_adaptive_max_pool1d_cpu_float64 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 91%] 2023-01-11T21:41:34.4091694Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_nn_functional_adaptive_max_pool3d_cpu_float64 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 91%] 2023-01-11T21:41:34.4091948Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_nn_functional_avg_pool1d_cpu_float64 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 91%] 2023-01-11T21:41:34.4092189Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_nn_functional_avg_pool3d_cpu_float64 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 91%] 2023-01-11T21:41:34.4092507Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_nn_functional_bilinear_cpu_float64 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 91%] 2023-01-11T21:41:34.4092773Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_nn_functional_binary_cross_entropy_cpu_float64 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 91%] 2023-01-11T21:41:34.4093094Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_nn_functional_binary_cross_entropy_with_logits_cpu_float64 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 91%] 2023-01-11T21:41:34.4093344Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_nn_functional_conv1d_cpu_float64 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 91%] 2023-01-11T21:41:34.4093657Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_nn_functional_conv2d_cpu_complex128 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 91%] 2023-01-11T21:41:34.4093920Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_nn_functional_conv2d_cpu_float64 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 91%] 2023-01-11T21:41:34.4094180Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_nn_functional_conv_transpose1d_cpu_float64 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 91%] 2023-01-11T21:41:34.4094479Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_nn_functional_conv_transpose2d_cpu_complex128 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 91%] 2023-01-11T21:41:34.4094736Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_nn_functional_conv_transpose2d_cpu_float64 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 91%] 2023-01-11T21:41:34.4094998Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_nn_functional_conv_transpose3d_cpu_complex128 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 91%] 2023-01-11T21:41:34.4095262Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_nn_functional_cosine_embedding_loss_cpu_float64 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 91%] 2023-01-11T21:41:34.4095520Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_nn_functional_cross_entropy_cpu_float64 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 91%] 2023-01-11T21:41:34.4095770Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_nn_functional_ctc_loss_cpu_float64 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 91%] 2023-01-11T21:41:34.4096026Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_nn_functional_dropout3d_cpu_float64 PASSED [ 91%] 2023-01-11T21:41:34.4096226Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_nn_functional_dropout_cpu_float64 PASSED [ 91%] 2023-01-11T21:41:34.4096485Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_nn_functional_embedding_bag_cpu_float64 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 91%] 2023-01-11T21:41:34.4096709Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_nn_functional_feature_alpha_dropout_with_train_cpu_float64 PASSED [ 91%] 2023-01-11T21:41:34.4096939Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_nn_functional_feature_alpha_dropout_without_train_cpu_complex128 PASSED [ 91%] 2023-01-11T21:41:34.4097208Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_nn_functional_fractional_max_pool2d_cpu_float64 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 92%] 2023-01-11T21:41:34.4097473Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_nn_functional_fractional_max_pool3d_cpu_float64 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 92%] 2023-01-11T21:41:34.4097730Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_nn_functional_gaussian_nll_loss_cpu_float64 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 92%] 2023-01-11T21:41:34.4097976Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_nn_functional_gelu_cpu_float64 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 92%] 2023-01-11T21:41:34.4098261Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_nn_functional_huber_loss_cpu_float64 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 92%] 2023-01-11T21:41:34.4098521Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_nn_functional_instance_norm_cpu_float64 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 92%] 2023-01-11T21:41:34.4098788Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_nn_functional_interpolate_nearest_cpu_float64 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 92%] 2023-01-11T21:41:34.4099042Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_nn_functional_interpolate_trilinear_cpu_float64 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 92%] 2023-01-11T21:41:34.4099290Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_nn_functional_kl_div_cpu_float64 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 92%] 2023-01-11T21:41:34.4099547Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_nn_functional_l1_loss_cpu_complex128 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 92%] 2023-01-11T21:41:34.4099831Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_nn_functional_l1_loss_cpu_float64 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 92%] 2023-01-11T21:41:34.4100030Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_nn_functional_leaky_relu_cpu_float64 PASSED [ 92%] 2023-01-11T21:41:34.4100283Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_nn_functional_linear_cpu_float64 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 92%] 2023-01-11T21:41:34.4100602Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_nn_functional_local_response_norm_cpu_float64 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 92%] 2023-01-11T21:41:34.4100856Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_nn_functional_logsigmoid_cpu_float64 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 92%] 2023-01-11T21:41:34.4101123Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_nn_functional_margin_ranking_loss_cpu_float64 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 92%] 2023-01-11T21:41:34.4101374Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_nn_functional_max_pool2d_cpu_float64 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 92%] 2023-01-11T21:41:34.4101630Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_nn_functional_max_unpool1d_cpu_float64 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 92%] 2023-01-11T21:41:34.4101889Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_nn_functional_max_unpool1d_grad_cpu_float64 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 92%] 2023-01-11T21:41:34.4102139Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_nn_functional_max_unpool2d_cpu_float64 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 92%] 2023-01-11T21:41:34.4102391Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_nn_functional_max_unpool2d_grad_cpu_float64 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 92%] 2023-01-11T21:41:34.4102646Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_nn_functional_max_unpool3d_cpu_float64 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 92%] 2023-01-11T21:41:34.4102939Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_nn_functional_max_unpool3d_grad_cpu_float64 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 92%] 2023-01-11T21:41:34.4103157Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_nn_functional_mish_cpu_float64 PASSED [ 92%] 2023-01-11T21:41:34.4103430Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_nn_functional_multilabel_soft_margin_loss_cpu_float64 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 93%] 2023-01-11T21:41:34.4103738Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_nn_functional_pad_circular_cpu_complex128 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 93%] 2023-01-11T21:41:34.4103998Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_nn_functional_pad_constant_cpu_complex128 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 93%] 2023-01-11T21:41:34.4104255Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_nn_functional_pad_reflect_cpu_complex128 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 93%] 2023-01-11T21:41:34.4104508Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_nn_functional_pad_reflect_cpu_float64 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 93%] 2023-01-11T21:41:34.4104769Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_nn_functional_pairwise_distance_cpu_float64 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 93%] 2023-01-11T21:41:34.4105056Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_nn_functional_pixel_shuffle_cpu_complex128 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 93%] 2023-01-11T21:41:34.4105309Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_nn_functional_pixel_shuffle_cpu_float64 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 93%] 2023-01-11T21:41:34.4105569Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_nn_functional_pixel_unshuffle_cpu_complex128 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 93%] 2023-01-11T21:41:34.4105810Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_nn_functional_pixel_unshuffle_cpu_float64 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 93%] 2023-01-11T21:41:34.4106062Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_nn_functional_poisson_nll_loss_cpu_float64 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 93%] 2023-01-11T21:41:34.4106317Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_nn_functional_prelu_cpu_float64 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 93%] 2023-01-11T21:41:34.4106563Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_nn_functional_relu6_cpu_float64 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 93%] 2023-01-11T21:41:34.4106812Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_nn_functional_relu_cpu_float64 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 93%] 2023-01-11T21:41:34.4107005Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_nn_functional_rrelu_cpu_float64 PASSED [ 93%] 2023-01-11T21:41:34.4107196Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_nn_functional_selu_cpu_float64 PASSED [ 93%] 2023-01-11T21:41:34.4107588Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_nn_functional_silu_complex_cpu_complex128 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 93%] 2023-01-11T21:41:34.4107782Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_nn_functional_silu_cpu_float64 PASSED [ 93%] 2023-01-11T21:41:34.4108106Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_nn_functional_smooth_l1_loss_cpu_float64 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 93%] 2023-01-11T21:41:34.4108358Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_nn_functional_softmin_cpu_float64 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 93%] 2023-01-11T21:41:34.4108613Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_nn_functional_softmin_with_dtype_cpu_complex128 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 93%] 2023-01-11T21:41:34.4108865Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_nn_functional_softplus_cpu_float64 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 93%] 2023-01-11T21:41:34.4109156Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_nn_functional_softsign_cpu_float64 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 93%] 2023-01-11T21:41:34.4109413Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_nn_functional_tanhshrink_cpu_complex128 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 93%] 2023-01-11T21:41:34.4109666Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_nn_functional_tanhshrink_cpu_float64 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 93%] 2023-01-11T21:41:34.4109916Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_nn_functional_unfold_cpu_float64 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 94%] 2023-01-11T21:41:34.4110177Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_nn_functional_upsample_nearest_cpu_float64 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 94%] 2023-01-11T21:41:34.4110617Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_nonzero_cpu_complex128 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 94%] 2023-01-11T21:41:34.4110966Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_nonzero_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 94%] 2023-01-11T21:41:34.4111199Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_norm_cpu_float64 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 94%] 2023-01-11T21:41:34.4111438Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_norm_fro_cpu_complex128 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 94%] 2023-01-11T21:41:34.4111656Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_normal_number_mean_cpu_float64 SKIPPED (Gradients are incorrect!) [ 94%] 2023-01-11T21:41:34.4112002Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_ones_cpu_complex128 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 94%] 2023-01-11T21:41:34.4112328Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_ones_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 94%] 2023-01-11T21:41:34.4112673Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_ones_like_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 94%] 2023-01-11T21:41:34.4112912Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_ormqr_cpu_complex128 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 94%] 2023-01-11T21:41:34.4113147Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_outer_cpu_complex128 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 94%] 2023-01-11T21:41:34.4113381Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_outer_cpu_float64 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 94%] 2023-01-11T21:41:34.4113627Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_permute_cpu_complex128 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 94%] 2023-01-11T21:41:34.4113867Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_pinverse_cpu_float64 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 94%] 2023-01-11T21:41:34.4114060Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_polygamma_polygamma_n_0_cpu_float64 PASSED [ 94%] 2023-01-11T21:41:34.4114266Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_polygamma_polygamma_n_1_cpu_float64 SKIPPED (Skipped!) [ 94%] 2023-01-11T21:41:34.4114471Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_polygamma_polygamma_n_3_cpu_float64 SKIPPED (Skipped!) [ 94%] 2023-01-11T21:41:34.4114678Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_polygamma_polygamma_n_4_cpu_float64 SKIPPED (Skipped!) [ 94%] 2023-01-11T21:41:34.4114936Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_positive_cpu_complex128 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 94%] 2023-01-11T21:41:34.4115177Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_positive_cpu_float64 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 94%] 2023-01-11T21:41:34.4115350Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_put_cpu_float64 PASSED [ 94%] 2023-01-11T21:41:34.4115581Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_qr_cpu_float64 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 94%] 2023-01-11T21:41:34.4115932Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_rand_like_cpu_complex128 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 94%] 2023-01-11T21:41:34.4116280Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_randint_like_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 95%] 2023-01-11T21:41:34.4116669Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_randn_cpu_complex128 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 95%] 2023-01-11T21:41:34.4117055Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_randn_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 95%] 2023-01-11T21:41:34.4117434Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_randn_like_cpu_complex128 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 95%] 2023-01-11T21:41:34.4117673Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_ravel_cpu_complex128 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 95%] 2023-01-11T21:41:34.4117853Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_renorm_cpu_complex128 PASSED [ 95%] 2023-01-11T21:41:34.4118017Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_renorm_cpu_float64 PASSED [ 95%] 2023-01-11T21:41:34.4118260Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_repeat_cpu_complex128 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 95%] 2023-01-11T21:41:34.4118513Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_repeat_interleave_cpu_complex128 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 95%] 2023-01-11T21:41:34.4118763Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_repeat_interleave_cpu_float64 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 95%] 2023-01-11T21:41:34.4119005Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_reshape_as_cpu_complex128 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 95%] 2023-01-11T21:41:34.4119247Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_reshape_cpu_complex128 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 95%] 2023-01-11T21:41:34.4119595Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_resize__cpu_complex128 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 95%] 2023-01-11T21:41:34.4119843Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_resolve_conj_cpu_float64 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 95%] 2023-01-11T21:41:34.4120080Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_roll_cpu_complex128 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 95%] 2023-01-11T21:41:34.4120317Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_rot90_cpu_complex128 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 95%] 2023-01-11T21:41:34.4120548Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_rot90_cpu_float64 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 95%] 2023-01-11T21:41:34.4120930Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_round_cpu_float64 PASSED [ 95%] 2023-01-11T21:41:34.4121202Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_round_decimals_3_cpu_float64 SKIPPED (Skipped!) [ 95%] 2023-01-11T21:41:34.4121410Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_round_decimals_neg_3_cpu_float64 SKIPPED (Skipped!) [ 95%] 2023-01-11T21:41:34.4121644Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_rsub_cpu_float64 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 95%] 2023-01-11T21:41:34.4122012Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_scalar_tensor_cpu_complex128 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 95%] 2023-01-11T21:41:34.4122201Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_scatter_add_cpu_complex128 PASSED [ 95%] 2023-01-11T21:41:34.4122385Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_scatter_cpu_complex128 PASSED [ 95%] 2023-01-11T21:41:34.4122569Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_scatter_cpu_float64 PASSED [ 96%] 2023-01-11T21:41:34.4122801Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_scatter_reduce_mean_cpu_float64 PASSED [ 96%] 2023-01-11T21:41:34.4123170Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_searchsorted_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 96%] 2023-01-11T21:41:34.4123567Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_segment_reduce_lengths_cpu_float64 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 96%] 2023-01-11T21:41:34.4123825Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_segment_reduce_offsets_cpu_float64 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 96%] 2023-01-11T21:41:34.4124067Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_select_cpu_float64 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 96%] 2023-01-11T21:41:34.4124249Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_sgn_cpu_complex128 PASSED [ 96%] 2023-01-11T21:41:34.4124424Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_sgn_cpu_float64 PASSED [ 96%] 2023-01-11T21:41:34.4124764Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_short_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 96%] 2023-01-11T21:41:34.4124940Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_sign_cpu_float64 PASSED [ 96%] 2023-01-11T21:41:34.4125308Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_signal_windows_cosine_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 96%] 2023-01-11T21:41:34.4125682Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_signal_windows_exponential_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 96%] 2023-01-11T21:41:34.4126041Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_signal_windows_kaiser_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 96%] 2023-01-11T21:41:34.4126226Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_sin_cpu_complex128 PASSED [ 96%] 2023-01-11T21:41:34.4126390Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_sinc_cpu_complex128 PASSED [ 96%] 2023-01-11T21:41:34.4126565Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_sinh_cpu_complex128 PASSED [ 96%] 2023-01-11T21:41:34.4126805Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_slice_cpu_complex128 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 96%] 2023-01-11T21:41:34.4127042Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_slice_cpu_float64 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 96%] 2023-01-11T21:41:34.4127285Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_slice_scatter_cpu_float64 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 96%] 2023-01-11T21:41:34.4127558Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_softmax_cpu_float64 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 96%] 2023-01-11T21:41:34.4127818Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_sparse_sampled_addmm_cpu_complex128 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 96%] 2023-01-11T21:41:34.4128181Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_special_bessel_j0_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 96%] 2023-01-11T21:41:34.4128534Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_special_bessel_y1_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 96%] 2023-01-11T21:41:34.4128912Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_special_chebyshev_polynomial_t_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 96%] 2023-01-11T21:41:34.4129160Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_special_erfcx_cpu_float64 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 97%] 2023-01-11T21:41:34.4129424Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_special_i1_cpu_float64 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 97%] 2023-01-11T21:41:34.4129905Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_special_laguerre_polynomial_l_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 97%] 2023-01-11T21:41:34.4130156Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_special_log_ndtr_cpu_float64 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 97%] 2023-01-11T21:41:34.4130531Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_special_modified_bessel_i1_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 97%] 2023-01-11T21:41:34.4130974Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_special_modified_bessel_k0_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 97%] 2023-01-11T21:41:34.4131272Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_special_polygamma_special_polygamma_n_0_cpu_float64 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 97%] 2023-01-11T21:41:34.4131659Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_special_scaled_modified_bessel_k1_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 97%] 2023-01-11T21:41:34.4132063Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_special_shifted_chebyshev_polynomial_t_cpu_float64 SKIPPED (Skipping - testing takes an unreasonably long time, #79528) [ 97%] 2023-01-11T21:41:34.4132467Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_special_shifted_chebyshev_polynomial_w_cpu_float64 SKIPPED (Skipping - testing takes an unreasonably long time, #79528) [ 97%] 2023-01-11T21:41:34.4132707Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_split_cpu_float64 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 97%] 2023-01-11T21:41:34.4132959Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_split_list_args_cpu_complex128 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 97%] 2023-01-11T21:41:34.4133139Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_square_cpu_float64 PASSED [ 97%] 2023-01-11T21:41:34.4133378Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_stack_cpu_complex128 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 97%] 2023-01-11T21:41:34.4133602Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_stack_cpu_float64 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 97%] 2023-01-11T21:41:34.4133838Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_std_cpu_complex128 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 97%] 2023-01-11T21:41:34.4134114Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_std_cpu_float64 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 97%] 2023-01-11T21:41:34.4134355Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_std_mean_cpu_complex128 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 97%] 2023-01-11T21:41:34.4134601Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_std_unbiased_cpu_complex128 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 97%] 2023-01-11T21:41:34.4134835Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_stft_cpu_complex128 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 97%] 2023-01-11T21:41:34.4135066Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_stft_cpu_float64 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 97%] 2023-01-11T21:41:34.4135247Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_sub_cpu_complex128 PASSED [ 97%] 2023-01-11T21:41:34.4135514Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_sum_cpu_complex128 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 97%] 2023-01-11T21:41:34.4135747Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_sum_cpu_float64 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 97%] 2023-01-11T21:41:34.4136062Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_sum_to_size_cpu_complex128 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 98%] 2023-01-11T21:41:34.4136291Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_sum_to_size_cpu_float64 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 98%] 2023-01-11T21:41:34.4136524Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_svd_cpu_float64 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 98%] 2023-01-11T21:41:34.4136768Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_symeig_cpu_complex128 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 98%] 2023-01-11T21:41:34.4137037Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_symeig_cpu_float64 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 98%] 2023-01-11T21:41:34.4137358Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_take_along_dim_cpu_complex128 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 98%] 2023-01-11T21:41:34.4137602Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_take_along_dim_cpu_float64 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 98%] 2023-01-11T21:41:34.4137840Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_take_cpu_complex128 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 98%] 2023-01-11T21:41:34.4138075Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_take_cpu_float64 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 98%] 2023-01-11T21:41:34.4138253Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_tan_cpu_complex128 PASSED [ 98%] 2023-01-11T21:41:34.4138430Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_tanh_cpu_complex128 PASSED [ 98%] 2023-01-11T21:41:34.4138675Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_tensor_split_cpu_complex128 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 98%] 2023-01-11T21:41:34.4138915Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_tensordot_cpu_complex128 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 98%] 2023-01-11T21:41:34.4139144Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_tensordot_cpu_float64 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 98%] 2023-01-11T21:41:34.4139381Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_tile_cpu_complex128 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 98%] 2023-01-11T21:41:34.4139653Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_tile_cpu_float64 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 98%] 2023-01-11T21:41:34.4139889Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_to_cpu_complex128 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 98%] 2023-01-11T21:41:34.4140119Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_topk_cpu_float64 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 98%] 2023-01-11T21:41:34.4140356Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_trace_cpu_complex128 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 98%] 2023-01-11T21:41:34.4140588Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_trace_cpu_float64 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 98%] 2023-01-11T21:41:34.4140933Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_trapezoid_cpu_complex128 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 98%] 2023-01-11T21:41:34.4141208Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_trapezoid_cpu_float64 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 98%] 2023-01-11T21:41:34.4141449Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_trapz_cpu_complex128 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 98%] 2023-01-11T21:41:34.4141679Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_trapz_cpu_float64 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 98%] 2023-01-11T21:41:34.4141920Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_triangular_solve_cpu_complex128 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 99%] 2023-01-11T21:41:34.4142098Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_triu_cpu_complex128 PASSED [ 99%] 2023-01-11T21:41:34.4142273Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_triu_cpu_float64 PASSED [ 99%] 2023-01-11T21:41:34.4142457Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_true_divide_cpu_float64 PASSED [ 99%] 2023-01-11T21:41:34.4142633Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_trunc_cpu_float64 PASSED [ 99%] 2023-01-11T21:41:34.4142877Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_unfold_copy_cpu_complex128 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 99%] 2023-01-11T21:41:34.4143116Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_unfold_copy_cpu_float64 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 99%] 2023-01-11T21:41:34.4143351Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_unfold_cpu_float64 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 99%] 2023-01-11T21:41:34.4143711Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_uniform_cpu_complex128 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 99%] 2023-01-11T21:41:34.4144057Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_uniform_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 99%] 2023-01-11T21:41:34.4144415Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_unique_consecutive_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 99%] 2023-01-11T21:41:34.4144745Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_unique_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 99%] 2023-01-11T21:41:34.4144982Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_var_cpu_complex128 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 99%] 2023-01-11T21:41:34.4145229Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_var_mean_unbiased_cpu_complex128 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 99%] 2023-01-11T21:41:34.4145622Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_var_mean_unbiased_cpu_float64 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 99%] 2023-01-11T21:41:34.4145872Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_var_unbiased_cpu_complex128 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 99%] 2023-01-11T21:41:34.4146114Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_var_unbiased_cpu_float64 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 99%] 2023-01-11T21:41:34.4146357Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_view_as_real_cpu_complex128 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 99%] 2023-01-11T21:41:34.4146587Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_view_cpu_float64 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 99%] 2023-01-11T21:41:34.4146854Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_vsplit_cpu_float64 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 99%] 2023-01-11T21:41:34.4147089Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_vstack_cpu_float64 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 99%] 2023-01-11T21:41:34.4147264Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_xlogy_cpu_float64 PASSED [ 99%] 2023-01-11T21:41:34.4147434Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_zero__cpu_complex128 PASSED [ 99%] 2023-01-11T21:41:34.4147775Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_zeros_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 99%] 2023-01-11T21:41:34.4148221Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_zeros_like_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [100%] 2023-01-11T21:41:34.4148242Z 2023-01-11T21:41:34.4148356Z =============================== warnings summary =============================== 2023-01-11T21:41:34.4148576Z ../../../../../opt/conda/lib/python3.7/site-packages/_pytest/config/__init__.py:1171 2023-01-11T21:41:34.4148932Z /opt/conda/lib/python3.7/site-packages/_pytest/config/__init__.py:1171: PytestAssertRewriteWarning: Module already imported so cannot be rewritten: hypothesis 2023-01-11T21:41:34.4149030Z self._mark_plugins_for_rewrite(hook) 2023-01-11T21:41:34.4149035Z 2023-01-11T21:41:34.4149270Z -- Docs: https://docs.pytest.org/en/stable/how-to/capture-warnings.html 2023-01-11T21:41:34.4149605Z - generated xml file: /var/lib/jenkins/workspace/test/test-reports/python-pytest/test_ops_gradients/test_ops_gradients-9b1ea14156fe1d78.xml - 2023-01-11T21:41:34.4149747Z = 903 passed, 1493 skipped, 12 deselected, 20 xfailed, 1 warning in 1098.49s (0:18:18) = 2023-01-11T21:41:34.4149905Z If in CI, skip info is located in the xml test reports, please either go to s3 or the hud to download them 2023-01-11T21:41:34.4149925Z 2023-01-11T21:41:34.4150299Z ##[endgroup] 2023-01-11T21:41:34.4150594Z FINISHED PRINTING LOG FILE of test_ops_gradients (/var/lib/jenkins/workspace/test/test-reports/test_ops_gradients_5y0iga9b) 2023-01-11T21:41:34.4150601Z 2023-01-11T21:53:08.0677250Z 2023-01-11T21:53:08.0677644Z Expand the folded group to see the log file of test_ops_gradients 2023-01-11T21:53:08.0678320Z ##[group]PRINTING LOG FILE of test_ops_gradients (/var/lib/jenkins/workspace/test/test-reports/test_ops_gradients_pwud63wt) 2023-01-11T21:53:08.0694713Z Test results will be stored in test-reports/python-pytest/test_ops_gradients/test_ops_gradients-5a1c1620e6dd6bfb.xml 2023-01-11T21:53:08.0695168Z ============================= test session starts ============================== 2023-01-11T21:53:08.0695658Z platform linux -- Python 3.7.15, pytest-7.2.0, pluggy-1.0.0 -- /opt/conda/bin/python 2023-01-11T21:53:08.0696353Z cachedir: .pytest_cache 2023-01-11T21:53:08.0696890Z hypothesis profile 'pytorch_ci' -> database=None, max_examples=50, derandomize=True, suppress_health_check=[HealthCheck.too_slow] 2023-01-11T21:53:08.0697315Z rootdir: /var/lib/jenkins/workspace, configfile: pytest.ini 2023-01-11T21:53:08.0698544Z plugins: hypothesis-5.35.1, flakefinder-1.1.0, rerunfailures-10.3, shard-0.1.2, xdist-3.1.0, xdoctest-1.1.0 2023-01-11T21:53:08.0699067Z collecting ... collected 4945 items / 8 deselected / 4937 selected 2023-01-11T21:53:08.0998524Z Running 2509 items in this shard: test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_H_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_T_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad___getitem___cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad___radd___cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad___rdiv___cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad___rmatmul___cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad___rmod___cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad___rmul___cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad___rpow___cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad___rpow___cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad___rsub___cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad__native_batch_norm_legit_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad__softmax_backward_data_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_abs_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_acos_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_acosh_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_add_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_addbmm_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_addmm_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_addmv_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_addmv_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_addr_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_all_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_all_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_allclose_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_amax_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_amin_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_angle_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_argmin_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_argsort_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_argwhere_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_as_strided_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_as_strided_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_as_strided_partial_views_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_asin_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_asin_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_asinh_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_atan2_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_atleast_2d_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_bernoulli_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_bfloat16_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_bmm_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_bool_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_broadcast_to_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_byte_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_cartesian_prod_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_cat_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_cat_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_cdist_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_cdouble_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_cdouble_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_ceil_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_char_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_char_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_cholesky_inverse_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_clamp_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_clamp_max_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_clone_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_column_stack_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_column_stack_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_combinations_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_complex_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_conj_physical_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_constant_pad_nd_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_copysign_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_corrcoef_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_corrcoef_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_cos_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_cosh_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_cosh_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_count_nonzero_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_count_nonzero_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_cov_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_cross_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_cross_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_cummax_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_cumsum_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_cumulative_trapezoid_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_deg2rad_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_diagflat_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_diagflat_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_diagonal_copy_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_diagonal_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_digamma_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_div_no_rounding_mode_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_div_trunc_rounding_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_dsplit_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_dsplit_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_dstack_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_einsum_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_empty_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_empty_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_empty_like_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_empty_like_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_equal_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_equal_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_erf_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_erfc_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_exp2_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_exp_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_expand_as_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_expand_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_eye_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_fft_fft2_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_fft_fft_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_fft_fft_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_fft_fftn_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_fft_hfft2_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_fft_hfft2_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_fft_hfft_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_fft_hfftn_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_fft_ifft2_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_fft_ifft_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_fft_ifft_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_fft_ifftn_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_fft_ifftn_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_fft_ifftshift_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_fft_ifftshift_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_fft_ihfftn_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_fft_irfft2_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_fft_irfft_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_fft_irfftn_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_fft_rfft2_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_fft_rfft_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_fft_rfftn_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_flatten_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_flip_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_flip_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_float_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_float_power_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_floor_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_fmod_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_frac_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_frexp_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_full_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_full_like_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_gather_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_gather_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_ge_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_geqrf_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_half_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_half_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_histogramdd_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_hsplit_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_hstack_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_hypot_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_igammac_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_imag_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_index_fill_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_index_put_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_index_put_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_index_select_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_int_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_isfinite_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_isfinite_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_isinf_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_isneginf_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_jiterator_2inputs_2outputs_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_jiterator_2inputs_2outputs_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_jiterator_4inputs_with_extra_args_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_jiterator_binary_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_jiterator_binary_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_jiterator_binary_return_by_ref_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_jiterator_binary_return_by_ref_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_jiterator_unary_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_kthvalue_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_ldexp_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_le_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_linalg_cross_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_linalg_cross_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_linalg_det_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_linalg_det_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_linalg_eig_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_linalg_eig_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_linalg_eigh_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_linalg_eigvals_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_linalg_eigvals_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_linalg_householder_product_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_linalg_inv_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_linalg_inv_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_linalg_inv_ex_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_linalg_ldl_factor_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_linalg_ldl_factor_ex_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_linalg_ldl_factor_ex_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_linalg_ldl_solve_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_linalg_ldl_solve_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_linalg_lstsq_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_linalg_lstsq_grad_oriented_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_linalg_lu_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_linalg_lu_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_linalg_lu_factor_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_linalg_lu_factor_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_linalg_lu_factor_ex_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_linalg_matrix_norm_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_linalg_matrix_norm_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_linalg_matrix_power_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_linalg_matrix_rank_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_linalg_matrix_rank_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_linalg_matrix_rank_hermitian_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_linalg_multi_dot_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_linalg_multi_dot_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_linalg_norm_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_linalg_pinv_hermitian_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_linalg_pinv_singular_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_linalg_qr_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_linalg_slogdet_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_linalg_solve_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_linalg_solve_ex_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_linalg_solve_ex_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_linalg_solve_triangular_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_linalg_svd_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_linalg_svd_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_linalg_svdvals_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_linalg_tensorinv_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_linalg_tensorinv_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_linalg_vander_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_linalg_vander_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_linalg_vecdot_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_linalg_vecdot_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_linalg_vector_norm_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_linalg_vector_norm_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_log1p_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_log1p_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_log2_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_log_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_log_softmax_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_log_softmax_with_dtype_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_logaddexp_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_logcumsumexp_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_logical_or_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_logical_xor_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_logspace_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_logspace_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_logsumexp_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_lu_solve_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_lu_solve_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_lu_unpack_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_mH_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_mT_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_masked_amax_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_masked_argmin_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_masked_cumprod_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_masked_cumprod_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_masked_cumsum_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_masked_fill_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_masked_fill_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_masked_mean_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_masked_normalize_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_masked_normalize_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_masked_scatter_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_masked_softmax_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_masked_sum_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_matrix_exp_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_matrix_exp_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_max_binary_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_max_reduction_with_dim_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_mean_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_mean_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_median_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_meshgrid_list_of_tensors_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_min_binary_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_min_reduction_no_dim_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_minimum_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_mm_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_mm_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_mode_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_movedim_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_msort_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_mul_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_multinomial_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_mv_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_mvlgamma_mvlgamma_p_1_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_nan_to_num_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_nanmedian_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_nanquantile_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_nansum_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_narrow_copy_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_native_dropout_backward_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_native_layer_norm_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_new_empty_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_new_empty_strided_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_new_empty_strided_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_new_full_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_new_zeros_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_new_zeros_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_nn_functional_adaptive_avg_pool1d_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_nn_functional_adaptive_avg_pool2d_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_nn_functional_adaptive_avg_pool3d_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_nn_functional_adaptive_max_pool2d_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_nn_functional_adaptive_max_pool3d_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_nn_functional_avg_pool1d_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_nn_functional_avg_pool2d_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_nn_functional_bilinear_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_nn_functional_conv2d_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_nn_functional_conv2d_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_nn_functional_conv_transpose1d_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_nn_functional_conv_transpose1d_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_nn_functional_conv_transpose2d_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_nn_functional_cosine_similarity_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_nn_functional_ctc_loss_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_nn_functional_elu_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_nn_functional_embedding_bag_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_nn_functional_embedding_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_nn_functional_feature_alpha_dropout_with_train_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_nn_functional_group_norm_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_nn_functional_hardshrink_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_nn_functional_hinge_embedding_loss_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_nn_functional_huber_loss_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_nn_functional_interpolate_area_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_nn_functional_interpolate_trilinear_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_nn_functional_kl_div_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_nn_functional_l1_loss_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_nn_functional_leaky_relu_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_nn_functional_local_response_norm_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_nn_functional_max_pool1d_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_nn_functional_max_unpool1d_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_nn_functional_max_unpool1d_grad_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_nn_functional_max_unpool3d_grad_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_nn_functional_mse_loss_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_nn_functional_multi_margin_loss_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_nn_functional_multilabel_margin_loss_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_nn_functional_multilabel_soft_margin_loss_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_nn_functional_nll_loss_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_nn_functional_pad_circular_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_nn_functional_pad_constant_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_nn_functional_pad_constant_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_nn_functional_pad_replicate_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_nn_functional_pairwise_distance_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_nn_functional_pairwise_distance_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_nn_functional_pixel_shuffle_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_nn_functional_pixel_unshuffle_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_nn_functional_pixel_unshuffle_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_nn_functional_prelu_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_nn_functional_relu_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_nn_functional_rrelu_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_nn_functional_selu_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_nn_functional_soft_margin_loss_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_nn_functional_softplus_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_nn_functional_softsign_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_nn_functional_tanhshrink_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_nn_functional_threshold_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_nn_functional_triplet_margin_loss_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_nn_functional_triplet_margin_with_distance_loss_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_nn_functional_unfold_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_nn_functional_upsample_bilinear_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_nn_functional_upsample_nearest_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_norm_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_norm_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_norm_fro_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_norm_fro_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_norm_inf_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_norm_inf_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_norm_nuc_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_normal_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_ones_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_ones_like_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_outer_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_permute_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_pinverse_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_polar_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_polygamma_polygamma_n_0_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_polygamma_polygamma_n_2_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_polygamma_polygamma_n_3_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_positive_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_prod_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_prod_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_put_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_qr_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_qr_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_randn_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_randn_like_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_randn_like_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_real_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_reciprocal_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_repeat_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_repeat_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_repeat_interleave_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_reshape_as_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_reshape_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_reshape_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_resize__cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_resize__cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_resize_as__cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_resize_as__cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_resolve_conj_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_resolve_neg_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_rot90_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_round_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_round_decimals_neg_3_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_rsqrt_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_rsqrt_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_rsub_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_scalar_tensor_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_scatter_add_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_scatter_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_scatter_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_scatter_reduce_prod_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_scatter_reduce_sum_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_segment_reduce_offsets_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_select_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_sgn_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_sgn_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_short_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_short_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_sigmoid_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_signal_windows_bartlett_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_signal_windows_gaussian_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_signal_windows_hamming_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_sin_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_sinc_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_sinh_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_slice_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_special_bessel_j1_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_special_bessel_y0_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_special_chebyshev_polynomial_t_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_special_chebyshev_polynomial_w_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_special_erfcx_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_special_hermite_polynomial_h_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_special_i1e_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_special_laguerre_polynomial_l_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_special_log_ndtr_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_special_modified_bessel_i0_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_special_ndtri_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_special_scaled_modified_bessel_k1_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_special_shifted_chebyshev_polynomial_v_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_special_zeta_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_split_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_split_with_sizes_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_split_with_sizes_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_sqrt_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_sqrt_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_square_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_stack_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_std_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_std_mean_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_std_mean_unbiased_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_std_unbiased_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_std_unbiased_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_sub_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_sum_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_sum_to_size_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_sum_to_size_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_svd_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_svd_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_svd_lowrank_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_symeig_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_t_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_t_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_take_along_dim_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_take_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_take_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_tan_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_tan_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_tanh_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_tensor_split_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_tensordot_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_to_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_to_sparse_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_topk_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_trace_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_transpose_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_trapezoid_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_trapz_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_trapz_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_triangular_solve_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_triu_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_true_divide_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_trunc_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_unbind_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_unflatten_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_unfold_copy_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_unfold_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_uniform_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_uniform_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_unsqueeze_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_unsqueeze_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_var_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_var_mean_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_var_mean_unbiased_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_var_mean_unbiased_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_view_as_complex_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_view_as_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_view_copy_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_view_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_view_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_vsplit_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_vsplit_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_vstack_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_where_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_zero__cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_zero__cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_zeros_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_zeros_like_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_H_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad___getitem___cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad___rmatmul___cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad___rmatmul___cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad___rsub___cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad___rsub___cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_abs_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_acos_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_acos_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_acosh_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_add_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_addbmm_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_addcdiv_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_addcdiv_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_addcmul_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_addmm_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_addmm_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_addmm_decomposed_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_addmm_decomposed_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_addmv_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_addr_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_allclose_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_amin_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_angle_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_angle_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_any_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_arange_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_argmin_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_argwhere_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_argwhere_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_as_strided_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_as_strided_partial_views_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_as_strided_scatter_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_as_strided_scatter_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_asin_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_asinh_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_atan2_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_atan_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_atan_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_atanh_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_atleast_1d_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_atleast_3d_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_baddbmm_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_bfloat16_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_bmm_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_bmm_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_bool_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_bool_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_broadcast_to_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_byte_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_cartesian_prod_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_cat_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_cat_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_cfloat_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_cfloat_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_chalf_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_char_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_char_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_cholesky_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_cholesky_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_cholesky_inverse_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_cholesky_solve_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_chunk_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_clamp_max_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_clamp_min_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_column_stack_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_column_stack_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_complex_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_conj_physical_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_constant_pad_nd_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_corrcoef_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_cosh_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_count_nonzero_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_cov_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_cross_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_cummin_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_cumprod_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_cumsum_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_cumulative_trapezoid_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_diag_embed_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_diagonal_copy_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_diagonal_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_diagonal_scatter_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_diagonal_scatter_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_diff_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_dist_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_dist_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_div_floor_rounding_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_div_no_rounding_mode_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_dot_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_dot_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_dstack_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_empty_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_empty_like_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_empty_like_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_eq_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_equal_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_exp_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_exp_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_expand_as_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_expand_as_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_expand_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_fft_fft2_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_fft_fft_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_fft_fftn_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_fft_fftn_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_fft_fftshift_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_fft_fftshift_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_fft_hfft2_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_fft_hfftn_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_fft_hfftn_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_fft_ifft2_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_fft_ifft2_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_fft_ifft_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_fft_ifftn_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_fft_ifftshift_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_fft_ifftshift_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_fft_ihfft2_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_fft_ihfftn_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_fft_irfft2_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_fft_irfftn_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_fft_rfft2_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_fft_rfft_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_fill_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_fill_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_flatten_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_flatten_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_fliplr_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_flipud_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_float_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_float_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_float_power_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_floor_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_fmax_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_fmin_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_frac_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_full_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_full_like_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_full_like_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_heaviside_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_histogramdd_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_hsplit_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_hsplit_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_hstack_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_hstack_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_hypot_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_i0_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_igamma_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_igammac_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_index_add_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_index_copy_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_index_fill_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_index_put_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_index_reduce_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_index_select_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_int_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_int_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_isclose_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_isinf_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_isnan_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_isneginf_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_isposinf_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_isreal_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_istft_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_jiterator_2inputs_2outputs_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_jiterator_2inputs_2outputs_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_jiterator_4inputs_with_extra_args_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_jiterator_binary_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_jiterator_binary_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_jiterator_unary_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_kron_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_kron_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_ldexp_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_le_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_lerp_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_lerp_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_lgamma_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_linalg_cond_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_linalg_cross_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_linalg_det_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_linalg_det_singular_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_linalg_eig_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_linalg_eig_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_linalg_eigh_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_linalg_eigh_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_linalg_eigvals_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_linalg_eigvalsh_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_linalg_inv_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_linalg_inv_ex_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_linalg_ldl_factor_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_linalg_ldl_factor_ex_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_linalg_ldl_solve_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_linalg_ldl_solve_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_linalg_lstsq_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_linalg_lstsq_grad_oriented_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_linalg_lstsq_grad_oriented_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_linalg_lu_factor_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_linalg_lu_factor_ex_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_linalg_matrix_norm_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_linalg_matrix_power_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_linalg_matrix_rank_hermitian_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_linalg_multi_dot_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_linalg_norm_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_linalg_pinv_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_linalg_pinv_hermitian_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_linalg_pinv_singular_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_linalg_qr_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_linalg_slogdet_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_linalg_solve_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_linalg_solve_triangular_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_linalg_svd_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_linalg_svd_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_linalg_svdvals_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_linalg_tensorinv_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_linalg_vander_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_linalg_vander_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_linalg_vecdot_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_linalg_vector_norm_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_linalg_vector_norm_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_linspace_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_log10_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_log10_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_log1p_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_log_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_log_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_log_softmax_with_dtype_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_logaddexp_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_logcumsumexp_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_logdet_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_logdet_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_logical_and_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_logical_not_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_logit_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_logspace_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_lu_solve_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_lu_solve_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_lu_unpack_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_mH_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_mT_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_mT_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_masked_amax_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_masked_amin_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_masked_argmax_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_masked_cumprod_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_masked_cumsum_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_masked_fill_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_masked_fill_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_masked_mean_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_masked_normalize_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_masked_prod_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_masked_scatter_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_masked_scatter_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_masked_select_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_masked_softmin_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_masked_var_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_matmul_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_matrix_exp_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_matrix_exp_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_max_binary_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_max_reduction_no_dim_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_max_reduction_with_dim_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_mean_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_meshgrid_variadic_tensors_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_min_binary_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_min_reduction_no_dim_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_min_reduction_with_dim_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_minimum_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_mode_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_movedim_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_msort_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_mul_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_multinomial_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_mv_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_mv_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_mvlgamma_mvlgamma_p_1_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_narrow_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_native_batch_norm_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_native_layer_norm_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_neg_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_neg_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_new_empty_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_new_empty_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_new_empty_strided_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_new_ones_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_new_ones_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_nextafter_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_nn_functional_adaptive_avg_pool1d_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_nn_functional_adaptive_max_pool1d_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_nn_functional_alpha_dropout_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_nn_functional_avg_pool1d_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_nn_functional_avg_pool2d_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_nn_functional_avg_pool3d_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_nn_functional_bilinear_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_nn_functional_binary_cross_entropy_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_nn_functional_conv1d_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_nn_functional_conv2d_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_nn_functional_conv2d_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_nn_functional_conv_transpose1d_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_nn_functional_conv_transpose1d_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_nn_functional_conv_transpose2d_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_nn_functional_conv_transpose2d_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_nn_functional_conv_transpose3d_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_nn_functional_cosine_similarity_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_nn_functional_dropout3d_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_nn_functional_feature_alpha_dropout_with_train_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_nn_functional_feature_alpha_dropout_without_train_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_nn_functional_fractional_max_pool3d_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_nn_functional_gelu_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_nn_functional_hinge_embedding_loss_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_nn_functional_interpolate_area_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_nn_functional_interpolate_bicubic_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_nn_functional_interpolate_bilinear_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_nn_functional_interpolate_nearest_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_nn_functional_interpolate_trilinear_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_nn_functional_linear_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_nn_functional_local_response_norm_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_nn_functional_logsigmoid_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_nn_functional_max_pool1d_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_nn_functional_max_pool2d_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_nn_functional_max_pool3d_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_nn_functional_max_unpool1d_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_nn_functional_max_unpool2d_grad_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_nn_functional_max_unpool3d_grad_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_nn_functional_mish_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_nn_functional_multilabel_margin_loss_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_nn_functional_nll_loss_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_nn_functional_normalize_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_nn_functional_normalize_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_nn_functional_pad_constant_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_nn_functional_pad_constant_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_nn_functional_pad_replicate_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_nn_functional_pairwise_distance_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_nn_functional_pixel_unshuffle_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_nn_functional_pixel_unshuffle_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_nn_functional_poisson_nll_loss_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_nn_functional_relu6_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_nn_functional_relu_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_nn_functional_rrelu_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_nn_functional_silu_complex_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_nn_functional_silu_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_nn_functional_smooth_l1_loss_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_nn_functional_softmin_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_nn_functional_softmin_with_dtype_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_nn_functional_softshrink_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_nn_functional_softsign_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_nn_functional_tanhshrink_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_nn_functional_triplet_margin_loss_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_nn_functional_triplet_margin_with_distance_loss_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_nn_functional_unfold_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_nn_functional_upsample_bilinear_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_nonzero_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_nonzero_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_norm_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_norm_fro_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_norm_inf_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_norm_inf_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_norm_nuc_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_normal_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_normal_number_mean_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_ones_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_outer_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_permute_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_pinverse_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_polar_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_polygamma_polygamma_n_0_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_polygamma_polygamma_n_1_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_polygamma_polygamma_n_2_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_pow_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_prod_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_prod_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_rand_like_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_rand_like_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_randint_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_randn_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_randn_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_randn_like_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_randn_like_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_ravel_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_ravel_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_reciprocal_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_remainder_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_renorm_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_repeat_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_repeat_interleave_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_reshape_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_reshape_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_resize__cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_resize_as__cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_resize_as__cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_resolve_neg_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_rot90_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_round_decimals_0_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_round_decimals_3_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_round_decimals_neg_3_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_rsqrt_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_rsqrt_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_rsub_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_scatter_add_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_scatter_reduce_mean_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_scatter_reduce_sum_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_select_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_select_scatter_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_sgn_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_sgn_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_short_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_sigmoid_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_sigmoid_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_signal_windows_bartlett_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_signal_windows_cosine_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_signal_windows_exponential_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_signal_windows_gaussian_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_signal_windows_general_hamming_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_signal_windows_hamming_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_signal_windows_hann_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_signbit_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_sin_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_sinh_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_slice_scatter_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_sort_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_sparse_sampled_addmm_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_special_airy_ai_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_special_bessel_j0_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_special_bessel_y0_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_special_chebyshev_polynomial_t_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_special_chebyshev_polynomial_w_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_special_entr_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_special_hermite_polynomial_h_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_special_i0e_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_special_i1_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_special_i1e_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_special_legendre_polynomial_p_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_special_modified_bessel_i0_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_special_modified_bessel_k1_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_special_ndtr_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_special_ndtri_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_special_scaled_modified_bessel_k0_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_special_scaled_modified_bessel_k1_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_special_shifted_chebyshev_polynomial_t_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_special_shifted_chebyshev_polynomial_u_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_special_shifted_chebyshev_polynomial_v_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_special_spherical_bessel_j0_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_special_xlog1py_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_split_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_split_with_sizes_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_split_with_sizes_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_sqrt_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_squeeze_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_squeeze_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_stack_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_stack_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_std_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_std_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_std_mean_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_std_mean_unbiased_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_std_unbiased_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_stft_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_stft_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_sub_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_sum_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_sum_to_size_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_svd_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_symeig_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_t_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_take_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_take_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_tan_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_tan_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_tensor_split_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_tensordot_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_tile_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_to_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_to_sparse_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_trace_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_trapezoid_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_trapz_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_trapz_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_tril_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_tril_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_trunc_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_unbind_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_unflatten_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_unfold_copy_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_unfold_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_unfold_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_uniform_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_unique_consecutive_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_unique_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_unsqueeze_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_unsqueeze_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_var_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_var_mean_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_var_unbiased_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_vdot_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_vdot_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_view_as_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_view_as_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_view_as_real_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_view_copy_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_view_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_view_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_vsplit_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_vstack_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_vstack_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_where_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_where_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_xlogy_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_zero__cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_zero__cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_zeros_like_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_zeros_like_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_H_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_H_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_T_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad___getitem___cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad___radd___cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad___radd___cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad___rmatmul___cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad___rmatmul___cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad___rsub___cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad__native_batch_norm_legit_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_abs_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_acos_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_add_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_add_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_addbmm_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_addbmm_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_addcmul_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_addcmul_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_addmm_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_addmv_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_addr_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_addr_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_allclose_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_amax_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_amin_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_angle_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_angle_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_arange_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_argmin_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_argsort_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_argwhere_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_argwhere_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_as_strided_partial_views_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_as_strided_partial_views_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_as_strided_scatter_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_as_strided_scatter_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_asin_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_asinh_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_atan2_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_atan_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_atan_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_atanh_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_atleast_1d_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_atleast_2d_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_baddbmm_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_bfloat16_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_block_diag_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_bmm_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_bool_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_bool_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_broadcast_tensors_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_broadcast_tensors_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_broadcast_to_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_broadcast_to_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_bucketize_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_byte_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_cartesian_prod_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_cartesian_prod_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_cat_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_cat_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_cdist_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_cdouble_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_cdouble_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_chalf_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_chalf_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_char_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_cholesky_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_cholesky_inverse_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_cholesky_inverse_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_cholesky_solve_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_cholesky_solve_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_chunk_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_clamp_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_clone_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_column_stack_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_combinations_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_complex_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_conj_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_conj_physical_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_contiguous_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_cos_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_cos_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_cosh_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_count_nonzero_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_cross_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_cummax_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_cummin_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_cumprod_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_cumsum_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_deg2rad_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_diag_embed_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_diagflat_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_diagonal_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_diagonal_scatter_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_diff_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_digamma_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_div_no_rounding_mode_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_dot_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_double_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_dsplit_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_dsplit_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_einsum_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_eq_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_erf_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_erfc_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_expand_as_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_expand_as_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_expand_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_eye_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_fft_fft2_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_fft_fft2_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_fft_fft_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_fft_fft_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_fft_fftn_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_fft_hfft2_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_fft_hfft_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_fft_hfftn_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_fft_hfftn_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_fft_ifft2_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_fft_ifft_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_fft_ifftn_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_fft_ifftshift_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_fft_ifftshift_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_fft_ihfft_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_fft_irfft_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_fft_irfftn_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_fft_irfftn_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_fft_rfft2_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_fft_rfft_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_flatten_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_flip_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_fliplr_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_fliplr_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_float_power_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_floor_divide_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_fmod_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_frexp_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_full_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_full_like_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_gather_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_geqrf_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_gradient_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_grid_sampler_2d_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_gt_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_half_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_histogram_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_histogramdd_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_hstack_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_hypot_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_i0_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_igamma_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_imag_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_index_copy_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_index_fill_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_index_put_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_index_reduce_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_index_select_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_index_select_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_inner_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_inner_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_int_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_isin_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_isinf_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_isnan_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_isposinf_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_isreal_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_isreal_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_istft_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_jiterator_2inputs_2outputs_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_jiterator_binary_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_jiterator_unary_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_kron_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_le_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_lerp_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_lgamma_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_linalg_cond_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_linalg_cross_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_linalg_det_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_linalg_eig_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_linalg_eig_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_linalg_eigh_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_linalg_eigvals_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_linalg_householder_product_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_linalg_inv_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_linalg_ldl_factor_ex_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_linalg_ldl_solve_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_linalg_lstsq_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_linalg_lstsq_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_linalg_lstsq_grad_oriented_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_linalg_lu_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_linalg_lu_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_linalg_lu_factor_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_linalg_lu_factor_ex_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_linalg_lu_factor_ex_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_linalg_lu_solve_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_linalg_lu_solve_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_linalg_matrix_norm_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_linalg_matrix_power_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_linalg_matrix_rank_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_linalg_norm_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_linalg_norm_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_linalg_norm_subgradients_at_zero_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_linalg_pinv_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_linalg_pinv_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_linalg_pinv_hermitian_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_linalg_pinv_singular_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_linalg_slogdet_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_linalg_solve_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_linalg_solve_ex_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_linalg_solve_triangular_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_linalg_svd_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_linalg_svd_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_linalg_svdvals_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_linalg_svdvals_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_linalg_tensorinv_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_linalg_tensorsolve_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_linalg_vander_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_linalg_vecdot_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_linspace_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_linspace_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_log10_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_log2_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_log_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_log_softmax_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_log_softmax_with_dtype_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_logaddexp2_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_logcumsumexp_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_logical_and_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_logical_not_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_logical_or_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_logical_or_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_logical_xor_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_long_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_lu_unpack_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_lu_unpack_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_mT_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_mT_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_masked_amax_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_masked_amin_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_masked_cumprod_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_masked_cumsum_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_masked_fill_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_masked_logaddexp_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_masked_logsumexp_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_masked_mean_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_masked_norm_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_masked_prod_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_masked_scatter_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_masked_scatter_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_masked_select_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_masked_softmax_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_masked_softmin_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_masked_std_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_masked_sum_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_masked_var_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_masked_var_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_max_reduction_with_dim_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_mean_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_median_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_meshgrid_list_of_tensors_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_meshgrid_variadic_tensors_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_meshgrid_variadic_tensors_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_min_reduction_no_dim_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_min_reduction_with_dim_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_minimum_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_mm_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_movedim_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_movedim_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_msort_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_mv_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_mv_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_mvlgamma_mvlgamma_p_3_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_nan_to_num_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_nanmean_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_nanquantile_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_narrow_copy_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_native_batch_norm_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_native_layer_norm_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_ne_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_ne_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_new_empty_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_new_empty_strided_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_new_empty_strided_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_nextafter_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_nn_functional_adaptive_avg_pool1d_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_nn_functional_adaptive_avg_pool2d_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_nn_functional_adaptive_max_pool1d_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_nn_functional_adaptive_max_pool3d_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_nn_functional_alpha_dropout_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_nn_functional_avg_pool2d_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_nn_functional_avg_pool3d_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_nn_functional_batch_norm_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_nn_functional_bilinear_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_nn_functional_binary_cross_entropy_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_nn_functional_binary_cross_entropy_with_logits_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_nn_functional_celu_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_nn_functional_conv1d_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_nn_functional_conv2d_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_nn_functional_conv_transpose1d_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_nn_functional_dropout_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_nn_functional_elu_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_nn_functional_embedding_bag_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_nn_functional_embedding_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_nn_functional_feature_alpha_dropout_with_train_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_nn_functional_feature_alpha_dropout_without_train_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_nn_functional_feature_alpha_dropout_without_train_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_nn_functional_fractional_max_pool2d_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_nn_functional_fractional_max_pool3d_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_nn_functional_gelu_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_nn_functional_hardsigmoid_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_nn_functional_hardtanh_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_nn_functional_hinge_embedding_loss_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_nn_functional_huber_loss_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_nn_functional_instance_norm_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_nn_functional_interpolate_area_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_nn_functional_interpolate_bilinear_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_nn_functional_interpolate_linear_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_nn_functional_interpolate_trilinear_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_nn_functional_kl_div_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_nn_functional_l1_loss_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_nn_functional_l1_loss_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_nn_functional_leaky_relu_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_nn_functional_linear_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_nn_functional_max_unpool1d_grad_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_nn_functional_max_unpool2d_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_nn_functional_max_unpool2d_grad_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_nn_functional_max_unpool3d_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_nn_functional_mish_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_nn_functional_mse_loss_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_nn_functional_multilabel_margin_loss_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_nn_functional_nll_loss_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_nn_functional_normalize_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_nn_functional_pad_circular_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_nn_functional_pad_reflect_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_nn_functional_pad_replicate_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_nn_functional_pad_replicate_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_nn_functional_pairwise_distance_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_nn_functional_pairwise_distance_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_nn_functional_pixel_shuffle_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_nn_functional_pixel_shuffle_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_nn_functional_poisson_nll_loss_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_nn_functional_prelu_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_nn_functional_selu_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_nn_functional_silu_complex_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_nn_functional_silu_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_nn_functional_smooth_l1_loss_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_nn_functional_soft_margin_loss_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_nn_functional_softplus_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_nn_functional_threshold_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_nn_functional_triplet_margin_loss_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_nn_functional_triplet_margin_with_distance_loss_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_nn_functional_unfold_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_nn_functional_upsample_nearest_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_nonzero_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_norm_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_norm_fro_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_norm_nuc_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_normal_number_mean_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_ones_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_ones_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_ones_like_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_ones_like_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_ormqr_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_ormqr_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_outer_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_pca_lowrank_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_permute_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_pinverse_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_polar_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_polygamma_polygamma_n_0_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_polygamma_polygamma_n_3_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_polygamma_polygamma_n_4_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_positive_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_positive_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_pow_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_pow_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_prod_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_prod_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_put_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_qr_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_qr_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_rand_like_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_rand_like_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_randint_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_randn_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_randn_like_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_randn_like_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_ravel_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_real_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_remainder_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_renorm_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_repeat_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_repeat_interleave_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_reshape_as_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_reshape_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_resize__cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_resize_as__cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_resize_as__cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_resolve_conj_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_resolve_conj_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_roll_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_roll_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_rot90_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_round_decimals_0_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_round_decimals_3_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_rsqrt_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_rsqrt_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_rsub_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_rsub_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_scalar_tensor_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_scatter_add_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_scatter_reduce_amin_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_scatter_reduce_prod_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_searchsorted_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_segment_reduce_lengths_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_select_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_sgn_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_sigmoid_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_signal_windows_bartlett_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_signal_windows_cosine_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_signal_windows_exponential_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_signal_windows_gaussian_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_signal_windows_general_cosine_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_signal_windows_hamming_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_signal_windows_hann_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_signal_windows_kaiser_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_signal_windows_nuttall_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_sin_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_sinh_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_slice_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_slice_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_softmax_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_sort_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_sparse_sampled_addmm_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_special_bessel_j0_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_special_bessel_y1_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_special_chebyshev_polynomial_t_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_special_chebyshev_polynomial_u_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_special_chebyshev_polynomial_v_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_special_chebyshev_polynomial_w_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_special_entr_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_special_hermite_polynomial_h_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_special_i0e_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_special_i1e_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_special_legendre_polynomial_p_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_special_modified_bessel_i0_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_special_modified_bessel_k0_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_special_modified_bessel_k1_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_special_ndtri_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_special_scaled_modified_bessel_k0_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_special_scaled_modified_bessel_k1_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_special_shifted_chebyshev_polynomial_w_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_special_zeta_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_split_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_split_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_split_list_args_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_split_with_sizes_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_sqrt_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_sqrt_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_square_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_square_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_squeeze_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_squeeze_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_stack_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_std_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_std_mean_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_std_mean_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_std_mean_unbiased_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_std_mean_unbiased_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_sub_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_sum_to_size_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_svd_lowrank_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_t_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_take_along_dim_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_take_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_tan_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_tensor_split_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_tensordot_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_tile_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_topk_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_trace_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_trapezoid_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_tril_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_triu_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_true_divide_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_true_divide_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_unbind_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_unbind_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_unfold_copy_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_unfold_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_uniform_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_unique_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_var_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_var_mean_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_var_mean_unbiased_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_var_unbiased_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_var_unbiased_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_vdot_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_view_as_complex_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_view_as_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_view_as_real_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_view_copy_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_view_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_vsplit_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_zero__cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_zero__cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_zeros_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_zeros_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_zeros_like_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_H_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_H_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_T_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad___getitem___cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad___getitem___cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad___radd___cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad___rmatmul___cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad___rmul___cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad___rmul___cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad___rpow___cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad___rsub___cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad___rsub___cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad__softmax_backward_data_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_abs_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_abs_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_acosh_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_addcdiv_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_addcmul_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_addmm_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_addmv_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_all_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_allclose_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_amax_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_amin_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_aminmax_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_any_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_argmax_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_argmin_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_argwhere_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_argwhere_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_as_strided_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_as_strided_partial_views_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_as_strided_partial_views_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_as_strided_scatter_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_as_strided_scatter_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_asin_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_asinh_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_atan2_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_atan_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_atan_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_atanh_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_atleast_1d_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_atleast_2d_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_atleast_3d_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_baddbmm_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_bernoulli_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_block_diag_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_bool_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_broadcast_to_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_bucketize_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_cartesian_prod_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_cat_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_cat_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_cdist_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_ceil_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_cfloat_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_chalf_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_chalf_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_char_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_cholesky_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_cholesky_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_cholesky_inverse_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_cholesky_inverse_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_cholesky_solve_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_chunk_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_clamp_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_clamp_max_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_clone_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_clone_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_column_stack_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_column_stack_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_combinations_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_conj_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_conj_physical_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_constant_pad_nd_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_copysign_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_corrcoef_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_cos_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_cos_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_cosh_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_cross_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_cross_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_cumulative_trapezoid_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_deg2rad_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_diag_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_diag_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_diag_embed_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_diag_embed_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_diagflat_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_diagflat_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_diagonal_copy_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_diagonal_scatter_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_diff_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_digamma_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_dist_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_dot_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_double_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_dsplit_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_dsplit_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_dstack_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_empty_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_empty_like_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_empty_like_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_erf_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_erfinv_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_exp2_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_exp_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_exp_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_expand_as_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_eye_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_eye_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_fft_fft2_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_fft_hfft2_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_fft_hfft_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_fft_hfft_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_fft_hfftn_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_fft_ifft2_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_fft_ifft_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_fft_ifftn_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_fft_ifftshift_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_fft_ihfft_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_fft_irfft2_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_fft_irfft_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_fft_irfftn_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_flatten_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_flip_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_flip_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_fliplr_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_float_power_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_floor_divide_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_fmin_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_frac_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_full_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_full_like_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_ge_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_gradient_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_gt_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_half_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_half_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_histogram_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_hsplit_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_hypot_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_index_add_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_index_copy_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_index_fill_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_index_fill_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_index_put_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_index_select_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_isclose_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_isclose_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_isfinite_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_isin_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_isnan_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_isreal_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_isreal_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_istft_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_jiterator_2inputs_2outputs_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_jiterator_4inputs_with_extra_args_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_jiterator_unary_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_jiterator_unary_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_kron_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_kthvalue_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_ldexp_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_lerp_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_lerp_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_lgamma_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_linalg_cond_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_linalg_cross_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_linalg_det_singular_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_linalg_eig_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_linalg_eigh_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_linalg_eigvals_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_linalg_householder_product_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_linalg_householder_product_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_linalg_inv_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_linalg_inv_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_linalg_ldl_factor_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_linalg_ldl_factor_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_linalg_ldl_factor_ex_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_linalg_lstsq_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_linalg_lstsq_grad_oriented_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_linalg_lu_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_linalg_lu_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_linalg_lu_factor_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_linalg_matrix_norm_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_linalg_matrix_power_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_linalg_matrix_power_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_linalg_matrix_rank_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_linalg_matrix_rank_hermitian_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_linalg_matrix_rank_hermitian_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_linalg_norm_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_linalg_norm_subgradients_at_zero_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_linalg_pinv_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_linalg_pinv_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_linalg_pinv_singular_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_linalg_qr_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_linalg_slogdet_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_linalg_solve_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_linalg_solve_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_linalg_solve_ex_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_linalg_solve_triangular_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_linalg_svdvals_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_linalg_tensorinv_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_linalg_tensorinv_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_linalg_tensorsolve_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_linalg_tensorsolve_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_linalg_vector_norm_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_linalg_vector_norm_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_linspace_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_log1p_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_log2_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_log2_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_log_softmax_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_logaddexp_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_logcumsumexp_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_logical_and_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_logical_not_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_logical_or_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_logit_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_logspace_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_logsumexp_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_long_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_lt_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_lu_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_lu_solve_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_lu_unpack_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_mH_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_mT_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_masked_amin_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_masked_argmax_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_masked_cumprod_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_masked_cumsum_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_masked_fill_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_masked_mean_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_masked_median_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_masked_normalize_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_masked_normalize_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_masked_prod_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_masked_scatter_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_masked_select_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_masked_std_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_masked_std_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_masked_sum_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_masked_var_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_masked_var_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_matmul_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_matmul_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_matrix_exp_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_max_binary_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_mean_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_mean_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_median_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_meshgrid_list_of_tensors_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_meshgrid_variadic_tensors_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_meshgrid_variadic_tensors_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_min_binary_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_min_reduction_with_dim_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_mode_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_movedim_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_movedim_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_mul_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_multinomial_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_mv_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_nan_to_num_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_nanquantile_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_nansum_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_narrow_copy_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_native_dropout_backward_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_ne_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_neg_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_neg_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_new_empty_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_new_empty_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_new_empty_strided_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_new_empty_strided_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_new_ones_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_new_ones_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_new_zeros_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_new_zeros_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_nn_functional__scaled_dot_product_attention_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_nn_functional_alpha_dropout_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_nn_functional_avg_pool2d_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_nn_functional_avg_pool3d_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_nn_functional_conv1d_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_nn_functional_conv2d_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_nn_functional_conv2d_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_nn_functional_conv_transpose1d_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_nn_functional_conv_transpose2d_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_nn_functional_conv_transpose3d_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_nn_functional_ctc_loss_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_nn_functional_dropout2d_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_nn_functional_dropout3d_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_nn_functional_embedding_bag_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_nn_functional_embedding_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_nn_functional_feature_alpha_dropout_with_train_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_nn_functional_feature_alpha_dropout_without_train_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_nn_functional_gelu_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_nn_functional_grid_sample_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_nn_functional_group_norm_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_nn_functional_hardsigmoid_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_nn_functional_hardtanh_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_nn_functional_instance_norm_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_nn_functional_interpolate_area_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_nn_functional_interpolate_bicubic_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_nn_functional_interpolate_nearest_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_nn_functional_l1_loss_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_nn_functional_l1_loss_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_nn_functional_leaky_relu_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_nn_functional_linear_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_nn_functional_local_response_norm_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_nn_functional_logsigmoid_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_nn_functional_max_pool3d_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_nn_functional_max_unpool1d_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_nn_functional_max_unpool2d_grad_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_nn_functional_max_unpool3d_grad_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_nn_functional_mish_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_nn_functional_mse_loss_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_nn_functional_multilabel_soft_margin_loss_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_nn_functional_pad_circular_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_nn_functional_pad_constant_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_nn_functional_pad_constant_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_nn_functional_pad_reflect_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_nn_functional_pad_reflect_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_nn_functional_pad_replicate_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_nn_functional_pad_replicate_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_nn_functional_pdist_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_nn_functional_pixel_shuffle_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_nn_functional_pixel_unshuffle_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_nn_functional_relu_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_nn_functional_selu_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_nn_functional_soft_margin_loss_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_nn_functional_softmin_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_nn_functional_softplus_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_nn_functional_softsign_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_nn_functional_tanhshrink_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_nn_functional_triplet_margin_loss_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_nn_functional_triplet_margin_with_distance_loss_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_nn_functional_triplet_margin_with_distance_loss_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_nn_functional_unfold_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_nn_functional_unfold_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_norm_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_norm_fro_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_norm_inf_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_norm_nuc_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_ones_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_ones_like_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_ormqr_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_ormqr_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_outer_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_pinverse_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_pinverse_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_polygamma_polygamma_n_0_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_polygamma_polygamma_n_1_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_polygamma_polygamma_n_2_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_polygamma_polygamma_n_4_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_positive_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_pow_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_pow_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_put_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_put_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_quantile_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_randn_like_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_randn_like_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_ravel_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_real_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_real_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_reciprocal_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_remainder_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_renorm_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_repeat_interleave_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_repeat_interleave_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_reshape_as_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_reshape_as_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_reshape_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_reshape_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_resize__cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_resolve_conj_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_resolve_conj_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_resolve_neg_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_roll_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_roll_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_round_decimals_0_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_round_decimals_neg_3_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_rsqrt_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_rsub_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_scatter_add_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_scatter_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_scatter_reduce_mean_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_scatter_reduce_sum_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_searchsorted_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_segment_reduce_lengths_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_segment_reduce_offsets_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_select_scatter_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_sgn_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_sgn_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_sign_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_signal_windows_blackman_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_signal_windows_exponential_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_signal_windows_gaussian_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_signal_windows_general_cosine_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_signal_windows_general_hamming_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_signal_windows_kaiser_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_signal_windows_nuttall_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_sin_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_sinc_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_sinh_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_slice_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_slice_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_slice_scatter_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_softmax_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_softmax_with_dtype_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_softmax_with_dtype_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_sparse_sampled_addmm_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_special_airy_ai_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_special_bessel_j1_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_special_bessel_y1_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_special_chebyshev_polynomial_t_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_special_chebyshev_polynomial_w_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_special_erfcx_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_special_i1_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_special_i1e_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_special_laguerre_polynomial_l_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_special_legendre_polynomial_p_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_special_modified_bessel_i1_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_special_modified_bessel_k0_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_special_ndtri_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_special_polygamma_special_polygamma_n_0_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_special_scaled_modified_bessel_k1_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_special_shifted_chebyshev_polynomial_u_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_special_spherical_bessel_j0_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_special_zeta_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_split_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_split_list_args_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_split_list_args_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_sqrt_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_square_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_squeeze_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_squeeze_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_stack_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_stack_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_std_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_std_mean_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_std_mean_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_std_mean_unbiased_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_std_unbiased_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_stft_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_sum_to_size_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_svd_lowrank_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_symeig_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_t_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_take_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_tan_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_tanh_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_tensor_split_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_tensordot_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_tensordot_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_tile_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_tile_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_to_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_to_sparse_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_to_sparse_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_topk_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_transpose_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_transpose_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_trapezoid_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_triangular_solve_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_tril_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_tril_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_triu_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_triu_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_true_divide_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_unbind_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_unflatten_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_unfold_copy_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_unfold_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_uniform_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_uniform_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_unsqueeze_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_unsqueeze_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_var_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_var_mean_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_var_mean_unbiased_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_var_mean_unbiased_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_view_as_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_view_as_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_view_as_real_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_view_copy_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_view_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_vsplit_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_vstack_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_zero__cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_zeros_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad___rdiv___cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad___rdiv___cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad___rmod___cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad___rmul___cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad___rmul___cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad___rpow___cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad___rsub___cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad__native_batch_norm_legit_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_abs_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_abs_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_acos_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_acosh_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_acosh_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_add_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_addbmm_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_addcdiv_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_addcmul_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_addcmul_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_addmm_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_addmm_decomposed_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_addmv_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_allclose_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_amax_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_amin_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_aminmax_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_angle_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_angle_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_any_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_argmin_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_argwhere_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_as_strided_partial_views_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_asin_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_atan2_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_atan_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_atan_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_atanh_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_atleast_2d_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_atleast_3d_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_atleast_3d_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_baddbmm_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_bernoulli_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_block_diag_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_bool_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_broadcast_tensors_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_broadcast_to_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_bucketize_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_cartesian_prod_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_cat_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_cdouble_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_cfloat_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_cfloat_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_chalf_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_cholesky_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_cholesky_inverse_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_cholesky_solve_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_cholesky_solve_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_chunk_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_clamp_min_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_clone_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_column_stack_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_conj_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_constant_pad_nd_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_contiguous_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_copysign_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_corrcoef_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_corrcoef_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_count_nonzero_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_cov_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_cross_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_cumprod_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_cumprod_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_cumsum_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_cumsum_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_cumulative_trapezoid_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_diag_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_diag_embed_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_diagflat_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_diagonal_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_diagonal_scatter_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_diagonal_scatter_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_dist_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_div_floor_rounding_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_dstack_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_dstack_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_einsum_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_einsum_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_empty_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_empty_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_empty_like_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_eq_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_erf_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_exp2_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_exp_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_expand_as_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_expand_as_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_expand_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_eye_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_fft_fft2_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_fft_fft2_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_fft_fft_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_fft_fftn_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_fft_fftn_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_fft_fftshift_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_fft_hfft2_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_fft_hfft_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_fft_hfftn_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_fft_ifft2_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_fft_ifft2_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_fft_ifft_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_fft_ifft_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_fft_ifftn_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_fft_ifftshift_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_fft_ifftshift_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_fft_irfft2_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_fft_irfft2_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_fft_irfftn_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_fft_rfft2_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_fft_rfftn_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_fill_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_fill_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_flip_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_fliplr_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_fliplr_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_flipud_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_float_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_float_power_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_floor_divide_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_fmax_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_fmin_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_fmod_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_frac_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_frexp_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_full_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_full_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_full_like_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_gather_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_gather_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_geqrf_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_geqrf_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_gradient_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_gradient_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_grid_sampler_2d_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_gt_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_half_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_histogramdd_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_hsplit_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_hsplit_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_hstack_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_hstack_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_hypot_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_i0_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_igamma_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_igammac_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_imag_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_index_add_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_index_copy_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_index_fill_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_index_put_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_isclose_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_isfinite_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_isin_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_isneginf_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_isposinf_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_isreal_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_isreal_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_istft_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_jiterator_2inputs_2outputs_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_jiterator_binary_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_jiterator_binary_return_by_ref_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_jiterator_unary_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_kron_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_kron_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_kthvalue_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_ldexp_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_lerp_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_lerp_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_linalg_cross_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_linalg_det_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_linalg_det_singular_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_linalg_det_singular_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_linalg_eigh_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_linalg_eigh_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_linalg_eigvals_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_linalg_eigvalsh_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_linalg_householder_product_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_linalg_householder_product_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_linalg_inv_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_linalg_ldl_factor_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_linalg_ldl_factor_ex_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_linalg_ldl_factor_ex_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_linalg_ldl_solve_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_linalg_lstsq_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_linalg_lstsq_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_linalg_lstsq_grad_oriented_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_linalg_lu_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_linalg_lu_factor_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_linalg_lu_factor_ex_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_linalg_lu_factor_ex_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_linalg_lu_solve_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_linalg_lu_solve_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_linalg_matrix_norm_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_linalg_matrix_power_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_linalg_matrix_rank_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_linalg_matrix_rank_hermitian_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_linalg_multi_dot_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_linalg_norm_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_linalg_norm_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_linalg_norm_subgradients_at_zero_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_linalg_pinv_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_linalg_pinv_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_linalg_pinv_singular_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_linalg_qr_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_linalg_slogdet_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_linalg_solve_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_linalg_solve_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_linalg_solve_ex_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_linalg_svd_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_linalg_svdvals_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_linalg_svdvals_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_linalg_tensorinv_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_linalg_tensorsolve_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_linalg_tensorsolve_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_linalg_vander_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_linalg_vecdot_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_linalg_vecdot_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_linalg_vector_norm_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_log10_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_log10_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_log1p_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_log2_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_log_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_log_softmax_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_log_softmax_with_dtype_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_logical_and_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_logical_and_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_logical_not_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_logical_or_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_logical_or_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_logical_xor_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_logit_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_logspace_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_logsumexp_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_long_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_lt_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_lu_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_lu_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_lu_unpack_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_mH_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_mT_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_mT_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_masked_argmax_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_masked_cumprod_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_masked_cumsum_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_masked_fill_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_masked_log_softmax_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_masked_logaddexp_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_masked_logsumexp_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_masked_mean_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_masked_mean_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_masked_normalize_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_masked_normalize_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_masked_prod_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_masked_prod_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_masked_scatter_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_masked_std_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_masked_std_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_masked_sum_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_masked_sum_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_matmul_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_matrix_exp_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_max_binary_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_max_reduction_no_dim_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_max_reduction_with_dim_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_maximum_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_mean_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_median_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_meshgrid_list_of_tensors_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_meshgrid_variadic_tensors_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_minimum_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_mode_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_mv_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_mv_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_mvlgamma_mvlgamma_p_1_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_mvlgamma_mvlgamma_p_3_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_mvlgamma_mvlgamma_p_5_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_nanmedian_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_nansum_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_narrow_copy_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_narrow_copy_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_narrow_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_narrow_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_native_batch_norm_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_native_dropout_backward_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_native_layer_norm_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_ne_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_neg_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_new_empty_strided_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_new_full_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_new_full_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_new_ones_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_new_ones_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_new_zeros_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_new_zeros_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_nn_functional__scaled_dot_product_attention_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_nn_functional_adaptive_avg_pool2d_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_nn_functional_adaptive_max_pool2d_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_nn_functional_alpha_dropout_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_nn_functional_avg_pool2d_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_nn_functional_batch_norm_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_nn_functional_celu_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_nn_functional_conv1d_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_nn_functional_conv_transpose1d_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_nn_functional_conv_transpose3d_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_nn_functional_cosine_similarity_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_nn_functional_dropout2d_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_nn_functional_elu_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_nn_functional_embedding_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_nn_functional_feature_alpha_dropout_without_train_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_nn_functional_glu_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_nn_functional_grid_sample_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_nn_functional_group_norm_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_nn_functional_hardshrink_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_nn_functional_hardsigmoid_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_nn_functional_hardswish_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_nn_functional_hardtanh_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_nn_functional_hinge_embedding_loss_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_nn_functional_interpolate_area_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_nn_functional_interpolate_bicubic_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_nn_functional_interpolate_bilinear_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_nn_functional_interpolate_linear_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_nn_functional_layer_norm_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_nn_functional_linear_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_nn_functional_max_pool1d_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_nn_functional_max_pool3d_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_nn_functional_mse_loss_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_nn_functional_multi_margin_loss_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_nn_functional_multilabel_margin_loss_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_nn_functional_nll_loss_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_nn_functional_normalize_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_nn_functional_normalize_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_nn_functional_pad_circular_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_nn_functional_pad_constant_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_nn_functional_pad_replicate_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_nn_functional_pad_replicate_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_nn_functional_pairwise_distance_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_nn_functional_pdist_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_nn_functional_soft_margin_loss_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_nn_functional_softmin_with_dtype_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_nn_functional_softshrink_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_nn_functional_softsign_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_nn_functional_threshold_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_nn_functional_triplet_margin_loss_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_nn_functional_triplet_margin_loss_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_nn_functional_triplet_margin_with_distance_loss_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_nn_functional_triplet_margin_with_distance_loss_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_nn_functional_unfold_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_nn_functional_upsample_bilinear_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_norm_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_norm_fro_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_norm_inf_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_norm_inf_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_norm_nuc_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_norm_nuc_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_normal_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_ones_like_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_ormqr_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_pca_lowrank_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_permute_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_pinverse_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_polar_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_polygamma_polygamma_n_2_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_pow_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_pow_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_prod_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_prod_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_put_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_qr_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_quantile_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_rad2deg_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_rand_like_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_randint_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_randn_like_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_ravel_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_real_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_real_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_reciprocal_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_reciprocal_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_remainder_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_repeat_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_reshape_as_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_reshape_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_resize__cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_resize_as__cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_resize_as__cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_resolve_conj_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_resolve_neg_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_resolve_neg_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_roll_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_round_decimals_0_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_rsqrt_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_rsqrt_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_rsub_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_scalar_tensor_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_scatter_add_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_scatter_reduce_amax_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_scatter_reduce_amin_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_scatter_reduce_prod_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_scatter_reduce_sum_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_select_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_select_scatter_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_short_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_sigmoid_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_sigmoid_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_signal_windows_bartlett_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_signal_windows_blackman_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_signal_windows_gaussian_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_signal_windows_general_cosine_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_signal_windows_general_hamming_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_signal_windows_hamming_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_signal_windows_hann_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_signal_windows_nuttall_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_signbit_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_sin_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_sinc_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_sinh_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_softmax_with_dtype_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_softmax_with_dtype_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_sort_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_sparse_sampled_addmm_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_special_airy_ai_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_special_bessel_j1_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_special_bessel_y0_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_special_chebyshev_polynomial_u_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_special_chebyshev_polynomial_v_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_special_chebyshev_polynomial_w_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_special_entr_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_special_hermite_polynomial_h_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_special_hermite_polynomial_he_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_special_i0e_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_special_i1e_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_special_legendre_polynomial_p_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_special_modified_bessel_i0_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_special_modified_bessel_k1_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_special_ndtr_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_special_ndtri_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_special_scaled_modified_bessel_k0_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_special_shifted_chebyshev_polynomial_u_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_special_shifted_chebyshev_polynomial_v_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_special_spherical_bessel_j0_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_special_xlog1py_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_special_zeta_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_split_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_split_list_args_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_split_with_sizes_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_split_with_sizes_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_sqrt_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_sqrt_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_square_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_squeeze_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_squeeze_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_std_mean_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_std_mean_unbiased_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_std_mean_unbiased_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_std_unbiased_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_sub_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_svd_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_svd_lowrank_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_t_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_t_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_tan_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_tanh_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_tensor_split_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_to_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_to_sparse_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_to_sparse_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_transpose_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_transpose_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_triangular_solve_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_tril_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_tril_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_true_divide_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_unbind_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_unbind_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_unflatten_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_unflatten_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_unfold_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_unsqueeze_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_unsqueeze_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_var_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_var_mean_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_var_mean_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_vdot_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_vdot_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_view_as_complex_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_view_as_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_view_as_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_view_copy_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_view_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_vsplit_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_vstack_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_where_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_where_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_zero__cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_zeros_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_zeros_like_cpu_complex128 2023-01-11T21:53:08.1254015Z 2023-01-11T21:53:08.1254310Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_H_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 0%] 2023-01-11T21:53:08.1254777Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_T_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 0%] 2023-01-11T21:53:08.1255239Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad___getitem___cpu_complex128 SKIPPED (Skipped! Operation does support gradgrad) [ 0%] 2023-01-11T21:53:08.1255813Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad___radd___cpu_complex128 SKIPPED (Skipped! Operation does support gradgrad) [ 0%] 2023-01-11T21:53:08.1256432Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad___rdiv___cpu_complex128 SKIPPED (Skipped! Operation does support gradgrad) [ 0%] 2023-01-11T21:53:08.1256890Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad___rmatmul___cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 0%] 2023-01-11T21:53:08.1257350Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad___rmod___cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 0%] 2023-01-11T21:53:08.1257803Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad___rmul___cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 0%] 2023-01-11T21:53:08.1258229Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad___rpow___cpu_complex128 SKIPPED (Skipped!) [ 0%] 2023-01-11T21:53:08.1258615Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad___rpow___cpu_float64 SKIPPED (Skipped!) [ 0%] 2023-01-11T21:53:08.1259040Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad___rsub___cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 0%] 2023-01-11T21:53:08.1259510Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad__native_batch_norm_legit_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 0%] 2023-01-11T21:53:08.1259996Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad__softmax_backward_data_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 0%] 2023-01-11T21:53:08.1260450Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_abs_cpu_complex128 SKIPPED (Skipped! Operation does support gradgrad) [ 0%] 2023-01-11T21:53:08.1260911Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_acos_cpu_complex128 SKIPPED (Skipped! Operation does support gradgrad) [ 0%] 2023-01-11T21:53:08.1261369Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_acosh_cpu_complex128 SKIPPED (Skipped! Operation does support gradgrad) [ 0%] 2023-01-11T21:53:08.1261824Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_add_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 0%] 2023-01-11T21:53:08.1262285Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_addbmm_cpu_complex128 SKIPPED (Skipped! Operation does support gradgrad) [ 0%] 2023-01-11T21:53:08.1262734Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_addmm_cpu_complex128 SKIPPED (Skipped! Operation does support gradgrad) [ 0%] 2023-01-11T21:53:08.1263188Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_addmv_cpu_complex128 SKIPPED (Skipped! Operation does support gradgrad) [ 0%] 2023-01-11T21:53:08.1263638Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_addmv_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 0%] 2023-01-11T21:53:08.1264144Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_addr_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 0%] 2023-01-11T21:53:08.1264823Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_all_cpu_complex128 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 0%] 2023-01-11T21:53:08.1265408Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_all_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 0%] 2023-01-11T21:53:08.1265997Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_allclose_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 0%] 2023-01-11T21:53:08.1266464Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_amax_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 1%] 2023-01-11T21:53:08.1266904Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_amin_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 1%] 2023-01-11T21:53:08.1267361Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_angle_cpu_complex128 SKIPPED (Skipped! Operation does support gradgrad) [ 1%] 2023-01-11T21:53:08.1268002Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_argmin_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 1%] 2023-01-11T21:53:08.1268595Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_argsort_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 1%] 2023-01-11T21:53:08.1269169Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_argwhere_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 1%] 2023-01-11T21:53:08.1269617Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_as_strided_cpu_complex128 SKIPPED (Numerous errors) [ 1%] 2023-01-11T21:53:08.1270032Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_as_strided_cpu_float64 SKIPPED (Numerous errors) [ 1%] 2023-01-11T21:53:08.1270488Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_as_strided_partial_views_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 1%] 2023-01-11T21:53:08.1270953Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_asin_cpu_complex128 SKIPPED (Skipped! Operation does support gradgrad) [ 1%] 2023-01-11T21:53:08.1271405Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_asin_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 1%] 2023-01-11T21:53:08.1271860Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_asinh_cpu_complex128 SKIPPED (Skipped! Operation does support gradgrad) [ 1%] 2023-01-11T21:53:08.1272314Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_atan2_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 1%] 2023-01-11T21:53:08.1272762Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_atleast_2d_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 1%] 2023-01-11T21:53:08.1273227Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_bernoulli_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 1%] 2023-01-11T21:53:08.1273687Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_bfloat16_cpu_complex128 SKIPPED (Skipped! Operation does support gradgrad) [ 1%] 2023-01-11T21:53:08.1274146Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_bmm_cpu_complex128 SKIPPED (Skipped! Operation does support gradgrad) [ 1%] 2023-01-11T21:53:08.1274722Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_bool_cpu_complex128 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 1%] 2023-01-11T21:53:08.1275184Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_broadcast_to_cpu_complex128 SKIPPED (Skipped! Operation does support gradgrad) [ 1%] 2023-01-11T21:53:08.1275769Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_byte_cpu_complex128 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 1%] 2023-01-11T21:53:08.1276274Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_cartesian_prod_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 1%] 2023-01-11T21:53:08.1276912Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_cat_cpu_complex128 SKIPPED (TODO(whc) fix pre-existing bug with cat for newly added opinfo for empty+nonempty) [ 1%] 2023-01-11T21:53:08.1277558Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_cat_cpu_float64 SKIPPED (TODO(whc) fix pre-existing bug with cat for newly added opinfo for empty+nonempty) [ 1%] 2023-01-11T21:53:08.1278002Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_cdist_cpu_float64 PASSED [ 1%] 2023-01-11T21:53:08.1278423Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_cdouble_cpu_complex128 SKIPPED (Skipped! Operation does support gradgrad) [ 1%] 2023-01-11T21:53:08.1278889Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_cdouble_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 2%] 2023-01-11T21:53:08.1279367Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_ceil_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 2%] 2023-01-11T21:53:08.1279949Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_char_cpu_complex128 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 2%] 2023-01-11T21:53:08.1280531Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_char_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 2%] 2023-01-11T21:53:08.1281197Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_cholesky_inverse_cpu_complex128 SKIPPED (Skipped! Operation does support gradgrad) [ 2%] 2023-01-11T21:53:08.1281656Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_clamp_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 2%] 2023-01-11T21:53:08.1282122Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_clamp_max_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 2%] 2023-01-11T21:53:08.1282575Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_clone_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 2%] 2023-01-11T21:53:08.1283041Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_column_stack_cpu_complex128 SKIPPED (Skipped! Operation does support gradgrad) [ 2%] 2023-01-11T21:53:08.1283516Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_column_stack_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 2%] 2023-01-11T21:53:08.1283970Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_combinations_cpu_complex128 SKIPPED (Skipped! Operation does support gradgrad) [ 2%] 2023-01-11T21:53:08.1284438Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_complex_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 2%] 2023-01-11T21:53:08.1284902Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_conj_physical_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 2%] 2023-01-11T21:53:08.1285375Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_constant_pad_nd_cpu_complex128 SKIPPED (Skipped! Operation does support gradgrad) [ 2%] 2023-01-11T21:53:08.1285831Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_copysign_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 2%] 2023-01-11T21:53:08.1286290Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_corrcoef_cpu_complex128 SKIPPED (Skipped! Operation does support gradgrad) [ 2%] 2023-01-11T21:53:08.1286749Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_corrcoef_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 2%] 2023-01-11T21:53:08.1287248Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_cos_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 2%] 2023-01-11T21:53:08.1287689Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_cosh_cpu_complex128 SKIPPED (Skipped! Operation does support gradgrad) [ 2%] 2023-01-11T21:53:08.1288139Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_cosh_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 2%] 2023-01-11T21:53:08.1288734Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_count_nonzero_cpu_complex128 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 2%] 2023-01-11T21:53:08.1289331Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_count_nonzero_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 2%] 2023-01-11T21:53:08.1289789Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_cov_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 2%] 2023-01-11T21:53:08.1290252Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_cross_cpu_complex128 SKIPPED (Skipped! Operation does support gradgrad) [ 2%] 2023-01-11T21:53:08.1290761Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_cross_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 2%] 2023-01-11T21:53:08.1291219Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_cummax_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 3%] 2023-01-11T21:53:08.1291673Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_cumsum_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 3%] 2023-01-11T21:53:08.1292134Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_cumulative_trapezoid_cpu_complex128 SKIPPED (Skipped! Operation does support gradgrad) [ 3%] 2023-01-11T21:53:08.1292609Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_deg2rad_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 3%] 2023-01-11T21:53:08.1293075Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_diagflat_cpu_complex128 SKIPPED (Skipped! Operation does support gradgrad) [ 3%] 2023-01-11T21:53:08.1293539Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_diagflat_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 3%] 2023-01-11T21:53:08.1293991Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_diagonal_copy_cpu_complex128 SKIPPED (Skipped! Operation does support gradgrad) [ 3%] 2023-01-11T21:53:08.1294453Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_diagonal_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 3%] 2023-01-11T21:53:08.1294913Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_digamma_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 3%] 2023-01-11T21:53:08.1295374Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_div_no_rounding_mode_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 3%] 2023-01-11T21:53:08.1311176Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_div_trunc_rounding_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 3%] 2023-01-11T21:53:08.1311687Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_dsplit_cpu_complex128 SKIPPED (Skipped! Operation does support gradgrad) [ 3%] 2023-01-11T21:53:08.1312157Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_dsplit_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 3%] 2023-01-11T21:53:08.1312622Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_dstack_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 3%] 2023-01-11T21:53:08.1313089Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_einsum_cpu_complex128 SKIPPED (Skipped! Operation does support gradgrad) [ 3%] 2023-01-11T21:53:08.1313727Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_empty_cpu_complex128 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 3%] 2023-01-11T21:53:08.1314432Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_empty_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 3%] 2023-01-11T21:53:08.1315024Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_empty_like_cpu_complex128 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 3%] 2023-01-11T21:53:08.1315627Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_empty_like_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 3%] 2023-01-11T21:53:08.1316207Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_equal_cpu_complex128 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 3%] 2023-01-11T21:53:08.1316792Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_equal_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 3%] 2023-01-11T21:53:08.1317256Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_erf_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 3%] 2023-01-11T21:53:08.1317749Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_erfc_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 3%] 2023-01-11T21:53:08.1318190Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_exp2_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 3%] 2023-01-11T21:53:08.1318636Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_exp_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 3%] 2023-01-11T21:53:08.1319098Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_expand_as_cpu_complex128 SKIPPED (Skipped! Operation does support gradgrad) [ 4%] 2023-01-11T21:53:08.1319560Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_expand_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 4%] 2023-01-11T21:53:08.1320124Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_eye_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 4%] 2023-01-11T21:53:08.1320589Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_fft_fft2_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 4%] 2023-01-11T21:53:08.1321252Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_fft_fft_cpu_complex128 SKIPPED (Skipped! Operation does support gradgrad) [ 4%] 2023-01-11T21:53:08.1321715Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_fft_fft_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 4%] 2023-01-11T21:53:08.1322175Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_fft_fftn_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 4%] 2023-01-11T21:53:08.1322622Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_fft_hfft2_cpu_complex128 SKIPPED (Skipped! Operation does support gradgrad) [ 4%] 2023-01-11T21:53:08.1323087Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_fft_hfft2_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 4%] 2023-01-11T21:53:08.1323546Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_fft_hfft_cpu_complex128 SKIPPED (Skipped! Operation does support gradgrad) [ 4%] 2023-01-11T21:53:08.1324005Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_fft_hfftn_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 4%] 2023-01-11T21:53:08.1324453Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_fft_ifft2_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 4%] 2023-01-11T21:53:08.1324911Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_fft_ifft_cpu_complex128 SKIPPED (Skipped! Operation does support gradgrad) [ 4%] 2023-01-11T21:53:08.1325370Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_fft_ifft_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 4%] 2023-01-11T21:53:08.1325902Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_fft_ifftn_cpu_complex128 SKIPPED (Skipped! Operation does support gradgrad) [ 4%] 2023-01-11T21:53:08.1326352Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_fft_ifftn_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 4%] 2023-01-11T21:53:08.1326814Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_fft_ifftshift_cpu_complex128 SKIPPED (Skipped! Operation does support gradgrad) [ 4%] 2023-01-11T21:53:08.1327282Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_fft_ifftshift_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 4%] 2023-01-11T21:53:08.1327744Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_fft_ihfftn_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 4%] 2023-01-11T21:53:08.1328191Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_fft_irfft2_cpu_complex128 SKIPPED (Skipped! Operation does support gradgrad) [ 4%] 2023-01-11T21:53:08.1328692Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_fft_irfft_cpu_complex128 SKIPPED (Skipped! Operation does support gradgrad) [ 4%] 2023-01-11T21:53:08.1329156Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_fft_irfftn_cpu_complex128 SKIPPED (Skipped! Operation does support gradgrad) [ 4%] 2023-01-11T21:53:08.1329613Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_fft_rfft2_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 4%] 2023-01-11T21:53:08.1330060Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_fft_rfft_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 4%] 2023-01-11T21:53:08.1330517Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_fft_rfftn_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 4%] 2023-01-11T21:53:08.1330978Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_flatten_cpu_complex128 SKIPPED (Skipped! Operation does support gradgrad) [ 5%] 2023-01-11T21:53:08.1331442Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_flip_cpu_complex128 SKIPPED (Skipped! Operation does support gradgrad) [ 5%] 2023-01-11T21:53:08.1331894Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_flip_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 5%] 2023-01-11T21:53:08.1332331Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_float_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 5%] 2023-01-11T21:53:08.1332790Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_float_power_cpu_complex128 SKIPPED (Skipped! Operation does support gradgrad) [ 5%] 2023-01-11T21:53:08.1333252Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_floor_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 5%] 2023-01-11T21:53:08.1333706Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_fmod_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 5%] 2023-01-11T21:53:08.1334146Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_frac_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 5%] 2023-01-11T21:53:08.1334595Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_frexp_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 5%] 2023-01-11T21:53:08.1335181Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_full_cpu_complex128 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 5%] 2023-01-11T21:53:08.1335856Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_full_like_cpu_complex128 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 5%] 2023-01-11T21:53:08.1336321Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_gather_cpu_complex128 SKIPPED (Skipped! Operation does support gradgrad) [ 5%] 2023-01-11T21:53:08.1336820Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_gather_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 5%] 2023-01-11T21:53:08.1337393Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_ge_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 5%] 2023-01-11T21:53:08.1337974Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_geqrf_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 5%] 2023-01-11T21:53:08.1338427Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_half_cpu_complex128 SKIPPED (Skipped! Operation does support gradgrad) [ 5%] 2023-01-11T21:53:08.1338884Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_half_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 5%] 2023-01-11T21:53:08.1339468Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_histogramdd_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 5%] 2023-01-11T21:53:08.1339973Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_hsplit_cpu_complex128 SKIPPED (Skipped! Operation does support gradgrad) [ 5%] 2023-01-11T21:53:08.1340426Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_hstack_cpu_complex128 SKIPPED (Skipped! Operation does support gradgrad) [ 5%] 2023-01-11T21:53:08.1340886Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_hypot_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 5%] 2023-01-11T21:53:08.1341459Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_igammac_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 5%] 2023-01-11T21:53:08.1341930Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_imag_cpu_complex128 SKIPPED (Skipped! Operation does support gradgrad) [ 5%] 2023-01-11T21:53:08.1342391Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_index_fill_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 5%] 2023-01-11T21:53:08.1342846Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_index_put_cpu_complex128 SKIPPED (Skipped! Operation does support gradgrad) [ 5%] 2023-01-11T21:53:08.1343305Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_index_put_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 6%] 2023-01-11T21:53:08.1343771Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_index_select_cpu_complex128 SKIPPED (Skipped! Operation does support gradgrad) [ 6%] 2023-01-11T21:53:08.1344345Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_int_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 6%] 2023-01-11T21:53:08.1344997Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_isfinite_cpu_complex128 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 6%] 2023-01-11T21:53:08.1345613Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_isfinite_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 6%] 2023-01-11T21:53:08.1346202Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_isinf_cpu_complex128 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 6%] 2023-01-11T21:53:08.1346781Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_isneginf_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 6%] 2023-01-11T21:53:08.1347222Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_jiterator_2inputs_2outputs_cpu_complex128 SKIPPED (Only runs on cuda) [ 6%] 2023-01-11T21:53:08.1347668Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_jiterator_2inputs_2outputs_cpu_float64 SKIPPED (Only runs on cuda) [ 6%] 2023-01-11T21:53:08.1348113Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_jiterator_4inputs_with_extra_args_cpu_complex128 SKIPPED (Only runs on cuda) [ 6%] 2023-01-11T21:53:08.1348592Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_jiterator_binary_cpu_complex128 SKIPPED (Only runs on cuda) [ 6%] 2023-01-11T21:53:08.1349006Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_jiterator_binary_cpu_float64 SKIPPED (Only runs on cuda) [ 6%] 2023-01-11T21:53:08.1349440Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_jiterator_binary_return_by_ref_cpu_complex128 SKIPPED (Only runs on cuda) [ 6%] 2023-01-11T21:53:08.1349881Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_jiterator_binary_return_by_ref_cpu_float64 SKIPPED (Only runs on cuda) [ 6%] 2023-01-11T21:53:08.1350312Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_jiterator_unary_cpu_float64 SKIPPED (Only runs on cuda) [ 6%] 2023-01-11T21:53:08.1350741Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_kthvalue_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 6%] 2023-01-11T21:53:08.1351198Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_ldexp_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 6%] 2023-01-11T21:53:08.1351793Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_le_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 6%] 2023-01-11T21:53:08.1352265Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_linalg_cross_cpu_complex128 SKIPPED (Skipped! Operation does support gradgrad) [ 6%] 2023-01-11T21:53:08.1352739Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_linalg_cross_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 6%] 2023-01-11T21:53:08.1353189Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_linalg_det_cpu_complex128 SKIPPED (Skipped! Operation does support gradgrad) [ 6%] 2023-01-11T21:53:08.1353655Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_linalg_det_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 6%] 2023-01-11T21:53:08.1354122Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_linalg_eig_cpu_complex128 SKIPPED (Skipped! Operation does support gradgrad) [ 6%] 2023-01-11T21:53:08.1354583Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_linalg_eig_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 6%] 2023-01-11T21:53:08.1355037Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_linalg_eigh_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 6%] 2023-01-11T21:53:08.1355505Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_linalg_eigvals_cpu_complex128 SKIPPED (Skipped! Operation does support gradgrad) [ 7%] 2023-01-11T21:53:08.1355976Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_linalg_eigvals_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 7%] 2023-01-11T21:53:08.1356461Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_linalg_householder_product_cpu_complex128 SKIPPED (Skipped! Operation does support gradgrad) [ 7%] 2023-01-11T21:53:08.1356937Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_linalg_inv_cpu_complex128 SKIPPED (Skipped! Operation does support gradgrad) [ 7%] 2023-01-11T21:53:08.1357396Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_linalg_inv_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 7%] 2023-01-11T21:53:08.1357861Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_linalg_inv_ex_cpu_complex128 SKIPPED (Skipped! Operation does support gradgrad) [ 7%] 2023-01-11T21:53:08.1358458Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_linalg_ldl_factor_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 7%] 2023-01-11T21:53:08.1359076Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_linalg_ldl_factor_ex_cpu_complex128 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 7%] 2023-01-11T21:53:08.1359720Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_linalg_ldl_factor_ex_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 7%] 2023-01-11T21:53:08.1360338Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_linalg_ldl_solve_cpu_complex128 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 7%] 2023-01-11T21:53:08.1361124Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_linalg_ldl_solve_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 7%] 2023-01-11T21:53:08.1361578Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_linalg_lstsq_cpu_float64 SKIPPED (Skipped!) [ 7%] 2023-01-11T21:53:08.1362018Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_linalg_lstsq_grad_oriented_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 7%] 2023-01-11T21:53:08.1362501Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_linalg_lu_cpu_complex128 SKIPPED (Skipped! Operation does support gradgrad) [ 7%] 2023-01-11T21:53:08.1363032Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_linalg_lu_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 7%] 2023-01-11T21:53:08.1363506Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_linalg_lu_factor_cpu_complex128 SKIPPED (Skipped! Operation does support gradgrad) [ 7%] 2023-01-11T21:53:08.1363973Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_linalg_lu_factor_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 7%] 2023-01-11T21:53:08.1364452Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_linalg_lu_factor_ex_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 7%] 2023-01-11T21:53:08.1364927Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_linalg_matrix_norm_cpu_complex128 SKIPPED (Skipped! Operation does support gradgrad) [ 7%] 2023-01-11T21:53:08.1365409Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_linalg_matrix_norm_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 7%] 2023-01-11T21:53:08.1365888Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_linalg_matrix_power_cpu_complex128 SKIPPED (Skipped! Operation does support gradgrad) [ 7%] 2023-01-11T21:53:08.1366492Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_linalg_matrix_rank_cpu_complex128 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 7%] 2023-01-11T21:53:08.1367108Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_linalg_matrix_rank_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 7%] 2023-01-11T21:53:08.1367744Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_linalg_matrix_rank_hermitian_cpu_complex128 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 7%] 2023-01-11T21:53:08.1368248Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_linalg_multi_dot_cpu_complex128 SKIPPED (Skipped! Operation does support gradgrad) [ 7%] 2023-01-11T21:53:08.1368719Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_linalg_multi_dot_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 8%] 2023-01-11T21:53:08.1369195Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_linalg_norm_cpu_complex128 SKIPPED (Skipped! Operation does support gradgrad) [ 8%] 2023-01-11T21:53:08.1369670Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_linalg_pinv_hermitian_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 8%] 2023-01-11T21:53:08.1370174Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_linalg_pinv_singular_cpu_complex128 SKIPPED (test is slow; run with PYTORCH_TEST_WITH_SLOW to enable test) [ 8%] 2023-01-11T21:53:08.1370659Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_linalg_qr_cpu_complex128 SKIPPED (Skipped! Operation does support gradgrad) [ 8%] 2023-01-11T21:53:08.1371185Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_linalg_slogdet_cpu_complex128 SKIPPED (Skipped! Operation does support gradgrad) [ 8%] 2023-01-11T21:53:08.1371665Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_linalg_solve_cpu_complex128 SKIPPED (Skipped! Operation does support gradgrad) [ 8%] 2023-01-11T21:53:08.1372138Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_linalg_solve_ex_cpu_complex128 SKIPPED (Skipped! Operation does support gradgrad) [ 8%] 2023-01-11T21:53:08.1372616Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_linalg_solve_ex_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 8%] 2023-01-11T21:53:08.1373085Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_linalg_solve_triangular_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 8%] 2023-01-11T21:53:08.1373568Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_linalg_svd_cpu_complex128 SKIPPED (Skipped! Operation does support gradgrad) [ 8%] 2023-01-11T21:53:08.1374079Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_linalg_svd_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 8%] 2023-01-11T21:53:08.1374544Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_linalg_svdvals_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 8%] 2023-01-11T21:53:08.1375004Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_linalg_tensorinv_cpu_complex128 SKIPPED (Skipped! Operation does support gradgrad) [ 8%] 2023-01-11T21:53:08.1375547Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_linalg_tensorinv_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 8%] 2023-01-11T21:53:08.1376026Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_linalg_vander_cpu_complex128 SKIPPED (Skipped! Operation does support gradgrad) [ 8%] 2023-01-11T21:53:08.1376502Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_linalg_vander_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 8%] 2023-01-11T21:53:08.1376958Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_linalg_vecdot_cpu_complex128 SKIPPED (Skipped! Operation does support gradgrad) [ 8%] 2023-01-11T21:53:08.1377427Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_linalg_vecdot_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 8%] 2023-01-11T21:53:08.1377901Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_linalg_vector_norm_cpu_complex128 SKIPPED (Skipped! Operation does support gradgrad) [ 8%] 2023-01-11T21:53:08.1378382Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_linalg_vector_norm_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 8%] 2023-01-11T21:53:08.1378848Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_log1p_cpu_complex128 SKIPPED (Skipped! Operation does support gradgrad) [ 8%] 2023-01-11T21:53:08.1379300Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_log1p_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 8%] 2023-01-11T21:53:08.1379749Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_log2_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 8%] 2023-01-11T21:53:08.1380199Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_log_cpu_complex128 SKIPPED (Skipped! Operation does support gradgrad) [ 8%] 2023-01-11T21:53:08.1380657Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_log_softmax_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 9%] 2023-01-11T21:53:08.1381124Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_log_softmax_with_dtype_cpu_complex128 SKIPPED (Skipped! Operation does support gradgrad) [ 9%] 2023-01-11T21:53:08.1381600Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_logaddexp_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 9%] 2023-01-11T21:53:08.1382117Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_logcumsumexp_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 9%] 2023-01-11T21:53:08.1382717Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_logical_or_cpu_complex128 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 9%] 2023-01-11T21:53:08.1383309Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_logical_xor_cpu_complex128 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 9%] 2023-01-11T21:53:08.1383907Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_logspace_cpu_complex128 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 9%] 2023-01-11T21:53:08.1384500Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_logspace_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 9%] 2023-01-11T21:53:08.1384984Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_logsumexp_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 9%] 2023-01-11T21:53:08.1385466Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_lu_solve_cpu_complex128 SKIPPED (Skipped! Operation does support gradgrad) [ 9%] 2023-01-11T21:53:08.1385928Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_lu_solve_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 9%] 2023-01-11T21:53:08.1386397Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_lu_unpack_cpu_complex128 SKIPPED (Skipped! Operation does support gradgrad) [ 9%] 2023-01-11T21:53:08.1386856Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_mH_cpu_complex128 SKIPPED (Skipped! Operation does support gradgrad) [ 9%] 2023-01-11T21:53:08.1387301Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_mT_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 9%] 2023-01-11T21:53:08.1387745Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_masked_amax_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 9%] 2023-01-11T21:53:08.1388339Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_masked_argmin_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 9%] 2023-01-11T21:53:08.1388827Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_masked_cumprod_cpu_complex128 SKIPPED (Skipped! Operation does support gradgrad) [ 9%] 2023-01-11T21:53:08.1389303Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_masked_cumprod_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 9%] 2023-01-11T21:53:08.1389765Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_masked_cumsum_cpu_complex128 SKIPPED (Skipped! Operation does support gradgrad) [ 9%] 2023-01-11T21:53:08.1390235Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_masked_fill_cpu_complex128 SKIPPED (Skipped! Operation does support gradgrad) [ 9%] 2023-01-11T21:53:08.1390705Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_masked_fill_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 9%] 2023-01-11T21:53:08.1391172Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_masked_mean_cpu_complex128 SKIPPED (Skipped! Operation does support gradgrad) [ 9%] 2023-01-11T21:53:08.1391635Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_masked_normalize_cpu_complex128 SKIPPED (Skipped! Operation does support gradgrad) [ 9%] 2023-01-11T21:53:08.1392120Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_masked_normalize_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 9%] 2023-01-11T21:53:08.1392596Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_masked_scatter_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 9%] 2023-01-11T21:53:08.1393100Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_masked_softmax_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 10%] 2023-01-11T21:53:08.1393558Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_masked_sum_cpu_complex128 SKIPPED (Skipped! Operation does support gradgrad) [ 10%] 2023-01-11T21:53:08.1394025Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_matrix_exp_cpu_complex128 SKIPPED (Skipped! Operation does support gradgrad) [ 10%] 2023-01-11T21:53:08.1394484Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_matrix_exp_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 10%] 2023-01-11T21:53:08.1394945Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_max_binary_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 10%] 2023-01-11T21:53:08.1395416Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_max_reduction_with_dim_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 10%] 2023-01-11T21:53:08.1395879Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_mean_cpu_complex128 SKIPPED (Skipped! Operation does support gradgrad) [ 10%] 2023-01-11T21:53:08.1396361Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_mean_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 10%] 2023-01-11T21:53:08.1396819Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_median_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 10%] 2023-01-11T21:53:08.1397296Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_meshgrid_list_of_tensors_cpu_complex128 SKIPPED (Skipped! Operation does support gradgrad) [ 10%] 2023-01-11T21:53:08.1397763Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_min_binary_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 10%] 2023-01-11T21:53:08.1398239Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_min_reduction_no_dim_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 10%] 2023-01-11T21:53:08.1398716Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_minimum_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 10%] 2023-01-11T21:53:08.1399169Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_mm_cpu_complex128 SKIPPED (Skipped! Operation does support gradgrad) [ 10%] 2023-01-11T21:53:08.1399606Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_mm_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 10%] 2023-01-11T21:53:08.1400053Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_mode_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 10%] 2023-01-11T21:53:08.1400511Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_movedim_cpu_complex128 SKIPPED (Skipped! Operation does support gradgrad) [ 10%] 2023-01-11T21:53:08.1401150Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_msort_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 10%] 2023-01-11T21:53:08.1401590Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_mul_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 10%] 2023-01-11T21:53:08.1402176Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_multinomial_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 10%] 2023-01-11T21:53:08.1402648Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_mv_cpu_complex128 SKIPPED (Skipped! Operation does support gradgrad) [ 10%] 2023-01-11T21:53:08.1403117Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_mvlgamma_mvlgamma_p_1_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 10%] 2023-01-11T21:53:08.1403572Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_nan_to_num_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 10%] 2023-01-11T21:53:08.1404086Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_nanmedian_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 10%] 2023-01-11T21:53:08.1404554Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_nanquantile_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 10%] 2023-01-11T21:53:08.1405013Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_nansum_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 11%] 2023-01-11T21:53:08.1405596Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_narrow_copy_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 11%] 2023-01-11T21:53:08.1406071Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_native_dropout_backward_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 11%] 2023-01-11T21:53:08.1406549Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_native_layer_norm_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 11%] 2023-01-11T21:53:08.1407145Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_new_empty_cpu_complex128 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 11%] 2023-01-11T21:53:08.1407807Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_new_empty_strided_cpu_complex128 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 11%] 2023-01-11T21:53:08.1408416Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_new_empty_strided_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 11%] 2023-01-11T21:53:08.1409015Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_new_full_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 11%] 2023-01-11T21:53:08.1409608Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_new_zeros_cpu_complex128 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 11%] 2023-01-11T21:53:08.1410207Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_new_zeros_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 11%] 2023-01-11T21:53:08.1410694Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_nn_functional_adaptive_avg_pool1d_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 11%] 2023-01-11T21:53:08.1411200Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_nn_functional_adaptive_avg_pool2d_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 11%] 2023-01-11T21:53:08.1411705Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_nn_functional_adaptive_avg_pool3d_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 11%] 2023-01-11T21:53:08.1412210Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_nn_functional_adaptive_max_pool2d_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 11%] 2023-01-11T21:53:08.1412725Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_nn_functional_adaptive_max_pool3d_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 11%] 2023-01-11T21:53:08.1413212Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_nn_functional_avg_pool1d_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 11%] 2023-01-11T21:53:08.1413697Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_nn_functional_avg_pool2d_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 11%] 2023-01-11T21:53:08.1414191Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_nn_functional_bilinear_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 11%] 2023-01-11T21:53:08.1414674Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_nn_functional_conv2d_cpu_complex128 SKIPPED (Skipped! Operation does support gradgrad) [ 11%] 2023-01-11T21:53:08.1415146Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_nn_functional_conv2d_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 11%] 2023-01-11T21:53:08.1415745Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_nn_functional_conv_transpose1d_cpu_complex128 SKIPPED (Skipped! Operation does support gradgrad) [ 11%] 2023-01-11T21:53:08.1416261Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_nn_functional_conv_transpose1d_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 11%] 2023-01-11T21:53:08.1416761Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_nn_functional_conv_transpose2d_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 11%] 2023-01-11T21:53:08.1417265Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_nn_functional_cosine_similarity_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 11%] 2023-01-11T21:53:08.1417749Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_nn_functional_ctc_loss_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 11%] 2023-01-11T21:53:08.1418230Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_nn_functional_elu_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 11%] 2023-01-11T21:53:08.1418715Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_nn_functional_embedding_bag_cpu_float64 PASSED [ 12%] 2023-01-11T21:53:08.1419172Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_nn_functional_embedding_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 12%] 2023-01-11T21:53:08.1419674Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_nn_functional_feature_alpha_dropout_with_train_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 12%] 2023-01-11T21:53:08.1420185Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_nn_functional_group_norm_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 12%] 2023-01-11T21:53:08.1420675Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_nn_functional_hardshrink_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 12%] 2023-01-11T21:53:08.1421183Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_nn_functional_hinge_embedding_loss_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 12%] 2023-01-11T21:53:08.1421682Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_nn_functional_huber_loss_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 12%] 2023-01-11T21:53:08.1422168Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_nn_functional_interpolate_area_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 12%] 2023-01-11T21:53:08.1422678Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_nn_functional_interpolate_trilinear_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 12%] 2023-01-11T21:53:08.1423175Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_nn_functional_kl_div_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 12%] 2023-01-11T21:53:08.1423658Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_nn_functional_l1_loss_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 12%] 2023-01-11T21:53:08.1424134Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_nn_functional_leaky_relu_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 12%] 2023-01-11T21:53:08.1424634Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_nn_functional_local_response_norm_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 12%] 2023-01-11T21:53:08.1425132Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_nn_functional_max_pool1d_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 12%] 2023-01-11T21:53:08.1425617Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_nn_functional_max_unpool1d_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 12%] 2023-01-11T21:53:08.1426141Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_nn_functional_max_unpool1d_grad_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 12%] 2023-01-11T21:53:08.1426643Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_nn_functional_max_unpool3d_grad_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 12%] 2023-01-11T21:53:08.1427138Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_nn_functional_mse_loss_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 12%] 2023-01-11T21:53:08.1427587Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_nn_functional_multi_margin_loss_cpu_float64 PASSED [ 12%] 2023-01-11T21:53:08.1428009Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_nn_functional_multilabel_margin_loss_cpu_float64 PASSED [ 12%] 2023-01-11T21:53:08.1428474Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_nn_functional_multilabel_soft_margin_loss_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 12%] 2023-01-11T21:53:08.1428979Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_nn_functional_nll_loss_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 12%] 2023-01-11T21:53:08.1429501Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_nn_functional_pad_circular_cpu_complex128 SKIPPED (Skipped! Operation does support gradgrad) [ 12%] 2023-01-11T21:53:08.1430005Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_nn_functional_pad_constant_cpu_complex128 SKIPPED (Skipped! Operation does support gradgrad) [ 12%] 2023-01-11T21:53:08.1430482Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_nn_functional_pad_constant_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 12%] 2023-01-11T21:53:08.1430978Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_nn_functional_pad_replicate_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 13%] 2023-01-11T21:53:08.1431479Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_nn_functional_pairwise_distance_cpu_complex128 SKIPPED (Skipped! Operation does support gradgrad) [ 13%] 2023-01-11T21:53:08.1431988Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_nn_functional_pairwise_distance_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 13%] 2023-01-11T21:53:08.1432493Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_nn_functional_pixel_shuffle_cpu_complex128 SKIPPED (Skipped! Operation does support gradgrad) [ 13%] 2023-01-11T21:53:08.1432990Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_nn_functional_pixel_unshuffle_cpu_complex128 SKIPPED (Skipped! Operation does support gradgrad) [ 13%] 2023-01-11T21:53:08.1433493Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_nn_functional_pixel_unshuffle_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 13%] 2023-01-11T21:53:08.1433984Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_nn_functional_prelu_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 13%] 2023-01-11T21:53:08.1434470Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_nn_functional_relu_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 13%] 2023-01-11T21:53:08.1434934Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_nn_functional_rrelu_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 13%] 2023-01-11T21:53:08.1435408Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_nn_functional_selu_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 13%] 2023-01-11T21:53:08.1435895Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_nn_functional_soft_margin_loss_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 13%] 2023-01-11T21:53:08.1436393Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_nn_functional_softplus_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 13%] 2023-01-11T21:53:08.1436909Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_nn_functional_softsign_cpu_complex128 SKIPPED (Skipped! Operation does support gradgrad) [ 13%] 2023-01-11T21:53:08.1437406Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_nn_functional_tanhshrink_cpu_complex128 SKIPPED (Skipped! Operation does support gradgrad) [ 13%] 2023-01-11T21:53:08.1437902Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_nn_functional_threshold_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 13%] 2023-01-11T21:53:08.1438403Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_nn_functional_triplet_margin_loss_cpu_complex128 SKIPPED (Skipped! Operation does support gradgrad) [ 13%] 2023-01-11T21:53:08.1438934Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_nn_functional_triplet_margin_with_distance_loss_cpu_complex128 SKIPPED (Skipped! Operation does support gradgrad) [ 13%] 2023-01-11T21:53:08.1439430Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_nn_functional_unfold_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 13%] 2023-01-11T21:53:08.1439962Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_nn_functional_upsample_bilinear_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 13%] 2023-01-11T21:53:08.1440467Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_nn_functional_upsample_nearest_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 13%] 2023-01-11T21:53:08.1441114Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_norm_cpu_complex128 SKIPPED (Skipped! Operation does support gradgrad) [ 13%] 2023-01-11T21:53:08.1441559Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_norm_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 13%] 2023-01-11T21:53:08.1442026Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_norm_fro_cpu_complex128 SKIPPED (Skipped! Operation does support gradgrad) [ 13%] 2023-01-11T21:53:08.1442496Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_norm_fro_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 13%] 2023-01-11T21:53:08.1442960Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_norm_inf_cpu_complex128 SKIPPED (Skipped! Operation does support gradgrad) [ 13%] 2023-01-11T21:53:08.1443421Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_norm_inf_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 14%] 2023-01-11T21:53:08.1443871Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_norm_nuc_cpu_complex128 SKIPPED (Skipped! Operation does support gradgrad) [ 14%] 2023-01-11T21:53:08.1444313Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_normal_cpu_float64 SKIPPED (Gradients are incorrect!) [ 14%] 2023-01-11T21:53:08.1444899Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_ones_cpu_complex128 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 14%] 2023-01-11T21:53:08.1445500Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_ones_like_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 14%] 2023-01-11T21:53:08.1445960Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_outer_cpu_complex128 SKIPPED (Skipped! Operation does support gradgrad) [ 14%] 2023-01-11T21:53:08.1446419Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_permute_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 14%] 2023-01-11T21:53:08.1446886Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_pinverse_cpu_complex128 SKIPPED (Skipped! Operation does support gradgrad) [ 14%] 2023-01-11T21:53:08.1447350Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_polar_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 14%] 2023-01-11T21:53:08.1447807Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_polygamma_polygamma_n_0_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 14%] 2023-01-11T21:53:08.1448376Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_polygamma_polygamma_n_2_cpu_float64 SKIPPED (Skipped!) [ 14%] 2023-01-11T21:53:08.1448799Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_polygamma_polygamma_n_3_cpu_float64 SKIPPED (Skipped!) [ 14%] 2023-01-11T21:53:08.1449248Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_positive_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 14%] 2023-01-11T21:53:08.1449701Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_prod_cpu_complex128 SKIPPED (Skipped! Operation does support gradgrad) [ 14%] 2023-01-11T21:53:08.1450156Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_prod_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 14%] 2023-01-11T21:53:08.1450610Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_put_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 14%] 2023-01-11T21:53:08.1451115Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_qr_cpu_complex128 SKIPPED (Skipped! Operation does support gradgrad) [ 14%] 2023-01-11T21:53:08.1451560Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_qr_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 14%] 2023-01-11T21:53:08.1452138Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_randn_cpu_complex128 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 14%] 2023-01-11T21:53:08.1452738Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_randn_like_cpu_complex128 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 14%] 2023-01-11T21:53:08.1453335Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_randn_like_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 14%] 2023-01-11T21:53:08.1453795Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_real_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 14%] 2023-01-11T21:53:08.1454258Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_reciprocal_cpu_complex128 SKIPPED (Skipped! Operation does support gradgrad) [ 14%] 2023-01-11T21:53:08.1454727Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_repeat_cpu_complex128 SKIPPED (Skipped! Operation does support gradgrad) [ 14%] 2023-01-11T21:53:08.1455186Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_repeat_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 14%] 2023-01-11T21:53:08.1455722Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_repeat_interleave_cpu_complex128 SKIPPED (Skipped! Operation does support gradgrad) [ 15%] 2023-01-11T21:53:08.1456193Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_reshape_as_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 15%] 2023-01-11T21:53:08.1456658Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_reshape_cpu_complex128 SKIPPED (Skipped! Operation does support gradgrad) [ 15%] 2023-01-11T21:53:08.1457124Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_reshape_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 15%] 2023-01-11T21:53:08.1457711Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_resize__cpu_complex128 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 15%] 2023-01-11T21:53:08.1458290Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_resize__cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 15%] 2023-01-11T21:53:08.1458884Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_resize_as__cpu_complex128 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 15%] 2023-01-11T21:53:08.1459477Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_resize_as__cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 15%] 2023-01-11T21:53:08.1459998Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_resolve_conj_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 15%] 2023-01-11T21:53:08.1460453Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_resolve_neg_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 15%] 2023-01-11T21:53:08.1460912Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_rot90_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 15%] 2023-01-11T21:53:08.1461360Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_round_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 15%] 2023-01-11T21:53:08.1461790Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_round_decimals_neg_3_cpu_float64 SKIPPED (Skipped!) [ 15%] 2023-01-11T21:53:08.1462219Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_rsqrt_cpu_complex128 SKIPPED (Skipped! Operation does support gradgrad) [ 15%] 2023-01-11T21:53:08.1462706Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_rsqrt_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 15%] 2023-01-11T21:53:08.1463160Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_rsub_cpu_complex128 SKIPPED (Skipped! Operation does support gradgrad) [ 15%] 2023-01-11T21:53:08.1463749Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_scalar_tensor_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 15%] 2023-01-11T21:53:08.1464233Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_scatter_add_cpu_complex128 SKIPPED (Skipped! Operation does support gradgrad) [ 15%] 2023-01-11T21:53:08.1464688Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_scatter_cpu_complex128 SKIPPED (Skipped! Operation does support gradgrad) [ 15%] 2023-01-11T21:53:08.1465145Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_scatter_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 15%] 2023-01-11T21:53:08.1465612Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_scatter_reduce_prod_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 15%] 2023-01-11T21:53:08.1466092Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_scatter_reduce_sum_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 15%] 2023-01-11T21:53:08.1466517Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_segment_reduce_offsets_cpu_float64 PASSED [ 15%] 2023-01-11T21:53:08.1466947Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_select_cpu_complex128 SKIPPED (Skipped! Operation does support gradgrad) [ 15%] 2023-01-11T21:53:08.1467400Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_sgn_cpu_complex128 SKIPPED (Skipped! Operation does support gradgrad) [ 15%] 2023-01-11T21:53:08.1467858Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_sgn_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 16%] 2023-01-11T21:53:08.1468419Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_short_cpu_complex128 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 16%] 2023-01-11T21:53:08.1469009Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_short_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 16%] 2023-01-11T21:53:08.1469474Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_sigmoid_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 16%] 2023-01-11T21:53:08.1470073Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_signal_windows_bartlett_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 16%] 2023-01-11T21:53:08.1470691Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_signal_windows_gaussian_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 16%] 2023-01-11T21:53:08.1471352Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_signal_windows_hamming_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 16%] 2023-01-11T21:53:08.1471831Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_sin_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 16%] 2023-01-11T21:53:08.1472278Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_sinc_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 16%] 2023-01-11T21:53:08.1472730Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_sinh_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 16%] 2023-01-11T21:53:08.1473164Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_slice_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 16%] 2023-01-11T21:53:08.1473756Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_special_bessel_j1_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 16%] 2023-01-11T21:53:08.1474401Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_special_bessel_y0_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 16%] 2023-01-11T21:53:08.1475038Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_special_chebyshev_polynomial_t_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 16%] 2023-01-11T21:53:08.1475685Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_special_chebyshev_polynomial_w_cpu_float64 SKIPPED (Skipping - testing takes an unreasonably long time, #79528) [ 16%] 2023-01-11T21:53:08.1476179Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_special_erfcx_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 16%] 2023-01-11T21:53:08.1476794Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_special_hermite_polynomial_h_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 16%] 2023-01-11T21:53:08.1477293Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_special_i1e_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 16%] 2023-01-11T21:53:08.1477898Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_special_laguerre_polynomial_l_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 16%] 2023-01-11T21:53:08.1478397Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_special_log_ndtr_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 16%] 2023-01-11T21:53:08.1479012Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_special_modified_bessel_i0_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 16%] 2023-01-11T21:53:08.1479501Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_special_ndtri_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 16%] 2023-01-11T21:53:08.1480123Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_special_scaled_modified_bessel_k1_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 16%] 2023-01-11T21:53:08.1480947Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_special_shifted_chebyshev_polynomial_v_cpu_float64 SKIPPED (Skipping - testing takes an unreasonably long time, #79528) [ 16%] 2023-01-11T21:53:08.1481584Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_special_zeta_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 16%] 2023-01-11T21:53:08.1482060Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_split_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 17%] 2023-01-11T21:53:08.1482532Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_split_with_sizes_cpu_complex128 SKIPPED (Skipped! Operation does support gradgrad) [ 17%] 2023-01-11T21:53:08.1483054Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_split_with_sizes_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 17%] 2023-01-11T21:53:08.1483527Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_sqrt_cpu_complex128 SKIPPED (Skipped! Operation does support gradgrad) [ 17%] 2023-01-11T21:53:08.1483982Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_sqrt_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 17%] 2023-01-11T21:53:08.1484442Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_square_cpu_complex128 SKIPPED (Skipped! Operation does support gradgrad) [ 17%] 2023-01-11T21:53:08.1484887Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_stack_cpu_complex128 SKIPPED (Skipped! Operation does support gradgrad) [ 17%] 2023-01-11T21:53:08.1485343Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_std_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 17%] 2023-01-11T21:53:08.1485800Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_std_mean_cpu_complex128 SKIPPED (Skipped! Operation does support gradgrad) [ 17%] 2023-01-11T21:53:08.1486312Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_std_mean_unbiased_cpu_complex128 SKIPPED (Skipped! Operation does support gradgrad) [ 17%] 2023-01-11T21:53:08.1486796Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_std_unbiased_cpu_complex128 SKIPPED (Skipped! Operation does support gradgrad) [ 17%] 2023-01-11T21:53:08.1487254Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_std_unbiased_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 17%] 2023-01-11T21:53:08.1487712Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_sub_cpu_complex128 SKIPPED (Skipped! Operation does support gradgrad) [ 17%] 2023-01-11T21:53:08.1488164Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_sum_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 17%] 2023-01-11T21:53:08.1488624Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_sum_to_size_cpu_complex128 SKIPPED (Skipped! Operation does support gradgrad) [ 17%] 2023-01-11T21:53:08.1489080Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_sum_to_size_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 17%] 2023-01-11T21:53:08.1489534Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_svd_cpu_complex128 SKIPPED (Skipped! Operation does support gradgrad) [ 17%] 2023-01-11T21:53:08.1489984Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_svd_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 17%] 2023-01-11T21:53:08.1490441Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_svd_lowrank_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 17%] 2023-01-11T21:53:08.1490889Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_symeig_cpu_complex128 SKIPPED (Skipped! Operation does support gradgrad) [ 17%] 2023-01-11T21:53:08.1491353Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_t_cpu_complex128 SKIPPED (Skipped! Operation does support gradgrad) [ 17%] 2023-01-11T21:53:08.1491800Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_t_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 17%] 2023-01-11T21:53:08.1492256Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_take_along_dim_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 17%] 2023-01-11T21:53:08.1492708Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_take_cpu_complex128 SKIPPED (Skipped! Operation does support gradgrad) [ 17%] 2023-01-11T21:53:08.1493167Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_take_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 17%] 2023-01-11T21:53:08.1493619Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_tan_cpu_complex128 SKIPPED (Skipped! Operation does support gradgrad) [ 18%] 2023-01-11T21:53:08.1494111Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_tan_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 18%] 2023-01-11T21:53:08.1494550Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_tanh_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 18%] 2023-01-11T21:53:08.1495007Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_tensor_split_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 18%] 2023-01-11T21:53:08.1495535Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_tensordot_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 18%] 2023-01-11T21:53:08.1495993Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_to_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 18%] 2023-01-11T21:53:08.1496442Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_to_sparse_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 18%] 2023-01-11T21:53:08.1496917Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_topk_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 18%] 2023-01-11T21:53:08.1497381Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_trace_cpu_complex128 SKIPPED (Skipped! Operation does support gradgrad) [ 18%] 2023-01-11T21:53:08.1497845Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_transpose_cpu_complex128 SKIPPED (Skipped! Operation does support gradgrad) [ 18%] 2023-01-11T21:53:08.1498314Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_trapezoid_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 18%] 2023-01-11T21:53:08.1498771Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_trapz_cpu_complex128 SKIPPED (Skipped! Operation does support gradgrad) [ 18%] 2023-01-11T21:53:08.1499228Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_trapz_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 18%] 2023-01-11T21:53:08.1499698Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_triangular_solve_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 18%] 2023-01-11T21:53:08.1500159Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_triu_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 18%] 2023-01-11T21:53:08.1500603Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_true_divide_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 18%] 2023-01-11T21:53:08.1501054Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_trunc_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 18%] 2023-01-11T21:53:08.1501506Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_unbind_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 18%] 2023-01-11T21:53:08.1501965Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_unflatten_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 18%] 2023-01-11T21:53:08.1502416Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_unfold_copy_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 18%] 2023-01-11T21:53:08.1502871Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_unfold_cpu_complex128 SKIPPED (Skipped! Operation does support gradgrad) [ 18%] 2023-01-11T21:53:08.1503464Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_uniform_cpu_complex128 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 18%] 2023-01-11T21:53:08.1504054Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_uniform_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 18%] 2023-01-11T21:53:08.1504514Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_unsqueeze_cpu_complex128 SKIPPED (Skipped! Operation does support gradgrad) [ 18%] 2023-01-11T21:53:08.1505018Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_unsqueeze_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 18%] 2023-01-11T21:53:08.1505477Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_var_cpu_complex128 SKIPPED (Skipped! Operation does support gradgrad) [ 19%] 2023-01-11T21:53:08.1505943Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_var_mean_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 19%] 2023-01-11T21:53:08.1506416Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_var_mean_unbiased_cpu_complex128 SKIPPED (Skipped! Operation does support gradgrad) [ 19%] 2023-01-11T21:53:08.1506887Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_var_mean_unbiased_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 19%] 2023-01-11T21:53:08.1507361Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_view_as_complex_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 19%] 2023-01-11T21:53:08.1507832Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_view_as_cpu_complex128 SKIPPED (Skipped! Operation does support gradgrad) [ 19%] 2023-01-11T21:53:08.1508317Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_view_copy_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 19%] 2023-01-11T21:53:08.1508769Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_view_cpu_complex128 SKIPPED (Skipped! Operation does support gradgrad) [ 19%] 2023-01-11T21:53:08.1509222Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_view_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 19%] 2023-01-11T21:53:08.1509679Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_vsplit_cpu_complex128 SKIPPED (Skipped! Operation does support gradgrad) [ 19%] 2023-01-11T21:53:08.1510136Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_vsplit_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 19%] 2023-01-11T21:53:08.1510587Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_vstack_cpu_complex128 SKIPPED (Skipped! Operation does support gradgrad) [ 19%] 2023-01-11T21:53:08.1511043Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_where_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 19%] 2023-01-11T21:53:08.1511501Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_zero__cpu_complex128 SKIPPED (Skipped! Operation does support gradgrad) [ 19%] 2023-01-11T21:53:08.1511958Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_zero__cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 19%] 2023-01-11T21:53:08.1512518Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_zeros_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 19%] 2023-01-11T21:53:08.1513107Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_zeros_like_cpu_complex128 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 19%] 2023-01-11T21:53:08.1513519Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_H_cpu_float64 PASSED [ 19%] 2023-01-11T21:53:08.1513874Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad___getitem___cpu_float64 PASSED [ 19%] 2023-01-11T21:53:08.1514222Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad___rmatmul___cpu_complex128 PASSED [ 19%] 2023-01-11T21:53:08.1514582Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad___rmatmul___cpu_float64 PASSED [ 19%] 2023-01-11T21:53:08.1514938Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad___rsub___cpu_complex128 PASSED [ 19%] 2023-01-11T21:53:08.1515286Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad___rsub___cpu_float64 PASSED [ 19%] 2023-01-11T21:53:08.1515619Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_abs_cpu_complex128 PASSED [ 19%] 2023-01-11T21:53:08.1515969Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_acos_cpu_complex128 PASSED [ 19%] 2023-01-11T21:53:08.1516354Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_acos_cpu_float64 PASSED [ 20%] 2023-01-11T21:53:08.1516689Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_acosh_cpu_complex128 PASSED [ 20%] 2023-01-11T21:53:08.1517040Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_add_cpu_complex128 PASSED [ 20%] 2023-01-11T21:53:08.1517385Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_addbmm_cpu_float64 PASSED [ 20%] 2023-01-11T21:53:08.1517736Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_addcdiv_cpu_complex128 PASSED [ 20%] 2023-01-11T21:53:08.1518076Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_addcdiv_cpu_float64 PASSED [ 20%] 2023-01-11T21:53:08.1518427Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_addcmul_cpu_float64 PASSED [ 20%] 2023-01-11T21:53:08.1518780Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_addmm_cpu_complex128 PASSED [ 20%] 2023-01-11T21:53:08.1519130Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_addmm_cpu_float64 PASSED [ 20%] 2023-01-11T21:53:08.1519516Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_addmm_decomposed_cpu_complex128 PASSED [ 20%] 2023-01-11T21:53:08.1519896Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_addmm_decomposed_cpu_float64 PASSED [ 20%] 2023-01-11T21:53:08.1520257Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_addmv_cpu_float64 PASSED [ 20%] 2023-01-11T21:53:08.1520592Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_addr_cpu_complex128 PASSED [ 20%] 2023-01-11T21:53:08.1521202Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_allclose_cpu_complex128 SKIPPED (Skipped! Dtype is not in supported backward dtypes!) [ 20%] 2023-01-11T21:53:08.1521610Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_amin_cpu_float64 PASSED [ 20%] 2023-01-11T21:53:08.1521956Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_angle_cpu_complex128 PASSED [ 20%] 2023-01-11T21:53:08.1522296Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_angle_cpu_float64 PASSED [ 20%] 2023-01-11T21:53:08.1522709Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_any_cpu_complex128 SKIPPED (Skipped! Dtype is not in supported backward dtypes!) [ 20%] 2023-01-11T21:53:08.1523174Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_arange_cpu_float64 SKIPPED (Skipped! Dtype is not in supported backward dtypes!) [ 20%] 2023-01-11T21:53:08.1523635Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_argmin_cpu_float64 SKIPPED (Skipped! Dtype is not in supported backward dtypes!) [ 20%] 2023-01-11T21:53:08.1524088Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_argwhere_cpu_complex128 SKIPPED (Skipped! Dtype is not in supported backward dtypes!) [ 20%] 2023-01-11T21:53:08.1524554Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_argwhere_cpu_float64 SKIPPED (Skipped! Dtype is not in supported backward dtypes!) [ 20%] 2023-01-11T21:53:08.1524994Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_as_strided_cpu_complex128 SKIPPED (Numerous errors) [ 20%] 2023-01-11T21:53:08.1525394Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_as_strided_partial_views_cpu_complex128 PASSED [ 20%] 2023-01-11T21:53:08.1525768Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_as_strided_scatter_cpu_complex128 XFAIL [ 20%] 2023-01-11T21:53:08.1526142Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_as_strided_scatter_cpu_float64 XFAIL [ 21%] 2023-01-11T21:53:08.1526497Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_asin_cpu_float64 PASSED [ 21%] 2023-01-11T21:53:08.1526849Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_asinh_cpu_complex128 PASSED [ 21%] 2023-01-11T21:53:08.1527187Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_atan2_cpu_float64 PASSED [ 21%] 2023-01-11T21:53:08.1527531Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_atan_cpu_complex128 PASSED [ 21%] 2023-01-11T21:53:08.1527950Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_atan_cpu_float64 PASSED [ 21%] 2023-01-11T21:53:08.1528286Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_atanh_cpu_complex128 PASSED [ 21%] 2023-01-11T21:53:08.1528640Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_atleast_1d_cpu_float64 PASSED [ 21%] 2023-01-11T21:53:08.1529002Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_atleast_3d_cpu_complex128 PASSED [ 21%] 2023-01-11T21:53:08.1529361Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_baddbmm_cpu_complex128 PASSED [ 21%] 2023-01-11T21:53:08.1529703Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_bfloat16_cpu_complex128 XFAIL [ 21%] 2023-01-11T21:53:08.1530048Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_bmm_cpu_complex128 PASSED [ 21%] 2023-01-11T21:53:08.1530390Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_bmm_cpu_float64 PASSED [ 21%] 2023-01-11T21:53:08.1530785Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_bool_cpu_complex128 SKIPPED (Skipped! Dtype is not in supported backward dtypes!) [ 21%] 2023-01-11T21:53:08.1531310Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_bool_cpu_float64 SKIPPED (Skipped! Dtype is not in supported backward dtypes!) [ 21%] 2023-01-11T21:53:08.1531720Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_broadcast_to_cpu_complex128 PASSED [ 21%] 2023-01-11T21:53:08.1532141Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_byte_cpu_complex128 SKIPPED (Skipped! Dtype is not in supported backward dtypes!) [ 21%] 2023-01-11T21:53:08.1532537Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_cartesian_prod_cpu_float64 PASSED [ 21%] 2023-01-11T21:53:08.1532888Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_cat_cpu_complex128 PASSED [ 21%] 2023-01-11T21:53:08.1533232Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_cat_cpu_float64 PASSED [ 21%] 2023-01-11T21:53:08.1533575Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_cfloat_cpu_complex128 XFAIL [ 21%] 2023-01-11T21:53:08.1533913Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_cfloat_cpu_float64 XFAIL [ 21%] 2023-01-11T21:53:08.1534255Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_chalf_cpu_float64 XFAIL [ 21%] 2023-01-11T21:53:08.1534660Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_char_cpu_complex128 SKIPPED (Skipped! Dtype is not in supported backward dtypes!) [ 21%] 2023-01-11T21:53:08.1535113Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_char_cpu_float64 SKIPPED (Skipped! Dtype is not in supported backward dtypes!) [ 21%] 2023-01-11T21:53:08.1535585Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_cholesky_cpu_complex128 PASSED [ 22%] 2023-01-11T21:53:08.1535943Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_cholesky_cpu_float64 PASSED [ 22%] 2023-01-11T21:53:08.1536305Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_cholesky_inverse_cpu_float64 PASSED [ 22%] 2023-01-11T21:53:08.1536664Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_cholesky_solve_cpu_complex128 PASSED [ 22%] 2023-01-11T21:53:08.1537022Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_chunk_cpu_complex128 PASSED [ 22%] 2023-01-11T21:53:08.1537380Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_clamp_max_cpu_float64 PASSED [ 22%] 2023-01-11T21:53:08.1537728Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_clamp_min_cpu_float64 PASSED [ 22%] 2023-01-11T21:53:08.1538076Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_column_stack_cpu_complex128 PASSED [ 22%] 2023-01-11T21:53:08.1538435Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_column_stack_cpu_float64 PASSED [ 22%] 2023-01-11T21:53:08.1538787Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_complex_cpu_float64 PASSED [ 22%] 2023-01-11T21:53:08.1539149Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_conj_physical_cpu_complex128 PASSED [ 22%] 2023-01-11T21:53:08.1539509Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_constant_pad_nd_cpu_complex128 PASSED [ 22%] 2023-01-11T21:53:08.1539913Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_corrcoef_cpu_complex128 PASSED [ 22%] 2023-01-11T21:53:08.1540267Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_cosh_cpu_complex128 PASSED [ 22%] 2023-01-11T21:53:08.1540670Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_count_nonzero_cpu_float64 SKIPPED (Skipped! Dtype is not in supported backward dtypes!) [ 22%] 2023-01-11T21:53:08.1541072Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_cov_cpu_float64 XFAIL [ 22%] 2023-01-11T21:53:08.1541414Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_cross_cpu_complex128 PASSED [ 22%] 2023-01-11T21:53:08.1541764Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_cummin_cpu_float64 PASSED [ 22%] 2023-01-11T21:53:08.1542101Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_cumprod_cpu_complex128 PASSED [ 22%] 2023-01-11T21:53:08.1542450Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_cumsum_cpu_float64 PASSED [ 22%] 2023-01-11T21:53:08.1542819Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_cumulative_trapezoid_cpu_complex128 PASSED [ 22%] 2023-01-11T21:53:08.1543224Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_diag_embed_cpu_float64 PASSED [ 22%] 2023-01-11T21:53:08.1543575Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_diagonal_copy_cpu_float64 PASSED [ 22%] 2023-01-11T21:53:08.1543930Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_diagonal_cpu_float64 PASSED [ 22%] 2023-01-11T21:53:08.1544294Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_diagonal_scatter_cpu_complex128 PASSED [ 22%] 2023-01-11T21:53:08.1544654Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_diagonal_scatter_cpu_float64 PASSED [ 22%] 2023-01-11T21:53:08.1545013Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_diff_cpu_complex128 PASSED [ 23%] 2023-01-11T21:53:08.1545360Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_dist_cpu_complex128 PASSED [ 23%] 2023-01-11T21:53:08.1545705Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_dist_cpu_float64 PASSED [ 23%] 2023-01-11T21:53:08.1546052Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_div_floor_rounding_cpu_float64 PASSED [ 23%] 2023-01-11T21:53:08.1546423Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_div_no_rounding_mode_cpu_float64 PASSED [ 23%] 2023-01-11T21:53:08.1546779Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_dot_cpu_complex128 PASSED [ 23%] 2023-01-11T21:53:08.1547121Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_dot_cpu_float64 PASSED [ 23%] 2023-01-11T21:53:08.1547455Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_dstack_cpu_complex128 PASSED [ 23%] 2023-01-11T21:53:08.1547861Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_empty_cpu_float64 SKIPPED (Skipped! Dtype is not in supported backward dtypes!) [ 23%] 2023-01-11T21:53:08.1548329Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_empty_like_cpu_complex128 SKIPPED (Skipped! Dtype is not in supported backward dtypes!) [ 23%] 2023-01-11T21:53:08.1548805Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_empty_like_cpu_float64 SKIPPED (Skipped! Dtype is not in supported backward dtypes!) [ 23%] 2023-01-11T21:53:08.1549254Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_eq_cpu_complex128 SKIPPED (Skipped! Dtype is not in supported backward dtypes!) [ 23%] 2023-01-11T21:53:08.1549707Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_equal_cpu_float64 SKIPPED (Skipped! Dtype is not in supported backward dtypes!) [ 23%] 2023-01-11T21:53:08.1550100Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_exp_cpu_complex128 PASSED [ 23%] 2023-01-11T21:53:08.1550445Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_exp_cpu_float64 PASSED [ 23%] 2023-01-11T21:53:08.1550784Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_expand_as_cpu_complex128 PASSED [ 23%] 2023-01-11T21:53:08.1551175Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_expand_as_cpu_float64 PASSED [ 23%] 2023-01-11T21:53:08.1551530Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_expand_cpu_complex128 PASSED [ 23%] 2023-01-11T21:53:08.1551868Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_fft_fft2_cpu_float64 PASSED [ 23%] 2023-01-11T21:53:08.1552219Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_fft_fft_cpu_complex128 PASSED [ 23%] 2023-01-11T21:53:08.1552566Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_fft_fftn_cpu_complex128 PASSED [ 23%] 2023-01-11T21:53:08.1552916Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_fft_fftn_cpu_float64 PASSED [ 23%] 2023-01-11T21:53:08.1553263Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_fft_fftshift_cpu_complex128 PASSED [ 23%] 2023-01-11T21:53:08.1553622Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_fft_fftshift_cpu_float64 PASSED [ 23%] 2023-01-11T21:53:08.1553975Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_fft_hfft2_cpu_complex128 PASSED [ 23%] 2023-01-11T21:53:08.1554320Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_fft_hfftn_cpu_complex128 PASSED [ 24%] 2023-01-11T21:53:08.1554704Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_fft_hfftn_cpu_float64 PASSED [ 24%] 2023-01-11T21:53:08.1555058Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_fft_ifft2_cpu_complex128 PASSED [ 24%] 2023-01-11T21:53:08.1555408Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_fft_ifft2_cpu_float64 PASSED [ 24%] 2023-01-11T21:53:08.1555748Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_fft_ifft_cpu_complex128 PASSED [ 24%] 2023-01-11T21:53:08.1556099Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_fft_ifftn_cpu_complex128 PASSED [ 24%] 2023-01-11T21:53:08.1556463Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_fft_ifftshift_cpu_complex128 PASSED [ 24%] 2023-01-11T21:53:08.1556824Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_fft_ifftshift_cpu_float64 PASSED [ 24%] 2023-01-11T21:53:08.1557168Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_fft_ihfft2_cpu_float64 PASSED [ 24%] 2023-01-11T21:53:08.1557518Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_fft_ihfftn_cpu_float64 PASSED [ 24%] 2023-01-11T21:53:08.1557870Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_fft_irfft2_cpu_float64 PASSED [ 24%] 2023-01-11T21:53:08.1558206Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_fft_irfftn_cpu_complex128 PASSED [ 24%] 2023-01-11T21:53:08.1558559Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_fft_rfft2_cpu_float64 PASSED [ 24%] 2023-01-11T21:53:08.1558903Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_fft_rfft_cpu_float64 PASSED [ 24%] 2023-01-11T21:53:08.1559250Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_fill_cpu_complex128 PASSED [ 24%] 2023-01-11T21:53:08.1559581Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_fill_cpu_float64 PASSED [ 24%] 2023-01-11T21:53:08.1559933Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_flatten_cpu_complex128 PASSED [ 24%] 2023-01-11T21:53:08.1560278Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_flatten_cpu_float64 PASSED [ 24%] 2023-01-11T21:53:08.1560735Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_fliplr_cpu_float64 PASSED [ 24%] 2023-01-11T21:53:08.1561152Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_flipud_cpu_complex128 PASSED [ 24%] 2023-01-11T21:53:08.1561497Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_float_cpu_complex128 XFAIL [ 24%] 2023-01-11T21:53:08.1561839Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_float_cpu_float64 XFAIL [ 24%] 2023-01-11T21:53:08.1562175Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_float_power_cpu_float64 PASSED [ 24%] 2023-01-11T21:53:08.1562525Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_floor_cpu_float64 PASSED [ 24%] 2023-01-11T21:53:08.1562872Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_fmax_cpu_float64 PASSED [ 24%] 2023-01-11T21:53:08.1563275Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_fmin_cpu_float64 PASSED [ 25%] 2023-01-11T21:53:08.1563608Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_frac_cpu_float64 PASSED [ 25%] 2023-01-11T21:53:08.1564012Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_full_cpu_complex128 SKIPPED (Skipped! Dtype is not in supported backward dtypes!) [ 25%] 2023-01-11T21:53:08.1564478Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_full_like_cpu_complex128 SKIPPED (Skipped! Dtype is not in supported backward dtypes!) [ 25%] 2023-01-11T21:53:08.1564945Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_full_like_cpu_float64 SKIPPED (Skipped! Dtype is not in supported backward dtypes!) [ 25%] 2023-01-11T21:53:08.1565393Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_heaviside_cpu_float64 SKIPPED (Skipped! Dtype is not in supported backward dtypes!) [ 25%] 2023-01-11T21:53:08.1565864Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_histogramdd_cpu_float64 SKIPPED (Skipped! Dtype is not in supported backward dtypes!) [ 25%] 2023-01-11T21:53:08.1566312Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_hsplit_cpu_complex128 PASSED [ 25%] 2023-01-11T21:53:08.1566672Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_hsplit_cpu_float64 PASSED [ 25%] 2023-01-11T21:53:08.1567012Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_hstack_cpu_complex128 PASSED [ 25%] 2023-01-11T21:53:08.1567364Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_hstack_cpu_float64 PASSED [ 25%] 2023-01-11T21:53:08.1567710Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_hypot_cpu_float64 PASSED [ 25%] 2023-01-11T21:53:08.1568035Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_i0_cpu_float64 PASSED [ 25%] 2023-01-11T21:53:08.1568441Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_igamma_cpu_float64 SKIPPED (Skipped! Dtype is not in supported backward dtypes!) [ 25%] 2023-01-11T21:53:08.1568904Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_igammac_cpu_float64 SKIPPED (Skipped! Dtype is not in supported backward dtypes!) [ 25%] 2023-01-11T21:53:08.1569311Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_index_add_cpu_float64 PASSED [ 25%] 2023-01-11T21:53:08.1569658Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_index_copy_cpu_complex128 PASSED [ 25%] 2023-01-11T21:53:08.1570015Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_index_fill_cpu_float64 PASSED [ 25%] 2023-01-11T21:53:08.1570368Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_index_put_cpu_float64 PASSED [ 25%] 2023-01-11T21:53:08.1570726Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_index_reduce_cpu_float64 PASSED [ 25%] 2023-01-11T21:53:08.1571079Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_index_select_cpu_complex128 PASSED [ 25%] 2023-01-11T21:53:08.1571497Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_int_cpu_complex128 SKIPPED (Skipped! Dtype is not in supported backward dtypes!) [ 25%] 2023-01-11T21:53:08.1571957Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_int_cpu_float64 SKIPPED (Skipped! Dtype is not in supported backward dtypes!) [ 25%] 2023-01-11T21:53:08.1572415Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_isclose_cpu_float64 SKIPPED (Skipped! Dtype is not in supported backward dtypes!) [ 25%] 2023-01-11T21:53:08.1572865Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_isinf_cpu_complex128 SKIPPED (Skipped! Dtype is not in supported backward dtypes!) [ 25%] 2023-01-11T21:53:08.1573321Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_isnan_cpu_float64 SKIPPED (Skipped! Dtype is not in supported backward dtypes!) [ 26%] 2023-01-11T21:53:08.1573775Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_isneginf_cpu_float64 SKIPPED (Skipped! Dtype is not in supported backward dtypes!) [ 26%] 2023-01-11T21:53:08.1574234Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_isposinf_cpu_float64 SKIPPED (Skipped! Dtype is not in supported backward dtypes!) [ 26%] 2023-01-11T21:53:08.1574722Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_isreal_cpu_float64 SKIPPED (Skipped! Dtype is not in supported backward dtypes!) [ 26%] 2023-01-11T21:53:08.1575121Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_istft_cpu_complex128 XFAIL [ 26%] 2023-01-11T21:53:08.1575586Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_jiterator_2inputs_2outputs_cpu_complex128 SKIPPED (Only runs on cuda) [ 26%] 2023-01-11T21:53:08.1576019Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_jiterator_2inputs_2outputs_cpu_float64 SKIPPED (Only runs on cuda) [ 26%] 2023-01-11T21:53:08.1576434Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_jiterator_4inputs_with_extra_args_cpu_float64 SKIPPED (Only runs on cuda) [ 26%] 2023-01-11T21:53:08.1576862Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_jiterator_binary_cpu_complex128 SKIPPED (Only runs on cuda) [ 26%] 2023-01-11T21:53:08.1577274Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_jiterator_binary_cpu_float64 SKIPPED (Only runs on cuda) [ 26%] 2023-01-11T21:53:08.1577713Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_jiterator_unary_cpu_complex128 SKIPPED (Only runs on cuda) [ 26%] 2023-01-11T21:53:08.1578082Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_kron_cpu_complex128 PASSED [ 26%] 2023-01-11T21:53:08.1578429Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_kron_cpu_float64 PASSED [ 26%] 2023-01-11T21:53:08.1578777Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_ldexp_cpu_complex128 PASSED [ 26%] 2023-01-11T21:53:08.1579171Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_le_cpu_float64 SKIPPED (Skipped! Dtype is not in supported backward dtypes!) [ 26%] 2023-01-11T21:53:08.1579572Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_lerp_cpu_complex128 PASSED [ 26%] 2023-01-11T21:53:08.1579918Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_lerp_cpu_float64 PASSED [ 26%] 2023-01-11T21:53:08.1580265Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_lgamma_cpu_float64 PASSED [ 26%] 2023-01-11T21:53:08.1580610Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_linalg_cond_cpu_float64 PASSED [ 26%] 2023-01-11T21:53:08.1580971Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_linalg_cross_cpu_complex128 PASSED [ 26%] 2023-01-11T21:53:08.1581331Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_linalg_det_cpu_float64 PASSED [ 26%] 2023-01-11T21:53:08.1581697Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_linalg_det_singular_cpu_complex128 PASSED [ 26%] 2023-01-11T21:53:08.1582057Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_linalg_eig_cpu_complex128 PASSED [ 26%] 2023-01-11T21:53:08.1582417Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_linalg_eig_cpu_float64 PASSED [ 26%] 2023-01-11T21:53:08.1582776Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_linalg_eigh_cpu_complex128 PASSED [ 26%] 2023-01-11T21:53:08.1583126Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_linalg_eigh_cpu_float64 PASSED [ 27%] 2023-01-11T21:53:08.1583488Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_linalg_eigvals_cpu_float64 PASSED [ 27%] 2023-01-11T21:53:08.1583849Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_linalg_eigvalsh_cpu_float64 PASSED [ 27%] 2023-01-11T21:53:08.1584216Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_linalg_inv_cpu_complex128 PASSED [ 27%] 2023-01-11T21:53:08.1584567Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_linalg_inv_ex_cpu_complex128 PASSED [ 27%] 2023-01-11T21:53:08.1584997Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_linalg_ldl_factor_cpu_complex128 SKIPPED (Skipped! Dtype is not in supported backward dtypes!) [ 27%] 2023-01-11T21:53:08.1585484Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_linalg_ldl_factor_ex_cpu_float64 SKIPPED (Skipped! Dtype is not in supported backward dtypes!) [ 27%] 2023-01-11T21:53:08.1586011Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_linalg_ldl_solve_cpu_complex128 SKIPPED (Skipped! Dtype is not in supported backward dtypes!) [ 27%] 2023-01-11T21:53:08.1586481Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_linalg_ldl_solve_cpu_float64 SKIPPED (Skipped! Dtype is not in supported backward dtypes!) [ 27%] 2023-01-11T21:53:08.1586910Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_linalg_lstsq_cpu_float64 SKIPPED (Skipped!) [ 27%] 2023-01-11T21:53:08.1587300Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_linalg_lstsq_grad_oriented_cpu_complex128 PASSED [ 27%] 2023-01-11T21:53:08.1587691Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_linalg_lstsq_grad_oriented_cpu_float64 PASSED [ 27%] 2023-01-11T21:53:08.1588059Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_linalg_lu_factor_cpu_complex128 PASSED [ 27%] 2023-01-11T21:53:08.1588436Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_linalg_lu_factor_ex_cpu_float64 PASSED [ 27%] 2023-01-11T21:53:08.1588817Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_linalg_matrix_norm_cpu_complex128 PASSED [ 27%] 2023-01-11T21:53:08.1589220Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_linalg_matrix_power_cpu_float64 PASSED [ 27%] 2023-01-11T21:53:08.1589654Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_linalg_matrix_rank_hermitian_cpu_float64 SKIPPED (Skipped! Dtype is not in supported backward dtypes!) [ 27%] 2023-01-11T21:53:08.1590086Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_linalg_multi_dot_cpu_float64 PASSED [ 27%] 2023-01-11T21:53:08.1590448Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_linalg_norm_cpu_float64 PASSED [ 27%] 2023-01-11T21:53:08.1590800Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_linalg_pinv_cpu_float64 PASSED [ 27%] 2023-01-11T21:53:08.1591158Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_linalg_pinv_hermitian_cpu_float64 PASSED [ 27%] 2023-01-11T21:53:08.1591605Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_linalg_pinv_singular_cpu_complex128 SKIPPED (test is slow; run with PYTORCH_TEST_WITH_SLOW to enable test) [ 27%] 2023-01-11T21:53:08.1592038Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_linalg_qr_cpu_complex128 PASSED [ 27%] 2023-01-11T21:53:08.1592393Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_linalg_slogdet_cpu_complex128 PASSED [ 27%] 2023-01-11T21:53:08.1592757Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_linalg_solve_cpu_float64 PASSED [ 27%] 2023-01-11T21:53:08.1593130Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_linalg_solve_triangular_cpu_complex128 PASSED [ 28%] 2023-01-11T21:53:08.1593503Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_linalg_svd_cpu_complex128 PASSED [ 28%] 2023-01-11T21:53:08.1593848Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_linalg_svd_cpu_float64 PASSED [ 28%] 2023-01-11T21:53:08.1594204Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_linalg_svdvals_cpu_float64 PASSED [ 28%] 2023-01-11T21:53:08.1594575Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_linalg_tensorinv_cpu_complex128 PASSED [ 28%] 2023-01-11T21:53:08.1594947Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_linalg_vander_cpu_complex128 PASSED [ 28%] 2023-01-11T21:53:08.1595298Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_linalg_vander_cpu_float64 PASSED [ 28%] 2023-01-11T21:53:08.1595657Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_linalg_vecdot_cpu_float64 PASSED [ 28%] 2023-01-11T21:53:08.1596026Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_linalg_vector_norm_cpu_complex128 PASSED [ 28%] 2023-01-11T21:53:08.1596386Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_linalg_vector_norm_cpu_float64 PASSED [ 28%] 2023-01-11T21:53:08.1596805Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_linspace_cpu_complex128 SKIPPED (Skipped! Dtype is not in supported backward dtypes!) [ 28%] 2023-01-11T21:53:08.1597246Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_log10_cpu_complex128 PASSED [ 28%] 2023-01-11T21:53:08.1597594Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_log10_cpu_float64 PASSED [ 28%] 2023-01-11T21:53:08.1597925Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_log1p_cpu_float64 PASSED [ 28%] 2023-01-11T21:53:08.1598270Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_log_cpu_complex128 PASSED [ 28%] 2023-01-11T21:53:08.1598617Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_log_cpu_float64 PASSED [ 28%] 2023-01-11T21:53:08.1598980Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_log_softmax_with_dtype_cpu_complex128 PASSED [ 28%] 2023-01-11T21:53:08.1599339Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_logaddexp_cpu_float64 PASSED [ 28%] 2023-01-11T21:53:08.1599697Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_logcumsumexp_cpu_float64 PASSED [ 28%] 2023-01-11T21:53:08.1600054Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_logdet_cpu_complex128 PASSED [ 28%] 2023-01-11T21:53:08.1600389Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_logdet_cpu_float64 PASSED [ 28%] 2023-01-11T21:53:08.1601046Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_logical_and_cpu_float64 SKIPPED (Skipped! Dtype is not in supported backward dtypes!) [ 28%] 2023-01-11T21:53:08.1601517Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_logical_not_cpu_float64 SKIPPED (Skipped! Dtype is not in supported backward dtypes!) [ 28%] 2023-01-11T21:53:08.1601915Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_logit_cpu_float64 PASSED [ 28%] 2023-01-11T21:53:08.1602317Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_logspace_cpu_complex128 SKIPPED (Skipped! Dtype is not in supported backward dtypes!) [ 28%] 2023-01-11T21:53:08.1602724Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_lu_solve_cpu_complex128 PASSED [ 29%] 2023-01-11T21:53:08.1603080Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_lu_solve_cpu_float64 PASSED [ 29%] 2023-01-11T21:53:08.1603437Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_lu_unpack_cpu_complex128 PASSED [ 29%] 2023-01-11T21:53:08.1603775Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_mH_cpu_complex128 PASSED [ 29%] 2023-01-11T21:53:08.1604120Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_mT_cpu_complex128 PASSED [ 29%] 2023-01-11T21:53:08.1604461Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_mT_cpu_float64 PASSED [ 29%] 2023-01-11T21:53:08.1604808Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_masked_amax_cpu_float64 PASSED [ 29%] 2023-01-11T21:53:08.1605149Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_masked_amin_cpu_float64 PASSED [ 29%] 2023-01-11T21:53:08.1605564Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_masked_argmax_cpu_float64 SKIPPED (Skipped! Dtype is not in supported backward dtypes!) [ 29%] 2023-01-11T21:53:08.1605996Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_masked_cumprod_cpu_complex128 PASSED [ 29%] 2023-01-11T21:53:08.1606350Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_masked_cumsum_cpu_float64 PASSED [ 29%] 2023-01-11T21:53:08.1606710Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_masked_fill_cpu_complex128 PASSED [ 29%] 2023-01-11T21:53:08.1607069Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_masked_fill_cpu_float64 PASSED [ 29%] 2023-01-11T21:53:08.1607425Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_masked_mean_cpu_float64 PASSED [ 29%] 2023-01-11T21:53:08.1607776Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_masked_normalize_cpu_complex128 PASSED [ 29%] 2023-01-11T21:53:08.1608137Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_masked_prod_cpu_float64 PASSED [ 29%] 2023-01-11T21:53:08.1608504Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_masked_scatter_cpu_complex128 PASSED [ 29%] 2023-01-11T21:53:08.1608868Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_masked_scatter_cpu_float64 PASSED [ 29%] 2023-01-11T21:53:08.1609273Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_masked_select_cpu_complex128 PASSED [ 29%] 2023-01-11T21:53:08.1609638Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_masked_softmin_cpu_float64 PASSED [ 29%] 2023-01-11T21:53:08.1609991Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_masked_var_cpu_float64 PASSED [ 29%] 2023-01-11T21:53:08.1610328Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_matmul_cpu_float64 PASSED [ 29%] 2023-01-11T21:53:08.1610683Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_matrix_exp_cpu_complex128 PASSED [ 29%] 2023-01-11T21:53:08.1611042Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_matrix_exp_cpu_float64 PASSED [ 29%] 2023-01-11T21:53:08.1611393Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_max_binary_cpu_float64 PASSED [ 29%] 2023-01-11T21:53:08.1611744Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_max_reduction_no_dim_cpu_float64 PASSED [ 30%] 2023-01-11T21:53:08.1612126Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_max_reduction_with_dim_cpu_float64 PASSED [ 30%] 2023-01-11T21:53:08.1612533Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_mean_cpu_float64 PASSED [ 30%] 2023-01-11T21:53:08.1612904Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_meshgrid_variadic_tensors_cpu_float64 PASSED [ 30%] 2023-01-11T21:53:08.1613264Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_min_binary_cpu_float64 PASSED [ 30%] 2023-01-11T21:53:08.1613630Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_min_reduction_no_dim_cpu_float64 PASSED [ 30%] 2023-01-11T21:53:08.1614006Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_min_reduction_with_dim_cpu_float64 PASSED [ 30%] 2023-01-11T21:53:08.1614354Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_minimum_cpu_float64 PASSED [ 30%] 2023-01-11T21:53:08.1614697Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_mode_cpu_float64 PASSED [ 30%] 2023-01-11T21:53:08.1615044Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_movedim_cpu_float64 PASSED [ 30%] 2023-01-11T21:53:08.1615455Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_msort_cpu_float64 PASSED [ 30%] 2023-01-11T21:53:08.1615796Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_mul_cpu_float64 PASSED [ 30%] 2023-01-11T21:53:08.1616208Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_multinomial_cpu_float64 SKIPPED (Skipped! Dtype is not in supported backward dtypes!) [ 30%] 2023-01-11T21:53:08.1616611Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_mv_cpu_complex128 PASSED [ 30%] 2023-01-11T21:53:08.1616952Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_mv_cpu_float64 PASSED [ 30%] 2023-01-11T21:53:08.1617301Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_mvlgamma_mvlgamma_p_1_cpu_float64 PASSED [ 30%] 2023-01-11T21:53:08.1617661Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_narrow_cpu_complex128 PASSED [ 30%] 2023-01-11T21:53:08.1618024Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_native_batch_norm_cpu_float64 PASSED [ 30%] 2023-01-11T21:53:08.1618382Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_native_layer_norm_cpu_float64 PASSED [ 30%] 2023-01-11T21:53:08.1618740Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_neg_cpu_complex128 PASSED [ 30%] 2023-01-11T21:53:08.1619082Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_neg_cpu_float64 PASSED [ 30%] 2023-01-11T21:53:08.1619493Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_new_empty_cpu_complex128 SKIPPED (Skipped! Dtype is not in supported backward dtypes!) [ 30%] 2023-01-11T21:53:08.1619951Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_new_empty_cpu_float64 SKIPPED (Skipped! Dtype is not in supported backward dtypes!) [ 30%] 2023-01-11T21:53:08.1620430Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_new_empty_strided_cpu_complex128 SKIPPED (Skipped! Dtype is not in supported backward dtypes!) [ 30%] 2023-01-11T21:53:08.1620950Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_new_ones_cpu_complex128 SKIPPED (Skipped! Dtype is not in supported backward dtypes!) [ 30%] 2023-01-11T21:53:08.1621411Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_new_ones_cpu_float64 SKIPPED (Skipped! Dtype is not in supported backward dtypes!) [ 31%] 2023-01-11T21:53:08.1621863Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_nextafter_cpu_float64 SKIPPED (Skipped! Dtype is not in supported backward dtypes!) [ 31%] 2023-01-11T21:53:08.1622294Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_nn_functional_adaptive_avg_pool1d_cpu_float64 PASSED [ 31%] 2023-01-11T21:53:08.1622697Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_nn_functional_adaptive_max_pool1d_cpu_float64 PASSED [ 31%] 2023-01-11T21:53:08.1623095Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_nn_functional_alpha_dropout_cpu_float64 PASSED [ 31%] 2023-01-11T21:53:08.1623474Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_nn_functional_avg_pool1d_cpu_float64 PASSED [ 31%] 2023-01-11T21:53:08.1623933Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_nn_functional_avg_pool2d_cpu_float64 PASSED [ 31%] 2023-01-11T21:53:08.1624318Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_nn_functional_avg_pool3d_cpu_float64 PASSED [ 31%] 2023-01-11T21:53:08.1624695Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_nn_functional_bilinear_cpu_float64 PASSED [ 31%] 2023-01-11T21:53:08.1625074Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_nn_functional_binary_cross_entropy_cpu_float64 PASSED [ 31%] 2023-01-11T21:53:08.1625467Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_nn_functional_conv1d_cpu_float64 PASSED [ 31%] 2023-01-11T21:53:08.1625844Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_nn_functional_conv2d_cpu_complex128 PASSED [ 31%] 2023-01-11T21:53:08.1626226Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_nn_functional_conv2d_cpu_float64 PASSED [ 31%] 2023-01-11T21:53:08.1626615Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_nn_functional_conv_transpose1d_cpu_complex128 PASSED [ 31%] 2023-01-11T21:53:08.1627023Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_nn_functional_conv_transpose1d_cpu_float64 PASSED [ 31%] 2023-01-11T21:53:08.1627431Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_nn_functional_conv_transpose2d_cpu_complex128 PASSED [ 31%] 2023-01-11T21:53:08.1627832Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_nn_functional_conv_transpose2d_cpu_float64 PASSED [ 31%] 2023-01-11T21:53:08.1628218Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_nn_functional_conv_transpose3d_cpu_float64 PASSED [ 31%] 2023-01-11T21:53:08.1628612Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_nn_functional_cosine_similarity_cpu_float64 PASSED [ 31%] 2023-01-11T21:53:08.1629009Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_nn_functional_dropout3d_cpu_float64 PASSED [ 31%] 2023-01-11T21:53:08.1629408Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_nn_functional_feature_alpha_dropout_with_train_cpu_float64 PASSED [ 31%] 2023-01-11T21:53:08.1629841Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_nn_functional_feature_alpha_dropout_without_train_cpu_float64 PASSED [ 31%] 2023-01-11T21:53:08.1630262Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_nn_functional_fractional_max_pool3d_cpu_float64 PASSED [ 31%] 2023-01-11T21:53:08.1630652Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_nn_functional_gelu_cpu_float64 PASSED [ 31%] 2023-01-11T21:53:08.1631026Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_nn_functional_hinge_embedding_loss_cpu_float64 PASSED [ 31%] 2023-01-11T21:53:08.1631422Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_nn_functional_interpolate_area_cpu_float64 PASSED [ 32%] 2023-01-11T21:53:08.1631823Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_nn_functional_interpolate_bicubic_cpu_float64 PASSED [ 32%] 2023-01-11T21:53:08.1632263Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_nn_functional_interpolate_bilinear_cpu_float64 PASSED [ 32%] 2023-01-11T21:53:08.1632654Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_nn_functional_interpolate_nearest_cpu_float64 PASSED [ 32%] 2023-01-11T21:53:08.1633066Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_nn_functional_interpolate_trilinear_cpu_float64 PASSED [ 32%] 2023-01-11T21:53:08.1633456Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_nn_functional_linear_cpu_float64 PASSED [ 32%] 2023-01-11T21:53:08.1633842Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_nn_functional_local_response_norm_cpu_float64 PASSED [ 32%] 2023-01-11T21:53:08.1634222Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_nn_functional_logsigmoid_cpu_float64 PASSED [ 32%] 2023-01-11T21:53:08.1634607Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_nn_functional_max_pool1d_cpu_float64 PASSED [ 32%] 2023-01-11T21:53:08.1634984Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_nn_functional_max_pool2d_cpu_float64 PASSED [ 32%] 2023-01-11T21:53:08.1635394Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_nn_functional_max_pool3d_cpu_float64 PASSED [ 32%] 2023-01-11T21:53:08.1635774Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_nn_functional_max_unpool1d_cpu_float64 SKIPPED (Skipped!) [ 32%] 2023-01-11T21:53:08.1636179Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_nn_functional_max_unpool2d_grad_cpu_float64 PASSED [ 32%] 2023-01-11T21:53:08.1636572Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_nn_functional_max_unpool3d_grad_cpu_float64 PASSED [ 32%] 2023-01-11T21:53:08.1636956Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_nn_functional_mish_cpu_float64 PASSED [ 32%] 2023-01-11T21:53:08.1637331Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_nn_functional_multilabel_margin_loss_cpu_float64 PASSED [ 32%] 2023-01-11T21:53:08.1637725Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_nn_functional_nll_loss_cpu_float64 PASSED [ 32%] 2023-01-11T21:53:08.1638107Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_nn_functional_normalize_cpu_complex128 PASSED [ 32%] 2023-01-11T21:53:08.1638482Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_nn_functional_normalize_cpu_float64 PASSED [ 32%] 2023-01-11T21:53:08.1638871Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_nn_functional_pad_constant_cpu_complex128 PASSED [ 32%] 2023-01-11T21:53:08.1639260Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_nn_functional_pad_constant_cpu_float64 PASSED [ 32%] 2023-01-11T21:53:08.1639650Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_nn_functional_pad_replicate_cpu_complex128 PASSED [ 32%] 2023-01-11T21:53:08.1640035Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_nn_functional_pairwise_distance_cpu_float64 PASSED [ 32%] 2023-01-11T21:53:08.1640435Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_nn_functional_pixel_unshuffle_cpu_complex128 PASSED [ 32%] 2023-01-11T21:53:08.1641070Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_nn_functional_pixel_unshuffle_cpu_float64 PASSED [ 32%] 2023-01-11T21:53:08.1641464Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_nn_functional_poisson_nll_loss_cpu_float64 PASSED [ 33%] 2023-01-11T21:53:08.1641835Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_nn_functional_relu6_cpu_float64 PASSED [ 33%] 2023-01-11T21:53:08.1642207Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_nn_functional_relu_cpu_float64 PASSED [ 33%] 2023-01-11T21:53:08.1642580Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_nn_functional_rrelu_cpu_float64 PASSED [ 33%] 2023-01-11T21:53:08.1643021Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_nn_functional_silu_complex_cpu_complex128 SKIPPED (Skipped! Dtype is not in supported backward dtypes!) [ 33%] 2023-01-11T21:53:08.1643502Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_nn_functional_silu_cpu_float64 PASSED [ 33%] 2023-01-11T21:53:08.1643881Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_nn_functional_smooth_l1_loss_cpu_float64 PASSED [ 33%] 2023-01-11T21:53:08.1644267Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_nn_functional_softmin_cpu_float64 PASSED [ 33%] 2023-01-11T21:53:08.1644660Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_nn_functional_softmin_with_dtype_cpu_complex128 PASSED [ 33%] 2023-01-11T21:53:08.1645046Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_nn_functional_softshrink_cpu_float64 PASSED [ 33%] 2023-01-11T21:53:08.1645427Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_nn_functional_softsign_cpu_complex128 PASSED [ 33%] 2023-01-11T21:53:08.1645809Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_nn_functional_tanhshrink_cpu_float64 PASSED [ 33%] 2023-01-11T21:53:08.1646188Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_nn_functional_triplet_margin_loss_cpu_complex128 PASSED [ 33%] 2023-01-11T21:53:08.1646613Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_nn_functional_triplet_margin_with_distance_loss_cpu_float64 PASSED [ 33%] 2023-01-11T21:53:08.1647053Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_nn_functional_unfold_cpu_float64 PASSED [ 33%] 2023-01-11T21:53:08.1647446Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_nn_functional_upsample_bilinear_cpu_float64 PASSED [ 33%] 2023-01-11T21:53:08.1647870Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_nonzero_cpu_complex128 SKIPPED (Skipped! Dtype is not in supported backward dtypes!) [ 33%] 2023-01-11T21:53:08.1648336Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_nonzero_cpu_float64 SKIPPED (Skipped! Dtype is not in supported backward dtypes!) [ 33%] 2023-01-11T21:53:08.1648737Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_norm_cpu_complex128 PASSED [ 33%] 2023-01-11T21:53:08.1649095Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_norm_fro_cpu_complex128 PASSED [ 33%] 2023-01-11T21:53:08.1649439Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_norm_inf_cpu_complex128 PASSED [ 33%] 2023-01-11T21:53:08.1649791Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_norm_inf_cpu_float64 PASSED [ 33%] 2023-01-11T21:53:08.1650140Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_norm_nuc_cpu_float64 PASSED [ 33%] 2023-01-11T21:53:08.1650514Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_normal_cpu_float64 SKIPPED (Gradients are incorrect!) [ 33%] 2023-01-11T21:53:08.1650917Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_normal_number_mean_cpu_float64 SKIPPED (Gradients are incorrect!) [ 33%] 2023-01-11T21:53:08.1651354Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_ones_cpu_float64 SKIPPED (Skipped! Dtype is not in supported backward dtypes!) [ 33%] 2023-01-11T21:53:08.1651747Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_outer_cpu_float64 PASSED [ 34%] 2023-01-11T21:53:08.1652097Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_permute_cpu_float64 PASSED [ 34%] 2023-01-11T21:53:08.1652440Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_pinverse_cpu_float64 PASSED [ 34%] 2023-01-11T21:53:08.1652785Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_polar_cpu_float64 PASSED [ 34%] 2023-01-11T21:53:08.1653154Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_polygamma_polygamma_n_0_cpu_float64 PASSED [ 34%] 2023-01-11T21:53:08.1653539Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_polygamma_polygamma_n_1_cpu_float64 SKIPPED (Skipped!) [ 34%] 2023-01-11T21:53:08.1653944Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_polygamma_polygamma_n_2_cpu_float64 SKIPPED (Skipped!) [ 34%] 2023-01-11T21:53:08.1654316Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_pow_cpu_complex128 PASSED [ 34%] 2023-01-11T21:53:08.1654665Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_prod_cpu_complex128 PASSED [ 34%] 2023-01-11T21:53:08.1655029Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_prod_cpu_float64 PASSED [ 34%] 2023-01-11T21:53:08.1655511Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_rand_like_cpu_complex128 SKIPPED (Skipped! Dtype is not in supported backward dtypes!) [ 34%] 2023-01-11T21:53:08.1655975Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_rand_like_cpu_float64 SKIPPED (Skipped! Dtype is not in supported backward dtypes!) [ 34%] 2023-01-11T21:53:08.1656436Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_randint_cpu_float64 SKIPPED (Skipped! Dtype is not in supported backward dtypes!) [ 34%] 2023-01-11T21:53:08.1656883Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_randn_cpu_complex128 SKIPPED (Skipped! Dtype is not in supported backward dtypes!) [ 34%] 2023-01-11T21:53:08.1657336Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_randn_cpu_float64 SKIPPED (Skipped! Dtype is not in supported backward dtypes!) [ 34%] 2023-01-11T21:53:08.1657796Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_randn_like_cpu_complex128 SKIPPED (Skipped! Dtype is not in supported backward dtypes!) [ 34%] 2023-01-11T21:53:08.1658295Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_randn_like_cpu_float64 SKIPPED (Skipped! Dtype is not in supported backward dtypes!) [ 34%] 2023-01-11T21:53:08.1658692Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_ravel_cpu_complex128 PASSED [ 34%] 2023-01-11T21:53:08.1659039Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_ravel_cpu_float64 PASSED [ 34%] 2023-01-11T21:53:08.1659386Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_reciprocal_cpu_float64 PASSED [ 34%] 2023-01-11T21:53:08.1659739Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_remainder_cpu_float64 PASSED [ 34%] 2023-01-11T21:53:08.1660079Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_renorm_cpu_complex128 PASSED [ 34%] 2023-01-11T21:53:08.1660426Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_repeat_cpu_float64 PASSED [ 34%] 2023-01-11T21:53:08.1660794Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_repeat_interleave_cpu_complex128 PASSED [ 34%] 2023-01-11T21:53:08.1661153Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_reshape_cpu_complex128 PASSED [ 34%] 2023-01-11T21:53:08.1661508Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_reshape_cpu_float64 PASSED [ 35%] 2023-01-11T21:53:08.1661915Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_resize__cpu_float64 SKIPPED (Skipped! Dtype is not in supported backward dtypes!) [ 35%] 2023-01-11T21:53:08.1662382Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_resize_as__cpu_complex128 SKIPPED (Skipped! Dtype is not in supported backward dtypes!) [ 35%] 2023-01-11T21:53:08.1662832Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_resize_as__cpu_float64 SKIPPED (Skipped! Dtype is not in supported backward dtypes!) [ 35%] 2023-01-11T21:53:08.1663242Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_resolve_neg_cpu_complex128 PASSED [ 35%] 2023-01-11T21:53:08.1663596Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_rot90_cpu_float64 PASSED [ 35%] 2023-01-11T21:53:08.1663954Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_round_decimals_0_cpu_float64 PASSED [ 35%] 2023-01-11T21:53:08.1664318Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_round_decimals_3_cpu_float64 SKIPPED (Skipped!) [ 35%] 2023-01-11T21:53:08.1664711Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_round_decimals_neg_3_cpu_float64 SKIPPED (Skipped!) [ 35%] 2023-01-11T21:53:08.1665080Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_rsqrt_cpu_complex128 PASSED [ 35%] 2023-01-11T21:53:08.1665422Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_rsqrt_cpu_float64 PASSED [ 35%] 2023-01-11T21:53:08.1665755Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_rsub_cpu_complex128 PASSED [ 35%] 2023-01-11T21:53:08.1666111Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_scatter_add_cpu_complex128 PASSED [ 35%] 2023-01-11T21:53:08.1666519Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_scatter_reduce_mean_cpu_float64 PASSED [ 35%] 2023-01-11T21:53:08.1666886Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_scatter_reduce_sum_cpu_float64 PASSED [ 35%] 2023-01-11T21:53:08.1667244Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_select_cpu_complex128 PASSED [ 35%] 2023-01-11T21:53:08.1667601Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_select_scatter_cpu_float64 PASSED [ 35%] 2023-01-11T21:53:08.1667953Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_sgn_cpu_complex128 PASSED [ 35%] 2023-01-11T21:53:08.1668283Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_sgn_cpu_float64 PASSED [ 35%] 2023-01-11T21:53:08.1668686Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_short_cpu_float64 SKIPPED (Skipped! Dtype is not in supported backward dtypes!) [ 35%] 2023-01-11T21:53:08.1669090Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_sigmoid_cpu_complex128 PASSED [ 35%] 2023-01-11T21:53:08.1669441Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_sigmoid_cpu_float64 PASSED [ 35%] 2023-01-11T21:53:08.1669883Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_signal_windows_bartlett_cpu_float64 SKIPPED (Skipped! Dtype is not in supported backward dtypes!) [ 35%] 2023-01-11T21:53:08.1670374Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_signal_windows_cosine_cpu_float64 SKIPPED (Skipped! Dtype is not in supported backward dtypes!) [ 35%] 2023-01-11T21:53:08.1670864Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_signal_windows_exponential_cpu_float64 SKIPPED (Skipped! Dtype is not in supported backward dtypes!) [ 35%] 2023-01-11T21:53:08.1671353Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_signal_windows_gaussian_cpu_float64 SKIPPED (Skipped! Dtype is not in supported backward dtypes!) [ 36%] 2023-01-11T21:53:08.1671839Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_signal_windows_general_hamming_cpu_float64 SKIPPED (Skipped! Dtype is not in supported backward dtypes!) [ 36%] 2023-01-11T21:53:08.1672341Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_signal_windows_hamming_cpu_float64 SKIPPED (Skipped! Dtype is not in supported backward dtypes!) [ 36%] 2023-01-11T21:53:08.1672825Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_signal_windows_hann_cpu_float64 SKIPPED (Skipped! Dtype is not in supported backward dtypes!) [ 36%] 2023-01-11T21:53:08.1673296Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_signbit_cpu_float64 SKIPPED (Skipped! Dtype is not in supported backward dtypes!) [ 36%] 2023-01-11T21:53:08.1673678Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_sin_cpu_float64 PASSED [ 36%] 2023-01-11T21:53:08.1674019Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_sinh_cpu_float64 PASSED [ 36%] 2023-01-11T21:53:08.1674373Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_slice_scatter_cpu_float64 PASSED [ 36%] 2023-01-11T21:53:08.1674726Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_sort_cpu_float64 PASSED [ 36%] 2023-01-11T21:53:08.1675097Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_sparse_sampled_addmm_cpu_complex128 SKIPPED (Skipped!) [ 36%] 2023-01-11T21:53:08.1675541Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_special_airy_ai_cpu_float64 SKIPPED (Skipped! Dtype is not in supported backward dtypes!) [ 36%] 2023-01-11T21:53:08.1676023Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_special_bessel_j0_cpu_float64 SKIPPED (Skipped! Dtype is not in supported backward dtypes!) [ 36%] 2023-01-11T21:53:08.1676497Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_special_bessel_y0_cpu_float64 SKIPPED (Skipped! Dtype is not in supported backward dtypes!) [ 36%] 2023-01-11T21:53:08.1676972Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_special_chebyshev_polynomial_t_cpu_float64 SKIPPED (Skipped! Dtype is not in supported backward dtypes!) [ 36%] 2023-01-11T21:53:08.1677723Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_special_chebyshev_polynomial_w_cpu_float64 SKIPPED (Skipping - testing takes an unreasonably long time, #79528) [ 36%] 2023-01-11T21:53:08.1678160Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_special_entr_cpu_float64 PASSED [ 36%] 2023-01-11T21:53:08.1678599Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_special_hermite_polynomial_h_cpu_float64 SKIPPED (Skipped! Dtype is not in supported backward dtypes!) [ 36%] 2023-01-11T21:53:08.1679015Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_special_i0e_cpu_float64 PASSED [ 36%] 2023-01-11T21:53:08.1679369Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_special_i1_cpu_float64 PASSED [ 36%] 2023-01-11T21:53:08.1679722Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_special_i1e_cpu_float64 PASSED [ 36%] 2023-01-11T21:53:08.1680287Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_special_legendre_polynomial_p_cpu_float64 SKIPPED (Skipping - testing takes an unreasonably long time, #79528) [ 36%] 2023-01-11T21:53:08.1681033Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_special_modified_bessel_i0_cpu_float64 SKIPPED (Skipped! Dtype is not in supported backward dtypes!) [ 36%] 2023-01-11T21:53:08.1681533Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_special_modified_bessel_k1_cpu_float64 SKIPPED (Skipped! Dtype is not in supported backward dtypes!) [ 36%] 2023-01-11T21:53:08.1681956Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_special_ndtr_cpu_float64 PASSED [ 36%] 2023-01-11T21:53:08.1682319Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_special_ndtri_cpu_float64 PASSED [ 36%] 2023-01-11T21:53:08.1682750Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_special_scaled_modified_bessel_k0_cpu_float64 SKIPPED (Skipped! Dtype is not in supported backward dtypes!) [ 37%] 2023-01-11T21:53:08.1683257Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_special_scaled_modified_bessel_k1_cpu_float64 SKIPPED (Skipped! Dtype is not in supported backward dtypes!) [ 37%] 2023-01-11T21:53:08.1683918Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_special_shifted_chebyshev_polynomial_t_cpu_float64 SKIPPED (Skipping - testing takes an unreasonably long time, #79528) [ 37%] 2023-01-11T21:53:08.1684570Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_special_shifted_chebyshev_polynomial_u_cpu_float64 SKIPPED (Skipping - testing takes an unreasonably long time, #79528) [ 37%] 2023-01-11T21:53:08.1685226Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_special_shifted_chebyshev_polynomial_v_cpu_float64 SKIPPED (Skipping - testing takes an unreasonably long time, #79528) [ 37%] 2023-01-11T21:53:08.1685723Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_special_spherical_bessel_j0_cpu_float64 SKIPPED (Skipped! Dtype is not in supported backward dtypes!) [ 37%] 2023-01-11T21:53:08.1686156Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_special_xlog1py_cpu_float64 PASSED [ 37%] 2023-01-11T21:53:08.1686521Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_split_cpu_complex128 PASSED [ 37%] 2023-01-11T21:53:08.1686893Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_split_with_sizes_cpu_complex128 PASSED [ 37%] 2023-01-11T21:53:08.1687252Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_split_with_sizes_cpu_float64 PASSED [ 37%] 2023-01-11T21:53:08.1687609Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_sqrt_cpu_complex128 PASSED [ 37%] 2023-01-11T21:53:08.1687963Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_squeeze_cpu_complex128 PASSED [ 37%] 2023-01-11T21:53:08.1688302Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_squeeze_cpu_float64 PASSED [ 37%] 2023-01-11T21:53:08.1688651Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_stack_cpu_complex128 PASSED [ 37%] 2023-01-11T21:53:08.1689000Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_stack_cpu_float64 PASSED [ 37%] 2023-01-11T21:53:08.1689400Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_std_cpu_complex128 PASSED [ 37%] 2023-01-11T21:53:08.1689732Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_std_cpu_float64 PASSED [ 37%] 2023-01-11T21:53:08.1690078Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_std_mean_cpu_float64 PASSED [ 37%] 2023-01-11T21:53:08.1690441Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_std_mean_unbiased_cpu_complex128 PASSED [ 37%] 2023-01-11T21:53:08.1690812Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_std_unbiased_cpu_complex128 PASSED [ 37%] 2023-01-11T21:53:08.1691158Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_stft_cpu_complex128 PASSED [ 37%] 2023-01-11T21:53:08.1691503Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_stft_cpu_float64 PASSED [ 37%] 2023-01-11T21:53:08.1691846Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_sub_cpu_complex128 PASSED [ 37%] 2023-01-11T21:53:08.1692179Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_sum_cpu_complex128 PASSED [ 37%] 2023-01-11T21:53:08.1692532Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_sum_to_size_cpu_complex128 PASSED [ 37%] 2023-01-11T21:53:08.1692935Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_svd_cpu_float64 PASSED [ 38%] 2023-01-11T21:53:08.1693288Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_symeig_cpu_complex128 PASSED [ 38%] 2023-01-11T21:53:08.1693624Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_t_cpu_complex128 PASSED [ 38%] 2023-01-11T21:53:08.1693970Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_take_cpu_complex128 PASSED [ 38%] 2023-01-11T21:53:08.1694315Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_take_cpu_float64 PASSED [ 38%] 2023-01-11T21:53:08.1694646Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_tan_cpu_complex128 PASSED [ 38%] 2023-01-11T21:53:08.1694989Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_tan_cpu_float64 PASSED [ 38%] 2023-01-11T21:53:08.1695348Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_tensor_split_cpu_complex128 PASSED [ 38%] 2023-01-11T21:53:08.1695779Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_tensordot_cpu_float64 PASSED [ 38%] 2023-01-11T21:53:08.1696114Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_tile_cpu_float64 PASSED [ 38%] 2023-01-11T21:53:08.1696458Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_to_cpu_complex128 PASSED [ 38%] 2023-01-11T21:53:08.1696805Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_to_sparse_cpu_float64 PASSED [ 38%] 2023-01-11T21:53:08.1697153Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_trace_cpu_float64 PASSED [ 38%] 2023-01-11T21:53:08.1697493Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_trapezoid_cpu_complex128 PASSED [ 38%] 2023-01-11T21:53:08.1697848Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_trapz_cpu_complex128 PASSED [ 38%] 2023-01-11T21:53:08.1698195Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_trapz_cpu_float64 PASSED [ 38%] 2023-01-11T21:53:08.1698533Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_tril_cpu_complex128 PASSED [ 38%] 2023-01-11T21:53:08.1698877Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_tril_cpu_float64 PASSED [ 38%] 2023-01-11T21:53:08.1699215Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_trunc_cpu_float64 PASSED [ 38%] 2023-01-11T21:53:08.1699557Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_unbind_cpu_float64 PASSED [ 38%] 2023-01-11T21:53:08.1699896Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_unflatten_cpu_complex128 PASSED [ 38%] 2023-01-11T21:53:08.1700256Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_unfold_copy_cpu_complex128 PASSED [ 38%] 2023-01-11T21:53:08.1700616Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_unfold_cpu_complex128 PASSED [ 38%] 2023-01-11T21:53:08.1700950Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_unfold_cpu_float64 PASSED [ 38%] 2023-01-11T21:53:08.1701398Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_uniform_cpu_complex128 SKIPPED (Skipped! Dtype is not in supported backward dtypes!) [ 38%] 2023-01-11T21:53:08.1701873Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_unique_consecutive_cpu_float64 SKIPPED (Skipped! Dtype is not in supported backward dtypes!) [ 39%] 2023-01-11T21:53:08.1702344Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_unique_cpu_float64 SKIPPED (Skipped! Dtype is not in supported backward dtypes!) [ 39%] 2023-01-11T21:53:08.1702736Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_unsqueeze_cpu_complex128 PASSED [ 39%] 2023-01-11T21:53:08.1703092Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_unsqueeze_cpu_float64 PASSED [ 39%] 2023-01-11T21:53:08.1703439Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_var_cpu_complex128 PASSED [ 39%] 2023-01-11T21:53:08.1703790Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_var_mean_cpu_complex128 PASSED [ 39%] 2023-01-11T21:53:08.1704134Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_var_unbiased_cpu_float64 PASSED [ 39%] 2023-01-11T21:53:08.1704514Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_vdot_cpu_complex128 PASSED [ 39%] 2023-01-11T21:53:08.1704861Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_vdot_cpu_float64 PASSED [ 39%] 2023-01-11T21:53:08.1705205Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_view_as_cpu_complex128 PASSED [ 39%] 2023-01-11T21:53:08.1705539Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_view_as_cpu_float64 PASSED [ 39%] 2023-01-11T21:53:08.1705895Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_view_as_real_cpu_complex128 PASSED [ 39%] 2023-01-11T21:53:08.1706251Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_view_copy_cpu_float64 PASSED [ 39%] 2023-01-11T21:53:08.1706586Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_view_cpu_complex128 PASSED [ 39%] 2023-01-11T21:53:08.1706931Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_view_cpu_float64 PASSED [ 39%] 2023-01-11T21:53:08.1707276Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_vsplit_cpu_float64 PASSED [ 39%] 2023-01-11T21:53:08.1707625Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_vstack_cpu_complex128 PASSED [ 39%] 2023-01-11T21:53:08.1707956Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_vstack_cpu_float64 PASSED [ 39%] 2023-01-11T21:53:08.1708301Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_where_cpu_complex128 PASSED [ 39%] 2023-01-11T21:53:08.1708646Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_where_cpu_float64 PASSED [ 39%] 2023-01-11T21:53:08.1708975Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_xlogy_cpu_float64 PASSED [ 39%] 2023-01-11T21:53:08.1709326Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_zero__cpu_complex128 PASSED [ 39%] 2023-01-11T21:53:08.1709671Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_zero__cpu_float64 PASSED [ 39%] 2023-01-11T21:53:08.1710088Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_zeros_like_cpu_complex128 SKIPPED (Skipped! Dtype is not in supported backward dtypes!) [ 39%] 2023-01-11T21:53:08.1710544Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_zeros_like_cpu_float64 SKIPPED (Skipped! Dtype is not in supported backward dtypes!) [ 39%] 2023-01-11T21:53:08.1710948Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_H_cpu_complex128 PASSED [ 40%] 2023-01-11T21:53:08.1711295Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_H_cpu_float64 PASSED [ 40%] 2023-01-11T21:53:08.1711634Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_T_cpu_float64 PASSED [ 40%] 2023-01-11T21:53:08.1711978Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad___getitem___cpu_float64 PASSED [ 40%] 2023-01-11T21:53:08.1712339Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad___radd___cpu_complex128 PASSED [ 40%] 2023-01-11T21:53:08.1712698Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad___radd___cpu_float64 PASSED [ 40%] 2023-01-11T21:53:08.1713102Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad___rmatmul___cpu_complex128 PASSED [ 40%] 2023-01-11T21:53:08.1713457Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad___rmatmul___cpu_float64 PASSED [ 40%] 2023-01-11T21:53:08.1713813Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad___rsub___cpu_float64 PASSED [ 40%] 2023-01-11T21:53:08.1714190Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad__native_batch_norm_legit_cpu_float64 PASSED [ 40%] 2023-01-11T21:53:08.1714546Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_abs_cpu_float64 PASSED [ 40%] 2023-01-11T21:53:08.1714712Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_acos_cpu_float64 PASSED [ 40%] 2023-01-11T21:53:08.1714879Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_add_cpu_complex128 PASSED [ 40%] 2023-01-11T21:53:08.1715044Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_add_cpu_float64 PASSED [ 40%] 2023-01-11T21:53:08.1715220Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_addbmm_cpu_complex128 PASSED [ 40%] 2023-01-11T21:53:08.1715416Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_addbmm_cpu_float64 PASSED [ 40%] 2023-01-11T21:53:08.1715591Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_addcmul_cpu_complex128 PASSED [ 40%] 2023-01-11T21:53:08.1715760Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_addcmul_cpu_float64 PASSED [ 40%] 2023-01-11T21:53:08.1715919Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_addmm_cpu_complex128 PASSED [ 40%] 2023-01-11T21:53:08.1716088Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_addmv_cpu_float64 PASSED [ 40%] 2023-01-11T21:53:08.1716256Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_addr_cpu_complex128 PASSED [ 40%] 2023-01-11T21:53:08.1716421Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_addr_cpu_float64 PASSED [ 40%] 2023-01-11T21:53:08.1716783Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_allclose_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 40%] 2023-01-11T21:53:08.1716953Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_amax_cpu_float64 PASSED [ 40%] 2023-01-11T21:53:08.1717116Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_amin_cpu_float64 PASSED [ 40%] 2023-01-11T21:53:08.1717287Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_angle_cpu_complex128 PASSED [ 41%] 2023-01-11T21:53:08.1717453Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_angle_cpu_float64 PASSED [ 41%] 2023-01-11T21:53:08.1717777Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_arange_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 41%] 2023-01-11T21:53:08.1718106Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_argmin_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 41%] 2023-01-11T21:53:08.1718445Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_argsort_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 41%] 2023-01-11T21:53:08.1718789Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_argwhere_cpu_complex128 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 41%] 2023-01-11T21:53:08.1719124Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_argwhere_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 41%] 2023-01-11T21:53:08.1719318Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_as_strided_partial_views_cpu_complex128 PASSED [ 41%] 2023-01-11T21:53:08.1719507Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_as_strided_partial_views_cpu_float64 PASSED [ 41%] 2023-01-11T21:53:08.1719697Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_as_strided_scatter_cpu_complex128 PASSED [ 41%] 2023-01-11T21:53:08.1719935Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_as_strided_scatter_cpu_float64 PASSED [ 41%] 2023-01-11T21:53:08.1720105Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_asin_cpu_complex128 PASSED [ 41%] 2023-01-11T21:53:08.1720264Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_asinh_cpu_complex128 PASSED [ 41%] 2023-01-11T21:53:08.1720432Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_atan2_cpu_float64 PASSED [ 41%] 2023-01-11T21:53:08.1720722Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_atan_cpu_complex128 PASSED [ 41%] 2023-01-11T21:53:08.1720974Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_atan_cpu_float64 PASSED [ 41%] 2023-01-11T21:53:08.1721143Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_atanh_cpu_float64 PASSED [ 41%] 2023-01-11T21:53:08.1721324Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_atleast_1d_cpu_complex128 PASSED [ 41%] 2023-01-11T21:53:08.1721500Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_atleast_2d_cpu_float64 PASSED [ 41%] 2023-01-11T21:53:08.1721677Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_baddbmm_cpu_complex128 PASSED [ 41%] 2023-01-11T21:53:08.1721900Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_bfloat16_cpu_complex128 XFAIL [ 41%] 2023-01-11T21:53:08.1722060Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_block_diag_cpu_float64 PASSED [ 41%] 2023-01-11T21:53:08.1722230Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_bmm_cpu_complex128 PASSED [ 41%] 2023-01-11T21:53:08.1722572Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_bool_cpu_complex128 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 41%] 2023-01-11T21:53:08.1722901Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_bool_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 41%] 2023-01-11T21:53:08.1723089Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_broadcast_tensors_cpu_complex128 PASSED [ 42%] 2023-01-11T21:53:08.1723274Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_broadcast_tensors_cpu_float64 PASSED [ 42%] 2023-01-11T21:53:08.1723460Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_broadcast_to_cpu_complex128 PASSED [ 42%] 2023-01-11T21:53:08.1723636Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_broadcast_to_cpu_float64 PASSED [ 42%] 2023-01-11T21:53:08.1723976Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_bucketize_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 42%] 2023-01-11T21:53:08.1724308Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_byte_cpu_complex128 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 42%] 2023-01-11T21:53:08.1724481Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_cartesian_prod_cpu_complex128 PASSED [ 42%] 2023-01-11T21:53:08.1724660Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_cartesian_prod_cpu_float64 PASSED [ 42%] 2023-01-11T21:53:08.1725048Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_cat_cpu_complex128 SKIPPED (TODO(whc) fix pre-existing bug with cat for newly added opinfo for empty+nonempty) [ 42%] 2023-01-11T21:53:08.1725424Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_cat_cpu_float64 SKIPPED (TODO(whc) fix pre-existing bug with cat for newly added opinfo for empty+nonempty) [ 42%] 2023-01-11T21:53:08.1725768Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_cdist_cpu_float64 SKIPPED (Op claims it doesn't support gradgrad. This is not verified.) [ 42%] 2023-01-11T21:53:08.1725942Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_cdouble_cpu_complex128 PASSED [ 42%] 2023-01-11T21:53:08.1726113Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_cdouble_cpu_float64 PASSED [ 42%] 2023-01-11T21:53:08.1726283Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_chalf_cpu_complex128 XFAIL [ 42%] 2023-01-11T21:53:08.1726485Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_chalf_cpu_float64 XFAIL [ 42%] 2023-01-11T21:53:08.1726820Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_char_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 42%] 2023-01-11T21:53:08.1726979Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_cholesky_cpu_float64 PASSED [ 42%] 2023-01-11T21:53:08.1727166Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_cholesky_inverse_cpu_complex128 PASSED [ 42%] 2023-01-11T21:53:08.1727346Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_cholesky_inverse_cpu_float64 PASSED [ 42%] 2023-01-11T21:53:08.1727529Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_cholesky_solve_cpu_complex128 PASSED [ 42%] 2023-01-11T21:53:08.1727708Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_cholesky_solve_cpu_float64 PASSED [ 42%] 2023-01-11T21:53:08.1727879Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_chunk_cpu_complex128 PASSED [ 42%] 2023-01-11T21:53:08.1728050Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_clamp_cpu_float64 PASSED [ 42%] 2023-01-11T21:53:08.1728245Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_clone_cpu_complex128 PASSED [ 42%] 2023-01-11T21:53:08.1728416Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_column_stack_cpu_complex128 PASSED [ 42%] 2023-01-11T21:53:08.1728593Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_combinations_cpu_float64 PASSED [ 43%] 2023-01-11T21:53:08.1728761Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_complex_cpu_float64 PASSED [ 43%] 2023-01-11T21:53:08.1728927Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_conj_cpu_float64 PASSED [ 43%] 2023-01-11T21:53:08.1729104Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_conj_physical_cpu_float64 PASSED [ 43%] 2023-01-11T21:53:08.1729276Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_contiguous_cpu_float64 PASSED [ 43%] 2023-01-11T21:53:08.1729449Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_cos_cpu_complex128 PASSED [ 43%] 2023-01-11T21:53:08.1729616Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_cos_cpu_float64 PASSED [ 43%] 2023-01-11T21:53:08.1729785Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_cosh_cpu_complex128 PASSED [ 43%] 2023-01-11T21:53:08.1730123Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_count_nonzero_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 43%] 2023-01-11T21:53:08.1730293Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_cross_cpu_complex128 PASSED [ 43%] 2023-01-11T21:53:08.1730459Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_cummax_cpu_float64 PASSED [ 43%] 2023-01-11T21:53:08.1730625Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_cummin_cpu_float64 PASSED [ 43%] 2023-01-11T21:53:08.1730798Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_cumprod_cpu_complex128 PASSED [ 43%] 2023-01-11T21:53:08.1730971Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_cumsum_cpu_complex128 PASSED [ 43%] 2023-01-11T21:53:08.1731141Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_deg2rad_cpu_float64 PASSED [ 43%] 2023-01-11T21:53:08.1731310Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_diag_embed_cpu_float64 PASSED [ 43%] 2023-01-11T21:53:08.1731485Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_diagflat_cpu_complex128 PASSED [ 43%] 2023-01-11T21:53:08.1731643Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_diagonal_cpu_complex128 PASSED [ 43%] 2023-01-11T21:53:08.1731824Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_diagonal_scatter_cpu_float64 PASSED [ 43%] 2023-01-11T21:53:08.1731990Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_diff_cpu_float64 PASSED [ 43%] 2023-01-11T21:53:08.1732158Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_digamma_cpu_float64 PASSED [ 43%] 2023-01-11T21:53:08.1732374Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_div_no_rounding_mode_cpu_float64 PASSED [ 43%] 2023-01-11T21:53:08.1732544Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_dot_cpu_complex128 PASSED [ 43%] 2023-01-11T21:53:08.1732719Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_double_cpu_complex128 PASSED [ 43%] 2023-01-11T21:53:08.1732891Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_dsplit_cpu_complex128 PASSED [ 43%] 2023-01-11T21:53:08.1733058Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_dsplit_cpu_float64 PASSED [ 44%] 2023-01-11T21:53:08.1733214Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_einsum_cpu_float64 PASSED [ 44%] 2023-01-11T21:53:08.1733544Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_eq_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 44%] 2023-01-11T21:53:08.1733710Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_erf_cpu_float64 PASSED [ 44%] 2023-01-11T21:53:08.1733875Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_erfc_cpu_float64 PASSED [ 44%] 2023-01-11T21:53:08.1734079Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_expand_as_cpu_complex128 PASSED [ 44%] 2023-01-11T21:53:08.1734252Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_expand_as_cpu_float64 PASSED [ 44%] 2023-01-11T21:53:08.1734419Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_expand_cpu_float64 PASSED [ 44%] 2023-01-11T21:53:08.1734754Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_eye_cpu_complex128 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 44%] 2023-01-11T21:53:08.1734928Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_fft_fft2_cpu_complex128 PASSED [ 44%] 2023-01-11T21:53:08.1735084Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_fft_fft2_cpu_float64 PASSED [ 44%] 2023-01-11T21:53:08.1735256Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_fft_fft_cpu_complex128 PASSED [ 44%] 2023-01-11T21:53:08.1735510Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_fft_fft_cpu_float64 PASSED [ 44%] 2023-01-11T21:53:08.1735680Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_fft_fftn_cpu_float64 PASSED [ 44%] 2023-01-11T21:53:08.1735855Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_fft_hfft2_cpu_complex128 PASSED [ 44%] 2023-01-11T21:53:08.1736027Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_fft_hfft_cpu_complex128 PASSED [ 44%] 2023-01-11T21:53:08.1736204Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_fft_hfftn_cpu_complex128 PASSED [ 44%] 2023-01-11T21:53:08.1736376Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_fft_hfftn_cpu_float64 PASSED [ 44%] 2023-01-11T21:53:08.1736546Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_fft_ifft2_cpu_float64 PASSED [ 44%] 2023-01-11T21:53:08.1736708Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_fft_ifft_cpu_complex128 PASSED [ 44%] 2023-01-11T21:53:08.1736883Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_fft_ifftn_cpu_complex128 PASSED [ 44%] 2023-01-11T21:53:08.1737064Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_fft_ifftshift_cpu_complex128 PASSED [ 44%] 2023-01-11T21:53:08.1737242Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_fft_ifftshift_cpu_float64 PASSED [ 44%] 2023-01-11T21:53:08.1737412Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_fft_ihfft_cpu_float64 PASSED [ 44%] 2023-01-11T21:53:08.1737585Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_fft_irfft_cpu_complex128 PASSED [ 44%] 2023-01-11T21:53:08.1737761Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_fft_irfftn_cpu_complex128 PASSED [ 44%] 2023-01-11T21:53:08.1737932Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_fft_irfftn_cpu_float64 PASSED [ 45%] 2023-01-11T21:53:08.1738124Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_fft_rfft2_cpu_float64 PASSED [ 45%] 2023-01-11T21:53:08.1738297Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_fft_rfft_cpu_float64 PASSED [ 45%] 2023-01-11T21:53:08.1738468Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_flatten_cpu_complex128 PASSED [ 45%] 2023-01-11T21:53:08.1738638Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_flip_cpu_complex128 PASSED [ 45%] 2023-01-11T21:53:08.1738809Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_fliplr_cpu_complex128 PASSED [ 45%] 2023-01-11T21:53:08.1738976Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_fliplr_cpu_float64 PASSED [ 45%] 2023-01-11T21:53:08.1739154Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_float_power_cpu_complex128 PASSED [ 45%] 2023-01-11T21:53:08.1739502Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_floor_divide_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 45%] 2023-01-11T21:53:08.1739671Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_fmod_cpu_float64 PASSED [ 45%] 2023-01-11T21:53:08.1739859Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_frexp_cpu_float64 PASSED [ 45%] 2023-01-11T21:53:08.1740194Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_full_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 45%] 2023-01-11T21:53:08.1740529Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_full_like_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 45%] 2023-01-11T21:53:08.1740703Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_gather_cpu_complex128 PASSED [ 45%] 2023-01-11T21:53:08.1741039Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_geqrf_cpu_complex128 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 45%] 2023-01-11T21:53:08.1741211Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_gradient_cpu_float64 PASSED [ 45%] 2023-01-11T21:53:08.1741571Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_grid_sampler_2d_cpu_float64 SKIPPED (Op claims it doesn't support gradgrad. This is not verified.) [ 45%] 2023-01-11T21:53:08.1741894Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_gt_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 45%] 2023-01-11T21:53:08.1742060Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_half_cpu_float64 XFAIL [ 45%] 2023-01-11T21:53:08.1742396Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_histogram_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 45%] 2023-01-11T21:53:08.1742737Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_histogramdd_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 45%] 2023-01-11T21:53:08.1742896Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_hstack_cpu_float64 PASSED [ 45%] 2023-01-11T21:53:08.1743066Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_hypot_cpu_float64 PASSED [ 45%] 2023-01-11T21:53:08.1743231Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_i0_cpu_float64 PASSED [ 45%] 2023-01-11T21:53:08.1743565Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_igamma_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 45%] 2023-01-11T21:53:08.1743736Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_imag_cpu_complex128 PASSED [ 46%] 2023-01-11T21:53:08.1743916Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_index_copy_cpu_complex128 PASSED [ 46%] 2023-01-11T21:53:08.1744089Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_index_fill_cpu_float64 PASSED [ 46%] 2023-01-11T21:53:08.1744261Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_index_put_cpu_float64 PASSED [ 46%] 2023-01-11T21:53:08.1744439Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_index_reduce_cpu_float64 PASSED [ 46%] 2023-01-11T21:53:08.1744636Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_index_select_cpu_complex128 PASSED [ 46%] 2023-01-11T21:53:08.1744814Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_index_select_cpu_float64 PASSED [ 46%] 2023-01-11T21:53:08.1744986Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_inner_cpu_complex128 PASSED [ 46%] 2023-01-11T21:53:08.1745155Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_inner_cpu_float64 PASSED [ 46%] 2023-01-11T21:53:08.1745488Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_int_cpu_complex128 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 46%] 2023-01-11T21:53:08.1745815Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_isin_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 46%] 2023-01-11T21:53:08.1746145Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_isinf_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 46%] 2023-01-11T21:53:08.1746521Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_isnan_cpu_complex128 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 46%] 2023-01-11T21:53:08.1746858Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_isposinf_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 46%] 2023-01-11T21:53:08.1747192Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_isreal_cpu_complex128 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 46%] 2023-01-11T21:53:08.1747511Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_isreal_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 46%] 2023-01-11T21:53:08.1747684Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_istft_cpu_complex128 PASSED [ 46%] 2023-01-11T21:53:08.1747898Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_jiterator_2inputs_2outputs_cpu_complex128 SKIPPED (Only runs on cuda) [ 46%] 2023-01-11T21:53:08.1748100Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_jiterator_binary_cpu_float64 SKIPPED (Only runs on cuda) [ 46%] 2023-01-11T21:53:08.1748308Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_jiterator_unary_cpu_complex128 SKIPPED (Only runs on cuda) [ 46%] 2023-01-11T21:53:08.1748478Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_kron_cpu_complex128 PASSED [ 46%] 2023-01-11T21:53:08.1748802Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_le_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 46%] 2023-01-11T21:53:08.1748974Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_lerp_cpu_float64 PASSED [ 46%] 2023-01-11T21:53:08.1749145Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_lgamma_cpu_float64 PASSED [ 46%] 2023-01-11T21:53:08.1749313Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_linalg_cond_cpu_complex128 PASSED [ 46%] 2023-01-11T21:53:08.1749493Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_linalg_cross_cpu_float64 PASSED [ 47%] 2023-01-11T21:53:08.1749673Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_linalg_det_cpu_complex128 PASSED [ 47%] 2023-01-11T21:53:08.1749852Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_linalg_eig_cpu_complex128 PASSED [ 47%] 2023-01-11T21:53:08.1750021Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_linalg_eig_cpu_float64 PASSED [ 47%] 2023-01-11T21:53:08.1750203Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_linalg_eigh_cpu_complex128 PASSED [ 47%] 2023-01-11T21:53:08.1750376Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_linalg_eigvals_cpu_float64 PASSED [ 47%] 2023-01-11T21:53:08.1750570Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_linalg_householder_product_cpu_float64 PASSED [ 47%] 2023-01-11T21:53:08.1750747Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_linalg_inv_cpu_complex128 PASSED [ 47%] 2023-01-11T21:53:08.1751126Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_linalg_ldl_factor_ex_cpu_complex128 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 47%] 2023-01-11T21:53:08.1751481Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_linalg_ldl_solve_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 47%] 2023-01-11T21:53:08.1751674Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_linalg_lstsq_cpu_complex128 SKIPPED (Skipped!) [ 47%] 2023-01-11T21:53:08.1751863Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_linalg_lstsq_cpu_float64 SKIPPED (Skipped!) [ 47%] 2023-01-11T21:53:08.1752054Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_linalg_lstsq_grad_oriented_cpu_float64 PASSED [ 47%] 2023-01-11T21:53:08.1752231Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_linalg_lu_cpu_complex128 PASSED [ 47%] 2023-01-11T21:53:08.1752402Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_linalg_lu_cpu_float64 PASSED [ 47%] 2023-01-11T21:53:08.1752590Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_linalg_lu_factor_cpu_complex128 PASSED [ 47%] 2023-01-11T21:53:08.1752802Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_linalg_lu_factor_ex_cpu_complex128 PASSED [ 47%] 2023-01-11T21:53:08.1752988Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_linalg_lu_factor_ex_cpu_float64 PASSED [ 47%] 2023-01-11T21:53:08.1753157Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_linalg_lu_solve_cpu_complex128 PASSED [ 47%] 2023-01-11T21:53:08.1753337Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_linalg_lu_solve_cpu_float64 PASSED [ 47%] 2023-01-11T21:53:08.1753518Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_linalg_matrix_norm_cpu_float64 PASSED [ 47%] 2023-01-11T21:53:08.1753698Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_linalg_matrix_power_cpu_float64 PASSED [ 47%] 2023-01-11T21:53:08.1754049Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_linalg_matrix_rank_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 47%] 2023-01-11T21:53:08.1754230Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_linalg_norm_cpu_complex128 XFAIL [ 47%] 2023-01-11T21:53:08.1754404Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_linalg_norm_cpu_float64 XFAIL [ 47%] 2023-01-11T21:53:08.1754602Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_linalg_norm_subgradients_at_zero_cpu_float64 XFAIL [ 48%] 2023-01-11T21:53:08.1754783Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_linalg_pinv_cpu_complex128 PASSED [ 48%] 2023-01-11T21:53:08.1754944Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_linalg_pinv_cpu_float64 PASSED [ 48%] 2023-01-11T21:53:08.1755131Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_linalg_pinv_hermitian_cpu_float64 PASSED [ 48%] 2023-01-11T21:53:08.1755384Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_linalg_pinv_singular_cpu_complex128 SKIPPED (test is slow; run with PYTORCH_TEST_WITH_SLOW to enable test) [ 48%] 2023-01-11T21:53:08.1755564Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_linalg_slogdet_cpu_float64 PASSED [ 48%] 2023-01-11T21:53:08.1755745Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_linalg_solve_cpu_complex128 PASSED [ 48%] 2023-01-11T21:53:08.1755930Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_linalg_solve_ex_cpu_complex128 PASSED [ 48%] 2023-01-11T21:53:08.1756122Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_linalg_solve_triangular_cpu_complex128 PASSED [ 48%] 2023-01-11T21:53:08.1756300Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_linalg_svd_cpu_complex128 PASSED [ 48%] 2023-01-11T21:53:08.1756471Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_linalg_svd_cpu_float64 PASSED [ 48%] 2023-01-11T21:53:08.1756641Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_linalg_svdvals_cpu_complex128 PASSED [ 48%] 2023-01-11T21:53:08.1756849Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_linalg_svdvals_cpu_float64 PASSED [ 48%] 2023-01-11T21:53:08.1757030Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_linalg_tensorinv_cpu_float64 PASSED [ 48%] 2023-01-11T21:53:08.1757214Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_linalg_tensorsolve_cpu_float64 PASSED [ 48%] 2023-01-11T21:53:08.1757390Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_linalg_vander_cpu_float64 PASSED [ 48%] 2023-01-11T21:53:08.1757570Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_linalg_vecdot_cpu_complex128 PASSED [ 48%] 2023-01-11T21:53:08.1757916Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_linspace_cpu_complex128 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 48%] 2023-01-11T21:53:08.1758254Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_linspace_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 48%] 2023-01-11T21:53:08.1758428Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_log10_cpu_complex128 PASSED [ 48%] 2023-01-11T21:53:08.1758626Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_log2_cpu_complex128 PASSED [ 48%] 2023-01-11T21:53:08.1758784Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_log_cpu_complex128 PASSED [ 48%] 2023-01-11T21:53:08.1758957Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_log_softmax_cpu_float64 PASSED [ 48%] 2023-01-11T21:53:08.1759144Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_log_softmax_with_dtype_cpu_float64 PASSED [ 48%] 2023-01-11T21:53:08.1759317Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_logaddexp2_cpu_float64 PASSED [ 48%] 2023-01-11T21:53:08.1759495Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_logcumsumexp_cpu_float64 PASSED [ 49%] 2023-01-11T21:53:08.1759848Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_logical_and_cpu_complex128 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 49%] 2023-01-11T21:53:08.1760188Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_logical_not_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 49%] 2023-01-11T21:53:08.1760534Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_logical_or_cpu_complex128 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 49%] 2023-01-11T21:53:08.1761164Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_logical_or_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 49%] 2023-01-11T21:53:08.1761504Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_logical_xor_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 49%] 2023-01-11T21:53:08.1761827Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_long_cpu_complex128 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 49%] 2023-01-11T21:53:08.1762006Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_lu_unpack_cpu_complex128 PASSED [ 49%] 2023-01-11T21:53:08.1762182Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_lu_unpack_cpu_float64 PASSED [ 49%] 2023-01-11T21:53:08.1762352Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_mT_cpu_complex128 PASSED [ 49%] 2023-01-11T21:53:08.1762513Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_mT_cpu_float64 PASSED [ 49%] 2023-01-11T21:53:08.1762690Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_masked_amax_cpu_float64 PASSED [ 49%] 2023-01-11T21:53:08.1762862Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_masked_amin_cpu_float64 PASSED [ 49%] 2023-01-11T21:53:08.1763043Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_masked_cumprod_cpu_float64 PASSED [ 49%] 2023-01-11T21:53:08.1763219Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_masked_cumsum_cpu_float64 PASSED [ 49%] 2023-01-11T21:53:08.1763483Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_masked_fill_cpu_float64 PASSED [ 49%] 2023-01-11T21:53:08.1763682Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_masked_logaddexp_cpu_float64 SKIPPED (Skipped!) [ 49%] 2023-01-11T21:53:08.1763864Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_masked_logsumexp_cpu_float64 PASSED [ 49%] 2023-01-11T21:53:08.1764041Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_masked_mean_cpu_complex128 PASSED [ 49%] 2023-01-11T21:53:08.1764214Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_masked_norm_cpu_float64 PASSED [ 49%] 2023-01-11T21:53:08.1764393Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_masked_prod_cpu_complex128 PASSED [ 49%] 2023-01-11T21:53:08.1764575Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_masked_scatter_cpu_complex128 PASSED [ 49%] 2023-01-11T21:53:08.1764749Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_masked_scatter_cpu_float64 PASSED [ 49%] 2023-01-11T21:53:08.1764933Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_masked_select_cpu_complex128 PASSED [ 49%] 2023-01-11T21:53:08.1765137Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_masked_softmax_cpu_float64 PASSED [ 49%] 2023-01-11T21:53:08.1765313Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_masked_softmin_cpu_float64 PASSED [ 50%] 2023-01-11T21:53:08.1765492Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_masked_std_cpu_complex128 PASSED [ 50%] 2023-01-11T21:53:08.1765664Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_masked_sum_cpu_complex128 PASSED [ 50%] 2023-01-11T21:53:08.1765834Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_masked_var_cpu_complex128 PASSED [ 50%] 2023-01-11T21:53:08.1766006Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_masked_var_cpu_float64 PASSED [ 50%] 2023-01-11T21:53:08.1766193Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_max_reduction_with_dim_cpu_float64 PASSED [ 50%] 2023-01-11T21:53:08.1766362Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_mean_cpu_float64 PASSED [ 50%] 2023-01-11T21:53:08.1766533Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_median_cpu_float64 PASSED [ 50%] 2023-01-11T21:53:08.1766712Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_meshgrid_list_of_tensors_cpu_float64 PASSED [ 50%] 2023-01-11T21:53:08.1766910Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_meshgrid_variadic_tensors_cpu_complex128 PASSED [ 50%] 2023-01-11T21:53:08.1767103Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_meshgrid_variadic_tensors_cpu_float64 PASSED [ 50%] 2023-01-11T21:53:08.1767288Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_min_reduction_no_dim_cpu_float64 PASSED [ 50%] 2023-01-11T21:53:08.1767475Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_min_reduction_with_dim_cpu_float64 PASSED [ 50%] 2023-01-11T21:53:08.1767649Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_minimum_cpu_float64 PASSED [ 50%] 2023-01-11T21:53:08.1767815Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_mm_cpu_float64 PASSED [ 50%] 2023-01-11T21:53:08.1767989Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_movedim_cpu_complex128 PASSED [ 50%] 2023-01-11T21:53:08.1768158Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_movedim_cpu_float64 PASSED [ 50%] 2023-01-11T21:53:08.1768314Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_msort_cpu_float64 PASSED [ 50%] 2023-01-11T21:53:08.1768481Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_mv_cpu_complex128 PASSED [ 50%] 2023-01-11T21:53:08.1768646Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_mv_cpu_float64 PASSED [ 50%] 2023-01-11T21:53:08.1768831Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_mvlgamma_mvlgamma_p_3_cpu_float64 PASSED [ 50%] 2023-01-11T21:53:08.1769032Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_nan_to_num_cpu_float64 PASSED [ 50%] 2023-01-11T21:53:08.1769199Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_nanmean_cpu_float64 PASSED [ 50%] 2023-01-11T21:53:08.1769375Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_nanquantile_cpu_float64 PASSED [ 50%] 2023-01-11T21:53:08.1769726Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_narrow_copy_cpu_complex128 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 50%] 2023-01-11T21:53:08.1769908Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_native_batch_norm_cpu_float64 PASSED [ 51%] 2023-01-11T21:53:08.1770077Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_native_layer_norm_cpu_float64 XFAIL [ 51%] 2023-01-11T21:53:08.1770408Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_ne_cpu_complex128 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 51%] 2023-01-11T21:53:08.1770733Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_ne_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 51%] 2023-01-11T21:53:08.1771103Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_new_empty_cpu_complex128 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 51%] 2023-01-11T21:53:08.1771458Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_new_empty_strided_cpu_complex128 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 51%] 2023-01-11T21:53:08.1771808Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_new_empty_strided_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 51%] 2023-01-11T21:53:08.1772144Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_nextafter_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 51%] 2023-01-11T21:53:08.1772350Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_nn_functional_adaptive_avg_pool1d_cpu_float64 PASSED [ 51%] 2023-01-11T21:53:08.1772551Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_nn_functional_adaptive_avg_pool2d_cpu_float64 PASSED [ 51%] 2023-01-11T21:53:08.1772752Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_nn_functional_adaptive_max_pool1d_cpu_float64 PASSED [ 51%] 2023-01-11T21:53:08.1772935Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_nn_functional_adaptive_max_pool3d_cpu_float64 PASSED [ 51%] 2023-01-11T21:53:08.1773129Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_nn_functional_alpha_dropout_cpu_float64 PASSED [ 51%] 2023-01-11T21:53:08.1773316Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_nn_functional_avg_pool2d_cpu_float64 PASSED [ 51%] 2023-01-11T21:53:08.1773504Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_nn_functional_avg_pool3d_cpu_float64 PASSED [ 51%] 2023-01-11T21:53:08.1773691Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_nn_functional_batch_norm_cpu_float64 PASSED [ 51%] 2023-01-11T21:53:08.1773879Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_nn_functional_bilinear_cpu_float64 PASSED [ 51%] 2023-01-11T21:53:08.1774081Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_nn_functional_binary_cross_entropy_cpu_float64 PASSED [ 51%] 2023-01-11T21:53:08.1774293Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_nn_functional_binary_cross_entropy_with_logits_cpu_float64 PASSED [ 51%] 2023-01-11T21:53:08.1774474Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_nn_functional_celu_cpu_float64 PASSED [ 51%] 2023-01-11T21:53:08.1774661Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_nn_functional_conv1d_cpu_float64 PASSED [ 51%] 2023-01-11T21:53:08.1774838Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_nn_functional_conv2d_cpu_complex128 PASSED [ 51%] 2023-01-11T21:53:08.1775032Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_nn_functional_conv_transpose1d_cpu_float64 PASSED [ 51%] 2023-01-11T21:53:08.1775248Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_nn_functional_dropout_cpu_float64 PASSED [ 51%] 2023-01-11T21:53:08.1775511Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_nn_functional_elu_cpu_float64 PASSED [ 51%] 2023-01-11T21:53:08.1775899Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_nn_functional_embedding_bag_cpu_float64 SKIPPED (Op claims it doesn't support gradgrad. This is not verified.) [ 52%] 2023-01-11T21:53:08.1776089Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_nn_functional_embedding_cpu_float64 PASSED [ 52%] 2023-01-11T21:53:08.1776302Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_nn_functional_feature_alpha_dropout_with_train_cpu_float64 PASSED [ 52%] 2023-01-11T21:53:08.1776522Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_nn_functional_feature_alpha_dropout_without_train_cpu_complex128 PASSED [ 52%] 2023-01-11T21:53:08.1776738Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_nn_functional_feature_alpha_dropout_without_train_cpu_float64 PASSED [ 52%] 2023-01-11T21:53:08.1776978Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_nn_functional_fractional_max_pool2d_cpu_float64 PASSED [ 52%] 2023-01-11T21:53:08.1777167Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_nn_functional_fractional_max_pool3d_cpu_float64 PASSED [ 52%] 2023-01-11T21:53:08.1777348Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_nn_functional_gelu_cpu_float64 PASSED [ 52%] 2023-01-11T21:53:08.1777729Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_nn_functional_hardsigmoid_cpu_float64 SKIPPED (Op claims it doesn't support gradgrad. This is not verified.) [ 52%] 2023-01-11T21:53:08.1777918Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_nn_functional_hardtanh_cpu_float64 PASSED [ 52%] 2023-01-11T21:53:08.1778117Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_nn_functional_hinge_embedding_loss_cpu_float64 PASSED [ 52%] 2023-01-11T21:53:08.1778307Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_nn_functional_huber_loss_cpu_float64 PASSED [ 52%] 2023-01-11T21:53:08.1778502Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_nn_functional_instance_norm_cpu_float64 PASSED [ 52%] 2023-01-11T21:53:08.1778697Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_nn_functional_interpolate_area_cpu_float64 PASSED [ 52%] 2023-01-11T21:53:08.1778896Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_nn_functional_interpolate_bilinear_cpu_float64 PASSED [ 52%] 2023-01-11T21:53:08.1779082Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_nn_functional_interpolate_linear_cpu_float64 PASSED [ 52%] 2023-01-11T21:53:08.1779282Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_nn_functional_interpolate_trilinear_cpu_float64 PASSED [ 52%] 2023-01-11T21:53:08.1779466Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_nn_functional_kl_div_cpu_float64 PASSED [ 52%] 2023-01-11T21:53:08.1779656Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_nn_functional_l1_loss_cpu_complex128 PASSED [ 52%] 2023-01-11T21:53:08.1779841Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_nn_functional_l1_loss_cpu_float64 PASSED [ 52%] 2023-01-11T21:53:08.1780027Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_nn_functional_leaky_relu_cpu_float64 PASSED [ 52%] 2023-01-11T21:53:08.1780211Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_nn_functional_linear_cpu_float64 PASSED [ 52%] 2023-01-11T21:53:08.1780404Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_nn_functional_max_unpool1d_grad_cpu_float64 PASSED [ 52%] 2023-01-11T21:53:08.1780610Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_nn_functional_max_unpool2d_cpu_float64 SKIPPED (Skipped!) [ 52%] 2023-01-11T21:53:08.1780803Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_nn_functional_max_unpool2d_grad_cpu_float64 PASSED [ 52%] 2023-01-11T21:53:08.1781023Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_nn_functional_max_unpool3d_cpu_float64 SKIPPED (Skipped!) [ 53%] 2023-01-11T21:53:08.1781211Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_nn_functional_mish_cpu_float64 PASSED [ 53%] 2023-01-11T21:53:08.1781395Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_nn_functional_mse_loss_cpu_float64 PASSED [ 53%] 2023-01-11T21:53:08.1781788Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_nn_functional_multilabel_margin_loss_cpu_float64 SKIPPED (Op claims it doesn't support gradgrad. This is not verified.) [ 53%] 2023-01-11T21:53:08.1781971Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_nn_functional_nll_loss_cpu_float64 PASSED [ 53%] 2023-01-11T21:53:08.1782161Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_nn_functional_normalize_cpu_float64 PASSED [ 53%] 2023-01-11T21:53:08.1782356Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_nn_functional_pad_circular_cpu_complex128 PASSED [ 53%] 2023-01-11T21:53:08.1782552Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_nn_functional_pad_reflect_cpu_complex128 PASSED [ 53%] 2023-01-11T21:53:08.1782774Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_nn_functional_pad_replicate_cpu_complex128 PASSED [ 53%] 2023-01-11T21:53:08.1782972Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_nn_functional_pad_replicate_cpu_float64 PASSED [ 53%] 2023-01-11T21:53:08.1783160Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_nn_functional_pairwise_distance_cpu_complex128 PASSED [ 53%] 2023-01-11T21:53:08.1783356Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_nn_functional_pairwise_distance_cpu_float64 PASSED [ 53%] 2023-01-11T21:53:08.1783549Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_nn_functional_pixel_shuffle_cpu_complex128 PASSED [ 53%] 2023-01-11T21:53:08.1783739Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_nn_functional_pixel_shuffle_cpu_float64 PASSED [ 53%] 2023-01-11T21:53:08.1783931Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_nn_functional_poisson_nll_loss_cpu_float64 PASSED [ 53%] 2023-01-11T21:53:08.1784116Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_nn_functional_prelu_cpu_float64 PASSED [ 53%] 2023-01-11T21:53:08.1784298Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_nn_functional_selu_cpu_float64 PASSED [ 53%] 2023-01-11T21:53:08.1784668Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_nn_functional_silu_complex_cpu_complex128 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 53%] 2023-01-11T21:53:08.1784849Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_nn_functional_silu_cpu_float64 PASSED [ 53%] 2023-01-11T21:53:08.1785028Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_nn_functional_smooth_l1_loss_cpu_float64 PASSED [ 53%] 2023-01-11T21:53:08.1785220Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_nn_functional_soft_margin_loss_cpu_float64 PASSED [ 53%] 2023-01-11T21:53:08.1785407Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_nn_functional_softplus_cpu_float64 PASSED [ 53%] 2023-01-11T21:53:08.1785596Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_nn_functional_threshold_cpu_float64 PASSED [ 53%] 2023-01-11T21:53:08.1785797Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_nn_functional_triplet_margin_loss_cpu_complex128 PASSED [ 53%] 2023-01-11T21:53:08.1786011Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_nn_functional_triplet_margin_with_distance_loss_cpu_float64 PASSED [ 53%] 2023-01-11T21:53:08.1786202Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_nn_functional_unfold_cpu_complex128 PASSED [ 54%] 2023-01-11T21:53:08.1786395Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_nn_functional_upsample_nearest_cpu_float64 PASSED [ 54%] 2023-01-11T21:53:08.1786731Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_nonzero_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 54%] 2023-01-11T21:53:08.1786933Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_norm_cpu_complex128 PASSED [ 54%] 2023-01-11T21:53:08.1787099Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_norm_fro_cpu_complex128 PASSED [ 54%] 2023-01-11T21:53:08.1787267Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_norm_nuc_cpu_float64 PASSED [ 54%] 2023-01-11T21:53:08.1787478Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_normal_number_mean_cpu_float64 SKIPPED (Gradients are incorrect!) [ 54%] 2023-01-11T21:53:08.1787815Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_ones_cpu_complex128 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 54%] 2023-01-11T21:53:08.1788141Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_ones_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 54%] 2023-01-11T21:53:08.1788479Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_ones_like_cpu_complex128 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 54%] 2023-01-11T21:53:08.1788855Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_ones_like_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 54%] 2023-01-11T21:53:08.1789029Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_ormqr_cpu_complex128 PASSED [ 54%] 2023-01-11T21:53:08.1789197Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_ormqr_cpu_float64 PASSED [ 54%] 2023-01-11T21:53:08.1789369Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_outer_cpu_complex128 PASSED [ 54%] 2023-01-11T21:53:08.1789531Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_pca_lowrank_cpu_float64 PASSED [ 54%] 2023-01-11T21:53:08.1789700Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_permute_cpu_float64 PASSED [ 54%] 2023-01-11T21:53:08.1789877Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_pinverse_cpu_complex128 PASSED [ 54%] 2023-01-11T21:53:08.1790046Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_polar_cpu_float64 PASSED [ 54%] 2023-01-11T21:53:08.1790235Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_polygamma_polygamma_n_0_cpu_float64 PASSED [ 54%] 2023-01-11T21:53:08.1790436Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_polygamma_polygamma_n_3_cpu_float64 SKIPPED (Skipped!) [ 54%] 2023-01-11T21:53:08.1790639Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_polygamma_polygamma_n_4_cpu_float64 SKIPPED (Skipped!) [ 54%] 2023-01-11T21:53:08.1790814Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_positive_cpu_complex128 PASSED [ 54%] 2023-01-11T21:53:08.1790986Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_positive_cpu_float64 PASSED [ 54%] 2023-01-11T21:53:08.1791144Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_pow_cpu_complex128 PASSED [ 54%] 2023-01-11T21:53:08.1791315Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_pow_cpu_float64 PASSED [ 54%] 2023-01-11T21:53:08.1791484Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_prod_cpu_complex128 PASSED [ 55%] 2023-01-11T21:53:08.1791653Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_prod_cpu_float64 PASSED [ 55%] 2023-01-11T21:53:08.1791821Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_put_cpu_complex128 PASSED [ 55%] 2023-01-11T21:53:08.1791987Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_qr_cpu_complex128 PASSED [ 55%] 2023-01-11T21:53:08.1792149Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_qr_cpu_float64 PASSED [ 55%] 2023-01-11T21:53:08.1792493Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_rand_like_cpu_complex128 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 55%] 2023-01-11T21:53:08.1792833Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_rand_like_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 55%] 2023-01-11T21:53:08.1793186Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_randint_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 55%] 2023-01-11T21:53:08.1793525Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_randn_cpu_complex128 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 55%] 2023-01-11T21:53:08.1793869Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_randn_like_cpu_complex128 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 55%] 2023-01-11T21:53:08.1794206Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_randn_like_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 55%] 2023-01-11T21:53:08.1794377Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_ravel_cpu_complex128 PASSED [ 55%] 2023-01-11T21:53:08.1794543Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_real_cpu_float64 PASSED [ 55%] 2023-01-11T21:53:08.1794719Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_remainder_cpu_float64 PASSED [ 55%] 2023-01-11T21:53:08.1794927Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_renorm_cpu_complex128 PASSED [ 55%] 2023-01-11T21:53:08.1795099Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_repeat_cpu_float64 PASSED [ 55%] 2023-01-11T21:53:08.1795273Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_repeat_interleave_cpu_complex128 PASSED [ 55%] 2023-01-11T21:53:08.1795447Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_reshape_as_cpu_float64 PASSED [ 55%] 2023-01-11T21:53:08.1795619Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_reshape_cpu_complex128 PASSED [ 55%] 2023-01-11T21:53:08.1795958Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_resize__cpu_complex128 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 55%] 2023-01-11T21:53:08.1796300Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_resize_as__cpu_complex128 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 55%] 2023-01-11T21:53:08.1796640Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_resize_as__cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 55%] 2023-01-11T21:53:08.1796821Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_resolve_conj_cpu_complex128 PASSED [ 55%] 2023-01-11T21:53:08.1796996Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_resolve_conj_cpu_float64 PASSED [ 55%] 2023-01-11T21:53:08.1797169Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_roll_cpu_complex128 PASSED [ 55%] 2023-01-11T21:53:08.1797333Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_roll_cpu_float64 PASSED [ 55%] 2023-01-11T21:53:08.1797490Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_rot90_cpu_complex128 PASSED [ 56%] 2023-01-11T21:53:08.1797670Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_round_decimals_0_cpu_float64 PASSED [ 56%] 2023-01-11T21:53:08.1797864Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_round_decimals_3_cpu_float64 SKIPPED (Skipped!) [ 56%] 2023-01-11T21:53:08.1798036Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_rsqrt_cpu_complex128 PASSED [ 56%] 2023-01-11T21:53:08.1798201Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_rsqrt_cpu_float64 PASSED [ 56%] 2023-01-11T21:53:08.1798371Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_rsub_cpu_complex128 PASSED [ 56%] 2023-01-11T21:53:08.1798535Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_rsub_cpu_float64 PASSED [ 56%] 2023-01-11T21:53:08.1798877Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_scalar_tensor_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 56%] 2023-01-11T21:53:08.1799057Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_scatter_add_cpu_complex128 PASSED [ 56%] 2023-01-11T21:53:08.1799266Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_scatter_reduce_amin_cpu_float64 PASSED [ 56%] 2023-01-11T21:53:08.1799452Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_scatter_reduce_prod_cpu_float64 PASSED [ 56%] 2023-01-11T21:53:08.1799801Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_searchsorted_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 56%] 2023-01-11T21:53:08.1800174Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_segment_reduce_lengths_cpu_float64 SKIPPED (Op claims it doesn't support gradgrad. This is not verified.) [ 56%] 2023-01-11T21:53:08.1800350Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_select_cpu_complex128 PASSED [ 56%] 2023-01-11T21:53:08.1800518Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_sgn_cpu_complex128 PASSED [ 56%] 2023-01-11T21:53:08.1800855Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_sigmoid_cpu_float64 PASSED [ 56%] 2023-01-11T21:53:08.1801255Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_signal_windows_bartlett_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 56%] 2023-01-11T21:53:08.1801670Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_signal_windows_cosine_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 56%] 2023-01-11T21:53:08.1802037Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_signal_windows_exponential_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 56%] 2023-01-11T21:53:08.1802385Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_signal_windows_gaussian_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 56%] 2023-01-11T21:53:08.1802756Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_signal_windows_general_cosine_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 56%] 2023-01-11T21:53:08.1803113Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_signal_windows_hamming_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 56%] 2023-01-11T21:53:08.1803470Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_signal_windows_hann_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 56%] 2023-01-11T21:53:08.1803825Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_signal_windows_kaiser_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 56%] 2023-01-11T21:53:08.1804181Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_signal_windows_nuttall_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 56%] 2023-01-11T21:53:08.1804348Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_sin_cpu_float64 PASSED [ 57%] 2023-01-11T21:53:08.1804514Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_sinh_cpu_float64 PASSED [ 57%] 2023-01-11T21:53:08.1804686Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_slice_cpu_complex128 PASSED [ 57%] 2023-01-11T21:53:08.1804855Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_slice_cpu_float64 PASSED [ 57%] 2023-01-11T21:53:08.1805025Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_softmax_cpu_float64 PASSED [ 57%] 2023-01-11T21:53:08.1805180Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_sort_cpu_float64 PASSED [ 57%] 2023-01-11T21:53:08.1805377Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_sparse_sampled_addmm_cpu_float64 SKIPPED (Skipped!) [ 57%] 2023-01-11T21:53:08.1805730Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_special_bessel_j0_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 57%] 2023-01-11T21:53:08.1806085Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_special_bessel_y1_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 57%] 2023-01-11T21:53:08.1806460Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_special_chebyshev_polynomial_t_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 57%] 2023-01-11T21:53:08.1806872Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_special_chebyshev_polynomial_u_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 57%] 2023-01-11T21:53:08.1807257Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_special_chebyshev_polynomial_v_cpu_float64 SKIPPED (Skipping - testing takes an unreasonably long time, #79528) [ 57%] 2023-01-11T21:53:08.1807632Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_special_chebyshev_polynomial_w_cpu_float64 SKIPPED (Skipping - testing takes an unreasonably long time, #79528) [ 57%] 2023-01-11T21:53:08.1807809Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_special_entr_cpu_float64 PASSED [ 57%] 2023-01-11T21:53:08.1808179Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_special_hermite_polynomial_h_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 57%] 2023-01-11T21:53:08.1808359Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_special_i0e_cpu_float64 PASSED [ 57%] 2023-01-11T21:53:08.1808550Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_special_i1e_cpu_float64 PASSED [ 57%] 2023-01-11T21:53:08.1808938Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_special_legendre_polynomial_p_cpu_float64 SKIPPED (Skipping - testing takes an unreasonably long time, #79528) [ 57%] 2023-01-11T21:53:08.1809303Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_special_modified_bessel_i0_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 57%] 2023-01-11T21:53:08.1809671Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_special_modified_bessel_k0_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 57%] 2023-01-11T21:53:08.1810033Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_special_modified_bessel_k1_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 57%] 2023-01-11T21:53:08.1810214Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_special_ndtri_cpu_float64 PASSED [ 57%] 2023-01-11T21:53:08.1810589Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_special_scaled_modified_bessel_k0_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 57%] 2023-01-11T21:53:08.1810966Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_special_scaled_modified_bessel_k1_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 57%] 2023-01-11T21:53:08.1811360Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_special_shifted_chebyshev_polynomial_w_cpu_float64 SKIPPED (Skipping - testing takes an unreasonably long time, #79528) [ 57%] 2023-01-11T21:53:08.1811705Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_special_zeta_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 58%] 2023-01-11T21:53:08.1811881Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_split_cpu_complex128 PASSED [ 58%] 2023-01-11T21:53:08.1812040Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_split_cpu_float64 PASSED [ 58%] 2023-01-11T21:53:08.1812224Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_split_list_args_cpu_complex128 PASSED [ 58%] 2023-01-11T21:53:08.1812411Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_split_with_sizes_cpu_complex128 PASSED [ 58%] 2023-01-11T21:53:08.1812581Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_sqrt_cpu_complex128 PASSED [ 58%] 2023-01-11T21:53:08.1812749Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_sqrt_cpu_float64 PASSED [ 58%] 2023-01-11T21:53:08.1812923Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_square_cpu_complex128 PASSED [ 58%] 2023-01-11T21:53:08.1813095Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_square_cpu_float64 PASSED [ 58%] 2023-01-11T21:53:08.1813306Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_squeeze_cpu_complex128 PASSED [ 58%] 2023-01-11T21:53:08.1813477Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_squeeze_cpu_float64 PASSED [ 58%] 2023-01-11T21:53:08.1813638Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_stack_cpu_complex128 PASSED [ 58%] 2023-01-11T21:53:08.1813804Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_std_cpu_float64 PASSED [ 58%] 2023-01-11T21:53:08.1813979Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_std_mean_cpu_complex128 PASSED [ 58%] 2023-01-11T21:53:08.1814148Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_std_mean_cpu_float64 PASSED [ 58%] 2023-01-11T21:53:08.1814333Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_std_mean_unbiased_cpu_complex128 PASSED [ 58%] 2023-01-11T21:53:08.1814514Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_std_mean_unbiased_cpu_float64 PASSED [ 58%] 2023-01-11T21:53:08.1814686Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_sub_cpu_complex128 PASSED [ 58%] 2023-01-11T21:53:08.1814890Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_sum_to_size_cpu_float64 PASSED [ 58%] 2023-01-11T21:53:08.1815049Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_svd_lowrank_cpu_float64 PASSED [ 58%] 2023-01-11T21:53:08.1815217Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_t_cpu_complex128 PASSED [ 58%] 2023-01-11T21:53:08.1815453Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_take_along_dim_cpu_float64 PASSED [ 58%] 2023-01-11T21:53:08.1815630Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_take_cpu_complex128 PASSED [ 58%] 2023-01-11T21:53:08.1815794Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_tan_cpu_float64 PASSED [ 58%] 2023-01-11T21:53:08.1815971Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_tensor_split_cpu_float64 PASSED [ 58%] 2023-01-11T21:53:08.1816145Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_tensordot_cpu_complex128 PASSED [ 59%] 2023-01-11T21:53:08.1816313Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_tile_cpu_float64 PASSED [ 59%] 2023-01-11T21:53:08.1816477Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_topk_cpu_float64 PASSED [ 59%] 2023-01-11T21:53:08.1816633Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_trace_cpu_complex128 PASSED [ 59%] 2023-01-11T21:53:08.1816809Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_trapezoid_cpu_complex128 PASSED [ 59%] 2023-01-11T21:53:08.1816971Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_tril_cpu_float64 PASSED [ 59%] 2023-01-11T21:53:08.1817132Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_triu_cpu_float64 PASSED [ 59%] 2023-01-11T21:53:08.1817310Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_true_divide_cpu_complex128 PASSED [ 59%] 2023-01-11T21:53:08.1817485Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_true_divide_cpu_float64 PASSED [ 59%] 2023-01-11T21:53:08.1817656Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_unbind_cpu_complex128 PASSED [ 59%] 2023-01-11T21:53:08.1817826Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_unbind_cpu_float64 PASSED [ 59%] 2023-01-11T21:53:08.1818002Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_unfold_copy_cpu_complex128 PASSED [ 59%] 2023-01-11T21:53:08.1818156Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_unfold_cpu_float64 PASSED [ 59%] 2023-01-11T21:53:08.1818500Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_uniform_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 59%] 2023-01-11T21:53:08.1818835Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_unique_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 59%] 2023-01-11T21:53:08.1819001Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_var_cpu_float64 PASSED [ 59%] 2023-01-11T21:53:08.1819219Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_var_mean_cpu_complex128 PASSED [ 59%] 2023-01-11T21:53:08.1819404Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_var_mean_unbiased_cpu_float64 PASSED [ 59%] 2023-01-11T21:53:08.1819583Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_var_unbiased_cpu_complex128 PASSED [ 59%] 2023-01-11T21:53:08.1819762Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_var_unbiased_cpu_float64 PASSED [ 59%] 2023-01-11T21:53:08.1819929Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_vdot_cpu_float64 PASSED [ 59%] 2023-01-11T21:53:08.1820097Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_view_as_complex_cpu_float64 PASSED [ 59%] 2023-01-11T21:53:08.1820266Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_view_as_cpu_float64 PASSED [ 59%] 2023-01-11T21:53:08.1820444Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_view_as_real_cpu_complex128 PASSED [ 59%] 2023-01-11T21:53:08.1820618Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_view_copy_cpu_float64 PASSED [ 59%] 2023-01-11T21:53:08.1820818Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_view_cpu_complex128 PASSED [ 60%] 2023-01-11T21:53:08.1820990Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_vsplit_cpu_float64 PASSED [ 60%] 2023-01-11T21:53:08.1821159Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_zero__cpu_complex128 PASSED [ 60%] 2023-01-11T21:53:08.1821326Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_zero__cpu_float64 PASSED [ 60%] 2023-01-11T21:53:08.1821667Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_zeros_cpu_complex128 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 60%] 2023-01-11T21:53:08.1821986Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_zeros_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 60%] 2023-01-11T21:53:08.1822332Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_zeros_like_cpu_complex128 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 60%] 2023-01-11T21:53:08.1822534Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_H_cpu_complex128 SKIPPED (Op has no inplace variant!) [ 60%] 2023-01-11T21:53:08.1822731Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_H_cpu_float64 SKIPPED (Op has no inplace variant!) [ 60%] 2023-01-11T21:53:08.1822926Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_T_cpu_float64 SKIPPED (Op has no inplace variant!) [ 60%] 2023-01-11T21:53:08.1823135Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad___getitem___cpu_complex128 SKIPPED (Op has no inplace variant!) [ 60%] 2023-01-11T21:53:08.1823338Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad___getitem___cpu_float64 SKIPPED (Op has no inplace variant!) [ 60%] 2023-01-11T21:53:08.1823538Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad___radd___cpu_float64 SKIPPED (Op has no inplace variant!) [ 60%] 2023-01-11T21:53:08.1823745Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad___rmatmul___cpu_float64 SKIPPED (Op has no inplace variant!) [ 60%] 2023-01-11T21:53:08.1823943Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad___rmul___cpu_complex128 SKIPPED (Op has no inplace variant!) [ 60%] 2023-01-11T21:53:08.1824129Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad___rmul___cpu_float64 SKIPPED (Op has no inplace variant!) [ 60%] 2023-01-11T21:53:08.1824315Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad___rpow___cpu_float64 SKIPPED (Skipped!) [ 60%] 2023-01-11T21:53:08.1824513Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad___rsub___cpu_complex128 SKIPPED (Op has no inplace variant!) [ 60%] 2023-01-11T21:53:08.1824713Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad___rsub___cpu_float64 SKIPPED (Op has no inplace variant!) [ 60%] 2023-01-11T21:53:08.1824963Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad__softmax_backward_data_cpu_float64 SKIPPED (Op has no inplace variant!) [ 60%] 2023-01-11T21:53:08.1825298Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_abs_cpu_complex128 SKIPPED (In-place abs not supported for complex tensors) [ 60%] 2023-01-11T21:53:08.1825465Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_abs_cpu_float64 PASSED [ 60%] 2023-01-11T21:53:08.1825632Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_acosh_cpu_float64 PASSED [ 60%] 2023-01-11T21:53:08.1825803Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_addcdiv_cpu_float64 PASSED [ 60%] 2023-01-11T21:53:08.1825978Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_addcmul_cpu_complex128 PASSED [ 60%] 2023-01-11T21:53:08.1826133Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_addmm_cpu_float64 PASSED [ 61%] 2023-01-11T21:53:08.1826307Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_addmv_cpu_complex128 PASSED [ 61%] 2023-01-11T21:53:08.1826669Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_all_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 61%] 2023-01-11T21:53:08.1827013Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_allclose_cpu_complex128 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 61%] 2023-01-11T21:53:08.1827212Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_amax_cpu_float64 SKIPPED (Op has no inplace variant!) [ 61%] 2023-01-11T21:53:08.1827409Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_amin_cpu_float64 SKIPPED (Op has no inplace variant!) [ 61%] 2023-01-11T21:53:08.1827745Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_aminmax_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 61%] 2023-01-11T21:53:08.1828078Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_any_cpu_complex128 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 61%] 2023-01-11T21:53:08.1828415Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_argmax_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 61%] 2023-01-11T21:53:08.1828744Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_argmin_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 61%] 2023-01-11T21:53:08.1829073Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_argwhere_cpu_complex128 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 61%] 2023-01-11T21:53:08.1829411Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_argwhere_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 61%] 2023-01-11T21:53:08.1829607Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_as_strided_cpu_float64 SKIPPED (Numerous errors) [ 61%] 2023-01-11T21:53:08.1829799Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_as_strided_partial_views_cpu_complex128 XFAIL [ 61%] 2023-01-11T21:53:08.1829989Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_as_strided_partial_views_cpu_float64 XFAIL [ 61%] 2023-01-11T21:53:08.1830208Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_as_strided_scatter_cpu_complex128 SKIPPED (Op has no inplace variant!) [ 61%] 2023-01-11T21:53:08.1830422Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_as_strided_scatter_cpu_float64 SKIPPED (Op has no inplace variant!) [ 61%] 2023-01-11T21:53:08.1830592Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_asin_cpu_float64 PASSED [ 61%] 2023-01-11T21:53:08.1830762Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_asinh_cpu_float64 PASSED [ 61%] 2023-01-11T21:53:08.1830930Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_atan2_cpu_float64 PASSED [ 61%] 2023-01-11T21:53:08.1831089Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_atan_cpu_complex128 PASSED [ 61%] 2023-01-11T21:53:08.1831286Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_atan_cpu_float64 PASSED [ 61%] 2023-01-11T21:53:08.1831459Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_atanh_cpu_complex128 PASSED [ 61%] 2023-01-11T21:53:08.1831666Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_atleast_1d_cpu_float64 SKIPPED (Op has no inplace variant!) [ 61%] 2023-01-11T21:53:08.1831875Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_atleast_2d_cpu_complex128 SKIPPED (Op has no inplace variant!) [ 61%] 2023-01-11T21:53:08.1832076Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_atleast_3d_cpu_float64 SKIPPED (Op has no inplace variant!) [ 62%] 2023-01-11T21:53:08.1832254Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_baddbmm_cpu_complex128 PASSED [ 62%] 2023-01-11T21:53:08.1832458Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_bernoulli_cpu_float64 SKIPPED (Op has no inplace variant!) [ 62%] 2023-01-11T21:53:08.1832667Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_block_diag_cpu_complex128 SKIPPED (Op has no inplace variant!) [ 62%] 2023-01-11T21:53:08.1833033Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_bool_cpu_complex128 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 62%] 2023-01-11T21:53:08.1833247Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_broadcast_to_cpu_complex128 SKIPPED (Op has no inplace variant!) [ 62%] 2023-01-11T21:53:08.1833586Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_bucketize_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 62%] 2023-01-11T21:53:08.1833797Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_cartesian_prod_cpu_float64 SKIPPED (Op has no inplace variant!) [ 62%] 2023-01-11T21:53:08.1834179Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_cat_cpu_complex128 SKIPPED (TODO(whc) fix pre-existing bug with cat for newly added opinfo for empty+nonempty) [ 62%] 2023-01-11T21:53:08.1834560Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_cat_cpu_float64 SKIPPED (TODO(whc) fix pre-existing bug with cat for newly added opinfo for empty+nonempty) [ 62%] 2023-01-11T21:53:08.1834760Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_cdist_cpu_float64 SKIPPED (Op has no inplace variant!) [ 62%] 2023-01-11T21:53:08.1834927Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_ceil_cpu_float64 PASSED [ 62%] 2023-01-11T21:53:08.1835130Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_cfloat_cpu_complex128 SKIPPED (Op has no inplace variant!) [ 62%] 2023-01-11T21:53:08.1835333Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_chalf_cpu_complex128 SKIPPED (Op has no inplace variant!) [ 62%] 2023-01-11T21:53:08.1835530Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_chalf_cpu_float64 SKIPPED (Op has no inplace variant!) [ 62%] 2023-01-11T21:53:08.1835857Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_char_cpu_complex128 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 62%] 2023-01-11T21:53:08.1836067Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_cholesky_cpu_complex128 SKIPPED (Op has no inplace variant!) [ 62%] 2023-01-11T21:53:08.1836267Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_cholesky_cpu_float64 SKIPPED (Op has no inplace variant!) [ 62%] 2023-01-11T21:53:08.1836479Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_cholesky_inverse_cpu_complex128 SKIPPED (Op has no inplace variant!) [ 62%] 2023-01-11T21:53:08.1836688Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_cholesky_inverse_cpu_float64 SKIPPED (Op has no inplace variant!) [ 62%] 2023-01-11T21:53:08.1836897Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_cholesky_solve_cpu_float64 SKIPPED (Op has no inplace variant!) [ 62%] 2023-01-11T21:53:08.1837096Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_chunk_cpu_complex128 SKIPPED (Op has no inplace variant!) [ 62%] 2023-01-11T21:53:08.1837296Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_clamp_cpu_float64 PASSED [ 62%] 2023-01-11T21:53:08.1837470Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_clamp_max_cpu_float64 PASSED [ 62%] 2023-01-11T21:53:08.1837670Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_clone_cpu_complex128 SKIPPED (Op has no inplace variant!) [ 62%] 2023-01-11T21:53:08.1837856Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_clone_cpu_float64 SKIPPED (Op has no inplace variant!) [ 63%] 2023-01-11T21:53:08.1838064Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_column_stack_cpu_complex128 SKIPPED (Op has no inplace variant!) [ 63%] 2023-01-11T21:53:08.1838267Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_column_stack_cpu_float64 SKIPPED (Op has no inplace variant!) [ 63%] 2023-01-11T21:53:08.1838467Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_combinations_cpu_float64 SKIPPED (Op has no inplace variant!) [ 63%] 2023-01-11T21:53:08.1838693Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_conj_cpu_float64 SKIPPED (Op has no inplace variant!) [ 63%] 2023-01-11T21:53:08.1838879Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_conj_physical_cpu_complex128 PASSED [ 63%] 2023-01-11T21:53:08.1839089Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_constant_pad_nd_cpu_float64 SKIPPED (Op has no inplace variant!) [ 63%] 2023-01-11T21:53:08.1839262Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_copysign_cpu_float64 PASSED [ 63%] 2023-01-11T21:53:08.1839471Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_corrcoef_cpu_complex128 SKIPPED (Op has no inplace variant!) [ 63%] 2023-01-11T21:53:08.1839630Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_cos_cpu_complex128 PASSED [ 63%] 2023-01-11T21:53:08.1839795Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_cos_cpu_float64 PASSED [ 63%] 2023-01-11T21:53:08.1839963Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_cosh_cpu_float64 PASSED [ 63%] 2023-01-11T21:53:08.1840166Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_cross_cpu_complex128 SKIPPED (Op has no inplace variant!) [ 63%] 2023-01-11T21:53:08.1840364Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_cross_cpu_float64 SKIPPED (Op has no inplace variant!) [ 63%] 2023-01-11T21:53:08.1840587Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_cumulative_trapezoid_cpu_complex128 SKIPPED (Op has no inplace variant!) [ 63%] 2023-01-11T21:53:08.1840959Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_deg2rad_cpu_float64 PASSED [ 63%] 2023-01-11T21:53:08.1841164Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_diag_cpu_complex128 SKIPPED (Op has no inplace variant!) [ 63%] 2023-01-11T21:53:08.1841362Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_diag_cpu_float64 SKIPPED (Op has no inplace variant!) [ 63%] 2023-01-11T21:53:08.1841575Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_diag_embed_cpu_complex128 SKIPPED (Op has no inplace variant!) [ 63%] 2023-01-11T21:53:08.1841770Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_diag_embed_cpu_float64 SKIPPED (Op has no inplace variant!) [ 63%] 2023-01-11T21:53:08.1841976Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_diagflat_cpu_complex128 SKIPPED (Op has no inplace variant!) [ 63%] 2023-01-11T21:53:08.1842180Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_diagflat_cpu_float64 SKIPPED (Op has no inplace variant!) [ 63%] 2023-01-11T21:53:08.1842393Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_diagonal_copy_cpu_complex128 SKIPPED (Op has no inplace variant!) [ 63%] 2023-01-11T21:53:08.1842600Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_diagonal_scatter_cpu_float64 SKIPPED (Op has no inplace variant!) [ 63%] 2023-01-11T21:53:08.1842856Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_diff_cpu_float64 SKIPPED (Op has no inplace variant!) [ 63%] 2023-01-11T21:53:08.1843029Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_digamma_cpu_float64 PASSED [ 64%] 2023-01-11T21:53:08.1843232Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_dist_cpu_complex128 SKIPPED (Op has no inplace variant!) [ 64%] 2023-01-11T21:53:08.1843428Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_dot_cpu_float64 SKIPPED (Op has no inplace variant!) [ 64%] 2023-01-11T21:53:08.1843632Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_double_cpu_complex128 SKIPPED (Op has no inplace variant!) [ 64%] 2023-01-11T21:53:08.1843823Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_dsplit_cpu_complex128 SKIPPED (Op has no inplace variant!) [ 64%] 2023-01-11T21:53:08.1844022Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_dsplit_cpu_float64 SKIPPED (Op has no inplace variant!) [ 64%] 2023-01-11T21:53:08.1844221Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_dstack_cpu_float64 SKIPPED (Op has no inplace variant!) [ 64%] 2023-01-11T21:53:08.1844604Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_empty_cpu_complex128 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 64%] 2023-01-11T21:53:08.1844952Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_empty_like_cpu_complex128 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 64%] 2023-01-11T21:53:08.1845296Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_empty_like_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 64%] 2023-01-11T21:53:08.1845463Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_erf_cpu_float64 PASSED [ 64%] 2023-01-11T21:53:08.1845633Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_erfinv_cpu_float64 PASSED [ 64%] 2023-01-11T21:53:08.1845800Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_exp2_cpu_float64 PASSED [ 64%] 2023-01-11T21:53:08.1845973Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_exp_cpu_complex128 PASSED [ 64%] 2023-01-11T21:53:08.1846127Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_exp_cpu_float64 PASSED [ 64%] 2023-01-11T21:53:08.1846332Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_expand_as_cpu_float64 SKIPPED (Op has no inplace variant!) [ 64%] 2023-01-11T21:53:08.1846670Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_eye_cpu_complex128 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 64%] 2023-01-11T21:53:08.1846998Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_eye_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 64%] 2023-01-11T21:53:08.1847199Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_fft_fft2_cpu_float64 SKIPPED (Op has no inplace variant!) [ 64%] 2023-01-11T21:53:08.1847409Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_fft_hfft2_cpu_complex128 SKIPPED (Op has no inplace variant!) [ 64%] 2023-01-11T21:53:08.1847615Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_fft_hfft_cpu_complex128 SKIPPED (Op has no inplace variant!) [ 64%] 2023-01-11T21:53:08.1847815Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_fft_hfft_cpu_float64 SKIPPED (Op has no inplace variant!) [ 64%] 2023-01-11T21:53:08.1848020Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_fft_hfftn_cpu_complex128 SKIPPED (Op has no inplace variant!) [ 64%] 2023-01-11T21:53:08.1848226Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_fft_ifft2_cpu_complex128 SKIPPED (Op has no inplace variant!) [ 64%] 2023-01-11T21:53:08.1848415Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_fft_ifft_cpu_complex128 SKIPPED (Op has no inplace variant!) [ 64%] 2023-01-11T21:53:08.1848620Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_fft_ifftn_cpu_complex128 SKIPPED (Op has no inplace variant!) [ 65%] 2023-01-11T21:53:08.1848863Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_fft_ifftshift_cpu_complex128 SKIPPED (Op has no inplace variant!) [ 65%] 2023-01-11T21:53:08.1849066Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_fft_ihfft_cpu_float64 SKIPPED (Op has no inplace variant!) [ 65%] 2023-01-11T21:53:08.1849269Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_fft_irfft2_cpu_float64 SKIPPED (Op has no inplace variant!) [ 65%] 2023-01-11T21:53:08.1849471Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_fft_irfft_cpu_float64 SKIPPED (Op has no inplace variant!) [ 65%] 2023-01-11T21:53:08.1849671Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_fft_irfftn_cpu_float64 SKIPPED (Op has no inplace variant!) [ 65%] 2023-01-11T21:53:08.1849873Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_flatten_cpu_complex128 SKIPPED (Op has no inplace variant!) [ 65%] 2023-01-11T21:53:08.1850075Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_flip_cpu_complex128 SKIPPED (Op has no inplace variant!) [ 65%] 2023-01-11T21:53:08.1850301Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_flip_cpu_float64 SKIPPED (Op has no inplace variant!) [ 65%] 2023-01-11T21:53:08.1850492Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_fliplr_cpu_complex128 SKIPPED (Op has no inplace variant!) [ 65%] 2023-01-11T21:53:08.1850671Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_float_power_cpu_float64 PASSED [ 65%] 2023-01-11T21:53:08.1851017Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_floor_divide_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 65%] 2023-01-11T21:53:08.1851213Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_fmin_cpu_float64 SKIPPED (Op has no inplace variant!) [ 65%] 2023-01-11T21:53:08.1851381Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_frac_cpu_float64 PASSED [ 65%] 2023-01-11T21:53:08.1851719Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_full_cpu_complex128 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 65%] 2023-01-11T21:53:08.1852056Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_full_like_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 65%] 2023-01-11T21:53:08.1852382Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_ge_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 65%] 2023-01-11T21:53:08.1852585Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_gradient_cpu_float64 SKIPPED (Op has no inplace variant!) [ 65%] 2023-01-11T21:53:08.1852909Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_gt_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 65%] 2023-01-11T21:53:08.1853097Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_half_cpu_complex128 SKIPPED (Op has no inplace variant!) [ 65%] 2023-01-11T21:53:08.1853295Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_half_cpu_float64 SKIPPED (Op has no inplace variant!) [ 65%] 2023-01-11T21:53:08.1853636Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_histogram_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 65%] 2023-01-11T21:53:08.1853839Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_hsplit_cpu_float64 SKIPPED (Op has no inplace variant!) [ 65%] 2023-01-11T21:53:08.1854009Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_hypot_cpu_float64 PASSED [ 65%] 2023-01-11T21:53:08.1854188Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_index_add_cpu_complex128 PASSED [ 65%] 2023-01-11T21:53:08.1854366Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_index_copy_cpu_float64 PASSED [ 66%] 2023-01-11T21:53:08.1854546Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_index_fill_cpu_complex128 PASSED [ 66%] 2023-01-11T21:53:08.1854748Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_index_fill_cpu_float64 PASSED [ 66%] 2023-01-11T21:53:08.1854910Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_index_put_cpu_float64 PASSED [ 66%] 2023-01-11T21:53:08.1855120Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_index_select_cpu_complex128 SKIPPED (Op has no inplace variant!) [ 66%] 2023-01-11T21:53:08.1855535Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_isclose_cpu_complex128 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 66%] 2023-01-11T21:53:08.1855877Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_isclose_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 66%] 2023-01-11T21:53:08.1856216Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_isfinite_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 66%] 2023-01-11T21:53:08.1856542Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_isin_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 66%] 2023-01-11T21:53:08.1856946Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_isnan_cpu_complex128 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 66%] 2023-01-11T21:53:08.1857287Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_isreal_cpu_complex128 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 66%] 2023-01-11T21:53:08.1857619Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_isreal_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 66%] 2023-01-11T21:53:08.1857822Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_istft_cpu_complex128 SKIPPED (Op has no inplace variant!) [ 66%] 2023-01-11T21:53:08.1858034Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_jiterator_2inputs_2outputs_cpu_float64 SKIPPED (Only runs on cuda) [ 66%] 2023-01-11T21:53:08.1858238Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_jiterator_4inputs_with_extra_args_cpu_float64 SKIPPED (Only runs on cuda) [ 66%] 2023-01-11T21:53:08.1858451Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_jiterator_unary_cpu_complex128 SKIPPED (Only runs on cuda) [ 66%] 2023-01-11T21:53:08.1858653Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_jiterator_unary_cpu_float64 SKIPPED (Only runs on cuda) [ 66%] 2023-01-11T21:53:08.1858850Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_kron_cpu_float64 SKIPPED (Op has no inplace variant!) [ 66%] 2023-01-11T21:53:08.1859053Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_kthvalue_cpu_float64 SKIPPED (Op has no inplace variant!) [ 66%] 2023-01-11T21:53:08.1859222Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_ldexp_cpu_float64 PASSED [ 66%] 2023-01-11T21:53:08.1859395Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_lerp_cpu_complex128 PASSED [ 66%] 2023-01-11T21:53:08.1859565Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_lerp_cpu_float64 PASSED [ 66%] 2023-01-11T21:53:08.1859735Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_lgamma_cpu_float64 PASSED [ 66%] 2023-01-11T21:53:08.1859948Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_linalg_cond_cpu_complex128 SKIPPED (Op has no inplace variant!) [ 66%] 2023-01-11T21:53:08.1860147Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_linalg_cross_cpu_complex128 SKIPPED (Op has no inplace variant!) [ 66%] 2023-01-11T21:53:08.1860360Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_linalg_det_singular_cpu_float64 SKIPPED (Op has no inplace variant!) [ 66%] 2023-01-11T21:53:08.1860569Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_linalg_eig_cpu_complex128 SKIPPED (Op has no inplace variant!) [ 67%] 2023-01-11T21:53:08.1860775Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_linalg_eigh_cpu_float64 SKIPPED (Op has no inplace variant!) [ 67%] 2023-01-11T21:53:08.1861019Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_linalg_eigvals_cpu_complex128 SKIPPED (Op has no inplace variant!) [ 67%] 2023-01-11T21:53:08.1861248Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_linalg_householder_product_cpu_complex128 SKIPPED (Op has no inplace variant!) [ 67%] 2023-01-11T21:53:08.1861470Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_linalg_householder_product_cpu_float64 SKIPPED (Op has no inplace variant!) [ 67%] 2023-01-11T21:53:08.1861680Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_linalg_inv_cpu_complex128 SKIPPED (Op has no inplace variant!) [ 67%] 2023-01-11T21:53:08.1861886Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_linalg_inv_cpu_float64 SKIPPED (Op has no inplace variant!) [ 67%] 2023-01-11T21:53:08.1862247Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_linalg_ldl_factor_cpu_complex128 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 67%] 2023-01-11T21:53:08.1862590Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_linalg_ldl_factor_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 67%] 2023-01-11T21:53:08.1862978Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_linalg_ldl_factor_ex_cpu_complex128 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 67%] 2023-01-11T21:53:08.1863175Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_linalg_lstsq_cpu_complex128 SKIPPED (Skipped!) [ 67%] 2023-01-11T21:53:08.1863398Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_linalg_lstsq_grad_oriented_cpu_complex128 SKIPPED (Op has no inplace variant!) [ 67%] 2023-01-11T21:53:08.1863603Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_linalg_lu_cpu_complex128 SKIPPED (Op has no inplace variant!) [ 67%] 2023-01-11T21:53:08.1863804Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_linalg_lu_cpu_float64 SKIPPED (Op has no inplace variant!) [ 67%] 2023-01-11T21:53:08.1864016Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_linalg_lu_factor_cpu_float64 SKIPPED (Op has no inplace variant!) [ 67%] 2023-01-11T21:53:08.1864236Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_linalg_matrix_norm_cpu_complex128 SKIPPED (Op has no inplace variant!) [ 67%] 2023-01-11T21:53:08.1864455Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_linalg_matrix_power_cpu_complex128 SKIPPED (Op has no inplace variant!) [ 67%] 2023-01-11T21:53:08.1864668Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_linalg_matrix_power_cpu_float64 SKIPPED (Op has no inplace variant!) [ 67%] 2023-01-11T21:53:08.1865026Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_linalg_matrix_rank_cpu_complex128 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 67%] 2023-01-11T21:53:08.1865387Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_linalg_matrix_rank_hermitian_cpu_complex128 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 67%] 2023-01-11T21:53:08.1865762Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_linalg_matrix_rank_hermitian_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 67%] 2023-01-11T21:53:08.1865971Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_linalg_norm_cpu_complex128 SKIPPED (Op has no inplace variant!) [ 67%] 2023-01-11T21:53:08.1866200Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_linalg_norm_subgradients_at_zero_cpu_complex128 SKIPPED (Op has no inplace variant!) [ 67%] 2023-01-11T21:53:08.1866407Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_linalg_pinv_cpu_complex128 SKIPPED (Op has no inplace variant!) [ 67%] 2023-01-11T21:53:08.1866610Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_linalg_pinv_cpu_float64 SKIPPED (Op has no inplace variant!) [ 67%] 2023-01-11T21:53:08.1866858Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_linalg_pinv_singular_cpu_float64 SKIPPED (test is slow; run with PYTORCH_TEST_WITH_SLOW to enable test) [ 68%] 2023-01-11T21:53:08.1867099Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_linalg_qr_cpu_complex128 SKIPPED (Op has no inplace variant!) [ 68%] 2023-01-11T21:53:08.1867305Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_linalg_slogdet_cpu_float64 SKIPPED (Op has no inplace variant!) [ 68%] 2023-01-11T21:53:08.1867514Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_linalg_solve_cpu_complex128 SKIPPED (Op has no inplace variant!) [ 68%] 2023-01-11T21:53:08.1867717Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_linalg_solve_cpu_float64 SKIPPED (Op has no inplace variant!) [ 68%] 2023-01-11T21:53:08.1867908Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_linalg_solve_ex_cpu_float64 SKIPPED (Op has no inplace variant!) [ 68%] 2023-01-11T21:53:08.1868129Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_linalg_solve_triangular_cpu_complex128 SKIPPED (Op has no inplace variant!) [ 68%] 2023-01-11T21:53:08.1868347Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_linalg_svdvals_cpu_complex128 SKIPPED (Op has no inplace variant!) [ 68%] 2023-01-11T21:53:08.1868588Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_linalg_tensorinv_cpu_complex128 SKIPPED (Op has no inplace variant!) [ 68%] 2023-01-11T21:53:08.1868802Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_linalg_tensorinv_cpu_float64 SKIPPED (Op has no inplace variant!) [ 68%] 2023-01-11T21:53:08.1869017Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_linalg_tensorsolve_cpu_complex128 SKIPPED (Op has no inplace variant!) [ 68%] 2023-01-11T21:53:08.1869231Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_linalg_tensorsolve_cpu_float64 SKIPPED (Op has no inplace variant!) [ 68%] 2023-01-11T21:53:08.1869445Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_linalg_vector_norm_cpu_complex128 SKIPPED (Op has no inplace variant!) [ 68%] 2023-01-11T21:53:08.1869661Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_linalg_vector_norm_cpu_float64 SKIPPED (Op has no inplace variant!) [ 68%] 2023-01-11T21:53:08.1870011Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_linspace_cpu_complex128 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 68%] 2023-01-11T21:53:08.1870182Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_log1p_cpu_float64 PASSED [ 68%] 2023-01-11T21:53:08.1870340Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_log2_cpu_complex128 PASSED [ 68%] 2023-01-11T21:53:08.1870508Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_log2_cpu_float64 PASSED [ 68%] 2023-01-11T21:53:08.1870711Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_log_softmax_cpu_float64 SKIPPED (Op has no inplace variant!) [ 68%] 2023-01-11T21:53:08.1870916Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_logaddexp_cpu_float64 SKIPPED (Op has no inplace variant!) [ 68%] 2023-01-11T21:53:08.1871129Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_logcumsumexp_cpu_float64 SKIPPED (Op has no inplace variant!) [ 68%] 2023-01-11T21:53:08.1871472Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_logical_and_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 68%] 2023-01-11T21:53:08.1871813Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_logical_not_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 68%] 2023-01-11T21:53:08.1872155Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_logical_or_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 68%] 2023-01-11T21:53:08.1872324Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_logit_cpu_float64 PASSED [ 68%] 2023-01-11T21:53:08.1872657Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_logspace_cpu_complex128 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 69%] 2023-01-11T21:53:08.1872891Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_logsumexp_cpu_float64 SKIPPED (Op has no inplace variant!) [ 69%] 2023-01-11T21:53:08.1873223Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_long_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 69%] 2023-01-11T21:53:08.1873549Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_lt_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 69%] 2023-01-11T21:53:08.1873745Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_lu_cpu_float64 SKIPPED (Op has no inplace variant!) [ 69%] 2023-01-11T21:53:08.1873951Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_lu_solve_cpu_complex128 SKIPPED (Op has no inplace variant!) [ 69%] 2023-01-11T21:53:08.1874158Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_lu_unpack_cpu_complex128 SKIPPED (Op has no inplace variant!) [ 69%] 2023-01-11T21:53:08.1874355Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_mH_cpu_float64 SKIPPED (Op has no inplace variant!) [ 69%] 2023-01-11T21:53:08.1874586Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_mT_cpu_float64 SKIPPED (Op has no inplace variant!) [ 69%] 2023-01-11T21:53:08.1874793Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_masked_amin_cpu_float64 SKIPPED (Op has no inplace variant!) [ 69%] 2023-01-11T21:53:08.1875140Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_masked_argmax_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 69%] 2023-01-11T21:53:08.1875338Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_masked_cumprod_cpu_float64 SKIPPED (Op has no inplace variant!) [ 69%] 2023-01-11T21:53:08.1875546Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_masked_cumsum_cpu_float64 SKIPPED (Op has no inplace variant!) [ 69%] 2023-01-11T21:53:08.1875724Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_masked_fill_cpu_complex128 PASSED [ 69%] 2023-01-11T21:53:08.1875934Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_masked_mean_cpu_complex128 SKIPPED (Op has no inplace variant!) [ 69%] 2023-01-11T21:53:08.1876137Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_masked_median_cpu_float64 SKIPPED (Op has no inplace variant!) [ 69%] 2023-01-11T21:53:08.1876351Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_masked_normalize_cpu_complex128 SKIPPED (Op has no inplace variant!) [ 69%] 2023-01-11T21:53:08.1876564Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_masked_normalize_cpu_float64 SKIPPED (Op has no inplace variant!) [ 69%] 2023-01-11T21:53:08.1876774Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_masked_prod_cpu_complex128 SKIPPED (Op has no inplace variant!) [ 69%] 2023-01-11T21:53:08.1876959Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_masked_scatter_cpu_complex128 PASSED [ 69%] 2023-01-11T21:53:08.1877170Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_masked_select_cpu_float64 SKIPPED (Op has no inplace variant!) [ 69%] 2023-01-11T21:53:08.1877361Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_masked_std_cpu_complex128 SKIPPED (Op has no inplace variant!) [ 69%] 2023-01-11T21:53:08.1877567Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_masked_std_cpu_float64 SKIPPED (Op has no inplace variant!) [ 69%] 2023-01-11T21:53:08.1877773Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_masked_sum_cpu_complex128 SKIPPED (Op has no inplace variant!) [ 69%] 2023-01-11T21:53:08.1887114Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_masked_var_cpu_complex128 SKIPPED (Op has no inplace variant!) [ 69%] 2023-01-11T21:53:08.1887414Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_masked_var_cpu_float64 SKIPPED (Op has no inplace variant!) [ 70%] 2023-01-11T21:53:08.1887632Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_matmul_cpu_complex128 SKIPPED (Op has no inplace variant!) [ 70%] 2023-01-11T21:53:08.1887994Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_matmul_cpu_float64 SKIPPED (Op has no inplace variant!) [ 70%] 2023-01-11T21:53:08.1888209Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_matrix_exp_cpu_complex128 SKIPPED (Op has no inplace variant!) [ 70%] 2023-01-11T21:53:08.1888417Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_max_binary_cpu_float64 SKIPPED (Op has no inplace variant!) [ 70%] 2023-01-11T21:53:08.1888620Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_mean_cpu_complex128 SKIPPED (Op has no inplace variant!) [ 70%] 2023-01-11T21:53:08.1888806Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_mean_cpu_float64 SKIPPED (Op has no inplace variant!) [ 70%] 2023-01-11T21:53:08.1889005Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_median_cpu_float64 SKIPPED (Op has no inplace variant!) [ 70%] 2023-01-11T21:53:08.1889230Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_meshgrid_list_of_tensors_cpu_complex128 SKIPPED (Op has no inplace variant!) [ 70%] 2023-01-11T21:53:08.1889515Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_meshgrid_variadic_tensors_cpu_complex128 SKIPPED (Op has no inplace variant!) [ 70%] 2023-01-11T21:53:08.1889739Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_meshgrid_variadic_tensors_cpu_float64 SKIPPED (Op has no inplace variant!) [ 70%] 2023-01-11T21:53:08.1889948Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_min_binary_cpu_float64 SKIPPED (Op has no inplace variant!) [ 70%] 2023-01-11T21:53:08.1890164Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_min_reduction_with_dim_cpu_float64 SKIPPED (Op has no inplace variant!) [ 70%] 2023-01-11T21:53:08.1890362Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_mode_cpu_float64 SKIPPED (Op has no inplace variant!) [ 70%] 2023-01-11T21:53:08.1890577Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_movedim_cpu_complex128 SKIPPED (Op has no inplace variant!) [ 70%] 2023-01-11T21:53:08.1890779Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_movedim_cpu_float64 SKIPPED (Op has no inplace variant!) [ 70%] 2023-01-11T21:53:08.1890940Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_mul_cpu_complex128 PASSED [ 70%] 2023-01-11T21:53:08.1891341Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_multinomial_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 70%] 2023-01-11T21:53:08.1891544Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_mv_cpu_complex128 SKIPPED (Op has no inplace variant!) [ 70%] 2023-01-11T21:53:08.1891722Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_nan_to_num_cpu_float64 PASSED [ 70%] 2023-01-11T21:53:08.1891927Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_nanquantile_cpu_float64 SKIPPED (Op has no inplace variant!) [ 70%] 2023-01-11T21:53:08.1892130Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_nansum_cpu_float64 SKIPPED (Op has no inplace variant!) [ 70%] 2023-01-11T21:53:08.1892472Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_narrow_copy_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 70%] 2023-01-11T21:53:08.1892695Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_native_dropout_backward_cpu_float64 SKIPPED (Op has no inplace variant!) [ 70%] 2023-01-11T21:53:08.1893022Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_ne_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 70%] 2023-01-11T21:53:08.1893196Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_neg_cpu_complex128 PASSED [ 71%] 2023-01-11T21:53:08.1893353Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_neg_cpu_float64 PASSED [ 71%] 2023-01-11T21:53:08.1893698Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_new_empty_cpu_complex128 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 71%] 2023-01-11T21:53:08.1894074Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_new_empty_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 71%] 2023-01-11T21:53:08.1894428Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_new_empty_strided_cpu_complex128 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 71%] 2023-01-11T21:53:08.1894781Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_new_empty_strided_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 71%] 2023-01-11T21:53:08.1895126Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_new_ones_cpu_complex128 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 71%] 2023-01-11T21:53:08.1895556Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_new_ones_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 71%] 2023-01-11T21:53:08.1895908Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_new_zeros_cpu_complex128 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 71%] 2023-01-11T21:53:08.1896281Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_new_zeros_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 71%] 2023-01-11T21:53:08.1896521Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_nn_functional__scaled_dot_product_attention_cpu_float64 SKIPPED (Op has no inplace variant!) [ 71%] 2023-01-11T21:53:08.1896720Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_nn_functional_alpha_dropout_cpu_float64 PASSED [ 71%] 2023-01-11T21:53:08.1896929Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_nn_functional_avg_pool2d_cpu_float64 SKIPPED (Op has no inplace variant!) [ 71%] 2023-01-11T21:53:08.1897148Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_nn_functional_avg_pool3d_cpu_float64 SKIPPED (Op has no inplace variant!) [ 71%] 2023-01-11T21:53:08.1897363Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_nn_functional_conv1d_cpu_float64 SKIPPED (Op has no inplace variant!) [ 71%] 2023-01-11T21:53:08.1897583Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_nn_functional_conv2d_cpu_complex128 SKIPPED (Op has no inplace variant!) [ 71%] 2023-01-11T21:53:08.1897792Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_nn_functional_conv2d_cpu_float64 SKIPPED (Op has no inplace variant!) [ 71%] 2023-01-11T21:53:08.1898022Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_nn_functional_conv_transpose1d_cpu_complex128 SKIPPED (Op has no inplace variant!) [ 71%] 2023-01-11T21:53:08.1898245Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_nn_functional_conv_transpose2d_cpu_complex128 SKIPPED (Op has no inplace variant!) [ 71%] 2023-01-11T21:53:08.1898474Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_nn_functional_conv_transpose3d_cpu_complex128 SKIPPED (Op has no inplace variant!) [ 71%] 2023-01-11T21:53:08.1898694Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_nn_functional_ctc_loss_cpu_float64 SKIPPED (Op has no inplace variant!) [ 71%] 2023-01-11T21:53:08.1898886Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_nn_functional_dropout2d_cpu_float64 PASSED [ 71%] 2023-01-11T21:53:08.1899079Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_nn_functional_dropout3d_cpu_float64 PASSED [ 71%] 2023-01-11T21:53:08.1899290Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_nn_functional_embedding_bag_cpu_float64 SKIPPED (Op has no inplace variant!) [ 71%] 2023-01-11T21:53:08.1899509Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_nn_functional_embedding_cpu_float64 SKIPPED (Op has no inplace variant!) [ 71%] 2023-01-11T21:53:08.1899725Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_nn_functional_feature_alpha_dropout_with_train_cpu_float64 PASSED [ 72%] 2023-01-11T21:53:08.1899975Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_nn_functional_feature_alpha_dropout_without_train_cpu_float64 PASSED [ 72%] 2023-01-11T21:53:08.1900193Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_nn_functional_gelu_cpu_float64 SKIPPED (Op has no inplace variant!) [ 72%] 2023-01-11T21:53:08.1900413Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_nn_functional_grid_sample_cpu_float64 SKIPPED (Op has no inplace variant!) [ 72%] 2023-01-11T21:53:08.1900632Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_nn_functional_group_norm_cpu_float64 SKIPPED (Op has no inplace variant!) [ 72%] 2023-01-11T21:53:08.1900826Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_nn_functional_hardsigmoid_cpu_float64 PASSED [ 72%] 2023-01-11T21:53:08.1901046Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_nn_functional_hardtanh_cpu_float64 SKIPPED (Op has no inplace variant!) [ 72%] 2023-01-11T21:53:08.1901267Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_nn_functional_instance_norm_cpu_float64 SKIPPED (Op has no inplace variant!) [ 72%] 2023-01-11T21:53:08.1901523Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_nn_functional_interpolate_area_cpu_float64 SKIPPED (Op has no inplace variant!) [ 72%] 2023-01-11T21:53:08.1901741Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_nn_functional_interpolate_bicubic_cpu_float64 SKIPPED (Op has no inplace variant!) [ 72%] 2023-01-11T21:53:08.1901968Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_nn_functional_interpolate_nearest_cpu_float64 SKIPPED (Op has no inplace variant!) [ 72%] 2023-01-11T21:53:08.1902185Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_nn_functional_l1_loss_cpu_complex128 SKIPPED (Op has no inplace variant!) [ 72%] 2023-01-11T21:53:08.1902402Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_nn_functional_l1_loss_cpu_float64 SKIPPED (Op has no inplace variant!) [ 72%] 2023-01-11T21:53:08.1902596Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_nn_functional_leaky_relu_cpu_float64 PASSED [ 72%] 2023-01-11T21:53:08.1902815Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_nn_functional_linear_cpu_complex128 SKIPPED (Op has no inplace variant!) [ 72%] 2023-01-11T21:53:08.1903042Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_nn_functional_local_response_norm_cpu_float64 SKIPPED (Op has no inplace variant!) [ 72%] 2023-01-11T21:53:08.1903263Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_nn_functional_logsigmoid_cpu_float64 SKIPPED (Op has no inplace variant!) [ 72%] 2023-01-11T21:53:08.1903477Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_nn_functional_max_pool3d_cpu_float64 SKIPPED (Op has no inplace variant!) [ 72%] 2023-01-11T21:53:08.1903700Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_nn_functional_max_unpool1d_cpu_float64 SKIPPED (Op has no inplace variant!) [ 72%] 2023-01-11T21:53:08.1903915Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_nn_functional_max_unpool2d_grad_cpu_float64 SKIPPED (Op has no inplace variant!) [ 72%] 2023-01-11T21:53:08.1904134Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_nn_functional_max_unpool3d_grad_cpu_float64 SKIPPED (Op has no inplace variant!) [ 72%] 2023-01-11T21:53:08.1904321Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_nn_functional_mish_cpu_float64 PASSED [ 72%] 2023-01-11T21:53:08.1904535Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_nn_functional_mse_loss_cpu_float64 SKIPPED (Op has no inplace variant!) [ 72%] 2023-01-11T21:53:08.1904772Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_nn_functional_multilabel_soft_margin_loss_cpu_float64 SKIPPED (Op has no inplace variant!) [ 72%] 2023-01-11T21:53:08.1904995Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_nn_functional_pad_circular_cpu_complex128 SKIPPED (Op has no inplace variant!) [ 72%] 2023-01-11T21:53:08.1905256Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_nn_functional_pad_constant_cpu_complex128 SKIPPED (Op has no inplace variant!) [ 73%] 2023-01-11T21:53:08.1905477Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_nn_functional_pad_constant_cpu_float64 SKIPPED (Op has no inplace variant!) [ 73%] 2023-01-11T21:53:08.1905700Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_nn_functional_pad_reflect_cpu_complex128 SKIPPED (Op has no inplace variant!) [ 73%] 2023-01-11T21:53:08.1905918Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_nn_functional_pad_reflect_cpu_float64 SKIPPED (Op has no inplace variant!) [ 73%] 2023-01-11T21:53:08.1906143Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_nn_functional_pad_replicate_cpu_complex128 SKIPPED (Op has no inplace variant!) [ 73%] 2023-01-11T21:53:08.1906350Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_nn_functional_pad_replicate_cpu_float64 SKIPPED (Op has no inplace variant!) [ 73%] 2023-01-11T21:53:08.1906564Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_nn_functional_pdist_cpu_float64 SKIPPED (Op has no inplace variant!) [ 73%] 2023-01-11T21:53:08.1906805Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_nn_functional_pixel_shuffle_cpu_float64 SKIPPED (Op has no inplace variant!) [ 73%] 2023-01-11T21:53:08.1907030Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_nn_functional_pixel_unshuffle_cpu_float64 SKIPPED (Op has no inplace variant!) [ 73%] 2023-01-11T21:53:08.1907240Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_nn_functional_relu_cpu_float64 SKIPPED (Op has no inplace variant!) [ 73%] 2023-01-11T21:53:08.1907425Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_nn_functional_selu_cpu_float64 PASSED [ 73%] 2023-01-11T21:53:08.1907649Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_nn_functional_soft_margin_loss_cpu_float64 SKIPPED (Op has no inplace variant!) [ 73%] 2023-01-11T21:53:08.1907864Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_nn_functional_softmin_cpu_float64 SKIPPED (Op has no inplace variant!) [ 73%] 2023-01-11T21:53:08.1908080Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_nn_functional_softplus_cpu_float64 SKIPPED (Op has no inplace variant!) [ 73%] 2023-01-11T21:53:08.1908294Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_nn_functional_softsign_cpu_float64 SKIPPED (Op has no inplace variant!) [ 73%] 2023-01-11T21:53:08.1908509Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_nn_functional_tanhshrink_cpu_float64 SKIPPED (Op has no inplace variant!) [ 73%] 2023-01-11T21:53:08.1908724Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_nn_functional_triplet_margin_loss_cpu_complex128 SKIPPED (Op has no inplace variant!) [ 73%] 2023-01-11T21:53:08.1908967Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_nn_functional_triplet_margin_with_distance_loss_cpu_complex128 SKIPPED (Op has no inplace variant!) [ 73%] 2023-01-11T21:53:08.1909212Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_nn_functional_triplet_margin_with_distance_loss_cpu_float64 SKIPPED (Op has no inplace variant!) [ 73%] 2023-01-11T21:53:08.1909429Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_nn_functional_unfold_cpu_complex128 SKIPPED (Op has no inplace variant!) [ 73%] 2023-01-11T21:53:08.1909644Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_nn_functional_unfold_cpu_float64 SKIPPED (Op has no inplace variant!) [ 73%] 2023-01-11T21:53:08.1909843Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_norm_cpu_complex128 SKIPPED (Op has no inplace variant!) [ 73%] 2023-01-11T21:53:08.1910048Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_norm_fro_cpu_complex128 SKIPPED (Op has no inplace variant!) [ 73%] 2023-01-11T21:53:08.1910246Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_norm_inf_cpu_float64 SKIPPED (Op has no inplace variant!) [ 73%] 2023-01-11T21:53:08.1910486Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_norm_nuc_cpu_complex128 SKIPPED (Op has no inplace variant!) [ 73%] 2023-01-11T21:53:08.1910824Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_ones_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 74%] 2023-01-11T21:53:08.1911157Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_ones_like_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 74%] 2023-01-11T21:53:08.1911349Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_ormqr_cpu_complex128 SKIPPED (Op has no inplace variant!) [ 74%] 2023-01-11T21:53:08.1911550Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_ormqr_cpu_float64 SKIPPED (Op has no inplace variant!) [ 74%] 2023-01-11T21:53:08.1911756Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_outer_cpu_complex128 SKIPPED (Op has no inplace variant!) [ 74%] 2023-01-11T21:53:08.1911964Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_pinverse_cpu_complex128 SKIPPED (Op has no inplace variant!) [ 74%] 2023-01-11T21:53:08.1912192Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_pinverse_cpu_float64 SKIPPED (Op has no inplace variant!) [ 74%] 2023-01-11T21:53:08.1912387Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_polygamma_polygamma_n_0_cpu_float64 PASSED [ 74%] 2023-01-11T21:53:08.1912586Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_polygamma_polygamma_n_1_cpu_float64 SKIPPED (Skipped!) [ 74%] 2023-01-11T21:53:08.1912789Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_polygamma_polygamma_n_2_cpu_float64 SKIPPED (Skipped!) [ 74%] 2023-01-11T21:53:08.1912989Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_polygamma_polygamma_n_4_cpu_float64 SKIPPED (Skipped!) [ 74%] 2023-01-11T21:53:08.1913193Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_positive_cpu_float64 SKIPPED (Op has no inplace variant!) [ 74%] 2023-01-11T21:53:08.1913355Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_pow_cpu_complex128 PASSED [ 74%] 2023-01-11T21:53:08.1913524Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_pow_cpu_float64 PASSED [ 74%] 2023-01-11T21:53:08.1913692Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_put_cpu_complex128 PASSED [ 74%] 2023-01-11T21:53:08.1913856Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_put_cpu_float64 PASSED [ 74%] 2023-01-11T21:53:08.1914056Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_quantile_cpu_float64 SKIPPED (Op has no inplace variant!) [ 74%] 2023-01-11T21:53:08.1914405Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_randn_like_cpu_complex128 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 74%] 2023-01-11T21:53:08.1914747Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_randn_like_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 74%] 2023-01-11T21:53:08.1914950Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_ravel_cpu_float64 SKIPPED (Op has no inplace variant!) [ 74%] 2023-01-11T21:53:08.1915154Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_real_cpu_complex128 SKIPPED (Op has no inplace variant!) [ 74%] 2023-01-11T21:53:08.1915339Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_real_cpu_float64 SKIPPED (Op has no inplace variant!) [ 74%] 2023-01-11T21:53:08.1915520Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_reciprocal_cpu_float64 PASSED [ 74%] 2023-01-11T21:53:08.1915694Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_remainder_cpu_float64 PASSED [ 74%] 2023-01-11T21:53:08.1915865Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_renorm_cpu_float64 PASSED [ 74%] 2023-01-11T21:53:08.1916083Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_repeat_interleave_cpu_complex128 SKIPPED (Op has no inplace variant!) [ 75%] 2023-01-11T21:53:08.1916327Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_repeat_interleave_cpu_float64 SKIPPED (Op has no inplace variant!) [ 75%] 2023-01-11T21:53:08.1916534Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_reshape_as_cpu_complex128 SKIPPED (Op has no inplace variant!) [ 75%] 2023-01-11T21:53:08.1916739Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_reshape_as_cpu_float64 SKIPPED (Op has no inplace variant!) [ 75%] 2023-01-11T21:53:08.1916945Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_reshape_cpu_complex128 SKIPPED (Op has no inplace variant!) [ 75%] 2023-01-11T21:53:08.1917144Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_reshape_cpu_float64 SKIPPED (Op has no inplace variant!) [ 75%] 2023-01-11T21:53:08.1917471Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_resize__cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 75%] 2023-01-11T21:53:08.1917682Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_resolve_conj_cpu_complex128 SKIPPED (Op has no inplace variant!) [ 75%] 2023-01-11T21:53:08.1917926Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_resolve_conj_cpu_float64 SKIPPED (Op has no inplace variant!) [ 75%] 2023-01-11T21:53:08.1918136Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_resolve_neg_cpu_complex128 SKIPPED (Op has no inplace variant!) [ 75%] 2023-01-11T21:53:08.1918335Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_roll_cpu_complex128 SKIPPED (Op has no inplace variant!) [ 75%] 2023-01-11T21:53:08.1918533Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_roll_cpu_float64 SKIPPED (Op has no inplace variant!) [ 75%] 2023-01-11T21:53:08.1918714Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_round_decimals_0_cpu_float64 PASSED [ 75%] 2023-01-11T21:53:08.1918910Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_round_decimals_neg_3_cpu_float64 SKIPPED (Skipped!) [ 75%] 2023-01-11T21:53:08.1919084Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_rsqrt_cpu_complex128 PASSED [ 75%] 2023-01-11T21:53:08.1919281Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_rsub_cpu_float64 SKIPPED (Op has no inplace variant!) [ 75%] 2023-01-11T21:53:08.1919447Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_scatter_add_cpu_float64 PASSED [ 75%] 2023-01-11T21:53:08.1919619Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_scatter_cpu_float64 PASSED [ 75%] 2023-01-11T21:53:08.1919804Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_scatter_reduce_mean_cpu_float64 PASSED [ 75%] 2023-01-11T21:53:08.1919990Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_scatter_reduce_sum_cpu_float64 PASSED [ 75%] 2023-01-11T21:53:08.1920338Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_searchsorted_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 75%] 2023-01-11T21:53:08.1920563Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_segment_reduce_lengths_cpu_float64 SKIPPED (Op has no inplace variant!) [ 75%] 2023-01-11T21:53:08.1921013Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_segment_reduce_offsets_cpu_float64 SKIPPED (Op has no inplace variant!) [ 75%] 2023-01-11T21:53:08.1921229Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_select_scatter_cpu_float64 SKIPPED (Op has no inplace variant!) [ 75%] 2023-01-11T21:53:08.1921400Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_sgn_cpu_complex128 PASSED [ 75%] 2023-01-11T21:53:08.1921553Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_sgn_cpu_float64 PASSED [ 76%] 2023-01-11T21:53:08.1921720Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_sign_cpu_float64 PASSED [ 76%] 2023-01-11T21:53:08.1922086Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_signal_windows_blackman_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 76%] 2023-01-11T21:53:08.1922516Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_signal_windows_exponential_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 76%] 2023-01-11T21:53:08.1922882Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_signal_windows_gaussian_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 76%] 2023-01-11T21:53:08.1923255Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_signal_windows_general_cosine_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 76%] 2023-01-11T21:53:08.1923628Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_signal_windows_general_hamming_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 76%] 2023-01-11T21:53:08.1923985Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_signal_windows_kaiser_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 76%] 2023-01-11T21:53:08.1924344Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_signal_windows_nuttall_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 76%] 2023-01-11T21:53:08.1924569Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_sin_cpu_complex128 PASSED [ 76%] 2023-01-11T21:53:08.1924746Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_sinc_cpu_complex128 PASSED [ 76%] 2023-01-11T21:53:08.1924906Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_sinh_cpu_complex128 PASSED [ 76%] 2023-01-11T21:53:08.1925112Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_slice_cpu_complex128 SKIPPED (Op has no inplace variant!) [ 76%] 2023-01-11T21:53:08.1925313Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_slice_cpu_float64 SKIPPED (Op has no inplace variant!) [ 76%] 2023-01-11T21:53:08.1925521Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_slice_scatter_cpu_float64 SKIPPED (Op has no inplace variant!) [ 76%] 2023-01-11T21:53:08.1925722Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_softmax_cpu_float64 SKIPPED (Op has no inplace variant!) [ 76%] 2023-01-11T21:53:08.1925941Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_softmax_with_dtype_cpu_complex128 SKIPPED (Op has no inplace variant!) [ 76%] 2023-01-11T21:53:08.1926152Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_softmax_with_dtype_cpu_float64 SKIPPED (Op has no inplace variant!) [ 76%] 2023-01-11T21:53:08.1926372Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_sparse_sampled_addmm_cpu_complex128 SKIPPED (Op has no inplace variant!) [ 76%] 2023-01-11T21:53:08.1926724Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_special_airy_ai_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 76%] 2023-01-11T21:53:08.1927076Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_special_bessel_j1_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 76%] 2023-01-11T21:53:08.1927428Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_special_bessel_y1_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 76%] 2023-01-11T21:53:08.1927791Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_special_chebyshev_polynomial_t_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 76%] 2023-01-11T21:53:08.1928177Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_special_chebyshev_polynomial_w_cpu_float64 SKIPPED (Skipping - testing takes an unreasonably long time, #79528) [ 76%] 2023-01-11T21:53:08.1928386Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_special_erfcx_cpu_float64 SKIPPED (Op has no inplace variant!) [ 76%] 2023-01-11T21:53:08.1928591Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_special_i1_cpu_float64 SKIPPED (Op has no inplace variant!) [ 77%] 2023-01-11T21:53:08.1928797Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_special_i1e_cpu_float64 SKIPPED (Op has no inplace variant!) [ 77%] 2023-01-11T21:53:08.1929207Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_special_laguerre_polynomial_l_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 77%] 2023-01-11T21:53:08.1929591Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_special_legendre_polynomial_p_cpu_float64 SKIPPED (Skipping - testing takes an unreasonably long time, #79528) [ 77%] 2023-01-11T21:53:08.1929956Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_special_modified_bessel_i1_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 77%] 2023-01-11T21:53:08.1930320Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_special_modified_bessel_k0_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 77%] 2023-01-11T21:53:08.1930530Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_special_ndtri_cpu_float64 SKIPPED (Op has no inplace variant!) [ 77%] 2023-01-11T21:53:08.1930799Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_special_polygamma_special_polygamma_n_0_cpu_float64 SKIPPED (Op has no inplace variant!) [ 77%] 2023-01-11T21:53:08.1931177Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_special_scaled_modified_bessel_k1_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 77%] 2023-01-11T21:53:08.1931557Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_special_shifted_chebyshev_polynomial_u_cpu_float64 SKIPPED (Skipping - testing takes an unreasonably long time, #79528) [ 77%] 2023-01-11T21:53:08.1931927Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_special_spherical_bessel_j0_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 77%] 2023-01-11T21:53:08.1932273Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_special_zeta_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 77%] 2023-01-11T21:53:08.1932478Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_split_cpu_complex128 SKIPPED (Op has no inplace variant!) [ 77%] 2023-01-11T21:53:08.1932695Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_split_list_args_cpu_complex128 SKIPPED (Op has no inplace variant!) [ 77%] 2023-01-11T21:53:08.1932903Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_split_list_args_cpu_float64 SKIPPED (Op has no inplace variant!) [ 77%] 2023-01-11T21:53:08.1933078Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_sqrt_cpu_complex128 PASSED [ 77%] 2023-01-11T21:53:08.1933252Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_square_cpu_complex128 PASSED [ 77%] 2023-01-11T21:53:08.1933430Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_squeeze_cpu_complex128 PASSED [ 77%] 2023-01-11T21:53:08.1933600Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_squeeze_cpu_float64 PASSED [ 77%] 2023-01-11T21:53:08.1933790Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_stack_cpu_complex128 SKIPPED (Op has no inplace variant!) [ 77%] 2023-01-11T21:53:08.1933993Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_stack_cpu_float64 SKIPPED (Op has no inplace variant!) [ 77%] 2023-01-11T21:53:08.1934192Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_std_cpu_complex128 SKIPPED (Op has no inplace variant!) [ 77%] 2023-01-11T21:53:08.1934397Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_std_mean_cpu_complex128 SKIPPED (Op has no inplace variant!) [ 77%] 2023-01-11T21:53:08.1934601Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_std_mean_cpu_float64 SKIPPED (Op has no inplace variant!) [ 77%] 2023-01-11T21:53:08.1934811Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_std_mean_unbiased_cpu_float64 SKIPPED (Op has no inplace variant!) [ 77%] 2023-01-11T21:53:08.1935019Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_std_unbiased_cpu_complex128 SKIPPED (Op has no inplace variant!) [ 77%] 2023-01-11T21:53:08.1935250Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_stft_cpu_float64 SKIPPED (Op has no inplace variant!) [ 78%] 2023-01-11T21:53:08.1935534Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_sum_to_size_cpu_complex128 SKIPPED (Op has no inplace variant!) [ 78%] 2023-01-11T21:53:08.1935738Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_svd_lowrank_cpu_float64 SKIPPED (Op has no inplace variant!) [ 78%] 2023-01-11T21:53:08.1935930Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_symeig_cpu_complex128 SKIPPED (Op has no inplace variant!) [ 78%] 2023-01-11T21:53:08.1936095Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_t_cpu_float64 PASSED [ 78%] 2023-01-11T21:53:08.1936291Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_take_cpu_float64 SKIPPED (Op has no inplace variant!) [ 78%] 2023-01-11T21:53:08.1936458Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_tan_cpu_float64 PASSED [ 78%] 2023-01-11T21:53:08.1936626Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_tanh_cpu_float64 PASSED [ 78%] 2023-01-11T21:53:08.1936863Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_tensor_split_cpu_float64 SKIPPED (Op has no inplace variant!) [ 78%] 2023-01-11T21:53:08.1937073Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_tensordot_cpu_complex128 SKIPPED (Op has no inplace variant!) [ 78%] 2023-01-11T21:53:08.1937277Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_tensordot_cpu_float64 SKIPPED (Op has no inplace variant!) [ 78%] 2023-01-11T21:53:08.1937475Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_tile_cpu_complex128 SKIPPED (Op has no inplace variant!) [ 78%] 2023-01-11T21:53:08.1937659Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_tile_cpu_float64 SKIPPED (Op has no inplace variant!) [ 78%] 2023-01-11T21:53:08.1937863Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_to_cpu_complex128 SKIPPED (Op has no inplace variant!) [ 78%] 2023-01-11T21:53:08.1938216Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_to_sparse_cpu_complex128 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 78%] 2023-01-11T21:53:08.1938420Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_to_sparse_cpu_float64 SKIPPED (Op has no inplace variant!) [ 78%] 2023-01-11T21:53:08.1938616Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_topk_cpu_float64 SKIPPED (Op has no inplace variant!) [ 78%] 2023-01-11T21:53:08.1938798Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_transpose_cpu_complex128 PASSED [ 78%] 2023-01-11T21:53:08.1938973Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_transpose_cpu_float64 PASSED [ 78%] 2023-01-11T21:53:08.1939179Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_trapezoid_cpu_float64 SKIPPED (Op has no inplace variant!) [ 78%] 2023-01-11T21:53:08.1939395Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_triangular_solve_cpu_complex128 SKIPPED (Op has no inplace variant!) [ 78%] 2023-01-11T21:53:08.1939570Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_tril_cpu_complex128 PASSED [ 78%] 2023-01-11T21:53:08.1939724Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_tril_cpu_float64 PASSED [ 78%] 2023-01-11T21:53:08.1939895Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_triu_cpu_complex128 PASSED [ 78%] 2023-01-11T21:53:08.1940064Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_triu_cpu_float64 PASSED [ 78%] 2023-01-11T21:53:08.1940243Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_true_divide_cpu_complex128 PASSED [ 79%] 2023-01-11T21:53:08.1940448Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_unbind_cpu_complex128 SKIPPED (Op has no inplace variant!) [ 79%] 2023-01-11T21:53:08.1940656Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_unflatten_cpu_complex128 SKIPPED (Op has no inplace variant!) [ 79%] 2023-01-11T21:53:08.1940892Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_unfold_copy_cpu_float64 SKIPPED (Op has no inplace variant!) [ 79%] 2023-01-11T21:53:08.1941095Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_unfold_cpu_complex128 SKIPPED (Op has no inplace variant!) [ 79%] 2023-01-11T21:53:08.1941440Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_uniform_cpu_complex128 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 79%] 2023-01-11T21:53:08.1941779Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_uniform_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 79%] 2023-01-11T21:53:08.1941947Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_unsqueeze_cpu_complex128 PASSED [ 79%] 2023-01-11T21:53:08.1942124Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_unsqueeze_cpu_float64 PASSED [ 79%] 2023-01-11T21:53:08.1942324Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_var_cpu_float64 SKIPPED (Op has no inplace variant!) [ 79%] 2023-01-11T21:53:08.1942559Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_var_mean_cpu_complex128 SKIPPED (Op has no inplace variant!) [ 79%] 2023-01-11T21:53:08.1942780Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_var_mean_unbiased_cpu_complex128 SKIPPED (Op has no inplace variant!) [ 79%] 2023-01-11T21:53:08.1942993Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_var_mean_unbiased_cpu_float64 SKIPPED (Op has no inplace variant!) [ 79%] 2023-01-11T21:53:08.1943198Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_view_as_cpu_complex128 SKIPPED (Op has no inplace variant!) [ 79%] 2023-01-11T21:53:08.1943396Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_view_as_cpu_float64 SKIPPED (Op has no inplace variant!) [ 79%] 2023-01-11T21:53:08.1943604Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_view_as_real_cpu_complex128 SKIPPED (Op has no inplace variant!) [ 79%] 2023-01-11T21:53:08.1943809Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_view_copy_cpu_float64 SKIPPED (Op has no inplace variant!) [ 79%] 2023-01-11T21:53:08.1943996Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_view_cpu_complex128 SKIPPED (Op has no inplace variant!) [ 79%] 2023-01-11T21:53:08.1944196Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_vsplit_cpu_float64 SKIPPED (Op has no inplace variant!) [ 79%] 2023-01-11T21:53:08.1944394Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_vstack_cpu_float64 SKIPPED (Op has no inplace variant!) [ 79%] 2023-01-11T21:53:08.1944566Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_zero__cpu_complex128 PASSED [ 79%] 2023-01-11T21:53:08.1944901Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_zeros_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 79%] 2023-01-11T21:53:08.1945145Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad___rdiv___cpu_complex128 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 79%] 2023-01-11T21:53:08.1945385Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad___rdiv___cpu_float64 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 79%] 2023-01-11T21:53:08.1945620Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad___rmod___cpu_float64 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 79%] 2023-01-11T21:53:08.1945861Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad___rmul___cpu_complex128 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 80%] 2023-01-11T21:53:08.1946094Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad___rmul___cpu_float64 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 80%] 2023-01-11T21:53:08.1946271Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad___rpow___cpu_float64 SKIPPED (Skipped!) [ 80%] 2023-01-11T21:53:08.1946532Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad___rsub___cpu_float64 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 80%] 2023-01-11T21:53:08.1946786Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad__native_batch_norm_legit_cpu_float64 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 80%] 2023-01-11T21:53:08.1947124Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_abs_cpu_complex128 SKIPPED (In-place abs not supported for complex tensors) [ 80%] 2023-01-11T21:53:08.1947297Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_abs_cpu_float64 PASSED [ 80%] 2023-01-11T21:53:08.1947476Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_acos_cpu_complex128 PASSED [ 80%] 2023-01-11T21:53:08.1947715Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_acosh_cpu_complex128 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 80%] 2023-01-11T21:53:08.1947952Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_acosh_cpu_float64 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 80%] 2023-01-11T21:53:08.1948160Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_add_cpu_complex128 PASSED [ 80%] 2023-01-11T21:53:08.1948345Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_addbmm_cpu_complex128 PASSED [ 80%] 2023-01-11T21:53:08.1948523Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_addcdiv_cpu_float64 PASSED [ 80%] 2023-01-11T21:53:08.1948692Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_addcmul_cpu_complex128 PASSED [ 80%] 2023-01-11T21:53:08.1948868Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_addcmul_cpu_float64 PASSED [ 80%] 2023-01-11T21:53:08.1949049Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_addmm_cpu_complex128 PASSED [ 80%] 2023-01-11T21:53:08.1949243Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_addmm_decomposed_cpu_float64 PASSED [ 80%] 2023-01-11T21:53:08.1949421Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_addmv_cpu_float64 PASSED [ 80%] 2023-01-11T21:53:08.1949770Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_allclose_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 80%] 2023-01-11T21:53:08.1950008Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_amax_cpu_float64 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 80%] 2023-01-11T21:53:08.1950241Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_amin_cpu_float64 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 80%] 2023-01-11T21:53:08.1950584Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_aminmax_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 80%] 2023-01-11T21:53:08.1950810Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_angle_cpu_complex128 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 80%] 2023-01-11T21:53:08.1951050Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_angle_cpu_float64 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 80%] 2023-01-11T21:53:08.1951387Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_any_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 80%] 2023-01-11T21:53:08.1951724Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_argmin_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 81%] 2023-01-11T21:53:08.1952072Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_argwhere_cpu_complex128 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 81%] 2023-01-11T21:53:08.1952272Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_as_strided_partial_views_cpu_complex128 XFAIL [ 81%] 2023-01-11T21:53:08.1952477Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_asin_cpu_float64 PASSED [ 81%] 2023-01-11T21:53:08.1952652Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_atan2_cpu_float64 PASSED [ 81%] 2023-01-11T21:53:08.1952834Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_atan_cpu_complex128 PASSED [ 81%] 2023-01-11T21:53:08.1953008Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_atan_cpu_float64 PASSED [ 81%] 2023-01-11T21:53:08.1953245Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_atanh_cpu_complex128 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 81%] 2023-01-11T21:53:08.1953479Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_atleast_2d_cpu_complex128 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 81%] 2023-01-11T21:53:08.1953719Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_atleast_3d_cpu_complex128 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 81%] 2023-01-11T21:53:08.1953993Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_atleast_3d_cpu_float64 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 81%] 2023-01-11T21:53:08.1954179Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_baddbmm_cpu_complex128 PASSED [ 81%] 2023-01-11T21:53:08.1954416Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_bernoulli_cpu_float64 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 81%] 2023-01-11T21:53:08.1954660Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_block_diag_cpu_float64 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 81%] 2023-01-11T21:53:08.1955001Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_bool_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 81%] 2023-01-11T21:53:08.1955247Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_broadcast_tensors_cpu_float64 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 81%] 2023-01-11T21:53:08.1955495Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_broadcast_to_cpu_float64 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 81%] 2023-01-11T21:53:08.1955842Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_bucketize_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 81%] 2023-01-11T21:53:08.1956090Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_cartesian_prod_cpu_complex128 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 81%] 2023-01-11T21:53:08.1956471Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_cat_cpu_complex128 SKIPPED (TODO(whc) fix pre-existing bug with cat for newly added opinfo for empty+nonempty) [ 81%] 2023-01-11T21:53:08.1956716Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_cdouble_cpu_complex128 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 81%] 2023-01-11T21:53:08.1956960Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_cfloat_cpu_complex128 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 81%] 2023-01-11T21:53:08.1957196Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_cfloat_cpu_float64 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 81%] 2023-01-11T21:53:08.1957434Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_chalf_cpu_complex128 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 81%] 2023-01-11T21:53:08.1957674Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_cholesky_cpu_float64 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 81%] 2023-01-11T21:53:08.1957925Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_cholesky_inverse_cpu_complex128 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 82%] 2023-01-11T21:53:08.1958240Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_cholesky_solve_cpu_complex128 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 82%] 2023-01-11T21:53:08.1958483Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_cholesky_solve_cpu_float64 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 82%] 2023-01-11T21:53:08.1958716Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_chunk_cpu_complex128 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 82%] 2023-01-11T21:53:08.1958897Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_clamp_min_cpu_float64 PASSED [ 82%] 2023-01-11T21:53:08.1959130Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_clone_cpu_float64 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 82%] 2023-01-11T21:53:08.1959362Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_column_stack_cpu_complex128 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 82%] 2023-01-11T21:53:08.1959596Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_conj_cpu_float64 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 82%] 2023-01-11T21:53:08.1959876Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_constant_pad_nd_cpu_complex128 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 82%] 2023-01-11T21:53:08.1960121Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_contiguous_cpu_complex128 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 82%] 2023-01-11T21:53:08.1960300Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_copysign_cpu_float64 PASSED [ 82%] 2023-01-11T21:53:08.1960540Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_corrcoef_cpu_complex128 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 82%] 2023-01-11T21:53:08.1961043Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_corrcoef_cpu_float64 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 82%] 2023-01-11T21:53:08.1961417Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_count_nonzero_cpu_complex128 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 82%] 2023-01-11T21:53:08.1961649Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_cov_cpu_complex128 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 82%] 2023-01-11T21:53:08.1961883Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_cross_cpu_float64 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 82%] 2023-01-11T21:53:08.1962067Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_cumprod_cpu_complex128 PASSED [ 82%] 2023-01-11T21:53:08.1962232Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_cumprod_cpu_float64 PASSED [ 82%] 2023-01-11T21:53:08.1962412Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_cumsum_cpu_complex128 PASSED [ 82%] 2023-01-11T21:53:08.1962588Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_cumsum_cpu_float64 PASSED [ 82%] 2023-01-11T21:53:08.1962848Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_cumulative_trapezoid_cpu_complex128 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 82%] 2023-01-11T21:53:08.1963087Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_diag_cpu_float64 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 82%] 2023-01-11T21:53:08.1963332Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_diag_embed_cpu_complex128 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 82%] 2023-01-11T21:53:08.1963574Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_diagflat_cpu_complex128 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 82%] 2023-01-11T21:53:08.1963811Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_diagonal_cpu_float64 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 82%] 2023-01-11T21:53:08.1964124Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_diagonal_scatter_cpu_complex128 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 83%] 2023-01-11T21:53:08.1964372Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_diagonal_scatter_cpu_float64 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 83%] 2023-01-11T21:53:08.1964606Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_dist_cpu_complex128 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 83%] 2023-01-11T21:53:08.1964784Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_div_floor_rounding_cpu_float64 PASSED [ 83%] 2023-01-11T21:53:08.1965028Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_dstack_cpu_complex128 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 83%] 2023-01-11T21:53:08.1965265Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_dstack_cpu_float64 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 83%] 2023-01-11T21:53:08.1965551Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_einsum_cpu_complex128 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 83%] 2023-01-11T21:53:08.1965782Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_einsum_cpu_float64 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 83%] 2023-01-11T21:53:08.1966132Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_empty_cpu_complex128 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 83%] 2023-01-11T21:53:08.1966476Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_empty_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 83%] 2023-01-11T21:53:08.1966828Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_empty_like_cpu_complex128 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 83%] 2023-01-11T21:53:08.1967167Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_eq_cpu_complex128 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 83%] 2023-01-11T21:53:08.1967343Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_erf_cpu_float64 PASSED [ 83%] 2023-01-11T21:53:08.1967517Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_exp2_cpu_float64 PASSED [ 83%] 2023-01-11T21:53:08.1967683Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_exp_cpu_complex128 PASSED [ 83%] 2023-01-11T21:53:08.1967926Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_expand_as_cpu_complex128 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 83%] 2023-01-11T21:53:08.1968166Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_expand_as_cpu_float64 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 83%] 2023-01-11T21:53:08.1968405Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_expand_cpu_float64 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 83%] 2023-01-11T21:53:08.1968742Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_eye_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 83%] 2023-01-11T21:53:08.1968979Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_fft_fft2_cpu_complex128 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 83%] 2023-01-11T21:53:08.1969216Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_fft_fft2_cpu_float64 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 83%] 2023-01-11T21:53:08.1969452Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_fft_fft_cpu_float64 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 83%] 2023-01-11T21:53:08.1969694Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_fft_fftn_cpu_complex128 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 83%] 2023-01-11T21:53:08.1969965Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_fft_fftn_cpu_float64 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 83%] 2023-01-11T21:53:08.1970211Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_fft_fftshift_cpu_complex128 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 83%] 2023-01-11T21:53:08.1970435Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_fft_hfft2_cpu_float64 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 84%] 2023-01-11T21:53:08.1970669Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_fft_hfft_cpu_float64 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 84%] 2023-01-11T21:53:08.1970905Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_fft_hfftn_cpu_float64 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 84%] 2023-01-11T21:53:08.1971147Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_fft_ifft2_cpu_complex128 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 84%] 2023-01-11T21:53:08.1971412Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_fft_ifft2_cpu_float64 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 84%] 2023-01-11T21:53:08.1971654Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_fft_ifft_cpu_complex128 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 84%] 2023-01-11T21:53:08.1971888Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_fft_ifft_cpu_float64 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 84%] 2023-01-11T21:53:08.1972130Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_fft_ifftn_cpu_complex128 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 84%] 2023-01-11T21:53:08.1972375Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_fft_ifftshift_cpu_complex128 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 84%] 2023-01-11T21:53:08.1972619Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_fft_ifftshift_cpu_float64 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 84%] 2023-01-11T21:53:08.1972857Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_fft_irfft2_cpu_complex128 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 84%] 2023-01-11T21:53:08.1973093Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_fft_irfft2_cpu_float64 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 84%] 2023-01-11T21:53:08.1973335Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_fft_irfftn_cpu_complex128 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 84%] 2023-01-11T21:53:08.1973559Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_fft_rfft2_cpu_float64 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 84%] 2023-01-11T21:53:08.1973796Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_fft_rfftn_cpu_float64 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 84%] 2023-01-11T21:53:08.1973979Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_fill_cpu_complex128 PASSED [ 84%] 2023-01-11T21:53:08.1974153Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_fill_cpu_float64 PASSED [ 84%] 2023-01-11T21:53:08.1974389Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_flip_cpu_complex128 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 84%] 2023-01-11T21:53:08.1974628Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_fliplr_cpu_complex128 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 84%] 2023-01-11T21:53:08.1974863Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_fliplr_cpu_float64 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 84%] 2023-01-11T21:53:08.1975128Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_flipud_cpu_complex128 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 84%] 2023-01-11T21:53:08.1975365Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_float_cpu_float64 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 84%] 2023-01-11T21:53:08.1975614Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_float_power_cpu_float64 PASSED [ 84%] 2023-01-11T21:53:08.1975958Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_floor_divide_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 84%] 2023-01-11T21:53:08.1976192Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_fmax_cpu_float64 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 84%] 2023-01-11T21:53:08.1976423Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_fmin_cpu_float64 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 85%] 2023-01-11T21:53:08.1976600Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_fmod_cpu_float64 PASSED [ 85%] 2023-01-11T21:53:08.1976807Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_frac_cpu_float64 PASSED [ 85%] 2023-01-11T21:53:08.1977042Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_frexp_cpu_float64 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 85%] 2023-01-11T21:53:08.1977388Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_full_cpu_complex128 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 85%] 2023-01-11T21:53:08.1977727Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_full_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 85%] 2023-01-11T21:53:08.1978076Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_full_like_cpu_complex128 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 85%] 2023-01-11T21:53:08.1978319Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_gather_cpu_complex128 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 85%] 2023-01-11T21:53:08.1978560Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_gather_cpu_float64 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 85%] 2023-01-11T21:53:08.1978894Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_geqrf_cpu_complex128 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 85%] 2023-01-11T21:53:08.1979234Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_geqrf_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 85%] 2023-01-11T21:53:08.1979476Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_gradient_cpu_complex128 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 85%] 2023-01-11T21:53:08.1979715Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_gradient_cpu_float64 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 85%] 2023-01-11T21:53:08.1979965Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_grid_sampler_2d_cpu_float64 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 85%] 2023-01-11T21:53:08.1980303Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_gt_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 85%] 2023-01-11T21:53:08.1980539Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_half_cpu_complex128 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 85%] 2023-01-11T21:53:08.1980889Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_histogramdd_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 85%] 2023-01-11T21:53:08.1981125Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_hsplit_cpu_complex128 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 85%] 2023-01-11T21:53:08.1981393Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_hsplit_cpu_float64 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 85%] 2023-01-11T21:53:08.1981637Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_hstack_cpu_complex128 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 85%] 2023-01-11T21:53:08.1981870Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_hstack_cpu_float64 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 85%] 2023-01-11T21:53:08.1982037Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_hypot_cpu_float64 PASSED [ 85%] 2023-01-11T21:53:08.1982207Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_i0_cpu_float64 PASSED [ 85%] 2023-01-11T21:53:08.1982550Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_igamma_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 85%] 2023-01-11T21:53:08.1982893Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_igammac_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 85%] 2023-01-11T21:53:08.1983160Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_imag_cpu_complex128 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 86%] 2023-01-11T21:53:08.1983348Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_index_add_cpu_complex128 PASSED [ 86%] 2023-01-11T21:53:08.1983537Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_index_copy_cpu_complex128 PASSED [ 86%] 2023-01-11T21:53:08.1983717Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_index_fill_cpu_float64 PASSED [ 86%] 2023-01-11T21:53:08.1983899Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_index_put_cpu_float64 PASSED [ 86%] 2023-01-11T21:53:08.1984241Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_isclose_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 86%] 2023-01-11T21:53:08.1984580Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_isfinite_cpu_complex128 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 86%] 2023-01-11T21:53:08.1984916Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_isin_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 86%] 2023-01-11T21:53:08.1985261Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_isneginf_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 86%] 2023-01-11T21:53:08.1985607Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_isposinf_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 86%] 2023-01-11T21:53:08.1985952Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_isreal_cpu_complex128 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 86%] 2023-01-11T21:53:08.1986291Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_isreal_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 86%] 2023-01-11T21:53:08.1986529Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_istft_cpu_complex128 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 86%] 2023-01-11T21:53:08.1986746Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_jiterator_2inputs_2outputs_cpu_float64 SKIPPED (Only runs on cuda) [ 86%] 2023-01-11T21:53:08.1986961Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_jiterator_binary_cpu_complex128 SKIPPED (Only runs on cuda) [ 86%] 2023-01-11T21:53:08.1987182Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_jiterator_binary_return_by_ref_cpu_float64 SKIPPED (Only runs on cuda) [ 86%] 2023-01-11T21:53:08.1987386Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_jiterator_unary_cpu_float64 SKIPPED (Only runs on cuda) [ 86%] 2023-01-11T21:53:08.1987640Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_kron_cpu_complex128 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 86%] 2023-01-11T21:53:08.1987879Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_kron_cpu_float64 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 86%] 2023-01-11T21:53:08.1988115Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_kthvalue_cpu_float64 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 86%] 2023-01-11T21:53:08.1988352Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_ldexp_cpu_complex128 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 86%] 2023-01-11T21:53:08.1988531Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_lerp_cpu_complex128 PASSED [ 86%] 2023-01-11T21:53:08.1988703Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_lerp_cpu_float64 PASSED [ 86%] 2023-01-11T21:53:08.1988949Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_linalg_cross_cpu_complex128 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 86%] 2023-01-11T21:53:08.1989223Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_linalg_det_cpu_complex128 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 86%] 2023-01-11T21:53:08.1989475Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_linalg_det_singular_cpu_complex128 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 87%] 2023-01-11T21:53:08.1989725Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_linalg_det_singular_cpu_float64 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 87%] 2023-01-11T21:53:08.1989969Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_linalg_eigh_cpu_complex128 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 87%] 2023-01-11T21:53:08.1990195Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_linalg_eigh_cpu_float64 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 87%] 2023-01-11T21:53:08.1990443Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_linalg_eigvals_cpu_float64 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 87%] 2023-01-11T21:53:08.1990688Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_linalg_eigvalsh_cpu_float64 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 87%] 2023-01-11T21:53:08.1990947Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_linalg_householder_product_cpu_complex128 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 87%] 2023-01-11T21:53:08.1991203Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_linalg_householder_product_cpu_float64 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 87%] 2023-01-11T21:53:08.1991442Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_linalg_inv_cpu_complex128 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 87%] 2023-01-11T21:53:08.1991803Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_linalg_ldl_factor_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 87%] 2023-01-11T21:53:08.1992170Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_linalg_ldl_factor_ex_cpu_complex128 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 87%] 2023-01-11T21:53:08.1992535Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_linalg_ldl_factor_ex_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 87%] 2023-01-11T21:53:08.1992889Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_linalg_ldl_solve_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 87%] 2023-01-11T21:53:08.1993089Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_linalg_lstsq_cpu_complex128 SKIPPED (Skipped!) [ 87%] 2023-01-11T21:53:08.1993314Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_linalg_lstsq_cpu_float64 SKIPPED (Skipped!) [ 87%] 2023-01-11T21:53:08.1993556Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_linalg_lstsq_grad_oriented_cpu_float64 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 87%] 2023-01-11T21:53:08.1993804Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_linalg_lu_cpu_complex128 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 87%] 2023-01-11T21:53:08.1994053Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_linalg_lu_factor_cpu_complex128 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 87%] 2023-01-11T21:53:08.1994302Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_linalg_lu_factor_ex_cpu_complex128 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 87%] 2023-01-11T21:53:08.1994547Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_linalg_lu_factor_ex_cpu_float64 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 87%] 2023-01-11T21:53:08.1994820Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_linalg_lu_solve_cpu_complex128 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 87%] 2023-01-11T21:53:08.1995066Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_linalg_lu_solve_cpu_float64 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 87%] 2023-01-11T21:53:08.1995314Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_linalg_matrix_norm_cpu_complex128 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 87%] 2023-01-11T21:53:08.1995561Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_linalg_matrix_power_cpu_float64 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 87%] 2023-01-11T21:53:08.1995930Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_linalg_matrix_rank_cpu_complex128 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 87%] 2023-01-11T21:53:08.1996309Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_linalg_matrix_rank_hermitian_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 88%] 2023-01-11T21:53:08.1996556Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_linalg_multi_dot_cpu_complex128 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 88%] 2023-01-11T21:53:08.1996800Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_linalg_norm_cpu_complex128 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 88%] 2023-01-11T21:53:08.1997027Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_linalg_norm_cpu_float64 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 88%] 2023-01-11T21:53:08.1997294Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_linalg_norm_subgradients_at_zero_cpu_complex128 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 88%] 2023-01-11T21:53:08.1997542Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_linalg_pinv_cpu_complex128 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 88%] 2023-01-11T21:53:08.1997780Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_linalg_pinv_cpu_float64 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 88%] 2023-01-11T21:53:08.1998037Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_linalg_pinv_singular_cpu_complex128 SKIPPED (test is slow; run with PYTORCH_TEST_WITH_SLOW to enable test) [ 88%] 2023-01-11T21:53:08.1998274Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_linalg_qr_cpu_float64 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 88%] 2023-01-11T21:53:08.1998520Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_linalg_slogdet_cpu_float64 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 88%] 2023-01-11T21:53:08.1998804Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_linalg_solve_cpu_complex128 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 88%] 2023-01-11T21:53:08.1999044Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_linalg_solve_cpu_float64 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 88%] 2023-01-11T21:53:08.1999291Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_linalg_solve_ex_cpu_complex128 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 88%] 2023-01-11T21:53:08.1999531Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_linalg_svd_cpu_complex128 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 88%] 2023-01-11T21:53:08.1999774Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_linalg_svdvals_cpu_complex128 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 88%] 2023-01-11T21:53:08.2000003Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_linalg_svdvals_cpu_float64 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 88%] 2023-01-11T21:53:08.2000285Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_linalg_tensorinv_cpu_complex128 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 88%] 2023-01-11T21:53:08.2000537Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_linalg_tensorsolve_cpu_complex128 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 88%] 2023-01-11T21:53:08.2001007Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_linalg_tensorsolve_cpu_float64 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 88%] 2023-01-11T21:53:08.2001258Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_linalg_vander_cpu_complex128 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 88%] 2023-01-11T21:53:08.2001495Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_linalg_vecdot_cpu_complex128 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 88%] 2023-01-11T21:53:08.2001740Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_linalg_vecdot_cpu_float64 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 88%] 2023-01-11T21:53:08.2001994Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_linalg_vector_norm_cpu_complex128 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 88%] 2023-01-11T21:53:08.2002173Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_log10_cpu_complex128 PASSED [ 88%] 2023-01-11T21:53:08.2002347Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_log10_cpu_float64 PASSED [ 88%] 2023-01-11T21:53:08.2002527Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_log1p_cpu_complex128 PASSED [ 88%] 2023-01-11T21:53:08.2002694Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_log2_cpu_complex128 PASSED [ 89%] 2023-01-11T21:53:08.2002869Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_log_cpu_float64 PASSED [ 89%] 2023-01-11T21:53:08.2003109Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_log_softmax_cpu_float64 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 89%] 2023-01-11T21:53:08.2003363Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_log_softmax_with_dtype_cpu_float64 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 89%] 2023-01-11T21:53:08.2003725Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_logical_and_cpu_complex128 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 89%] 2023-01-11T21:53:08.2004072Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_logical_and_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 89%] 2023-01-11T21:53:08.2004424Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_logical_not_cpu_complex128 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 89%] 2023-01-11T21:53:08.2004834Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_logical_or_cpu_complex128 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 89%] 2023-01-11T21:53:08.2005183Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_logical_or_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 89%] 2023-01-11T21:53:08.2005527Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_logical_xor_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 89%] 2023-01-11T21:53:08.2005702Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_logit_cpu_float64 PASSED [ 89%] 2023-01-11T21:53:08.2006041Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_logspace_cpu_complex128 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 89%] 2023-01-11T21:53:08.2006282Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_logsumexp_cpu_float64 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 89%] 2023-01-11T21:53:08.2006673Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_long_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 89%] 2023-01-11T21:53:08.2007007Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_lt_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 89%] 2023-01-11T21:53:08.2007244Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_lu_cpu_complex128 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 89%] 2023-01-11T21:53:08.2007477Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_lu_cpu_float64 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 89%] 2023-01-11T21:53:08.2007717Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_lu_unpack_cpu_complex128 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 89%] 2023-01-11T21:53:08.2007956Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_mH_cpu_complex128 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 89%] 2023-01-11T21:53:08.2008194Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_mT_cpu_complex128 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 89%] 2023-01-11T21:53:08.2008429Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_mT_cpu_float64 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 89%] 2023-01-11T21:53:08.2008786Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_masked_argmax_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 89%] 2023-01-11T21:53:08.2009031Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_masked_cumprod_cpu_complex128 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 89%] 2023-01-11T21:53:08.2009260Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_masked_cumsum_cpu_complex128 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 89%] 2023-01-11T21:53:08.2009445Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_masked_fill_cpu_float64 PASSED [ 89%] 2023-01-11T21:53:08.2009695Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_masked_log_softmax_cpu_float64 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 90%] 2023-01-11T21:53:08.2009945Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_masked_logaddexp_cpu_float64 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 90%] 2023-01-11T21:53:08.2010192Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_masked_logsumexp_cpu_float64 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 90%] 2023-01-11T21:53:08.2010436Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_masked_mean_cpu_complex128 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 90%] 2023-01-11T21:53:08.2010713Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_masked_mean_cpu_float64 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 90%] 2023-01-11T21:53:08.2010969Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_masked_normalize_cpu_complex128 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 90%] 2023-01-11T21:53:08.2011215Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_masked_normalize_cpu_float64 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 90%] 2023-01-11T21:53:08.2011458Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_masked_prod_cpu_complex128 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 90%] 2023-01-11T21:53:08.2011700Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_masked_prod_cpu_float64 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 90%] 2023-01-11T21:53:08.2011892Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_masked_scatter_cpu_complex128 PASSED [ 90%] 2023-01-11T21:53:08.2012156Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_masked_std_cpu_complex128 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 90%] 2023-01-11T21:53:08.2012395Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_masked_std_cpu_float64 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 90%] 2023-01-11T21:53:08.2012637Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_masked_sum_cpu_complex128 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 90%] 2023-01-11T21:53:08.2012876Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_masked_sum_cpu_float64 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 90%] 2023-01-11T21:53:08.2013113Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_matmul_cpu_float64 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 90%] 2023-01-11T21:53:08.2013355Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_matrix_exp_cpu_complex128 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 90%] 2023-01-11T21:53:08.2013590Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_max_binary_cpu_float64 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 90%] 2023-01-11T21:53:08.2013841Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_max_reduction_no_dim_cpu_float64 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 90%] 2023-01-11T21:53:08.2014091Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_max_reduction_with_dim_cpu_float64 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 90%] 2023-01-11T21:53:08.2014332Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_maximum_cpu_float64 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 90%] 2023-01-11T21:53:08.2014566Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_mean_cpu_float64 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 90%] 2023-01-11T21:53:08.2014794Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_median_cpu_float64 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 90%] 2023-01-11T21:53:08.2015047Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_meshgrid_list_of_tensors_cpu_float64 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 90%] 2023-01-11T21:53:08.2015308Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_meshgrid_variadic_tensors_cpu_complex128 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 90%] 2023-01-11T21:53:08.2015616Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_minimum_cpu_float64 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 90%] 2023-01-11T21:53:08.2015852Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_mode_cpu_float64 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 91%] 2023-01-11T21:53:08.2016128Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_mv_cpu_complex128 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 91%] 2023-01-11T21:53:08.2016362Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_mv_cpu_float64 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 91%] 2023-01-11T21:53:08.2016558Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_mvlgamma_mvlgamma_p_1_cpu_float64 PASSED [ 91%] 2023-01-11T21:53:08.2016751Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_mvlgamma_mvlgamma_p_3_cpu_float64 PASSED [ 91%] 2023-01-11T21:53:08.2016943Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_mvlgamma_mvlgamma_p_5_cpu_float64 PASSED [ 91%] 2023-01-11T21:53:08.2017185Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_nanmedian_cpu_float64 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 91%] 2023-01-11T21:53:08.2017424Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_nansum_cpu_float64 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 91%] 2023-01-11T21:53:08.2017801Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_narrow_copy_cpu_complex128 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 91%] 2023-01-11T21:53:08.2018151Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_narrow_copy_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 91%] 2023-01-11T21:53:08.2018390Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_narrow_cpu_complex128 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 91%] 2023-01-11T21:53:08.2018626Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_narrow_cpu_float64 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 91%] 2023-01-11T21:53:08.2018873Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_native_batch_norm_cpu_float64 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 91%] 2023-01-11T21:53:08.2019132Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_native_dropout_backward_cpu_float64 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 91%] 2023-01-11T21:53:08.2019376Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_native_layer_norm_cpu_float64 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 91%] 2023-01-11T21:53:08.2019708Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_ne_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 91%] 2023-01-11T21:53:08.2019886Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_neg_cpu_complex128 PASSED [ 91%] 2023-01-11T21:53:08.2020247Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_new_empty_strided_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 91%] 2023-01-11T21:53:08.2020597Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_new_full_cpu_complex128 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 91%] 2023-01-11T21:53:08.2020931Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_new_full_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 91%] 2023-01-11T21:53:08.2021276Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_new_ones_cpu_complex128 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 91%] 2023-01-11T21:53:08.2021620Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_new_ones_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 91%] 2023-01-11T21:53:08.2021967Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_new_zeros_cpu_complex128 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 91%] 2023-01-11T21:53:08.2022307Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_new_zeros_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 91%] 2023-01-11T21:53:08.2022618Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_nn_functional__scaled_dot_product_attention_cpu_float64 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 91%] 2023-01-11T21:53:08.2022887Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_nn_functional_adaptive_avg_pool2d_cpu_float64 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 92%] 2023-01-11T21:53:08.2023152Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_nn_functional_adaptive_max_pool2d_cpu_float64 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 92%] 2023-01-11T21:53:08.2023354Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_nn_functional_alpha_dropout_cpu_float64 PASSED [ 92%] 2023-01-11T21:53:08.2023607Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_nn_functional_avg_pool2d_cpu_float64 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 92%] 2023-01-11T21:53:08.2023890Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_nn_functional_batch_norm_cpu_float64 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 92%] 2023-01-11T21:53:08.2024084Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_nn_functional_celu_cpu_float64 PASSED [ 92%] 2023-01-11T21:53:08.2024323Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_nn_functional_conv1d_cpu_complex128 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 92%] 2023-01-11T21:53:08.2024586Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_nn_functional_conv_transpose1d_cpu_complex128 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 92%] 2023-01-11T21:53:08.2024852Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_nn_functional_conv_transpose3d_cpu_float64 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 92%] 2023-01-11T21:53:08.2025113Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_nn_functional_cosine_similarity_cpu_float64 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 92%] 2023-01-11T21:53:08.2025311Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_nn_functional_dropout2d_cpu_float64 PASSED [ 92%] 2023-01-11T21:53:08.2025497Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_nn_functional_elu_cpu_float64 PASSED [ 92%] 2023-01-11T21:53:08.2025748Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_nn_functional_embedding_cpu_float64 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 92%] 2023-01-11T21:53:08.2025972Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_nn_functional_feature_alpha_dropout_without_train_cpu_float64 PASSED [ 92%] 2023-01-11T21:53:08.2026219Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_nn_functional_glu_cpu_float64 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 92%] 2023-01-11T21:53:08.2026478Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_nn_functional_grid_sample_cpu_float64 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 92%] 2023-01-11T21:53:08.2026731Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_nn_functional_group_norm_cpu_float64 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 92%] 2023-01-11T21:53:08.2026981Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_nn_functional_hardshrink_cpu_float64 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 92%] 2023-01-11T21:53:08.2027164Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_nn_functional_hardsigmoid_cpu_float64 XFAIL [ 92%] 2023-01-11T21:53:08.2027420Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_nn_functional_hardswish_cpu_float64 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 92%] 2023-01-11T21:53:08.2027705Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_nn_functional_hardtanh_cpu_float64 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 92%] 2023-01-11T21:53:08.2027971Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_nn_functional_hinge_embedding_loss_cpu_float64 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 92%] 2023-01-11T21:53:08.2028231Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_nn_functional_interpolate_area_cpu_float64 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 92%] 2023-01-11T21:53:08.2028493Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_nn_functional_interpolate_bicubic_cpu_float64 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 92%] 2023-01-11T21:53:08.2028757Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_nn_functional_interpolate_bilinear_cpu_float64 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 92%] 2023-01-11T21:53:08.2029022Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_nn_functional_interpolate_linear_cpu_float64 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 93%] 2023-01-11T21:53:08.2029301Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_nn_functional_layer_norm_cpu_float64 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 93%] 2023-01-11T21:53:08.2029555Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_nn_functional_linear_cpu_complex128 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 93%] 2023-01-11T21:53:08.2029806Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_nn_functional_max_pool1d_cpu_float64 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 93%] 2023-01-11T21:53:08.2030059Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_nn_functional_max_pool3d_cpu_float64 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 93%] 2023-01-11T21:53:08.2030310Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_nn_functional_mse_loss_cpu_float64 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 93%] 2023-01-11T21:53:08.2030558Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_nn_functional_multi_margin_loss_cpu_float64 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 93%] 2023-01-11T21:53:08.2030820Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_nn_functional_multilabel_margin_loss_cpu_float64 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 93%] 2023-01-11T21:53:08.2031072Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_nn_functional_nll_loss_cpu_float64 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 93%] 2023-01-11T21:53:08.2031329Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_nn_functional_normalize_cpu_complex128 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 93%] 2023-01-11T21:53:08.2031586Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_nn_functional_normalize_cpu_float64 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 93%] 2023-01-11T21:53:08.2031847Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_nn_functional_pad_circular_cpu_float64 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 93%] 2023-01-11T21:53:08.2032100Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_nn_functional_pad_constant_cpu_float64 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 93%] 2023-01-11T21:53:08.2032362Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_nn_functional_pad_replicate_cpu_complex128 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 93%] 2023-01-11T21:53:08.2032618Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_nn_functional_pad_replicate_cpu_float64 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 93%] 2023-01-11T21:53:08.2032914Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_nn_functional_pairwise_distance_cpu_complex128 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 93%] 2023-01-11T21:53:08.2033167Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_nn_functional_pdist_cpu_float64 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 93%] 2023-01-11T21:53:08.2033424Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_nn_functional_soft_margin_loss_cpu_float64 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 93%] 2023-01-11T21:53:08.2033682Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_nn_functional_softmin_with_dtype_cpu_float64 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 93%] 2023-01-11T21:53:08.2033919Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_nn_functional_softshrink_cpu_float64 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 93%] 2023-01-11T21:53:08.2034177Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_nn_functional_softsign_cpu_complex128 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 93%] 2023-01-11T21:53:08.2034407Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_nn_functional_threshold_cpu_float64 PASSED [ 93%] 2023-01-11T21:53:08.2034673Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_nn_functional_triplet_margin_loss_cpu_complex128 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 93%] 2023-01-11T21:53:08.2034934Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_nn_functional_triplet_margin_loss_cpu_float64 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 93%] 2023-01-11T21:53:08.2035213Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_nn_functional_triplet_margin_with_distance_loss_cpu_complex128 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 93%] 2023-01-11T21:53:08.2035495Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_nn_functional_triplet_margin_with_distance_loss_cpu_float64 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 94%] 2023-01-11T21:53:08.2035750Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_nn_functional_unfold_cpu_complex128 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 94%] 2023-01-11T21:53:08.2036014Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_nn_functional_upsample_bilinear_cpu_float64 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 94%] 2023-01-11T21:53:08.2036249Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_norm_cpu_complex128 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 94%] 2023-01-11T21:53:08.2036485Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_norm_fro_cpu_float64 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 94%] 2023-01-11T21:53:08.2036731Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_norm_inf_cpu_complex128 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 94%] 2023-01-11T21:53:08.2036963Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_norm_inf_cpu_float64 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 94%] 2023-01-11T21:53:08.2037191Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_norm_nuc_cpu_complex128 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 94%] 2023-01-11T21:53:08.2037420Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_norm_nuc_cpu_float64 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 94%] 2023-01-11T21:53:08.2037624Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_normal_cpu_float64 SKIPPED (Gradients are incorrect!) [ 94%] 2023-01-11T21:53:08.2037987Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_ones_like_cpu_complex128 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 94%] 2023-01-11T21:53:08.2038263Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_ormqr_cpu_float64 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 94%] 2023-01-11T21:53:08.2038502Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_pca_lowrank_cpu_float64 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 94%] 2023-01-11T21:53:08.2038738Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_permute_cpu_float64 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 94%] 2023-01-11T21:53:08.2038982Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_pinverse_cpu_complex128 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 94%] 2023-01-11T21:53:08.2039213Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_polar_cpu_float64 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 94%] 2023-01-11T21:53:08.2039421Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_polygamma_polygamma_n_2_cpu_float64 SKIPPED (Skipped!) [ 94%] 2023-01-11T21:53:08.2039690Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_pow_cpu_complex128 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 94%] 2023-01-11T21:53:08.2039913Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_pow_cpu_float64 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 94%] 2023-01-11T21:53:08.2040154Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_prod_cpu_complex128 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 94%] 2023-01-11T21:53:08.2040390Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_prod_cpu_float64 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 94%] 2023-01-11T21:53:08.2040567Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_put_cpu_complex128 PASSED [ 94%] 2023-01-11T21:53:08.2040997Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_qr_cpu_complex128 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 94%] 2023-01-11T21:53:08.2041240Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_quantile_cpu_float64 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 94%] 2023-01-11T21:53:08.2041420Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_rad2deg_cpu_float64 PASSED [ 94%] 2023-01-11T21:53:08.2041772Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_rand_like_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 95%] 2023-01-11T21:53:08.2042112Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_randint_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 95%] 2023-01-11T21:53:08.2042459Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_randn_like_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 95%] 2023-01-11T21:53:08.2042696Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_ravel_cpu_float64 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 95%] 2023-01-11T21:53:08.2042938Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_real_cpu_complex128 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 95%] 2023-01-11T21:53:08.2043159Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_real_cpu_float64 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 95%] 2023-01-11T21:53:08.2043348Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_reciprocal_cpu_complex128 PASSED [ 95%] 2023-01-11T21:53:08.2043530Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_reciprocal_cpu_float64 PASSED [ 95%] 2023-01-11T21:53:08.2043711Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_remainder_cpu_float64 PASSED [ 95%] 2023-01-11T21:53:08.2043948Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_repeat_cpu_float64 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 95%] 2023-01-11T21:53:08.2044246Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_reshape_as_cpu_float64 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 95%] 2023-01-11T21:53:08.2044485Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_reshape_cpu_float64 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 95%] 2023-01-11T21:53:08.2044828Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_resize__cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 95%] 2023-01-11T21:53:08.2045177Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_resize_as__cpu_complex128 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 95%] 2023-01-11T21:53:08.2045526Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_resize_as__cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 95%] 2023-01-11T21:53:08.2045765Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_resolve_conj_cpu_complex128 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 95%] 2023-01-11T21:53:08.2046097Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_resolve_neg_cpu_complex128 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 95%] 2023-01-11T21:53:08.2046341Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_resolve_neg_cpu_float64 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 95%] 2023-01-11T21:53:08.2046575Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_roll_cpu_float64 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 95%] 2023-01-11T21:53:08.2046765Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_round_decimals_0_cpu_float64 PASSED [ 95%] 2023-01-11T21:53:08.2046946Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_rsqrt_cpu_complex128 PASSED [ 95%] 2023-01-11T21:53:08.2047122Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_rsqrt_cpu_float64 PASSED [ 95%] 2023-01-11T21:53:08.2047361Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_rsub_cpu_complex128 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 95%] 2023-01-11T21:53:08.2047720Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_scalar_tensor_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 95%] 2023-01-11T21:53:08.2047906Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_scatter_add_cpu_float64 PASSED [ 95%] 2023-01-11T21:53:08.2048097Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_scatter_reduce_amax_cpu_float64 PASSED [ 96%] 2023-01-11T21:53:08.2048275Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_scatter_reduce_amin_cpu_float64 PASSED [ 96%] 2023-01-11T21:53:08.2048466Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_scatter_reduce_prod_cpu_float64 PASSED [ 96%] 2023-01-11T21:53:08.2048655Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_scatter_reduce_sum_cpu_float64 PASSED [ 96%] 2023-01-11T21:53:08.2048900Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_select_cpu_complex128 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 96%] 2023-01-11T21:53:08.2049147Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_select_scatter_cpu_float64 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 96%] 2023-01-11T21:53:08.2049497Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_short_cpu_complex128 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 96%] 2023-01-11T21:53:08.2049682Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_sigmoid_cpu_complex128 PASSED [ 96%] 2023-01-11T21:53:08.2049861Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_sigmoid_cpu_float64 PASSED [ 96%] 2023-01-11T21:53:08.2050270Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_signal_windows_bartlett_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 96%] 2023-01-11T21:53:08.2050643Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_signal_windows_blackman_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 96%] 2023-01-11T21:53:08.2050995Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_signal_windows_gaussian_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 96%] 2023-01-11T21:53:08.2051371Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_signal_windows_general_cosine_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 96%] 2023-01-11T21:53:08.2051750Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_signal_windows_general_hamming_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 96%] 2023-01-11T21:53:08.2052115Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_signal_windows_hamming_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 96%] 2023-01-11T21:53:08.2052502Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_signal_windows_hann_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 96%] 2023-01-11T21:53:08.2052869Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_signal_windows_nuttall_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 96%] 2023-01-11T21:53:08.2053211Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_signbit_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 96%] 2023-01-11T21:53:08.2053385Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_sin_cpu_float64 PASSED [ 96%] 2023-01-11T21:53:08.2053560Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_sinc_cpu_float64 PASSED [ 96%] 2023-01-11T21:53:08.2053735Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_sinh_cpu_float64 PASSED [ 96%] 2023-01-11T21:53:08.2053989Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_softmax_with_dtype_cpu_complex128 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 96%] 2023-01-11T21:53:08.2054225Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_softmax_with_dtype_cpu_float64 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 96%] 2023-01-11T21:53:08.2054460Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_sort_cpu_float64 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 96%] 2023-01-11T21:53:08.2054712Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_sparse_sampled_addmm_cpu_float64 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 96%] 2023-01-11T21:53:08.2055067Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_special_airy_ai_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 97%] 2023-01-11T21:53:08.2055491Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_special_bessel_j1_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 97%] 2023-01-11T21:53:08.2055842Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_special_bessel_y0_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 97%] 2023-01-11T21:53:08.2056220Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_special_chebyshev_polynomial_u_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 97%] 2023-01-11T21:53:08.2056617Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_special_chebyshev_polynomial_v_cpu_float64 SKIPPED (Skipping - testing takes an unreasonably long time, #79528) [ 97%] 2023-01-11T21:53:08.2057006Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_special_chebyshev_polynomial_w_cpu_float64 SKIPPED (Skipping - testing takes an unreasonably long time, #79528) [ 97%] 2023-01-11T21:53:08.2057282Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_special_entr_cpu_float64 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 97%] 2023-01-11T21:53:08.2057659Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_special_hermite_polynomial_h_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 97%] 2023-01-11T21:53:08.2058046Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_special_hermite_polynomial_he_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 97%] 2023-01-11T21:53:08.2058285Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_special_i0e_cpu_float64 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 97%] 2023-01-11T21:53:08.2058513Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_special_i1e_cpu_float64 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 97%] 2023-01-11T21:53:08.2058932Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_special_legendre_polynomial_p_cpu_float64 SKIPPED (Skipping - testing takes an unreasonably long time, #79528) [ 97%] 2023-01-11T21:53:08.2059305Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_special_modified_bessel_i0_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 97%] 2023-01-11T21:53:08.2059684Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_special_modified_bessel_k1_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 97%] 2023-01-11T21:53:08.2059926Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_special_ndtr_cpu_float64 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 97%] 2023-01-11T21:53:08.2060167Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_special_ndtri_cpu_float64 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 97%] 2023-01-11T21:53:08.2060555Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_special_scaled_modified_bessel_k0_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 97%] 2023-01-11T21:53:08.2060955Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_special_shifted_chebyshev_polynomial_u_cpu_float64 SKIPPED (Skipping - testing takes an unreasonably long time, #79528) [ 97%] 2023-01-11T21:53:08.2061356Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_special_shifted_chebyshev_polynomial_v_cpu_float64 SKIPPED (Skipping - testing takes an unreasonably long time, #79528) [ 97%] 2023-01-11T21:53:08.2061733Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_special_spherical_bessel_j0_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 97%] 2023-01-11T21:53:08.2061978Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_special_xlog1py_cpu_float64 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 97%] 2023-01-11T21:53:08.2062333Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_special_zeta_cpu_float64 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 97%] 2023-01-11T21:53:08.2062573Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_split_cpu_complex128 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 97%] 2023-01-11T21:53:08.2062803Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_split_list_args_cpu_float64 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 97%] 2023-01-11T21:53:08.2063050Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_split_with_sizes_cpu_complex128 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 97%] 2023-01-11T21:53:08.2063293Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_split_with_sizes_cpu_float64 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 98%] 2023-01-11T21:53:08.2063502Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_sqrt_cpu_complex128 PASSED [ 98%] 2023-01-11T21:53:08.2063677Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_sqrt_cpu_float64 PASSED [ 98%] 2023-01-11T21:53:08.2063858Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_square_cpu_complex128 PASSED [ 98%] 2023-01-11T21:53:08.2064041Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_squeeze_cpu_complex128 PASSED [ 98%] 2023-01-11T21:53:08.2064220Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_squeeze_cpu_float64 PASSED [ 98%] 2023-01-11T21:53:08.2064458Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_std_mean_cpu_float64 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 98%] 2023-01-11T21:53:08.2064708Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_std_mean_unbiased_cpu_complex128 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 98%] 2023-01-11T21:53:08.2064948Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_std_mean_unbiased_cpu_float64 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 98%] 2023-01-11T21:53:08.2065214Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_std_unbiased_cpu_float64 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 98%] 2023-01-11T21:53:08.2065389Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_sub_cpu_float64 PASSED [ 98%] 2023-01-11T21:53:08.2065627Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_svd_cpu_complex128 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 98%] 2023-01-11T21:53:08.2065871Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_svd_lowrank_cpu_float64 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 98%] 2023-01-11T21:53:08.2066046Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_t_cpu_complex128 PASSED [ 98%] 2023-01-11T21:53:08.2066218Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_t_cpu_float64 PASSED [ 98%] 2023-01-11T21:53:08.2066389Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_tan_cpu_float64 PASSED [ 98%] 2023-01-11T21:53:08.2066562Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_tanh_cpu_float64 PASSED [ 98%] 2023-01-11T21:53:08.2066802Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_tensor_split_cpu_float64 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 98%] 2023-01-11T21:53:08.2067020Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_to_cpu_float64 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 98%] 2023-01-11T21:53:08.2067373Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_to_sparse_cpu_complex128 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 98%] 2023-01-11T21:53:08.2067611Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_to_sparse_cpu_float64 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 98%] 2023-01-11T21:53:08.2067799Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_transpose_cpu_complex128 PASSED [ 98%] 2023-01-11T21:53:08.2067981Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_transpose_cpu_float64 PASSED [ 98%] 2023-01-11T21:53:08.2068228Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_triangular_solve_cpu_float64 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 98%] 2023-01-11T21:53:08.2068405Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_tril_cpu_complex128 PASSED [ 98%] 2023-01-11T21:53:08.2068579Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_tril_cpu_float64 PASSED [ 99%] 2023-01-11T21:53:08.2068769Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_true_divide_cpu_complex128 PASSED [ 99%] 2023-01-11T21:53:08.2069006Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_unbind_cpu_complex128 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 99%] 2023-01-11T21:53:08.2069279Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_unbind_cpu_float64 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 99%] 2023-01-11T21:53:08.2069510Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_unflatten_cpu_complex128 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 99%] 2023-01-11T21:53:08.2069750Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_unflatten_cpu_float64 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 99%] 2023-01-11T21:53:08.2069991Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_unfold_cpu_complex128 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 99%] 2023-01-11T21:53:08.2070181Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_unsqueeze_cpu_complex128 PASSED [ 99%] 2023-01-11T21:53:08.2070363Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_unsqueeze_cpu_float64 PASSED [ 99%] 2023-01-11T21:53:08.2070631Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_var_cpu_float64 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 99%] 2023-01-11T21:53:08.2070875Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_var_mean_cpu_complex128 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 99%] 2023-01-11T21:53:08.2071111Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_var_mean_cpu_float64 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 99%] 2023-01-11T21:53:08.2071347Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_vdot_cpu_complex128 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 99%] 2023-01-11T21:53:08.2071578Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_vdot_cpu_float64 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 99%] 2023-01-11T21:53:08.2071824Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_view_as_complex_cpu_float64 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 99%] 2023-01-11T21:53:08.2072051Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_view_as_cpu_complex128 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 99%] 2023-01-11T21:53:08.2072285Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_view_as_cpu_float64 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 99%] 2023-01-11T21:53:08.2072520Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_view_copy_cpu_float64 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 99%] 2023-01-11T21:53:08.2072752Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_view_cpu_complex128 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 99%] 2023-01-11T21:53:08.2072991Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_vsplit_cpu_complex128 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 99%] 2023-01-11T21:53:08.2073232Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_vstack_cpu_complex128 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 99%] 2023-01-11T21:53:08.2073471Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_where_cpu_complex128 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 99%] 2023-01-11T21:53:08.2073707Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_where_cpu_float64 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 99%] 2023-01-11T21:53:08.2073881Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_zero__cpu_float64 PASSED [ 99%] 2023-01-11T21:53:08.2074228Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_zeros_cpu_complex128 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [ 99%] 2023-01-11T21:53:08.2074616Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_zeros_like_cpu_complex128 SKIPPED (Skipped! Op doesn't support autograd for this dtype.) [100%] 2023-01-11T21:53:08.2074631Z 2023-01-11T21:53:08.2074744Z =============================== warnings summary =============================== 2023-01-11T21:53:08.2074945Z ../../../../../opt/conda/lib/python3.7/site-packages/_pytest/config/__init__.py:1171 2023-01-11T21:53:08.2075300Z /opt/conda/lib/python3.7/site-packages/_pytest/config/__init__.py:1171: PytestAssertRewriteWarning: Module already imported so cannot be rewritten: hypothesis 2023-01-11T21:53:08.2075397Z self._mark_plugins_for_rewrite(hook) 2023-01-11T21:53:08.2075403Z 2023-01-11T21:53:08.2075642Z -- Docs: https://docs.pytest.org/en/stable/how-to/capture-warnings.html 2023-01-11T21:53:08.2075975Z - generated xml file: /var/lib/jenkins/workspace/test/test-reports/python-pytest/test_ops_gradients/test_ops_gradients-5a1c1620e6dd6bfb.xml - 2023-01-11T21:53:08.2076119Z = 968 passed, 1519 skipped, 8 deselected, 22 xfailed, 1 warning in 1792.33s (0:29:52) = 2023-01-11T21:53:08.2076291Z If in CI, skip info is located in the xml test reports, please either go to s3 or the hud to download them 2023-01-11T21:53:08.2076326Z 2023-01-11T21:53:08.2076733Z ##[endgroup] 2023-01-11T21:53:08.2077017Z FINISHED PRINTING LOG FILE of test_ops_gradients (/var/lib/jenkins/workspace/test/test-reports/test_ops_gradients_pwud63wt) 2023-01-11T21:53:08.2077023Z 2023-01-11T21:53:08.8439944Z Executing ['/opt/conda/bin/python', '-bb', 'test_ops_gradients.py', '-v', '--use-pytest', '-vv', '-rfEX', '-x', '--reruns=2', '-k=_linalg_cholesky_', '--import-slow-tests', '--import-disabled-tests'] ... [2023-01-11 21:53:08.843566] 2023-01-11T21:53:26.8459321Z 2023-01-11T21:53:26.8460205Z Expand the folded group to see the log file of test_ops_gradients 2023-01-11T21:53:26.8461291Z ##[group]PRINTING LOG FILE of test_ops_gradients (/var/lib/jenkins/workspace/test/test-reports/test_ops_gradients_tsv3wrwm) 2023-01-11T21:53:26.8467585Z Test results will be stored in test-reports/python-pytest/test_ops_gradients/test_ops_gradients-c9b05079dbc8142b.xml 2023-01-11T21:53:26.8468201Z ============================= test session starts ============================== 2023-01-11T21:53:26.8468767Z platform linux -- Python 3.7.15, pytest-7.2.0, pluggy-1.0.0 -- /opt/conda/bin/python 2023-01-11T21:53:26.8469152Z cachedir: .pytest_cache 2023-01-11T21:53:26.8469815Z hypothesis profile 'pytorch_ci' -> database=None, max_examples=50, derandomize=True, suppress_health_check=[HealthCheck.too_slow] 2023-01-11T21:53:26.8470372Z rootdir: /var/lib/jenkins/workspace, configfile: pytest.ini 2023-01-11T21:53:26.8471056Z plugins: hypothesis-5.35.1, flakefinder-1.1.0, rerunfailures-10.3, shard-0.1.2, xdist-3.1.0, xdoctest-1.1.0 2023-01-11T21:53:26.8471554Z collecting ... collected 4945 items / 4925 deselected / 20 selected 2023-01-11T21:53:26.8475205Z Running 20 items in this shard: test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_linalg_cholesky_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_linalg_cholesky_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_linalg_cholesky_ex_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_linalg_cholesky_ex_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_linalg_cholesky_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_linalg_cholesky_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_linalg_cholesky_ex_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_linalg_cholesky_ex_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_linalg_cholesky_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_linalg_cholesky_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_linalg_cholesky_ex_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_linalg_cholesky_ex_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_linalg_cholesky_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_linalg_cholesky_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_linalg_cholesky_ex_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_linalg_cholesky_ex_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_linalg_cholesky_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_linalg_cholesky_cpu_float64, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_linalg_cholesky_ex_cpu_complex128, test/test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_linalg_cholesky_ex_cpu_float64 2023-01-11T21:53:26.8478799Z 2023-01-11T21:53:26.8479157Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_linalg_cholesky_cpu_complex128 SKIPPED (Skipped! Operation does support gradgrad) [ 5%] 2023-01-11T21:53:26.8479952Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_linalg_cholesky_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 10%] 2023-01-11T21:53:26.8480871Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_linalg_cholesky_ex_cpu_complex128 SKIPPED (Skipped! Operation does support gradgrad) [ 15%] 2023-01-11T21:53:26.8481609Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_fail_gradgrad_linalg_cholesky_ex_cpu_float64 SKIPPED (Skipped! Operation does support gradgrad) [ 20%] 2023-01-11T21:53:26.8482246Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_linalg_cholesky_cpu_complex128 PASSED [ 25%] 2023-01-11T21:53:26.8482824Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_linalg_cholesky_cpu_float64 PASSED [ 30%] 2023-01-11T21:53:26.8483410Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_linalg_cholesky_ex_cpu_complex128 PASSED [ 35%] 2023-01-11T21:53:26.8484002Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_grad_linalg_cholesky_ex_cpu_float64 PASSED [ 40%] 2023-01-11T21:53:26.8484586Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_linalg_cholesky_cpu_complex128 PASSED [ 45%] 2023-01-11T21:53:26.8485168Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_linalg_cholesky_cpu_float64 PASSED [ 50%] 2023-01-11T21:53:26.8485741Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_linalg_cholesky_ex_cpu_complex128 PASSED [ 55%] 2023-01-11T21:53:26.8486295Z test_ops_gradients.py::TestBwdGradientsCPU::test_fn_gradgrad_linalg_cholesky_ex_cpu_float64 PASSED [ 60%] 2023-01-11T21:53:26.8486909Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_linalg_cholesky_cpu_complex128 SKIPPED (Op has no inplace variant!) [ 65%] 2023-01-11T21:53:26.8487564Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_linalg_cholesky_cpu_float64 SKIPPED (Op has no inplace variant!) [ 70%] 2023-01-11T21:53:26.8488114Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_linalg_cholesky_ex_cpu_complex128 SKIPPED (Op has no inplace variant!) [ 75%] 2023-01-11T21:53:26.8488581Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_grad_linalg_cholesky_ex_cpu_float64 SKIPPED (Op has no inplace variant!) [ 80%] 2023-01-11T21:53:26.8489190Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_linalg_cholesky_cpu_complex128 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 85%] 2023-01-11T21:53:26.8489758Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_linalg_cholesky_cpu_float64 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 90%] 2023-01-11T21:53:26.8490325Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_linalg_cholesky_ex_cpu_complex128 SKIPPED (Skipped! Operation does not support inplace autograd.) [ 95%] 2023-01-11T21:53:26.8490827Z test_ops_gradients.py::TestBwdGradientsCPU::test_inplace_gradgrad_linalg_cholesky_ex_cpu_float64 SKIPPED (Skipped! Operation does not support inplace autograd.) [100%] 2023-01-11T21:53:26.8491240Z 2023-01-11T21:53:26.8491354Z =============================== warnings summary =============================== 2023-01-11T21:53:26.8491806Z ../../../../../opt/conda/lib/python3.7/site-packages/_pytest/config/__init__.py:1171 2023-01-11T21:53:26.8492334Z /opt/conda/lib/python3.7/site-packages/_pytest/config/__init__.py:1171: PytestAssertRewriteWarning: Module already imported so cannot be rewritten: hypothesis 2023-01-11T21:53:26.8492728Z self._mark_plugins_for_rewrite(hook) 2023-01-11T21:53:26.8492858Z 2023-01-11T21:53:26.8493091Z -- Docs: https://docs.pytest.org/en/stable/how-to/capture-warnings.html 2023-01-11T21:53:26.8493662Z - generated xml file: /var/lib/jenkins/workspace/test/test-reports/python-pytest/test_ops_gradients/test_ops_gradients-c9b05079dbc8142b.xml - 2023-01-11T21:53:26.8494072Z ========== 8 passed, 12 skipped, 4925 deselected, 1 warning in 11.61s ========== 2023-01-11T21:53:26.8494399Z If in CI, skip info is located in the xml test reports, please either go to s3 or the hud to download them 2023-01-11T21:53:26.8494591Z 2023-01-11T21:53:26.8494917Z ##[endgroup] 2023-01-11T21:53:26.8495391Z FINISHED PRINTING LOG FILE of test_ops_gradients (/var/lib/jenkins/workspace/test/test-reports/test_ops_gradients_tsv3wrwm) 2023-01-11T21:53:26.8495711Z 2023-01-11T21:53:26.8495914Z Running distributions/test_distributions ... [2023-01-11 21:53:26.847099] 2023-01-11T21:53:26.8496479Z Executing ['/opt/conda/bin/python', '-bb', 'distributions/test_distributions.py', '-v', '--import-slow-tests', '--import-disabled-tests'] ... [2023-01-11 21:53:26.847542] 2023-01-11T21:55:07.3916740Z 2023-01-11T21:55:07.3917285Z Expand the folded group to see the log file of distributions/test_distributions 2023-01-11T21:55:07.3921149Z ##[group]PRINTING LOG FILE of distributions/test_distributions (/var/lib/jenkins/workspace/test/test-reports/distributions-test_distributions_q35jv08e) 2023-01-11T21:55:07.3922224Z Test results will be stored in test-reports/python-unittest/distributions.test_distributions 2023-01-11T21:55:07.3922575Z 2023-01-11T21:55:07.3922699Z Running tests... 2023-01-11T21:55:07.3923242Z ---------------------------------------------------------------------- 2023-01-11T21:55:07.3924185Z test_cdf (__main__.TestAgainstScipy) ... /opt/conda/lib/python3.7/site-packages/torch/distributions/wishart.py:253: UserWarning: Singular sample detected. 2023-01-11T21:55:07.3924985Z warnings.warn("Singular sample detected.") 2023-01-11T21:55:07.3925303Z ok (0.104s) 2023-01-11T21:55:07.3925573Z test_icdf (__main__.TestAgainstScipy) ... ok (0.046s) 2023-01-11T21:55:07.3925951Z test_mean (__main__.TestAgainstScipy) ... ok (1.404s) 2023-01-11T21:55:07.3927859Z test_variance_stddev (__main__.TestAgainstScipy) ... /opt/conda/lib/python3.7/site-packages/torch/testing/_comparison.py:679: UserWarning: The given NumPy array is not writable, and PyTorch does not support non-writable tensors. This means writing to this tensor will result in undefined behavior. You may want to copy the array to protect its data or make it writable before converting it to a tensor. This type of warning will be suppressed for the rest of this program. (Triggered internally at /var/lib/jenkins/workspace/torch/csrc/utils/tensor_numpy.cpp:210.) 2023-01-11T21:55:07.3929082Z return torch.as_tensor(tensor_like) 2023-01-11T21:55:07.3929396Z ok (0.082s) 2023-01-11T21:55:07.3929716Z test_params_constraints (__main__.TestConstraints) ... ok (0.198s) 2023-01-11T21:55:07.3930159Z test_support_constraints (__main__.TestConstraints) ... ok (0.239s) 2023-01-11T21:55:07.3930650Z test_bernoulli_shape_scalar_params (__main__.TestDistributionShapes) ... ok (0.004s) 2023-01-11T21:55:07.3931160Z test_bernoulli_shape_tensor_params (__main__.TestDistributionShapes) ... ok (0.004s) 2023-01-11T21:55:07.3931667Z test_beta_shape_scalar_params (__main__.TestDistributionShapes) ... ok (0.004s) 2023-01-11T21:55:07.3932156Z test_beta_shape_tensor_params (__main__.TestDistributionShapes) ... ok (0.005s) 2023-01-11T21:55:07.3932846Z test_binomial_shape (__main__.TestDistributionShapes) ... ok (0.003s) 2023-01-11T21:55:07.3933283Z test_binomial_shape_vectorized_n (__main__.TestDistributionShapes) ... ok (0.004s) 2023-01-11T21:55:07.3933789Z test_categorical_shape (__main__.TestDistributionShapes) ... ok (0.008s) 2023-01-11T21:55:07.3934262Z test_cauchy_shape_scalar_params (__main__.TestDistributionShapes) ... ok (0.003s) 2023-01-11T21:55:07.3934744Z test_cauchy_shape_tensor_params (__main__.TestDistributionShapes) ... ok (0.003s) 2023-01-11T21:55:07.3935169Z test_chi2_shape_scalar_params (__main__.TestDistributionShapes) ... ok (0.003s) 2023-01-11T21:55:07.3935698Z test_chi2_shape_tensor_params (__main__.TestDistributionShapes) ... ok (0.003s) 2023-01-11T21:55:07.3936216Z test_continuous_bernoulli_shape_scalar_params (__main__.TestDistributionShapes) ... ok (0.006s) 2023-01-11T21:55:07.3936768Z test_continuous_bernoulli_shape_tensor_params (__main__.TestDistributionShapes) ... ok (0.007s) 2023-01-11T21:55:07.3937255Z test_dirichlet_shape (__main__.TestDistributionShapes) ... ok (0.005s) 2023-01-11T21:55:07.3937811Z test_entropy_shape (__main__.TestDistributionShapes) ... ok (0.081s) 2023-01-11T21:55:07.3938289Z test_exponential_shape_scalar_param (__main__.TestDistributionShapes) ... ok (0.003s) 2023-01-11T21:55:07.3938767Z test_exponential_shape_tensor_param (__main__.TestDistributionShapes) ... ok (0.003s) 2023-01-11T21:55:07.3939294Z test_gamma_shape_scalar_params (__main__.TestDistributionShapes) ... ok (0.004s) 2023-01-11T21:55:07.3939725Z test_gamma_shape_tensor_params (__main__.TestDistributionShapes) ... ok (0.003s) 2023-01-11T21:55:07.3940148Z test_geometric_shape_scalar_params (__main__.TestDistributionShapes) ... ok (0.004s) 2023-01-11T21:55:07.3940666Z test_geometric_shape_tensor_params (__main__.TestDistributionShapes) ... ok (0.004s) 2023-01-11T21:55:07.3941124Z test_gumbel_shape_scalar_params (__main__.TestDistributionShapes) ... ok (0.003s) 2023-01-11T21:55:07.3941577Z test_halfcauchy_shape_scalar_params (__main__.TestDistributionShapes) ... ok (0.004s) 2023-01-11T21:55:07.3942027Z test_halfcauchy_shape_tensor_params (__main__.TestDistributionShapes) ... ok (0.004s) 2023-01-11T21:55:07.3942554Z test_kumaraswamy_shape_scalar_params (__main__.TestDistributionShapes) ... ok (0.005s) 2023-01-11T21:55:07.3943037Z test_laplace_shape_scalar_params (__main__.TestDistributionShapes) ... ok (0.003s) 2023-01-11T21:55:07.3943506Z test_laplace_shape_tensor_params (__main__.TestDistributionShapes) ... ok (0.004s) 2023-01-11T21:55:07.3943997Z test_mixture_same_family_shape (__main__.TestDistributionShapes) ... ok (0.006s) 2023-01-11T21:55:07.3944469Z test_multinomial_shape (__main__.TestDistributionShapes) ... ok (0.006s) 2023-01-11T21:55:07.3944889Z test_normal_shape_scalar_params (__main__.TestDistributionShapes) ... ok (0.003s) 2023-01-11T21:55:07.3945325Z test_normal_shape_tensor_params (__main__.TestDistributionShapes) ... ok (0.004s) 2023-01-11T21:55:07.3945834Z test_one_hot_categorical_shape (__main__.TestDistributionShapes) ... ok (0.013s) 2023-01-11T21:55:07.3946303Z test_pareto_shape_scalar_params (__main__.TestDistributionShapes) ... ok (0.004s) 2023-01-11T21:55:07.3946757Z test_studentT_shape_scalar_params (__main__.TestDistributionShapes) ... ok (0.004s) 2023-01-11T21:55:07.3947227Z test_studentT_shape_tensor_params (__main__.TestDistributionShapes) ... ok (0.004s) 2023-01-11T21:55:07.3947703Z test_uniform_shape_scalar_params (__main__.TestDistributionShapes) ... ok (0.003s) 2023-01-11T21:55:07.3948205Z test_uniform_shape_tensor_params (__main__.TestDistributionShapes) ... ok (0.003s) 2023-01-11T21:55:07.3948674Z test_vonmises_shape_scalar_params (__main__.TestDistributionShapes) ... ok (0.007s) 2023-01-11T21:55:07.3949185Z test_vonmises_shape_tensor_params (__main__.TestDistributionShapes) ... ok (0.007s) 2023-01-11T21:55:07.3949662Z test_weibull_scale_scalar_params (__main__.TestDistributionShapes) ... ok (0.004s) 2023-01-11T21:55:07.3950160Z test_wishart_shape_scalar_params (__main__.TestDistributionShapes) ... ok (0.009s) 2023-01-11T21:55:07.3950593Z test_wishart_shape_tensor_params (__main__.TestDistributionShapes) ... ok (0.014s) 2023-01-11T21:55:07.3951020Z test_argmax_relaxed_categorical (__main__.TestDistributions) ... ok (0.104s) 2023-01-11T21:55:07.3951389Z test_bernoulli (__main__.TestDistributions) ... ok (0.232s) 2023-01-11T21:55:07.3951752Z test_bernoulli_3d (__main__.TestDistributions) ... ok (0.003s) 2023-01-11T21:55:07.3952137Z test_bernoulli_enumerate_support (__main__.TestDistributions) ... ok (0.005s) 2023-01-11T21:55:07.3952558Z test_beta_log_prob (__main__.TestDistributions) ... ok (0.170s) 2023-01-11T21:55:07.3952947Z test_beta_sample (__main__.TestDistributions) ... ok (0.499s) 2023-01-11T21:55:07.3953370Z test_beta_shape (__main__.TestDistributions) ... ok (0.007s) 2023-01-11T21:55:07.3953761Z test_beta_underflow (__main__.TestDistributions) ... ok (0.098s) 2023-01-11T21:55:07.3954204Z test_beta_underflow_gpu (__main__.TestDistributions) ... skip: CUDA not found (0.001s) 2023-01-11T21:55:07.3954666Z test_binomial (__main__.TestDistributions) ... ok (0.133s) 2023-01-11T21:55:07.3955220Z test_binomial_enumerate_support (__main__.TestDistributions) ... ok (0.007s) 2023-01-11T21:55:07.3955689Z test_binomial_extreme_vals (__main__.TestDistributions) ... ok (0.010s) 2023-01-11T21:55:07.3956101Z test_binomial_log_prob_and_entropy (__main__.TestDistributions) ... ok (0.082s) 2023-01-11T21:55:07.3956572Z test_binomial_log_prob_vectorized_count (__main__.TestDistributions) ... ok (0.007s) 2023-01-11T21:55:07.3956993Z test_binomial_sample (__main__.TestDistributions) ... ok (0.085s) 2023-01-11T21:55:07.3957355Z test_binomial_stable (__main__.TestDistributions) ... ok (0.006s) 2023-01-11T21:55:07.3957738Z test_binomial_vectorized_count (__main__.TestDistributions) ... ok (0.129s) 2023-01-11T21:55:07.3958120Z test_categorical_1d (__main__.TestDistributions) ... ok (0.019s) 2023-01-11T21:55:07.3958473Z test_categorical_2d (__main__.TestDistributions) ... ok (0.028s) 2023-01-11T21:55:07.3958874Z test_categorical_enumerate_support (__main__.TestDistributions) ... ok (0.003s) 2023-01-11T21:55:07.3959263Z test_cauchy (__main__.TestDistributions) ... ok (0.046s) 2023-01-11T21:55:07.3960041Z test_cdf_icdf_inverse (__main__.TestDistributions) ... /opt/conda/lib/python3.7/site-packages/torch/distributions/wishart.py:253: UserWarning: Singular sample detected. 2023-01-11T21:55:07.3960510Z warnings.warn("Singular sample detected.") 2023-01-11T21:55:07.3960938Z ok (0.792s) 2023-01-11T21:55:07.3961233Z test_cdf_log_prob (__main__.TestDistributions) ... ok (0.344s) 2023-01-11T21:55:07.3961583Z test_chi2_sample (__main__.TestDistributions) ... ok (0.126s) 2023-01-11T21:55:07.3961955Z test_chi2_shape (__main__.TestDistributions) ... ok (0.010s) 2023-01-11T21:55:07.3962330Z test_continuous_bernoulli (__main__.TestDistributions) ... ok (0.057s) 2023-01-11T21:55:07.3962733Z test_continuous_bernoulli_3d (__main__.TestDistributions) ... ok (0.005s) 2023-01-11T21:55:07.3963111Z test_dirichlet_log_prob (__main__.TestDistributions) ... ok (0.005s) 2023-01-11T21:55:07.3963521Z test_dirichlet_mode (__main__.TestDistributions) ... ok (0.006s) 2023-01-11T21:55:07.3963914Z test_dirichlet_sample (__main__.TestDistributions) ... ok (0.055s) 2023-01-11T21:55:07.3964309Z test_dirichlet_shape (__main__.TestDistributions) ... ok (0.004s) 2023-01-11T21:55:07.3965039Z test_distribution_expand (__main__.TestDistributions) ... /opt/conda/lib/python3.7/site-packages/torch/distributions/wishart.py:253: UserWarning: Singular sample detected. 2023-01-11T21:55:07.3965518Z warnings.warn("Singular sample detected.") 2023-01-11T21:55:07.3965781Z ok (2.277s) 2023-01-11T21:55:07.3966083Z test_distribution_subclass_expand (__main__.TestDistributions) ... ok (0.569s) 2023-01-11T21:55:07.3966484Z test_enumerate_support_type (__main__.TestDistributions) ... ok (0.112s) 2023-01-11T21:55:07.3967000Z test_exponential (__main__.TestDistributions) ... ok (0.112s) 2023-01-11T21:55:07.3967364Z test_exponential_sample (__main__.TestDistributions) ... ok (0.112s) 2023-01-11T21:55:07.3967743Z test_fishersnedecor (__main__.TestDistributions) ... ok (0.016s) 2023-01-11T21:55:07.3968129Z test_fishersnedecor_sample (__main__.TestDistributions) ... ok (1.172s) 2023-01-11T21:55:07.3968524Z test_gamma_gpu_sample (__main__.TestDistributions) ... skip: CUDA not found (0.001s) 2023-01-11T21:55:07.3968952Z test_gamma_gpu_shape (__main__.TestDistributions) ... skip: CUDA not found (0.002s) 2023-01-11T21:55:07.3969357Z test_gamma_log_prob_at_boundary (__main__.TestDistributions) ... ok (0.007s) 2023-01-11T21:55:07.3969735Z test_gamma_sample (__main__.TestDistributions) ... ok (0.394s) 2023-01-11T21:55:07.3970081Z test_gamma_shape (__main__.TestDistributions) ... ok (0.010s) 2023-01-11T21:55:07.3970447Z test_geometric (__main__.TestDistributions) ... ok (0.020s) 2023-01-11T21:55:07.3970844Z test_geometric_log_prob_and_entropy (__main__.TestDistributions) ... ok (0.017s) 2023-01-11T21:55:07.3971232Z test_geometric_sample (__main__.TestDistributions) ... ok (0.010s) 2023-01-11T21:55:07.3971688Z test_gumbel (__main__.TestDistributions) ... ok (0.012s) 2023-01-11T21:55:07.3972043Z test_gumbel_sample (__main__.TestDistributions) ... ok (0.777s) 2023-01-11T21:55:07.3972403Z test_halfcauchy (__main__.TestDistributions) ... ok (0.032s) 2023-01-11T21:55:07.3972755Z test_halfnormal (__main__.TestDistributions) ... ok (0.030s) 2023-01-11T21:55:07.3973120Z test_halfnormal_logprob (__main__.TestDistributions) ... ok (0.008s) 2023-01-11T21:55:07.3973499Z test_halfnormal_sample (__main__.TestDistributions) ... ok (0.131s) 2023-01-11T21:55:07.3973856Z test_has_examples (__main__.TestDistributions) ... ok (0.001s) 2023-01-11T21:55:07.3974583Z test_independent_expand (__main__.TestDistributions) ... /opt/conda/lib/python3.7/site-packages/torch/distributions/wishart.py:253: UserWarning: Singular sample detected. 2023-01-11T21:55:07.3975076Z warnings.warn("Singular sample detected.") 2023-01-11T21:55:07.3975342Z ok (2.438s) 2023-01-11T21:55:07.3975717Z test_independent_shape (__main__.TestDistributions) ... ok (1.060s) 2023-01-11T21:55:07.3976122Z test_invalid_parameter_broadcasting (__main__.TestDistributions) ... ok (0.071s) 2023-01-11T21:55:07.3976535Z test_kumaraswamy_mean_variance (__main__.TestDistributions) ... ok (0.112s) 2023-01-11T21:55:07.3976906Z test_kumaraswamy_shape (__main__.TestDistributions) ... ok (0.007s) 2023-01-11T21:55:07.3977273Z test_laplace (__main__.TestDistributions) ... ok (0.069s) 2023-01-11T21:55:07.3977630Z test_laplace_sample (__main__.TestDistributions) ... ok (0.371s) 2023-01-11T21:55:07.3977992Z test_lazy_property_grad (__main__.TestDistributions) ... ok (0.006s) 2023-01-11T21:55:07.3978368Z test_lkj_cholesky_log_prob (__main__.TestDistributions) ... ok (0.054s) 2023-01-11T21:55:07.3978747Z test_logisticnormal (__main__.TestDistributions) ... ok (0.096s) 2023-01-11T21:55:07.3979143Z test_logisticnormal_logprob (__main__.TestDistributions) ... ok (0.004s) 2023-01-11T21:55:07.3979520Z test_logisticnormal_sample (__main__.TestDistributions) ... ok (0.537s) 2023-01-11T21:55:07.3979898Z test_lognormal (__main__.TestDistributions) ... ok (0.061s) 2023-01-11T21:55:07.3980261Z test_lognormal_logprob (__main__.TestDistributions) ... ok (0.009s) 2023-01-11T21:55:07.3980619Z test_lognormal_sample (__main__.TestDistributions) ... ok (0.355s) 2023-01-11T21:55:07.3981026Z test_lowrank_multivariate_normal_log_prob (__main__.TestDistributions) ... ok (0.026s) 2023-01-11T21:55:07.3981459Z test_lowrank_multivariate_normal_moments (__main__.TestDistributions) ... ok (0.094s) 2023-01-11T21:55:07.3981908Z test_lowrank_multivariate_normal_properties (__main__.TestDistributions) ... ok (0.009s) 2023-01-11T21:55:07.3982335Z test_lowrank_multivariate_normal_sample (__main__.TestDistributions) ... ok (0.055s) 2023-01-11T21:55:07.3982847Z test_lowrank_multivariate_normal_shape (__main__.TestDistributions) ... ok (0.221s) 2023-01-11T21:55:07.3983272Z test_mixture_same_family_log_prob (__main__.TestDistributions) ... ok (0.011s) 2023-01-11T21:55:07.3983667Z test_mixture_same_family_sample (__main__.TestDistributions) ... ok (0.065s) 2023-01-11T21:55:07.3984066Z test_mixture_same_family_shape (__main__.TestDistributions) ... ok (0.023s) 2023-01-11T21:55:07.3984781Z test_mode (__main__.TestDistributions) ... /opt/conda/lib/python3.7/site-packages/torch/distributions/wishart.py:253: UserWarning: Singular sample detected. 2023-01-11T21:55:07.3985249Z warnings.warn("Singular sample detected.") 2023-01-11T21:55:07.3985502Z ok (0.546s) 2023-01-11T21:55:07.3985797Z test_multinomial_1d (__main__.TestDistributions) ... ok (0.042s) 2023-01-11T21:55:07.3986197Z test_multinomial_1d_log_prob_and_entropy (__main__.TestDistributions) ... ok (0.011s) 2023-01-11T21:55:07.3986588Z test_multinomial_2d (__main__.TestDistributions) ... ok (0.044s) 2023-01-11T21:55:07.3986991Z test_multivariate_normal_log_prob (__main__.TestDistributions) ... ok (0.025s) 2023-01-11T21:55:07.3987407Z test_multivariate_normal_moments (__main__.TestDistributions) ... ok (0.049s) 2023-01-11T21:55:07.3987869Z test_multivariate_normal_properties (__main__.TestDistributions) ... ok (0.005s) 2023-01-11T21:55:07.3988290Z test_multivariate_normal_sample (__main__.TestDistributions) ... ok (0.144s) 2023-01-11T21:55:07.3988696Z test_multivariate_normal_shape (__main__.TestDistributions) ... ok (0.313s) 2023-01-11T21:55:07.3989131Z test_multivariate_normal_stable_with_precision_matrix (__main__.TestDistributions) ... ok (0.003s) 2023-01-11T21:55:07.3989541Z test_negative_binomial (__main__.TestDistributions) ... ok (0.096s) 2023-01-11T21:55:07.3989941Z test_negative_binomial_log_prob (__main__.TestDistributions) ... ok (0.067s) 2023-01-11T21:55:07.3990382Z test_negative_binomial_log_prob_vectorized_count (__main__.TestDistributions) ... ok (0.007s) 2023-01-11T21:55:07.3990767Z test_normal (__main__.TestDistributions) ... ok (0.062s) 2023-01-11T21:55:07.3991123Z test_normal_sample (__main__.TestDistributions) ... ok (0.341s) 2023-01-11T21:55:07.3991499Z test_one_hot_categorical_1d (__main__.TestDistributions) ... ok (0.025s) 2023-01-11T21:55:07.3991891Z test_one_hot_categorical_2d (__main__.TestDistributions) ... ok (0.025s) 2023-01-11T21:55:07.3992288Z test_one_hot_categorical_enumerate_support (__main__.TestDistributions) ... ok (0.005s) 2023-01-11T21:55:07.3992681Z test_pareto (__main__.TestDistributions) ... ok (0.012s) 2023-01-11T21:55:07.3993038Z test_pareto_sample (__main__.TestDistributions) ... ok (0.346s) 2023-01-11T21:55:07.3993401Z test_poisson_forward_ad (__main__.TestDistributions) ... ok (0.001s) 2023-01-11T21:55:07.3993811Z test_poisson_gpu_sample (__main__.TestDistributions) ... skip: CUDA not found (0.001s) 2023-01-11T21:55:07.3994221Z test_poisson_log_prob (__main__.TestDistributions) ... ok (0.022s) 2023-01-11T21:55:07.3994598Z test_poisson_sample (__main__.TestDistributions) ... ok (0.011s) 2023-01-11T21:55:07.3994957Z test_poisson_shape (__main__.TestDistributions) ... ok (0.003s) 2023-01-11T21:55:07.3995341Z test_relaxed_bernoulli (__main__.TestDistributions) ... ok (0.064s) 2023-01-11T21:55:07.3995745Z test_relaxed_one_hot_categorical_1d (__main__.TestDistributions) ... ok (0.037s) 2023-01-11T21:55:07.3996147Z test_relaxed_one_hot_categorical_2d (__main__.TestDistributions) ... ok (0.060s) 2023-01-11T21:55:07.3996515Z test_repr (__main__.TestDistributions) ... ok (0.070s) 2023-01-11T21:55:07.3996884Z test_rounded_relaxed_bernoulli (__main__.TestDistributions) ... ok (0.051s) 2023-01-11T21:55:07.3997623Z test_rsample_requires_grad (__main__.TestDistributions) ... /opt/conda/lib/python3.7/site-packages/torch/distributions/wishart.py:253: UserWarning: Singular sample detected. 2023-01-11T21:55:07.3998095Z warnings.warn("Singular sample detected.") 2023-01-11T21:55:07.3998361Z ok (0.073s) 2023-01-11T21:55:07.3998731Z test_sample_detached (__main__.TestDistributions) ... ok (0.076s) 2023-01-11T21:55:07.3999087Z test_studentT (__main__.TestDistributions) ... ok (0.016s) 2023-01-11T21:55:07.3999455Z test_studentT_log_prob (__main__.TestDistributions) ... ok (0.157s) 2023-01-11T21:55:07.3999830Z test_studentT_sample (__main__.TestDistributions) ... ok (1.571s) 2023-01-11T21:55:07.4000197Z test_support_attributes (__main__.TestDistributions) ... ok (0.070s) 2023-01-11T21:55:07.4000569Z test_uniform (__main__.TestDistributions) ... ok (0.038s) 2023-01-11T21:55:07.4001103Z test_valid_parameter_broadcasting (__main__.TestDistributions) ... ok (0.080s) 2023-01-11T21:55:07.4001502Z test_vonmises_logprob (__main__.TestDistributions) ... ok (0.083s) 2023-01-11T21:55:07.4001862Z test_vonmises_sample (__main__.TestDistributions) ... ok (11.177s) 2023-01-11T21:55:07.4002582Z test_wishart_log_prob (__main__.TestDistributions) ... /opt/conda/lib/python3.7/site-packages/torch/distributions/wishart.py:253: UserWarning: Singular sample detected. 2023-01-11T21:55:07.4003068Z warnings.warn("Singular sample detected.") 2023-01-11T21:55:07.4003325Z ok (0.294s) 2023-01-11T21:55:07.4004186Z test_wishart_moments (__main__.TestDistributions) ... /opt/conda/lib/python3.7/site-packages/torch/distributions/wishart.py:107: UserWarning: Low df values detected. Singular samples are highly likely to occur for ndim - 1 < df < ndim. 2023-01-11T21:55:07.4004985Z warnings.warn("Low df values detected. Singular samples are highly likely to occur for ndim - 1 < df < ndim.") 2023-01-11T21:55:07.4005331Z ok (6.411s) 2023-01-11T21:55:07.4005619Z test_wishart_properties (__main__.TestDistributions) ... ok (0.006s) 2023-01-11T21:55:07.4005998Z test_wishart_sample (__main__.TestDistributions) ... ok (0.607s) 2023-01-11T21:55:07.4006691Z test_wishart_shape (__main__.TestDistributions) ... /opt/conda/lib/python3.7/site-packages/torch/distributions/wishart.py:253: UserWarning: Singular sample detected. 2023-01-11T21:55:07.4007169Z warnings.warn("Singular sample detected.") 2023-01-11T21:55:07.4007715Z /opt/conda/lib/python3.7/site-packages/torch/distributions/wishart.py:253: UserWarning: Singular sample detected. 2023-01-11T21:55:07.4008135Z warnings.warn("Singular sample detected.") 2023-01-11T21:55:07.4008689Z /opt/conda/lib/python3.7/site-packages/torch/distributions/wishart.py:253: UserWarning: Singular sample detected. 2023-01-11T21:55:07.4009105Z warnings.warn("Singular sample detected.") 2023-01-11T21:55:07.4009637Z /opt/conda/lib/python3.7/site-packages/torch/distributions/wishart.py:253: UserWarning: Singular sample detected. 2023-01-11T21:55:07.4010051Z warnings.warn("Singular sample detected.") 2023-01-11T21:55:07.4010602Z /opt/conda/lib/python3.7/site-packages/torch/distributions/wishart.py:253: UserWarning: Singular sample detected. 2023-01-11T21:55:07.4010993Z warnings.warn("Singular sample detected.") 2023-01-11T21:55:07.4011551Z /opt/conda/lib/python3.7/site-packages/torch/distributions/wishart.py:253: UserWarning: Singular sample detected. 2023-01-11T21:55:07.4011968Z warnings.warn("Singular sample detected.") 2023-01-11T21:55:07.4012220Z ok (0.639s) 2023-01-11T21:55:07.4012554Z test_wishart_stable_with_precision_matrix (__main__.TestDistributions) ... ok (0.003s) 2023-01-11T21:55:07.4012999Z test_zero_excluded_binomial (__main__.TestDistributions) ... skip: CUDA not found (0.001s) 2023-01-11T21:55:07.4013397Z test_cat_event_dim (__main__.TestFunctors) ... ok (0.003s) 2023-01-11T21:55:07.4013731Z test_cat_transform (__main__.TestFunctors) ... ok (0.008s) 2023-01-11T21:55:07.4014095Z test_cat_transform_non_uniform (__main__.TestFunctors) ... ok (0.009s) 2023-01-11T21:55:07.4014466Z test_stack_transform (__main__.TestFunctors) ... ok (0.008s) 2023-01-11T21:55:07.4015091Z test_cdf (__main__.TestJit) ... /opt/conda/lib/python3.7/site-packages/torch/distributions/wishart.py:253: UserWarning: Singular sample detected. 2023-01-11T21:55:07.4015634Z warnings.warn("Singular sample detected.") 2023-01-11T21:55:07.4015996Z ok (4.193s) 2023-01-11T21:55:07.4016725Z test_entropy (__main__.TestJit) ... /opt/conda/lib/python3.7/site-packages/torch/distributions/wishart.py:107: UserWarning: Low df values detected. Singular samples are highly likely to occur for ndim - 1 < df < ndim. 2023-01-11T21:55:07.4017461Z warnings.warn("Low df values detected. Singular samples are highly likely to occur for ndim - 1 < df < ndim.") 2023-01-11T21:55:07.4017818Z ok (4.421s) 2023-01-11T21:55:07.4018119Z test_enumerate_support (__main__.TestJit) ... ok (1.535s) 2023-01-11T21:55:07.4018429Z test_log_prob (__main__.TestJit) ... ok (8.651s) 2023-01-11T21:55:07.4018745Z test_mean (__main__.TestJit) ... ok (4.213s) 2023-01-11T21:55:07.4019044Z test_rsample (__main__.TestJit) ... ok (2.713s) 2023-01-11T21:55:07.4019336Z test_sample (__main__.TestJit) ... ok (3.069s) 2023-01-11T21:55:07.4019639Z test_variance (__main__.TestJit) ... ok (5.548s) 2023-01-11T21:55:07.4019976Z test_entropy_exponential_family (__main__.TestKL) ... ok (0.165s) 2023-01-11T21:55:07.4020336Z test_entropy_monte_carlo (__main__.TestKL) ... ok (11.209s) 2023-01-11T21:55:07.4020648Z test_kl_edgecases (__main__.TestKL) ... ok (0.046s) 2023-01-11T21:55:07.4021038Z test_kl_exponential_family (__main__.TestKL) ... ok (0.088s) 2023-01-11T21:55:07.4021373Z test_kl_infinite (__main__.TestKL) ... ok (0.071s) 2023-01-11T21:55:07.4021696Z test_kl_lowrank_multivariate_normal (__main__.TestKL) ... ok (0.097s) 2023-01-11T21:55:07.4022086Z test_kl_lowrank_multivariate_normal_batched (__main__.TestKL) ... ok (0.074s) 2023-01-11T21:55:07.4022444Z test_kl_monte_carlo (__main__.TestKL) ... ok (3.866s) 2023-01-11T21:55:07.4022765Z test_kl_multivariate_normal (__main__.TestKL) ... ok (0.162s) 2023-01-11T21:55:07.4023124Z test_kl_multivariate_normal_batched (__main__.TestKL) ... ok (0.061s) 2023-01-11T21:55:07.4023519Z test_kl_multivariate_normal_batched_broadcasted (__main__.TestKL) ... ok (0.062s) 2023-01-11T21:55:07.4023875Z test_kl_shape (__main__.TestKL) ... ok (0.201s) 2023-01-11T21:55:07.4024177Z test_kl_transformed (__main__.TestKL) ... ok (0.044s) 2023-01-11T21:55:07.4024572Z test_lazy_logits_initialization (__main__.TestLazyLogitsInitialization) ... ok (0.015s) 2023-01-11T21:55:07.4025046Z test_lazy_probs_initialization (__main__.TestLazyLogitsInitialization) ... ok (0.007s) 2023-01-11T21:55:07.4025475Z test_bernoulli_gradient (__main__.TestNumericalStability) ... ok (0.052s) 2023-01-11T21:55:07.4025902Z test_bernoulli_with_logits_overflow (__main__.TestNumericalStability) ... ok (0.008s) 2023-01-11T21:55:07.4026336Z test_bernoulli_with_logits_underflow (__main__.TestNumericalStability) ... ok (0.008s) 2023-01-11T21:55:07.4026764Z test_categorical_log_prob (__main__.TestNumericalStability) ... ok (0.005s) 2023-01-11T21:55:07.4027179Z test_categorical_log_prob_with_logits (__main__.TestNumericalStability) ... ok (0.006s) 2023-01-11T21:55:07.4027631Z test_continuous_bernoulli_gradient (__main__.TestNumericalStability) ... ok (0.113s) 2023-01-11T21:55:07.4028087Z test_continuous_bernoulli_with_logits_overflow (__main__.TestNumericalStability) ... ok (0.015s) 2023-01-11T21:55:07.4028542Z test_continuous_bernoulli_with_logits_underflow (__main__.TestNumericalStability) ... ok (0.015s) 2023-01-11T21:55:07.4028988Z test_multinomial_log_prob (__main__.TestNumericalStability) ... ok (0.006s) 2023-01-11T21:55:07.4029419Z test_multinomial_log_prob_with_logits (__main__.TestNumericalStability) ... ok (0.008s) 2023-01-11T21:55:07.4029810Z test_beta_wrt_alpha (__main__.TestRsample) ... ok (0.090s) 2023-01-11T21:55:07.4030134Z test_beta_wrt_beta (__main__.TestRsample) ... ok (0.089s) 2023-01-11T21:55:07.4030455Z test_chi2 (__main__.TestRsample) ... ok (0.041s) 2023-01-11T21:55:07.4030798Z test_dirichlet_multivariate (__main__.TestRsample) ... ok (1.435s) 2023-01-11T21:55:07.4031160Z test_dirichlet_on_diagonal (__main__.TestRsample) ... ok (0.088s) 2023-01-11T21:55:07.4031545Z test_dirichlet_tangent_field (__main__.TestRsample) ... ok (0.426s) 2023-01-11T21:55:07.4031957Z test_gamma (__main__.TestRsample) ... ok (0.039s) 2023-01-11T21:55:07.4032483Z test_invalid (__main__.TestValidation) ... skip: division-by-zero error with UBSAN (0.001s) 2023-01-11T21:55:07.4032890Z test_invalid_log_probs_arg (__main__.TestValidation) ... ok (1.233s) 2023-01-11T21:55:07.4033243Z test_valid (__main__.TestValidation) ... ok (0.055s) 2023-01-11T21:55:07.4033634Z test_warning_unimplemented_constraints (__main__.TestValidation) ... ok (0.007s) 2023-01-11T21:55:07.4033881Z 2023-01-11T21:55:07.4034134Z ---------------------------------------------------------------------- 2023-01-11T21:55:07.4034453Z Ran 219 tests in 95.103s 2023-01-11T21:55:07.4034608Z 2023-01-11T21:55:07.4034703Z OK (skipped=6) 2023-01-11T21:55:07.4034841Z 2023-01-11T21:55:07.4034954Z Generating XML reports... 2023-01-11T21:55:07.4035546Z Generated XML report: test-reports/python-unittest/distributions.test_distributions/TEST-TestAgainstScipy-20230111215331.xml 2023-01-11T21:55:07.4036318Z Generated XML report: test-reports/python-unittest/distributions.test_distributions/TEST-TestConstraints-20230111215331.xml 2023-01-11T21:55:07.4037187Z Generated XML report: test-reports/python-unittest/distributions.test_distributions/TEST-TestDistributionShapes-20230111215331.xml 2023-01-11T21:55:07.4037956Z Generated XML report: test-reports/python-unittest/distributions.test_distributions/TEST-TestDistributions-20230111215331.xml 2023-01-11T21:55:07.4038696Z Generated XML report: test-reports/python-unittest/distributions.test_distributions/TEST-TestFunctors-20230111215331.xml 2023-01-11T21:55:07.4039398Z Generated XML report: test-reports/python-unittest/distributions.test_distributions/TEST-TestJit-20230111215331.xml 2023-01-11T21:55:07.4040099Z Generated XML report: test-reports/python-unittest/distributions.test_distributions/TEST-TestKL-20230111215331.xml 2023-01-11T21:55:07.4041001Z Generated XML report: test-reports/python-unittest/distributions.test_distributions/TEST-TestLazyLogitsInitialization-20230111215331.xml 2023-01-11T21:55:07.4041839Z Generated XML report: test-reports/python-unittest/distributions.test_distributions/TEST-TestNumericalStability-20230111215331.xml 2023-01-11T21:55:07.4042604Z Generated XML report: test-reports/python-unittest/distributions.test_distributions/TEST-TestRsample-20230111215331.xml 2023-01-11T21:55:07.4043347Z Generated XML report: test-reports/python-unittest/distributions.test_distributions/TEST-TestValidation-20230111215331.xml 2023-01-11T21:55:07.4043672Z 2023-01-11T21:55:07.4044074Z ##[endgroup] 2023-01-11T21:55:07.4044687Z FINISHED PRINTING LOG FILE of distributions/test_distributions (/var/lib/jenkins/workspace/test/test-reports/distributions-test_distributions_q35jv08e) 2023-01-11T21:55:07.4045034Z 2023-01-11T21:55:07.4045291Z Running nn/test_convolution ... [2023-01-11 21:55:07.392529] 2023-01-11T21:55:07.4045934Z Executing ['/opt/conda/bin/python', '-bb', 'nn/test_convolution.py', '-v', '--import-slow-tests', '--import-disabled-tests'] ... [2023-01-11 21:55:07.392989] 2023-01-11T21:55:59.0198470Z 2023-01-11T21:55:59.0198946Z Expand the folded group to see the log file of nn/test_convolution 2023-01-11T21:55:59.0201828Z ##[group]PRINTING LOG FILE of nn/test_convolution (/var/lib/jenkins/workspace/test/test-reports/nn-test_convolution_1apoiion) 2023-01-11T21:55:59.0203073Z Test results will be stored in test-reports/python-unittest/nn.test_convolution 2023-01-11T21:55:59.0203588Z 2023-01-11T21:55:59.0203857Z Running tests... 2023-01-11T21:55:59.0204407Z ---------------------------------------------------------------------- 2023-01-11T21:55:59.0205617Z test_Conv1d_module_same_padding (__main__.TestConvolutionNN) ... nn/test_convolution.py:152: UserWarning: Using padding='same' with even kernel lengths and odd dilation may require a zero-padded copy of the input be created (Triggered internally at /var/lib/jenkins/workspace/aten/src/ATen/native/Convolution.cpp:997.) 2023-01-11T21:55:59.0206607Z expect = F.conv1d(x, module.weight, module.bias, padding='same') 2023-01-11T21:55:59.0207268Z ok (0.011s) 2023-01-11T21:55:59.0207724Z test_Conv2d_1x1 (__main__.TestConvolutionNN) ... ok (0.021s) 2023-01-11T21:55:59.0208336Z test_Conv2d_OneDNN (__main__.TestConvolutionNN) ... ok (0.115s) 2023-01-11T21:55:59.0208966Z test_Conv2d_backward_twice (__main__.TestConvolutionNN) ... ok (0.013s) 2023-01-11T21:55:59.0209612Z test_Conv2d_groups_nobias (__main__.TestConvolutionNN) ... ok (0.010s) 2023-01-11T21:55:59.0210238Z test_Conv2d_groups_nobias_v2 (__main__.TestConvolutionNN) ... ok (0.010s) 2023-01-11T21:55:59.0210888Z test_Conv2d_inconsistent_types (__main__.TestConvolutionNN) ... ok (0.025s) 2023-01-11T21:55:59.0211664Z test_Conv2d_inconsistent_types_on_GPU_with_cudnn (__main__.TestConvolutionNN) ... skip: CUDA not available (0.001s) 2023-01-11T21:55:59.0241822Z test_Conv2d_inconsistent_types_on_GPU_without_cudnn (__main__.TestConvolutionNN) ... skip: CUDA not available (0.001s) 2023-01-11T21:55:59.0242340Z test_Conv2d_missing_argument (__main__.TestConvolutionNN) ... ok (0.003s) 2023-01-11T21:55:59.0242692Z test_Conv2d_module_same_padding (__main__.TestConvolutionNN) ... ok (0.008s) 2023-01-11T21:55:59.0242989Z test_Conv3d_groups_nobias (__main__.TestConvolutionNN) ... ok (0.012s) 2023-01-11T21:55:59.0282536Z test_Conv3d_groups_wbias (__main__.TestConvolutionNN) ... ok (0.013s) 2023-01-11T21:55:59.0283075Z test_Conv3d_module_same_padding (__main__.TestConvolutionNN) ... ok (0.009s) 2023-01-11T21:55:59.0283677Z test_ConvTranspose2d_half_cublas_gemm (__main__.TestConvolutionNN) ... skip: CUDA not available (0.001s) 2023-01-11T21:55:59.0284303Z test_ConvTranspose2d_output_size (__main__.TestConvolutionNN) ... ok (0.006s) 2023-01-11T21:55:59.0284719Z test_ConvTranspose2d_output_size_downsample_upsample (__main__.TestConvolutionNN) ... ok (6.999s) 2023-01-11T21:55:59.0285274Z test_ConvTranspose3d_correct_output_size (__main__.TestConvolutionNN) ... ok (0.002s) 2023-01-11T21:55:59.0285765Z test_conv2d_discontiguous_weight (__main__.TestConvolutionNN) ... ok (0.051s) 2023-01-11T21:55:59.0286306Z test_conv_backcompat (__main__.TestConvolutionNN) ... ok (0.039s) 2023-01-11T21:55:59.0286813Z test_conv_cudnn_memory_layout_dominance (__main__.TestConvolutionNN) ... skip: CUDA unavailable (0.001s) 2023-01-11T21:55:59.0287126Z test_conv_invalid_groups (__main__.TestConvolutionNN) ... ok (0.001s) 2023-01-11T21:55:59.0287450Z test_conv_modules_raise_error_on_incorrect_input_size (__main__.TestConvolutionNN) ... ok (0.195s) 2023-01-11T21:55:59.0287764Z test_conv_padding_mode (__main__.TestConvolutionNN) ... ok (0.001s) 2023-01-11T21:55:59.0288809Z test_conv_shapecheck (__main__.TestConvolutionNN) ... /opt/conda/lib/python3.7/site-packages/torch/nn/modules/module.py:1121: UserWarning: Complex modules are a new feature under active development whose design may change, and some modules might not work as expected when using complex tensors as parameters or buffers. Please file an issue at https://github.com/pytorch/pytorch/issues/new?template=bug-report.yml if a complex module does not work as expected. 2023-01-11T21:55:59.0289543Z "Complex modules are a new feature under active development whose design may change, " 2023-01-11T21:55:59.0289790Z ok (0.362s) 2023-01-11T21:55:59.0289996Z test_conv_tbc (__main__.TestConvolutionNN) ... ok (0.018s) 2023-01-11T21:55:59.0290298Z test_cudnn_non_contiguous (__main__.TestConvolutionNN) ... skip: CUDA not available (0.001s) 2023-01-11T21:55:59.0290647Z test_cudnn_noncontiguous_weight (__main__.TestConvolutionNN) ... skip: CUDA unavailable (0.001s) 2023-01-11T21:55:59.0290953Z test_functional_grad_conv (__main__.TestConvolutionNN) ... ok (0.010s) 2023-01-11T21:55:59.0291250Z test_functional_grad_conv2d (__main__.TestConvolutionNN) ... ok (1.246s) 2023-01-11T21:55:59.0291537Z test_grad_conv1d_input (__main__.TestConvolutionNN) ... ok (0.115s) 2023-01-11T21:55:59.0291808Z test_grad_conv1d_weight (__main__.TestConvolutionNN) ... ok (0.118s) 2023-01-11T21:55:59.0292093Z test_grad_conv2d_input (__main__.TestConvolutionNN) ... ok (0.131s) 2023-01-11T21:55:59.0292501Z test_grad_conv2d_weight (__main__.TestConvolutionNN) ... ok (0.122s) 2023-01-11T21:55:59.0292784Z test_grad_conv3d_input (__main__.TestConvolutionNN) ... ok (0.218s) 2023-01-11T21:55:59.0293058Z test_grad_conv3d_weight (__main__.TestConvolutionNN) ... ok (0.182s) 2023-01-11T21:55:59.0293384Z test_grouped_conv_cudnn_nhwc_support (__main__.TestConvolutionNN) ... skip: CUDA unavailable (0.001s) 2023-01-11T21:55:59.0294405Z test_invalid_conv1d (__main__.TestConvolutionNN) ... /opt/conda/lib/python3.7/site-packages/torch/nn/modules/module.py:1121: UserWarning: Complex modules are a new feature under active development whose design may change, and some modules might not work as expected when using complex tensors as parameters or buffers. Please file an issue at https://github.com/pytorch/pytorch/issues/new?template=bug-report.yml if a complex module does not work as expected. 2023-01-11T21:55:59.0295093Z "Complex modules are a new feature under active development whose design may change, " 2023-01-11T21:55:59.0295326Z ok (0.163s) 2023-01-11T21:55:59.0295644Z test_invalid_conv2d (__main__.TestConvolutionNN) ... ok (0.326s) 2023-01-11T21:55:59.0295974Z test_invalid_conv3d (__main__.TestConvolutionNN) ... ok (0.159s) 2023-01-11T21:55:59.0296260Z test_mismatch_shape_conv2d (__main__.TestConvolutionNN) ... ok (0.012s) 2023-01-11T21:55:59.0296527Z test_nnpack_conv (__main__.TestConvolutionNN) ... ok (0.505s) 2023-01-11T21:55:59.0296849Z test_thnn_conv_strided_padded_dilated (__main__.TestConvolutionNN) ... skip: CUDA not available (0.002s) 2023-01-11T21:55:59.0300280Z test_Conv2d_backward_depthwise_cpu_complex128 (__main__.TestConvolutionNNDeviceTypeCPU) ... ok (11.739s) 2023-01-11T21:55:59.0300888Z test_Conv2d_backward_depthwise_cpu_float64 (__main__.TestConvolutionNNDeviceTypeCPU) ... ok (0.964s) 2023-01-11T21:55:59.0301590Z test_Conv2d_depthwise_naive_groups_cpu_float16 (__main__.TestConvolutionNNDeviceTypeCPU) ... skip: Only runs on cuda (0.004s) 2023-01-11T21:55:59.0302355Z test_Conv2d_depthwise_naive_groups_cpu_float32 (__main__.TestConvolutionNNDeviceTypeCPU) ... skip: Only runs on cuda (0.003s) 2023-01-11T21:55:59.0302783Z test_Conv2d_depthwise_naive_groups_cpu_float64 (__main__.TestConvolutionNNDeviceTypeCPU) ... skip: Only runs on cuda (0.003s) 2023-01-11T21:55:59.0303189Z test_Conv2d_deterministic_cudnn_cpu_complex128 (__main__.TestConvolutionNNDeviceTypeCPU) ... skip: Only runs on cuda (0.002s) 2023-01-11T21:55:59.0303609Z test_Conv2d_deterministic_cudnn_cpu_complex64 (__main__.TestConvolutionNNDeviceTypeCPU) ... skip: Only runs on cuda (0.002s) 2023-01-11T21:55:59.0304122Z test_Conv2d_deterministic_cudnn_cpu_float16 (__main__.TestConvolutionNNDeviceTypeCPU) ... skip: Only runs on cuda (0.002s) 2023-01-11T21:55:59.0304697Z test_Conv2d_deterministic_cudnn_cpu_float32 (__main__.TestConvolutionNNDeviceTypeCPU) ... skip: Only runs on cuda (0.002s) 2023-01-11T21:55:59.0305349Z test_Conv2d_deterministic_cudnn_cpu_float64 (__main__.TestConvolutionNNDeviceTypeCPU) ... skip: Only runs on cuda (0.002s) 2023-01-11T21:55:59.0306016Z test_Conv2d_large_workspace_cpu_float16 (__main__.TestConvolutionNNDeviceTypeCPU) ... skip: Only runs on cuda (0.002s) 2023-01-11T21:55:59.0306678Z test_Conv2d_large_workspace_cpu_float32 (__main__.TestConvolutionNNDeviceTypeCPU) ... skip: Only runs on cuda (0.002s) 2023-01-11T21:55:59.0307315Z test_Conv2d_large_workspace_cpu_float64 (__main__.TestConvolutionNNDeviceTypeCPU) ... skip: Only runs on cuda (0.001s) 2023-01-11T21:55:59.0307881Z test_Conv2d_naive_groups_cpu_float32 (__main__.TestConvolutionNNDeviceTypeCPU) ... ok (0.024s) 2023-01-11T21:55:59.0308473Z test_Conv2d_size_1_kernel_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... skip: Only runs on cuda (0.002s) 2023-01-11T21:55:59.0309100Z test_Conv3d_depthwise_naive_groups_cpu_float16 (__main__.TestConvolutionNNDeviceTypeCPU) ... skip: Only runs on cuda (0.003s) 2023-01-11T21:55:59.0309784Z test_Conv3d_depthwise_naive_groups_cpu_float32 (__main__.TestConvolutionNNDeviceTypeCPU) ... skip: Only runs on cuda (0.003s) 2023-01-11T21:55:59.0310542Z test_Conv3d_depthwise_naive_groups_cpu_float64 (__main__.TestConvolutionNNDeviceTypeCPU) ... skip: Only runs on cuda (0.003s) 2023-01-11T21:55:59.0311284Z test_ConvTranspose2d_large_output_padding_cpu_float16 (__main__.TestConvolutionNNDeviceTypeCPU) ... skip: Only runs on cuda (0.002s) 2023-01-11T21:55:59.0312105Z test_ConvTranspose2d_large_output_padding_cpu_float32 (__main__.TestConvolutionNNDeviceTypeCPU) ... skip: Only runs on cuda (0.002s) 2023-01-11T21:55:59.0312885Z test_ConvTranspose2d_size_1_kernel_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... skip: Only runs on cuda (0.002s) 2023-01-11T21:55:59.0313395Z test_ConvTranspose3d_size_1_kernel_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... skip: Only runs on cuda (0.002s) 2023-01-11T21:55:59.0313797Z test_contig_wrong_stride_cudnn_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... skip: Only runs on cuda (0.001s) 2023-01-11T21:55:59.0314196Z test_conv1d_same_padding_backward_cpu_complex64 (__main__.TestConvolutionNNDeviceTypeCPU) ... ok (0.018s) 2023-01-11T21:55:59.0314655Z test_conv1d_same_padding_backward_cpu_float32 (__main__.TestConvolutionNNDeviceTypeCPU) ... ok (0.007s) 2023-01-11T21:55:59.0315022Z test_conv1d_same_padding_cpu_complex64 (__main__.TestConvolutionNNDeviceTypeCPU) ... ok (0.069s) 2023-01-11T21:55:59.0315387Z test_conv1d_same_padding_cpu_float32 (__main__.TestConvolutionNNDeviceTypeCPU) ... ok (0.024s) 2023-01-11T21:55:59.0315768Z test_conv1d_valid_padding_backward_cpu_complex64 (__main__.TestConvolutionNNDeviceTypeCPU) ... ok (0.009s) 2023-01-11T21:55:59.0316159Z test_conv1d_valid_padding_backward_cpu_float32 (__main__.TestConvolutionNNDeviceTypeCPU) ... ok (0.004s) 2023-01-11T21:55:59.0316524Z test_conv1d_valid_padding_cpu_complex64 (__main__.TestConvolutionNNDeviceTypeCPU) ... ok (0.003s) 2023-01-11T21:55:59.0316892Z test_conv1d_valid_padding_cpu_float32 (__main__.TestConvolutionNNDeviceTypeCPU) ... ok (0.002s) 2023-01-11T21:55:59.0317267Z test_conv1d_vs_scipy_mode_same_cpu_complex64 (__main__.TestConvolutionNNDeviceTypeCPU) ... ok (0.006s) 2023-01-11T21:55:59.0317634Z test_conv1d_vs_scipy_mode_same_cpu_float32 (__main__.TestConvolutionNNDeviceTypeCPU) ... ok (0.005s) 2023-01-11T21:55:59.0318010Z test_conv1d_vs_scipy_mode_valid_cpu_complex64 (__main__.TestConvolutionNNDeviceTypeCPU) ... ok (0.006s) 2023-01-11T21:55:59.0318388Z test_conv1d_vs_scipy_mode_valid_cpu_float32 (__main__.TestConvolutionNNDeviceTypeCPU) ... ok (0.004s) 2023-01-11T21:55:59.0318749Z test_conv2d_no_grad_cpu_float32 (__main__.TestConvolutionNNDeviceTypeCPU) ... ok (0.022s) 2023-01-11T21:55:59.0319108Z test_conv2d_same_padding_backward_cpu_complex64 (__main__.TestConvolutionNNDeviceTypeCPU) ... ok (0.019s) 2023-01-11T21:55:59.0319496Z test_conv2d_same_padding_backward_cpu_float32 (__main__.TestConvolutionNNDeviceTypeCPU) ... ok (0.008s) 2023-01-11T21:55:59.0319871Z test_conv2d_same_padding_cpu_complex64 (__main__.TestConvolutionNNDeviceTypeCPU) ... ok (0.011s) 2023-01-11T21:55:59.0320244Z test_conv2d_same_padding_cpu_float32 (__main__.TestConvolutionNNDeviceTypeCPU) ... ok (0.006s) 2023-01-11T21:55:59.0320804Z test_conv2d_valid_padding_backward_cpu_complex64 (__main__.TestConvolutionNNDeviceTypeCPU) ... ok (0.008s) 2023-01-11T21:55:59.0321347Z test_conv2d_valid_padding_backward_cpu_float32 (__main__.TestConvolutionNNDeviceTypeCPU) ... ok (0.004s) 2023-01-11T21:55:59.0322047Z test_conv2d_valid_padding_cpu_complex64 (__main__.TestConvolutionNNDeviceTypeCPU) ... ok (0.003s) 2023-01-11T21:55:59.0322595Z test_conv2d_valid_padding_cpu_float32 (__main__.TestConvolutionNNDeviceTypeCPU) ... ok (0.002s) 2023-01-11T21:55:59.0323223Z test_conv2d_vs_scipy_mode_same_cpu_complex64 (__main__.TestConvolutionNNDeviceTypeCPU) ... ok (0.006s) 2023-01-11T21:55:59.0323871Z test_conv2d_vs_scipy_mode_same_cpu_float32 (__main__.TestConvolutionNNDeviceTypeCPU) ... ok (0.005s) 2023-01-11T21:55:59.0324251Z test_conv2d_vs_scipy_mode_valid_cpu_complex64 (__main__.TestConvolutionNNDeviceTypeCPU) ... ok (0.006s) 2023-01-11T21:55:59.0324717Z test_conv2d_vs_scipy_mode_valid_cpu_float32 (__main__.TestConvolutionNNDeviceTypeCPU) ... ok (0.004s) 2023-01-11T21:55:59.0325105Z test_conv3d_64bit_indexing_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... skip: Only runs on cuda (0.001s) 2023-01-11T21:55:59.0325502Z test_conv3d_same_padding_backward_cpu_complex128 (__main__.TestConvolutionNNDeviceTypeCPU) ... ok (1.618s) 2023-01-11T21:55:59.0325893Z test_conv3d_same_padding_backward_cpu_float64 (__main__.TestConvolutionNNDeviceTypeCPU) ... ok (0.194s) 2023-01-11T21:55:59.0326257Z test_conv3d_same_padding_cpu_complex64 (__main__.TestConvolutionNNDeviceTypeCPU) ... ok (0.035s) 2023-01-11T21:55:59.0326628Z test_conv3d_same_padding_cpu_float32 (__main__.TestConvolutionNNDeviceTypeCPU) ... ok (0.010s) 2023-01-11T21:55:59.0327009Z test_conv3d_valid_padding_backward_cpu_complex128 (__main__.TestConvolutionNNDeviceTypeCPU) ... ok (0.612s) 2023-01-11T21:55:59.0327404Z test_conv3d_valid_padding_backward_cpu_float64 (__main__.TestConvolutionNNDeviceTypeCPU) ... ok (0.072s) 2023-01-11T21:55:59.0327820Z test_conv3d_valid_padding_cpu_complex64 (__main__.TestConvolutionNNDeviceTypeCPU) ... ok (0.004s) 2023-01-11T21:55:59.0328197Z test_conv3d_valid_padding_cpu_float32 (__main__.TestConvolutionNNDeviceTypeCPU) ... ok (0.002s) 2023-01-11T21:55:59.0328579Z test_conv3d_vs_scipy_mode_same_cpu_complex64 (__main__.TestConvolutionNNDeviceTypeCPU) ... ok (0.008s) 2023-01-11T21:55:59.0328941Z test_conv3d_vs_scipy_mode_same_cpu_float32 (__main__.TestConvolutionNNDeviceTypeCPU) ... ok (0.005s) 2023-01-11T21:55:59.0329319Z test_conv3d_vs_scipy_mode_valid_cpu_complex64 (__main__.TestConvolutionNNDeviceTypeCPU) ... ok (0.007s) 2023-01-11T21:55:59.0329698Z test_conv3d_vs_scipy_mode_valid_cpu_float32 (__main__.TestConvolutionNNDeviceTypeCPU) ... ok (0.005s) 2023-01-11T21:55:59.0330062Z test_convTranspose_empty_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... ok (0.004s) 2023-01-11T21:55:59.0330698Z test_conv_backend_cuda_depthwise1d_has_bias_False_strided_False_contiguous_False_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... skip: Only runs on cuda (0.016s) 2023-01-11T21:55:59.0331206Z test_conv_backend_cuda_depthwise1d_has_bias_False_strided_False_contiguous_True_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... skip: Only runs on cuda (0.016s) 2023-01-11T21:55:59.0331701Z test_conv_backend_cuda_depthwise1d_has_bias_False_strided_True_contiguous_False_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... skip: Only runs on cuda (0.016s) 2023-01-11T21:55:59.0332202Z test_conv_backend_cuda_depthwise1d_has_bias_False_strided_True_contiguous_True_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... skip: Only runs on cuda (0.016s) 2023-01-11T21:55:59.0332700Z test_conv_backend_cuda_depthwise1d_has_bias_True_strided_False_contiguous_False_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... skip: Only runs on cuda (0.016s) 2023-01-11T21:55:59.0333188Z test_conv_backend_cuda_depthwise1d_has_bias_True_strided_False_contiguous_True_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... skip: Only runs on cuda (0.029s) 2023-01-11T21:55:59.0333683Z test_conv_backend_cuda_depthwise1d_has_bias_True_strided_True_contiguous_False_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... skip: Only runs on cuda (0.016s) 2023-01-11T21:55:59.0334173Z test_conv_backend_cuda_depthwise1d_has_bias_True_strided_True_contiguous_True_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... skip: Only runs on cuda (0.016s) 2023-01-11T21:55:59.0334663Z test_conv_backend_cuda_depthwise2d_has_bias_False_strided_False_contiguous_False_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... skip: Only runs on cuda (0.039s) 2023-01-11T21:55:59.0335149Z test_conv_backend_cuda_depthwise2d_has_bias_False_strided_False_contiguous_True_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... skip: Only runs on cuda (0.016s) 2023-01-11T21:55:59.0335752Z test_conv_backend_cuda_depthwise2d_has_bias_False_strided_True_contiguous_False_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... skip: Only runs on cuda (0.016s) 2023-01-11T21:55:59.0336313Z test_conv_backend_cuda_depthwise2d_has_bias_False_strided_True_contiguous_True_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... skip: Only runs on cuda (0.016s) 2023-01-11T21:55:59.0336810Z test_conv_backend_cuda_depthwise2d_has_bias_True_strided_False_contiguous_False_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... skip: Only runs on cuda (0.033s) 2023-01-11T21:55:59.0337293Z test_conv_backend_cuda_depthwise2d_has_bias_True_strided_False_contiguous_True_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... skip: Only runs on cuda (0.016s) 2023-01-11T21:55:59.0337781Z test_conv_backend_cuda_depthwise2d_has_bias_True_strided_True_contiguous_False_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... skip: Only runs on cuda (0.016s) 2023-01-11T21:55:59.0338267Z test_conv_backend_cuda_depthwise2d_has_bias_True_strided_True_contiguous_True_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... skip: Only runs on cuda (0.016s) 2023-01-11T21:55:59.0338763Z test_conv_backend_cuda_depthwise3d_has_bias_False_strided_False_contiguous_False_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... skip: Only runs on cuda (0.016s) 2023-01-11T21:55:59.0339286Z test_conv_backend_cuda_depthwise3d_has_bias_False_strided_False_contiguous_True_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... skip: Only runs on cuda (0.016s) 2023-01-11T21:55:59.0339769Z test_conv_backend_cuda_depthwise3d_has_bias_False_strided_True_contiguous_False_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... skip: Only runs on cuda (0.016s) 2023-01-11T21:55:59.0340258Z test_conv_backend_cuda_depthwise3d_has_bias_False_strided_True_contiguous_True_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... skip: Only runs on cuda (0.025s) 2023-01-11T21:55:59.0340748Z test_conv_backend_cuda_depthwise3d_has_bias_True_strided_False_contiguous_False_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... skip: Only runs on cuda (0.014s) 2023-01-11T21:55:59.0341240Z test_conv_backend_cuda_depthwise3d_has_bias_True_strided_False_contiguous_True_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... skip: Only runs on cuda (0.014s) 2023-01-11T21:55:59.0341719Z test_conv_backend_cuda_depthwise3d_has_bias_True_strided_True_contiguous_False_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... skip: Only runs on cuda (0.015s) 2023-01-11T21:55:59.0342211Z test_conv_backend_cuda_depthwise3d_has_bias_True_strided_True_contiguous_True_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... skip: Only runs on cuda (0.016s) 2023-01-11T21:55:59.0342695Z test_conv_backend_cudnn1d_has_bias_False_strided_False_contiguous_False_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... skip: Only runs on cuda (0.016s) 2023-01-11T21:55:59.0343172Z test_conv_backend_cudnn1d_has_bias_False_strided_False_contiguous_True_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... skip: Only runs on cuda (0.016s) 2023-01-11T21:55:59.0343641Z test_conv_backend_cudnn1d_has_bias_False_strided_True_contiguous_False_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... skip: Only runs on cuda (0.027s) 2023-01-11T21:55:59.0344103Z test_conv_backend_cudnn1d_has_bias_False_strided_True_contiguous_True_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... skip: Only runs on cuda (0.014s) 2023-01-11T21:55:59.0344577Z test_conv_backend_cudnn1d_has_bias_True_strided_False_contiguous_False_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... skip: Only runs on cuda (0.014s) 2023-01-11T21:55:59.0345051Z test_conv_backend_cudnn1d_has_bias_True_strided_False_contiguous_True_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... skip: Only runs on cuda (0.016s) 2023-01-11T21:55:59.0345520Z test_conv_backend_cudnn1d_has_bias_True_strided_True_contiguous_False_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... skip: Only runs on cuda (0.016s) 2023-01-11T21:55:59.0345973Z test_conv_backend_cudnn1d_has_bias_True_strided_True_contiguous_True_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... skip: Only runs on cuda (0.016s) 2023-01-11T21:55:59.0346490Z test_conv_backend_cudnn1d_transposed_has_bias_False_strided_False_contiguous_False_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... skip: Only runs on cuda (0.016s) 2023-01-11T21:55:59.0346997Z test_conv_backend_cudnn1d_transposed_has_bias_False_strided_False_contiguous_True_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... skip: Only runs on cuda (0.027s) 2023-01-11T21:55:59.0347497Z test_conv_backend_cudnn1d_transposed_has_bias_False_strided_True_contiguous_False_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... skip: Only runs on cuda (0.014s) 2023-01-11T21:55:59.0347980Z test_conv_backend_cudnn1d_transposed_has_bias_False_strided_True_contiguous_True_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... skip: Only runs on cuda (0.016s) 2023-01-11T21:55:59.0348474Z test_conv_backend_cudnn1d_transposed_has_bias_True_strided_False_contiguous_False_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... skip: Only runs on cuda (0.016s) 2023-01-11T21:55:59.0348969Z test_conv_backend_cudnn1d_transposed_has_bias_True_strided_False_contiguous_True_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... skip: Only runs on cuda (0.016s) 2023-01-11T21:55:59.0349496Z test_conv_backend_cudnn1d_transposed_has_bias_True_strided_True_contiguous_False_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... skip: Only runs on cuda (0.016s) 2023-01-11T21:55:59.0349986Z test_conv_backend_cudnn1d_transposed_has_bias_True_strided_True_contiguous_True_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... skip: Only runs on cuda (0.016s) 2023-01-11T21:55:59.0363930Z test_conv_backend_cudnn2d_has_bias_False_strided_False_contiguous_False_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... skip: Only runs on cuda (0.024s) 2023-01-11T21:55:59.0364523Z test_conv_backend_cudnn2d_has_bias_False_strided_False_contiguous_True_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... skip: Only runs on cuda (0.015s) 2023-01-11T21:55:59.0365008Z test_conv_backend_cudnn2d_has_bias_False_strided_True_contiguous_False_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... skip: Only runs on cuda (0.016s) 2023-01-11T21:55:59.0365671Z test_conv_backend_cudnn2d_has_bias_False_strided_True_contiguous_True_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... skip: Only runs on cuda (0.016s) 2023-01-11T21:55:59.0366528Z test_conv_backend_cudnn2d_has_bias_True_strided_False_contiguous_False_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... skip: Only runs on cuda (0.016s) 2023-01-11T21:55:59.0367028Z test_conv_backend_cudnn2d_has_bias_True_strided_False_contiguous_True_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... skip: Only runs on cuda (0.016s) 2023-01-11T21:55:59.0367495Z test_conv_backend_cudnn2d_has_bias_True_strided_True_contiguous_False_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... skip: Only runs on cuda (0.016s) 2023-01-11T21:55:59.0367964Z test_conv_backend_cudnn2d_has_bias_True_strided_True_contiguous_True_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... skip: Only runs on cuda (0.025s) 2023-01-11T21:55:59.0368449Z test_conv_backend_cudnn2d_transposed_has_bias_False_strided_False_contiguous_False_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... skip: Only runs on cuda (0.016s) 2023-01-11T21:55:59.0368953Z test_conv_backend_cudnn2d_transposed_has_bias_False_strided_False_contiguous_True_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... skip: Only runs on cuda (0.016s) 2023-01-11T21:55:59.0369441Z test_conv_backend_cudnn2d_transposed_has_bias_False_strided_True_contiguous_False_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... skip: Only runs on cuda (0.016s) 2023-01-11T21:55:59.0369940Z test_conv_backend_cudnn2d_transposed_has_bias_False_strided_True_contiguous_True_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... skip: Only runs on cuda (0.016s) 2023-01-11T21:55:59.0370435Z test_conv_backend_cudnn2d_transposed_has_bias_True_strided_False_contiguous_False_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... skip: Only runs on cuda (0.016s) 2023-01-11T21:55:59.0370923Z test_conv_backend_cudnn2d_transposed_has_bias_True_strided_False_contiguous_True_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... skip: Only runs on cuda (0.016s) 2023-01-11T21:55:59.0371528Z test_conv_backend_cudnn2d_transposed_has_bias_True_strided_True_contiguous_False_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... skip: Only runs on cuda (0.022s) 2023-01-11T21:55:59.0372015Z test_conv_backend_cudnn2d_transposed_has_bias_True_strided_True_contiguous_True_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... skip: Only runs on cuda (0.015s) 2023-01-11T21:55:59.0372502Z test_conv_backend_cudnn3d_has_bias_False_strided_False_contiguous_False_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... skip: Only runs on cuda (0.016s) 2023-01-11T21:55:59.0372980Z test_conv_backend_cudnn3d_has_bias_False_strided_False_contiguous_True_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... skip: Only runs on cuda (0.016s) 2023-01-11T21:55:59.0373438Z test_conv_backend_cudnn3d_has_bias_False_strided_True_contiguous_False_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... skip: Only runs on cuda (0.016s) 2023-01-11T21:55:59.0373908Z test_conv_backend_cudnn3d_has_bias_False_strided_True_contiguous_True_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... skip: Only runs on cuda (0.016s) 2023-01-11T21:55:59.0374431Z test_conv_backend_cudnn3d_has_bias_True_strided_False_contiguous_False_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... skip: Only runs on cuda (0.016s) 2023-01-11T21:55:59.0374906Z test_conv_backend_cudnn3d_has_bias_True_strided_False_contiguous_True_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... skip: Only runs on cuda (0.032s) 2023-01-11T21:55:59.0375370Z test_conv_backend_cudnn3d_has_bias_True_strided_True_contiguous_False_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... skip: Only runs on cuda (0.015s) 2023-01-11T21:55:59.0375920Z test_conv_backend_cudnn3d_has_bias_True_strided_True_contiguous_True_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... skip: Only runs on cuda (0.016s) 2023-01-11T21:55:59.0376383Z test_conv_backend_empty_batch1d_has_bias_False_strided_False_contiguous_False_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... ok (0.046s) 2023-01-11T21:55:59.0376845Z test_conv_backend_empty_batch1d_has_bias_False_strided_False_contiguous_True_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... ok (0.070s) 2023-01-11T21:55:59.0377297Z test_conv_backend_empty_batch1d_has_bias_False_strided_True_contiguous_False_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... ok (0.044s) 2023-01-11T21:55:59.0377727Z test_conv_backend_empty_batch1d_has_bias_False_strided_True_contiguous_True_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... ok (0.045s) 2023-01-11T21:55:59.0378179Z test_conv_backend_empty_batch1d_has_bias_True_strided_False_contiguous_False_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... ok (0.050s) 2023-01-11T21:55:59.0378627Z test_conv_backend_empty_batch1d_has_bias_True_strided_False_contiguous_True_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... ok (0.043s) 2023-01-11T21:55:59.0379073Z test_conv_backend_empty_batch1d_has_bias_True_strided_True_contiguous_False_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... ok (0.045s) 2023-01-11T21:55:59.0379509Z test_conv_backend_empty_batch1d_has_bias_True_strided_True_contiguous_True_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... ok (0.044s) 2023-01-11T21:55:59.0379960Z test_conv_backend_empty_batch2d_has_bias_False_strided_False_contiguous_False_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... ok (0.042s) 2023-01-11T21:55:59.0380410Z test_conv_backend_empty_batch2d_has_bias_False_strided_False_contiguous_True_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... ok (0.045s) 2023-01-11T21:55:59.0382446Z test_conv_backend_empty_batch2d_has_bias_False_strided_True_contiguous_False_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... ok (0.042s) 2023-01-11T21:55:59.0382902Z test_conv_backend_empty_batch2d_has_bias_False_strided_True_contiguous_True_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... ok (0.041s) 2023-01-11T21:55:59.0383344Z test_conv_backend_empty_batch2d_has_bias_True_strided_False_contiguous_False_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... ok (0.045s) 2023-01-11T21:55:59.0383873Z test_conv_backend_empty_batch2d_has_bias_True_strided_False_contiguous_True_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... ok (0.042s) 2023-01-11T21:55:59.0384320Z test_conv_backend_empty_batch2d_has_bias_True_strided_True_contiguous_False_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... ok (0.043s) 2023-01-11T21:55:59.0384753Z test_conv_backend_empty_batch2d_has_bias_True_strided_True_contiguous_True_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... ok (0.044s) 2023-01-11T21:55:59.0385197Z test_conv_backend_empty_batch3d_has_bias_False_strided_False_contiguous_False_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... ok (0.041s) 2023-01-11T21:55:59.0385646Z test_conv_backend_empty_batch3d_has_bias_False_strided_False_contiguous_True_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... ok (0.040s) 2023-01-11T21:55:59.0386095Z test_conv_backend_empty_batch3d_has_bias_False_strided_True_contiguous_False_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... ok (0.042s) 2023-01-11T21:55:59.0386564Z test_conv_backend_empty_batch3d_has_bias_False_strided_True_contiguous_True_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... ok (0.041s) 2023-01-11T21:55:59.0387005Z test_conv_backend_empty_batch3d_has_bias_True_strided_False_contiguous_False_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... ok (0.047s) 2023-01-11T21:55:59.0387448Z test_conv_backend_empty_batch3d_has_bias_True_strided_False_contiguous_True_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... ok (0.042s) 2023-01-11T21:55:59.0387890Z test_conv_backend_empty_batch3d_has_bias_True_strided_True_contiguous_False_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... ok (0.044s) 2023-01-11T21:55:59.0388333Z test_conv_backend_empty_batch3d_has_bias_True_strided_True_contiguous_True_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... ok (0.043s) 2023-01-11T21:55:59.0388775Z test_conv_backend_empty_batch_channel1d_has_bias_False_strided_False_contiguous_False_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... ok (0.037s) 2023-01-11T21:55:59.0389249Z test_conv_backend_empty_batch_channel1d_has_bias_False_strided_False_contiguous_True_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... ok (0.037s) 2023-01-11T21:55:59.0389718Z test_conv_backend_empty_batch_channel1d_has_bias_False_strided_True_contiguous_False_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... ok (0.040s) 2023-01-11T21:55:59.0390177Z test_conv_backend_empty_batch_channel1d_has_bias_False_strided_True_contiguous_True_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... ok (0.036s) 2023-01-11T21:55:59.0390627Z test_conv_backend_empty_batch_channel1d_has_bias_True_strided_False_contiguous_False_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... ok (0.040s) 2023-01-11T21:55:59.0391089Z test_conv_backend_empty_batch_channel1d_has_bias_True_strided_False_contiguous_True_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... ok (0.039s) 2023-01-11T21:55:59.0391558Z test_conv_backend_empty_batch_channel1d_has_bias_True_strided_True_contiguous_False_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... ok (0.040s) 2023-01-11T21:55:59.0392025Z test_conv_backend_empty_batch_channel1d_has_bias_True_strided_True_contiguous_True_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... ok (0.039s) 2023-01-11T21:55:59.0392478Z test_conv_backend_empty_batch_channel2d_has_bias_False_strided_False_contiguous_False_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... ok (0.039s) 2023-01-11T21:55:59.0392944Z test_conv_backend_empty_batch_channel2d_has_bias_False_strided_False_contiguous_True_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... ok (0.036s) 2023-01-11T21:55:59.0393411Z test_conv_backend_empty_batch_channel2d_has_bias_False_strided_True_contiguous_False_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... ok (0.036s) 2023-01-11T21:55:59.0393869Z test_conv_backend_empty_batch_channel2d_has_bias_False_strided_True_contiguous_True_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... ok (0.036s) 2023-01-11T21:55:59.0394348Z test_conv_backend_empty_batch_channel2d_has_bias_True_strided_False_contiguous_False_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... ok (0.040s) 2023-01-11T21:55:59.0394805Z test_conv_backend_empty_batch_channel2d_has_bias_True_strided_False_contiguous_True_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... ok (0.038s) 2023-01-11T21:55:59.0395273Z test_conv_backend_empty_batch_channel2d_has_bias_True_strided_True_contiguous_False_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... ok (0.043s) 2023-01-11T21:55:59.0395733Z test_conv_backend_empty_batch_channel2d_has_bias_True_strided_True_contiguous_True_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... ok (0.038s) 2023-01-11T21:55:59.0396183Z test_conv_backend_empty_batch_channel3d_has_bias_False_strided_False_contiguous_False_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... ok (0.037s) 2023-01-11T21:55:59.0396646Z test_conv_backend_empty_batch_channel3d_has_bias_False_strided_False_contiguous_True_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... ok (0.036s) 2023-01-11T21:55:59.0397113Z test_conv_backend_empty_batch_channel3d_has_bias_False_strided_True_contiguous_False_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... ok (0.037s) 2023-01-11T21:55:59.0397600Z test_conv_backend_empty_batch_channel3d_has_bias_False_strided_True_contiguous_True_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... ok (0.036s) 2023-01-11T21:55:59.0398059Z test_conv_backend_empty_batch_channel3d_has_bias_True_strided_False_contiguous_False_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... ok (0.046s) 2023-01-11T21:55:59.0398501Z test_conv_backend_empty_batch_channel3d_has_bias_True_strided_False_contiguous_True_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... ok (0.039s) 2023-01-11T21:55:59.0398962Z test_conv_backend_empty_batch_channel3d_has_bias_True_strided_True_contiguous_False_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... ok (0.040s) 2023-01-11T21:55:59.0399422Z test_conv_backend_empty_batch_channel3d_has_bias_True_strided_True_contiguous_True_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... ok (0.039s) 2023-01-11T21:55:59.0399883Z test_conv_backend_empty_channel1d_has_bias_False_strided_False_contiguous_False_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... ok (0.037s) 2023-01-11T21:55:59.0400327Z test_conv_backend_empty_channel1d_has_bias_False_strided_False_contiguous_True_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... ok (0.037s) 2023-01-11T21:55:59.0400924Z test_conv_backend_empty_channel1d_has_bias_False_strided_True_contiguous_False_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... ok (0.040s) 2023-01-11T21:55:59.0401384Z test_conv_backend_empty_channel1d_has_bias_False_strided_True_contiguous_True_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... ok (0.037s) 2023-01-11T21:55:59.0401842Z test_conv_backend_empty_channel1d_has_bias_True_strided_False_contiguous_False_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... ok (0.042s) 2023-01-11T21:55:59.0402282Z test_conv_backend_empty_channel1d_has_bias_True_strided_False_contiguous_True_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... ok (0.040s) 2023-01-11T21:55:59.0402737Z test_conv_backend_empty_channel1d_has_bias_True_strided_True_contiguous_False_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... ok (0.042s) 2023-01-11T21:55:59.0403189Z test_conv_backend_empty_channel1d_has_bias_True_strided_True_contiguous_True_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... ok (0.040s) 2023-01-11T21:55:59.0403648Z test_conv_backend_empty_channel2d_has_bias_False_strided_False_contiguous_False_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... ok (0.052s) 2023-01-11T21:55:59.0404086Z test_conv_backend_empty_channel2d_has_bias_False_strided_False_contiguous_True_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... ok (0.036s) 2023-01-11T21:55:59.0404541Z test_conv_backend_empty_channel2d_has_bias_False_strided_True_contiguous_False_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... ok (0.037s) 2023-01-11T21:55:59.0404990Z test_conv_backend_empty_channel2d_has_bias_False_strided_True_contiguous_True_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... ok (0.036s) 2023-01-11T21:55:59.0405519Z test_conv_backend_empty_channel2d_has_bias_True_strided_False_contiguous_False_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... ok (0.040s) 2023-01-11T21:55:59.0405960Z test_conv_backend_empty_channel2d_has_bias_True_strided_False_contiguous_True_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... ok (0.039s) 2023-01-11T21:55:59.0406405Z test_conv_backend_empty_channel2d_has_bias_True_strided_True_contiguous_False_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... ok (0.045s) 2023-01-11T21:55:59.0407084Z test_conv_backend_empty_channel2d_has_bias_True_strided_True_contiguous_True_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... ok (0.038s) 2023-01-11T21:55:59.0407840Z test_conv_backend_empty_channel3d_has_bias_False_strided_False_contiguous_False_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... ok (0.039s) 2023-01-11T21:55:59.0408280Z test_conv_backend_empty_channel3d_has_bias_False_strided_False_contiguous_True_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... ok (0.037s) 2023-01-11T21:55:59.0408787Z test_conv_backend_empty_channel3d_has_bias_False_strided_True_contiguous_False_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... ok (0.037s) 2023-01-11T21:55:59.0409233Z test_conv_backend_empty_channel3d_has_bias_False_strided_True_contiguous_True_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... ok (0.036s) 2023-01-11T21:55:59.0409685Z test_conv_backend_empty_channel3d_has_bias_True_strided_False_contiguous_False_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... ok (0.045s) 2023-01-11T21:55:59.0410137Z test_conv_backend_empty_channel3d_has_bias_True_strided_False_contiguous_True_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... ok (0.039s) 2023-01-11T21:55:59.0410572Z test_conv_backend_empty_channel3d_has_bias_True_strided_True_contiguous_False_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... ok (0.040s) 2023-01-11T21:55:59.0411017Z test_conv_backend_empty_channel3d_has_bias_True_strided_True_contiguous_True_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... ok (0.038s) 2023-01-11T21:55:59.0411486Z test_conv_backend_miopen1d_has_bias_False_strided_False_contiguous_False_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... skip: Only runs on cuda (0.014s) 2023-01-11T21:55:59.0411973Z test_conv_backend_miopen1d_has_bias_False_strided_False_contiguous_True_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... skip: Only runs on cuda (0.014s) 2023-01-11T21:55:59.0412440Z test_conv_backend_miopen1d_has_bias_False_strided_True_contiguous_False_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... skip: Only runs on cuda (0.020s) 2023-01-11T21:55:59.0412917Z test_conv_backend_miopen1d_has_bias_False_strided_True_contiguous_True_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... skip: Only runs on cuda (0.014s) 2023-01-11T21:55:59.0413388Z test_conv_backend_miopen1d_has_bias_True_strided_False_contiguous_False_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... skip: Only runs on cuda (0.014s) 2023-01-11T21:55:59.0413859Z test_conv_backend_miopen1d_has_bias_True_strided_False_contiguous_True_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... skip: Only runs on cuda (0.014s) 2023-01-11T21:55:59.0414316Z test_conv_backend_miopen1d_has_bias_True_strided_True_contiguous_False_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... skip: Only runs on cuda (0.014s) 2023-01-11T21:55:59.0414780Z test_conv_backend_miopen1d_has_bias_True_strided_True_contiguous_True_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... skip: Only runs on cuda (0.014s) 2023-01-11T21:55:59.0415269Z test_conv_backend_miopen1d_transposed_has_bias_False_strided_False_contiguous_False_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... skip: Only runs on cuda (0.014s) 2023-01-11T21:55:59.0415838Z test_conv_backend_miopen1d_transposed_has_bias_False_strided_False_contiguous_True_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... skip: Only runs on cuda (0.019s) 2023-01-11T21:55:59.0416337Z test_conv_backend_miopen1d_transposed_has_bias_False_strided_True_contiguous_False_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... skip: Only runs on cuda (0.014s) 2023-01-11T21:55:59.0416865Z test_conv_backend_miopen1d_transposed_has_bias_False_strided_True_contiguous_True_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... skip: Only runs on cuda (0.014s) 2023-01-11T21:55:59.0417363Z test_conv_backend_miopen1d_transposed_has_bias_True_strided_False_contiguous_False_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... skip: Only runs on cuda (0.014s) 2023-01-11T21:55:59.0417855Z test_conv_backend_miopen1d_transposed_has_bias_True_strided_False_contiguous_True_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... skip: Only runs on cuda (0.014s) 2023-01-11T21:55:59.0418355Z test_conv_backend_miopen1d_transposed_has_bias_True_strided_True_contiguous_False_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... skip: Only runs on cuda (0.014s) 2023-01-11T21:55:59.0418836Z test_conv_backend_miopen1d_transposed_has_bias_True_strided_True_contiguous_True_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... skip: Only runs on cuda (0.017s) 2023-01-11T21:55:59.0419359Z test_conv_backend_miopen2d_has_bias_False_strided_False_contiguous_False_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... skip: Only runs on cuda (0.020s) 2023-01-11T21:55:59.0419843Z test_conv_backend_miopen2d_has_bias_False_strided_False_contiguous_True_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... skip: Only runs on cuda (0.014s) 2023-01-11T21:55:59.0420316Z test_conv_backend_miopen2d_has_bias_False_strided_True_contiguous_False_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... skip: Only runs on cuda (0.014s) 2023-01-11T21:55:59.0420771Z test_conv_backend_miopen2d_has_bias_False_strided_True_contiguous_True_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... skip: Only runs on cuda (0.014s) 2023-01-11T21:55:59.0421239Z test_conv_backend_miopen2d_has_bias_True_strided_False_contiguous_False_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... skip: Only runs on cuda (0.014s) 2023-01-11T21:55:59.0421720Z test_conv_backend_miopen2d_has_bias_True_strided_False_contiguous_True_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... skip: Only runs on cuda (0.014s) 2023-01-11T21:55:59.0422196Z test_conv_backend_miopen2d_has_bias_True_strided_True_contiguous_False_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... skip: Only runs on cuda (0.015s) 2023-01-11T21:55:59.0422665Z test_conv_backend_miopen2d_has_bias_True_strided_True_contiguous_True_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... skip: Only runs on cuda (0.019s) 2023-01-11T21:55:59.0423135Z test_conv_backend_miopen2d_transposed_has_bias_False_strided_False_contiguous_False_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... skip: Only runs on cuda (0.014s) 2023-01-11T21:55:59.0423636Z test_conv_backend_miopen2d_transposed_has_bias_False_strided_False_contiguous_True_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... skip: Only runs on cuda (0.014s) 2023-01-11T21:55:59.0424133Z test_conv_backend_miopen2d_transposed_has_bias_False_strided_True_contiguous_False_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... skip: Only runs on cuda (0.014s) 2023-01-11T21:55:59.0424637Z test_conv_backend_miopen2d_transposed_has_bias_False_strided_True_contiguous_True_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... skip: Only runs on cuda (0.014s) 2023-01-11T21:55:59.0425123Z test_conv_backend_miopen2d_transposed_has_bias_True_strided_False_contiguous_False_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... skip: Only runs on cuda (0.014s) 2023-01-11T21:55:59.0425619Z test_conv_backend_miopen2d_transposed_has_bias_True_strided_False_contiguous_True_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... skip: Only runs on cuda (0.015s) 2023-01-11T21:55:59.0426114Z test_conv_backend_miopen2d_transposed_has_bias_True_strided_True_contiguous_False_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... skip: Only runs on cuda (0.020s) 2023-01-11T21:55:59.0426603Z test_conv_backend_miopen2d_transposed_has_bias_True_strided_True_contiguous_True_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... skip: Only runs on cuda (0.014s) 2023-01-11T21:55:59.0427122Z test_conv_backend_miopen3d_has_bias_False_strided_False_contiguous_False_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... skip: Only runs on cuda (0.014s) 2023-01-11T21:55:59.0427592Z test_conv_backend_miopen3d_has_bias_False_strided_False_contiguous_True_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... skip: Only runs on cuda (0.014s) 2023-01-11T21:55:59.0428069Z test_conv_backend_miopen3d_has_bias_False_strided_True_contiguous_False_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... skip: Only runs on cuda (0.014s) 2023-01-11T21:55:59.0428541Z test_conv_backend_miopen3d_has_bias_False_strided_True_contiguous_True_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... skip: Only runs on cuda (0.014s) 2023-01-11T21:55:59.0429016Z test_conv_backend_miopen3d_has_bias_True_strided_False_contiguous_False_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... skip: Only runs on cuda (0.015s) 2023-01-11T21:55:59.0429480Z test_conv_backend_miopen3d_has_bias_True_strided_False_contiguous_True_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... skip: Only runs on cuda (0.020s) 2023-01-11T21:55:59.0429989Z test_conv_backend_miopen3d_has_bias_True_strided_True_contiguous_False_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... skip: Only runs on cuda (0.014s) 2023-01-11T21:55:59.0430463Z test_conv_backend_miopen3d_has_bias_True_strided_True_contiguous_True_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... skip: Only runs on cuda (0.014s) 2023-01-11T21:55:59.0430949Z test_conv_backend_miopen3d_transposed_has_bias_False_strided_False_contiguous_False_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... skip: Only runs on cuda (0.014s) 2023-01-11T21:55:59.0431438Z test_conv_backend_miopen3d_transposed_has_bias_False_strided_False_contiguous_True_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... skip: Only runs on cuda (0.014s) 2023-01-11T21:55:59.0431937Z test_conv_backend_miopen3d_transposed_has_bias_False_strided_True_contiguous_False_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... skip: Only runs on cuda (0.014s) 2023-01-11T21:55:59.0432438Z test_conv_backend_miopen3d_transposed_has_bias_False_strided_True_contiguous_True_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... skip: Only runs on cuda (0.015s) 2023-01-11T21:55:59.0432937Z test_conv_backend_miopen3d_transposed_has_bias_True_strided_False_contiguous_False_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... skip: Only runs on cuda (0.020s) 2023-01-11T21:55:59.0433433Z test_conv_backend_miopen3d_transposed_has_bias_True_strided_False_contiguous_True_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... skip: Only runs on cuda (0.014s) 2023-01-11T21:55:59.0433910Z test_conv_backend_miopen3d_transposed_has_bias_True_strided_True_contiguous_False_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... skip: Only runs on cuda (0.014s) 2023-01-11T21:55:59.0434403Z test_conv_backend_miopen3d_transposed_has_bias_True_strided_True_contiguous_True_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... skip: Only runs on cuda (0.014s) 2023-01-11T21:55:59.0434902Z test_conv_backend_miopen_depthwise1d_has_bias_False_strided_False_contiguous_False_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... skip: Only runs on cuda (0.014s) 2023-01-11T21:55:59.0435399Z test_conv_backend_miopen_depthwise1d_has_bias_False_strided_False_contiguous_True_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... skip: Only runs on cuda (0.014s) 2023-01-11T21:55:59.0435886Z test_conv_backend_miopen_depthwise1d_has_bias_False_strided_True_contiguous_False_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... skip: Only runs on cuda (0.015s) 2023-01-11T21:55:59.0436381Z test_conv_backend_miopen_depthwise1d_has_bias_False_strided_True_contiguous_True_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... skip: Only runs on cuda (0.021s) 2023-01-11T21:55:59.0436878Z test_conv_backend_miopen_depthwise1d_has_bias_True_strided_False_contiguous_False_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... skip: Only runs on cuda (0.014s) 2023-01-11T21:55:59.0437407Z test_conv_backend_miopen_depthwise1d_has_bias_True_strided_False_contiguous_True_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... skip: Only runs on cuda (0.014s) 2023-01-11T21:55:59.0437898Z test_conv_backend_miopen_depthwise1d_has_bias_True_strided_True_contiguous_False_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... skip: Only runs on cuda (0.014s) 2023-01-11T21:55:59.0438377Z test_conv_backend_miopen_depthwise1d_has_bias_True_strided_True_contiguous_True_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... skip: Only runs on cuda (0.014s) 2023-01-11T21:55:59.0438873Z test_conv_backend_miopen_depthwise2d_has_bias_False_strided_False_contiguous_False_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... skip: Only runs on cuda (0.014s) 2023-01-11T21:55:59.0439367Z test_conv_backend_miopen_depthwise2d_has_bias_False_strided_False_contiguous_True_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... skip: Only runs on cuda (0.015s) 2023-01-11T21:55:59.0439854Z test_conv_backend_miopen_depthwise2d_has_bias_False_strided_True_contiguous_False_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... skip: Only runs on cuda (0.024s) 2023-01-11T21:55:59.0440387Z test_conv_backend_miopen_depthwise2d_has_bias_False_strided_True_contiguous_True_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... skip: Only runs on cuda (0.014s) 2023-01-11T21:55:59.0441034Z test_conv_backend_miopen_depthwise2d_has_bias_True_strided_False_contiguous_False_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... skip: Only runs on cuda (0.014s) 2023-01-11T21:55:59.0441531Z test_conv_backend_miopen_depthwise2d_has_bias_True_strided_False_contiguous_True_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... skip: Only runs on cuda (0.014s) 2023-01-11T21:55:59.0442025Z test_conv_backend_miopen_depthwise2d_has_bias_True_strided_True_contiguous_False_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... skip: Only runs on cuda (0.014s) 2023-01-11T21:55:59.0442517Z test_conv_backend_miopen_depthwise2d_has_bias_True_strided_True_contiguous_True_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... skip: Only runs on cuda (0.014s) 2023-01-11T21:55:59.0443005Z test_conv_backend_miopen_depthwise3d_has_bias_False_strided_False_contiguous_False_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... skip: Only runs on cuda (0.015s) 2023-01-11T21:55:59.0443507Z test_conv_backend_miopen_depthwise3d_has_bias_False_strided_False_contiguous_True_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... skip: Only runs on cuda (0.020s) 2023-01-11T21:55:59.0443998Z test_conv_backend_miopen_depthwise3d_has_bias_False_strided_True_contiguous_False_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... skip: Only runs on cuda (0.014s) 2023-01-11T21:55:59.0444493Z test_conv_backend_miopen_depthwise3d_has_bias_False_strided_True_contiguous_True_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... skip: Only runs on cuda (0.014s) 2023-01-11T21:55:59.0444971Z test_conv_backend_miopen_depthwise3d_has_bias_True_strided_False_contiguous_False_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... skip: Only runs on cuda (0.014s) 2023-01-11T21:55:59.0445471Z test_conv_backend_miopen_depthwise3d_has_bias_True_strided_False_contiguous_True_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... skip: Only runs on cuda (0.014s) 2023-01-11T21:55:59.0445959Z test_conv_backend_miopen_depthwise3d_has_bias_True_strided_True_contiguous_False_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... skip: Only runs on cuda (0.014s) 2023-01-11T21:55:59.0446446Z test_conv_backend_miopen_depthwise3d_has_bias_True_strided_True_contiguous_True_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... skip: Only runs on cuda (0.014s) 2023-01-11T21:55:59.0446964Z test_conv_backend_mkldnn1d_cpu_input_has_bias_False_strided_False_contiguous_False_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... skip: PyTorch is built without mkldnn support (0.018s) 2023-01-11T21:55:59.0447500Z test_conv_backend_mkldnn1d_cpu_input_has_bias_False_strided_False_contiguous_True_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... skip: PyTorch is built without mkldnn support (0.014s) 2023-01-11T21:55:59.0448101Z test_conv_backend_mkldnn1d_cpu_input_has_bias_False_strided_True_contiguous_False_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... skip: PyTorch is built without mkldnn support (0.014s) 2023-01-11T21:55:59.0448648Z test_conv_backend_mkldnn1d_cpu_input_has_bias_False_strided_True_contiguous_True_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... skip: PyTorch is built without mkldnn support (0.014s) 2023-01-11T21:55:59.0449187Z test_conv_backend_mkldnn1d_cpu_input_has_bias_True_strided_False_contiguous_False_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... skip: PyTorch is built without mkldnn support (0.014s) 2023-01-11T21:55:59.0449727Z test_conv_backend_mkldnn1d_cpu_input_has_bias_True_strided_False_contiguous_True_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... skip: PyTorch is built without mkldnn support (0.014s) 2023-01-11T21:55:59.0450252Z test_conv_backend_mkldnn1d_cpu_input_has_bias_True_strided_True_contiguous_False_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... skip: PyTorch is built without mkldnn support (0.014s) 2023-01-11T21:55:59.0450834Z test_conv_backend_mkldnn1d_cpu_input_has_bias_True_strided_True_contiguous_True_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... skip: PyTorch is built without mkldnn support (0.018s) 2023-01-11T21:55:59.0451369Z test_conv_backend_mkldnn1d_has_bias_False_strided_False_contiguous_False_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... skip: PyTorch is built without mkldnn support (0.014s) 2023-01-11T21:55:59.0451894Z test_conv_backend_mkldnn1d_has_bias_False_strided_False_contiguous_True_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... skip: PyTorch is built without mkldnn support (0.014s) 2023-01-11T21:55:59.0452404Z test_conv_backend_mkldnn1d_has_bias_False_strided_True_contiguous_False_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... skip: PyTorch is built without mkldnn support (0.014s) 2023-01-11T21:55:59.0452920Z test_conv_backend_mkldnn1d_has_bias_False_strided_True_contiguous_True_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... skip: PyTorch is built without mkldnn support (0.014s) 2023-01-11T21:55:59.0453444Z test_conv_backend_mkldnn1d_has_bias_True_strided_False_contiguous_False_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... skip: PyTorch is built without mkldnn support (0.014s) 2023-01-11T21:55:59.0453965Z test_conv_backend_mkldnn1d_has_bias_True_strided_False_contiguous_True_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... skip: PyTorch is built without mkldnn support (0.014s) 2023-01-11T21:55:59.0454485Z test_conv_backend_mkldnn1d_has_bias_True_strided_True_contiguous_False_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... skip: PyTorch is built without mkldnn support (0.017s) 2023-01-11T21:55:59.0454991Z test_conv_backend_mkldnn1d_has_bias_True_strided_True_contiguous_True_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... skip: PyTorch is built without mkldnn support (0.014s) 2023-01-11T21:55:59.0455594Z test_conv_backend_mkldnn1d_transposed_has_bias_False_strided_False_contiguous_False_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... skip: PyTorch is built without mkldnn support (0.014s) 2023-01-11T21:55:59.0456151Z test_conv_backend_mkldnn1d_transposed_has_bias_False_strided_False_contiguous_True_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... skip: PyTorch is built without mkldnn support (0.014s) 2023-01-11T21:55:59.0456705Z test_conv_backend_mkldnn1d_transposed_has_bias_False_strided_True_contiguous_False_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... skip: PyTorch is built without mkldnn support (0.014s) 2023-01-11T21:55:59.0457255Z test_conv_backend_mkldnn1d_transposed_has_bias_False_strided_True_contiguous_True_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... skip: PyTorch is built without mkldnn support (0.014s) 2023-01-11T21:55:59.0457787Z test_conv_backend_mkldnn1d_transposed_has_bias_True_strided_False_contiguous_False_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... skip: PyTorch is built without mkldnn support (0.014s) 2023-01-11T21:55:59.0458373Z test_conv_backend_mkldnn1d_transposed_has_bias_True_strided_False_contiguous_True_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... skip: PyTorch is built without mkldnn support (0.017s) 2023-01-11T21:55:59.0458920Z test_conv_backend_mkldnn1d_transposed_has_bias_True_strided_True_contiguous_False_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... skip: PyTorch is built without mkldnn support (0.014s) 2023-01-11T21:55:59.0459459Z test_conv_backend_mkldnn1d_transposed_has_bias_True_strided_True_contiguous_True_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... skip: PyTorch is built without mkldnn support (0.014s) 2023-01-11T21:55:59.0460003Z test_conv_backend_mkldnn2d_cpu_input_has_bias_False_strided_False_contiguous_False_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... skip: PyTorch is built without mkldnn support (0.014s) 2023-01-11T21:55:59.0460535Z test_conv_backend_mkldnn2d_cpu_input_has_bias_False_strided_False_contiguous_True_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... skip: PyTorch is built without mkldnn support (0.014s) 2023-01-11T21:55:59.0461111Z test_conv_backend_mkldnn2d_cpu_input_has_bias_False_strided_True_contiguous_False_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... skip: PyTorch is built without mkldnn support (0.014s) 2023-01-11T21:55:59.0461653Z test_conv_backend_mkldnn2d_cpu_input_has_bias_False_strided_True_contiguous_True_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... skip: PyTorch is built without mkldnn support (0.014s) 2023-01-11T21:55:59.0462190Z test_conv_backend_mkldnn2d_cpu_input_has_bias_True_strided_False_contiguous_False_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... skip: PyTorch is built without mkldnn support (0.017s) 2023-01-11T21:55:59.0462727Z test_conv_backend_mkldnn2d_cpu_input_has_bias_True_strided_False_contiguous_True_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... skip: PyTorch is built without mkldnn support (0.014s) 2023-01-11T21:55:59.0463243Z test_conv_backend_mkldnn2d_cpu_input_has_bias_True_strided_True_contiguous_False_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... skip: PyTorch is built without mkldnn support (0.014s) 2023-01-11T21:55:59.0463782Z test_conv_backend_mkldnn2d_cpu_input_has_bias_True_strided_True_contiguous_True_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... skip: PyTorch is built without mkldnn support (0.014s) 2023-01-11T21:55:59.0464309Z test_conv_backend_mkldnn2d_has_bias_False_strided_False_contiguous_False_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... skip: PyTorch is built without mkldnn support (0.014s) 2023-01-11T21:55:59.0464831Z test_conv_backend_mkldnn2d_has_bias_False_strided_False_contiguous_True_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... skip: PyTorch is built without mkldnn support (0.014s) 2023-01-11T21:55:59.0465340Z test_conv_backend_mkldnn2d_has_bias_False_strided_True_contiguous_False_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... skip: PyTorch is built without mkldnn support (0.014s) 2023-01-11T21:55:59.0465852Z test_conv_backend_mkldnn2d_has_bias_False_strided_True_contiguous_True_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... skip: PyTorch is built without mkldnn support (0.014s) 2023-01-11T21:55:59.0466383Z test_conv_backend_mkldnn2d_has_bias_True_strided_False_contiguous_False_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... skip: PyTorch is built without mkldnn support (0.017s) 2023-01-11T21:55:59.0466899Z test_conv_backend_mkldnn2d_has_bias_True_strided_False_contiguous_True_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... skip: PyTorch is built without mkldnn support (0.014s) 2023-01-11T21:55:59.0467421Z test_conv_backend_mkldnn2d_has_bias_True_strided_True_contiguous_False_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... skip: PyTorch is built without mkldnn support (0.014s) 2023-01-11T21:55:59.0467930Z test_conv_backend_mkldnn2d_has_bias_True_strided_True_contiguous_True_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... skip: PyTorch is built without mkldnn support (0.014s) 2023-01-11T21:55:59.0468493Z test_conv_backend_mkldnn2d_transposed_has_bias_False_strided_False_contiguous_False_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... skip: PyTorch is built without mkldnn support (0.014s) 2023-01-11T21:55:59.0469041Z test_conv_backend_mkldnn2d_transposed_has_bias_False_strided_False_contiguous_True_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... skip: PyTorch is built without mkldnn support (0.014s) 2023-01-11T21:55:59.0469586Z test_conv_backend_mkldnn2d_transposed_has_bias_False_strided_True_contiguous_False_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... skip: PyTorch is built without mkldnn support (0.014s) 2023-01-11T21:55:59.0470129Z test_conv_backend_mkldnn2d_transposed_has_bias_False_strided_True_contiguous_True_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... skip: PyTorch is built without mkldnn support (0.017s) 2023-01-11T21:55:59.0470657Z test_conv_backend_mkldnn2d_transposed_has_bias_True_strided_False_contiguous_False_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... skip: PyTorch is built without mkldnn support (0.014s) 2023-01-11T21:55:59.0471247Z test_conv_backend_mkldnn2d_transposed_has_bias_True_strided_False_contiguous_True_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... skip: PyTorch is built without mkldnn support (0.014s) 2023-01-11T21:55:59.0471793Z test_conv_backend_mkldnn2d_transposed_has_bias_True_strided_True_contiguous_False_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... skip: PyTorch is built without mkldnn support (0.014s) 2023-01-11T21:55:59.0472332Z test_conv_backend_mkldnn2d_transposed_has_bias_True_strided_True_contiguous_True_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... skip: PyTorch is built without mkldnn support (0.014s) 2023-01-11T21:55:59.0472870Z test_conv_backend_mkldnn3d_cpu_input_has_bias_False_strided_False_contiguous_False_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... skip: PyTorch is built without mkldnn support (0.014s) 2023-01-11T21:55:59.0473401Z test_conv_backend_mkldnn3d_cpu_input_has_bias_False_strided_False_contiguous_True_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... skip: PyTorch is built without mkldnn support (0.014s) 2023-01-11T21:55:59.0473949Z test_conv_backend_mkldnn3d_cpu_input_has_bias_False_strided_True_contiguous_False_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... skip: PyTorch is built without mkldnn support (0.017s) 2023-01-11T21:55:59.0474487Z test_conv_backend_mkldnn3d_cpu_input_has_bias_False_strided_True_contiguous_True_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... skip: PyTorch is built without mkldnn support (0.014s) 2023-01-11T21:55:59.0475026Z test_conv_backend_mkldnn3d_cpu_input_has_bias_True_strided_False_contiguous_False_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... skip: PyTorch is built without mkldnn support (0.014s) 2023-01-11T21:55:59.0475552Z test_conv_backend_mkldnn3d_cpu_input_has_bias_True_strided_False_contiguous_True_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... skip: PyTorch is built without mkldnn support (0.014s) 2023-01-11T21:55:59.0476083Z test_conv_backend_mkldnn3d_cpu_input_has_bias_True_strided_True_contiguous_False_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... skip: PyTorch is built without mkldnn support (0.014s) 2023-01-11T21:55:59.0476630Z test_conv_backend_mkldnn3d_cpu_input_has_bias_True_strided_True_contiguous_True_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... skip: PyTorch is built without mkldnn support (0.014s) 2023-01-11T21:55:59.0477155Z test_conv_backend_mkldnn3d_has_bias_False_strided_False_contiguous_False_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... skip: PyTorch is built without mkldnn support (0.014s) 2023-01-11T21:55:59.0477675Z test_conv_backend_mkldnn3d_has_bias_False_strided_False_contiguous_True_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... skip: PyTorch is built without mkldnn support (0.017s) 2023-01-11T21:55:59.0478190Z test_conv_backend_mkldnn3d_has_bias_False_strided_True_contiguous_False_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... skip: PyTorch is built without mkldnn support (0.014s) 2023-01-11T21:55:59.0478746Z test_conv_backend_mkldnn3d_has_bias_False_strided_True_contiguous_True_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... skip: PyTorch is built without mkldnn support (0.014s) 2023-01-11T21:55:59.0479268Z test_conv_backend_mkldnn3d_has_bias_True_strided_False_contiguous_False_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... skip: PyTorch is built without mkldnn support (0.014s) 2023-01-11T21:55:59.0479787Z test_conv_backend_mkldnn3d_has_bias_True_strided_False_contiguous_True_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... skip: PyTorch is built without mkldnn support (0.014s) 2023-01-11T21:55:59.0480304Z test_conv_backend_mkldnn3d_has_bias_True_strided_True_contiguous_False_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... skip: PyTorch is built without mkldnn support (0.014s) 2023-01-11T21:55:59.0480940Z test_conv_backend_mkldnn3d_has_bias_True_strided_True_contiguous_True_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... skip: PyTorch is built without mkldnn support (0.014s) 2023-01-11T21:55:59.0481479Z test_conv_backend_mkldnn3d_transposed_has_bias_False_strided_False_contiguous_False_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... skip: PyTorch is built without mkldnn support (0.017s) 2023-01-11T21:55:59.0482077Z test_conv_backend_mkldnn3d_transposed_has_bias_False_strided_False_contiguous_True_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... skip: PyTorch is built without mkldnn support (0.014s) 2023-01-11T21:55:59.0482625Z test_conv_backend_mkldnn3d_transposed_has_bias_False_strided_True_contiguous_False_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... skip: PyTorch is built without mkldnn support (0.014s) 2023-01-11T21:55:59.0483174Z test_conv_backend_mkldnn3d_transposed_has_bias_False_strided_True_contiguous_True_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... skip: PyTorch is built without mkldnn support (0.014s) 2023-01-11T21:55:59.0483705Z test_conv_backend_mkldnn3d_transposed_has_bias_True_strided_False_contiguous_False_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... skip: PyTorch is built without mkldnn support (0.014s) 2023-01-11T21:55:59.0484252Z test_conv_backend_mkldnn3d_transposed_has_bias_True_strided_False_contiguous_True_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... skip: PyTorch is built without mkldnn support (0.014s) 2023-01-11T21:55:59.0484795Z test_conv_backend_mkldnn3d_transposed_has_bias_True_strided_True_contiguous_False_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... skip: PyTorch is built without mkldnn support (0.014s) 2023-01-11T21:55:59.0485340Z test_conv_backend_mkldnn3d_transposed_has_bias_True_strided_True_contiguous_True_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... skip: PyTorch is built without mkldnn support (0.017s) 2023-01-11T21:55:59.0485883Z test_conv_backend_mkldnn_empty_batch1d_has_bias_False_strided_False_contiguous_False_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... skip: PyTorch is built without mkldnn support (0.014s) 2023-01-11T21:55:59.0486420Z test_conv_backend_mkldnn_empty_batch1d_has_bias_False_strided_False_contiguous_True_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... skip: PyTorch is built without mkldnn support (0.014s) 2023-01-11T21:55:59.0486967Z test_conv_backend_mkldnn_empty_batch1d_has_bias_False_strided_True_contiguous_False_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... skip: PyTorch is built without mkldnn support (0.014s) 2023-01-11T21:55:59.0487511Z test_conv_backend_mkldnn_empty_batch1d_has_bias_False_strided_True_contiguous_True_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... skip: PyTorch is built without mkldnn support (0.014s) 2023-01-11T21:55:59.0488052Z test_conv_backend_mkldnn_empty_batch1d_has_bias_True_strided_False_contiguous_False_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... skip: PyTorch is built without mkldnn support (0.014s) 2023-01-11T21:55:59.0488579Z test_conv_backend_mkldnn_empty_batch1d_has_bias_True_strided_False_contiguous_True_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... skip: PyTorch is built without mkldnn support (0.014s) 2023-01-11T21:55:59.0489157Z test_conv_backend_mkldnn_empty_batch1d_has_bias_True_strided_True_contiguous_False_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... skip: PyTorch is built without mkldnn support (0.017s) 2023-01-11T21:55:59.0489694Z test_conv_backend_mkldnn_empty_batch1d_has_bias_True_strided_True_contiguous_True_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... skip: PyTorch is built without mkldnn support (0.014s) 2023-01-11T21:55:59.0490229Z test_conv_backend_mkldnn_empty_batch2d_has_bias_False_strided_False_contiguous_False_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... skip: PyTorch is built without mkldnn support (0.014s) 2023-01-11T21:55:59.0490774Z test_conv_backend_mkldnn_empty_batch2d_has_bias_False_strided_False_contiguous_True_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... skip: PyTorch is built without mkldnn support (0.014s) 2023-01-11T21:55:59.0491311Z test_conv_backend_mkldnn_empty_batch2d_has_bias_False_strided_True_contiguous_False_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... skip: PyTorch is built without mkldnn support (0.014s) 2023-01-11T21:55:59.0491883Z test_conv_backend_mkldnn_empty_batch2d_has_bias_False_strided_True_contiguous_True_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... skip: PyTorch is built without mkldnn support (0.014s) 2023-01-11T21:55:59.0492422Z test_conv_backend_mkldnn_empty_batch2d_has_bias_True_strided_False_contiguous_False_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... skip: PyTorch is built without mkldnn support (0.014s) 2023-01-11T21:55:59.0492959Z test_conv_backend_mkldnn_empty_batch2d_has_bias_True_strided_False_contiguous_True_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... skip: PyTorch is built without mkldnn support (0.017s) 2023-01-11T21:55:59.0493494Z test_conv_backend_mkldnn_empty_batch2d_has_bias_True_strided_True_contiguous_False_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... skip: PyTorch is built without mkldnn support (0.014s) 2023-01-11T21:55:59.0494022Z test_conv_backend_mkldnn_empty_batch2d_has_bias_True_strided_True_contiguous_True_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... skip: PyTorch is built without mkldnn support (0.014s) 2023-01-11T21:55:59.0494569Z test_conv_backend_mkldnn_empty_batch3d_has_bias_False_strided_False_contiguous_False_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... skip: PyTorch is built without mkldnn support (0.014s) 2023-01-11T21:55:59.0495110Z test_conv_backend_mkldnn_empty_batch3d_has_bias_False_strided_False_contiguous_True_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... skip: PyTorch is built without mkldnn support (0.014s) 2023-01-11T21:55:59.0495719Z test_conv_backend_mkldnn_empty_batch3d_has_bias_False_strided_True_contiguous_False_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... skip: PyTorch is built without mkldnn support (0.014s) 2023-01-11T21:55:59.0496264Z test_conv_backend_mkldnn_empty_batch3d_has_bias_False_strided_True_contiguous_True_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... skip: PyTorch is built without mkldnn support (0.014s) 2023-01-11T21:55:59.0496797Z test_conv_backend_mkldnn_empty_batch3d_has_bias_True_strided_False_contiguous_False_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... skip: PyTorch is built without mkldnn support (0.016s) 2023-01-11T21:55:59.0497336Z test_conv_backend_mkldnn_empty_batch3d_has_bias_True_strided_False_contiguous_True_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... skip: PyTorch is built without mkldnn support (0.014s) 2023-01-11T21:55:59.0497879Z test_conv_backend_mkldnn_empty_batch3d_has_bias_True_strided_True_contiguous_False_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... skip: PyTorch is built without mkldnn support (0.014s) 2023-01-11T21:55:59.0498417Z test_conv_backend_mkldnn_empty_batch3d_has_bias_True_strided_True_contiguous_True_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... skip: PyTorch is built without mkldnn support (0.014s) 2023-01-11T21:55:59.0498968Z test_conv_backend_mkldnn_empty_batch_channel1d_has_bias_False_strided_False_contiguous_False_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... skip: PyTorch is built without mkldnn support (0.014s) 2023-01-11T21:55:59.0499557Z test_conv_backend_mkldnn_empty_batch_channel1d_has_bias_False_strided_False_contiguous_True_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... skip: PyTorch is built without mkldnn support (0.014s) 2023-01-11T21:55:59.0500121Z test_conv_backend_mkldnn_empty_batch_channel1d_has_bias_False_strided_True_contiguous_False_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... skip: PyTorch is built without mkldnn support (0.014s) 2023-01-11T21:55:59.0500678Z test_conv_backend_mkldnn_empty_batch_channel1d_has_bias_False_strided_True_contiguous_True_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... skip: PyTorch is built without mkldnn support (0.017s) 2023-01-11T21:55:59.0501238Z test_conv_backend_mkldnn_empty_batch_channel1d_has_bias_True_strided_False_contiguous_False_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... skip: PyTorch is built without mkldnn support (0.014s) 2023-01-11T21:55:59.0501801Z test_conv_backend_mkldnn_empty_batch_channel1d_has_bias_True_strided_False_contiguous_True_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... skip: PyTorch is built without mkldnn support (0.014s) 2023-01-11T21:55:59.0502369Z test_conv_backend_mkldnn_empty_batch_channel1d_has_bias_True_strided_True_contiguous_False_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... skip: PyTorch is built without mkldnn support (0.014s) 2023-01-11T21:55:59.0502920Z test_conv_backend_mkldnn_empty_batch_channel1d_has_bias_True_strided_True_contiguous_True_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... skip: PyTorch is built without mkldnn support (0.014s) 2023-01-11T21:55:59.0503482Z test_conv_backend_mkldnn_empty_batch_channel2d_has_bias_False_strided_False_contiguous_False_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... skip: PyTorch is built without mkldnn support (0.014s) 2023-01-11T21:55:59.0504041Z test_conv_backend_mkldnn_empty_batch_channel2d_has_bias_False_strided_False_contiguous_True_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... skip: PyTorch is built without mkldnn support (0.014s) 2023-01-11T21:55:59.0504601Z test_conv_backend_mkldnn_empty_batch_channel2d_has_bias_False_strided_True_contiguous_False_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... skip: PyTorch is built without mkldnn support (0.017s) 2023-01-11T21:55:59.0505150Z test_conv_backend_mkldnn_empty_batch_channel2d_has_bias_False_strided_True_contiguous_True_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... skip: PyTorch is built without mkldnn support (0.014s) 2023-01-11T21:55:59.0505705Z test_conv_backend_mkldnn_empty_batch_channel2d_has_bias_True_strided_False_contiguous_False_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... skip: PyTorch is built without mkldnn support (0.014s) 2023-01-11T21:55:59.0506260Z test_conv_backend_mkldnn_empty_batch_channel2d_has_bias_True_strided_False_contiguous_True_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... skip: PyTorch is built without mkldnn support (0.014s) 2023-01-11T21:55:59.0506805Z test_conv_backend_mkldnn_empty_batch_channel2d_has_bias_True_strided_True_contiguous_False_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... skip: PyTorch is built without mkldnn support (0.014s) 2023-01-11T21:55:59.0507359Z test_conv_backend_mkldnn_empty_batch_channel2d_has_bias_True_strided_True_contiguous_True_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... skip: PyTorch is built without mkldnn support (0.014s) 2023-01-11T21:55:59.0507904Z test_conv_backend_mkldnn_empty_batch_channel3d_has_bias_False_strided_False_contiguous_False_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... skip: PyTorch is built without mkldnn support (0.014s) 2023-01-11T21:55:59.0508455Z test_conv_backend_mkldnn_empty_batch_channel3d_has_bias_False_strided_False_contiguous_True_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... skip: PyTorch is built without mkldnn support (0.017s) 2023-01-11T21:55:59.0509015Z test_conv_backend_mkldnn_empty_batch_channel3d_has_bias_False_strided_True_contiguous_False_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... skip: PyTorch is built without mkldnn support (0.014s) 2023-01-11T21:55:59.0509606Z test_conv_backend_mkldnn_empty_batch_channel3d_has_bias_False_strided_True_contiguous_True_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... skip: PyTorch is built without mkldnn support (0.014s) 2023-01-11T21:55:59.0510160Z test_conv_backend_mkldnn_empty_batch_channel3d_has_bias_True_strided_False_contiguous_False_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... skip: PyTorch is built without mkldnn support (0.014s) 2023-01-11T21:55:59.0510708Z test_conv_backend_mkldnn_empty_batch_channel3d_has_bias_True_strided_False_contiguous_True_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... skip: PyTorch is built without mkldnn support (0.014s) 2023-01-11T21:55:59.0511262Z test_conv_backend_mkldnn_empty_batch_channel3d_has_bias_True_strided_True_contiguous_False_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... skip: PyTorch is built without mkldnn support (0.014s) 2023-01-11T21:55:59.0511818Z test_conv_backend_mkldnn_empty_batch_channel3d_has_bias_True_strided_True_contiguous_True_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... skip: PyTorch is built without mkldnn support (0.014s) 2023-01-11T21:55:59.0512416Z test_conv_backend_mkldnn_empty_channel1d_has_bias_False_strided_False_contiguous_False_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... skip: PyTorch is built without mkldnn support (0.017s) 2023-01-11T21:55:59.0512973Z test_conv_backend_mkldnn_empty_channel1d_has_bias_False_strided_False_contiguous_True_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... skip: PyTorch is built without mkldnn support (0.014s) 2023-01-11T21:55:59.0513509Z test_conv_backend_mkldnn_empty_channel1d_has_bias_False_strided_True_contiguous_False_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... skip: PyTorch is built without mkldnn support (0.014s) 2023-01-11T21:55:59.0514057Z test_conv_backend_mkldnn_empty_channel1d_has_bias_False_strided_True_contiguous_True_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... skip: PyTorch is built without mkldnn support (0.014s) 2023-01-11T21:55:59.0514610Z test_conv_backend_mkldnn_empty_channel1d_has_bias_True_strided_False_contiguous_False_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... skip: PyTorch is built without mkldnn support (0.014s) 2023-01-11T21:55:59.0515156Z test_conv_backend_mkldnn_empty_channel1d_has_bias_True_strided_False_contiguous_True_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... skip: PyTorch is built without mkldnn support (0.014s) 2023-01-11T21:55:59.0515706Z test_conv_backend_mkldnn_empty_channel1d_has_bias_True_strided_True_contiguous_False_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... skip: PyTorch is built without mkldnn support (0.014s) 2023-01-11T21:55:59.0516244Z test_conv_backend_mkldnn_empty_channel1d_has_bias_True_strided_True_contiguous_True_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... skip: PyTorch is built without mkldnn support (0.017s) 2023-01-11T21:55:59.0516789Z test_conv_backend_mkldnn_empty_channel2d_has_bias_False_strided_False_contiguous_False_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... skip: PyTorch is built without mkldnn support (0.014s) 2023-01-11T21:55:59.0517346Z test_conv_backend_mkldnn_empty_channel2d_has_bias_False_strided_False_contiguous_True_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... skip: PyTorch is built without mkldnn support (0.014s) 2023-01-11T21:55:59.0517893Z test_conv_backend_mkldnn_empty_channel2d_has_bias_False_strided_True_contiguous_False_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... skip: PyTorch is built without mkldnn support (0.014s) 2023-01-11T21:55:59.0518435Z test_conv_backend_mkldnn_empty_channel2d_has_bias_False_strided_True_contiguous_True_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... skip: PyTorch is built without mkldnn support (0.014s) 2023-01-11T21:55:59.0518976Z test_conv_backend_mkldnn_empty_channel2d_has_bias_True_strided_False_contiguous_False_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... skip: PyTorch is built without mkldnn support (0.014s) 2023-01-11T21:55:59.0519559Z test_conv_backend_mkldnn_empty_channel2d_has_bias_True_strided_False_contiguous_True_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... skip: PyTorch is built without mkldnn support (0.014s) 2023-01-11T21:55:59.0520105Z test_conv_backend_mkldnn_empty_channel2d_has_bias_True_strided_True_contiguous_False_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... skip: PyTorch is built without mkldnn support (0.017s) 2023-01-11T21:55:59.0520781Z test_conv_backend_mkldnn_empty_channel2d_has_bias_True_strided_True_contiguous_True_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... skip: PyTorch is built without mkldnn support (0.014s) 2023-01-11T21:55:59.0521330Z test_conv_backend_mkldnn_empty_channel3d_has_bias_False_strided_False_contiguous_False_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... skip: PyTorch is built without mkldnn support (0.014s) 2023-01-11T21:55:59.0521868Z test_conv_backend_mkldnn_empty_channel3d_has_bias_False_strided_False_contiguous_True_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... skip: PyTorch is built without mkldnn support (0.014s) 2023-01-11T21:55:59.0522478Z test_conv_backend_mkldnn_empty_channel3d_has_bias_False_strided_True_contiguous_False_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... skip: PyTorch is built without mkldnn support (0.014s) 2023-01-11T21:55:59.0523026Z test_conv_backend_mkldnn_empty_channel3d_has_bias_False_strided_True_contiguous_True_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... skip: PyTorch is built without mkldnn support (0.014s) 2023-01-11T21:55:59.0523582Z test_conv_backend_mkldnn_empty_channel3d_has_bias_True_strided_False_contiguous_False_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... skip: PyTorch is built without mkldnn support (0.014s) 2023-01-11T21:55:59.0524121Z test_conv_backend_mkldnn_empty_channel3d_has_bias_True_strided_False_contiguous_True_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... skip: PyTorch is built without mkldnn support (0.017s) 2023-01-11T21:55:59.0524662Z test_conv_backend_mkldnn_empty_channel3d_has_bias_True_strided_True_contiguous_False_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... skip: PyTorch is built without mkldnn support (0.014s) 2023-01-11T21:55:59.0525209Z test_conv_backend_mkldnn_empty_channel3d_has_bias_True_strided_True_contiguous_True_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... skip: PyTorch is built without mkldnn support (0.014s) 2023-01-11T21:55:59.0525714Z test_conv_backend_slow1d_dilated_has_bias_False_strided_False_contiguous_False_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... ok (0.100s) 2023-01-11T21:55:59.0526174Z test_conv_backend_slow1d_dilated_has_bias_False_strided_False_contiguous_True_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... ok (0.098s) 2023-01-11T21:55:59.0526614Z test_conv_backend_slow1d_dilated_has_bias_False_strided_True_contiguous_False_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... ok (0.106s) 2023-01-11T21:55:59.0527063Z test_conv_backend_slow1d_dilated_has_bias_False_strided_True_contiguous_True_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... ok (0.100s) 2023-01-11T21:55:59.0527514Z test_conv_backend_slow1d_dilated_has_bias_True_strided_False_contiguous_False_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... ok (0.119s) 2023-01-11T21:55:59.0527968Z test_conv_backend_slow1d_dilated_has_bias_True_strided_False_contiguous_True_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... ok (0.119s) 2023-01-11T21:55:59.0528402Z test_conv_backend_slow1d_dilated_has_bias_True_strided_True_contiguous_False_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... ok (0.120s) 2023-01-11T21:55:59.0528844Z test_conv_backend_slow1d_dilated_has_bias_True_strided_True_contiguous_True_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... ok (0.116s) 2023-01-11T21:55:59.0529306Z test_conv_backend_slow1d_dilated_transposed_has_bias_False_strided_False_contiguous_False_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... ok (0.104s) 2023-01-11T21:55:59.0529781Z test_conv_backend_slow1d_dilated_transposed_has_bias_False_strided_False_contiguous_True_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... ok (0.109s) 2023-01-11T21:55:59.0530295Z test_conv_backend_slow1d_dilated_transposed_has_bias_False_strided_True_contiguous_False_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... ok (0.116s) 2023-01-11T21:55:59.0530768Z test_conv_backend_slow1d_dilated_transposed_has_bias_False_strided_True_contiguous_True_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... ok (0.104s) 2023-01-11T21:55:59.0531241Z test_conv_backend_slow1d_dilated_transposed_has_bias_True_strided_False_contiguous_False_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... ok (0.110s) 2023-01-11T21:55:59.0531712Z test_conv_backend_slow1d_dilated_transposed_has_bias_True_strided_False_contiguous_True_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... ok (0.113s) 2023-01-11T21:55:59.0532178Z test_conv_backend_slow1d_dilated_transposed_has_bias_True_strided_True_contiguous_False_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... ok (0.114s) 2023-01-11T21:55:59.0532634Z test_conv_backend_slow1d_dilated_transposed_has_bias_True_strided_True_contiguous_True_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... ok (0.111s) 2023-01-11T21:55:59.0533135Z test_conv_backend_slow1d_has_bias_False_strided_False_contiguous_False_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... ok (0.089s) 2023-01-11T21:55:59.0533581Z test_conv_backend_slow1d_has_bias_False_strided_False_contiguous_True_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... ok (0.091s) 2023-01-11T21:55:59.0534020Z test_conv_backend_slow1d_has_bias_False_strided_True_contiguous_False_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... ok (0.091s) 2023-01-11T21:55:59.0534439Z test_conv_backend_slow1d_has_bias_False_strided_True_contiguous_True_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... ok (0.092s) 2023-01-11T21:55:59.0534872Z test_conv_backend_slow1d_has_bias_True_strided_False_contiguous_False_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... ok (0.099s) 2023-01-11T21:55:59.0535298Z test_conv_backend_slow1d_has_bias_True_strided_False_contiguous_True_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... ok (0.096s) 2023-01-11T21:55:59.0535800Z test_conv_backend_slow1d_has_bias_True_strided_True_contiguous_False_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... ok (0.114s) 2023-01-11T21:55:59.0536222Z test_conv_backend_slow1d_has_bias_True_strided_True_contiguous_True_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... ok (0.096s) 2023-01-11T21:55:59.0536671Z test_conv_backend_slow1d_transposed_has_bias_False_strided_False_contiguous_False_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... ok (0.099s) 2023-01-11T21:55:59.0537133Z test_conv_backend_slow1d_transposed_has_bias_False_strided_False_contiguous_True_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... ok (0.102s) 2023-01-11T21:55:59.0537599Z test_conv_backend_slow1d_transposed_has_bias_False_strided_True_contiguous_False_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... ok (0.109s) 2023-01-11T21:55:59.0538041Z test_conv_backend_slow1d_transposed_has_bias_False_strided_True_contiguous_True_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... ok (0.105s) 2023-01-11T21:55:59.0538500Z test_conv_backend_slow1d_transposed_has_bias_True_strided_False_contiguous_False_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... ok (0.110s) 2023-01-11T21:55:59.0538963Z test_conv_backend_slow1d_transposed_has_bias_True_strided_False_contiguous_True_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... ok (0.111s) 2023-01-11T21:55:59.0539418Z test_conv_backend_slow1d_transposed_has_bias_True_strided_True_contiguous_False_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... ok (0.111s) 2023-01-11T21:55:59.0539859Z test_conv_backend_slow1d_transposed_has_bias_True_strided_True_contiguous_True_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... ok (0.109s) 2023-01-11T21:55:59.0540313Z test_conv_backend_slow2d_dilated_has_bias_False_strided_False_contiguous_False_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... ok (0.130s) 2023-01-11T21:55:59.0540766Z test_conv_backend_slow2d_dilated_has_bias_False_strided_False_contiguous_True_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... ok (0.114s) 2023-01-11T21:55:59.0541258Z test_conv_backend_slow2d_dilated_has_bias_False_strided_True_contiguous_False_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... ok (0.112s) 2023-01-11T21:55:59.0541693Z test_conv_backend_slow2d_dilated_has_bias_False_strided_True_contiguous_True_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... ok (0.113s) 2023-01-11T21:55:59.0542141Z test_conv_backend_slow2d_dilated_has_bias_True_strided_False_contiguous_False_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... ok (0.154s) 2023-01-11T21:55:59.0542589Z test_conv_backend_slow2d_dilated_has_bias_True_strided_False_contiguous_True_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... ok (0.136s) 2023-01-11T21:55:59.0543036Z test_conv_backend_slow2d_dilated_has_bias_True_strided_True_contiguous_False_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... ok (0.131s) 2023-01-11T21:55:59.0543467Z test_conv_backend_slow2d_dilated_has_bias_True_strided_True_contiguous_True_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... ok (0.134s) 2023-01-11T21:55:59.0543966Z test_conv_backend_slow2d_dilated_transposed_has_bias_False_strided_False_contiguous_False_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... ok (0.152s) 2023-01-11T21:55:59.0544448Z test_conv_backend_slow2d_dilated_transposed_has_bias_False_strided_False_contiguous_True_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... ok (0.137s) 2023-01-11T21:55:59.0544922Z test_conv_backend_slow2d_dilated_transposed_has_bias_False_strided_True_contiguous_False_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... ok (0.157s) 2023-01-11T21:55:59.0545399Z test_conv_backend_slow2d_dilated_transposed_has_bias_False_strided_True_contiguous_True_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... ok (0.158s) 2023-01-11T21:55:59.0545859Z test_conv_backend_slow2d_dilated_transposed_has_bias_True_strided_False_contiguous_False_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... ok (0.138s) 2023-01-11T21:55:59.0546337Z test_conv_backend_slow2d_dilated_transposed_has_bias_True_strided_False_contiguous_True_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... ok (0.143s) 2023-01-11T21:55:59.0546811Z test_conv_backend_slow2d_dilated_transposed_has_bias_True_strided_True_contiguous_False_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... ok (0.170s) 2023-01-11T21:55:59.0547280Z test_conv_backend_slow2d_dilated_transposed_has_bias_True_strided_True_contiguous_True_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... ok (0.192s) 2023-01-11T21:55:59.0547723Z test_conv_backend_slow2d_has_bias_False_strided_False_contiguous_False_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... ok (0.106s) 2023-01-11T21:55:59.0548159Z test_conv_backend_slow2d_has_bias_False_strided_False_contiguous_True_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... ok (0.112s) 2023-01-11T21:55:59.0548593Z test_conv_backend_slow2d_has_bias_False_strided_True_contiguous_False_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... ok (0.097s) 2023-01-11T21:55:59.0549029Z test_conv_backend_slow2d_has_bias_False_strided_True_contiguous_True_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... ok (0.096s) 2023-01-11T21:55:59.0549453Z test_conv_backend_slow2d_has_bias_True_strided_False_contiguous_False_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... ok (0.132s) 2023-01-11T21:55:59.0549879Z test_conv_backend_slow2d_has_bias_True_strided_False_contiguous_True_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... ok (0.111s) 2023-01-11T21:55:59.0550308Z test_conv_backend_slow2d_has_bias_True_strided_True_contiguous_False_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... ok (0.106s) 2023-01-11T21:55:59.0550733Z test_conv_backend_slow2d_has_bias_True_strided_True_contiguous_True_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... ok (0.111s) 2023-01-11T21:55:59.0551164Z test_conv_backend_slow2d_transposed_has_bias_False_strided_False_contiguous_False_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... ok (0.151s) 2023-01-11T21:55:59.0551624Z test_conv_backend_slow2d_transposed_has_bias_False_strided_False_contiguous_True_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... ok (0.129s) 2023-01-11T21:55:59.0552129Z test_conv_backend_slow2d_transposed_has_bias_False_strided_True_contiguous_False_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... ok (0.141s) 2023-01-11T21:55:59.0552586Z test_conv_backend_slow2d_transposed_has_bias_False_strided_True_contiguous_True_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... ok (0.144s) 2023-01-11T21:55:59.0553028Z test_conv_backend_slow2d_transposed_has_bias_True_strided_False_contiguous_False_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... ok (0.137s) 2023-01-11T21:55:59.0553483Z test_conv_backend_slow2d_transposed_has_bias_True_strided_False_contiguous_True_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... ok (0.134s) 2023-01-11T21:55:59.0553932Z test_conv_backend_slow2d_transposed_has_bias_True_strided_True_contiguous_False_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... ok (0.153s) 2023-01-11T21:55:59.0554378Z test_conv_backend_slow2d_transposed_has_bias_True_strided_True_contiguous_True_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... ok (0.176s) 2023-01-11T21:55:59.0554843Z test_conv_backend_slow3d_cpu_has_bias_False_strided_False_contiguous_False_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... ok (0.163s) 2023-01-11T21:55:59.0555283Z test_conv_backend_slow3d_cpu_has_bias_False_strided_False_contiguous_True_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... ok (0.166s) 2023-01-11T21:55:59.0555725Z test_conv_backend_slow3d_cpu_has_bias_False_strided_True_contiguous_False_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... ok (0.115s) 2023-01-11T21:55:59.0556159Z test_conv_backend_slow3d_cpu_has_bias_False_strided_True_contiguous_True_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... ok (0.102s) 2023-01-11T21:55:59.0556587Z test_conv_backend_slow3d_cpu_has_bias_True_strided_False_contiguous_False_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... ok (0.163s) 2023-01-11T21:55:59.0557023Z test_conv_backend_slow3d_cpu_has_bias_True_strided_False_contiguous_True_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... ok (0.154s) 2023-01-11T21:55:59.0557465Z test_conv_backend_slow3d_cpu_has_bias_True_strided_True_contiguous_False_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... ok (0.110s) 2023-01-11T21:55:59.0557902Z test_conv_backend_slow3d_cpu_has_bias_True_strided_True_contiguous_True_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... ok (0.130s) 2023-01-11T21:55:59.0558361Z test_conv_backend_slow3d_cuda_has_bias_False_strided_False_contiguous_False_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... skip: Only runs on cuda (0.014s) 2023-01-11T21:55:59.0558834Z test_conv_backend_slow3d_cuda_has_bias_False_strided_False_contiguous_True_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... skip: Only runs on cuda (0.014s) 2023-01-11T21:55:59.0559307Z test_conv_backend_slow3d_cuda_has_bias_False_strided_True_contiguous_False_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... skip: Only runs on cuda (0.014s) 2023-01-11T21:55:59.0559783Z test_conv_backend_slow3d_cuda_has_bias_False_strided_True_contiguous_True_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... skip: Only runs on cuda (0.014s) 2023-01-11T21:55:59.0560259Z test_conv_backend_slow3d_cuda_has_bias_True_strided_False_contiguous_False_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... skip: Only runs on cuda (0.017s) 2023-01-11T21:55:59.0560849Z test_conv_backend_slow3d_cuda_has_bias_True_strided_False_contiguous_True_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... skip: Only runs on cuda (0.014s) 2023-01-11T21:55:59.0561324Z test_conv_backend_slow3d_cuda_has_bias_True_strided_True_contiguous_False_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... skip: Only runs on cuda (0.014s) 2023-01-11T21:55:59.0561795Z test_conv_backend_slow3d_cuda_has_bias_True_strided_True_contiguous_True_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... skip: Only runs on cuda (0.014s) 2023-01-11T21:55:59.0562257Z test_conv_backend_slow3d_dilated_has_bias_False_strided_False_contiguous_False_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... ok (0.166s) 2023-01-11T21:55:59.0562753Z test_conv_backend_slow3d_dilated_has_bias_False_strided_False_contiguous_True_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... ok (0.157s) 2023-01-11T21:55:59.0563206Z test_conv_backend_slow3d_dilated_has_bias_False_strided_True_contiguous_False_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... ok (0.129s) 2023-01-11T21:55:59.0563652Z test_conv_backend_slow3d_dilated_has_bias_False_strided_True_contiguous_True_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... ok (0.127s) 2023-01-11T21:55:59.0564099Z test_conv_backend_slow3d_dilated_has_bias_True_strided_False_contiguous_False_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... ok (0.178s) 2023-01-11T21:55:59.0564536Z test_conv_backend_slow3d_dilated_has_bias_True_strided_False_contiguous_True_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... ok (0.198s) 2023-01-11T21:55:59.0564984Z test_conv_backend_slow3d_dilated_has_bias_True_strided_True_contiguous_False_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... ok (0.145s) 2023-01-11T21:55:59.0565435Z test_conv_backend_slow3d_dilated_has_bias_True_strided_True_contiguous_True_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... ok (0.143s) 2023-01-11T21:55:59.0565876Z test_conv_contiguous_for_oneDNN_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... ok (0.009s) 2023-01-11T21:55:59.0566257Z test_conv_cudnn_mismatch_memory_format_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... skip: Only runs on cuda (0.002s) 2023-01-11T21:55:59.0566660Z test_conv_cudnn_ndhwc_cpu_float16 (__main__.TestConvolutionNNDeviceTypeCPU) ... skip: Only runs on cuda (0.003s) 2023-01-11T21:55:59.0567045Z test_conv_cudnn_ndhwc_cpu_float32 (__main__.TestConvolutionNNDeviceTypeCPU) ... skip: Only runs on cuda (0.003s) 2023-01-11T21:55:59.0567440Z test_conv_cudnn_nhwc_cpu_complex64 (__main__.TestConvolutionNNDeviceTypeCPU) ... skip: Only runs on cuda (0.003s) 2023-01-11T21:55:59.0567820Z test_conv_cudnn_nhwc_cpu_float16 (__main__.TestConvolutionNNDeviceTypeCPU) ... skip: Only runs on cuda (0.003s) 2023-01-11T21:55:59.0568329Z test_conv_cudnn_nhwc_cpu_float32 (__main__.TestConvolutionNNDeviceTypeCPU) ... skip: Only runs on cuda (0.003s) 2023-01-11T21:55:59.0569070Z test_conv_cudnn_nhwc_support_cpu_float32 (__main__.TestConvolutionNNDeviceTypeCPU) ... skip: Only runs on cuda (0.001s) 2023-01-11T21:55:59.0569494Z test_conv_cudnn_nhwc_support_cpu_float64 (__main__.TestConvolutionNNDeviceTypeCPU) ... skip: Only runs on cuda (0.001s) 2023-01-11T21:55:59.0569890Z test_conv_double_backward_cpu_float64 (__main__.TestConvolutionNNDeviceTypeCPU) ... skip: Only runs on cuda (0.001s) 2023-01-11T21:55:59.0570281Z test_conv_double_backward_groups_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... ok (0.070s) 2023-01-11T21:55:59.0570649Z test_conv_double_backward_no_bias_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... ok (0.045s) 2023-01-11T21:55:59.0571017Z test_conv_double_backward_stride_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... ok (0.253s) 2023-01-11T21:55:59.0571399Z test_conv_double_backward_strided_with_3D_input_and_weight_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... ok (0.004s) 2023-01-11T21:55:59.0572143Z test_conv_empty_channel_cpu_complex64 (__main__.TestConvolutionNNDeviceTypeCPU) ... /opt/conda/lib/python3.7/site-packages/torch/nn/init.py:405: UserWarning: Initializing zero-element tensors is a no-op 2023-01-11T21:55:59.0572632Z warnings.warn("Initializing zero-element tensors is a no-op") 2023-01-11T21:55:59.0572853Z ok (0.066s) 2023-01-11T21:55:59.0573111Z test_conv_empty_channel_cpu_float32 (__main__.TestConvolutionNNDeviceTypeCPU) ... ok (0.056s) 2023-01-11T21:55:59.0573486Z test_conv_ic1_channels_last_for_oneDNN_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... ok (0.003s) 2023-01-11T21:55:59.0573861Z test_conv_large_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... skip: Only runs on cuda (0.002s) 2023-01-11T21:55:59.0574231Z test_conv_large_nosplit_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... skip: Only runs on cuda (0.001s) 2023-01-11T21:55:59.0574660Z test_conv_noncontig_weights_and_bias_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... ok (0.332s) 2023-01-11T21:55:59.0575027Z test_conv_noncontig_weights_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... ok (0.017s) 2023-01-11T21:55:59.0575380Z test_conv_thnn_nhwc_cpu_float32 (__main__.TestConvolutionNNDeviceTypeCPU) ... ok (0.560s) 2023-01-11T21:55:59.0575785Z test_conv_thnn_nhwc_cpu_float64 (__main__.TestConvolutionNNDeviceTypeCPU) ... ok (0.569s) 2023-01-11T21:55:59.0576186Z test_conv_transpose_with_output_size_and_no_batch_dim_ConvTranspose2d_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... ok (0.003s) 2023-01-11T21:55:59.0576623Z test_conv_transpose_with_output_size_and_no_batch_dim_ConvTranspose3d_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... ok (0.163s) 2023-01-11T21:55:59.0577036Z test_conv_transposed_large_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... skip: Only runs on cuda (0.002s) 2023-01-11T21:55:59.0577435Z test_convert_conv2d_weight_memory_format_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... skip: Only runs on cuda (0.001s) 2023-01-11T21:55:59.0577888Z test_cudnn_convolution_add_relu_cpu_float16 (__main__.TestConvolutionNNDeviceTypeCPU) ... skip: Only runs on cuda (0.002s) 2023-01-11T21:55:59.0578301Z test_cudnn_convolution_add_relu_cpu_float32 (__main__.TestConvolutionNNDeviceTypeCPU) ... skip: Only runs on cuda (0.002s) 2023-01-11T21:55:59.0578707Z test_cudnn_convolution_relu_cpu_float16 (__main__.TestConvolutionNNDeviceTypeCPU) ... skip: Only runs on cuda (0.002s) 2023-01-11T21:55:59.0579097Z test_cudnn_convolution_relu_cpu_float32 (__main__.TestConvolutionNNDeviceTypeCPU) ... skip: Only runs on cuda (0.002s) 2023-01-11T21:55:59.0579481Z test_group_convTranspose_empty_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... ok (0.004s) 2023-01-11T21:55:59.0579834Z test_group_conv_empty_cpu (__main__.TestConvolutionNNDeviceTypeCPU) ... ok (0.004s) 2023-01-11T21:55:59.0580193Z test_noncontig_conv_grad_cpu_float16 (__main__.TestConvolutionNNDeviceTypeCPU) ... skip: Only runs on cuda (0.001s) 2023-01-11T21:55:59.0580595Z test_noncontig_conv_grad_cpu_float32 (__main__.TestConvolutionNNDeviceTypeCPU) ... skip: Only runs on cuda (0.001s) 2023-01-11T21:55:59.0580998Z test_noncontig_conv_grad_cpu_float64 (__main__.TestConvolutionNNDeviceTypeCPU) ... skip: Only runs on cuda (0.001s) 2023-01-11T21:55:59.0581211Z 2023-01-11T21:55:59.0581417Z ---------------------------------------------------------------------- 2023-01-11T21:55:59.0581646Z Ran 581 tests in 46.454s 2023-01-11T21:55:59.0581759Z 2023-01-11T21:55:59.0581831Z OK (skipped=337) 2023-01-11T21:55:59.0581937Z 2023-01-11T21:55:59.0582019Z Generating XML reports... 2023-01-11T21:55:59.0582440Z Generated XML report: test-reports/python-unittest/nn.test_convolution/TEST-TestConvolutionNN-20230111215511.xml 2023-01-11T21:55:59.0583005Z Generated XML report: test-reports/python-unittest/nn.test_convolution/TEST-TestConvolutionNNDeviceTypeCPU-20230111215511.xml 2023-01-11T21:55:59.0583278Z 2023-01-11T21:55:59.0583699Z ##[endgroup] 2023-01-11T21:55:59.0584095Z FINISHED PRINTING LOG FILE of nn/test_convolution (/var/lib/jenkins/workspace/test/test-reports/nn-test_convolution_1apoiion) 2023-01-11T21:55:59.0584319Z 2023-01-11T21:55:59.0584476Z Running test_jit_cuda_fuser ... [2023-01-11 21:55:59.021270] 2023-01-11T21:55:59.0584942Z Executing ['/opt/conda/bin/python', '-bb', 'test_jit_cuda_fuser.py', '-v', '--import-slow-tests', '--import-disabled-tests'] ... [2023-01-11 21:55:59.021667] 2023-01-11T21:56:05.5369192Z 2023-01-11T21:56:05.5370306Z Expand the folded group to see the log file of test_jit_cuda_fuser 2023-01-11T21:56:05.5371498Z ##[group]PRINTING LOG FILE of test_jit_cuda_fuser (/var/lib/jenkins/workspace/test/test-reports/test_jit_cuda_fuser_9ujdtfvh) 2023-01-11T21:56:05.5372304Z Test results will be stored in test-reports/python-unittest/test_jit_cuda_fuser 2023-01-11T21:56:05.5372702Z 2023-01-11T21:56:05.5372835Z Running tests... 2023-01-11T21:56:05.5373628Z ---------------------------------------------------------------------- 2023-01-11T21:56:05.5374100Z test__softmax_function (__main__.TestCudaFuser) ... skip: requires CUDA (0.001s) 2023-01-11T21:56:05.5374600Z test__softmax_function_half_to_float (__main__.TestCudaFuser) ... skip: requires CUDA (0.001s) 2023-01-11T21:56:05.5375174Z test_addcmul_ops (__main__.TestCudaFuser) ... skip: requires CUDA (0.002s) 2023-01-11T21:56:05.5375970Z test_alias_pass_fix (__main__.TestCudaFuser) ... skip: skipping this test since unsqueeze is disabled now (0.001s) 2023-01-11T21:56:05.5376516Z test_autocast_1 (__main__.TestCudaFuser) ... skip: requires CUDA (0.002s) 2023-01-11T21:56:05.5376997Z test_autocast_1_bfloat (__main__.TestCudaFuser) ... skip: requires CUDA (0.002s) 2023-01-11T21:56:05.5377483Z test_autocast_2 (__main__.TestCudaFuser) ... skip: requires CUDA (0.002s) 2023-01-11T21:56:05.5378036Z test_autocast_2_bfloat (__main__.TestCudaFuser) ... skip: requires CUDA (0.002s) 2023-01-11T21:56:05.5378564Z test_backward_type (__main__.TestCudaFuser) ... skip: requires CUDA (0.002s) 2023-01-11T21:56:05.5379132Z test_batch_norm_half (__main__.TestCudaFuser) ... skip: requires CUDA (0.001s) 2023-01-11T21:56:05.5379629Z test_batch_norm_impl_index_correctness (__main__.TestCudaFuser) ... skip: requires CUDA (0.001s) 2023-01-11T21:56:05.5379975Z test_batch_norm_impl_index_inner_bcast (__main__.TestCudaFuser) ... skip: requires CUDA (0.001s) 2023-01-11T21:56:05.5380392Z test_bfloat (__main__.TestCudaFuser) ... skip: device does not support BFloat16 (0.002s) 2023-01-11T21:56:05.5380735Z test_binary_bitwise (__main__.TestCudaFuser) ... skip: requires CUDA (0.002s) 2023-01-11T21:56:05.5381094Z test_binary_ops (__main__.TestCudaFuser) ... skip: requires CUDA (0.011s) 2023-01-11T21:56:05.5381556Z test_binary_ops_channels_last_with_bcast (__main__.TestCudaFuser) ... skip: requires CUDA (0.001s) 2023-01-11T21:56:05.5382272Z test_binary_ops_complex (__main__.TestCudaFuser) ... skip: see issue https://github.com/csarofeen/pytorch/issues/1730 (0.001s) 2023-01-11T21:56:05.5382643Z test_binary_ops_permutation (__main__.TestCudaFuser) ... skip: requires CUDA (0.001s) 2023-01-11T21:56:05.5382945Z test_branches (__main__.TestCudaFuser) ... skip: requires CUDA (0.001s) 2023-01-11T21:56:05.5383231Z test_broadcasting_0 (__main__.TestCudaFuser) ... skip: requires CUDA (0.001s) 2023-01-11T21:56:05.5383529Z test_broadcasting_1 (__main__.TestCudaFuser) ... skip: requires CUDA (0.001s) 2023-01-11T21:56:05.5383823Z test_broadcasting_2 (__main__.TestCudaFuser) ... skip: requires CUDA (0.001s) 2023-01-11T21:56:05.5384105Z test_broadcasting_3 (__main__.TestCudaFuser) ... skip: requires CUDA (0.001s) 2023-01-11T21:56:05.5384577Z test_broadcasting_multiple_output (__main__.TestCudaFuser) ... skip: broadcast on branches can't be resolved yet (0.001s) 2023-01-11T21:56:05.5384988Z test_broadcasting_multiple_output_shape (__main__.TestCudaFuser) ... skip: Broadcast with different output not supported yet (0.001s) 2023-01-11T21:56:05.5385370Z test_broadcasting_partition_logic_0 (__main__.TestCudaFuser) ... skip: requires CUDA (0.001s) 2023-01-11T21:56:05.5385694Z test_broadcasting_partition_logic_1 (__main__.TestCudaFuser) ... skip: requires CUDA (0.001s) 2023-01-11T21:56:05.5386044Z test_build_shape_expression_native_dropout (__main__.TestCudaFuser) ... skip: requires CUDA (0.001s) 2023-01-11T21:56:05.5386371Z test_category_rule (__main__.TestCudaFuser) ... skip: requires CUDA (0.003s) 2023-01-11T21:56:05.5386687Z test_channels_last_with_broadcast (__main__.TestCudaFuser) ... skip: requires CUDA (0.003s) 2023-01-11T21:56:05.5386978Z test_chunk (__main__.TestCudaFuser) ... skip: requires CUDA (0.001s) 2023-01-11T21:56:05.5387265Z test_clamp (__main__.TestCudaFuser) ... skip: requires CUDA (0.001s) 2023-01-11T21:56:05.5387565Z test_clamp_reversed_bound (__main__.TestCudaFuser) ... skip: requires CUDA (0.001s) 2023-01-11T21:56:05.5387867Z test_clean_profile_ivalue (__main__.TestCudaFuser) ... skip: requires CUDA (0.001s) 2023-01-11T21:56:05.5388221Z test_const (__main__.TestCudaFuser) ... skip: requires CUDA (0.001s) 2023-01-11T21:56:05.5388526Z test_contiguous_on_broadcasted (__main__.TestCudaFuser) ... skip: requires CUDA (0.001s) 2023-01-11T21:56:05.5388837Z test_conv2d_bias (__main__.TestCudaFuser) ... skip: requires CUDA (0.002s) 2023-01-11T21:56:05.5389130Z test_conv2d_symbolic_shapes (__main__.TestCudaFuser) ... skip: requires CUDA (0.001s) 2023-01-11T21:56:05.5389434Z test_cpu_scalar (__main__.TestCudaFuser) ... skip: requires CUDA (0.002s) 2023-01-11T21:56:05.5389735Z test_cuda_fusion_guard (__main__.TestCudaFuser) ... skip: requires CUDA (0.001s) 2023-01-11T21:56:05.5390045Z test_cuda_fusion_guard_backward (__main__.TestCudaFuser) ... skip: requires NVFuser (0.001s) 2023-01-11T21:56:05.5390367Z test_device_constant (__main__.TestCudaFuser) ... skip: requires CUDA (0.001s) 2023-01-11T21:56:05.5390711Z test_disable_const_chunk_propagation_for_normalization (__main__.TestCudaFuser) ... skip: requires CUDA (0.001s) 2023-01-11T21:56:05.5391060Z test_disable_sibling_fuse (__main__.TestCudaFuser) ... skip: requires CUDA (0.001s) 2023-01-11T21:56:05.5391399Z test_dropout_inference_fusion (__main__.TestCudaFuser) ... skip: requires CUDA (0.001s) 2023-01-11T21:56:05.5391734Z test_dropout_train_nograd_fusion (__main__.TestCudaFuser) ... skip: not enough memory (0.001s) 2023-01-11T21:56:05.5392065Z test_dropout_train_nograd_prob_check (__main__.TestCudaFuser) ... skip: requires CUDA (0.002s) 2023-01-11T21:56:05.5392392Z test_dropout_training_fusion (__main__.TestCudaFuser) ... skip: requires CUDA (0.002s) 2023-01-11T21:56:05.5392704Z test_dropout_training_prob_check (__main__.TestCudaFuser) ... skip: requires CUDA (0.002s) 2023-01-11T21:56:05.5393012Z test_dynamic_size (__main__.TestCudaFuser) ... skip: requires CUDA (0.002s) 2023-01-11T21:56:05.5393298Z test_expand (__main__.TestCudaFuser) ... skip: requires CUDA (0.001s) 2023-01-11T21:56:05.5393587Z test_fix_shape_expression_bn (__main__.TestCudaFuser) ... skip: requires CUDA (0.002s) 2023-01-11T21:56:05.5393928Z test_flatten (__main__.TestCudaFuser) ... skip: skipping this test since flatten is disabled now (0.002s) 2023-01-11T21:56:05.5394247Z test_gelu (__main__.TestCudaFuser) ... skip: requires CUDA (0.001s) 2023-01-11T21:56:05.5394538Z test_grad_sum_to_size (__main__.TestCudaFuser) ... skip: requires CUDA (0.003s) 2023-01-11T21:56:05.5394852Z test_graph_for_with_missing_optimized_engine (__main__.TestCudaFuser) ... skip: requires CUDA (0.001s) 2023-01-11T21:56:05.5395171Z test_graph_rng (__main__.TestCudaFuser) ... skip: requires CUDA (0.002s) 2023-01-11T21:56:05.5395456Z test_half (__main__.TestCudaFuser) ... skip: requires CUDA (0.002s) 2023-01-11T21:56:05.5395733Z test_high_rank_fusion (__main__.TestCudaFuser) ... skip: requires CUDA (0.001s) 2023-01-11T21:56:05.5396035Z test_inf_quick_patch (__main__.TestCudaFuser) ... skip: requires CUDA (0.002s) 2023-01-11T21:56:05.5396335Z test_inplace_removal (__main__.TestCudaFuser) ... skip: requires CUDA (0.001s) 2023-01-11T21:56:05.5396652Z test_input_output_passthrough (__main__.TestCudaFuser) ... skip: requires CUDA (0.001s) 2023-01-11T21:56:05.5396955Z test_int_tensor_input (__main__.TestCudaFuser) ... skip: requires CUDA (0.001s) 2023-01-11T21:56:05.5397250Z test_issue1445_fusion (__main__.TestCudaFuser) ... skip: requires CUDA (0.002s) 2023-01-11T21:56:05.5397538Z test_issue_1785 (__main__.TestCudaFuser) ... skip: requires CUDA (0.001s) 2023-01-11T21:56:05.5397820Z test_layer_norm_autodiff (__main__.TestCudaFuser) ... skip: requires CUDA (0.002s) 2023-01-11T21:56:05.5398128Z test_layer_norm_parser (__main__.TestCudaFuser) ... skip: requires CUDA (0.001s) 2023-01-11T21:56:05.5398446Z test_layer_norm_trivial_reduce_dim (__main__.TestCudaFuser) ... skip: requires CUDA (0.001s) 2023-01-11T21:56:05.5398749Z test_linear (__main__.TestCudaFuser) ... skip: requires CUDA (0.001s) 2023-01-11T21:56:05.5399036Z test_linear_symbolic_shapes (__main__.TestCudaFuser) ... skip: requires CUDA (0.001s) 2023-01-11T21:56:05.5399383Z test_multiple_device_pw (__main__.TestCudaFuser) ... skip: requires CUDA (0.001s) 2023-01-11T21:56:05.5399701Z test_native_batch_norm_backward (__main__.TestCudaFuser) ... skip: requires CUDA (0.002s) 2023-01-11T21:56:05.5400007Z test_native_layer_norm (__main__.TestCudaFuser) ... skip: requires CUDA (0.001s) 2023-01-11T21:56:05.5400315Z test_native_layer_norm_bfloat (__main__.TestCudaFuser) ... skip: requires CUDA (0.001s) 2023-01-11T21:56:05.5400829Z test_native_layer_norm_half (__main__.TestCudaFuser) ... skip: requires CUDA (0.001s) 2023-01-11T21:56:05.5401173Z test_nested_view (__main__.TestCudaFuser) ... skip: skipping this test since view is disabled now (0.000s) 2023-01-11T21:56:05.5401488Z test_no_tensor_input (__main__.TestCudaFuser) ... skip: requires CUDA (0.001s) 2023-01-11T21:56:05.5401776Z test_norm (__main__.TestCudaFuser) ... skip: requires CUDA (0.001s) 2023-01-11T21:56:05.5402061Z test_norm_bfloat (__main__.TestCudaFuser) ... skip: requires CUDA (0.001s) 2023-01-11T21:56:05.5402349Z test_norm_channels_last (__main__.TestCudaFuser) ... skip: requires CUDA (0.001s) 2023-01-11T21:56:05.5402709Z test_norm_half (__main__.TestCudaFuser) ... skip: requires CUDA (0.001s) 2023-01-11T21:56:05.5403059Z test_norm_half_layer (__main__.TestCudaFuser) ... skip: requires CUDA (0.001s) 2023-01-11T21:56:05.5403351Z test_norm_large (__main__.TestCudaFuser) ... skip: requires CUDA (0.001s) 2023-01-11T21:56:05.5403663Z test_normalization_partition (__main__.TestCudaFuser) ... skip: requires CUDA (0.002s) 2023-01-11T21:56:05.5403995Z test_nvfuser_comparison_callbacks_with_fallback (__main__.TestCudaFuser) ... skip: requires CUDA (0.001s) 2023-01-11T21:56:05.5404364Z test_nvfuser_comparison_callbacks_without_fallback (__main__.TestCudaFuser) ... skip: requires CUDA (0.001s) 2023-01-11T21:56:05.5404703Z test_overlapped_input (__main__.TestCudaFuser) ... skip: requires CUDA (0.001s) 2023-01-11T21:56:05.5405010Z test_permutation_preservation (__main__.TestCudaFuser) ... skip: requires CUDA (0.001s) 2023-01-11T21:56:05.5405356Z test_permutation_preservation_edge_case_0 (__main__.TestCudaFuser) ... skip: requires CUDA (0.001s) 2023-01-11T21:56:05.5405719Z test_permutation_preservation_edge_case_1_broken (__main__.TestCudaFuser) ... skip: requires CUDA (0.001s) 2023-01-11T21:56:05.5406076Z test_permutation_preservation_edge_case_2 (__main__.TestCudaFuser) ... skip: requires CUDA (0.001s) 2023-01-11T21:56:05.5406376Z test_permute (__main__.TestCudaFuser) ... skip: requires CUDA (0.001s) 2023-01-11T21:56:05.5406683Z test_pointwise_reference_tensor (__main__.TestCudaFuser) ... skip: requires CUDA (0.001s) 2023-01-11T21:56:05.5406993Z test_profile_ivalue (__main__.TestCudaFuser) ... skip: requires CUDA (0.001s) 2023-01-11T21:56:05.5407311Z test_profile_ivalue_multiple_profiles (__main__.TestCudaFuser) ... skip: requires CUDA (0.001s) 2023-01-11T21:56:05.5407648Z test_profiling_node (__main__.TestCudaFuser) ... skip: Skipped due to rand_like behavior change (0.001s) 2023-01-11T21:56:05.5407994Z test_pw_single_reduction_partition (__main__.TestCudaFuser) ... skip: requires CUDA (0.001s) 2023-01-11T21:56:05.5408306Z test_random_topo (__main__.TestCudaFuser) ... skip: requires CUDA (0.000s) 2023-01-11T21:56:05.5408585Z test_reduction (__main__.TestCudaFuser) ... skip: requires CUDA (0.001s) 2023-01-11T21:56:05.5408887Z test_reduction_dtypes_axis (__main__.TestCudaFuser) ... skip: requires CUDA (0.001s) 2023-01-11T21:56:05.5409198Z test_reduction_empty_axes (__main__.TestCudaFuser) ... skip: requires CUDA (0.001s) 2023-01-11T21:56:05.5409516Z test_reduction_multiple_output (__main__.TestCudaFuser) ... skip: requires CUDA (0.002s) 2023-01-11T21:56:05.5409824Z test_reduction_permutation (__main__.TestCudaFuser) ... skip: requires CUDA (0.001s) 2023-01-11T21:56:05.5410134Z test_reduction_sizes_op (__main__.TestCudaFuser) ... skip: requires CUDA (0.001s) 2023-01-11T21:56:05.5410455Z test_remove_output_used_only_in_dtype (__main__.TestCudaFuser) ... skip: requires CUDA (0.002s) 2023-01-11T21:56:05.5411215Z test_rsub (__main__.TestCudaFuser) ... skip: requires CUDA (0.001s) 2023-01-11T21:56:05.5411513Z test_scalar_cuda_tensor (__main__.TestCudaFuser) ... skip: requires CUDA (0.001s) 2023-01-11T21:56:05.5411820Z test_scalar_input (__main__.TestCudaFuser) ... skip: requires CUDA (0.001s) 2023-01-11T21:56:05.5412123Z test_scalar_tensor (__main__.TestCudaFuser) ... skip: requires CUDA (0.001s) 2023-01-11T21:56:05.5412419Z test_scalar_tensor_permuted (__main__.TestCudaFuser) ... skip: requires CUDA (0.001s) 2023-01-11T21:56:05.5412761Z test_scheduler_with_polymorphic_broadcast (__main__.TestCudaFuser) ... skip: requires CUDA (0.001s) 2023-01-11T21:56:05.5413146Z test_shape_expression (__main__.TestCudaFuser) ... skip: skipping this test since squeeze/unsqueeze is disabled now (0.002s) 2023-01-11T21:56:05.5413498Z test_sibling_fusion (__main__.TestCudaFuser) ... skip: requires CUDA (0.001s) 2023-01-11T21:56:05.5413804Z test_sibling_fusion_no_scalar_inputs (__main__.TestCudaFuser) ... skip: requires CUDA (0.001s) 2023-01-11T21:56:05.5414133Z test_single_reduction_broadcast (__main__.TestCudaFuser) ... skip: requires CUDA (0.003s) 2023-01-11T21:56:05.5414487Z test_singleton_fusion (__main__.TestCudaFuser) ... skip: requires CUDA (0.001s) 2023-01-11T21:56:05.5414771Z test_skip_parser (__main__.TestCudaFuser) ... skip: requires CUDA (0.001s) 2023-01-11T21:56:05.5415061Z test_softmax (__main__.TestCudaFuser) ... skip: requires CUDA (0.001s) 2023-01-11T21:56:05.5415354Z test_softmax_bfloat (__main__.TestCudaFuser) ... skip: requires CUDA (0.001s) 2023-01-11T21:56:05.5415728Z test_softmax_dtype (__main__.TestCudaFuser) ... skip: requires CUDA (0.002s) 2023-01-11T21:56:05.5416016Z test_softmax_half (__main__.TestCudaFuser) ... skip: requires CUDA (0.001s) 2023-01-11T21:56:05.5416313Z test_softplus_fuser (__main__.TestCudaFuser) ... skip: requires CUDA (0.001s) 2023-01-11T21:56:05.5416660Z test_squeeze (__main__.TestCudaFuser) ... skip: skipping this test since squeeze/unsqueeze is disabled now (0.001s) 2023-01-11T21:56:05.5417049Z test_squeeze_negative_dim (__main__.TestCudaFuser) ... skip: skipping this test since squeeze/unsqueeze is disabled now (0.001s) 2023-01-11T21:56:05.5417448Z test_squeeze_zero (__main__.TestCudaFuser) ... skip: skipping this test since squeeze/unsqueeze is disabled now (0.001s) 2023-01-11T21:56:05.5417789Z test_strict_fusion (__main__.TestCudaFuser) ... skip: requires CUDA (0.001s) 2023-01-11T21:56:05.5418079Z test_sum_to_one (__main__.TestCudaFuser) ... skip: requires CUDA (0.001s) 2023-01-11T21:56:05.5418357Z test_sum_to_size (__main__.TestCudaFuser) ... skip: requires CUDA (0.002s) 2023-01-11T21:56:05.5418650Z test_ternary_ops (__main__.TestCudaFuser) ... skip: requires CUDA (0.003s) 2023-01-11T21:56:05.5418974Z test_ternary_ops_integer_compatibility (__main__.TestCudaFuser) ... skip: requires CUDA (0.000s) 2023-01-11T21:56:05.5419300Z test_ternary_ops_type_promotion (__main__.TestCudaFuser) ... skip: requires CUDA (0.001s) 2023-01-11T21:56:05.5419611Z test_to_boolean (__main__.TestCudaFuser) ... skip: requires CUDA (0.001s) 2023-01-11T21:56:05.5419901Z test_to_copy (__main__.TestCudaFuser) ... skip: requires CUDA (0.001s) 2023-01-11T21:56:05.5420199Z test_to_dtype_bf16_to_bf16 (__main__.TestCudaFuser) ... skip: requires CUDA (0.001s) 2023-01-11T21:56:05.5420490Z test_to_dtype_bf16_to_fp32 (__main__.TestCudaFuser) ... skip: requires CUDA (0.001s) 2023-01-11T21:56:05.5420797Z test_to_dtype_fp16_to_fp16 (__main__.TestCudaFuser) ... skip: requires CUDA (0.001s) 2023-01-11T21:56:05.5421105Z test_to_dtype_fp16_to_fp32 (__main__.TestCudaFuser) ... skip: requires CUDA (0.001s) 2023-01-11T21:56:05.5421395Z test_to_dtype_fp32_to_bf16 (__main__.TestCudaFuser) ... skip: requires CUDA (0.001s) 2023-01-11T21:56:05.5421696Z test_to_dtype_fp32_to_fp16 (__main__.TestCudaFuser) ... skip: requires CUDA (0.001s) 2023-01-11T21:56:05.5421996Z test_transpose (__main__.TestCudaFuser) ... skip: requires CUDA (0.001s) 2023-01-11T21:56:05.5422341Z test_transpose_default (__main__.TestCudaFuser) ... skip: requires CUDA (0.001s) 2023-01-11T21:56:05.5422646Z test_trivial_reduction (__main__.TestCudaFuser) ... skip: requires CUDA (0.001s) 2023-01-11T21:56:05.5422948Z test_type_as_op (__main__.TestCudaFuser) ... skip: requires CUDA (0.001s) 2023-01-11T21:56:05.5423246Z test_type_inference (__main__.TestCudaFuser) ... skip: requires CUDA (0.001s) 2023-01-11T21:56:05.5423535Z test_unary_bitwise (__main__.TestCudaFuser) ... skip: requires CUDA (0.002s) 2023-01-11T21:56:05.5423830Z test_unary_ops (__main__.TestCudaFuser) ... skip: requires CUDA (0.002s) 2023-01-11T21:56:05.5424170Z test_unsqueeze (__main__.TestCudaFuser) ... skip: skipping this test since squeeze/unsqueeze is disabled now (0.001s) 2023-01-11T21:56:05.5424505Z test_variance (__main__.TestCudaFuser) ... skip: requires CUDA (0.001s) 2023-01-11T21:56:05.5424798Z test_variance_profiling (__main__.TestCudaFuser) ... skip: requires CUDA (0.001s) 2023-01-11T21:56:05.5425131Z test_view (__main__.TestCudaFuser) ... skip: skipping this test since view is disabled now (0.001s) 2023-01-11T21:56:05.5425490Z test_view_before_permute (__main__.TestCudaFuser) ... skip: requires CUDA (0.003s) 2023-01-11T21:56:05.5425850Z test_view_copy_graph_guard (__main__.TestCudaFuser) ... skip: skipping this test since reshape is disabled now (0.001s) 2023-01-11T21:56:05.5426236Z test_view_copy_graph_guard_double_fusion (__main__.TestCudaFuser) ... skip: skipping this test since view is disabled now (0.001s) 2023-01-11T21:56:05.5426601Z test_can_be_enabled_nvfuser (__main__.TestEnableDisableCudaFuser) ... ok (0.002s) 2023-01-11T21:56:05.5426949Z test_context_manager_test (__main__.TestEnableDisableCudaFuser) ... skip: requires CUDA (0.002s) 2023-01-11T21:56:05.5427292Z test_register_fuser (__main__.TestEnableDisableCudaFuser) ... skip: requires CUDA (0.001s) 2023-01-11T21:56:05.5427624Z test_register_fuser_cpu (__main__.TestEnableDisableCudaFuser) ... ok (0.007s) 2023-01-11T21:56:05.5427947Z test_autodiff_fallback (jit.test_fuser_common.TestFuserCommon) ... ok (0.415s) 2023-01-11T21:56:05.5428125Z 2023-01-11T21:56:05.5428360Z ---------------------------------------------------------------------- 2023-01-11T21:56:05.5428592Z Ran 158 tests in 0.634s 2023-01-11T21:56:05.5428706Z 2023-01-11T21:56:05.5428780Z OK (skipped=155) 2023-01-11T21:56:05.5428889Z 2023-01-11T21:56:05.5428973Z Generating XML reports... 2023-01-11T21:56:05.5429420Z Generated XML report: test-reports/python-unittest/test_jit_cuda_fuser/TEST-TestEnableDisableCudaFuser-20230111215604.xml 2023-01-11T21:56:05.5430001Z Generated XML report: test-reports/python-unittest/test_jit_cuda_fuser/TEST-jit.test_fuser_common.TestFuserCommon-20230111215604.xml 2023-01-11T21:56:05.5430530Z Generated XML report: test-reports/python-unittest/test_jit_cuda_fuser/TEST-TestCudaFuser-20230111215604.xml 2023-01-11T21:56:05.5430751Z 2023-01-11T21:56:05.5431048Z ##[endgroup] 2023-01-11T21:56:05.5431424Z FINISHED PRINTING LOG FILE of test_jit_cuda_fuser (/var/lib/jenkins/workspace/test/test-reports/test_jit_cuda_fuser_9ujdtfvh) 2023-01-11T21:56:05.5431644Z 2023-01-11T21:56:05.5431812Z Running test_show_pickle ... [2023-01-11 21:56:05.537512] 2023-01-11T21:56:05.5432279Z Executing ['/opt/conda/bin/python', '-bb', 'test_show_pickle.py', '-v', '--import-slow-tests', '--import-disabled-tests'] ... [2023-01-11 21:56:05.537978] 2023-01-11T21:56:10.0970784Z 2023-01-11T21:56:10.0971492Z Expand the folded group to see the log file of test_show_pickle 2023-01-11T21:56:10.0972337Z ##[group]PRINTING LOG FILE of test_show_pickle (/var/lib/jenkins/workspace/test/test-reports/test_show_pickle_oxwx_t4d) 2023-01-11T21:56:10.0972884Z Test results will be stored in test-reports/python-unittest/test_show_pickle 2023-01-11T21:56:10.0973068Z 2023-01-11T21:56:10.0973140Z Running tests... 2023-01-11T21:56:10.0973447Z ---------------------------------------------------------------------- 2023-01-11T21:56:10.0973942Z test_scripted_model (__main__.TestShowPickle) ... ok (0.354s) 2023-01-11T21:56:10.0974098Z 2023-01-11T21:56:10.0974295Z ---------------------------------------------------------------------- 2023-01-11T21:56:10.0974538Z Ran 1 test in 0.355s 2023-01-11T21:56:10.0974652Z 2023-01-11T21:56:10.0974721Z OK 2023-01-11T21:56:10.0974840Z 2023-01-11T21:56:10.0974961Z Generating XML reports... 2023-01-11T21:56:10.0975475Z Generated XML report: test-reports/python-unittest/test_show_pickle/TEST-TestShowPickle-20230111215609.xml 2023-01-11T21:56:10.0975796Z 2023-01-11T21:56:10.0976207Z ##[endgroup] 2023-01-11T21:56:10.0976786Z FINISHED PRINTING LOG FILE of test_show_pickle (/var/lib/jenkins/workspace/test/test-reports/test_show_pickle_oxwx_t4d) 2023-01-11T21:56:10.0977002Z 2023-01-11T21:56:10.0977198Z Running test_cpp_extensions_aot_ninja ... [2023-01-11 21:56:10.097393] 2023-01-11T21:56:14.0663805Z No CUDA runtime is found, using CUDA_HOME='/usr/local/cuda' 2023-01-11T21:56:14.2767567Z running install 2023-01-11T21:56:14.2768558Z /opt/conda/lib/python3.7/site-packages/setuptools/command/install.py:37: SetuptoolsDeprecationWarning: setup.py install is deprecated. Use build and pip and other standards-based tools. 2023-01-11T21:56:14.2769210Z setuptools.SetuptoolsDeprecationWarning, 2023-01-11T21:56:14.2887633Z running build 2023-01-11T21:56:14.2887880Z running build_py 2023-01-11T21:56:14.2951178Z creating build 2023-01-11T21:56:14.2951731Z creating build/lib.linux-x86_64-cpython-37 2023-01-11T21:56:14.2952264Z creating build/lib.linux-x86_64-cpython-37/torch_test_cpp_extension 2023-01-11T21:56:14.2952974Z copying torch_test_cpp_extension/__init__.py -> build/lib.linux-x86_64-cpython-37/torch_test_cpp_extension 2023-01-11T21:56:14.2954895Z running build_ext 2023-01-11T21:56:14.3765465Z building 'torch_test_cpp_extension.cpp' extension 2023-01-11T21:56:14.3766114Z creating /var/lib/jenkins/workspace/test/cpp_extensions/build/temp.linux-x86_64-cpython-37 2023-01-11T21:56:14.4524166Z Emitting ninja build file /var/lib/jenkins/workspace/test/cpp_extensions/build/temp.linux-x86_64-cpython-37/build.ninja... 2023-01-11T21:56:14.4525339Z Compiling objects... 2023-01-11T21:56:14.4525663Z Using envvar MAX_JOBS (6) as the number of workers... 2023-01-11T21:56:57.9943364Z [1/1] c++ -MMD -MF /var/lib/jenkins/workspace/test/cpp_extensions/build/temp.linux-x86_64-cpython-37/extension.o.d -pthread -B /opt/conda/compiler_compat -Wl,--sysroot=/ -Wsign-compare -DNDEBUG -g -fwrapv -O3 -Wall -Wstrict-prototypes -fPIC -I/opt/conda/lib/python3.7/site-packages/torch/include -I/opt/conda/lib/python3.7/site-packages/torch/include/torch/csrc/api/include -I/opt/conda/lib/python3.7/site-packages/torch/include/TH -I/opt/conda/lib/python3.7/site-packages/torch/include/THC -I/var/lib/jenkins/workspace/test/cpp_extensions/self_compiler_include_dirs_test -I/opt/conda/include/python3.7m -c -c /var/lib/jenkins/workspace/test/cpp_extensions/extension.cpp -o /var/lib/jenkins/workspace/test/cpp_extensions/build/temp.linux-x86_64-cpython-37/extension.o -g -DTORCH_API_INCLUDE_EXTENSION_H '-DPYBIND11_COMPILER_TYPE="_clang"' '-DPYBIND11_STDLIB="_libstdcpp"' '-DPYBIND11_BUILD_ABI="_cxxabi1002"' -DTORCH_EXTENSION_NAME=cpp -D_GLIBCXX_USE_CXX11_ABI=1 -std=c++17 2023-01-11T21:56:57.9970153Z cc1plus: warning: command line option ‘-Wstrict-prototypes’ is valid for C/ObjC but not for C++ 2023-01-11T21:56:57.9970762Z In file included from /opt/conda/lib/python3.7/site-packages/torch/include/torch/csrc/Exceptions.h:14, 2023-01-11T21:56:57.9971408Z from /opt/conda/lib/python3.7/site-packages/torch/include/torch/csrc/api/include/torch/python.h:11, 2023-01-11T21:56:57.9972119Z from /opt/conda/lib/python3.7/site-packages/torch/include/torch/extension.h:6, 2023-01-11T21:56:57.9972473Z from /var/lib/jenkins/workspace/test/cpp_extensions/extension.cpp:1: 2023-01-11T21:56:57.9973409Z /opt/conda/lib/python3.7/site-packages/torch/include/pybind11/pybind11.h: In instantiation of ‘class pybind11::class_’: 2023-01-11T21:56:57.9974070Z /var/lib/jenkins/workspace/test/cpp_extensions/extension.cpp:40:53: required from here 2023-01-11T21:56:57.9974774Z /opt/conda/lib/python3.7/site-packages/torch/include/pybind11/pybind11.h:1479:7: warning: ‘pybind11::class_’ declared with greater visibility than its base ‘pybind11::detail::generic_type’ [-Wattributes] 2023-01-11T21:56:57.9975185Z 1479 | class class_ : public detail::generic_type { 2023-01-11T21:56:57.9975387Z | ^~~~~~ 2023-01-11T21:56:58.0084569Z g++ -pthread -B /opt/conda/compiler_compat -Wl,--sysroot=/ -pthread -shared -B /opt/conda/compiler_compat -L/opt/conda/lib -Wl,-rpath=/opt/conda/lib -Wl,--no-as-needed -Wl,--sysroot=/ /var/lib/jenkins/workspace/test/cpp_extensions/build/temp.linux-x86_64-cpython-37/extension.o -L/opt/conda/lib/python3.7/site-packages/torch/lib -lc10 -ltorch -ltorch_cpu -ltorch_python -o build/lib.linux-x86_64-cpython-37/torch_test_cpp_extension/cpp.cpython-37m-x86_64-linux-gnu.so 2023-01-11T21:56:58.9389948Z building 'torch_test_cpp_extension.ort' extension 2023-01-11T21:56:59.0122222Z Emitting ninja build file /var/lib/jenkins/workspace/test/cpp_extensions/build/temp.linux-x86_64-cpython-37/build.ninja... 2023-01-11T21:56:59.0123387Z Compiling objects... 2023-01-11T21:56:59.0123655Z Using envvar MAX_JOBS (6) as the number of workers... 2023-01-11T21:57:38.9229333Z [1/1] c++ -MMD -MF /var/lib/jenkins/workspace/test/cpp_extensions/build/temp.linux-x86_64-cpython-37/ort_extension.o.d -pthread -B /opt/conda/compiler_compat -Wl,--sysroot=/ -Wsign-compare -DNDEBUG -g -fwrapv -O3 -Wall -Wstrict-prototypes -fPIC -I/opt/conda/lib/python3.7/site-packages/torch/include -I/opt/conda/lib/python3.7/site-packages/torch/include/torch/csrc/api/include -I/opt/conda/lib/python3.7/site-packages/torch/include/TH -I/opt/conda/lib/python3.7/site-packages/torch/include/THC -I/var/lib/jenkins/workspace/test/cpp_extensions/self_compiler_include_dirs_test -I/opt/conda/include/python3.7m -c -c /var/lib/jenkins/workspace/test/cpp_extensions/ort_extension.cpp -o /var/lib/jenkins/workspace/test/cpp_extensions/build/temp.linux-x86_64-cpython-37/ort_extension.o -g -DTORCH_API_INCLUDE_EXTENSION_H '-DPYBIND11_COMPILER_TYPE="_clang"' '-DPYBIND11_STDLIB="_libstdcpp"' '-DPYBIND11_BUILD_ABI="_cxxabi1002"' -DTORCH_EXTENSION_NAME=ort -D_GLIBCXX_USE_CXX11_ABI=1 -std=c++17 2023-01-11T21:57:38.9230834Z cc1plus: warning: command line option ‘-Wstrict-prototypes’ is valid for C/ObjC but not for C++ 2023-01-11T21:57:38.9309900Z g++ -pthread -B /opt/conda/compiler_compat -Wl,--sysroot=/ -pthread -shared -B /opt/conda/compiler_compat -L/opt/conda/lib -Wl,-rpath=/opt/conda/lib -Wl,--no-as-needed -Wl,--sysroot=/ /var/lib/jenkins/workspace/test/cpp_extensions/build/temp.linux-x86_64-cpython-37/ort_extension.o -L/opt/conda/lib/python3.7/site-packages/torch/lib -lc10 -ltorch -ltorch_cpu -ltorch_python -o build/lib.linux-x86_64-cpython-37/torch_test_cpp_extension/ort.cpython-37m-x86_64-linux-gnu.so 2023-01-11T21:57:39.7970990Z building 'torch_test_cpp_extension.rng' extension 2023-01-11T21:57:39.8732461Z Emitting ninja build file /var/lib/jenkins/workspace/test/cpp_extensions/build/temp.linux-x86_64-cpython-37/build.ninja... 2023-01-11T21:57:39.8733478Z Compiling objects... 2023-01-11T21:57:39.8733867Z Using envvar MAX_JOBS (6) as the number of workers... 2023-01-11T21:58:22.9184004Z [1/1] c++ -MMD -MF /var/lib/jenkins/workspace/test/cpp_extensions/build/temp.linux-x86_64-cpython-37/rng_extension.o.d -pthread -B /opt/conda/compiler_compat -Wl,--sysroot=/ -Wsign-compare -DNDEBUG -g -fwrapv -O3 -Wall -Wstrict-prototypes -fPIC -I/opt/conda/lib/python3.7/site-packages/torch/include -I/opt/conda/lib/python3.7/site-packages/torch/include/torch/csrc/api/include -I/opt/conda/lib/python3.7/site-packages/torch/include/TH -I/opt/conda/lib/python3.7/site-packages/torch/include/THC -I/var/lib/jenkins/workspace/test/cpp_extensions/self_compiler_include_dirs_test -I/opt/conda/include/python3.7m -c -c /var/lib/jenkins/workspace/test/cpp_extensions/rng_extension.cpp -o /var/lib/jenkins/workspace/test/cpp_extensions/build/temp.linux-x86_64-cpython-37/rng_extension.o -g -DTORCH_API_INCLUDE_EXTENSION_H '-DPYBIND11_COMPILER_TYPE="_clang"' '-DPYBIND11_STDLIB="_libstdcpp"' '-DPYBIND11_BUILD_ABI="_cxxabi1002"' -DTORCH_EXTENSION_NAME=rng -D_GLIBCXX_USE_CXX11_ABI=1 -std=c++17 2023-01-11T21:58:22.9186404Z cc1plus: warning: command line option ‘-Wstrict-prototypes’ is valid for C/ObjC but not for C++ 2023-01-11T21:58:22.9187184Z In file included from /opt/conda/lib/python3.7/site-packages/torch/include/ATen/cpu/vec/vec256/vec256.h:8, 2023-01-11T21:58:22.9188005Z from /opt/conda/lib/python3.7/site-packages/torch/include/ATen/cpu/vec/vec.h:6, 2023-01-11T21:58:22.9188527Z from /opt/conda/lib/python3.7/site-packages/torch/include/ATen/native/cpu/Loops.h:37, 2023-01-11T21:58:22.9188987Z from /opt/conda/lib/python3.7/site-packages/torch/include/ATen/native/cpu/DistributionTemplates.h:8, 2023-01-11T21:58:22.9189350Z from /var/lib/jenkins/workspace/test/cpp_extensions/rng_extension.cpp:6: 2023-01-11T21:58:22.9189840Z /opt/conda/lib/python3.7/site-packages/torch/include/ATen/cpu/vec/vec_base.h:1008: warning: ignoring #pragma unroll [-Wunknown-pragmas] 2023-01-11T21:58:22.9190262Z 1008 | # pragma unroll 2023-01-11T21:58:22.9190437Z | 2023-01-11T21:58:22.9267263Z g++ -pthread -B /opt/conda/compiler_compat -Wl,--sysroot=/ -pthread -shared -B /opt/conda/compiler_compat -L/opt/conda/lib -Wl,-rpath=/opt/conda/lib -Wl,--no-as-needed -Wl,--sysroot=/ /var/lib/jenkins/workspace/test/cpp_extensions/build/temp.linux-x86_64-cpython-37/rng_extension.o -L/opt/conda/lib/python3.7/site-packages/torch/lib -lc10 -ltorch -ltorch_cpu -ltorch_python -o build/lib.linux-x86_64-cpython-37/torch_test_cpp_extension/rng.cpython-37m-x86_64-linux-gnu.so 2023-01-11T21:58:23.8101972Z running install_lib 2023-01-11T21:58:23.8173065Z creating install 2023-01-11T21:58:23.8173682Z creating install/opt 2023-01-11T21:58:23.8174013Z creating install/opt/conda 2023-01-11T21:58:23.8174388Z creating install/opt/conda/lib 2023-01-11T21:58:23.8174767Z creating install/opt/conda/lib/python3.7 2023-01-11T21:58:23.8175373Z creating install/opt/conda/lib/python3.7/site-packages 2023-01-11T21:58:23.8176063Z creating install/opt/conda/lib/python3.7/site-packages/torch_test_cpp_extension 2023-01-11T21:58:23.8177015Z copying build/lib.linux-x86_64-cpython-37/torch_test_cpp_extension/__init__.py -> ./install/opt/conda/lib/python3.7/site-packages/torch_test_cpp_extension 2023-01-11T21:58:23.8178388Z copying build/lib.linux-x86_64-cpython-37/torch_test_cpp_extension/cpp.cpython-37m-x86_64-linux-gnu.so -> ./install/opt/conda/lib/python3.7/site-packages/torch_test_cpp_extension 2023-01-11T21:58:23.8360314Z copying build/lib.linux-x86_64-cpython-37/torch_test_cpp_extension/ort.cpython-37m-x86_64-linux-gnu.so -> ./install/opt/conda/lib/python3.7/site-packages/torch_test_cpp_extension 2023-01-11T21:58:23.9022418Z copying build/lib.linux-x86_64-cpython-37/torch_test_cpp_extension/rng.cpython-37m-x86_64-linux-gnu.so -> ./install/opt/conda/lib/python3.7/site-packages/torch_test_cpp_extension 2023-01-11T21:58:23.9217452Z byte-compiling ./install/opt/conda/lib/python3.7/site-packages/torch_test_cpp_extension/__init__.py to __init__.cpython-37.pyc 2023-01-11T21:58:23.9218426Z running install_egg_info 2023-01-11T21:58:23.9378502Z running egg_info 2023-01-11T21:58:23.9379160Z creating torch_test_cpp_extension.egg-info 2023-01-11T21:58:23.9424418Z writing torch_test_cpp_extension.egg-info/PKG-INFO 2023-01-11T21:58:23.9427091Z writing dependency_links to torch_test_cpp_extension.egg-info/dependency_links.txt 2023-01-11T21:58:23.9429666Z writing top-level names to torch_test_cpp_extension.egg-info/top_level.txt 2023-01-11T21:58:23.9430862Z writing manifest file 'torch_test_cpp_extension.egg-info/SOURCES.txt' 2023-01-11T21:58:23.9478449Z reading manifest file 'torch_test_cpp_extension.egg-info/SOURCES.txt' 2023-01-11T21:58:23.9485333Z writing manifest file 'torch_test_cpp_extension.egg-info/SOURCES.txt' 2023-01-11T21:58:23.9486760Z Copying torch_test_cpp_extension.egg-info to ./install/opt/conda/lib/python3.7/site-packages/torch_test_cpp_extension-0.0.0-py3.7.egg-info 2023-01-11T21:58:23.9491564Z running install_scripts 2023-01-11T21:58:28.5717124Z No CUDA runtime is found, using CUDA_HOME='/usr/local/cuda' 2023-01-11T21:58:28.5999870Z running install 2023-01-11T21:58:28.6001950Z /opt/conda/lib/python3.7/site-packages/setuptools/command/install.py:37: SetuptoolsDeprecationWarning: setup.py install is deprecated. Use build and pip and other standards-based tools. 2023-01-11T21:58:28.6002651Z setuptools.SetuptoolsDeprecationWarning, 2023-01-11T21:58:28.6119775Z running build 2023-01-11T21:58:28.6120119Z running build_ext 2023-01-11T21:58:28.6878254Z building 'no_python_abi_suffix_test' extension 2023-01-11T21:58:28.6878834Z creating /var/lib/jenkins/workspace/test/cpp_extensions/no_python_abi_suffix_test/build 2023-01-11T21:58:28.6879649Z creating /var/lib/jenkins/workspace/test/cpp_extensions/no_python_abi_suffix_test/build/temp.linux-x86_64-cpython-37 2023-01-11T21:58:28.7617110Z Emitting ninja build file /var/lib/jenkins/workspace/test/cpp_extensions/no_python_abi_suffix_test/build/temp.linux-x86_64-cpython-37/build.ninja... 2023-01-11T21:58:28.7618411Z Compiling objects... 2023-01-11T21:58:28.7618694Z Using envvar MAX_JOBS (6) as the number of workers... 2023-01-11T21:58:28.8950103Z [1/1] c++ -MMD -MF /var/lib/jenkins/workspace/test/cpp_extensions/no_python_abi_suffix_test/build/temp.linux-x86_64-cpython-37/no_python_abi_suffix_test.o.d -pthread -B /opt/conda/compiler_compat -Wl,--sysroot=/ -Wsign-compare -DNDEBUG -g -fwrapv -O3 -Wall -Wstrict-prototypes -fPIC -I/opt/conda/lib/python3.7/site-packages/torch/include -I/opt/conda/lib/python3.7/site-packages/torch/include/torch/csrc/api/include -I/opt/conda/lib/python3.7/site-packages/torch/include/TH -I/opt/conda/lib/python3.7/site-packages/torch/include/THC -I/opt/conda/include/python3.7m -c -c /var/lib/jenkins/workspace/test/cpp_extensions/no_python_abi_suffix_test/no_python_abi_suffix_test.cpp -o /var/lib/jenkins/workspace/test/cpp_extensions/no_python_abi_suffix_test/build/temp.linux-x86_64-cpython-37/no_python_abi_suffix_test.o -DTORCH_API_INCLUDE_EXTENSION_H '-DPYBIND11_COMPILER_TYPE="_clang"' '-DPYBIND11_STDLIB="_libstdcpp"' '-DPYBIND11_BUILD_ABI="_cxxabi1002"' -DTORCH_EXTENSION_NAME=no_python_abi_suffix_test -D_GLIBCXX_USE_CXX11_ABI=1 -std=c++17 2023-01-11T21:58:28.8951765Z cc1plus: warning: command line option ‘-Wstrict-prototypes’ is valid for C/ObjC but not for C++ 2023-01-11T21:58:28.9023974Z creating build/lib.linux-x86_64-cpython-37 2023-01-11T21:58:28.9026496Z g++ -pthread -B /opt/conda/compiler_compat -Wl,--sysroot=/ -pthread -shared -B /opt/conda/compiler_compat -L/opt/conda/lib -Wl,-rpath=/opt/conda/lib -Wl,--no-as-needed -Wl,--sysroot=/ /var/lib/jenkins/workspace/test/cpp_extensions/no_python_abi_suffix_test/build/temp.linux-x86_64-cpython-37/no_python_abi_suffix_test.o -L/opt/conda/lib/python3.7/site-packages/torch/lib -lc10 -ltorch -ltorch_cpu -ltorch_python -o build/lib.linux-x86_64-cpython-37/no_python_abi_suffix_test.so 2023-01-11T21:58:29.5889619Z running install_lib 2023-01-11T21:58:29.5948145Z creating install 2023-01-11T21:58:29.5948453Z creating install/opt 2023-01-11T21:58:29.5948710Z creating install/opt/conda 2023-01-11T21:58:29.5948956Z creating install/opt/conda/lib 2023-01-11T21:58:29.5949185Z creating install/opt/conda/lib/python3.7 2023-01-11T21:58:29.5949642Z creating install/opt/conda/lib/python3.7/site-packages 2023-01-11T21:58:29.5950784Z copying build/lib.linux-x86_64-cpython-37/no_python_abi_suffix_test.so -> ./install/opt/conda/lib/python3.7/site-packages 2023-01-11T21:58:29.5957725Z running install_egg_info 2023-01-11T21:58:29.6090280Z running egg_info 2023-01-11T21:58:29.6090797Z creating no_python_abi_suffix_test.egg-info 2023-01-11T21:58:29.6136750Z writing no_python_abi_suffix_test.egg-info/PKG-INFO 2023-01-11T21:58:29.6139074Z writing dependency_links to no_python_abi_suffix_test.egg-info/dependency_links.txt 2023-01-11T21:58:29.6141830Z writing top-level names to no_python_abi_suffix_test.egg-info/top_level.txt 2023-01-11T21:58:29.6143366Z writing manifest file 'no_python_abi_suffix_test.egg-info/SOURCES.txt' 2023-01-11T21:58:29.6189850Z reading manifest file 'no_python_abi_suffix_test.egg-info/SOURCES.txt' 2023-01-11T21:58:29.6196637Z writing manifest file 'no_python_abi_suffix_test.egg-info/SOURCES.txt' 2023-01-11T21:58:29.6198184Z Copying no_python_abi_suffix_test.egg-info to ./install/opt/conda/lib/python3.7/site-packages/no_python_abi_suffix_test-0.0.0-py3.7.egg-info 2023-01-11T21:58:29.6203602Z running install_scripts 2023-01-11T21:58:30.2986207Z Executing ['/opt/conda/bin/python', '-bb', 'test_cpp_extensions_aot_ninja.py', '-v', '--import-slow-tests', '--import-disabled-tests'] ... [2023-01-11 21:58:30.298215] 2023-01-11T21:58:35.4903437Z 2023-01-11T21:58:35.4904003Z Expand the folded group to see the log file of test_cpp_extensions_aot_ninja 2023-01-11T21:58:35.4905133Z ##[group]PRINTING LOG FILE of test_cpp_extensions_aot_ninja (/var/lib/jenkins/workspace/test/test-reports/test_cpp_extensions_aot_ninja_4scmlu38) 2023-01-11T21:58:35.4905749Z Test results will be stored in test-reports/python-unittest/test_cpp_extensions_aot_ninja 2023-01-11T21:58:35.4906333Z No CUDA runtime is found, using CUDA_HOME='/usr/local/cuda' 2023-01-11T21:58:35.4906476Z 2023-01-11T21:58:35.4906552Z Running tests... 2023-01-11T21:58:35.4906859Z ---------------------------------------------------------------------- 2023-01-11T21:58:35.4907265Z test_backward (__main__.TestCppExtensionAOT) ... ok (0.023s) 2023-01-11T21:58:35.4907694Z test_cublas_extension (__main__.TestCppExtensionAOT) ... skip: CUDA not found (0.001s) 2023-01-11T21:58:35.4908268Z test_cuda_dlink_libs (__main__.TestCppExtensionAOT) ... skip: CUDA not found (0.001s) 2023-01-11T21:58:35.4908802Z test_cuda_extension (__main__.TestCppExtensionAOT) ... skip: CUDA not found (0.001s) 2023-01-11T21:58:35.4909337Z test_cusolver_extension (__main__.TestCppExtensionAOT) ... skip: CUDA not found (0.001s) 2023-01-11T21:58:35.4909901Z test_extension_function (__main__.TestCppExtensionAOT) ... ok (0.002s) 2023-01-11T21:58:35.4910302Z test_extension_module (__main__.TestCppExtensionAOT) ... ok (0.002s) 2023-01-11T21:58:35.4910639Z test_no_python_abi_suffix_sets_the_correct_library_name (__main__.TestCppExtensionAOT) ... ok (0.001s) 2023-01-11T21:58:35.4910942Z test_optional (__main__.TestCppExtensionAOT) ... ok (0.001s) 2023-01-11T21:58:35.4911196Z test_add (__main__.TestORTTensor) ... ok (0.001s) 2023-01-11T21:58:35.4911459Z test_conv_backend_override (__main__.TestORTTensor) ... ok (0.003s) 2023-01-11T21:58:35.4911731Z test_unregistered (__main__.TestORTTensor) ... ok (0.012s) 2023-01-11T21:58:35.4911986Z test_zeros (__main__.TestORTTensor) ... ok (0.002s) 2023-01-11T21:58:35.4912263Z test_pybind_return_types (__main__.TestPybindTypeCasters) ... ok (0.002s) 2023-01-11T21:58:35.4912540Z test_rng (__main__.TestRNGExtension) ... ok (0.006s) 2023-01-11T21:58:35.4912809Z test_torch_library (__main__.TestTorchLibrary) ... skip: CUDA not found (0.001s) 2023-01-11T21:58:35.4912982Z 2023-01-11T21:58:35.4913197Z ---------------------------------------------------------------------- 2023-01-11T21:58:35.4913437Z Ran 16 tests in 0.061s 2023-01-11T21:58:35.4913551Z 2023-01-11T21:58:35.4913621Z OK (skipped=5) 2023-01-11T21:58:35.4913714Z 2023-01-11T21:58:35.4913797Z Generating XML reports... 2023-01-11T21:58:35.4914250Z Generated XML report: test-reports/python-unittest/test_cpp_extensions_aot_ninja/TEST-TestCppExtensionAOT-20230111215834.xml 2023-01-11T21:58:35.4914800Z Generated XML report: test-reports/python-unittest/test_cpp_extensions_aot_ninja/TEST-TestORTTensor-20230111215834.xml 2023-01-11T21:58:35.4915359Z Generated XML report: test-reports/python-unittest/test_cpp_extensions_aot_ninja/TEST-TestPybindTypeCasters-20230111215834.xml 2023-01-11T21:58:35.4915900Z Generated XML report: test-reports/python-unittest/test_cpp_extensions_aot_ninja/TEST-TestRNGExtension-20230111215834.xml 2023-01-11T21:58:35.4916562Z Generated XML report: test-reports/python-unittest/test_cpp_extensions_aot_ninja/TEST-TestTorchLibrary-20230111215834.xml 2023-01-11T21:58:35.4916803Z 2023-01-11T21:58:35.4917068Z ##[endgroup] 2023-01-11T21:58:35.4917487Z FINISHED PRINTING LOG FILE of test_cpp_extensions_aot_ninja (/var/lib/jenkins/workspace/test/test-reports/test_cpp_extensions_aot_ninja_4scmlu38) 2023-01-11T21:58:35.4917728Z 2023-01-11T21:58:36.1616154Z 2023-01-11T21:58:36.1616754Z real 76m15.342s 2023-01-11T21:58:36.1617085Z user 109m45.027s 2023-01-11T21:58:36.1617316Z sys 9m28.938s 2023-01-11T21:58:36.1617586Z + assert_git_not_dirty 2023-01-11T21:58:36.1618115Z + [[ linux-focal-py3.7-clang7-asan != *rocm* ]] 2023-01-11T21:58:36.1618605Z + [[ linux-focal-py3.7-clang7-asan != *xla* ]] 2023-01-11T21:58:36.1619208Z ++ git status --porcelain 2023-01-11T21:58:46.9701860Z + git_status= 2023-01-11T21:58:46.9702206Z + [[ -n '' ]] 2023-01-11T21:58:46.9806436Z ##[group]Run cat test/**/*.log || true 2023-01-11T21:58:46.9806674Z cat test/**/*.log || true 2023-01-11T21:58:47.0569609Z shell: /usr/bin/bash --noprofile --norc -e -o pipefail {0} 2023-01-11T21:58:47.0569821Z env: 2023-01-11T21:58:47.0570002Z GIT_DEFAULT_BRANCH: master 2023-01-11T21:58:47.0570281Z DOCKER_CONTAINER_ID: bc317e370d4c080860302bfc6f8a12f6dd90390fef53e4d8c245f7faa1170187 2023-01-11T21:58:47.0570526Z ##[endgroup] 2023-01-11T21:58:47.0608093Z cat: test/**/*.log: No such file or directory 2023-01-11T21:58:47.0636927Z Prepare all required actions 2023-01-11T21:58:47.0637220Z Getting action download info 2023-01-11T21:58:47.3514770Z ##[group]Run ./.github/actions/get-workflow-job-id 2023-01-11T21:58:47.3514980Z with: 2023-01-11T21:58:47.3515319Z github-token: *** 2023-01-11T21:58:47.3515486Z env: 2023-01-11T21:58:47.3515646Z GIT_DEFAULT_BRANCH: master 2023-01-11T21:58:47.3515922Z DOCKER_CONTAINER_ID: bc317e370d4c080860302bfc6f8a12f6dd90390fef53e4d8c245f7faa1170187 2023-01-11T21:58:47.3516177Z ##[endgroup] 2023-01-11T21:58:47.3543259Z ##[group]Run nick-fields/retry@3e91a01664abd3c5cd539100d10d33b9c5b68482 2023-01-11T21:58:47.3543493Z with: 2023-01-11T21:58:47.3543650Z shell: bash 2023-01-11T21:58:47.3543809Z timeout_minutes: 10 2023-01-11T21:58:47.3543983Z max_attempts: 5 2023-01-11T21:58:47.3544164Z retry_wait_seconds: 30 2023-01-11T21:58:47.3544563Z command: set -eux python3 -m pip install requests==2.26.0 GHA_WORKFLOW_JOB_ID=$(python3 .github/scripts/get_workflow_job_id.py "${GITHUB_RUN_ID}" "${RUNNER_NAME}") echo "job-id=${GHA_WORKFLOW_JOB_ID}" >> "${GITHUB_OUTPUT}" 2023-01-11T21:58:47.3544938Z polling_interval_seconds: 1 2023-01-11T21:58:47.3545116Z warning_on_retry: true 2023-01-11T21:58:47.3545300Z continue_on_error: false 2023-01-11T21:58:47.3545474Z env: 2023-01-11T21:58:47.3545628Z GIT_DEFAULT_BRANCH: master 2023-01-11T21:58:47.3545897Z DOCKER_CONTAINER_ID: bc317e370d4c080860302bfc6f8a12f6dd90390fef53e4d8c245f7faa1170187 2023-01-11T21:58:47.3546272Z GITHUB_TOKEN: *** 2023-01-11T21:58:47.3546449Z ##[endgroup] 2023-01-11T21:58:47.4407909Z + python3 -m pip install requests==2.26.0 2023-01-11T21:58:48.1337655Z Defaulting to user installation because normal site-packages is not writeable 2023-01-11T21:58:48.1599455Z Requirement already satisfied: requests==2.26.0 in /home/ec2-user/.local/lib/python3.7/site-packages (2.26.0) 2023-01-11T21:58:48.1730332Z Requirement already satisfied: certifi>=2017.4.17 in /home/ec2-user/.local/lib/python3.7/site-packages (from requests==2.26.0) (2022.12.7) 2023-01-11T21:58:48.1746677Z Requirement already satisfied: charset-normalizer~=2.0.0; python_version >= "3" in /home/ec2-user/.local/lib/python3.7/site-packages (from requests==2.26.0) (2.0.12) 2023-01-11T21:58:48.1770673Z Requirement already satisfied: idna<4,>=2.5; python_version >= "3" in /home/ec2-user/.local/lib/python3.7/site-packages (from requests==2.26.0) (3.4) 2023-01-11T21:58:48.1790136Z Requirement already satisfied: urllib3<1.27,>=1.21.1 in /home/ec2-user/.local/lib/python3.7/site-packages (from requests==2.26.0) (1.26.14) 2023-01-11T21:58:48.3899746Z ++ python3 .github/scripts/get_workflow_job_id.py 3896099317 i-05ef50dfe628429d7 2023-01-11T21:58:53.2320294Z + GHA_WORKFLOW_JOB_ID=10588772045 2023-01-11T21:58:53.2320808Z + echo job-id=10588772045 2023-01-11T21:58:53.4445254Z Command completed after 1 attempt(s). 2023-01-11T21:58:53.4562473Z ##[group]Run kill "$MONITOR_SCRIPT_PID" 2023-01-11T21:58:53.4562888Z kill "$MONITOR_SCRIPT_PID" 2023-01-11T21:58:53.4578605Z shell: /usr/bin/bash --noprofile --norc -e -o pipefail {0} 2023-01-11T21:58:53.4578996Z env: 2023-01-11T21:58:53.4579294Z GIT_DEFAULT_BRANCH: master 2023-01-11T21:58:53.4579768Z DOCKER_CONTAINER_ID: bc317e370d4c080860302bfc6f8a12f6dd90390fef53e4d8c245f7faa1170187 2023-01-11T21:58:53.4580245Z MONITOR_SCRIPT_PID: 1680 2023-01-11T21:58:53.4580569Z ##[endgroup] 2023-01-11T21:58:53.4672162Z Prepare all required actions 2023-01-11T21:58:53.4672417Z Getting action download info 2023-01-11T21:58:53.6251246Z Download action repository 'actions/upload-artifact@v3' (SHA:0b7f8abb1508181956e8e162db84b466c27e18ce) 2023-01-11T21:58:53.7810580Z ##[group]Run ./.github/actions/upload-test-artifacts 2023-01-11T21:58:53.7810787Z with: 2023-01-11T21:58:53.7811012Z file-suffix: test-default-3-5-linux.2xlarge_10588772045 2023-01-11T21:58:53.7811231Z env: 2023-01-11T21:58:53.7811391Z GIT_DEFAULT_BRANCH: master 2023-01-11T21:58:53.7811670Z DOCKER_CONTAINER_ID: bc317e370d4c080860302bfc6f8a12f6dd90390fef53e4d8c245f7faa1170187 2023-01-11T21:58:53.7811931Z ##[endgroup] 2023-01-11T21:58:53.7832519Z ##[group]Run # Remove any previous test jsons if they exist 2023-01-11T21:58:53.7832786Z # Remove any previous test jsons if they exist 2023-01-11T21:58:53.7833013Z rm -f test-jsons-*.zip 2023-01-11T21:58:53.7833284Z zip -r "test-jsons-${FILE_SUFFIX}.zip" test -i '*.json' 2023-01-11T21:58:53.7844139Z shell: /usr/bin/bash --noprofile --norc -e -o pipefail {0} 2023-01-11T21:58:53.7844360Z env: 2023-01-11T21:58:53.7844532Z GIT_DEFAULT_BRANCH: master 2023-01-11T21:58:53.7844805Z DOCKER_CONTAINER_ID: bc317e370d4c080860302bfc6f8a12f6dd90390fef53e4d8c245f7faa1170187 2023-01-11T21:58:53.7845121Z FILE_SUFFIX: test-default-3-5-linux.2xlarge_10588772045 2023-01-11T21:58:53.7845345Z ##[endgroup] 2023-01-11T21:58:53.8018134Z adding: test/allowlist_for_publicAPI.json (deflated 78%) 2023-01-11T21:58:53.8044847Z adding: test/benchmark_utils/callgrind_artifacts.json (deflated 92%) 2023-01-11T21:58:53.8050755Z adding: test/profiler/profiler_utils_mock_events.json (deflated 87%) 2023-01-11T21:58:53.8051986Z adding: test/.pytorch-slow-tests.json (deflated 74%) 2023-01-11T21:58:53.8056570Z adding: test/.pytorch-disabled-tests.json (deflated 84%) 2023-01-11T21:58:53.8075284Z ##[group]Run # Remove any previous test reports if they exist 2023-01-11T21:58:53.8075569Z # Remove any previous test reports if they exist 2023-01-11T21:58:53.8075812Z rm -f test-reports-*.zip 2023-01-11T21:58:53.8076074Z zip -r "test-reports-${FILE_SUFFIX}.zip" test -i '*.xml' -i '*.csv' 2023-01-11T21:58:53.8086400Z shell: /usr/bin/bash --noprofile --norc -e -o pipefail {0} 2023-01-11T21:58:53.8086623Z env: 2023-01-11T21:58:53.8086797Z GIT_DEFAULT_BRANCH: master 2023-01-11T21:58:53.8087063Z DOCKER_CONTAINER_ID: bc317e370d4c080860302bfc6f8a12f6dd90390fef53e4d8c245f7faa1170187 2023-01-11T21:58:53.8087597Z FILE_SUFFIX: test-default-3-5-linux.2xlarge_10588772045 2023-01-11T21:58:53.8087824Z ##[endgroup] 2023-01-11T21:58:53.8177004Z adding: test/test-reports/python-unittest/test_function_schema/TEST-TestFunctionSchema-20230111204234.xml (deflated 81%) 2023-01-11T21:58:53.8180353Z adding: test/test-reports/python-unittest/dynamo.test_optimizations/TEST-NormalizeIRTests-20230111204245.xml (deflated 42%) 2023-01-11T21:58:53.8184572Z adding: test/test-reports/python-unittest/dynamo.test_optimizations/TEST-TestOptimizations-20230111204245.xml (deflated 78%) 2023-01-11T21:58:53.8193236Z adding: test/test-reports/python-unittest/profiler.test_profiler_tree/TEST-TestProfilerTree-20230111204256.xml (deflated 82%) 2023-01-11T21:58:53.8196768Z adding: test/test-reports/python-unittest/dynamo.test_torchxla_integration/TEST-TorchXLAReuseGraphTest-20230111204306.xml (deflated 76%) 2023-01-11T21:58:53.8204188Z adding: test/test-reports/python-unittest/inductor.test_torchinductor/TEST-CPUReproTests-20230111204333.xml (deflated 90%) 2023-01-11T21:58:53.8362884Z adding: test/test-reports/python-unittest/inductor.test_torchinductor/TEST-CpuTests-20230111204333.xml (deflated 94%) 2023-01-11T21:58:53.8363681Z adding: test/test-reports/python-unittest/inductor.test_torchinductor/TEST-ExprPrinterTests-20230111204333.xml (deflated 41%) 2023-01-11T21:58:53.8373765Z adding: test/test-reports/python-unittest/inductor.test_torchinductor/TEST-SweepInputsCpuTest-20230111204333.xml (deflated 97%) 2023-01-11T21:58:53.8374831Z adding: test/test-reports/python-unittest/inductor.test_torchinductor/TEST-TestIndexingSimplification-20230111204333.xml (deflated 57%) 2023-01-11T21:58:53.8375402Z adding: test/test-reports/python-unittest/dynamo.test_minifier/TEST-MinifierTests-20230111204424.xml (deflated 85%) 2023-01-11T21:58:53.8377081Z adding: test/test-reports/python-unittest/test_view_ops/TEST-TestOldViewOpsCPU-20230111204620.xml (deflated 89%) 2023-01-11T21:58:53.8379633Z adding: test/test-reports/python-unittest/test_view_ops/TEST-TestViewOpsCPU-20230111204620.xml (deflated 93%) 2023-01-11T21:58:53.8382321Z adding: test/test-reports/python-unittest/test_view_ops/TEST-TestViewOpsLAZY-20230111204620.xml (deflated 95%) 2023-01-11T21:58:53.8383309Z adding: test/test-reports/python-unittest/test_tensorboard/TEST-TestTensorBoardEmbedding-20230111204720.xml (deflated 61%) 2023-01-11T21:58:53.8384349Z adding: test/test-reports/python-unittest/test_tensorboard/TEST-TestTensorBoardNumpy-20230111204720.xml (deflated 76%) 2023-01-11T21:58:53.8385381Z adding: test/test-reports/python-unittest/test_tensorboard/TEST-TestTensorBoardPyTorchNumpy-20230111204720.xml (deflated 73%) 2023-01-11T21:58:53.8386459Z adding: test/test-reports/python-unittest/test_tensorboard/TEST-TestTensorBoardPytorchGraph-20230111204720.xml (deflated 64%) 2023-01-11T21:58:53.8387329Z adding: test/test-reports/python-unittest/test_tensorboard/TEST-TestTensorBoardSummary-20230111204720.xml (deflated 83%) 2023-01-11T21:58:53.8388422Z adding: test/test-reports/python-unittest/test_tensorboard/TEST-TestTensorBoardSummaryWriter-20230111204720.xml (deflated 64%) 2023-01-11T21:58:53.8389337Z adding: test/test-reports/python-unittest/test_tensorboard/TEST-TestTensorBoardUtils-20230111204720.xml (deflated 65%) 2023-01-11T21:58:53.8390348Z adding: test/test-reports/python-unittest/test_tensorboard/TEST-TestTensorBoardWriter-20230111204720.xml (deflated 41%) 2023-01-11T21:58:53.8391323Z adding: test/test-reports/python-unittest/test_tensorboard/TEST-TestTensorBoardFigure-20230111204720.xml (deflated 60%) 2023-01-11T21:58:53.8392360Z adding: test/test-reports/python-unittest/nn.test_parametrization/TEST-TestNNParametrization-20230111204732.xml (deflated 83%) 2023-01-11T21:58:53.8413332Z adding: test/test-reports/python-unittest/dynamo.test_verify_correctness/TEST-TestVerifyCorrectness-20230111204744.xml (deflated 68%) 2023-01-11T21:58:53.8414217Z adding: test/test-reports/python-unittest/test_native_mha/TEST-TestMHADeviceTypeCPU-20230111204756.xml (deflated 90%) 2023-01-11T21:58:53.8414765Z adding: test/test-reports/python-unittest/dynamo.test_python_autograd/TEST-TestPythonAutograd-20230111204807.xml (deflated 77%) 2023-01-11T21:58:53.8415280Z adding: test/test-reports/python-unittest/test_futures/TEST-TestFuture-20230111204819.xml (deflated 84%) 2023-01-11T21:58:53.8415880Z adding: test/test-reports/python-unittest/test_fx_reinplace_pass/TEST-TestReinplacePass-20230111204830.xml (deflated 80%) 2023-01-11T21:58:53.8416400Z adding: test/test-reports/python-unittest/test_model_dump/TEST-TestModelDump-20230111204842.xml (deflated 76%) 2023-01-11T21:58:53.8416923Z adding: test/test-reports/python-unittest/test_datapipe/TEST-TestCircularSerialization-20230111204853.xml (deflated 53%) 2023-01-11T21:58:53.8417573Z adding: test/test-reports/python-unittest/test_datapipe/TEST-TestDataChunk-20230111204853.xml (deflated 76%) 2023-01-11T21:58:53.8418114Z adding: test/test-reports/python-unittest/test_datapipe/TEST-TestFunctionalIterDataPipe-20230111204853.xml (deflated 86%) 2023-01-11T21:58:53.8418685Z adding: test/test-reports/python-unittest/test_datapipe/TEST-TestFunctionalMapDataPipe-20230111204853.xml (deflated 71%) 2023-01-11T21:58:53.8419183Z adding: test/test-reports/python-unittest/test_datapipe/TEST-TestGraph-20230111204853.xml (deflated 67%) 2023-01-11T21:58:53.8419747Z adding: test/test-reports/python-unittest/test_datapipe/TEST-TestIterDataPipeCountSampleYielded-20230111204853.xml (deflated 75%) 2023-01-11T21:58:53.8420539Z adding: test/test-reports/python-unittest/test_datapipe/TEST-TestIterDataPipeGraphFastForward-20230111204853.xml (deflated 66%) 2023-01-11T21:58:53.8421172Z adding: test/test-reports/python-unittest/test_datapipe/TEST-TestIterDataPipeSingletonConstraint-20230111204853.xml (deflated 74%) 2023-01-11T21:58:53.8421755Z adding: test/test-reports/python-unittest/test_datapipe/TEST-TestIterableDataPipeBasic-20230111204853.xml (deflated 70%) 2023-01-11T21:58:53.8422271Z adding: test/test-reports/python-unittest/test_datapipe/TEST-TestSharding-20230111204853.xml (deflated 70%) 2023-01-11T21:58:53.8422769Z adding: test/test-reports/python-unittest/test_datapipe/TEST-TestStreamWrapper-20230111204853.xml (deflated 68%) 2023-01-11T21:58:53.8423256Z adding: test/test-reports/python-unittest/test_datapipe/TEST-TestTyping-20230111204853.xml (deflated 80%) 2023-01-11T21:58:53.8423751Z adding: test/test-reports/python-unittest/test_datapipe/TEST-TestCaptureDataFrame-20230111204853.xml (deflated 43%) 2023-01-11T21:58:53.8424279Z adding: test/test-reports/python-unittest/test_datapipe/TEST-TestDataFramesPipes-20230111204853.xml (deflated 79%) 2023-01-11T21:58:53.8424804Z adding: test/test-reports/python-unittest/test_datapipe/TEST-TestSerialization-20230111204853.xml (deflated 59%) 2023-01-11T21:58:53.8425302Z adding: test/test-reports/python-unittest/test_autocast/TEST-TestAutocastCPU-20230111204904.xml (deflated 77%) 2023-01-11T21:58:53.8425809Z adding: test/test-reports/python-unittest/test_autocast/TEST-TestTorchAutocast-20230111204904.xml (deflated 42%) 2023-01-11T21:58:53.8426308Z adding: test/test-reports/python-unittest/test_autocast/TEST-TestAutocastGPU-20230111204904.xml (deflated 45%) 2023-01-11T21:58:53.8426832Z adding: test/test-reports/python-unittest/test_native_functions/TEST-TestNativeFunctions-20230111204915.xml (deflated 90%) 2023-01-11T21:58:53.8427384Z adding: test/test-reports/python-unittest/benchmark_utils.test_benchmark_utils/TEST-TestBenchmarkUtils-20230111204926.xml (deflated 78%) 2023-01-11T21:58:53.8427923Z adding: test/test-reports/python-unittest/test_fx_passes/TEST-TestFXGraphPasses-20230111204936.xml (deflated 91%) 2023-01-11T21:58:53.8428444Z adding: test/test-reports/python-unittest/test_fx_passes/TEST-TestFXMatcherUtils-20230111204936.xml (deflated 87%) 2023-01-11T21:58:53.8428939Z adding: test/test-reports/python-unittest/test_monitor/TEST-TestMonitor-20230111204947.xml (deflated 66%) 2023-01-11T21:58:53.8429434Z adding: test/test-reports/python-unittest/test_monitor/TEST-TestMonitorTensorboard-20230111204947.xml (deflated 41%) 2023-01-11T21:58:53.8429947Z adding: test/test-reports/python-unittest/dynamo.test_global/TEST-TestGlobals-20230111204957.xml (deflated 85%) 2023-01-11T21:58:53.8430448Z adding: test/test-reports/python-unittest/dynamo.test_comptime/TEST-ComptimeTests-20230111205007.xml (deflated 77%) 2023-01-11T21:58:53.8430981Z adding: test/test-reports/python-unittest/dynamo.test_skip_non_tensor/TEST-SkipNonTensorTests-20230111205017.xml (deflated 79%) 2023-01-11T21:58:53.8431520Z adding: test/test-reports/python-unittest/test_tensorexpr_pybind/TEST-TestExprHandlePyBind-20230111205027.xml (deflated 40%) 2023-01-11T21:58:53.8432105Z adding: test/test-reports/python-unittest/test_tensorexpr_pybind/TEST-TestTensorExprPyBind-20230111205027.xml (deflated 86%) 2023-01-11T21:58:53.8432664Z adding: test/test-reports/python-unittest/dynamo.test_export_mutations/TEST-MutationExportTests-20230111205037.xml (deflated 81%) 2023-01-11T21:58:53.8433176Z adding: test/test-reports/python-unittest/dynamo.test_nops/TEST-NopTests-20230111205047.xml (deflated 67%) 2023-01-11T21:58:53.8433633Z adding: test/test-reports/python-unittest/test_pytree/TEST-TestPytree-20230111205057.xml (deflated 84%) 2023-01-11T21:58:53.8434150Z adding: test/test-reports/python-unittest/nn.test_module_hooks/TEST-TestModuleGlobalHooks-20230111205107.xml (deflated 71%) 2023-01-11T21:58:53.8434718Z adding: test/test-reports/python-unittest/nn.test_module_hooks/TEST-TestModuleHookNN-20230111205107.xml (deflated 79%) 2023-01-11T21:58:53.8435237Z adding: test/test-reports/python-unittest/nn.test_module_hooks/TEST-TestModuleHooks-20230111205107.xml (deflated 77%) 2023-01-11T21:58:53.8435752Z adding: test/test-reports/python-unittest/nn.test_module_hooks/TEST-TestStateDictHooks-20230111205107.xml (deflated 75%) 2023-01-11T21:58:53.8436285Z adding: test/test-reports/python-unittest/test_per_overload_api/TEST-TestPerOverloadAPI-20230111205117.xml (deflated 63%) 2023-01-11T21:58:53.8436785Z adding: test/test-reports/python-unittest/test_license/TEST-TestLicense-20230111205126.xml (deflated 50%) 2023-01-11T21:58:53.8437368Z adding: test/test-reports/python-unittest/test_set_default_mobile_cpu_allocator/TEST-TestSetDefaultMobileCPUAllocator-20230111205136.xml (deflated 57%) 2023-01-11T21:58:53.8437921Z adding: test/test-reports/python-unittest/test_type_info/TEST-TestDTypeInfo-20230111205146.xml (deflated 61%) 2023-01-11T21:58:53.8438386Z adding: test/test-reports/python-unittest/test_itt/TEST-TestItt-20230111205155.xml (deflated 40%) 2023-01-11T21:58:53.8438885Z adding: test/test-reports/python-unittest/test_numpy_interop/TEST-TestNumPyInteropCPU-20230111205205.xml (deflated 85%) 2023-01-11T21:58:53.8439404Z adding: test/test-reports/python-unittest/nn.test_pruning/TEST-TestPruningNN-20230111205216.xml (deflated 79%) 2023-01-11T21:58:53.8496519Z adding: test/test-reports/python-unittest/test_decomp/TEST-TestDecompCPU-20230111205227.xml (deflated 98%) 2023-01-11T21:58:53.8497028Z adding: test/test-reports/python-unittest/test_decomp/TEST-DecompAmpTestsCPU-20230111205227.xml (deflated 42%) 2023-01-11T21:58:53.8497569Z adding: test/test-reports/python-unittest/test_decomp/TEST-DecompContiguousTestsCPU-20230111205227.xml (deflated 60%) 2023-01-11T21:58:53.8498622Z adding: test/test-reports/python-unittest/test_dlpack/TEST-TestTorchDlPackCPU-20230111205241.xml (deflated 95%) 2023-01-11T21:58:53.8499129Z adding: test/test-reports/python-unittest/test_jit_llga_fuser/TEST-TestDynamoAOT-20230111205251.xml (deflated 40%) 2023-01-11T21:58:53.8499674Z adding: test/test-reports/python-unittest/test_jit_llga_fuser/TEST-TestEnableDisableLlgaFuser-20230111205251.xml (deflated 42%) 2023-01-11T21:58:53.8500241Z adding: test/test-reports/python-unittest/test_jit_llga_fuser/TEST-TestFusionPatternCPU-20230111205251.xml (deflated 91%) 2023-01-11T21:58:53.8501051Z adding: test/test-reports/python-unittest/test_jit_llga_fuser/TEST-TestModel-20230111205251.xml (deflated 95%) 2023-01-11T21:58:53.8501796Z adding: test/test-reports/python-unittest/test_jit_llga_fuser/TEST-TestOpCPU-20230111205251.xml (deflated 93%) 2023-01-11T21:58:53.8503169Z adding: test/test-reports/python-unittest/test_mkldnn/TEST-TestMkldnn-20230111205301.xml (deflated 93%) 2023-01-11T21:58:53.8503695Z adding: test/test-reports/python-unittest/test_nvfuser_frontend/TEST-TestNvFuserFrontend-20230111205311.xml (deflated 84%) 2023-01-11T21:58:53.8504236Z adding: test/test-reports/python-unittest/test_mkldnn_fusion/TEST-TestMkldnnFusion-20230111205321.xml (deflated 81%) 2023-01-11T21:58:53.8505001Z adding: test/test-reports/python-unittest/test_numba_integration/TEST-TestNumbaIntegration-20230111205331.xml (deflated 75%) 2023-01-11T21:58:53.8505636Z adding: test/test-reports/python-unittest/dynamo.test_aot_cudagraphs/TEST-TestAotCudagraphs-20230111205341.xml (deflated 83%) 2023-01-11T21:58:53.8506190Z adding: test/test-reports/python-unittest/dynamo.test_replay_record/TEST-ReplayRecordTests-20230111205350.xml (deflated 82%) 2023-01-11T21:58:53.8506726Z adding: test/test-reports/python-unittest/test_complex/TEST-TestComplexTensorCPU-20230111205400.xml (deflated 70%) 2023-01-11T21:58:53.8507264Z adding: test/test-reports/python-unittest/test_nvfuser_dynamo/TEST-TestNvFuserDynamo-20230111205409.xml (deflated 71%) 2023-01-11T21:58:53.8507802Z adding: test/test-reports/python-unittest/dynamo.test_model_output/TEST-TestHFPretrained-20230111205419.xml (deflated 42%) 2023-01-11T21:58:53.8508376Z adding: test/test-reports/python-unittest/dynamo.test_model_output/TEST-TestModelOutput-20230111205419.xml (deflated 82%) 2023-01-11T21:58:53.8508914Z adding: test/test-reports/python-unittest/test_vulkan/TEST-TestVulkanRewritePass-20230111205428.xml (deflated 43%) 2023-01-11T21:58:53.8509427Z adding: test/test-reports/python-unittest/test_type_hints/TEST-TestTypeHints-20230111205438.xml (deflated 40%) 2023-01-11T21:58:53.8509925Z adding: test/test-reports/python-unittest/test_openmp/TEST-TestOpenMP_ParallelFor-20230111205447.xml (deflated 59%) 2023-01-11T21:58:53.8531987Z adding: test/test-reports/python-unittest/test_sparse_csr/TEST-TestSparseCSRCPU-20230111210516.xml (deflated 96%) 2023-01-11T21:58:53.8532518Z adding: test/test-reports/python-unittest/test_sparse_csr/TEST-TestSparseCSRSampler-20230111210516.xml (deflated 41%) 2023-01-11T21:58:53.8564794Z adding: test/test-reports/python-unittest/test_sparse_csr/TEST-TestSparseCompressedCPU-20230111210516.xml (deflated 97%) 2023-01-11T21:58:53.8565338Z adding: test/test-reports/python-unittest/test_torch/TEST-TestBasicVitalSigns-20230111212209.xml (deflated 63%) 2023-01-11T21:58:53.8573897Z adding: test/test-reports/python-unittest/test_torch/TEST-TestTorch-20230111212209.xml (deflated 93%) 2023-01-11T21:58:53.8587702Z adding: test/test-reports/python-unittest/test_torch/TEST-TestTorchDeviceTypeCPU-20230111212209.xml (deflated 93%) 2023-01-11T21:58:53.8588247Z adding: test/test-reports/python-unittest/test_torch/TEST-TestVitalSignsCudaCPU-20230111212209.xml (deflated 43%) 2023-01-11T21:58:53.8588805Z adding: test/test-reports/python-unittest/distributions.test_distributions/TEST-TestAgainstScipy-20230111215331.xml (deflated 59%) 2023-01-11T21:58:53.8589539Z adding: test/test-reports/python-unittest/distributions.test_distributions/TEST-TestConstraints-20230111215331.xml (deflated 56%) 2023-01-11T21:58:53.8590484Z adding: test/test-reports/python-unittest/distributions.test_distributions/TEST-TestDistributionShapes-20230111215331.xml (deflated 91%) 2023-01-11T21:58:53.8593651Z adding: test/test-reports/python-unittest/distributions.test_distributions/TEST-TestDistributions-20230111215331.xml (deflated 90%) 2023-01-11T21:58:53.8594752Z adding: test/test-reports/python-unittest/distributions.test_distributions/TEST-TestFunctors-20230111215331.xml (deflated 69%) 2023-01-11T21:58:53.8595755Z adding: test/test-reports/python-unittest/distributions.test_distributions/TEST-TestJit-20230111215331.xml (deflated 73%) 2023-01-11T21:58:53.8596773Z adding: test/test-reports/python-unittest/distributions.test_distributions/TEST-TestKL-20230111215331.xml (deflated 81%) 2023-01-11T21:58:53.8597464Z adding: test/test-reports/python-unittest/distributions.test_distributions/TEST-TestLazyLogitsInitialization-20230111215331.xml (deflated 58%) 2023-01-11T21:58:53.8598084Z adding: test/test-reports/python-unittest/distributions.test_distributions/TEST-TestNumericalStability-20230111215331.xml (deflated 83%) 2023-01-11T21:58:53.8598655Z adding: test/test-reports/python-unittest/distributions.test_distributions/TEST-TestRsample-20230111215331.xml (deflated 75%) 2023-01-11T21:58:53.8599194Z adding: test/test-reports/python-unittest/distributions.test_distributions/TEST-TestValidation-20230111215331.xml (deflated 65%) 2023-01-11T21:58:53.8599823Z adding: test/test-reports/python-unittest/nn.test_convolution/TEST-TestConvolutionNN-20230111215511.xml (deflated 84%) 2023-01-11T21:58:53.8607626Z adding: test/test-reports/python-unittest/nn.test_convolution/TEST-TestConvolutionNNDeviceTypeCPU-20230111215511.xml (deflated 97%) 2023-01-11T21:58:53.8608287Z adding: test/test-reports/python-unittest/test_jit_cuda_fuser/TEST-TestEnableDisableCudaFuser-20230111215604.xml (deflated 68%) 2023-01-11T21:58:53.8608862Z adding: test/test-reports/python-unittest/test_jit_cuda_fuser/TEST-jit.test_fuser_common.TestFuserCommon-20230111215604.xml (deflated 48%) 2023-01-11T21:58:53.8611400Z adding: test/test-reports/python-unittest/test_jit_cuda_fuser/TEST-TestCudaFuser-20230111215604.xml (deflated 93%) 2023-01-11T21:58:53.8611970Z adding: test/test-reports/python-unittest/test_show_pickle/TEST-TestShowPickle-20230111215609.xml (deflated 40%) 2023-01-11T21:58:53.8612586Z adding: test/test-reports/python-unittest/test_cpp_extensions_aot_ninja/TEST-TestCppExtensionAOT-20230111215834.xml (deflated 80%) 2023-01-11T21:58:53.8613188Z adding: test/test-reports/python-unittest/test_cpp_extensions_aot_ninja/TEST-TestORTTensor-20230111215834.xml (deflated 67%) 2023-01-11T21:58:53.8613776Z adding: test/test-reports/python-unittest/test_cpp_extensions_aot_ninja/TEST-TestPybindTypeCasters-20230111215834.xml (deflated 41%) 2023-01-11T21:58:53.8614332Z adding: test/test-reports/python-unittest/test_cpp_extensions_aot_ninja/TEST-TestRNGExtension-20230111215834.xml (deflated 40%) 2023-01-11T21:58:53.8614876Z adding: test/test-reports/python-unittest/test_cpp_extensions_aot_ninja/TEST-TestTorchLibrary-20230111215834.xml (deflated 42%) 2023-01-11T21:58:53.8663368Z adding: test/test-reports/python-pytest/test_ops_gradients/test_ops_gradients-9b1ea14156fe1d78.xml (deflated 96%) 2023-01-11T21:58:53.8713575Z adding: test/test-reports/python-pytest/test_ops_gradients/test_ops_gradients-5a1c1620e6dd6bfb.xml (deflated 96%) 2023-01-11T21:58:53.8714159Z adding: test/test-reports/python-pytest/test_ops_gradients/test_ops_gradients-c9b05079dbc8142b.xml (deflated 91%) 2023-01-11T21:58:53.8734046Z ##[group]Run # Remove any previous test reports if they exist 2023-01-11T21:58:53.8734334Z # Remove any previous test reports if they exist 2023-01-11T21:58:53.8734563Z rm -f usage-log-*.zip 2023-01-11T21:58:53.8734837Z # this workflow is also run in bazel build test, but we dont generate usage reports for it 2023-01-11T21:58:53.8735110Z # so check to see if the file exists first 2023-01-11T21:58:53.8735334Z if [ -f 'usage_log.txt' ]; then 2023-01-11T21:58:53.8735679Z  zip "usage-log-${FILE_SUFFIX}.zip" 'usage_log.txt' 2023-01-11T21:58:53.8735883Z fi 2023-01-11T21:58:53.8745816Z shell: /usr/bin/bash --noprofile --norc -e -o pipefail {0} 2023-01-11T21:58:53.8746028Z env: 2023-01-11T21:58:53.8746191Z GIT_DEFAULT_BRANCH: master 2023-01-11T21:58:53.8746465Z DOCKER_CONTAINER_ID: bc317e370d4c080860302bfc6f8a12f6dd90390fef53e4d8c245f7faa1170187 2023-01-11T21:58:53.8746780Z FILE_SUFFIX: test-default-3-5-linux.2xlarge_10588772045 2023-01-11T21:58:53.8746999Z ##[endgroup] 2023-01-11T21:58:53.9185844Z adding: usage_log.txt (deflated 97%) 2023-01-11T21:58:53.9219893Z ##[group]Run seemethere/upload-artifact-s3@v5 2023-01-11T21:58:53.9220103Z with: 2023-01-11T21:58:53.9220291Z s3-prefix: pytorch/pytorch/3896099317/2/artifact 2023-01-11T21:58:53.9220506Z retention-days: 14 2023-01-11T21:58:53.9220702Z if-no-files-found: warn 2023-01-11T21:58:53.9220885Z path: test-jsons-*.zip 2023-01-11T21:58:53.9221068Z name: artifact 2023-01-11T21:58:53.9221251Z s3-bucket: gha-artifacts 2023-01-11T21:58:53.9221430Z region: us-east-1 2023-01-11T21:58:53.9221602Z env: 2023-01-11T21:58:53.9221773Z GIT_DEFAULT_BRANCH: master 2023-01-11T21:58:53.9222047Z DOCKER_CONTAINER_ID: bc317e370d4c080860302bfc6f8a12f6dd90390fef53e4d8c245f7faa1170187 2023-01-11T21:58:53.9222371Z ##[endgroup] 2023-01-11T21:58:54.3148126Z NOTE: s3-prefix specified, ignoring name parameter 2023-01-11T21:58:54.3148694Z With the provided path, there will be 1 file uploaded 2023-01-11T21:58:54.3148972Z Uploading to s3 prefix: pytorch/pytorch/3896099317/2/artifact 2023-01-11T21:58:54.3206807Z Starting upload of test-jsons-test-default-3-5-linux.2xlarge_10588772045.zip 2023-01-11T21:58:54.4769568Z Finished upload of test-jsons-test-default-3-5-linux.2xlarge_10588772045.zip 2023-01-11T21:58:54.4923591Z ##[group]Run seemethere/upload-artifact-s3@v5 2023-01-11T21:58:54.4923812Z with: 2023-01-11T21:58:54.4924007Z s3-prefix: pytorch/pytorch/3896099317/2/artifact 2023-01-11T21:58:54.4924253Z retention-days: 14 2023-01-11T21:58:54.4924515Z if-no-files-found: error 2023-01-11T21:58:54.4924813Z path: test-reports-*.zip 2023-01-11T21:58:54.4925000Z name: artifact 2023-01-11T21:58:54.4925184Z s3-bucket: gha-artifacts 2023-01-11T21:58:54.4925370Z region: us-east-1 2023-01-11T21:58:54.4925539Z env: 2023-01-11T21:58:54.4925714Z GIT_DEFAULT_BRANCH: master 2023-01-11T21:58:54.4925977Z DOCKER_CONTAINER_ID: bc317e370d4c080860302bfc6f8a12f6dd90390fef53e4d8c245f7faa1170187 2023-01-11T21:58:54.4926242Z ##[endgroup] 2023-01-11T21:58:54.8286213Z NOTE: s3-prefix specified, ignoring name parameter 2023-01-11T21:58:54.8286932Z With the provided path, there will be 1 file uploaded 2023-01-11T21:58:54.8287221Z Uploading to s3 prefix: pytorch/pytorch/3896099317/2/artifact 2023-01-11T21:58:54.8293970Z Starting upload of test-reports-test-default-3-5-linux.2xlarge_10588772045.zip 2023-01-11T21:58:54.9874456Z Finished upload of test-reports-test-default-3-5-linux.2xlarge_10588772045.zip 2023-01-11T21:58:55.0018788Z ##[group]Run seemethere/upload-artifact-s3@v5 2023-01-11T21:58:55.0019018Z with: 2023-01-11T21:58:55.0019207Z s3-prefix: pytorch/pytorch/3896099317/2/artifact 2023-01-11T21:58:55.0019423Z retention-days: 14 2023-01-11T21:58:55.0019615Z if-no-files-found: ignore 2023-01-11T21:58:55.0019804Z path: usage-log-*.zip 2023-01-11T21:58:55.0019983Z name: artifact 2023-01-11T21:58:55.0020159Z s3-bucket: gha-artifacts 2023-01-11T21:58:55.0020335Z region: us-east-1 2023-01-11T21:58:55.0020497Z env: 2023-01-11T21:58:55.0020670Z GIT_DEFAULT_BRANCH: master 2023-01-11T21:58:55.0020939Z DOCKER_CONTAINER_ID: bc317e370d4c080860302bfc6f8a12f6dd90390fef53e4d8c245f7faa1170187 2023-01-11T21:58:55.0021273Z ##[endgroup] 2023-01-11T21:58:55.3458950Z NOTE: s3-prefix specified, ignoring name parameter 2023-01-11T21:58:55.3459428Z With the provided path, there will be 1 file uploaded 2023-01-11T21:58:55.3459863Z Uploading to s3 prefix: pytorch/pytorch/3896099317/2/artifact 2023-01-11T21:58:55.3468246Z Starting upload of usage-log-test-default-3-5-linux.2xlarge_10588772045.zip 2023-01-11T21:58:55.5518964Z Finished upload of usage-log-test-default-3-5-linux.2xlarge_10588772045.zip 2023-01-11T21:58:55.5659423Z ##[group]Run # shellcheck disable=SC2156 2023-01-11T21:58:55.5659686Z # shellcheck disable=SC2156 2023-01-11T21:58:55.5659980Z find . -iname "core.[1-9]*" -exec docker exec "${DOCKER_CONTAINER_ID}" sh -c "gdb python {} -ex 'bt' -ex 'q'" \; 2023-01-11T21:58:55.5671058Z shell: /usr/bin/bash -e {0} 2023-01-11T21:58:55.5671243Z env: 2023-01-11T21:58:55.5671404Z GIT_DEFAULT_BRANCH: master 2023-01-11T21:58:55.5671683Z DOCKER_CONTAINER_ID: bc317e370d4c080860302bfc6f8a12f6dd90390fef53e4d8c245f7faa1170187 2023-01-11T21:58:55.5671943Z ##[endgroup] 2023-01-11T21:58:57.8252029Z ##[group]Run set -x 2023-01-11T21:58:57.8252237Z set -x 2023-01-11T21:58:57.8252450Z python3 -m pip install -r requirements.txt 2023-01-11T21:58:57.8252702Z python3 -m pip install boto3==1.19.12 2023-01-11T21:58:57.8252998Z python3 -m tools.stats.print_test_stats --upload-to-s3 --compare-with-s3 test 2023-01-11T21:58:57.8263844Z shell: /usr/bin/bash --noprofile --norc -e -o pipefail {0} 2023-01-11T21:58:57.8264065Z env: 2023-01-11T21:58:57.8264346Z GIT_DEFAULT_BRANCH: master 2023-01-11T21:58:57.8264627Z DOCKER_CONTAINER_ID: bc317e370d4c080860302bfc6f8a12f6dd90390fef53e4d8c245f7faa1170187 2023-01-11T21:58:57.8264890Z AWS_DEFAULT_REGION: us-east-1 2023-01-11T21:58:57.8265087Z BRANCH: pull/91627 2023-01-11T21:58:57.8265270Z TEST_CONFIG: default 2023-01-11T21:58:57.8265435Z SHARD_NUMBER: 3 2023-01-11T21:58:57.8265664Z BUILD_ENVIRONMENT: linux-focal-py3.7-clang7-asan 2023-01-11T21:58:57.8265890Z PR_NUMBER: 91627 2023-01-11T21:58:57.8266093Z PYTORCH_RETRY_TEST_CASES: 1 2023-01-11T21:58:57.8266286Z PYTORCH_OVERRIDE_FLAKY_SIGNAL: 1 2023-01-11T21:58:57.8266519Z SHA1: 8419ddda87c8a47eacc63b54bc7ec98c1f27c26e 2023-01-11T21:58:57.8266721Z TAG: 2023-01-11T21:58:57.8266875Z WORKFLOW_ID: 3896099317 2023-01-11T21:58:57.8267200Z GITHUB_TOKEN: *** 2023-01-11T21:58:57.8267389Z GHA_WORKFLOW_JOB_ID: 10588772045 2023-01-11T21:58:57.8267574Z ##[endgroup] 2023-01-11T21:58:57.8291471Z + python3 -m pip install -r requirements.txt 2023-01-11T21:58:58.0357487Z Defaulting to user installation because normal site-packages is not writeable 2023-01-11T21:58:58.0627478Z Requirement already satisfied: astunparse in /home/ec2-user/.local/lib/python3.7/site-packages (from -r requirements.txt (line 2)) (1.6.3) 2023-01-11T21:58:58.0654472Z Requirement already satisfied: expecttest in /home/ec2-user/.local/lib/python3.7/site-packages (from -r requirements.txt (line 3)) (0.1.4) 2023-01-11T21:58:58.0662707Z Requirement already satisfied: future in /home/ec2-user/.local/lib/python3.7/site-packages (from -r requirements.txt (line 4)) (0.18.2) 2023-01-11T21:58:58.0671016Z Requirement already satisfied: hypothesis in /home/ec2-user/.local/lib/python3.7/site-packages (from -r requirements.txt (line 5)) (6.62.0) 2023-01-11T21:58:58.1033747Z Requirement already satisfied: numpy in /home/ec2-user/.local/lib/python3.7/site-packages (from -r requirements.txt (line 6)) (1.21.6) 2023-01-11T21:58:58.1042605Z Requirement already satisfied: psutil in /home/ec2-user/.local/lib/python3.7/site-packages (from -r requirements.txt (line 7)) (5.9.1) 2023-01-11T21:58:58.1117342Z Requirement already satisfied: pyyaml in /home/ec2-user/.local/lib/python3.7/site-packages (from -r requirements.txt (line 8)) (6.0) 2023-01-11T21:58:58.1125284Z Requirement already satisfied: requests in /home/ec2-user/.local/lib/python3.7/site-packages (from -r requirements.txt (line 9)) (2.26.0) 2023-01-11T21:58:58.1337122Z Requirement already satisfied: setuptools in /usr/lib/python3.7/site-packages (from -r requirements.txt (line 10)) (49.1.3) 2023-01-11T21:58:58.1503834Z Requirement already satisfied: six in /home/ec2-user/.local/lib/python3.7/site-packages (from -r requirements.txt (line 11)) (1.16.0) 2023-01-11T21:58:58.1512831Z Requirement already satisfied: types-dataclasses in /home/ec2-user/.local/lib/python3.7/site-packages (from -r requirements.txt (line 12)) (0.6.6) 2023-01-11T21:58:58.1519382Z Requirement already satisfied: typing_extensions in /home/ec2-user/.local/lib/python3.7/site-packages (from -r requirements.txt (line 13)) (4.4.0) 2023-01-11T21:58:58.1529853Z Requirement already satisfied: sympy in /home/ec2-user/.local/lib/python3.7/site-packages (from -r requirements.txt (line 14)) (1.10.1) 2023-01-11T21:58:58.1548562Z Requirement already satisfied: filelock in /home/ec2-user/.local/lib/python3.7/site-packages (from -r requirements.txt (line 15)) (3.9.0) 2023-01-11T21:58:58.1619380Z Requirement already satisfied: networkx in /home/ec2-user/.local/lib/python3.7/site-packages (from -r requirements.txt (line 16)) (2.6.3) 2023-01-11T21:58:58.1774634Z Requirement already satisfied: jinja2 in /home/ec2-user/.local/lib/python3.7/site-packages (from -r requirements.txt (line 17)) (3.1.2) 2023-01-11T21:58:58.1799576Z Requirement already satisfied: wheel<1.0,>=0.23.0 in /home/ec2-user/.local/lib/python3.7/site-packages (from astunparse->-r requirements.txt (line 2)) (0.38.4) 2023-01-11T21:58:58.1816245Z Requirement already satisfied: exceptiongroup>=1.0.0; python_version < "3.11" in /home/ec2-user/.local/lib/python3.7/site-packages (from hypothesis->-r requirements.txt (line 5)) (1.1.0) 2023-01-11T21:58:58.1836303Z Requirement already satisfied: sortedcontainers<3.0.0,>=2.1.0 in /home/ec2-user/.local/lib/python3.7/site-packages (from hypothesis->-r requirements.txt (line 5)) (2.4.0) 2023-01-11T21:58:58.1845929Z Requirement already satisfied: attrs>=19.2.0 in /home/ec2-user/.local/lib/python3.7/site-packages (from hypothesis->-r requirements.txt (line 5)) (22.2.0) 2023-01-11T21:58:58.2091425Z Requirement already satisfied: idna<4,>=2.5; python_version >= "3" in /home/ec2-user/.local/lib/python3.7/site-packages (from requests->-r requirements.txt (line 9)) (3.4) 2023-01-11T21:58:58.2103175Z Requirement already satisfied: charset-normalizer~=2.0.0; python_version >= "3" in /home/ec2-user/.local/lib/python3.7/site-packages (from requests->-r requirements.txt (line 9)) (2.0.12) 2023-01-11T21:58:58.2122915Z Requirement already satisfied: urllib3<1.27,>=1.21.1 in /home/ec2-user/.local/lib/python3.7/site-packages (from requests->-r requirements.txt (line 9)) (1.26.14) 2023-01-11T21:58:58.2272094Z Requirement already satisfied: certifi>=2017.4.17 in /home/ec2-user/.local/lib/python3.7/site-packages (from requests->-r requirements.txt (line 9)) (2022.12.7) 2023-01-11T21:58:58.2280004Z Requirement already satisfied: mpmath>=0.19 in /home/ec2-user/.local/lib/python3.7/site-packages (from sympy->-r requirements.txt (line 14)) (1.2.1) 2023-01-11T21:58:58.2333017Z Requirement already satisfied: MarkupSafe>=2.0 in /home/ec2-user/.local/lib/python3.7/site-packages (from jinja2->-r requirements.txt (line 17)) (2.1.1) 2023-01-11T21:58:58.2889823Z + python3 -m pip install boto3==1.19.12 2023-01-11T21:58:58.4942847Z Defaulting to user installation because normal site-packages is not writeable 2023-01-11T21:58:58.5121410Z Requirement already satisfied: boto3==1.19.12 in /home/ec2-user/.local/lib/python3.7/site-packages (1.19.12) 2023-01-11T21:58:58.5169982Z Requirement already satisfied: jmespath<1.0.0,>=0.7.1 in /home/ec2-user/.local/lib/python3.7/site-packages (from boto3==1.19.12) (0.10.0) 2023-01-11T21:58:58.5182555Z Requirement already satisfied: s3transfer<0.6.0,>=0.5.0 in /home/ec2-user/.local/lib/python3.7/site-packages (from boto3==1.19.12) (0.5.2) 2023-01-11T21:58:58.5208686Z Requirement already satisfied: botocore<1.23.0,>=1.22.12 in /home/ec2-user/.local/lib/python3.7/site-packages (from boto3==1.19.12) (1.22.12) 2023-01-11T21:58:58.5257165Z Requirement already satisfied: python-dateutil<3.0.0,>=2.1 in /home/ec2-user/.local/lib/python3.7/site-packages (from botocore<1.23.0,>=1.22.12->boto3==1.19.12) (2.8.2) 2023-01-11T21:58:58.5276848Z Requirement already satisfied: urllib3<1.27,>=1.25.4 in /home/ec2-user/.local/lib/python3.7/site-packages (from botocore<1.23.0,>=1.22.12->boto3==1.19.12) (1.26.14) 2023-01-11T21:58:58.5426582Z Requirement already satisfied: six>=1.5 in /home/ec2-user/.local/lib/python3.7/site-packages (from python-dateutil<3.0.0,>=2.1->botocore<1.23.0,>=1.22.12->boto3==1.19.12) (1.16.0) 2023-01-11T21:58:58.7199973Z + python3 -m tools.stats.print_test_stats --upload-to-s3 --compare-with-s3 test 2023-01-11T22:00:13.6597930Z [scribe] Scribe access token not provided, sending report via boto3... 2023-01-11T22:00:13.6598964Z ERROR ENCOUNTERED WHEN UPLOADING TO SCRIBE: {"errorMessage":"2023-01-11T22:00:03.223Z 774eda00-9de7-4014-a4ee-ae7150050de3 Task timed out after 60.00 seconds"} 2023-01-11T22:00:13.6599301Z 2023-01-11T22:00:13.6601790Z ----- Historic stats comparison result ------ 2023-01-11T22:00:13.6602364Z 2023-01-11T22:00:13.6602633Z job: linux-focal-py3.7-clang7-asan 2023-01-11T22:00:13.6603107Z commit: 8419ddda87c8a47eacc63b54bc7ec98c1f27c26e 2023-01-11T22:00:13.6603342Z 2023-01-11T22:00:13.6603544Z Commit graph (base is most recent master ancestor with at least one S3 report): 2023-01-11T22:00:13.6603727Z 2023-01-11T22:00:13.6603794Z : (master) 2023-01-11T22:00:13.6603938Z | 2023-01-11T22:00:13.6604135Z | * 8419ddda87 (HEAD) total time 5576.67s 2023-01-11T22:00:13.6604468Z | | 2023-01-11T22:00:13.6604612Z | : (2 commits) 2023-01-11T22:00:13.6604789Z |/ 2023-01-11T22:00:13.6605230Z * db2a237763 (base) 6 reports, total time 6531.02s ± 1949.02s 2023-01-11T22:00:13.6605728Z * 2b0abd4ce3 6 reports, total time 6426.22s ± 1610.56s 2023-01-11T22:00:13.6606318Z * f7939b21e1 18 reports, total time 4282.88s ± 3175.52s 2023-01-11T22:00:13.6606740Z * cb3204823e 6 reports, total time 6242.31s ± 1589.91s 2023-01-11T22:00:13.6607167Z * 6e236553f5 6 reports, total time 6225.77s ± 1657.37s 2023-01-11T22:00:13.6609292Z * cce577b391 6 reports, total time 6572.59s ± 1787.95s 2023-01-11T22:00:13.6609887Z * fae821c2f1 6 reports, total time 6444.34s ± 1937.43s 2023-01-11T22:00:13.6610387Z * 0c3659586d 6 reports, total time 6403.29s ± 1687.01s 2023-01-11T22:00:13.6610691Z * 122245985a 6 reports, total time 6514.92s ± 1951.22s 2023-01-11T22:00:13.6612454Z * b797a24259 6 reports, total time 6327.92s ± 1673.60s 2023-01-11T22:00:13.6612673Z | 2023-01-11T22:00:13.6612820Z : 2023-01-11T22:00:13.6612911Z 2023-01-11T22:00:13.6613019Z Removed (across 1122 suites) 0 tests, totaling 0.00s 2023-01-11T22:00:13.6613279Z Modified (across 0 suites) 0 tests, totaling 0.00s 2023-01-11T22:00:13.6613531Z Added (across 125 suites) 20354 tests, totaling +5576.67s 2023-01-11T22:00:13.7373738Z ##[group]Run pytorch/test-infra/.github/actions/teardown-linux@main 2023-01-11T22:00:13.7373982Z with: 2023-01-11T22:00:13.7374136Z env: 2023-01-11T22:00:13.7374297Z GIT_DEFAULT_BRANCH: master 2023-01-11T22:00:13.7374575Z DOCKER_CONTAINER_ID: bc317e370d4c080860302bfc6f8a12f6dd90390fef53e4d8c245f7faa1170187 2023-01-11T22:00:13.7374833Z ##[endgroup] 2023-01-11T22:00:13.7389792Z ##[group]Run set -eou pipefail 2023-01-11T22:00:13.7390023Z set -eou pipefail 2023-01-11T22:00:13.7390203Z  2023-01-11T22:00:13.7390427Z echo "Holding runner for 2 hours until all ssh sessions have logged out" 2023-01-11T22:00:13.7390689Z for _ in $(seq 1440); do 2023-01-11T22:00:13.7390909Z  # Break if no ssh session exists anymore 2023-01-11T22:00:13.7391126Z  if [ "$(who)" = "" ]; then 2023-01-11T22:00:13.7391293Z  break 2023-01-11T22:00:13.7391459Z  fi 2023-01-11T22:00:13.7391654Z  echo "." 2023-01-11T22:00:13.7391813Z  sleep 5 2023-01-11T22:00:13.7391977Z done 2023-01-11T22:00:13.7403348Z shell: /usr/bin/bash --noprofile --norc -e -o pipefail {0} 2023-01-11T22:00:13.7403548Z env: 2023-01-11T22:00:13.7403719Z GIT_DEFAULT_BRANCH: master 2023-01-11T22:00:13.7403997Z DOCKER_CONTAINER_ID: bc317e370d4c080860302bfc6f8a12f6dd90390fef53e4d8c245f7faa1170187 2023-01-11T22:00:13.7404242Z ##[endgroup] 2023-01-11T22:00:13.7428364Z Holding runner for 2 hours until all ssh sessions have logged out 2023-01-11T22:00:13.7531601Z ##[group]Run # ignore expansion of "docker ps -q" since it could be empty 2023-01-11T22:00:13.7532119Z # ignore expansion of "docker ps -q" since it could be empty 2023-01-11T22:00:13.7532541Z # shellcheck disable=SC2046 2023-01-11T22:00:13.7532916Z docker stop $(docker ps -q) || true 2023-01-11T22:00:13.7533243Z # Prune all of the docker images 2023-01-11T22:00:13.7533444Z docker system prune -af 2023-01-11T22:00:13.7543686Z shell: /usr/bin/bash --noprofile --norc -e -o pipefail {0} 2023-01-11T22:00:13.7543901Z env: 2023-01-11T22:00:13.7544075Z GIT_DEFAULT_BRANCH: master 2023-01-11T22:00:13.7544339Z DOCKER_CONTAINER_ID: bc317e370d4c080860302bfc6f8a12f6dd90390fef53e4d8c245f7faa1170187 2023-01-11T22:00:13.7544595Z ##[endgroup] 2023-01-11T22:00:14.1405160Z bc317e370d4c 2023-01-11T22:00:16.4717453Z Deleted Containers: 2023-01-11T22:00:16.4717971Z bc317e370d4c080860302bfc6f8a12f6dd90390fef53e4d8c245f7faa1170187 2023-01-11T22:00:16.4718158Z 2023-01-11T22:00:22.6849599Z Deleted Images: 2023-01-11T22:00:22.6850666Z untagged: 308535385114.dkr.ecr.us-east-1.amazonaws.com/pytorch/pytorch-linux-focal-py3-clang7-asan:fd224c2e6c79d7fdec6408da598bf52bc5b201dd 2023-01-11T22:00:22.6851675Z untagged: 308535385114.dkr.ecr.us-east-1.amazonaws.com/pytorch/pytorch-linux-focal-py3-clang7-asan@sha256:6dd98a84a12a3a3be24bbc7c3112415c10051ad261832daa2e17a60a48fce645 2023-01-11T22:00:22.6852540Z deleted: sha256:5325cd7f52b1f94911c01c0cdf3b1ff1e9dc0384e025981788193a98f05dba1b 2023-01-11T22:00:22.6852965Z deleted: sha256:2a906ec2e83680ad0c0b3c04f800210a2aaa518dfdeb1f8777a3bda07f41043d 2023-01-11T22:00:22.6853329Z deleted: sha256:97c302ebcaf8b088d6c5f3c1ed38fe8d0e0645eb613274529f7cbc2993b8afe2 2023-01-11T22:00:22.6853833Z deleted: sha256:442a476bcc73d28a55aa62aec0fab2811802b9a49734a0f7c453fc7a0f61194b 2023-01-11T22:00:22.6854416Z deleted: sha256:ab9c20206ef962ca71b3bb9537bc48c01a44f6bca93c3db850466e72d3884263 2023-01-11T22:00:22.6854999Z deleted: sha256:d519cc29297d1da1948ac3712265391094b9879fc381ef670fae1ef57abcd3d1 2023-01-11T22:00:22.6855640Z deleted: sha256:4a21d0ec22df40883df386e38a7cb3bc77c77b712e220d35d8b37e92b9950ef6 2023-01-11T22:00:22.6856216Z deleted: sha256:395fe96fcd2b102c4003d245f119cfc65b46c4c3802ca38365bebdc91defd4cf 2023-01-11T22:00:22.6856798Z deleted: sha256:b65be516908093d7c145e4030f8de7ef10ffb305e1fba21d3958e3ee73a30d3d 2023-01-11T22:00:22.6857385Z deleted: sha256:3bb943397c70afd134df480901ed177858c1035fded4ec5f9e4ffd6da4dcb89d 2023-01-11T22:00:22.6857711Z deleted: sha256:5425abcdb9e9feccf9440658c0956c6d5238b9eaef5f3390e15d1528781575f6 2023-01-11T22:00:22.6858047Z deleted: sha256:62c8812cc3169da46ae86e31a12b9dba4e8bdbb8cf757563d94fad7e0cf69168 2023-01-11T22:00:22.6858377Z deleted: sha256:fadf0c4b466ec011c06a8ea538f9af64c9ef238a9f82548734966001280ca714 2023-01-11T22:00:22.6858703Z deleted: sha256:0792a841df1f53af6de40442d0025e9990b77742711d27a64ae4aae3be48ecea 2023-01-11T22:00:22.6858988Z deleted: sha256:7773166e62719dd423c98453776526cb437a4a2e34725f67cf35d2884c5d66ac 2023-01-11T22:00:22.6859283Z deleted: sha256:f8a56556e6f6231a4097b64001f513c5d70b13c0236af8cc455bad3b00c9bd41 2023-01-11T22:00:22.6859600Z deleted: sha256:4bbda4e2e970d7486a82b590b67d004e3eedb916c9a09dae95e171c3c7d128b8 2023-01-11T22:00:22.6859914Z deleted: sha256:76de40b5f6e9272ff2ff4ed6f49e0512d5062a889d44ee972f6ff0e9b4d97b21 2023-01-11T22:00:22.6860232Z deleted: sha256:21a617b683926eac79a3ff5b84020a90091ab8f6ed91263d32e60c41d8dc83a3 2023-01-11T22:00:22.6860541Z deleted: sha256:a18f03489410849fb7b5773cd370d81eead139d9a1f7d17bd5b45343d8411235 2023-01-11T22:00:22.6860863Z deleted: sha256:1da4c3d326dbb1eb56d7e72d42cd2489204f08b8e11fcc809d3d9b672d07c130 2023-01-11T22:00:22.6861172Z deleted: sha256:f1164e9f191cdf8f0735e79f41638604c1857f8ea363c8bcf469f4dbc0395155 2023-01-11T22:00:22.6861475Z deleted: sha256:834f45135f91348725785a41a0b47edadd4ac0f42672dce53e9481f29dbf5118 2023-01-11T22:00:22.6861782Z deleted: sha256:4c7f1152ccb57e9b538496946274984cbe2f4594db9a78df1cd412ff2ca86ba3 2023-01-11T22:00:22.6862067Z deleted: sha256:800e2f87c71c39552693489f91886f35168bada0577c186eb984e9d527c9e1ab 2023-01-11T22:00:22.6862370Z deleted: sha256:86e4189838195e0b7afe3b1d64cc68b85150b1e652b1ea78e0c3e79f60e56619 2023-01-11T22:00:22.6862676Z deleted: sha256:57a498c51cc5e371ea3005fa34643fd311473bf45160ec9f8829bc57aaf5e469 2023-01-11T22:00:22.6862979Z deleted: sha256:b1ac4279009dc5f8f84259e215465c846e93e899120b194bb26710080d05d064 2023-01-11T22:00:22.6863293Z deleted: sha256:ec6bcb4ef51f26674c5c1ecf0fd98dafba7e6c676af97ddaa9e90c827a84f4ac 2023-01-11T22:00:22.6863623Z deleted: sha256:41053418af7960cb9778f5de6dbb5fb9a81679d026a95c9040112a769fca9509 2023-01-11T22:00:22.6863945Z deleted: sha256:85bc8a6e2aa0a5aab623f96bcbd8100851b8780ab0ab96147f70ecefd9b4db59 2023-01-11T22:00:22.6864259Z deleted: sha256:b14d0ec20a85e111c0d1b7884da9e140828a31183e6a310e6a5b2eb666ffc0f5 2023-01-11T22:00:22.6864577Z deleted: sha256:a1e5003e5f434888b9ed0e968efb1766e6ee2989e3859deb3d28f44a9e11a151 2023-01-11T22:00:22.6864900Z deleted: sha256:079925f7360b91dfffdbf07a3c9d26760ba63efd8ccf2bb1da8eb90a2bce6c71 2023-01-11T22:00:22.6865283Z deleted: sha256:096c0fa52de28ce746fa2185ecede7afb8026f7764e7979521d7100c91f436cf 2023-01-11T22:00:22.6865586Z deleted: sha256:3829c30ff4e506bc321170851f220f8da1447eff64069ce79d2c4524b3c048b9 2023-01-11T22:00:22.6865919Z deleted: sha256:bd5d33b4de72dc0654a67bd3ce98dcef60d7fdfacb8a2ce7fcc20baa6b1e168f 2023-01-11T22:00:22.6866279Z deleted: sha256:1f392eed296a431fb3a9ea096e45207fabad2b40bafdbfadd04cee8cc3143836 2023-01-11T22:00:22.6866586Z deleted: sha256:260fe247d5696775c1703448021630206a5cd4d42cd3fabd431fc6ae4dd70364 2023-01-11T22:00:22.6866924Z deleted: sha256:20efe016ab0cbd16e268a172261b2ff0a48f8bd8b3bb24a8c90e8fcbf8dac0f9 2023-01-11T22:00:22.6867271Z deleted: sha256:acb74ca36bc5aa2afadf1d323e3479f2e695b859e6f8de79a5385b5704648c97 2023-01-11T22:00:22.6867679Z deleted: sha256:08659c8942260808f64dc4d246f0d1ec69bea959285c1a68a623eef06fac0776 2023-01-11T22:00:22.6868057Z deleted: sha256:4f180b139fcb3dbfd17a8bee3050c2e4ddfec735de23b4a4945dfa1cbf2a4b21 2023-01-11T22:00:22.6868402Z deleted: sha256:91adec35f4022e8012f3cf585ef9aecb0fb00554d64d3015746f87790ec5e56e 2023-01-11T22:00:22.6868726Z deleted: sha256:4a0eeaa6a53564a71593a4a86fd649a6489c996eaf1ebb3682d0a38da99b22ed 2023-01-11T22:00:22.6869056Z deleted: sha256:99fac38c2936297fb41ffb0bac75a88912fa25d543829065effecceccb92a3ff 2023-01-11T22:00:22.6869362Z deleted: sha256:798bdde84964314140909f87d67d5f5a73f0cc661f1afd5afb58e243f0b8143b 2023-01-11T22:00:22.6869717Z deleted: sha256:1c46b37f355a09ff1f756158f98428dfb7471c79bf482ec749013853507b63d4 2023-01-11T22:00:22.6870037Z deleted: sha256:83ffd7688f9ca4fd4964d42650101bc8ccd5e8f8c5e98f6bdf62a1d0d9949822 2023-01-11T22:00:22.6870355Z deleted: sha256:20b6db097888f607cac0931dbc6139d6a5f43ab1138e4016aecdbcbd34d58861 2023-01-11T22:00:22.6870674Z deleted: sha256:1e00b41465f87331efde7530353bd0a8e85f73e43fe7b2c2cd62d94d6722f55d 2023-01-11T22:00:22.6871006Z deleted: sha256:d02aefd44af95ba08c859f8d3d122e4c837a4f1bfc629b1f14cad28155f441e2 2023-01-11T22:00:22.6871337Z deleted: sha256:c382de1d8b9efdd8f19997310c931ce3b96a46556c7e6d365289833b9876d70a 2023-01-11T22:00:22.6871657Z deleted: sha256:3ce7d394261e3df5a6daedf89f56f49f65aa9f0363cdd91236bcb6be104f691f 2023-01-11T22:00:22.6871980Z deleted: sha256:96eb2293b4da5750861d9786c2b42370252bd4987bfad60ff880a8e8a1dff012 2023-01-11T22:00:22.6872289Z deleted: sha256:dd3c4887c7716cb5f245c613b60762a6882552b9e53bfe6b8bd87d23ed088389 2023-01-11T22:00:22.6872596Z deleted: sha256:623279cffefdbb351006c27e7413dab9c5a12c7411d842f570d79a7966cb6fbb 2023-01-11T22:00:22.6872897Z deleted: sha256:5295198d288e9389897b64f68531db086313f1ff09424e199edbdfc8e4ccbafe 2023-01-11T22:00:22.6873201Z deleted: sha256:0002c93bdb3704dd9e36ce5153ef637f84de253015f3ee330468dccdeacad60b 2023-01-11T22:00:22.6873381Z 2023-01-11T22:00:22.6873479Z Total reclaimed space: 11.64GB 2023-01-11T22:00:22.6944944Z Post job cleanup. 2023-01-11T22:00:22.7001025Z Post job cleanup. 2023-01-11T22:00:22.8031221Z [command]/usr/bin/git version 2023-01-11T22:00:22.8075183Z git version 2.38.1 2023-01-11T22:00:22.8112548Z Temporarily overriding HOME='/home/ec2-user/actions-runner/_work/_temp/4cc5de0c-7f07-42dc-846e-8fa5ec2cceca' before making global git config changes 2023-01-11T22:00:22.8113232Z Adding repository directory to the temporary git global config as a safe directory 2023-01-11T22:00:22.8116673Z [command]/usr/bin/git config --global --add safe.directory /home/ec2-user/actions-runner/_work/pytorch/pytorch 2023-01-11T22:00:22.8164767Z [command]/usr/bin/git config --local --name-only --get-regexp core\.sshCommand 2023-01-11T22:00:22.8194192Z [command]/usr/bin/git submodule foreach --recursive git config --local --name-only --get-regexp 'core\.sshCommand' && git config --local --unset-all 'core.sshCommand' || : 2023-01-11T22:00:22.8608497Z Entering 'android/libs/fbjni' 2023-01-11T22:00:22.8658906Z Entering 'third_party/FP16' 2023-01-11T22:00:22.8705224Z Entering 'third_party/FXdiv' 2023-01-11T22:00:22.8763609Z Entering 'third_party/NNPACK' 2023-01-11T22:00:22.8813929Z Entering 'third_party/QNNPACK' 2023-01-11T22:00:22.8864578Z Entering 'third_party/VulkanMemoryAllocator' 2023-01-11T22:00:22.8898881Z Entering 'third_party/XNNPACK' 2023-01-11T22:00:22.9008479Z Entering 'third_party/benchmark' 2023-01-11T22:00:22.9057571Z Entering 'third_party/cpuinfo' 2023-01-11T22:00:22.9113188Z Entering 'third_party/cub' 2023-01-11T22:00:22.9162413Z Entering 'third_party/cudnn_frontend' 2023-01-11T22:00:22.9201154Z Entering 'third_party/cutlass' 2023-01-11T22:00:22.9241566Z Entering 'third_party/eigen' 2023-01-11T22:00:22.9314491Z Entering 'third_party/fbgemm' 2023-01-11T22:00:22.9373418Z Entering 'third_party/fbgemm/third_party/asmjit' 2023-01-11T22:00:22.9432146Z Entering 'third_party/fbgemm/third_party/cpuinfo' 2023-01-11T22:00:22.9492770Z Entering 'third_party/fbgemm/third_party/googletest' 2023-01-11T22:00:22.9559317Z Entering 'third_party/fbgemm/third_party/hipify_torch' 2023-01-11T22:00:22.9609093Z Entering 'third_party/flatbuffers' 2023-01-11T22:00:22.9644743Z Entering 'third_party/fmt' 2023-01-11T22:00:22.9694378Z Entering 'third_party/foxi' 2023-01-11T22:00:22.9736145Z Entering 'third_party/gemmlowp/gemmlowp' 2023-01-11T22:00:22.9789082Z Entering 'third_party/gloo' 2023-01-11T22:00:22.9840801Z Entering 'third_party/googletest' 2023-01-11T22:00:22.9896871Z Entering 'third_party/ideep' 2023-01-11T22:00:22.9972737Z Entering 'third_party/ideep/mkl-dnn' 2023-01-11T22:00:23.0057427Z Entering 'third_party/ideep/mkl-dnn/third_party/oneDNN' 2023-01-11T22:00:23.0151177Z Entering 'third_party/ios-cmake' 2023-01-11T22:00:23.0199266Z Entering 'third_party/ittapi' 2023-01-11T22:00:23.0233700Z Entering 'third_party/kineto' 2023-01-11T22:00:23.0267199Z Entering 'third_party/kineto/libkineto/third_party/fmt' 2023-01-11T22:00:23.0300330Z Entering 'third_party/kineto/libkineto/third_party/googletest' 2023-01-11T22:00:23.0334481Z Entering 'third_party/nccl/nccl' 2023-01-11T22:00:23.0389814Z Entering 'third_party/neon2sse' 2023-01-11T22:00:23.0429793Z Entering 'third_party/nlohmann' 2023-01-11T22:00:23.0465010Z Entering 'third_party/onnx' 2023-01-11T22:00:23.0586785Z Entering 'third_party/onnx/third_party/benchmark' 2023-01-11T22:00:23.0653893Z Entering 'third_party/onnx/third_party/pybind11' 2023-01-11T22:00:23.0703960Z Entering 'third_party/onnx-tensorrt' 2023-01-11T22:00:23.0768203Z Entering 'third_party/onnx-tensorrt/third_party/onnx' 2023-01-11T22:00:23.0866864Z Entering 'third_party/onnx-tensorrt/third_party/onnx/third_party/benchmark' 2023-01-11T22:00:23.0933838Z Entering 'third_party/onnx-tensorrt/third_party/onnx/third_party/pybind11' 2023-01-11T22:00:23.0993911Z Entering 'third_party/onnx-tensorrt/third_party/onnx/third_party/pybind11/tools/clang' 2023-01-11T22:00:23.1051874Z Entering 'third_party/pocketfft' 2023-01-11T22:00:23.1085820Z Entering 'third_party/protobuf' 2023-01-11T22:00:23.1164886Z Entering 'third_party/protobuf/third_party/benchmark' 2023-01-11T22:00:23.1218518Z Entering 'third_party/protobuf/third_party/googletest' 2023-01-11T22:00:23.1273107Z Entering 'third_party/psimd' 2023-01-11T22:00:23.1331368Z Entering 'third_party/pthreadpool' 2023-01-11T22:00:23.1376231Z Entering 'third_party/pybind11' 2023-01-11T22:00:23.1421739Z Entering 'third_party/python-enum' 2023-01-11T22:00:23.1461948Z Entering 'third_party/python-peachpy' 2023-01-11T22:00:23.1509851Z Entering 'third_party/python-six' 2023-01-11T22:00:23.1550923Z Entering 'third_party/sleef' 2023-01-11T22:00:23.1600203Z Entering 'third_party/tbb' 2023-01-11T22:00:23.1635941Z Entering 'third_party/tensorpipe' 2023-01-11T22:00:23.1692989Z Entering 'third_party/tensorpipe/third_party/googletest' 2023-01-11T22:00:23.1751311Z Entering 'third_party/tensorpipe/third_party/libnop' 2023-01-11T22:00:23.1802497Z Entering 'third_party/tensorpipe/third_party/libuv' 2023-01-11T22:00:23.1858595Z Entering 'third_party/tensorpipe/third_party/pybind11' 2023-01-11T22:00:23.1922156Z Entering 'third_party/tensorpipe/third_party/pybind11/tools/clang' 2023-01-11T22:00:23.1974444Z Entering 'third_party/zstd' 2023-01-11T22:00:23.2034826Z [command]/usr/bin/git config --local --name-only --get-regexp http\.https\:\/\/github\.com\/\.extraheader 2023-01-11T22:00:23.2060970Z http.https://github.com/.extraheader 2023-01-11T22:00:23.2069185Z [command]/usr/bin/git config --local --unset-all http.https://github.com/.extraheader 2023-01-11T22:00:23.2100890Z [command]/usr/bin/git submodule foreach --recursive git config --local --name-only --get-regexp 'http\.https\:\/\/github\.com\/\.extraheader' && git config --local --unset-all 'http.https://github.com/.extraheader' || : 2023-01-11T22:00:23.2345898Z Entering 'android/libs/fbjni' 2023-01-11T22:00:23.2365619Z http.https://github.com/.extraheader 2023-01-11T22:00:23.2391300Z Entering 'third_party/FP16' 2023-01-11T22:00:23.2411496Z http.https://github.com/.extraheader 2023-01-11T22:00:23.2437679Z Entering 'third_party/FXdiv' 2023-01-11T22:00:23.2457601Z http.https://github.com/.extraheader 2023-01-11T22:00:23.2484585Z Entering 'third_party/NNPACK' 2023-01-11T22:00:23.2503966Z http.https://github.com/.extraheader 2023-01-11T22:00:23.2529981Z Entering 'third_party/QNNPACK' 2023-01-11T22:00:23.2549299Z http.https://github.com/.extraheader 2023-01-11T22:00:23.2576450Z Entering 'third_party/VulkanMemoryAllocator' 2023-01-11T22:00:23.2596186Z http.https://github.com/.extraheader 2023-01-11T22:00:23.2622652Z Entering 'third_party/XNNPACK' 2023-01-11T22:00:23.2642393Z http.https://github.com/.extraheader 2023-01-11T22:00:23.2679526Z Entering 'third_party/benchmark' 2023-01-11T22:00:23.2699336Z http.https://github.com/.extraheader 2023-01-11T22:00:23.2726320Z Entering 'third_party/cpuinfo' 2023-01-11T22:00:23.2745943Z http.https://github.com/.extraheader 2023-01-11T22:00:23.2772302Z Entering 'third_party/cub' 2023-01-11T22:00:23.2793622Z http.https://github.com/.extraheader 2023-01-11T22:00:23.2820519Z Entering 'third_party/cudnn_frontend' 2023-01-11T22:00:23.2840236Z http.https://github.com/.extraheader 2023-01-11T22:00:23.2871134Z Entering 'third_party/cutlass' 2023-01-11T22:00:23.2891657Z http.https://github.com/.extraheader 2023-01-11T22:00:23.2924021Z Entering 'third_party/eigen' 2023-01-11T22:00:23.2943651Z http.https://github.com/.extraheader 2023-01-11T22:00:23.2971732Z Entering 'third_party/fbgemm' 2023-01-11T22:00:23.2990940Z http.https://github.com/.extraheader 2023-01-11T22:00:23.3018754Z Entering 'third_party/fbgemm/third_party/asmjit' 2023-01-11T22:00:23.3038127Z http.https://github.com/.extraheader 2023-01-11T22:00:23.3063436Z Entering 'third_party/fbgemm/third_party/cpuinfo' 2023-01-11T22:00:23.3084539Z http.https://github.com/.extraheader 2023-01-11T22:00:23.3110647Z Entering 'third_party/fbgemm/third_party/googletest' 2023-01-11T22:00:23.3129787Z http.https://github.com/.extraheader 2023-01-11T22:00:23.3155700Z Entering 'third_party/fbgemm/third_party/hipify_torch' 2023-01-11T22:00:23.3174864Z http.https://github.com/.extraheader 2023-01-11T22:00:23.3201905Z Entering 'third_party/flatbuffers' 2023-01-11T22:00:23.3221021Z http.https://github.com/.extraheader 2023-01-11T22:00:23.3249110Z Entering 'third_party/fmt' 2023-01-11T22:00:23.3269358Z http.https://github.com/.extraheader 2023-01-11T22:00:23.3295187Z Entering 'third_party/foxi' 2023-01-11T22:00:23.3314793Z http.https://github.com/.extraheader 2023-01-11T22:00:23.3340857Z Entering 'third_party/gemmlowp/gemmlowp' 2023-01-11T22:00:23.3360940Z http.https://github.com/.extraheader 2023-01-11T22:00:23.3387219Z Entering 'third_party/gloo' 2023-01-11T22:00:23.3407192Z http.https://github.com/.extraheader 2023-01-11T22:00:23.3433127Z Entering 'third_party/googletest' 2023-01-11T22:00:23.3453037Z http.https://github.com/.extraheader 2023-01-11T22:00:23.3479455Z Entering 'third_party/ideep' 2023-01-11T22:00:23.3499562Z http.https://github.com/.extraheader 2023-01-11T22:00:23.3525286Z Entering 'third_party/ideep/mkl-dnn' 2023-01-11T22:00:23.3544251Z http.https://github.com/.extraheader 2023-01-11T22:00:23.3573231Z Entering 'third_party/ideep/mkl-dnn/third_party/oneDNN' 2023-01-11T22:00:23.3592365Z http.https://github.com/.extraheader 2023-01-11T22:00:23.3624641Z Entering 'third_party/ios-cmake' 2023-01-11T22:00:23.3645005Z http.https://github.com/.extraheader 2023-01-11T22:00:23.3671564Z Entering 'third_party/ittapi' 2023-01-11T22:00:23.3691161Z http.https://github.com/.extraheader 2023-01-11T22:00:23.3717676Z Entering 'third_party/kineto' 2023-01-11T22:00:23.3737411Z http.https://github.com/.extraheader 2023-01-11T22:00:23.3764115Z Entering 'third_party/kineto/libkineto/third_party/fmt' 2023-01-11T22:00:23.3783976Z http.https://github.com/.extraheader 2023-01-11T22:00:23.3810310Z Entering 'third_party/kineto/libkineto/third_party/googletest' 2023-01-11T22:00:23.3830037Z http.https://github.com/.extraheader 2023-01-11T22:00:23.3857623Z Entering 'third_party/nccl/nccl' 2023-01-11T22:00:23.3877615Z http.https://github.com/.extraheader 2023-01-11T22:00:23.3904461Z Entering 'third_party/neon2sse' 2023-01-11T22:00:23.3924812Z http.https://github.com/.extraheader 2023-01-11T22:00:23.3950365Z Entering 'third_party/nlohmann' 2023-01-11T22:00:23.3970168Z http.https://github.com/.extraheader 2023-01-11T22:00:23.3996830Z Entering 'third_party/onnx' 2023-01-11T22:00:23.4016971Z http.https://github.com/.extraheader 2023-01-11T22:00:23.4055153Z Entering 'third_party/onnx/third_party/benchmark' 2023-01-11T22:00:23.4074745Z http.https://github.com/.extraheader 2023-01-11T22:00:23.4101264Z Entering 'third_party/onnx/third_party/pybind11' 2023-01-11T22:00:23.4121376Z http.https://github.com/.extraheader 2023-01-11T22:00:23.4148624Z Entering 'third_party/onnx-tensorrt' 2023-01-11T22:00:23.4169269Z http.https://github.com/.extraheader 2023-01-11T22:00:23.4194651Z Entering 'third_party/onnx-tensorrt/third_party/onnx' 2023-01-11T22:00:23.4214197Z http.https://github.com/.extraheader 2023-01-11T22:00:23.4244302Z Entering 'third_party/onnx-tensorrt/third_party/onnx/third_party/benchmark' 2023-01-11T22:00:23.4263468Z http.https://github.com/.extraheader 2023-01-11T22:00:23.4290303Z Entering 'third_party/onnx-tensorrt/third_party/onnx/third_party/pybind11' 2023-01-11T22:00:23.4309514Z http.https://github.com/.extraheader 2023-01-11T22:00:23.4335374Z Entering 'third_party/onnx-tensorrt/third_party/onnx/third_party/pybind11/tools/clang' 2023-01-11T22:00:23.4354949Z http.https://github.com/.extraheader 2023-01-11T22:00:23.4385418Z Entering 'third_party/pocketfft' 2023-01-11T22:00:23.4405151Z http.https://github.com/.extraheader 2023-01-11T22:00:23.4430281Z Entering 'third_party/protobuf' 2023-01-11T22:00:23.4450743Z http.https://github.com/.extraheader 2023-01-11T22:00:23.4479672Z Entering 'third_party/protobuf/third_party/benchmark' 2023-01-11T22:00:23.4499601Z http.https://github.com/.extraheader 2023-01-11T22:00:23.4525199Z Entering 'third_party/protobuf/third_party/googletest' 2023-01-11T22:00:23.4545095Z http.https://github.com/.extraheader 2023-01-11T22:00:23.4573175Z Entering 'third_party/psimd' 2023-01-11T22:00:23.4594690Z http.https://github.com/.extraheader 2023-01-11T22:00:23.4620920Z Entering 'third_party/pthreadpool' 2023-01-11T22:00:23.4641200Z http.https://github.com/.extraheader 2023-01-11T22:00:23.4666595Z Entering 'third_party/pybind11' 2023-01-11T22:00:23.4686706Z http.https://github.com/.extraheader 2023-01-11T22:00:23.4712538Z Entering 'third_party/python-enum' 2023-01-11T22:00:23.4732554Z http.https://github.com/.extraheader 2023-01-11T22:00:23.4757935Z Entering 'third_party/python-peachpy' 2023-01-11T22:00:23.4778090Z http.https://github.com/.extraheader 2023-01-11T22:00:23.4804426Z Entering 'third_party/python-six' 2023-01-11T22:00:23.4824572Z http.https://github.com/.extraheader 2023-01-11T22:00:23.4851719Z Entering 'third_party/sleef' 2023-01-11T22:00:23.4871498Z http.https://github.com/.extraheader 2023-01-11T22:00:23.4896956Z Entering 'third_party/tbb' 2023-01-11T22:00:23.4916357Z http.https://github.com/.extraheader 2023-01-11T22:00:23.4944489Z Entering 'third_party/tensorpipe' 2023-01-11T22:00:23.4963822Z http.https://github.com/.extraheader 2023-01-11T22:00:23.4989970Z Entering 'third_party/tensorpipe/third_party/googletest' 2023-01-11T22:00:23.5008348Z http.https://github.com/.extraheader 2023-01-11T22:00:23.5033903Z Entering 'third_party/tensorpipe/third_party/libnop' 2023-01-11T22:00:23.5053012Z http.https://github.com/.extraheader 2023-01-11T22:00:23.5078461Z Entering 'third_party/tensorpipe/third_party/libuv' 2023-01-11T22:00:23.5097284Z http.https://github.com/.extraheader 2023-01-11T22:00:23.5122839Z Entering 'third_party/tensorpipe/third_party/pybind11' 2023-01-11T22:00:23.5141598Z http.https://github.com/.extraheader 2023-01-11T22:00:23.5166913Z Entering 'third_party/tensorpipe/third_party/pybind11/tools/clang' 2023-01-11T22:00:23.5185616Z http.https://github.com/.extraheader 2023-01-11T22:00:23.5213879Z Entering 'third_party/zstd' 2023-01-11T22:00:23.5233610Z http.https://github.com/.extraheader 2023-01-11T22:00:23.5458309Z Cleaning up orphan processes